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It is believed that neutron stars (NS) consist of hadronic and exotic states like strange quark or color

superconducting matter. Stars having a quark core surrounded by a mixed phase followed by hadronic

matter, may be considered as hybrid stars (HS). The mixed phase is well proportionate of both the hadron

and quark phases. A huge magnetic field is predicted in core as well as on surface of the neutron star.

Here we study the effect of this strong magnetic field on the equation of states(EOS) of HS matter. We

further study the hadron-quark phase transition in the interiors of NS giving rise to HS in presence of

strong magnetic field. We finally study the effect of strong magnetic field on maximum mass and eigen-

frequencies of radial pulsation of such type of HS. For the EOS of hadronic matter, we have considered

RMF(Relativistic Mean Field) theory and we incorporated the effect of strong magnetic fields leading to

Landau quantization of the charged particles. For the EOS of quark phase we use the simple MIT bag

model. We have assumed Gaussian parametrization to incorporate the density dependence of both bag

pressure and magnetic field. We have constructed the intermediate mixed phase by using Glendenning

conjecture. We found that magnetic field softens the EOS of both the phases, as a result the maximum

mass is reduced for HS and period of oscillation is increased significantly for primary mode.

Key Words : Neutron Stars; Magnetic Fields; Equation of States; Phase Transition; Oscillation:

Radial Modes.

Introduction

If the central density of neutron stars exceed the nuclear saturation density (n0 ∼ 0.15 fm−3), then the

compact stars might contain deconfined and chirally restored quark matter. Recently, (Demorestet al.,

2010) the mass measurement of millisecond pulsar PSR J1614-2230 and pulsar J1903+0327 has set a new

mass limit for compact stars to beM = 1.97± 0.04 M¯ andM = 1.667± 0.021 M¯ respectively (Freire
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et al., 2010). This measurement for the first time has set a very strong limit on parameters of the EOS of

matter under extreme conditions (Weber, 1999; Glendenning, 2000).

Generally there are two classes of compact stars with quark matter. The first is the so-called (strange)

quark stars (SS) of absolutely stable strange quark matter. The second are the so-called hybrid stars (HS),

along with the hadronic matter they have quarks matter in their interior. In between the quark and the

hadronic phase, a quark-hadron mixed phase exists. The size of the core depends on the critical density for

the quark-hadron phase transition and the EOS describing the matter phases.

New observations suggests that in some pulsars, the surface magnetic field can be as high as1014-1015G.

It has also been attributed that the observed giant flares, SGR 0526-66, SGR 1900+14 and SGR 1806-20

(Palmeret al., 2005), are the manifestation of such strong surface magnetic field in those stars. Such stars

are separately assigned as magnetars. If we assume flux conservation from a progenitor star, we can expect

the central magnetic field of such stars as high as1017-1018G. Such strong fields are bound to affect the NS

properties. It can modify either the metric describing the star (Bocquetet al., 1995; Cardallet al., 2001)

or it can modify the EOS of matter of the star. The effect of strong magnetic field, both for nuclear matter

(Brodericket al., 2000; Chakrabartyet al., 1997; Chenet al., 2005; Weiet al., 2006; Chenget al., 2002)

and quark matter (Chakrabarty and Sahu, 1996; Felipeet al., 2008; Ghosh and Chakrabarty, 2001a,b) has

been studied earlier in detail.

There are several investigations of vibrating neutron stars and the simple dimensional analysis suggest

that the period of fundamental mode would be of the order of milliseconds (Cameron, 1965). The value

of the period of oscillation strictly depends on the equation of state along with some constraints on the

parameters in both hadron and quark phase. Here we investigate the effect of magnetic field on equation

of states of both the matter phases (quark phase and hadron phase). Then we construct the mixed phase

equation of state in presence of strong magnetic field and use this to calculate the maximum mass as well as

the period of oscillation of HS.

The paper is organized as follows. In Section 2 we discuss the relativistic nuclear EOS and the effect

of Landau quantization due to magnetic field on the charged particles. In Section 3 we employ the simple

MIT bag model for the quark matter EOS and the effect of magnetic field on the quarks (also due to Landau

quantization). In Section 4 we construct the mixed phase region by Glendenning construction. In Section

5 we describe the equation for infinitesimal radial pulsations of a non rotating star given by Chandrasekhar

(1964) in general relativistic formalism. We show our results in Section 6 for the density dependent bag

parameter in quark matter and varying magnetic field for the mixed HS. Finally we summarize our results

and draw some conclusion in Section 7.
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Magnetic Field in Hadronic Phase

Hadrons are the degrees of freedom for the EOS at normal nuclear density. To describe the hadronic phase,

we use a non-linear version of the relativistic mean field (RMF) model with hyperons (TM1 parametrization)

which is widely used to construct EOS for NS. In this model the baryons interact with mean meson fields

(Boguta and Bodmer, 1977; Glendenning and Moszkowski, 1991; Ghoshet al., 1995; Sugahara and Toki,

1994; Schaffner and Mishustinm, 1996; Mallick 2013; Mohantaet al., 2014).

For the beta equilibrated matter the conditions is

µi = biµB + qiµe, (1)

wherebi andqi are the baryon number and charge (in terms of electron charge) of speciesi, respectively.

µB is the baryon chemical potential andµe is the electron chemical potential.

For charge neutrality, the condition is

ρc =
∑

i

qini, (2)

whereni is the number density of speciesi.

For the magnetic field we choose the gauge to be,Aµ ≡ (0,−yB, 0, 0), B being the magnitude of

magnetic field. For this particular gauge choice we can write~B = Bẑ. Due to the magnetic field, the

motion of the charged particles are Landau quantized in the perpendicular direction to the magnetic field.

The momentum of thex-y plane is quantized and hence the energy of thenth Landau level is (Landau and

Lifshitz, 1965) given by

Ei =
√

pi
2 + mi

2 + |qi|B(2n + s + 1), (3)

where n=0, 1, 2, ..., are the principal quantum numbers for allowed Landau levels,s = ±1 refers to spin

up(+) and down(-) andpi is the component of particle (species i) momentum along the field direction.

Setting2n + s + 1 = 2ν̃, whereν̃ = 0, 1, 2..., we can rewrite the single particle energy eigenvalue in the

following form

Ei =
√

pi
2 + mi

2 + 2ν̃|qi|B =
√

pi
2 + m̃2

i,ν̃ , (4)

wherethe ν̃ = 0 state is singly degenerate. It should be remembered that for baryons the mass ismb
∗.

The total energy density of the system can be written as (Mallick, 2013; Mohantaet al., 2014).

ε =
1
2
m2

ωω2
0 +

1
2
m2

ρρ
2
0 +

1
2
m2

σσ2 +
1
2
m2

σ∗σ
∗2 +

1
2
m2

φφ2
0 +

3
4
dω4

0 + U(σ)

+
∑

b

εb +
∑

l

εl +
B2

8π2
, (5)
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where the last term is the contribution from the magnetic field. The general expression for the pressure is

given by

p =
∑

i

µini − ε. (6)

Magnetic Field in Quark Phase

Considering the simple MIT bag model for the quark matter in presence of magnetic field, we assume that

the quarks are non-interacting. The current masses of u and d quarks are extremely small, e.g.,5 and10

MeV respectively, whereas, for s-quark the current quark mass is taken to be150 MeV.

The thermodynamic potential in presence of strong magnetic fieldB(> B(c), critical value) is given by

(Chakrabarty and Sahu, 1996; Sahuet al., 2002; Sahu and Patra, 2001)

Ωi = −gi|qi|BT

4π2

∫
dEi

∑

ν̃

dpi

dEi
ln[1 + exp(µi − Ei)/T ]. (7)

For the zero temperature, the Fermi distribution is approximated by a step function. By interchanging

the order of the summation overν and integration overE one gets,

Ωi = −2gi|qi|B
4π2

∑

ν̃

∫ µ

√
m2

i +2ν̃|qi|B
dEi

√
E2

i −m2
i − 2ν̃|qi|B. (8)

The total energy density and pressure of the strange quark matter is given by (Mallick, 2013; Mohanta

et al., 2014)

ε =
∑

i

Ωi + BG +
∑

i

niµi

p = −
∑

i

Ωi −BG, (9)

whereBG is the bag constant.

Phase Transition and Mixed Phase

With the above given hadronic and quark EOS, we now perform the Glendenning construction (Glenden-

ning, 1992) for the mixed phase, which determines the range of baryon density where both phases coexist.

Here one allows both the hadron and quark phases to be separately charged, preserving the total charge

neutrality as a whole in the mixed phase. Thus the matter can be treated as a two-component system, and

can be parametrized by two chemical potentials, usually the pair (µe, µn), i.e., electron and baryon chemical
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potential. To maintain mechanical equilibrium, the pressure of the two phases are equal. Satisfying the

chemical and beta equilibrium the chemical potential of different species are connected to each other. The

Gibbs condition for mechanical and chemical equilibrium at zero temperature between both phases is given

by

pHP(µe, µn) = pQP(µe, µn) = pMP. (10)

This equation gives the equilibrium chemical potentials of the mixed phase corresponding to the inter-

section of the two phases. At lower densities below the mixed phase, the system is in the charge neutral

hadronic phase, and for higher densities above the mixed phase the system is in the charge neutral quark

phase. As the two surfaces intersect, one can calculate the charge densitiesρHP
c andρQP

c separately in the

mixed phase. Ifχ is the volume fraction occupied by quark matter in the mixed phase, we have

χρQP
c + (1− χ)ρHP

c = 0. (11)

Therefore the energy densityεMP and the baryon densitynMP of the mixed phase can be obtained as

εMP = χεQP + (1− χ)εHP, (12)

nMP = χnQP + (1− χ)nHP. (13)

Radial Pulsation of Non-Rotating Star

The equation for infinitesimal radial pulsation of a non-rotating star was given by Chandrasekhar (Chan-

drasekhar, 1964) and in general relativistic formalism, has the following form (Sahuet al., 2002)

X
d2ξ

dr2
+ Y

dξ

dr
+ Zξ = σ̃2ξ. (14)

Hereξ(r) is the Lagrangian fluid displacement and cσ̃ is the characteristic eigenfrequency ( c is the

speed of light). The quantities X,Y,Z depend on the equilibrium profiles of the pressure p and densityρ of

the star and are represented by:

X =
−e−λeν

p + ρc2
Γp, (15)

Y =
−eλeν

p + ρc2

{
Γp

(
1
2

dν

dr
+

1
2

dλ

dr
+

2
r

)
+ p

dΓ
dr

+ Γ
dp

dr

}
, (16)

Z =
−eλeν

p + ρc2

{
4
r

dp

dr
− (dp/dr)2

p + ρc2
−A

}
+

8πG

c4
eνp. (17)
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Γ is the adiabatic index defined as

Γ =
(
1 + ρc2/p

) dp

d (ρc2)
(18)

and

A =
dλ

dr

Γp

r
+

2p

r

dΓ
dr

+
2Γ
r

dp

dr
− 2Γp

r2
− 1

4
dν

dr

(
dλ

dr
Γp + 2p

dΓ
dr

+ 2Γ
dp

dr
− 8Γp

r

)

− 1
2
Γp

(
dν

dr

)2

− 1
2
Γp

d2ν

dr2
(19)

To solve the pulsation equation (14), the boundary conditions are

ξ (r = 0) = 0, (20)

δp (r = R) = −ξ
dp

dr
− Γp

eν/2

r2

∂

∂r

(
r2e−ν/2ξ

) ∣∣∣∣
r=R

= 0. (21)

It is important to note thatξ is finite whenp vanishes atr = R. The pulsation equation (14) is a

Strum-Liouville eigenvalue equation forσ̃2, subject to the boundary conditions Eq. (20) and (21). As a con-

sequence the eigenvaluesσ̃2 are all real and form an infinite discrete sequenceσ̃2
0 < σ̃2

1 < ....σ̃2
n < ..........,

with the corresponding eigenfunctionξ0(r), ξ1(r), ....., ξn(r), whereξn(r) hasn nodes. It immediately fol-

lows that if fundamental radial mode of a star is stable (σ̃0 > 0), then all the radial modes are stable. We note

that Eqs.(15-19) depend on the pressure and density profiles, as well as on the metric functionsλ(r), ν(r) of

the non-rotating star configuration. Those profiles are obtained by solving the Oppenheimer-Volkof equation

of hydrostatic equilibrium (Misneret al., 1970).

dp

dr
= −G

(
ρ + p/c2

) (
m + 4πr3p/c2

)

r2 (1− 2Gm/rc2)
, (22)

dm

dr
= 4πr2ρ, (23)

dν

dr
=

2G
(
m + 4πr3p/c2

)

r2c2 (1− 2Gm/rc2)
, (24)

λ = −ln
(
1− 2Gm/rc2

)
. (25)

Eqs (9)-(12) can be numerically integrated for a given equation of statep (ρ) and given central density

to obtain the radius R and mass M = m(R) of the star. Therefore the basic input to solve the structure and
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pulsation equations is the equations of state,p = p(ρ). It has been seen (Burgioet al., 2001) that structure

parameters of neutron stars are mainly dominated by the equation of state at high densities, specifically

around the core. Since the oscillation features are governed by structure profiles of neutron stars, it is

expected to possess marked sensitivity on the high density equation of state as well. We employed equations

of states of mixed phase region in presence as well as absence of magnetic field to calculate the period of

oscillationP (= 2π/cσ̃) of both HS.

Results

The magnetic field in HS changes the EOS of the matter. The single particle energy is Landau quantized, and

thereby it changes all the other thermodynamic variable of the EOS, namely the number density, pressure

and the energy density.

We parametrized the bag constant in such a way that it attains a valueB∞, asymptotically at very high

densities. The experimental range ofB∞ is given in Burgioet al. (Burgioet al., 2002), and from there we

choose the valueB∞ = 130MeV. With such assumptions we then construct a Gaussian parametrization as

given by (Burgioet al., 2002)

BG(nb) = B∞ + (Bg −B∞) exp
[
−β

(nb

n0

)2
]

. (26)

ThevalueB∞, is the lowest one which it attains at asymptotic high density in quark matter, and is fixed

at 130MeV. The quoted value of bag pressure, is at the hadron and mixed phase intersection point denoted

by Bg in the equation. The value ofBG decreases with increase in density and attainB∞ = 130MeV

asymptotically, the rate of decrease of the bag pressure being governed by parameterβ.

We assume that the parametrization of the magnetic field strength depends on the baryon number density.

Therefore we assume a simple density dependence, as given by (Chakrabartyet al., 1997)

B (nb/n0) = Bs + B0

{
1− e

−α
�

nb
n0

�γ}
, (27)

whereα andγ aretwo parameters determining the magnetic field profile with givenBs andB0, nb being the

baryon number density. The value ofB mainly depends onB0, and is quite independent ofBs. Therefore,

we vary the field at the center, whereas surface field strength is taken to beBs = 1014G. We keepγ fixed at

2, and varyα to have the field variation. In the above parametrization, the magnetic field strength depends

on the baryon number density. However, at each density the field is uniform and constant.

In Fig. 1, we have plotted pressure against energy density having density dependent bag pressure

170Mev forα = 0.01. It is clear that magnetic field softens the EOS as well as broadens the mixed phase
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region. In Fig. 2 , we have plotted Gravitational mass (in solar mass unit) against energy density for zero

and non zero value of magnetic field. In Fig. 3, we have plotted period of oscillation (in seconds) against

gravitational mass for zero and non zero value of magnetic field. We notice that there is a kink for both

magnetic and non magnetic case which corresponds to phase transition from hadron phase to quark phase.

Kink is prominent for primary mode. Presence of magnetic field also increases the period of oscillation in

higher mass region.
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Figure1: Pressure (MeV /fm3) against energy density (MeV /fm3) for zero and non zero value of

magnetic field. B=0 (dotted line) and B=1017G (solid line)
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Figure2: Gravitational mass in solar mass unit against energy density (MeV /fm3)for zero and non

zero value of magnetic field.B=0 (dotted line) and B=1017G (solid line)
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Figure3: Period of oscillation in seconds against gravitational mass in solar mass for zero and non

zero value of magnetic field. B=0(dotted lines) and B=1017G (solid lines).

Conclusions

We have presented a calculation of the period of oscillations of neutron stars by using the radial pulsation

equations of non rotating neutron stars, as given by Chandrasekhar (Chandrasekhar 1964) in the general

relativistic formalism. To solve the radial pulsation equations, one needs a structure profile of non rotating

neutron stars, obtained by employing realistic equations of state. The equations of state for hadron matter

used here were derived from the relativistic formalisms with quark phases at higher densities. Then, the

equations of state were constructed by using the Glendenning’s condition for mechanical and chemical

equilibrium as a function of baryon and electron density at the mixed phase, comprising hadron as well

as quark phases. The main conclusion of our work is that the presence of magnetic field broadens the

mixed phase region, the period of oscillation shows a kink around the point where mixed phase starts, in

primary as well as in the higher modes, which is the distinct signature of quark matter onset in neutron star.

The presence of magnetic field increases period of oscillation of fundamental as well as in higher mode at

maximum mass but the effect is significant in fundamental mode.
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