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A memory effect is a net change in matter distribution due to radiation. It is a classically observable 
effect that takes place in the asymptotic region of spacetime. The study of memory effects started in 
gravitational physics where the effect is manifested as a permanent displacement in a configuration of 
test particles due to gravitational waves. Recently, analogous effects have been studied in the context 
of gauge theories. This thesis is focused on the memory effect present in electrodynamics. 

The study starts by a discussion on the fundamental aspects of electrodynamics as U(1) gauge 
invariant theory. Next, the tools of conformal compactification and Penrose diagram of Minkowski 
space are introduced. After these preliminaries, the electromagnetic analog of gravitational-wave 
memory, first analyzed by L. Bieri and D. Garfinkle, is studied in detail. Starting with Maxwell's 
equations, a partial differential equation is derived, in which the two-sphere divergence of the memory 
vector depends on the total charge flux F that reaches the null infinity and the initial and final values 
of the radial component of the electric field. The memory vector is then found to consist of two parts: 
the ordinary memory vector and the null memory vector. The solution of Bieri and Garfinkle for the null 
memory vector is reproduced by expanding the flux F in terms of spherical harmonics.

Finally, we analyse the connection between the electromagnetic memory effect and the so-called 
asymptotic symmetries of U(1) gauge theory. The memory effect is found to determine a large 
gauge transformation (LGT) in which the gauge parameter becomes a function of angles at null 
infinity. Since a LGT is a local symmetry of U(1) theory, there must be a conserved Noether current 
and Noether charge associated with it. As the memory effect generates a LGT, it is natural to expect a 
connection between the memory effect and the Noether charge. The study thus culminates in an 
equation in which the difference between the initial and final Noether charges equals the sum of two 
terms: the product of the two-sphere surface average of flux F and the integral of the gauge parameter 
over S2, on the one hand, and the integral of the inner product of the total memory vector and the ordinary memory vector over S2, on the other hand.
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Finally, the connection between the electromagnetic memory effect and the so-called asymptotic 
symmetries of U(1) gauge theory is analyzed. The memory effect is found to determine a large 
gauge transformation (LGT) in which the gauge parameter becomes a function of angles at null 
infinity. Since a LGT is a local symmetry of U(1) theory, there must be a conserved Noether current 
and Noether charge associated with it. As the memory effect generates a LGT, it is natural to expect a 
connection between the memory effect and the Noether charge. The study thus culminates in an 
equation that relates the conserved charge to the memory effect.
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1 Introduction

1.1 The subject and its background

The subject of this master’s thesis is the electromagnetic memory effect, which
has been studied recently as an analog to the memory effect present in Gen-
eral Relativity, Einstein’s theory of gravity. Memory effects have to do with
permanent changes induced by radiation on physical configurations, like a col-
lection of test particles with certain positions and velocities. They are classical
observable effects in the low-energy region of gravity and gauge theories [1].

The study of memory effects started within gravitational physics, in connection
with one of the intriguing consequences of Einstein’s theory: gravitational
waves. The existence of gravitational waves was first proposed by Einstein
himself, but the time lapse between the first prediction and the first observation
was a hundred years long. Einstein’s original wave solution to the Einstein
equation, the central equation of General Relativity, was found in the linearized
theory in which the left hand side of the equation is expanded to the first
order of the metric perturbation. Einstein was able to show that these metric
perturbations are plane waves that travel at the speed of light. However, it
was suspected that the gravitational wave solution was only a remnant of the
linearization of the theory that would disappear in the fully nonlinear theory.
Einstein even gave arguments (that later turned out to be fallacious) to the
effect that nonlinear gravitational waves cannot exist [2].

There were many questions that needed answers before gravitational wave
search could take off [2]:

1. How should a plane gravitational wave be defined in the nonlinear Ein-
stein theory?

2. Is a plane gravitational wave a solution of the nonlinear theory?

3. Does a plane gravitational wave carry energy?

4. How should a gravitational wave with a nonplanar front be defined in
the nonlinear theory?

5. How much energy do those waves carry?

6. Are these waves solutions of the nonlinear theory?

7. Is it possible to have bounded sources emitting gravitational waves in
the nonlinear theory?
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It took several decades to find solutions to these fundamental problems. Due
to the pioneering work of H. Bondi, F. Pirani, I. Robinson and A. Trautman,
among others, at the turn of 1950s and 1960s, the theoretical existence of
gravitational waves was established, which opened the door for experimental
work in gravitational wave research [2]. Finally, in autumn 2015, the LIGO
team managed to make an observation of a passing gravitational wave emitted
from the merger of two black holes of stellar mass [3]. As an acknowledgement
of the importance of this discovery, the key figures who made the observation
possible, R. Weiss, B. Barish, and K. Thorne, were awarded the 2017 Nobel
Prize in physics [5].

The confirmation of the existence of gravitational waves naturally calls for
further examination of the properties of gravitational waves. One of these
is the so-called ”gravitational-wave memory,” in which physicists have been
interested recently. A passing gravitational wave periodically stretches and
shrinks the relative distance of test particles that lie in the plane perpendicular
to the direction of wave propagation. It can be shown, however, that after the
wave has passed, the particles have no relative velocity. Instead, the wave has
made a permanent change in the spacetime geometry, due to which the relative
positions of the particles have changed. In the literature, this phenomenon goes
under the name ”memory effect” since the ”memory” of a passing gravitational
wave is left permanently in the geometry of the spacetime [4].

The first calculation of the memory effect was carried out by Y. Zel’dovich and
A. Polnarev in 1974 in the context of the linearized Einstein theory [6]. They
argued that the effect is too small to be detectable. Contrary to this, in 1991
the mathematician D. Christodoulou pointed out that the memory effect is in
fact larger than it was previously thought – large enough to make its detection
possible in principle [7]. Christodoulou made his calculations based on the
nonlinear theory, which is why the effect he predicted is sometimes called the
nonlinear memory effect. A possible physical explanation for Christodoulou’s
calculation was given by K. Thorne [8] and A. Wiseman and C. Will [9]: the
nonlinear effect comes from gravitons emitted by gravitational wave and the
energy contribution of these gravitons should be included in the memory effect
formula.

Besides the gravitational memory effect, there has been a growing interest
among physicists in analogous memory effects in gauge theories. It has been
claimed that a similar kind of memory effect can be found in electrodynamics
[10], [12], [13] and Yang-Mills theory [14]. Furthermore, it has been argued
that memory effects are closely associated with two other facets of gravity and
gauge theories: soft theorems and asymptotic symmetries. Soft theorems state
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Figure 1.1. The infrared triangle. Three infrared phenomena (memory effects, asymptotic
symmetries and soft theorems), turn out to be equivalent to each other. Memory effects
and asymptotic symmetries are connected to each other by vacuum transitions. Memory
effects and soft theorems are related by Fourier transforms. Soft theorems are Ward-Takashi
identities of asymptotic symmetries.

that in a quantum field theory (QFT) scattering process, when the energy of
a massless external particle tends to zero (i.e. it becomes soft), an infinite
number of zero-energy particles are generated. Asymptotic symmetries, for
one, are symmetries and conservation laws of a physical theory at arbitrarily
faraway distances. Despite their name, these symmetries are really exact, but
they hold in a region that is approached asymptotically. These three are prima
facie disjoint phenomena that have been studied independently of each other for
a long time. Only recently it was realized that these three subjects are in fact
equivalent to each other (see Figure 1.1). This discovery has led to interesting
new studies in the infrared structure of gravity and gauge theories [15–21].
The basic pedagogical text on this subject today is [1].

In this master’s thesis, we will focus on the memory effect present in the elec-
tromagnetic theory. It is in and of itself an interesting fact that there is an
electromagnetic analog to the gravitational-wave memory. It is always inter-
esting to find analogous structures in different areas of physics. Moreover,
studying the electromagnetic analog might shed some light on the more com-
plex gravitational case and thus be useful for the gravitational wave research.
There are thus good reasons to be interested in the electromagnetic analog of
gravitational-wave memory.
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The structure of this thesis is as follows: First, we will lay the foundation for
the study of the memory effect by presenting the basics of classical electro-
dynamics. We examine the fundamental properties of electromagnetism as a
U(1) invariant gauge theory. Next, as a necessary preliminary to the discus-
sion on the electromagnetic memory effect, we will present a method called
conformal compactification of spacetime and construct a Penrose diagram of
Minkowski space. Finally, we will study the behavior of Maxwell’s equations
at the conformal boundary of Minkowski space. This will allow us to derive
the electromagnetic analog of the gravitational-wave memory. In the course of
this study, we assume that the fundamentals of GR, as they are presented in
e.g. [22], are known to the reader.

1.2 Conventions

We will use units in which the speed of light is c = 1. In Minkowski metric we
use the sign convention (– + + +). We also set the vacuum permittivity to
ǫ0 = 1, which implies that the magnetic permeability is µ0 = 1, too. We also
employ the Einstein summation convention where the summation takes place
over the repeated index:

3∑

µ=0

VµW
µ ≡ VµW

µ. (1.1)

We use Greek letters to denote a sum over all spacetime components. When
Latin letters are used, like in

ViW
i, (1.2)

the summation takes place over spatial components only. Since this is a study
in electromagnetism, Maxwell’s equations are the physical laws that we are
most interested in. Maxwell’s equations can be formulated in curved spacetime
(see e.g. [23], [24]), but the flat space formulation is enough for the purposes
of this study. In the inhomogeneous Maxwell’s equation

∇µF
µν = Jν (1.3)

we use the sign convention in which the four-current Jν = (ρ, J i) has a positive
sign when on the left hand side the contraction takes place over the first upper
index.
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2 Electromagnetism as U(1) gauge invariant

theory

It is one of the fundamental facts of physics that symmetries of a theory are
associated with conservation laws. This fact is encapsulated in the famous
Noether’s theorems, which state that for any continuous symmetry of a theory,
either global or local, there exists a conservation law. A symmetry of a theory
is its invariance under some transformation, which we call then a symmetry
transformation of the theory. By a global symmetry we mean a symmetry
that is generated by a constant transformation at every point of spacetime. In
contrast, in a local symmetry the transformation parameter is a function of
spacetime and does not have to assume the same value everywhere.

In this chapter we will study the foundations of electromagnetism as a gauge
theory that is invariant under the U(1) group of transformations. We start by
setting up the formalism for electromagnetism, derive the equations of motion,
and finally show how charge conservation flows out of U(1) gauge invariance.

2.1 Maxwell’s equations

Classical electrodynamics is governed by Maxwell’s equations, which are a set
of partial differential equations relating the derivatives of electric and mag-
netic field components to charge distribution and flow. In the usual vector
representation, Maxwell’s equations are

∇ · ~E = ρ (2.1)

∇ · ~B = 0 (2.2)

∇× ~E = −∂t ~B (2.3)

∇× ~B = ~J + ∂t ~E, (2.4)

where ~E is the electric field and ~B the magnetic field, ρ is the charge density and
~J the current density. The first (2.1) and the last one (2.4) of these equations
are called inhomogeneous Maxwell’s equations since they contain the source
terms ρ and ~J , respectively. The remaining equations lack any source terms
so they are called homogeneous Maxwell’s equations. These comprise a total
of eight equations when all the vector components are taken into account.

As it is well known, classical electrodynamics is Lorentz covariant: Maxwell’s
equations retain their form under Lorentz transformations. Historically, Maxwell’s
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electrodynamics was a crucial stepping-stone between Newtonian physics and
the Special Theory of Relativity. Furthermore, Hermann Minkowski realized
that Einstein’s Special Relativity could be equivalently formulated using a ge-
ometric structure that unites time and space into a single entity, Minkowski
spacetime. Thus, Minkowski spacetime is also the underlying structure of
Maxwell theory. It is a space that has a flat geometry, yet it is non-Euclidean.
In the Cartesian coordinates its metric is

gµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (2.5)

and the inverse metric gµν is given by the same matrix as the metric. Thus
raising and lowering indices with the metric in the Cartesian coordinates is a
trivial operation. However, in our study we will usually employ such coordi-
nate systems that the metric takes a more complicated form and raising and
lowering indices becomes a non-trivial matter, even though we operate in a flat
spacetime.

This geometrized approach admits of use of the powerful formalism of tensor
calculus in electrodynamics. Classical electrodynamics can be formulated using
a single antisymmetric rank two tensor field inhabiting in Minkowski spacetime:
the electromagnetic field strength Fµν . The tensor is defined as the exterior
derivative of the gauge field Aµ, i.e.

Fµν = (dA)µν = ∂µAν − ∂νAµ. (2.6)

The tensor is invariant under gauge transformations of the form

Aµ → Aµ + ∂µα, (2.7)

since partial derivatives commute. The electric and magnetic fields are defined
using the field strength tensor as

F0i = Ei, Fij = −ǫijkBk. (2.8)

Note that here ǫijk is properly understood to be the Levi-Civita tensor, not
just the Levi-Civita symbol ǫ̃ijk, i.e.

ǫ̃ijk =





1, for even permutations of ijk

−1, for odd permutations of ijk

0 otherwise

(2.9)

ǫijk =
√

|g|ǫ̃ijk, (2.10)
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where g is the determinant of the metric gµν . Taking ǫijk to be a proper
tensor makes Bk a well-defined vector. Using the Levi-Civita tensor properties
one can invert the implicit definition of Bk to find an explicit formula for the
magnetic field:

Bl =
sgn(g)

2
ǫijlǫijkB

k = −sgn(g)

2
ǫijlFij, (2.11)

where sgn(g) is the sign of the metric determinant. In generic form we write
the field strength tensor as the matrix

Fµν =




0 E1 E2 E3

−E1 0 −
√
|g|B3

√
|g|B2

−E2

√
|g|B3 0 −

√
|g|B1

−E3 −
√

|g|B2
√
|g|B1 0


 . (2.12)

The contravariant field strength tensor is then, using the inverse metric to raise
the indices,

F µν =




0 −E1 −E2 −E3

E1 0 −
√

|g|B3
√

|g|B2

E2

√
|g|B3 0 −

√
|g|B1

E3 −
√

|g|B2
√

|g|B1 0


 (2.13)

Note, however, that the form of the contravariant field tensor is dependent on
the choice of coordinate system. In the Cartesian coordinates we have just
some minus signs changing, but in some more exotic coordinate systems the
tensor will take a more complex outlook.

It is straightforward to show that with the field tensor Maxwell’s equations
can be expressed as

∇µF
µν = Jν (2.14)

∂[αFµν] = 0, (2.15)

where Jν = (ρ, J i) is the current density four-vector, ∇ is the covariant deriva-
tive operator, and [αµν] denotes the antisymmetrized sum over permutations
of the indices α, µ, and ν [25]. The inhomogeneous equations are given by
the covariant divergence equation (2.14), and the homogeneous equations by
(2.15). (2.15) is in fact a Bianchi identity following from the fact that Fµν was
defined as the exterior derivative of the gauge potential. The homogeneous
equations are thus built into the structure of the field strength tensor. The
inhomogeneous equations, however, do not come that easily. They derive from
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the action principle applied to the Maxwell action. We return to this in the
next subsection. Since the field tensor is antisymmetric, the equations can
alternatively be written in the form:

1√
|g|
∂µ

(√
|g|F µν

)
= Jν (2.16)

and

∂αFµν + ∂µFνα + ∂νFαµ = 0. (2.17)

These forms turn out to be useful in actual calculations.

2.2 Equations of motion from the principle of least ac-
tion

Typically, field theory has a Lagrangian L̂(φa(x),∇µφa) that is a function
of a set of fields {φa} and their derivatives with respect to the spacetime
coordinates. In the electromagnetic field theory, the Lagrangian is of the form

L̂ = −1

4
FµνF

µν + LM , (2.18)

where LM is the matter contribution to the Lagrangian. For the sake of general-
ity, we need more than just the Lagrangian, namely, the Lagrangian density L,
which is obtained from the Lagrangian by multiplying it with the square-root
of the absolute value of the metric determinant: L =

√
|g|L̂. The Lagrangian

density is needed since in the action integral

S =

∫
d4xL (2.19)

d4x is a tensor density and L̂ is a scalar. L̂ also becomes a density when
multiplied by

√
|g|, thus making the product of d4x and L a well-defined

tensor quantity.

If we vary the set of fields {φa} by

φa → φa + δφa, (2.20)
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the Lagrangian density changes by L→ L+ δL with, to first order,

δL =
∂L

∂φa

δφa +
∂L

∂(∇µφa)
δ(∇µφa)

=
√

|g| ∂L̂
∂φa

δφa +
√

|g| ∂L̂

∂(∇µφa)
∂µ(δφa)

=

(√
|g| ∂L̂
∂φa

− ∂µ

(
√

|g| ∂L̂

∂(∇µφa)

))
δφa + ∂µ

(√
|g| ∂L̂

∂(∇µφa)
· δφa

)
,

(2.21)

where on the last line we applied the Leibniz rule. The variation of the action
is then

δS =

∫ tf

ti

d4x
√

|g|
[
∂L̂

∂φa

− 1√
|g|
∂µ

(
√

|g| ∂L̂

∂(∇µφa)

)]
δφa

+

∫ tf

ti

d4x
√
|g| 1√

|g|
∂µ

(√
|g| ∂L̂

∂(∇µφa)
· δφa

)
. (2.22)

If the indices a only enumerate different scalar fields, then we can straightfor-
wardly use the fact that in the Christoffel connection

∇µV
µ =

1√
|g|
∂µ

(√
|g|V µ

)
(2.23)

allowing us to write the variation of the action as

δS =

∫ tf

ti

d4x
√
|g|
[
∂L̂

∂φa

−∇µ

(
∂L̂

∂(∇µφa)

)]
δφa

+

∫ tf

ti

d4x
√

|g|∇µ

(
∂L̂

∂(∇µφa)
· δφa

)
. (2.24)

This should vanish for the extremal configurations φa(x). One notices that
the second integral is now explicitly in the form that admits of the use of
Stokes’ theorem. For first-order variations δφa vanishing at the end points,
but not within, the interval, one concludes by Stokes’ theorem that the second
integral gives zero and thus also the first one has to vanish. This holds for all
variations only if the factor in the square brackets vanishes. Thus the extremal
configurations are determined by the conditions

∂L̂

∂φa

−∇µ

(
∂L̂

∂(∇µφa)

)
= 0. (2.25)
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These are just the Euler-Lagrange equations of motion for fields φa.

On the other hand, if some of the fields in {φa} is a vector field, then matters
are not so straightforward. However, in the case of Maxwell theory we are
dealing with a Lagrangian that is constructed out of an antisymmetric second
rank tensor Fµν , and the derivative the Lagrangian with respect to ∇µAν in
(2.22) yields just the contravariant tensor F µν . For any antisymmetric Sµν , we
have

∇µS
µν = ∂µS

µν + Γµ
µλS

λν + Γν
µλS

µλ

= ∂µS
µν +

1√
|g|

(∂λ
√

|g|)Sλν

=
1√
|g|
∂µ(
√
|g|Sµν), (2.26)

where on the first line we used the fact that in the Christoffel connection
Γµ
µλ = 1√

|g|
∂λ
√

|g| and the lower indices in the connection coefficients commute.

Thus we can apply the same reasoning as above and are free to use the result
(2.25) in the Maxwell theory.

2.3 Global symmetries

Consider then global, position independent, symmetry transformations. For
these δL = 0 and the equation (2.21) then implies that for on-shell configu-
rations, those satisfying the equation of motion (2.25), there is a conserved
current

Jµ =
∂L

∂(∇µφa)
· δφa, ∇µJ

µ = 0. (2.27)

This is Noether’s first theorem.

Consider this in U(1) symmetric scalar theory with the Lagrangian

L = L(φ, φ∗) = −∇µφ∗∇µφ− V (φ∗φ), (2.28)

which is invariant under

φ→ Uφ = e−iθφ ≈ φ− iθφ, (2.29)

Then for the extremal configurations, with variations vanishing at the end
points, the Euler-Lagrange equation (2.25) leads to the Klein-Gordon equation

(∇µ∇µ − V ′)φ = 0, (2.30)
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where prime denotes the derivative. Since U(1) is a symmetry of the theory,
δL has to vanish under U(1) transformations. The conserved Noether current
in (2.27) then is explicitly

Jµ =
∂L

∂(∂µφ)
· δφ+

∂L

∂(∂µφ∗)
· δφ∗

= ∂µφ∗(iθφ)− ∂µφ(iθφ∗)

= i(∂µφ∗ · φ− φ∗∂µφ)θ. (2.31)

Noether charges can be defined by integrating J0 over a volume:

QV (t) =

∫

V

d3x J0(t, ~x). (2.32)

Conservation ∂0J
0+∇· ~J = 0 implies that this is time dependent so that what

is created within the volume, flows out through its surface. Conserved charges
can be defined if we have a vanishing surface flux

∫

∂V

dS niJ
i, (2.33)

where dS is the surface element and ni is the unit normal vector to the surface.
Usually the surface ∂V is pushed to infinity. Then charge conservation means
that the total amount of charge enclosed in an infinite spatial slice of Minkowski
space is conserved from moment to moment.

2.4 Local symmetries

Consider then the case of local symmetries, for which the symmetry parameters
depend on the space-time coordinate. A discussion closer to the spirit of the
original work [26] would then start by assuming that the variation is of the
form (see e.g. the appendix of [27], [28])

δφ = f(φ)θ(x) + fµ(φ)∂µθ(x), (2.34)

or even with more derivatives. Here θ(x) is the symmetry parameter and f, fµ

are a set of functions of φ. However, the outcome is obtained more simply by
writing the action in a form in which the derivatives of the globally invariant
action do not spoil the local invariance. If the symmetry is

φ(x) → U(x)φ(x) (2.35)
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we will define a gauge covariant derivative Dµ = ∇µ+λAµ, λ = const. so that

Dµφ(x) → U(x)Dµφ(x) (2.36)

and we have an invariant operator

(Dµφ)†Dµφ, (2.37)

where † denotes the Hermitean conjugate of an operator. This requires that

Aµ → UAµU
−1 +

1

λ
U∂µU

−1, (2.38)

Fµν = DµAν −DνAµ = ∇µAν −∇νAµ + λ [Aµ, Aν ] . (2.39)

Conventional choices of λ are ig, −ig,+1. For U(1) the transformation is

U = eiα(x), Aµ → Aµ −
i

λ
∂µα. (2.40)

Choosing λ = ie and α(x) = −ieθ(x) the Lagrangian

L = L(Aµ, φ, φ
∗) = −1

4
FµνF

µν − (Dµφ)∗Dµφ− V (φ∗φ) (2.41)

is invariant under

φ→ e−ieθφ ≈ φ− ieθφ, φ∗ → φ∗ + ieθφ∗, Aµ → Aµ + ∂µθ. (2.42)

The φ equation of motion is (2.30) with ∇µ → Dµ and the Aµ equation of
motion is

∂L

∂Aµ

−∇ν

(
∂L

∂(∇νAµ)

)
= −Jµ

e +∇νF
νµ = 0 (2.43)

with the electric current

Jµ
e = +ie[(Dµφ)∗φ− φ∗Dµφ]. (2.44)

The Noether current is, summing over all field fluctuations in (2.27),

Jµ
N =

∂L

∂(∂µAν)
δAν +

∂L

∂(∂µφ)
· δφ+

∂L

∂(∂µφ∗)
· δφ∗

= −F µν∂νθ + ie [(Dµφ)∗φ− φ∗Dµφ] θ

= F νµ∂νθ + Jµ
e θ

= F νµ∇νθ +∇νF
νµ · θ (2.45)

= ∇ν(F
νµθ). (2.46)
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This remarkably simple result for the Noether current for local symmetry is
basically Noether’s 2nd theorem. Note, in particular, that in a flat spacetime
we have, for any (2,0) tensor,

[∇µ,∇ν ]S
ρσ = Rρ

λµνS
λσ +Rσ

λµνS
ρλ = 0 (2.47)

=⇒ ∇µ∇νS
ρσ = ∇ν∇µS

ρσ (2.48)

and thus due to the antisymmetry of F µν this current is identically conserved.
One need not even require solutions of equations of motion. Note also the
appearance of the gauge transformation parameter θ(x). If θ is constant, this
is the electric current and one is back to the case of global symmetries. The
conserved charge in this case is

QV (t) =

∫

V

dΩ dr r2∂i(F
i0θ(t, r,Ω)) =

∫

∂V

dΩ r2niF
i0θ. (2.49)

The usual argument is that if F i0 ∼ r2 at large r this diverges if θ ∼ rǫ, ǫ > 0,
vanishes if θ ∼ r−ǫ and produces the same constant as in the global case if
θ = const.

We have now studied the fundamental aspects of electrodynamics as U(1)
gauge theory. The invariance of the Maxwell Lagrangian under global U(1)
transformations gives us, via Noether’s first theorem, the conserved electric
current. Local U(1) invariance yields a Noether current that is identically
conserved in Minkowski space.

Our main goal, however, is to study the electromagnetic radiation memory
effect, which is essentially an effect in the asymptotic domain of spacetime.
In order to understand this effect, we first need to understand the asymptotic
structure of spacetime. This is especially important in curved but asymptoti-
cally flat spaces, but here we only need to do this in a flat space. Therefore in
the next chapter we will examine the conformal boundary of Minkowski space.
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3 The conformal infinity

Minkowski space is a non-compact, boundaryless spacetime in which we can
move both in time dimension and in space dimensions without limit. In order
to understand the causal structure of spacetime and the behavior of physical
theories arbitrarily far away from the origin, it is convenient to have a compact
representation of the entire Minkowski space. In particular, we want to un-
derstand the behavior of Maxwell’s theory in the region that electromagnetic
radiation approaches asymptotically. In this chapter we present a tool first
introduced in [29], that is constructed for these special purposes: the Penrose
diagram. We will first provide the definition of a conformal transformation.
Then we will construct the Penrose diagram of Minkowski space.

3.1 Conformal transformations

A conformal transformation is a local rescaling of metric of the form

ds2 → d̂s
2
= Ω(x)2ds2, (3.1)

where Ω(x) is the so-called conformal factor. The conformal factor is a function
of spacetime coordinates that gives us a new metric by scaling the old metric
ds2 in a suitable way. What is meant by ”suitable” will be explained more
precisely in due course. The basic idea is that the conformal factor ”shrinks”
the distances so fast that the infinitely far away comes to a finite distance from
the origin. This enables one to have a compact representation of an infinite
spacetime.

For a transformation of the metric to count as conformal, it must satisfy several
conditions. We require from the conformal factor following things [30]:

1. It must be well-behaving in its domain of definition.

2. The conformal infinity lies at a finite distance from the origin:

∆s =

∫ ∞

0

d̂s =

∫ ∞

0

Ω(r)dr <∞. (3.2)

3. The conformal boundary must be compact, that is to say, if M̂ is the
new manifold, then

∫

∂M̂

d̂γ <∞, (3.3)
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where d̂γ is the induced metric on the boundary ∂M̂ .

4. Ω(xµ) > 0 for all original coordinate values.

5. Given that we can consistently expand the new manifold to include
the conformal infinity, the conformal factor must vanish in that region:
Ω(∞) = 0. What consistency here amounts to is that the manifold must
be smooth at infinity and have a finite curvature at every point.

An important feature of conformal transformations is that they preserve the
timelikeness, nullness and spacelikeness of vectors. It is easy to see this just
by noting that





ĝµνV
µV ν < 0 ⇐⇒ Ω2gµνV

µV ν < 0

ĝµνV
µV ν = 0 ⇐⇒ Ω2gµνV

µV ν = 0

ĝµνV
µV ν > 0 ⇐⇒ Ω2gµνV

µV ν > 0

(3.4)

From this it follows that a curve that is timelike, null, or spacelike in the
original spacetime remains timelike, null, or spacelike, respectively, under a
conformal transformation. That is to say, the transformation does not change
the causal structure of spacetime. Furthermore, null geodesics are left invariant
under conformal mappings (for a proof of this statement, see Appendix A).
This does not hold for geodesics in general. Therefore conformal mappings
are especially well-suited for studying the behavior of electromagnetic and
gravitational waves.

3.2 Penrose diagram of Minkowski space

Let us now construct a conformal compactification and a Penrose diagram of a
spacetime that is important to our later discussion, namely Minkowski space.
Minkowski space metric in spherical coordinates is

ds2 = −dt2 + dr2 + r2dΩ2, (3.5)

where dΩ2 = dθ2 + sin2 θdφ2 is the unit two-sphere metric.

First, we introduce retarded time

u = t− r (3.6)

and advanced time

v = t+ r. (3.7)
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t′ = π

r′ = 0

t′ = −π

r′ = π

•

•

•

Figure 2.1. Conformally compactified Minkowski spacetime embedded in the Einstein
static universe. The interior of the diamond wrapped around the cylinder represent the
physical Minkowski space, whereas the boundaries of the diamond are the conformal infinity.
The two end-points meet at the spatial infinity point on the other side of the cylinder.

Both of these coordinates have the range −∞ < u, v < ∞, u ≤ v. Incoming
lightrays travel along v = const. lines and outgoing lightrays along u = const.
lines. We can now write the metric in the so-called null coordinates (u, v, θ, φ):

ds2 = −dudv + 1

4
(v − u)2dΩ2. (3.8)

To put it informally, what we want to do is to bring the infinitely far away
region to a finite distance in such a way that preserves the angles of lightrays.
This can be done by a choice of new coordinates:

u′ = arctan u (3.9)

v′ = arctan v. (3.10)

These new coordinates have a finite range: −π
2
< u′, v′ < π

2
, u′ ≤ v′. The

metric now becomes

ds2 =
1

cos2 u′ cos2 v′

[
−du′dv′ + 1

4
sin2(v′ − u′)dΩ2

]
. (3.11)
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Finally, we return to timelike and spacelike coordinates

t′ = v′ + u′ (3.12)

and

r′ = v′ − u′, (3.13)

which have ranges 0 ≤ r′ < π, |t′| + r′ < π. As a result the metric takes the
form

ds2 =
1

4 cos2
[
1
2
(t′ − r′)

]
cos2

[
1
2
(t′ + r′)

] [−dt′2 + dr′2 + sin2 r′dΩ2
]

(3.14)

= [cos t′ + cos r′]
−2 [−dt′2 + dr′2 + sin2 r′dΩ2

]
(3.15)

≡ Ω(t′, r′)−2
[
−dt′2 + dr′2 + sin2 r′dΩ2

]
. (3.16)

The dr′2 + sin2 r′dΩ2 part is the metric of a spacelike three-sphere. Since
t′ ∈ (−π, π), the whole metric lives in a limited region of the Einstein static
universe, which has the metric −dt′2 + dr′2 + sin2 r′dΩ2 with t′ running from
−∞ to ∞ and which has correspondingly the topology R× S

3. Thus, we have
found a conformal factor such that

d̂s
2
= −dt′2 + dr′2 + sin2 r′dΩ2 (3.17)

= Ω(t′, r′)2ds2. (3.18)

The conformal transformation we just constructed maps the Minkowski met-
ric to a new metric that describes the geometry of the Einstein universe.
Minkowski spacetime is flat, whereas the Einstein universe has a non-zero
curvature, so clearly the transformed metric is not a physical one.

The boundaries of Minkowski space embedded in the Einstein universe are
called ”conformal infinity”. The result of uniting Minkowski space with confor-
mal infinity is referred to as the ”conformal compactification”. Diagrammat-
ically, the conformally compactified Minkowski space can be represented as a
diamond wrapped around a cylinder as in Figure 2.1. To get a two-dimensional
representation of the Minkowski space where the entire space is confined within
the conformal boundary and lightrays travel in a fixed 45 degrees angle, one
has to construct a Penrose diagram, which is done in Figure 2.2.
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i−
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I+

r
=
∞

I+
+

I+r
=∞

I+
−

I−
+

I−r
=
∞

I−
−I−

−

r
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I−
+
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−

I+
+

Figure 2.2. Penrose diagram of Minkowski space. The future null infinity is depicted as
the two lines labeled by I+, the past null infinity by I−. The distant future of I± is denoted
by I±

+ and the distant past by I±

− . Lightrays come from the past null infinity and travel to
the future null infinity, always maintaining a 45 degree angle. Massive bodies start from the
past timelike infinity i− and end up in the future timelike infinity i+, as represented by the
thick line in the diagram. The left and right end-points of the diamond represent one and
the same point, the spatial infinity i0. Every point in the diagram, except the origin, i0, and
i±, represents a two-sphere. The points on the left and right halves are antipodally related
to each other. On the curves connecting the left and the right corners we have t = const.,
and on the curves connecting i− and i+ we have r = const.
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4 Electromagnetic memory effect

In this chapter, we will derive the electromagnetic analog of the gravitational
memory effect following the procedure of [10]. The memory effect is essentially
a phenomenon at null infinity, so understanding the effect requires that we first
understand the large distance asymptotics of electrodynamics. After this, we
will proceed to analyze the memory effect. The analysis yields a formula for
the electromagnetic memory effect in general, but we will focus particularly on
the analog of the gravitational Christodoulou memory. Finally, we will study
the relation between the memory effect and the so-called large gauge trans-
formations of U(1) theory, and derive an equation that relates the conserved
Noether charge of U(1) symmetry to the memory effect.

4.1 Maxwell’s equations in spherical coordinates

We examine a situation in which we have a source that emits radiation in the
radial direction. Thus it is most convenient to work in the spherical coordinate
system. Recall from Chapter 1 that Maxwell’s equations can be written in the
form:

1√
|g|
∂µ

(√
|g|F µν

)
= Jν (4.1)

and

∂αFµν + ∂µFνα + ∂νFαµ = 0. (4.2)

Starting with these basic forms, we now want to write Maxwell’s equations in
spherical coordinates (t, r, θ, φ). First, we simplify our notation by denoting
the angular components by a single capital Latin letter: (t, r, θA). Minkowski
metric and its inverse in spherical coordinates read

gµν =



−1 0 0
0 1 0
0 0 r2hAB


 , gµν =



1 0 0
0 1 0
0 0 r−2hAB


 , (4.3)

where hAB and hAB are the unit two-sphere metric and its inverse, respectively.
In spherical coordinates the Levi-Civita tensor is ǫrAB = r2ǫAB, where ǫAB is
the unit two-sphere Levi-Civita tensor. In these coordinates the field strength
thus reads

Fµν =




0 Er EA

−Er 0 r2BCǫCA

−EA −r2BCǫCA −r2ǫABB
r


 . (4.4)
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Raising the indices of the field tensor with (4.3), we obtain the contravariant
field tensor:

F µν =




0 −Er −r−2hABEA

Er 0 BCǫCAh
AB

r−2hABEA −ǫCAh
AB −r−2ǫACh

ABhCD


 . (4.5)

Now we are in a position to derive the spherical coordinate representation of
Maxwell’s equations. We denote the covariant derivative with respect to the
unit two-sphere with DA. Plugging first ν = t to equation (4.1) yields:

1√
|g|
∂r

(√
|g|F rt

)
+

1√
|g|
∂A

(√
|g|FAt

)
= J t

=⇒ ∂rEr +
2

r
Er +

1

r2
DAE

A = ρ. (4.6)

Choosing then α = r, µ = A, ν = B in equation (4.2) gives Gauss’ law for
magnetism in spherical coordinates:

∂rFAB + ∂AFBr + ∂BFrA = 0

=⇒ ∂rBr +
2

r
Br +

1

r2
DAB

A = 0. (4.7)

After plugging α = t, µ = A, ν = B in equation (4.2), it is straightforward to
show that

∂tFAB + ∂AFBt + ∂BFtA = 0

=⇒ ∂tBr +
1

r2
ǫABDAEB = 0. (4.8)

Then ν = r in (4.1), αµν = t rA in (4.2) and ν = A in (4.1) yield, respectively:

− ∂tEr +DA

(
ǫABBB

)
= −Jr (4.9)

and

∂tBA − hCBǫAC (∂BEr − ∂rEB) = 0 (4.10)

and

− ∂tEA + hBCǫBA∂rBC − hCDDB (ǫCABr) = JA. (4.11)

Since the geometry of a sphere is of paramount importance in the calculations
to come, we now switch to a convention where the indices are raised and
lowered with the unit 2-sphere metric. Using the fact that gAB = r−2hAB

conveniently enables us to separate the r-dependence from angular components
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and derivatives. Recalling also that the Levi-Civita tensor satisfies DAǫBC = 0
and ǫABǫ

AC = δCB , we finally obtain the following set of equations:




∂rEr +
2

r
Er +

1

r2
DAE

A = ρ

∂rBr +
2

r
Br +

1

r2
DAB

A = 0

∂tBr +
1

r2
ǫABDAEB = 0

∂tEr −
1

r2
ǫABDABB = −Jr

∂tBA + ǫ B
A (DBEr − ∂rEB) = 0

∂tEA − ǫ B
A (DBBr − ∂rBB) = −JA.

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

Equations are grouped so that the first two (4.12) and (4.13) correspond to
J t and the corresponding homogeneous equation, the one corresponding to a
cyclic permutation of r, A, and B. These equations contain no time deriva-
tives. The next two (4.14) and (4.15) correspond to Jr and the correspond-
ing homogeneous Maxwell equation, the radial component of the Faraday law
∂t ~B +∇× ~E = 0. For the memory analysis these two amount to the same in-
formation as the first two. The final two (4.16) and (4.17) (actually four, since
the capital A is standing for the two angular coordinates) correspond to JA

and the angular components of the Faraday law. In the memory analysis these
last ones will basically give us radiative transverse and orthogonal electric and
magnetic fields.

The equations contain partial derivatives with respect to t and r. In the
memory analysis a crucial approximation is ∂t ≈ ∂u and ∂r ≈ −∂u with u =
t− r.

4.2 Large distance asymptotics of electrodynamics

Now that we have found the representation of Maxwell’s equations in spherical
coordinates, next we want to study what happens to the electromagnetic field
and charged matter when r → ∞. This will finally enable us to understand
the behavior of the Maxwell theory at null infinity.

4.2.1 The behavior of electric and magnetic fields

As r becomes very large, it is useful to express the electromagnetic field in
terms of asymptotic expansions of the components of electric and magnetic
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fields:

Er =
∞∑

n=0

E
(n)
r

rn
Br =

∞∑

n=0

B
(n)
r

rn
(4.18)

EA =
∞∑

n=0

E
(n)
A

rn
BA =

∞∑

n=0

B
(n)
A

rn
, (4.19)

where the E
(n)
a = E

(n)
a (u,A) and B

(n)
a = B

(n)
a (u,A) are the nth coefficients in

the expansions. In order to operate consistently with the Maxwell theory at
null infinity, we require that the electromagnetic field is smooth at I±. 1

Plugging the expansions of the radial components in equations (4.12) and
(4.13) and requiring that the equations hold at all times at any r > 0 entails
that the radial components behave as Er ∼ 1/r2 ∼ Br. Let us show this in
detail for the electric field. We assume that the total charge enclosed in the
entire space is finite. Thus when we integrate the equation (4.12) over R3, the
both sides of ∫

R3

∇aE
adV =

∫

R3

ρ dV (4.20)

must be finite. By the divergence theorem, the left hand side can be written
as

lim
r→∞

∫

S2(r)

naE
ar2dΩ = lim

r→∞

∫

S2(r)

r2Er dΩ, (4.21)

where S2(r) is a sphere with radius r centered at the origin and dΩ is the
two-sphere surface element. Now plugging the asymptotic expansion in the
integrand, we find that the first two factors in the expansion have to be zero
for the integral to converge. The magnetic field case is handled by a similar
argument. Thus, we have shown that

E(0)
r = E(1)

r = B(0)
r = B(1)

r = 0. (4.22)

Next, we want to determine the r-dependency of angular components. Con-
sider the Poynting vector ~S, which tells us the directional energy flux of the
electromagnetic field and which in our unit convention reads:

~S = ~E × ~B. (4.23)

1Note that the field tensor is neither smooth nor even continuous in the neighbourhood of
spatial infinity. This can be seen by considering the Lienard-Wiechert potential of particles
moving at constant velocity and taking the limit to the spatial infinity via I− and I+.
One then finds that the electromagnetic field takes different but antipodally related values
depending on the direction from which one took the limit [1].
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In an orthonormal coordinate system, this can be written in index notation as

Sa = ǫabcE
bBc. (4.24)

In order to keep the energy flux of the radiation field through the sphere S2(r)
finite but non-zero, i.e. to have

0 <

∫
Sr r

2dΩ <∞ (4.25)

when r → ∞, we require that Sr ∼ 1/r2. On the other hand, the radial
component of the Poynting vector is

Sr = ǫrABE
ABB = r2

√
h ǫ̃rABE

ABB

= r2
√
h ǫ̃rAB g

ACgBDECBD

=
1

r2

√
h ǫ̃rAB h

AChBDECBD, (4.26)

where, you recall, gAB = r−2hAB which explains the 1/r2 factor in the last ex-
pression. From this we conclude that, since Sr ∼ 1/r2, the angular components
of the electric and magnetic fields behave as

EA, BA ∼ 1. (4.27)

Then the fact that

E =
√
EaEa =

√
E2

r + gABEAEB (4.28)

implies that E ∼ 1/r since gAB brings a factor of 1/r2 with it, which again
comes from the geometry of the sphere. The same goes for the magnetic field,
i.e. B ∼ 1/r.

4.2.2 The behavior of charged matter

Having found the asymptotic behavior of the electromagnetic field, we now
turn to the charge-current-terms of Maxwell’s equations. Since the ultimate
goal here is to find the electromagnetic analog of gravitational-wave memory,
we will consider a situation in which the current reaches the future null infinity
I+. At a later point we will see that in order for the memory effect analogous to
Christodoulou’s gravitational-wave memory to take place, this kind of charge-
current behavior is needed. Of course, this kind of situation is unphysical, since
there are no massless electric charges in Nature. Nevertheless, it is completely

23



consistent to examine this kind of charged radiation on a theoretical level.
Thus, it is meaningful to take this setup as a thought experiment that reveals
analogous structures between different physical theories.

Since we are considering a situation in which there are electric charges at
null infinity, we get non-trivial asymptotic expansions for charge and current
densities. Furthermore, we assume that the amount of electric charge is finite
and that all the charges at null infinity get there by being radiated along with
the outgoing light rays, i.e. there are no sources at the spatial infinity i0 that
emit similar kind of charged radiation to the direction of null generators. This
also means that there are no electric currents circulating along the celestial
sphere in the neighbourhood of spatial infinity. In other words, we assume
that at large distances the angular components JA are much smaller than the
radial ones.

Let us consider these assumptions a bit more in detail. First, we introduce
again retarded and advanced times u = t−r and v = t+r, recall (3.6) and (3.7).
These relations can be inverted to get t = (u + v)/2, r = (v − u)/2. Expand
then the current four-vector components in the neighborhood of r = ∞:

Ju =
∞∑

n=0

J
(n)
u

rn
, Jv =

∞∑

n=0

J
(n)
v

rn
, JA =

∞∑

n=0

J
(n)
A

rn
. (4.29)

Our assumption that a finite amount of charge gets to null infinity along u =
const. lines can be formulated as follows:





Ju = −J
(2)
u

r2
+O(1/r3)

Jv = O(1/r3)

JA = O(1/r3).

(4.30)

(4.31)

(4.32)

Let us then apply the vector and dual vector transformation formulae

V ′µ =
∂x′µ

∂xν
V ν , V ′

µ =
∂xν

∂x′µ
Vν , (4.33)

where ∂x′µ/∂xν is the coordinate transformation matrix and ∂xν/∂x′µ its in-
verse, to find a relation between vectors in tr basis and vectors in uv basis.
First, the transformation matrix between tr and uv bases and its inverse matrix
are

∂x′µ

∂xν
=

[
1 −1
1 1

]
,

∂xµ

∂x′ν
=

1

2

[
1 1
−1 1

]
, (4.34)
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where we have omitted the angular coordinates, for which the transformation
is trivial. A generic dual vector then takes the form

[
Vu Vv

]
=
[
Vt Vr

] 1
2

[
1 1
−1 1

]
=

1

2

[
Vt − Vr Vt + Vr

]
. (4.35)

In particular, we therefore have

Ju = −1

2
(ρ+ Jr) (4.36)

Jv =
1

2
(Jr − ρ). (4.37)

Applying the constraints (4.30)–(4.32) one then finds

Jr − ρ = O(1/r3) (4.38)

=⇒ ρ ≈ Jr =
J
(2)
r

r2
+O(1/r3), (4.39)

where the equality between ρ and Jr holds to leading order. Note that the
electric current through a sphere of radius r is given by I =

∫
dΩ r2Jr, and

thus the condition above guarantees that the amount of charge is finite.

Let us sum up the r-dependencies we have found for these physical quantities:




Er =
E

(2)
r

r2
+O(1/r3) ≡ Er

r2
+O(1/r3)

Br =
B

(2)
r

r2
+O(1/r3) ≡ Br

r2
+O(1/r3)

EA = E
(0)
A +O(1/r) ≡ EA +O(1/r)

BA = B
(0)
A +O(1/r) ≡ BA +O(1/r)

ρ = Jr =
J
(2)
r

r2
+O(1/r3)) ≡ L

r2
+O(1/r3),

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

where we have renamed the leading term coefficients for the sake of notational
convenience. Since the unit of Jr is [charge]/[distance]2/[time], the unit of L
must be [charge]/[time]. Thus, the choice of the letter L is not a coincidence,
since physically it represents the amount of radiated charge per time, which is
an analogue of luminosity for the charged radiation. Moreover, L is a function
of angular coordinates so it should not be interpreted as the luminosity of the
source without qualification, but as the ”directional” luminosity. Thus, it is
the luminosity per unit solid angle, and integrating it over all angles gives the
absolute luminosity of the source.
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4.3 The memory effect as a ”kick”

Recall that in the Einstein theory, the memory effect is nothing but a per-
manent change in the relative displacement of test particles. A passing gravi-
tational wave periodically changes the relative distances of test particles, but
after the wave has gone, there is no relative velocity between the particles. In
the electromagnetic case, however, the memory effect is manifested as a ”kick”,
a residual velocity imparted on a charge by the electromagnetic field. Next we
give a derivation of the kick formula. By Newton’s second law and the Lorentz
force formula, we have

m
d2~x

dt2
= q ~E + q~v × ~B, (4.45)

where m is the mass of the particle, q is its charge, and ~v is its velocity. In the
general case, since the magnetic field contributes to the total force through a
cross product, the calculation is very complicated. However, we assume that
we are in the slow motion limit, which makes the magnetic field term small.
Furthermore, we found the asymptotic behavior of the field components to be
Er, Br ∼ 1/r2 and EA, BA ∼ 1. Thus, we can approximate that the magnetic
field contribution is negligible, i.e.

m
d2~x

dt2
≈ q ~E, (4.46)

and far from the source the electric field effectively points to the angular di-
rection. Then we integrate over time to get:

∆~v = ~v(∞)− ~v(−∞) ≈ q

m

∫ ∞

−∞

~E dt. (4.47)

Thus, to find the change of velocity of the particle, the only thing to do,
essentially, is to find the behavior of the electric field over time and to calculate
the integral. We want to do this at I+, so next we will see how this happens.

4.4 Maxwell at I+

The source emits radiation over some time-interval and the radiation prop-
agates to null infinity. We change the time coordinate to retarded time u,
and plug the asymptotic expansions (4.18) and (4.19) to Maxwell’s equations
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(4.12)–(4.17) and take the limit to I+. The equations now take the forms




− ∂uEr +DAEA = L

− ∂uBr +DABA = 0

∂uBr + ǫABDAEB = 0

∂uEr − ǫABDABB = −L
∂uBA + ǫ B

A ∂uEB = 0

∂uEA − ǫ B
A ∂uBB = 0.

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

Not all of these equations are independent of each other. This can be seen by
first integrating the equation (4.52) over u, which yields the solution

BA = −ǫ B
A EB + CA, (4.54)

where CA is constant with respect to u. Then after using this result in other
equations, we notice that the equation (4.53) reduces to identity, the equation
(4.51) just becomes the equation (4.48) and (4.49) becomes (4.50). Hence the
only independent equations are

{
−∂uEr +DAEA = L

∂uBr + ǫABDAEB = 0.

(4.55)

(4.56)

With our boundary conditions, the Maxwell theory thus got simplified to a
system of two equations at I+. These are just Gauss’ law and Faraday’s at
null infinity.

Now integrating (4.55) and (4.56) over all the values of u, one obtains the
following pair of equations:





DA

∫ ∞

−∞

EAdu =

∫ ∞

−∞

Ldu+ Er(∞)− Er(−∞)

ǫABDA

∫ ∞

−∞

EBdu = −Br(∞) + Br(−∞).

(4.57)

(4.58)

∫∞

−∞
EAdu is an important quantity here since it gives us the memory effect;

it is thus appropriate to call it the ”memory vector”. The direction and mag-
nitude of the memory field depends on the luminosity integral and the radial
component of the electric field at I+

+ and I+
− . We denote





MA ≡
∫ ∞

−∞

EAdu

F ≡
∫ ∞

−∞

Ldu.

(4.59)

(4.60)
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Integration over u removes the retarded time dependence, so MA and F only
depend on the angles. Since L is the directional luminosity of radiation, F
naturally represents the total charge the source has radiated over time per unit
solid angle, which depends on the direction. With these shorthand notations,
we rewrite the equations (4.57) and (4.58) as

{
DAM

A = F + Er(∞)− Er(−∞)

ǫABDAMB = −Br(∞) + Br(−∞).

(4.61)

(4.62)

Taking a closer look at the equation (4.61), we notice that the left-hand-side
is the divergence of a vector defined on a two-sphere. Hence the left-hand-
side integrated over a two-sphere gives a zero, the proof of which is given in
Appendix C. Thus the equation (4.61) is consistent only if the right-hand-side
integrated over a two-sphere also gives a zero. The physical reason behind this
mathematical constraint is Gauss’ law and the conservation of electric charge.
On the one hand,

∫
FdΩ is the total amount of charge radiated away to null

infinity. On the other hand, the integral of Er over a two-sphere is, by Gauss’
law, Q where Q is the total charge inside the sphere. Thus, the integral of
Er(∞) − Er(−∞) over S2 gives the change of total charge inside the sphere.
Therefore, we have that

∫

S2

dΩ [Er(∞)− Er(−∞)] = −
∫

S2

dΩF, (4.63)

which accounts for the constraint we got.

4.5 Separating the ordinary and null memory equations

Consider first the magnetic field in the equation (4.62). The magnetic field of
a point charge moving at constant velocity is given by

~B =
µ0

4π

q~v × r̂

r2
, (4.64)

where µ0 is the vacuum permeability, ~v is the velocity of the charge and r̂ =
~r/|~r| is the unit radial vector. Thus, in our situation where the electric currents
in the angular direction die off faster than 1/r2, we conclude that Br must
vanish. This is consistent with the approximation we made in (4.46). Hence
the equation (4.62) implies that

ǫABDAMB = 0. (4.65)
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We can therefore only focus on the memory effect of the electric kind arising
from (4.61).

For this, recall that every vector field on a two-sphere can be decomposed into
a sum of a surface gradient term and a surface curl term:

MA = DAφ+ ǫABDBψ, (4.66)

for some scalars φ and ψ. From this it follows that

ǫABDADBφ+ ǫABDAǫ
C

B DCψ = 0. (4.67)

The first term on the left-hand-side vanishes since two covariant derivatives
acting on a scalar commute. The Levi-Civita tensor commutes with the co-
variant derivative, so we get

ǫABǫBCDAD
Cψ = 0 (4.68)

Using then Levi-Civita tensor identities, one obtains

δACDAD
Cψ = 0 =⇒ DCD

Cψ = 0. (4.69)

We see that this is nothing but a two-dimensional Laplace equation on S2.
The operator acting on ψ is a linear differential operator; in fact, it is nothing
but −~L2, where ~L is the impulse moment operator.

Since we are operating on S2, it is natural to solve the equation using spherical
harmonic analysis. Recall that spherical harmonics are defined by

Ylm(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (4.70)

where Pm
l (x) are the associated Legendre functions. Spherical harmonics form

an orthonormal basis of the space of square-integrable functions on the two-
sphere so they satisfy the following orthonormality property:

∫

S2

dΩY ∗
lm Yl′m′ = δll′δmm′ . (4.71)

Thus, we can expand ψ in terms of spherical harmonics as

ψ =
∞∑

l=0

l∑

m=−l

ψlmYlm, (4.72)
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where ψlm are the angle-independent expansion coefficients. From now on we
will write explicitly only the first summation symbol. Using the orthonormality
property, we can use the complex conjugates of spherical harmonics to find the
expansion coefficients:

ψlm =

∫

S2

dΩψ Y ∗
lm. (4.73)

We know that the spherical harmonics are eigenfunctions of the operatorDAD
A

so that

DAD
Aψ =

∑

l

ψlmDAD
AYlm = −

∑

l

ψlml(l + 1)Ylm. (4.74)

Thus, using (4.69), we find

∞∑

l=0

ψlml(l + 1)Ylm = 0. (4.75)

The first term is zero because of the factor l. One also finds that, by the
orthonormality property, for all l > 0 the expansion coefficient is ψlm = 0.
This leaves only the first term, so we have that

ψ = ψ00Y00 = const. (4.76)

=⇒ DAψ = 0. (4.77)

Thus, the solenoidal part of the arbitrary vector MA vanishes, and we have a
scalar field φ that satisfies

MA = DAφ, (4.78)

at any point of the sphere.

We can now go back to plug (4.78) to equation (4.61). We then obtain

DAD
Aφ = F + Er(∞)− Er(−∞), (4.79)

which is the two-dimensional Poisson equation on a sphere. By a similar argu-
ment as in (4.74) we see that the zero mode of the spherical harmonic expansion
of the left hand side vanishes. Hence, also the zero mode of the right hand side
has to vanish, i.e.

Favg + [Er(∞)− Er(−∞)]avg = 0, (4.80)

30



and we can write

DAD
Aφ = F + Favg + Er(∞)− Er(−∞) + [Er(∞) + Er(−∞)]avg . (4.81)

The reason to write the equation in this way is that we now proceed to separate
it into two equations and want to deduct the zero modes from F and Er(∞)−
Er(−∞) in these new equations. If ψ and ξ are any scalar functions defined
on S2, DAD

Aφ = ψ + ξ and G is a Green’s function for DAD
A, then

φ =

∫
G(ψ + ξ) =

∫
Gψ

︸ ︷︷ ︸
≡φ1

+

∫
Gξ

︸ ︷︷ ︸
≡φ2

(4.82)

Moreover, by the definition of Green’s function we have that
{
DAD

Aφ1 = DAD
A
∫
Gψ = ψ

DAD
Aφ2 = DAD

A
∫
Gξ = ξ.

(4.83)

Thus, in particular, it follows from equations (4.81) and (4.80) that
{
DAD

Aφ1 = F − Favg

DAD
Aφ2 = Er(∞)− Er(−∞)− [Er(∞)− Er(−∞)]avg

(4.84)

for some scalars φ1, φ2 such that φ = φ1+φ2. Correspondingly, denote the two
parts of the memory vector as M1,A ≡ DAφ1 and M2,A ≡ DAφ2.

Let us summarize our technical discussion. We managed to split the original
differential equation in two parts. It was important to do this since F and
Er(∞) − Er(−∞) give two different memory effects. Of these two, we are
especially interested in the first one, which is responsible for the nonlinear
memory effect, analogous to the Christodoulou memory in gravity. Following
the terminology in the literature, we call the first part (the upper one in (4.84))
the ”null”kick and the second part (the lower one in (4.84)) the ”ordinary”kick.
It has been emphasized that in the context of memory effects the choice of term
”null” refers to the fact that nonlinearity is not needed in order to get this part
of the memory effect; what really is needed is that a flux of energy reaches
null infinity. In Christodoulou memory, the effect takes place due to the flux
of gravitational radiation propagating to null infinity. Here F represents an
analogous flux of charged radiation that reaches I+ [10, 18].

4.6 The ordinary kick

The ordinary kick comes from fields radiation fields by a collection of massive
charges. As a simple example, the radiation field generated by a massive

31



moving charge along the path ~rq(t) (see Figure 2.2) are [31]

~E(~r, t) =
q

4π

[
~R− ~vR

γ2(R− ~v · ~R)3

]

ret

+
q

4π

[
~R/R× ((~R/R− ~v)× ~̇v)

(1− ~v · ~R/R)3R

]

ret

(4.85)

~B =

[
~R

R
× ~E

]

ret

. (4.86)

Here ~R(t) = ~r − ~rq(t), q is the charge of the particle, ~v is its velocity, and

γ =
1√

1− v2
(4.87)

is the Lorentz factor of the particle. The subscript ret means that the vector
inside the brackets should be calculated using the retarded time

tr = t− |~r − ~rq(tr)|. (4.88)

The first term in the solution for the electric field represents the part of the
field that is independent of the acceleration of the particle, whereas the second
term describes the radiation field due to acceleration. Since the charges relax
to constant velocity at past and future timelike infinity, the radiation field due
to acceleration does not contribute to the ordinary kick so we omit it from
now on. The origin of the coordinate system can be chosen in such a way that
~rq(t) = ~vt. The radial component of the electric field is obtained from (4.85)
by multiplying with the unit radial vector r̂, which yields

Er =
q

4π

r − r̂ · ~vtr − r̂ · ~v|~r − tr~v|
γ2(|~r − ~vtr| − ~v · ~r + v2tr)3

. (4.89)

It is straightforward to show that in the limit r → ∞, u = t− r = const. the
retarded time tr goes to zero, and the solution simplifies to

r2Er = Er =
q

4π

1

γ2(1− r̂ · ~v)2 . (4.90)

This expression does not depend on the value of u, so the radial electric field in
the direction r̂ only depends on the initial and final velocities ~v (u = ±∞). The
ordinary kick can be determined from this formula when these velocities are
known. For a charge with ~v(u = −∞) = 0 and with a final velocity ~v(u = ∞)
in the z-direction, the kick is [11]

M2,θ(φ, θ) =
q

4π

v sin θ

1− v cos θ
, M2,φ = 0. (4.91)

The functional form of M2,θ with different values of parameter v can be seen
in Figure 4.1. The azimuthal component is everywhere zero. The vector field
is symmetric with respect to rotations around the z-axis.
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Figure 4.1. The ordinary memory vector M2,θ as a function of θ, where θ ∈ [0, π]. The
different plots correspond to the following parameter values (starting from the lowest one):
v = 0.1, v = 0.4, v = 0.7, v = 0.8, v = 0.9, v = 0.95. The prefactor q/(4π) is set to unity.

4.7 Solving for the null memory

Focusing now on the null kick, we notice that F is a function of angles only,
so we can expand it in spherical harmonics. Analysing it in terms of spherical
harmonics will enable us to find a series expression for the memory vector. We
will carry out this procedure explicitly for the null kick. The ordinary kick
part, which also is a function of angles, can be handled in a similar manner.
We thus write

F =
∑

l

flmYlm. (4.92)

The average value of F over the two-sphere can be calculated as

Favg ≡
1

4π

∫

S2

dΩF

=
1√
4π

∫

S2

dΩY ∗
00

[
f00Y00 +

∑

l>0

flmYlm

]

=
f00√
4π
. (4.93)
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Then we express φ1 in terms of spherical harmonics:

φ1 =
∞∑

l=0

φlmYlm. (4.94)

We can use again the fact that spherical harmonics are eigenfunctions of the
operator DAD

A, so that

DAD
Aφ1 = −

∑

l>0

φlml(l + 1)Ylm. (4.95)

Hence it follows from the orthonormality property that

φlm = − flm
l(l + 1)

, (4.96)

when l > 0. The memory vector for the null kick is now given by

M1,A(θ, φ) = −
∑

l>0

flm
l(l + 1)

DAYlm(θ, φ). (4.97)

Given that we know the behavior of the radiation source, we can apply this
formula to calculate the memory vector. Another way to find a formula for
the memory vector is to use the Green’s function method as in [7] and [10,
Appendix]. Using this method, the null memory vector is given by

~M1 · T̂ =

∫
dΩ′ (Favg − F (r̂′))

T̂ · r̂′
1− r̂ · r̂′ , (4.98)

where r̂ and r̂′ are unit position vectors on S2, T̂ is a unit vector tangent to
S2, and the integration takes place over the primed variables. This gives us
the null kick projected to the direction of T̂ at point r̂ on the sphere.

4.8 Conserved charges associated with the memory ef-
fect

As we already mentioned in the introduction, memory effects of a theory are as-
sociated with its asymptotic symmetries, which are the symmetries of a theory
at the asymptotic boundary of spacetime. In gravity, the asymptotic symme-
tries of spacetime are the elements of the Bondi-Metzner-Sachs (BMS) group,
which was discovered in the 1960s by H. Bondi, M. van der Burg, A. Metzner,
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and R. Sachs. Bondi and others were studying asymptotically flat spacetimes
in GR and expected to find the Poincaré group of special relativity as the
isometry group of a spacetime whose curvature goes to zero in the asymp-
totic region. However, what they found out was that the symmetry group of
an asymptotically flat spacetime is much larger, in fact infinite-dimensional,
and includes along with the Poincaré group the so-called supertranslations,
which are generalizations of the four spacetime translations of special relativ-
ity. These transformations generate diffeomorphisms of an asymptotically flat
spacetime at null infinity [32–36].

So the question is: What are the asymptotic symmetries of electrodynamics?
In analogy with the gravitational case, we can find as the asymptotic symme-
tries of the Maxwell theory the so called ”large gauge transformations”(LGT’s)
that have a non-vanishing value at null infinity. Due to Noether’s theorems,
it is natural to expect that these asymptotic symmetries have corresponding
conserved quantities. Indeed, it has been argued that there are in fact an un-
countably infinite number of conserved charges that go with the asymptotic
symmetries of U(1) theory [1]. On the one hand, it is possible to start with the
conserved charges and derive the corresponding asymptotic symmetries. In [1]
the derivation is carried out in this order. Briefly outlined, the method here
is to develop a canonical Hamiltonian formalism for electromagnetism, where
the phase space is given by the allowed initial data on any Cauchy surface.
Using this formalism one can then identify the asymptotic symmetries with
the Dirac bracket action of the conserved charges on the phase space.

On the other hand, it is also possible to begin with the asymptotic symmetries
and derive the conserved charges. The derivation in this direction can be done
using the Noether method. Since we started with the memory effect that is
connected to asymptotic symmetries, the obvious thing to do now is to find the
corresponding conserved charges. We begin by a characterization of LGT’s and
show the connection between them and the memory effect. Then we proceed
to study the conserved charges.

4.8.1 Large gauge transformations

In U(1) gauge field theory, the Lagrangian is invariant under a transformation
of the form

Aµ → Aµ + ∂µχ. (4.99)

LGT’s are characterized by the large r fall-off conditions [37]

Ar = O(1/r2), Au = O(1/r), AB = O(1). (4.100)
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We can use our freedom to choose the temporal gauge:

Au = 0, (4.101)

which is obtained by setting

χ(u, r, θB) = −
∫ u

0

du′Au(u
′, r, θB). (4.102)

With this particular gauge choice, there is a simple relation between the phys-
ical field ~E and gauge field transformations:

∫ ∞

−∞

EBdu =

∫ ∞

−∞

FuBdu =

∫ ∞

−∞

∂uABdu

= AB(∞)− AB(−∞)

≡ ∆AB. (4.103)

What this tells us is that the memory effect taking place is equivalent to the
change of the gauge potential by a finite transformation at null infinity. That is
to say, for any memory effect we can find a scalar χ = χ(θB), which is a function
of angles but constant with respect to u, such that the gauge transformation

AB → AB + ∂Bχ, (4.104)

gives the net change in the gauge field resulting from the memory effect. This
result is interesting since the gauge transformation is directly related to the
kick, which is a physical effect. Thus we have a physically determined gauge
transformation even though a gauge transformation is a transformation be-
tween two physically identical states. Moreover, we have not required the
gauge transformation to be constant. For all we know, the gauge parame-
ter may be any differentiable function of angular coordinates insofar as the
transformation has a non-vanishing value at null infinity.

The scalar χ is determined by the difference ∆AB up to an integration constant.
Thus assuming that we are given a field EB, we have a family of functions χ
that give the corresponding LGT’s at null infinity. On the other hand, with a
large gauge transformation given, there are a lot of different field configurations
that yield the same memory vector and hence the same gauge transformation.

4.8.2 The charges induced by LGT’s

Since in the case of LGT’s the gauge parameter is a function of spacetime
coordinates, the gauge transformation is a local symmetry of the U(1) theory.
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Thus the Noether current associated with a LGT can be formulated in such a
way that it is conserved identically. The Noether current associated with the
gauge parameter χ is

Jν
χ = ∇µ(χF

µν) (4.105)

and the corresponding charge is given by

Qχ = lim
r→∞

t=const.

∫
dΩ r2niF

i0χ = lim
r→∞

t=const.

∫
dΩ r2F r0χ

= lim
r→∞

t=const.

∫
dΩ r2F0rχ. (4.106)

In the special case χ = 1 this is just the conserved electric charge and the
Noether current is the ordinary four-current. However, a memory effect is
related to a non-trivial LGT, and having a non-trivial LGT requires that χ
is non-constant at null infinity. Hence, the conserved charge is something
different from the ordinary electric charge, and one would also expect that the
memory effect is connected with this conserved charge. Thus we now start to
derive an equation that relates the memory effect to the conserved Noether
charge. With the formalism we constructed above, we write the equation
(4.106) as

Qχ =

∫

I+

−

dΩ Er χ (4.107)

= −
∫

S2

dΩ

∫ ∞

−∞

duχ∂uEr +
∫

I+

+

dΩ Erχ. (4.108)

The second term on the right hand side is the final charge determined by the
charge distribution when t → ∞, whereas on the left hand side we have the
initial charge determined at t = const. timeslice. Move the final charge to the
left hand side and denote the difference between the initial charge and final
charge by

∆Qχ ≡ Qχ −
∫

I+

+

dΩ Erχ. (4.109)

Then we use the equation of motion (4.48) to get

∆Qχ =

∫

S2

dΩ

∫ ∞

−∞

duχ
(
L−DAEA

)
=

∫

S2

dΩχ
(
F −DAM

A
)
. (4.110)
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Recall that

DAM
A = DAM

A
1 +DAM

A
2 , (4.111)

and from (4.84) we get

DAM
A
1 = F − Favg. (4.112)

Plugging these into (4.110) yields

∆Qχ =

∫
dΩχFavg −

∫
dΩχDAM

A
2 . (4.113)

Consider now the second integral a bit more in detail. We can write it as

−
∫
dΩDA(χM

A
2 ) +

∫
dΩ (DAχ)M

A
2 . (4.114)

In the first term we have the divergence of a vector over a two-sphere, so the
first term vanishes by the lemma of Appendix C. In the second term we have a
derivative of the gauge parameter, and from the equations (4.59), (4.103) and
(4.104), we see that this is nothing but the memory field we found earlier, i.e.

MA = DAχ. (4.115)

Hence we have found a relation between the Noether charge and the memory
effect:

∆Qχ = Favg

∫
dΩχ+

∫
dΩMAM

A
2 , (4.116)

where

∆Qχ =

∫

I+

−

dΩ Er χ−
∫

I+

+

dΩ Er χ, Favg =
1

4π

∫
dΩF, (4.117)

i.e., ∆Qχ is the difference between the initial and final charges and Favg is the
average value of flux F over the two-sphere. In the first term on the right
hand side Favg is multiplied by the integral of the gauge parameter over the
two-sphere. In the second term we have an integral of the inner product of the
entire memory field and the ordinary part of the memory field.

We have now derived an equation relating the electromagnetic memory effect
and the conserved charge associated with a LGT. Related equations have been
derived in [16, 37, 38]. Evaluating this relation between the conserved charge
and the memory effect concretely by developing models for M1 and M2 would
be an interesting future project, but beyond the scope of this thesis.
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5 Conclusions

The main aim of this thesis was to study the electromagnetic analog of gravi-
tational wave memory effect. After preliminary discussions on the U(1) invari-
ance of electrodynamics and the conformal structure of Minkowski space, we
proceeded to analyze a situation in which a flux F of charged radiation prop-
agates to the future null infinity and generates the analog of Christodoulou
memory of gravitational physics. Starting with Maxwell’s equations, a partial
differential equation was derived, in which the S2 divergence of the memory
vector depends on the total flux of charge that reaches the null infinity and
the initial and final values of the radial component of the electric field. The
memory vector was then found to consist of two parts: the ordinary memory
vector and the null memory vector. We thus reproduced the solution of Bieri
and Garfinkle [10] for the null memory vector by expanding the flux F in terms
of spherical harmonics. The same procedure applies to the ordinary memory
vector, even though we did not carry this out explicitly.

After this, we analyzed the connection between the electromagnetic memory
effect and the asymptotic symmetries of U(1) gauge theory. The memory effect
was found to determine a large gauge transformation (LGT) in which the gauge
parameter χ becomes a function of angles at null infinity. Since a LGT is a
local symmetry of U(1) theory, we concluded that there is a conserved Noether
current and Noether charge associated with it. As the memory effect generates
a LGT, it is natural to expect a connection between the memory effect and
the Noether charge. Our study thus culminated in an equation in which the
difference between the initial and final Noether charges equals the sum of two
terms: the product of the S2 surface average of flux F and the integral of χ
over S2, on the one hand, and the integral of the inner product of the whole
memory vector and the ordinary memory vector over S2, on the other hand.

Although related equations have been derived in recent literature, it seems
that, before now, an explicit relation between the conserved Noether charge
and the memory effect has not been presented. More research is needed in
order to get a better understanding of this relation. The next step to this di-
rection would be to build concrete models for the ordinary and null memories
by choosing a suitable flux F that generates the null memory effect and a con-
figuration of ordinary charges with subluminal velocity. This would probably
require a numerical computation of the spherical harmonics expansion of the
memory vector.

As the main motivation for studying the electromagnetic memory effect is to
gain a better grasp of the analogous effect in gravity, it would be a natural
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continuation to this project to examine, whether the analog between the elec-
tromagnetic and gravitational-wave memory effects also covers the conserved
charge we found. The relation between conserved charges associated with
BMS symmetries of GR and the gravitational-wave memory effect has already
been studied, see for example [41]. It would be interesting to see whether
the covariant analysis of gravitational memory in [18] could form the basis of
BMS conserved charges, in analogy to the relation between the LGT-induced
Noether charge and the electromagnetic memory effect. This is a problem that
needs further research.
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Appendices

A Invariance of null geodesics under confor-

mal mappings

Claim. Null geodesics are invariant under conformal transformations.

Proof. Let xµ(λ) be a null geodesic with respect to the metric gµν and denote

its tangent vector as kµ = dxµ/dλ. Let ∇̂ be the derivative operator compatible
with the transformed metric ĝµν . Then

Γ̂ν
µλ =

1

2
ĝνρ (∂µĝλρ + ∂λĝµρ − ∂ρĝµλ)

=
1

2
Ω−2gνρ

(
∂µ
(
Ω2gλρ

)
+ ∂λ

(
Ω2gµρ

)
− ∂ρ

(
Ω2gµλ

))

= Γν
µλ + Ω−1

(
δνλ∂µΩ + δνµ∂λΩ− gµλg

νρ∂ρΩ
)
. (A.1)

This allows us to write

kµ∇̂µk
ν =

d2xν

dλ2
+ Γ̂ν

µλk
µkλ

=
d2xν

dλ2
+ Γν

µλk
µkλ + Ω−1

(
δνλ∂µΩ + δνµ∂λΩ− gµλg

νρ∂ρΩ
)
kµkλ. (A.2)

Since xµ(λ) is a null geodesic, we get

kµ∇̂µk
ν = 2kνkµ∂µ ln Ω. (A.3)

Thus, kν satisfies the general geodesic equation with respect to ∇̂, where the
right hand side is of the form αkν with α = 2kµ∂µ ln Ω. We can put the
geodesic equation to a more familiar form, where the right-hand-side is just
zero, by a reparametrization of the curve [39].

From (A.2) we see that, in general, geodesics are not invariant under conformal
transformations. We needed the assumption of nullness to get the invariance.
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B Helmholtz decomposition on S2

The fundamental theorem of vector calculus is Helmholtz theorem: Let ~V be
a twice continuously differentiable vector field in R

3 that vanishes sufficiently
fast as r → ∞. Then it can be decomposed into a sum of an irrotational
component and a solenoidal component, i.e.

~V = ∇φ+∇× ~W, (B.1)

for some scalar function φ and vector field ~W . For a proof, see e.g. [40].

There is a special case of Helmholtz decomposition that is important to this
master’s thesis:

Claim. Let V A be a smooth vector field on S2. Then

V A = DAφ+ ǫABDBψ (B.2)

for some scalar functions φ and ψ that are unique up to a constant.

Proof. Since this is a relation between tensors, it follows that if we manage
to show this in some specific coordinate system, the relation is satisfied in
all coordinate systems. A convenient choice of coordinates in this case is the
stereographic coordinate system (z, z̄) of the two-sphere. That is to say, we
define a complex coordinate z and its complex conjugate z̄ with

z =
1

tan 1
2
θ
eiφ =

x1 + ix2

r + x3
. (B.3)

A vector living on the two-sphere then is

V A = (V z, V z̄) (B.4)

and the S2 metric is

hAB =




0
2

(1 + zz̄)2
2

(1 + zz̄)2
0


 . (B.5)

Note that the new coordinates change the metric into an anti-diagonal matrix.
This means that

V z =
1√
|h|
Vz̄, V z̄ =

1√
|h|
Vz, (B.6)
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where h is the metric determinant. Showing that the relation (B.2) holds for
some φ and ψ then amounts to proving the existence of solutions to a pair of
partial differential equations in the complex plane:

Vz = ∂zφ+ ∂zψ (B.7)

Vz̄ = ∂z̄φ− ∂z̄ψ. (B.8)

Since the vector field is smooth, the complex-valued components VA are ana-
lytic functions of both z and z̄. Then Cauchy’s Integral Theorem implies that
Vz and Vz̄ have integral functions

∫
Vz dz and

∫
Vz̄ dz̄. Thus, we get from (B.7)

and (B.8) that

φ+ ψ =

∫
Vz dz (B.9)

φ− ψ =

∫
Vz̄ dz̄. (B.10)

This implies that the solutions are

φ =
1

2

(∫
Vz dz +

∫
Vz̄ dz̄

)
(B.11)

ψ =
1

2

(∫
Vz dz −

∫
Vz̄ dz̄

)
, (B.12)

and these are unique up to an integration constant.
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C Integral of divergence over S2

In this appendix we give a proof of a lemma that is found useful in the calcu-
lations above.

Claim. Let V A be a vector field on a two-sphere such thatDAV
A is well-defined

everywhere on the sphere. Then
∫

S2

dΩDAV
A = 0. (C.1)

Proof. Let V A be a vector on S2. Then it can be decomposed into a sum of a
irrotational component and a solenoidal component, as we already showed in
Appendix B :

V A = DAφ+ ǫABDBψ, (C.2)

for some scalar functions φ and ψ that depend on the angles. Consider then
the divergence of V A. The divergence of the solenoidal component vanishes:

DAǫ
ABDBψ = ǫABDADBψ = 0, (C.3)

since covariant derivatives commute when acting on a scalar. Thus, we have
that

DAV
A = DAD

Aφ ≡ D2φ. (C.4)

Then we expand φ in spherical harmonics:

φ =
∑

l,m

φlmYlm. (C.5)

In terms of spherical harmonics, the divergence of V A becomes

DAV
A =

∑

l,m

φlmD
2Ylm = −

∑

l,m

l(l + 1)φlmYlm. (C.6)

Now integrate both sides over all angles. Consider the right-hand-side, for all
l > 0,

∫

S2

dΩYlm = 0, (C.7)

and the factor l(l + 1) kills the first term in (C.6). Thus, the integral of the
right-hand-side vanishes, and we get

∫

S2

dΩDAV
A = 0. (C.8)
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