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1 Introduction

The holographic renormalization program has been part of the gauge/gravity correspon-

dence almost since its origins [1–5], and in particular the Wilsonian approach within this

program has been the object of much attention in recent years [5–9]. This approach provides

a systematic framework to treat the properties of the renormalization flow in a gauge theory

at a non-perturbative level by means of calculations in a dual gravitational theory [9, 10].

The staring point is the AdS/CFT correspondence which provides a duality between

type IIB string theory in AdS5×S5 and a N=4 supersymmetric conformal SU(N) field the-

ory in a four dimensional Minkowski space. This original correspondence has been modified

in a number of ways, for instance by allowing the AdS5 part of the geometry to have an

horizon, becoming an AdS-Schwarzschild solution, which corresponds to the introduction

of a finite temperature in the gauge theory. A number of modifications of the background

metric have been introduced to model different physical scenarios, and in general these

modifications are admissible as long as a five dimensional subspace still approaches asymp-

totically AdS5 space close to its boundary, and the remaining compact subspace retains

enough symmetry to describe the dual gauge theory. In all these constructions, the di-

rections along the compact manifold are dual to internal degrees of freedom in the gauge

theory, while the directions along the boundary of the asymptotic AdS5 are in correspon-

dence with the directions in which the dual theory propagates. Of particular importance

to the renormalization program is that the direction that extends away from the boundary

into the bulk of the asymptotic AdS5 space, that is, the radial direction of this space, is

related to the energy scale in the gauge theory, which is also a distance scaling.
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Since the gauge/gravity correspondence relates the high energy behavior of the field

theory with the low energy regime of the string theory, to study high energy processes

in the field theory, we can approximate its dual to be governed by the low energy limit

of type IIB string theory, that is, type IIB supergravity, making it possible to work with

a classical action which exponential is the approximated dual to the quantum generating

functional [5, 6, 8, 9].

Operators in the field theory side are related to fields in the gravity component of the

correspondence, so to study the behavior of an operator in the gauge theory we must find

its dual field. One general approach to finding this field is by determining the one that

matches the symmetries of the operator. It will be important in this work to notice that

given the correspondence between the radial direction in the gravity side and the energy

scale in the field theory side, a normalizable field that close to the boundary behaves like

mr−∆ is dual to an operator of scaling dimension ∆ and expectation value m.

Two theories being dual implies that all the degrees of freedom of one of them have to

be codified in the other and vice versa. Holografic renormalization relays on the fact that

this should also be true for the renormalization of the fields in the gauge theory, and looks

for the way in which this information is encoded in the gravitational side of the duality.

In particular, the encoding of the Wilsonian approach to renormalization can be found by,

instead of extracting the information of the field theory from a precisely radially localized

four dimensional surface in the bulk, integrating out a fraction of the space very near to

the boundary and writing it as a surface term on the limiting surface of the integration

domain. This integration, being on the radial direction extending away from the boundary

and lying very close to it, corresponds to integrating out the high energy modes in the

gauge theory, as it should be in the Wilsonian approach to renormalization.

More explicitly, what is needed is to write the gravity action as an integral over the

bulk up to a surface close to the boundary, plus the corresponding surface integral just

discussed, in such a way that the total action is independent of the location of this surface.

This requirement can be expressed as a radial Hamilton-Jacobi equation, where, as the

limiting surface is moved, the change in the bulk action is compensated by the change of

the surface integral.

Here we study the behavior of a double trace fermionic operator in a thermal theory

in the presence of a strong magnetic field, so first, in section 2, we are concerned with the

behavior of Dirac fields in the bulk, as we can be sure that a combination of them will

be dual to the operator of our interest. It is important to mention that we will use a five

dimensional background, and that nonetheless we can still use the correspondence because

this background with its magnetic field is a solution to a consistent truncation of type

IIB supergravity [11]. In section 3 we carry an analogous calculation to that done in [12],

adapted to our background, starting by implementing all the ingredients necessary for the

Wilsonian approach to renormalization, and proceeding then to determine the particular

combination of fields that is dual to the operator we are interested in. Once we have the

dual field, we apply to it the Wilsonian approach and find how the renormalization flux

is affected by the reaction of the theory to the background magnetic field. We close that

section describing the modifications that could arise by using a different renormalization
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scheme and identify the conclusions that can be draw independently of this choice. To

provide further evidence for one of our conclusions, in section 4 we make a very simple

analysis of the behavior of the metric components to show that at low energy scales the

plasma develops a substantially subluminal limiting velocity in the directions perpendicular

to the background field, suggesting that the expected dimensional reduction takes place,

and is maintained up to an energy scale that increases with the strength of the background

magnetic field. We close with section 5, where we use our results to draw the conclusions

stated in the abstract.

2 The bulk equations

In this section we study a fermionic field in a five dimensional asymptotically AdS back-

ground with a constant magnetic field [13] F = Bdx ∧ dy turned on. The metric takes

the form

ds2
5

= −U(r)dt2 + V (r)
(
dx2 + dy2

)
+W (r)dz2 +

dr2

U(r)
, (2.1)

and we will pick the gauge Ay = Bx for the magnetic field. This background was

introduced[13] to model the gravitational dual of a gauge theory in the presence of a

constant magnetic field in its z direction, and has already been used to study a number of

phenomena in the presence of such a magnetic field [14–17].

This background has to be constructed numerically, and the particular way in which we

obtain it lends a family of solutions with a horizon located at r = rh and characterized by

one single parameter b that measures the intensity of the magnetic field. As the magnetic

field vanishes, the elements of this family smoothly approach the black brane solution given

by plugging

UBB(r) =
(
r +

rh
2

)2
(

1−
(3

2rh)4

(r + rh
2 )4

)
,

VBB(r) =
4V0

9r2
h

(
r +

rh
2

)2
, (2.2)

WBB(r) =
4

3

(
r +

rh
2

)2
,

in (2.1) and setting b = 0.

For all elements of the family, except the one for b = 0, the near horizon geometry is

that of a BTZ black hole times a flat two dimensional space, given by inserting

UBTZ(r) = 3(r2 − r2
h), VBTZ(r) =

B√
3

and WBTZ(r) = 3r2, (2.3)

in (2.1), while the geometry close to the boundary is the asymptotic AdS5 needed in

the correspondence. As the intensity of the magnetic field increases, the transition from

the near horizon geometry into the AdS5 zone takes place at a larger radius. From this

perspective we can think of the b = 0 case as the member of this family of solutions for

which the transition takes place right at the horizon.
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We have already discussed elsewhere the specific way in which we carry this numerical

construction, so we refer the interested reader to [15], and all we shall need to know

about the background for the present work are the characteristics described in the previous

paragraph and those that will be explicitly exhibit in section 4. In what follows, we will

use the numerical results for U, V and W achieved from the explicit calculations.

We now consider the action

S =

∫ r= 1
ε

r=rh

d5x
√
−gL+ SB[ψ, ψ̄, ε], (2.4)

where the Lagrangian density for the fermionic field ψ in the five dimensional background

is given by

L = ψ̄
[
(1/2)

(
ΓM
−→
DM −

←−
DMΓM

)
−m

]
ψ, (2.5)

and SB[ψ, ψ̄, ε] is a boundary term that will be the topic of discussion bellow. For this

work, ψ will be considered to bare no charge to couple to the magnetic field so its minimal

coupling to A will be left out, and yet we will see that there is interesting physics in this

first approach.1 The grassmanian nature of the spinors in this action will be relevant

for latter calculations. Also, throughout the paper, uppercase gammas are those that

satisfy {ΓM ,ΓN} = 2gMN for g the metric associated to the line element (2.1), while

lowercase gammas are those satisfying {γa, γb} = 2ηab, and hence they are related through

ΓM = EMa γ
a.

As in the expressions just above, we shall use an index notation where uppercase

Latin letters refer to the coordinates of the spacetime with metric (2.1), M = {t, x, y, z, r},
whereas lowercase Greek indexes run only over the first four of these indexes µ = {t, x, y, z},
leaving out the radial direction r ∈< rh,∞ > . We reserve lowercase Latin indexes running

from 0 to 4 for elements of the tangent or cotangent spaces that are written in terms of

the tetrad
Eta = δ0

a U
−1/2 , Ex

a = δ1
a V
−1/2, Eya = δ2

a V
−1/2 ,

Eza = δ3
aW

−1/2, Er
a = δ4

a U
1/2 ,

(2.6)

or its dual basis.

To compute the spin connection ωabM = EaP (∂ME
bP +EbQΓPMQ) needed for the covariant

derivative operator
−→
DM = ∂M + 1

4ω
ab
M [γa, γb] in (2.5), we first obtain all non-vanishing

Christoffel symbols, which are given by

Γtrt =
1

2

U ′

U
, Γxrx = Γyry =

1

2

V ′

V
, Γzrz =

1

2

W ′

W
,

Γrtt = +
1

2
UU ′ , Γrxx = Γryy = −1

2
UV ′ , Γrzz = −1

2
UW ′ ,

(2.7)

leading to the only non-vanishing components of the spin connection

ωbcµ = U bµδ
c
4 − δb4U cµ, (2.8)

1The consistency of considering the fermionic field neutral with respect to b can be seen in the uplift to

ten dimensions of the five dimensional background we use here. The five dimensional effective field being

neutral corresponds with the ten dimensional field being turned off in the internal directions, which can be

consistently done [11].
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where for compactness we have defined

U0
t =

1

2
U ′, U1

x = U2
y =

V ′

2

√
U

V
,U3

z =
W ′

2

√
U

W
, (2.9)

with all other Uaµ = 0.

Even if the magnetic field makes the background anisotropic, there is still translational

invariance in the four directions perpendicular to the radial one, so we can expand in plane

waves and write

ψ(xµ, r) = eiωt−i
~k·~xφ(r), kµ = (ω,~k), (2.10)

so that the equation of motion that results from extremizing (2.4) reads[
−iγµKµ(r) + U1/2(r) γ4∂4 −

1

2
U1/2γ4F (r)−m

]
φ(r) = 0, (2.11)

with

Kµ ≡
(
U−1/2ω, V −1/2kx, V

−1/2ky,W
−1/2kz

)
, (2.12a)

and

F (r) ≡ −1

2

(
U ′

U
+ 2

V ′

V
+
W ′

W

)
. (2.12b)

For the variation principle to be well defined, in the sense that a solution to the

equation of motion (2.11) is guarantied to extremize (2.4), we need to cancel the boundary

contribution of any variation. We will do this here by imposing the Neumann boundary

conditions

Π =
δSB
δψ̄

and Π̄ =
δSB
δψ

, (2.13)

where Π is the conjugated momentum of ψ in the radial direction given by

Π ≡ − i
2

√
−gEraγaψ and Π̄ ≡ − i

2

√
−gψ̄Eraγa. (2.14)

The boundary term that respects covariance is given by

SB =
i

2

∫
r= 1

ε

d4x
√
−gBfψ̄ψ, (2.15)

where gB is the determinant of the metric induced at the surface r = 1
ε that in our case is

given by V 2WU |r= 1
ε
.

Noticing that
√
−gB =

√
−gEr4 and that γ4† = γ4, both Neumann conditions (2.13)

are reduced to Mψ = 0 and its conjugate for M≡ (f + γ4), where it is to be understood

that an identity matrix is multiplying f .

To determine the value that f can take, we remember that a way to obtain information

about an operator in the gauge theory using elements of the bulk physics, is to fix the value

of the dual field at the boundary and extract the information we are looking for from the

behavior of the fields conjugate momentum. Reversing the rolls in the previous paragraph

of the value of the field and its momentum conjugated in the radial direction is also a

– 5 –
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possibility, and when more than one field, or field component, is involved, fixing some

field values and some momentum values is operational just as long as half the boundary

conditions are left unfixed.

The components of ψ follow the first order equation (2.11), so the boundary conditions

are fully determined by their values there, and hence, according to what was stated in the

previous paragraph, only half the components of ψ should be fixed at the boundary. An-

other way to say this is that the conjugate momentum to ψ is also determined by its value.

If we want the condition (2.13), that we rewrote as Mψ = 0, to only fix the value of

half the components of ψ, the matrixM≡ (f +γ4) has to project out half the components

of ψ which requires f = ±1. The previous statement can be seen to be true given that the

square of γ4 is the identity and hence the operators P+ = 1
2(1 + γ4) and P− = 1

2(1 − γ4)

satisfy the properties i)P±
2 = P±, ii)P±P∓ = 0 and iii)P+ + P− = 1, that is, they are

a complete set of orthogonal projectors. The relationship γaP+γ
b = γaγbP− also holds,

and given that the kernel of any Dirac matrix is the empty set, they cannot change the

rank of an operator by multiplying it, so the rank of P+ and P− has to be the same and

consequently, each of them projects out half the components of ψ, as anticipated.

We are left now with the decision of which one of the projected fields, ψ+ ≡ P+ψ

or ψ− ≡ P−ψ, will be set to zero at the boundary, which is dictated by their asymptotic

behavior as r goes to infinity, that at leading order is the same as in the pure AdS case [12],

so here we only review the facts that will be useful for the calculations below.

In our background the AdS radius L has already been fixed to 1, so in the limit r →∞
the three functions U, V and W approach r2, while F → −4

r and Kµ → kµ
r . The region

r → ∞ is better explored using the coordinate ρ = 1
r , in terms of which as we approach

the boundary ρ→ 0, equation (2.11) becomes[
−iργµkµ + γρρ∂ρ −

1

2
(4γρ + 2m)

]
φ(ρ) = 0, (2.16)

where γρ has to be equal to −γr to keep Γr∂r = Γρ∂ρ.

Whenever m is not a half integer, the solution to this equation can be put in terms of

the modified Bessel functions Iν(kρ) as

φ±(kρ) = (kρ)( 5
2

)
[
C±ν± Iν± (kρ) + C±−ν±

I−ν± (kρ)
]
, (2.17)

with ν± = (m∓ 1/2).

For half integer m these modified Bessel function are not linearly independent, so we

take the Hankel function Kν = (π/2)iν+1H
(1)
ν (ix) as a second solution, which asymptoti-

cally shows a characteristic logarithmic term.

Close to the boundary the fields are approached by

φ−(kρ) = A(k)ρ2−m +B(k)ρ2+m+1 · · · (2.18a)

and

φ+(kρ) = C(k)ρ2+m +D(k)ρ2−m+1 · · · (2.18b)

– 6 –
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The energy contribution of the asymptotic region evaluated using (2.18) is given by

the integral ∫ ρ=0

ρ=ε

dr

r4+1
[ĀDr4−2m+1 − C̄Br4+2m+1], (2.19)

so we see that for m ≥ 1/2, the second term is normalizable while the first is not, hence

for A to be dynamical it would require an infinite amount of energy and this forces us to

make ψ− = 0 keeping ψ+ free. If m ≤ −1/2 the situation is reversed, and the one that is

left free is ψ−. For −1/2 < m < 1/2 both terms are normalizable, so we can chose either

field to be the one that stays dynamical.

The choices ψ− = 0 and ψ+ = 0 are respectively called standard and alternative

quantization. These two options correspond to two fixed points in the renormalization flux

on the gauge theory side and represent two different theories in which, as we shall see,

if we set ψ− = 0, the operator in the gauge theory dual to ψ+ has conformal dimension

∆+ = 2 +m whereas for the alternative case the conformal dimension of the operator dual

to ψ− has conformal dimension ∆− = 2−m. We will keep the values of m in the interval

−1/2 < m < 1/2 and observe how the flow takes us from one to the other theory.

3 The renormalization flux

We turn now to the renormalization group flow, and since we will still be working close to

the boundary, we will keep using the coordinate ρ.

To begin with the Wilsonian approach to renormalization we need to start by integrat-

ing out the high energy degrees of freedom, in particular, those with energy in the interval

{Λ + δΛ,Λ}, where Λ sets the renormalization scale. The way to implement this on the

gravity side this is to perform the integral

S[ε+ δε]− S[ε] =

∫ ρ=ε

ρ=ε+δε
dd+1x

√
−gL+ SB[ψ(x, ε+ δε)]− SB[ψ(ε)]. (3.1)

The Wilsonian approach to renormalization is translated to the gravity side [6, 7] by

observing that physical quantities should not depend on the position of the boundary, and

consequently (3.1) should not depend on ε, condition which of course we will be only able

to meet if we permit the boundary term to change as the boundary is moved. This flow of

the boundary term with ε will encode the renormalization group flow as we will now see.

The boundary conditions (2.13) are to be imposed at ρ = ε, since this is the radius

associated to the renormalization scale and hence it should mark the boundary of our

bulk. It would be convenient then if we write the variation of (3.1) with respect to ε as an

expression that is evaluated at ρ = ε solely, which we can do by using the fact that δε is

small and expand (3.1) around ρ = ε to first order in δε getting to

dS

dε
= −

∫
ρ=ε

ddx
√
−gL+

∫
ρ=ε

ddx

(
−δSB
δψ

∂ρψ + ∂ρψ̄
δSB
δψ̄

)
+
∂SB
∂ε

(3.2)

where, as desired, all terms are evaluated at ρ = ε.

– 7 –
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Now that everything is evaluated at ρ = ε, we can use the conditions (2.13) to

write (3.2) as
dS

dε
=

∫
ρ=ε

ddx H+
∂SB
∂ε

, (3.3)

with the radial Hamiltonian given by

H = −Π̄∂ρψ + ∂ρψ̄Π−
√
−gL (3.4)

= − i
2

√
−g
[
Eµa ψ̄

(
2γa∂µ +

1

4
ωbc,µ{γa, [γb, γc]}

)]
, (3.5)

which is just the Legendre transformation of L in the radial direction.

For (3.1) to be independent of the value of ε we need to see that its variation with

respect to it, given by (3.4), vanishes, condition that can be written as

∂SB
∂ε

= −
∫
ρ=ε

ddH, (3.6)

which is the Hamilton-Jacobi equation dictating the flow of the boundary term, dual to

the Callan-Zymanzyk equation.

For our metric, as any other diagonal metric with components depending only on the

radial direction, Eµaωbc,µ{γa, [γb, γc]} = 0, and, given that ∂µψ = 0, the flow equation can

be written as
∂SB
∂r

= i
L2

r2

∫
r=1/ε

ddx
√
−g
[
mψ̄ψ

]
, (3.7)

where we have returned to the coordinate r = 1/ρ.

It will be relevant to close this section by noticing that all we did in it is independent

of the particular form of the boundary action, and so anything stated here will apply to

the deformed theory that we will study in the following section.

3.1 Deforming the theory

As originally stated, one of the things we are interested on is the exploration of the impact

that turning on an intense magnetic field on a theory at finite temperature would have

on the fermionic renormalization flow. As a trial case, we will use the deformation of the

theory given by the relevant operator

∆SDirac = i

∫
d3k

(2π)3
ξΨ̄(k)Ψ(k), (3.8)

with a constant ξ studied in [12] so that we can compare our results with the ones there,

and in particular, recover them when we set b = 0.
For defines, we will use the representation of the Dirac matrices given by

γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 σ1

σ1 0

)
, γ2 =

(
0 σ2

σ2 0

)
, γ3 =

(
0 σ3

σ3 0

)
, γ4 =

(
1 0

0 −1

)
, (3.9)

and also remember that in five dimensions there is no γ5 matrix, but that nonetheless, in

the four dimensional space of the gauge theory, this roll will be assumed by γ4, that is,

γ5
(4-dim) = γ4.

– 8 –
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Even before determining the appropriated boundary term, we already see that after

the conditions (2.13) have been imposed, we need an extra fermionic field in the bulk, say

χ, so that along with ψ they provide enough degrees of freedom to encode those of the four

components of the fermionic operator Ψµ in the gauge theory. Just like ψ, χ will also have

an expansion identical to (2.18), except with its own fermionic operators, that we will call

Ã, B̃, C̃ and D̃ just to tell them apart. As we did with ψ, we want to impose on χ the

boundary conditions that correspond to the alternative quantization, so the necessity for

the conformal dimension to be equal for all the components of Ψµ demands for χ to have

the same mass as ψ.

To model (3.8) we need to introduce, along with (2.15) and the corresponding expres-

sion for χ, a boundary term using ψ and χ in a way in which the result has the right

symmetries and properties. The total term turns out to be

SB =
i

2

∫
ρ=ε

ddx
√
−gB

[
f
(
ψ̄ψ + χ̄χ

)
+ g

(
ψ̄(c)χ+ χ̄ψ(c)

)]
, (3.10)

where ψ(c) ≡ γ2ψ is the charge conjugate of the spinor ψ. Notice that we have multiplied

the first two terms by the same constant f , and we did this since different components of Ψ

will come from ψ and χ, so in this way Ψ will transform correctly under the Lorentz group.

About this boundary term we notice that since under a chiral symmetry transformation

ψ → eiαψ and ψ̄(c) → e−iαψ̄(c), the second term in (3.10) breaks chirality. Also, in odd

spacetime dimensions, the pin group Pin(1, d) is associated with the twisted map, that sends

odd elements of the Clifford algebra to minus themselves, and so for our five dimensional

case, expressions like a mass term of the type ψ̄ψ contained in (3.10) break parity. Let us

remember that the leading order in both, (2.18) and the corresponding expansion for χ, are

those proportional to the expected value of the operator Ψ, so the final thing to notice is

that since the terms multiplying g in (3.10) are proportional to A†γ0Ã and Ã†γ0A, they are

dual to an operator with two copies of Ψ, which is the nature of the double trace operator

that we are looking for.2

The considerations just made, make it so that the boundary term we added is dual to

a double trace operator that breaks chirality, making it a likely candidate to model (3.8).

Given (3.10), the boundary conditions (2.13) now read(
f + γ4

)
ψ = −gγ2χ, (3.11a)

and (
f + γ4

)
χ = −gγ2ψ. (3.11b)

By applying
(
f − γ4

)
on (3.11a) and using (3.11b) or the other way around, we see that

the condition

f2 + g2 = 1, (3.12)

has to be satisfied.

This result is independent of the metric, and it will be so as long as the metric is diag-

onal and depends only on the radial coordinate, which are conditions satisfied in particular

by pure AdS.

2This proportionality can be seen by noticing that for our choice of gamma matrices, γ0γ2 ∼ diag(σ2, σ2).
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3.2 The RG flow

As argued in the previous section, the term multiplying g in (3.10) is dual to the double

trace operator in (3.8), so the renormalization flow of the coupling constant of the latter

will be encoded in the Hamilton-Jacobi equation for g,[
∂r

(
V
√
WUf

) (
ψ̄ψ + χ̄χ

)
+ ∂r

(
V
√
WUg

) (
ψ̄γ2χ+ χ̄γ2ψ

)]
= 2m

(
ψ̄ψ + χ̄χ

)
, (3.13)

obtained by substituting the expression for the boundary action (3.10) into (3.7).

To polish of (3.13), we see that manipulating the boundary conditions (3.11) we also get

f
(
ψ̄ψ + χ̄χ

)
+ g

(
χ̄γ2χ+ ψ̄γ2χ

)
= 0, (3.14a)

and

ψ̄
(
f − γ4

)
ψ + gχ̄γ2ψ = 0 χ̄

(
f − γ4

)
χ+ gψ̄γ2χ = 0, (3.14b)

that can be used in (3.13) to either eliminate the bilinear
(
ψ̄ψ + χ̄χ

)
in favor of(

χ̄γ2χ+ ψ̄γ2χ
)
, or the other way around, to then use (3.12) and be left with

−
√
U (∂rg) = 2mg(±

√
1− g2). (3.15)

We will see that if we start at r = 0 with the negative sign for the square root, the

flow takes g from zero to 1 at some finite value of r, and after this point it is necessary to

take the square root with the positive sign to carry with the flow that now takes g back to

zero as r approaches infinity.

This flow is easier to follow in the equation for f ,

√
U (∂rf) = 2m

(
1− f2

)
(3.16)

that, given the restriction f2 + g2 = 1, is totally equivalent to (3.15), and does not have a

square root, so we do not need to pick the sign for different regions and smoothly takes f

from -1 for r = 0 to +1 for r →∞.

Given that all integrations in the following section will be performed numerically, in

practice we will use the flow equation for f to do the calculations.

3.3 The effect of the magnetic field

As anticipated in the introduction, so far we have determined which results obtained in

pure AdS carry to our background, and now we are ready to explicitly see the impact that

the magnetic field has in the gauge theory.

To provide a reference we notice that in AdS, equation (3.15) reeds

−r(∂rg) = 2mg
√

1− g2, with solution

g0 =
4ξr−2m

4 + ξ2r−4m
, (3.17)

where following [12], we have written the solution so that the coupling constant ξ in (3.8)

appears as an integration constant.
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Figure 1. f as function of the energy scale µ for b = {0, 679, 1681, 2863, 4180, 5608, 7130,

8735, 10415, 12164}, where increasing values of b are further to the right with the first plot on

the left given by the analytic result for the pure AdS case. All the plots share the same value for f

at a particular infrared energy scale.

In general, given that as we already mentioned, the dimension of Ψ is ∆− = 2−m, our

double trace operator has dimension 4 − 2m, and its coupling constant in the ultraviolet

limit will be given by the value of g(r)r2m as r goes to infinity.

To follow the flow now, we can either fix the physics in the infrared, equivalent to

fixing the value of g for small r, and observe the flow as we move towards the ultraviolet for

different values of the intensity of the magnetic field b, or fix the physics in the ultraviolet,

equivalent to fixing the value of g for large r, and see how the flow goes as we lower the

energy, again, for different values of b. One subtlety is that, since we are not working on

pure AdS, the energy scale is not directly given by r but, for the particular form of our

metric, it should be given by µ = U1/2. Consequently, working at a fixed energy scale,

means working at slightly different radios.

We start with the first of these alternatives and depict the results in figures 1 to 3.

In figure 1 and 2 we respectively depict f and g as functions of the energy scale for the

values of b = {0, 679, 1681, 2863, 4180, 5608, 7130, 8735, 10415, 12164}. The first line to the

left of both plots is the b = 0 analytic result for either g0 given by (3.17), or f given by

f0 =
4− ξ2r−4m

4 + ξ2r−4m
. (3.18)

We will just make the obvious observation here that if we fix the physics in the infrared,

the presence of the magnetic field makes the transition to the other fixed point to happen

at a higher energy scale, and leave a more extensive discussion for latter. In 3 we plot,

as a function of b, the value that the coupling constant ξ takes at the ultraviolet fixed
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Figure 2. g as function of the energy scale µ for b = {0, 679, 1681, 2863, 4180, 5608, 7130,

8735, 10415, 12164}, where increasing values of b are further to the right with the first plot on

the left given by the analytic result for the pure AdS case. In the inset we show how for each value

of b, µ2g approaches a different constant that corresponds to the coupling of the gauge theory in

the ultraviolet fixed point, that has been normalized with respect to the value ξ0 in pure AdS. All

the plots share the same value for g at a particular infrared energy scale.

Figure 3. The coupling constant of the gauge theory in the ultraviolet fixed point as a function of

the intensity of the magnetic field with the value of g fixed to a constant at a particular infrared

energy scale for all values of b.
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Figure 4. f as function of the energy scale µ for b = {0, 679, 1681, 2863, 4180, 5608, 7130,

8735, 10415, 12164}, where increasing values of b are further to the left with the first plot on the

right given by the analytic result for the pure AdS case. All the plots share the same value for f

at a particular ultraviolet energy scale.

point, obtained as ξ =limr→∞g(r)r2m for the flow with the corresponding value of b. This

function is monotonic in b, but far from linear.

The result of the second alternative, that of fixing physics in the ultraviolet, is depicted

in figures 4 and 5 that are analogous to 1 and 2 with the same values for b. In this case

we do not show a plot like 3 because the value of ξ has precisely been kept the same for

all values of b in the ultraviolet fixed point.

This time the plots of the analytic results for b = 0 lie to the right of the plots for higher

values of b. Consistent with our observation about the transition to the ultraviolet fixed

point happening at higher energy scales for higher values of b when things are fixed in the

infrared fixed point, here we notice that when we keep things fixed in the ultraviolet point,

the transition to the infrared theory happens at lower energy scales for higher values of b.

3.4 Dependence on the renormalization scheme

The calculations in the previous subsection have been carried out in a particular renor-

malization scheme, which in [10] is refereed to as “maximal”, since all contact terms have

been removed. To draw any meaningful conclusions we need to determine the effect that

a change of scheme could have in our results.

A change of scheme is a redefinition of the operators and the coupling constants of a

theory at short distances, and consistently, in [10] it was shown that the difference between

the scheme we use and others, like the minimal scheme, is given by the addition of contact

terms, that is, δ−function singularities at coincident points. In [10] it was also shown

that the inclusion of these contact terms in momentum space is given by the addition
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Figure 5. g as function of the energy scale µ for b = {0, 679, 1681, 2863, 4180, 5608, 7130,

8735, 10415, 12164}, where increasing values of b are further to the left with the first plot on the

right given by the analytic result for the pure AdS case. All the plots share the same value for g at

a particular ultraviolet energy scale.

of analytic functions on the boundary term. For the fermionic theory we are working

with, these additions, and some more general ones, were considered in [12], reaching the

conclusion that they could be reabsorbed by allowing g and f to depend on the kµ in (2.10).

Now that we know what a change of scheme amounts to, let us determine the reper-

cussions of performing one.

We see that the behavior of f and g with respect to r is unchanged, since even if f

and g are invested with a dependence on kµ, equations (3.15) and (3.16) remain the same,

as they are differential equations on r.

As noticed in [10], another consequence of adding these contact terms is that the

Dirichlet boundary conditions that in the previous subsection were satisfied at the radius

dual to the energy scale, would have to be modified to be mixed, Newman and Dirichlet,

boundary conditions to recover the particular solutions we studied here. This implies that

the assumption that g provides the coupling constant of the double trace operator while its

expectation value is read from the derivative of g is not necessarily valid and some mixing

in this relationship is expected. As pointed out in [10], for this mixed boundary conditions

energy is not conserved, which can be explained by the mixing of single and double trace

operators. All of this put together is to say that the coupling constant ξ of the double

trace operators for an energy scales/radius in between fixed points is a general function of

g, f and their derivatives with respect to r, ξ(f, f ′, g, g′), and that the explicit dependence

of this function on its arguments is fixed by the renormalization scheme. The behavior

depicted in figures (1, 2, 4, 5) indicates that both g, and f have two regions of well defined

characteristics, one for the infrared and another one for the ultraviolet, which correspond
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to the fixed points of the theory. Furthermore, in the same figures we see that as the

intensity of the magnetic field is increased, the separation in the energy scale between the

two asymptotic regions grows. Now, if we were to study the crossover from one fix point to

another by using the actual coupling constant ξ(f, f ′, g, g′) in a general scheme, we would

still observe that the separation in the energy scale between the asymptotic regions would

increase, since it does for all the arguments of ξ, leaving it with no option but to follow this

behavior since its dependence on them is fixed by the scheme. The previous conclusion is

in agreement with the expectation from the field theory side that, since the space in which

the renormalization flow occurs has only one parameter that can modify it, which is the

intensity of the magnetic field, its topology should not change, since for this to happen,

there should be a scheme in which the lines that represent a particular flow, should either

cross, which they cannot because they are integral lines of a flow, or should fully overlap,

changing the dimension of the renormalization space, which again, cannot happen.3

It is true though, that there could be a scheme in which the shape of the plots for ξ

differs so dramatically from figures 1, 2, 4, 5 that it could hide the pattern just described,

or diminish it enough so that is not evident, but we would expect this to be rare. Of

course the only way to fully corroborate what we have just stated is to compute a number

of scheme independent quantities that would make the delay of the crossover irrefutably

universal, but we will leave this calculation for the future and will provide just one example

in section 4.

From our current results, the one that is scheme independent from the start is figure 3,

since this coupling constant ξ is obtained from the behavior close to the ultraviolet fixed

point, where no ambiguity exists between the coupling and the expected value, nor between

single and double trace operators, as the constant we are looking for comes from the mode

in g and f that goes as r−2m as r →∞.

4 Subluminal limiting velocity and the dimensional reduction of the

gauge theory

Even though the arguments stated in subsection 3.4 are robust enough to ensure that the

behavior that we have reported so far is going to be qualitatively present in all renormal-

ization schemes, it would of course be more satisfactory to provide an scheme independent

calculation that shows that the crossover from the infrared theory to the ultraviolet one

actually happens at higher energy scales as the intensity of the background field is increase.

One such calculation is to compute the amplitudes for fermion scatterings in the back-

ground we have used so far, determining first a clear distinction between low and high

energy amplitudes, and then, verify that the spread in the characteristic energies for one or

the other type of amplitude to occur gets larger with the intensity of the background field.

This calculation, along with other dynamical ones, would be the object of future work,

but for the time being, a scheme independent phenomenon we want to study to provide

further evidence of our results is the dimensional reduction that a theory like the one we

3We would like to thank David Berenstein for pointing this out.
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are working with should experience at low energies, so we proceed to explore this through

the its causal structure.

The causal structure in a gauge theory is given by the conditions that have to be sat-

isfied by the points at which two fields are evaluated so that these fields either commute

for the bosonic case or anticommute for the fermionic one. The commutators or anti-

commutators are normally written in terms of the subtraction or addition of propagators,

and hence contain relevant information of the theory. Even if the propagators themselves

depend in the renormalization scheme, the causal structure does not, so determining this

structure provides scheme independent information. A way to extract the causal structure

in our context is to use an arbitrary renormalization scheme to compute the propagation

amplitudes for the fermion fields, perform the necessary addition and find the conditions

for the result to vanish. This is not the way we will proceed here, since it is much simper

to determine the shape of the lightcones at each energy scale by direct inspection of the

speed of light in different directions, and as we will explain below, it is equivalent.

We know in advanced that we will find a qualitatively different causal structure in the

infrared and the ultraviolet limits of the theory we are working with, since the dimensional

reduction that a gauge theory should undergo in the presence of a strong magnetic field

has already been studied using the gauge/gravity correspondence. For instance in [18] a

formal analysis was performed to exhibit how the operator algebra is projected to the one

that a lower dimensional theory should have.

More recently, in [15], we performed a dynamical calculation to show that the drag

force that a particle experiences when traveling in directions perpendicular to the magnetic

field, increases linearly and without a bound as the intensity of the field grows bigger, while

it stays bounded for propagation along the field. We obtained part of the results in [15]

by studding the motion of a string embedded in the same background used here (2.1), and

determining when the world sheet develops a horizon as a consequence of the dependence on

the radius of the local speed of light. The results in [15] indicate that the causal structure

obtained by this dynamical calculation is determined by the shape of the lightcones at a

specific radial location, making it a structure that depends on the energy scale and that

can be read directly from the metric. In [15] we did not investigate the dependence of the

results in the energy scale, since it was not the objective at the time.

In what follows we will analyze how the presence of a magnetic field causes the plasma

to develop a substantially subluminal limiting velocity in the directions perpendicular to

it, leading to another indication of the dimensional reduction just discussed, but more

importantly, we will show that the energy scale up to which this reduction is effective

increases with the intensity of the background magnetic field. We need to point out that

the dimensional reduction is proper of the field theory itself, as it is experienced by the

plasma that provides the vacuum of our theory, made by fields of which some are charged

with respect to the magnetic field, and hence, they are subject to the physics alluded

in [18] and [15]. The fermions we added in the present work are not charged with respect

to the magnetic field, so they will be affected by the dimensional reduction through the

interaction with the vacuum of the theory that is reacting to the presence of the magnetic

field, and not by direct coupling.
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In our case, it is important to notice that the constant magnetic field makes the dual

gauge theory anisotropic by singling out the direction in which it points, and therefore

the propagation of particles does not need to be isotropic. From the very simple form

of the metric we are using, we see that the proper speed of light in a given direction xi

at radius r is given by c̃i(r) =
√
−g00(r)
gxixi (r)

. Locally, at any point of the bulk, this effect is

of course unperceivable as all observations are due exclusively to the particulars of local

coordinates. Nonetheless the holographic projection makes it so that when working in the

gauge theory, where coordinate velocities are used, at an energy scale µ corresponding to

a certain radius r∗, c̃i(r
∗) dictates a limiting velocity. The way in which a limiting velocity

appears has already been discussed in [19], while an argument about its validity along with

its computation for the case of a single quark can be found in [20–22] and a microscopic

description is done in [23, 24].

In the following few paragraphs we will show that when working at low energy scales

the limiting velocity in directions perpendicular to the magnetic field are very small in com-

parison to the one along it, which even at those low energies approaches the speed of light.

To begin the analysis let us remember that the background we are working with tran-

sitions from the near horizon geometry (2.3), in which V is a constant while U and W grow

as r2, to AdS5, where, for the coordinates we are using, all the metric functions go like r2.

As can be seen in the logarithmic plots 6 the radius, and hence the dual energy scale, at

which this transition occurs grows larger as the intensity of the magnetic field is increased.

It is therefore possible to find an intensity for b such that this transition takes place at an

energy larger than the energy scale of our physical processes, so that as far as our gauge

theory is concerned, this transition is not observed.

In the plot 7 we see that by increasing b, the limiting velocity c̃⊥ =
√
−g00(r)
gxx(r) =√

−g00(r)
gyy(r) =

√
U/V can be kept very small for any energy scale µ by increasing the intensity

of b. On the other hand, the plot 8 shows that, above a certain energy scale, the limiting

velocity c̃‖ =
√
−g00(r)
gzz(r) =

√
U/W cannot be pushed significantly away from 1 regardless of

how intense the magnetic field is made.

To provide a different perspective and further understand how this effect compares in

different directions, we define µci(s) to be the energy scale up to which the limiting velocity

in the i direction remains smaller than s% the speed of light. The inset in 7 shows how

µc⊥(1) as an example can be made arbitrarily large by increasing the intensity of the field.

On the other hand, the inset in 8 shows for instance that µc‖(98) cannot be made higher

than a certain value by intensifying the background field.

The results mentioned in the previous paragraphs provide evidence that propagation

in the gauge theory is favored in the direction of the background field with respect to those

perpendicular to it, consistent with a dimensional reduction taking place. Furthermore,

these results exhibit that the dimensional reduction is effective up to an energy scale that

grows with the intensity of the background magnetic field, reflecting the way in which the

causal structure transitions from the infrared to the ultraviolet at higher energy scales for

more intense magnetic fields.
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Figure 6. Logarithm of the metric functions vs. logarithm of r for b = {0, 8.62, 26.81, 75.05, 207,

570, 1564, 4277, 11680, 31860, 86861}. V in the first plot shows how it starts as a large constant

close to the horizon and it transitions into going like r2. W in the second plot shows how it starts

as 3r2, shown as one of the dotted lines, close to the horizon and it transitions into going like r2,

shown as the other dotted line. U in the third plot shows how it starts in zero, behaves like 3r2,

shown as one of the dotted lines, for some intermediate values of r and then transitions into going

like r2, shown as the other dotted line. The radius at which the transition happens for the three

metric coefficients increases with the intensity of b.

5 Conclusions

By implementing the holographic version of the Wilsonian approach to renormalization

we were able to determine properties of the corresponding group flow of a thermal gauge

theory in the presence of a strong constant magnetic field. In particular we found the beta

function for the coupling ξ of the double trace fermionic operator Ψ̄(k)Ψ(k), and depicted

our results in plots 1 to 5, where we see that, as in the zero temperature and no magnetic

field case [12], the renormalization flow happens between two fixed points, one in the low

energy limit and the other in the high energy one.
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Figure 7. c̃⊥ as a function of the energy scale µ for b = {0, 4180, 10415, 17772, 25967, 34849, 44319,

54308, 64763, 75644}. The highest line corresponds to the b = 0 case and increasing values of b show

plots that indicate the possibility of making c̃⊥ as small as desired for any energy scale. The inset

exhibits how the value of the energy scale below which c̃⊥ is smaller than 1% of the speed of light

changes with b, and indicates that this energy scale grows with it, so c̃⊥ can be kept as small as

desired up to arbitrarily high energy scales by making b more intense.

The effect of the background magnetic filed is quite relevant and we can extract at

least three ways in which it affects the behavior as the energy scales changes and that have

direct impact, for instance, on the analysis of observational data.

The first conclusion we can draw is that the separation of the theories in the energy

scale is increased by the introduction of the background magnetic field and grows with its

intensity. We can see this in plots 1 and 2, where physics are fixed in the infrared and

we observe that the transition to the ultraviolet theory happens at an energy scale that

grows with the intensity of the magnetic field. This is consistent with what is reported in

figures 4 and 5, where physics are fixed in the ultraviolet and the transition to the infrared

theory happens at lower energy scales as the intensity of the background field is increased.

Even though the particulars of the flow of the coupling constant are scheme dependent,

the generalities of it are robust, as argued in the main of the text.

The transcendence of this effect is that if when performing a high energy collision

experiment we are interested in exploring the physics of a theory that happens as an

ultraviolet limit of some renormalization flow, the energy that will be necessary to inject

into the system to access the relevant processes will increase if a very intense magnetic field

is present.
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Figure 8. c̃‖ as a function of the energy scale µ for b = {0, 4180, 10415, 17772, 25967, 34849, 44319,

54308, 64763, 75644}. The highest line again corresponds to the b = 0 case and increasing values of

b show plots that quickly converge to a given profile. The inset exhibits how the value of the energy

scale below which c̃‖ is smaller than 98% of the speed of light changes with b, and indicates that

this energy scale quickly approaches a constant as b grows, so c̃‖ gets close to the speed of light for

low energy scales regardless of the intensity of b.

An example of how this observation can be relevant is that in a system like the quark

gluon plasma obtained in experiments like RHIC or LHC, measurements taken from events

with different centralities cannot be assumed to explore physics of the theory in the same

energy scale, since the magnetic field intrinsic to the collision depends on how central the

collision is. The events that will provide access to the ultraviolet physics at the lowest

energy possible would be those coming from central collisions.

A theoretical exploration of this effect was given in section 4, where we saw that an

intense enough magnetic field would make the four dimensional theory inaccessible for a

large range of energies and would leave a dimensionally reduced effective theory.

The second conclusion, from plot 3, is that the difference in the coupling constants

in the infrared and ultraviolet theories increases with the intensity of the field. So if

fundamental physics are fixed at a very high energy scale, the apparent coupling that will

be observed in a low energy experiment will depend on whether or not a magnetic field is

affecting the theory. Given that this comparison is made at the fixed point of the theory,

it is scheme independent.

The third effect that we want to comment on comes from the difference in the prob-

abilities for propagation in directions parallel and perpendicular to the magnetic field.

This difference would imply that the detected ellipticity for a collision would receive an
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extra contribution from the non centrality through this mechanism, making it larger than

anticipated if this is not taken into account. This could be of particular relevance for

experiments where measurements are used to determine the Fourier component v2 of the

azimuthal anisotropy. Again, the anisotropy would prevail to higher energy scales for larger

background magnetic fields in a scheme independent manner.

We think our study provides three ways in which the presence of a magnetic field can

pragmatically affect data analysis in high energy physics.

Acknowledgments
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