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Preface

More than 10 years ago I was lured into the field of heavy ion physics as a young first
year Astronomy student. This first endeavour resulted in a project for the High Energy
Heavy Ion (HEHI) group, measuring the lifetime of the K-meson using the BRAHMS
experiment at the Relativistic Heavy Ion Collider (RHIC). I continued in both the group
and the BRAHMS collaboration, doing my bachelor’s thesis on high pT suppression at√
s
NN

= 200 GeV, together with fellow students Signe Riemer Sørensen and Hans Hjersing
Dalsgaard. After this, Hans and I measured the nuclear stopping in Au-Au collisions at√
s
NN

= 62.4 GeV, a measurement which ultimately was accepted for publication in Physics
Letters B [1].

In 2007 I turned in my Master’s thesis, which revolved around the rapidity dependence
of deuteron coalescence at

√
s
NN

= 200 GeV. This work was accepted for publication
by Physical Review C [2]. My master’s thesis marked the end of my involvement in the
BRAHMS experiment.

When I started as a Ph.D. student I also started working on the ALICE experiment,
located at the, at the time not operational, Large Hadron Collider (LHC). With the first
collisions of the LHC on 23rd of November 2009, the entire field of high energy physics
entered a new regime with collision energies potentially more than 20 times that of RHIC.

This thesis is the culmination of helping prepare the, locally built, Forward Multiplic-
ity Detector (FMD) for first collisions, as well as studying the topic of charged particle
multiplicities into forward pseudorapidities.

The thesis will start off with an introduction to the world of relativistic collisions,
introducing both useful concepts as well as presenting some of the cutting edge results,
that define the frontier of the field today. Following this is a chapter focusing on the
theory behind the main topic of this work, the charged particle multiplicity distributions.
This chapter also includes a review of previous multiplicity measurements, performed over
the last decades. Chapter 3 focuses on introducing the LHC accelerator facility as well as
the ALICE experiment. This leads directly to the next chapter, which zooms in on the
specific ALICE detectors used for the measurements of this work; the Silicon Pixel Detector
(SPD) and the FMD. Included in this chapter is also a review of relevant semi-conductor
detector physics.

The next chapter functions as a transition towards the actual analysis done. It is
devoted to discussing the analysis tools used, the initial reconstruction of data as well as
the simulations, that are a crucial part of high energy physics. The analysis, the very
heart of this work, follows in chapter 6. It presents all the analysis steps going from the
initial energy depositions in the active detector elements to the fully corrected measurement
results.

After presenting the analysis, the systematic uncertainties on the measurements are
treated, before finally arriving at the presentation of the final measurement results. The
results are split into four groups, namely measurements of charged particle multiplicity
distributions, KNO scaling violation, pseudorapidity densities and finally the energy de-
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“...Thus the yeoman work1in any science, and especially in physics, is done by
the experimentalist, who must keep the theoreticians honest.”

Michio Kaku, co-founder of string field theory [3]

1Old English expression for regular hard, loyal and often great work.



Chapter 1

The Standard Model of Particle Physics

With the advent of the Large Hadron Collider, a new era of particle and nuclear physics
is signalled. Never before have physcisists had so much energy available to investigate
the fundamental forces of nature, not least the elusive strong force. The Standard Model
of particle physics is a quantum field gauge theory describing three of the four known
fundamental interactions between the elementary particles that constitute all matter. It
represents the current best knowledge we have obtained through decades of experiments.

The LHC also marks the beginning of investigations into physics that is beyond the
Standard Model.

Fermions

The building blocks of matter in the Standard Model are labelled fermions and comes in
two subgroups; the quarks and leptons. There are six different quark flavours, namely
the up (u), down (d), charm (c), strange (s), bottom (b) and top (t) quark respectively.
Similarly six flavours of leptons exist, the electron (e), electron neutrino (νe), muon (µ),
muon neutrino (νµ), tau (τ) and the tau neutrino (ντ ). Each quark and lepton has a
counterpart with identical mass but opposite charges. These are labelled anti-particles.
The fermionic particles all have half-odd integer (e.g. 1

2
, 3
2
, . . .) intrinsic spin and follow

the Pauli exclusion principle. The fermionic matter is grouped in three generations; I, II
and III. All observed matter in nature consists solely of the light generation I fermions,
since the higher (and heavier) generations are unstable and decay into lighter fermions.
The Large Electron Positron (LEP) collider has shown that precisely three generations of
matter exist [4]. For an overview of the available fermions in the Standard Model see table
1. For more details consult [5].

Fermions
Generation I II III
Quarks u c t

d s b
Leptons e µ τ

νe νµ ντ

Table 1.1: Overview of the fermions in the Standard Model. Each particle has an
anti-particle associated with it.

5
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Bosons
Force Electromagnetic Weak nuclear Strong Nuclear
Mediating boson γ W+, W−, Z0 g

Table 1.2: Overview of the bosons in the Standard Model.

Bosons

Besides the fermions the Standard Model includes bosons, which mediate the fundamental
forces. All bosons have integer intrinsic spin, and thus do not follow the Pauli exclusion
principle. Currently only three of the known four fundamental forces are described by
the Standard Model2. These three are the weak nuclear interaction, the strong nuclear
interaction and the electromagnetic interaction. The main purpose of particle physics is
to study the fundamental interactions. The force mediating bosons are :

� W+,W−,Z0 : These three bosons mediate the weak nuclear interaction between
particles of different flavours. It has (as the only force) the ability to change a parti-
cle’s flavour as seen in the β-decay, where a down quark in a neutron is transmuted
to an up quark by emitting a W-boson.

� Photon (γ) : Photons mediate the electromagnetic force between electrically charged
particles; i.e quarks, electrons, muons, tau, W+ and W−. They are mass-less and
are described by Quantum Electro-Dynamics (QED) [7]. In addition the photon and
the three bosons of the weak interaction have been theoretically connected and can
be treated as a single electroweak interaction.

� Gluon (g) : Gluons mediate the strong nuclear force between quarks of different
colour charge, the interaction charge specific to the strong interaction. Gluons are
mass-less and, contrary to the other force mediators, carry the interaction charge and
can therefore interact with themselves. The strong interaction is described by the
theory of Quantum Chromo Dynamics (QCD) [6].

In addition to the mentioned bosons, the inclusion of the so-called Higgs boson into the
Standard Model, is needed. Without the Higgs boson the electroweak gauge bosons must
be mass-less, which is inconsistent with experimental measurements (in the case of W±

and Z0).
This problem of apparent masses of the electroweak gauge bosons, is solved in the

Standard Model, by introducing a Higgs mechanism, where the masses of the other gauge
bosons are given by their ability to interact with a field of Higgs bosons. The higher
interaction rate with this field, the higher mass. The Higgs mechanism thus can explain
the current measured gauge boson masses. However it should be stressed that currently the
Higgs boson has not been discovered. The potential discovery of it is one of the scientific
cornerstones in the entire LHC physics program.

Composite Particles

Composite particles made up from quarks and/or anti-quarks are designated as hadrons.
The hadrons are composed of two subgroups, the baryons and the mesons:

2The fourth force, gravity, has not yet been incorporated successfully into the Standard Model, but a
force carrier boson, the graviton, has been proposed [6], but has so far not been detected.
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� Baryons: Baryons are made up of three quarks (or three anti-quarks). Since each
quark has half-integer spin, the baryons are fermions themselves. The most well
known baryons are the proton (uud) and the neutron (udd).

� Mesons: Mesons consists of a quark and an anti-quark, and are therefore bosons.

1.1 Quantum Chromo Dynamics

QCD is the theory describing the strong nuclear interaction. As briefly introduced pre-
viously, all strongly interacting particles carry colour charge. Colour charge is the strong
interaction equivalent to electric charge in QED. There are three different colour charges for
quarks, typically labelled red, green and blue. The colour charge have no real resemblance
to macroscopic colours. The chosen labels merely utilise the analogy of three primary
colours, adding up to be colour neutral3. Anti-quarks carry anti-colour charge, sometimes
labelled anti-red, anti-green and anti-blue4. The gluons mediating the strong force carry
both colour, and anti-colour. In total eight independent types of gluons exist [8].

Mathematically several approaches exist for working with QCD. One of these is per-
turbative QCD (pQCD), where the small coupling constant, αs, can be approximated as
an expansion, and perturbation theory can be applied. pQCD is only applicable at very
short distance scales or large momentum transfers.

Of the non-pertubative approaches the lattice QCD (lQCD) is the most established.
lQCD describes space with a set of discrete points (the lattice), thus making it possible do
QCD calculations on supercomputers.

Confinement

The potential between two quarks have the following form [9]:

V (r) = −4αs(r)~c
3r

+ k · r (1.1)

Here k is the colour string tension and αs(r) is the strong interaction coupling constant.
Unlike in QED the coupling constant is however not really a constant in QCD. For small
values of r it diminishes; a phenomenon known as asymptotic freedom. The quark-quark
potential can be seen in figure 1.1.

The first part of (1.1) is reminiscent to the 1
r
-dependence of the electromagnetic poten-

tial in QED. However, in QCD the second linear term becomes dominant at large r. This
term is a consequence of the gluon self-interaction [8]. Thus the gluons act like a rubber
band, storing more and more energy when stretched further apart. This continues until
sufficient energy is available to create new quark/anti-quark pairs.

Therefore it is always favourable entropy-wise to create a quark/anti-quark pair, instead
of having the two individual quarks roam freely. This effectively confines all quarks inside
colour neutral objects.

Scattering experiments, where one basically tries to separate the quarks by pulling them
apart, confirms this, since only colour neutral objects has ever been measured [11].

3Analogous to white ‘neutral’ light being composed of the primary colours red, green and blue.
4and sometimes as complementary colours, cyan, magenta and yellow respectively.
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Figure 1.1: The quark-quark potential as a function of the distance between the
quarks calculated from lQCD. a denotes the lattice constant i.e., the
distance between individual lattice points. The points show Monte
Carlo data, and the corresponding fit. Figure is taken from [10].

1.2 Quark Gluon Plasma

Figure 1.2: The formation of QGP through compression of matter. The hadronic
structure breaks down and the quarks are deconfined inside a QGP.
Figure taken from [12].

The concept of confinement holds true for normal temperatures and nuclear matter
densities. QCD however, predicts a phase of matter in which the quarks are not confined
inside hadrons, called a Quark Gluon Plasma (QGP).
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Figure 1.3: QCD Phase Diagram. The paths of several large experiments are
shown. Furthermore the conditions in the early Universe, nuclear
matter and neutron stars are indicated. It is worth mentioning that
plotting the phase space as a function of baryon density or baryon-
chemical potential (as used in the text) makes no conceptual differ-
ence, since the two are thermodynamically conjugate variables. Figure
taken from [12].

The main idea of a heavy ion physics QGP, sketched in figure 1.2, is as follows. Con-
sider a fixed volume, in which hadrons are filled. Since hadrons have a non-zero spatial
volume [9], there exists a critical point where the hadrons completely fill out the vol-
ume. Adding even more hadrons (or decreasing the size of the volume) will thus cause
the hadronic structure to break down, creating a plasma of ‘free’ quarks and gluons. It
is worth mentioning that the quarks/gluons are still confined inside the plasma, but not
inside hadrons.

The term plasma suggests a gas-like behaviour with few interactions. However the
state of matter created at the Relativistic Heavy Ion Collider (RHIC) at centre-of-mass
energy

√
s
NN

= 200 GeV and at the LHC at
√
s
NN

= 2760 GeV indicates a more strongly
interacting QGP, with more interactions, thus behaving more like a perfect fluid [13].

The phase transition to QGP is predicted to happen at a critical temperature of TC =
173 ± 3 MeV [14] for a chemical potential of µB = 0. An illustration of the QCD phase
diagram can be seen in figure 1.3.

It is obvious from figure 1.3 that there are essentially two ways of gauging the QGP
phase; by raising either the temperature or by raising the chemical potential. At the Large
Hadron Collider5 the former approach is used.

5And the same is the case in previous experiments. The upcoming FAIR collider will follow the other
approach.
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Cosmological Quark Gluon Plasma

Observational evidence in the field of cosmology coherently suggests that our Universe
started as a mathematical singularity exploding spectacularly in the Big Bang. All the
matter/energy of the Universe thus was concentrated in a volume of high density, temper-
ature and pressure; the necessary conditions for a QGP to have formed. As a consequence
of the rapid expansion, the Universe cooled down quickly. At approximately 1µs after
the Big Bang the very hot Universe is believed to have been in a QGP phase, before
hadronising.

The cosmological QGP and the QGP probably created in heavy ion collisions are not
believed to be identical. Firstly the cosmological QGP is believed to have existed for a time
scale of 10−6 s whereas the observed heavy ion QGP has a lifetime of the order of 10−23 s
∼ 1 fm/c [15]. Secondly, the baryon number densities of the early Universe is thought to
be of the order Nb/N ∼ 10−10 compared to the Nb/N ∼ 10−1 in heavy ion collisions [15].
Here N refers to all particle types, i.e. hadrons, leptons, photons etc.

In the heavy ion collision QGP the baryonic density is sufficiently large, that strong
interactions between quarks and gluons will happen regularly, and thus the medium can
be said to be strongly interacting. This is believed to be in contrast to the situation in
the early Universe where the scarcity of baryons makes strong interactions improbable.
Furthermore the lifetime of the cosmological QGP certainly allows it to reach thermal
equilibrium. For the heavy ion collision QGP this is still a topic of dispute. However
recent theoretical calculations indicate that thermalisation might be possible as early as
0.35 fm/c after the collision [16].

1.3 Kinematic Variables

This section introduces kinematic variables and concepts which are fundamental to high
energy/heavy ion physics in general.

The four-momentum of a particle of rest mass m0, momentum ~p, and energy E is given
as:

P = (E, ~p) = (E, px, py, pz) (1.2)

The traditional convention of setting ~ = c = 1 is utilised here. For 2→ 2 particle reactions
with four-momenta P1 and P2 before the reaction and four-momenta P ′1 and P ′2 after the
reaction, the so-called Mandelstam variables are useful:

s = (P1 + P2) = (P ′1 + P ′2)

t = (P1 − P ′1) = (P2 − P ′2)
u = (P1 − P ′2) = (P2 − P ′1) (1.3)

Thus
√
s is the collision energy in the centre-of-mass frame, and similarly

√
t is the momen-

tum transfer. For heavy ion collisions, the collision energy is typically given per nucleon
pair in the notation

√
sNN .

Kinematic variables are expressed in terms of the ALICE global coordinate system,
which is illustrated in figure 1.4.

The momenta of the created particles, are split into a longitudinal component, pz, along
the beam-line and a transverse momentum component, pT , orthogonal to the beam. The
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Figure 1.4: The ALICE global coordinate system. The z-axis always follow the
beam direction, the x-axis points towards the accelerator centre, and
the y-axis points upwards. Included is also the definitions of the angles
θ and φ. The ALICE experiment itself will be treated in details in
chapter 3.

transverse momentum and mass are given by:

pT =
√
p2x + p2y and mT =

√
m2 + p2T (1.4)

Both the transverse mass and momentum are Lorentz invariant making them excellent
variables in relativistic systems. Instead of using longitudinal momentum it is common
practise to use the rapidity, y, which is defined as:

y =
1

2
ln

(
E + pz
E − pz

)
(1.5)

E is the particle energy, E = p2 + m2. The rapidity is useful as a longitudinal variable
compared to longitudinal momentum, since rapidity differences are Lorentz invariant (see
Appendix A for more detail). In the case where one look at unidentified particles the
pseudorapidity, η, replaces the rapidity as variable:

η = − ln(tan(θ/2)) (1.6)

θ denotes the polar angle between the momentum vector, p, and the beam axis. In the
case where | p |� m the rapidity reduces to the pseudorapidity.
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Figure 1.5: Schematic illustration of a relativistic heavy ion collision. The partic-
ipant nucleons of the overlap region between the colliding nuclei form
the high density fireball, whereas the rest of the nucleons continues
unaffected as spectators. Picture taken from [17].

1.4 Relativistic Collisions

Relativistic collisions can be divided into three categories:

AA Collisions between heavy ions. Heavy nuclei are collided, creating thousands of final
state particles in each collision. At the ALICE experiment, which is the foundation
for this work, the main focus is on heavy ion PbPb collisions. Heavy ion collisions
are expected to create a QGP, before cooling down.

pp Collisions between protons. The main focus on the LHC pp program (that take up the
vast majority of beam time) is to discover the Higgs boson and possibly verifying the
existence of SUper SYmmetric (SUSY) particles. However since ALICE is a heavy
ion detector, it does not have the trigger rate to gather enough statistics to be viable
in those searches. Instead pp collisions at ALICE play another, but also important
role in both looking for new physics, as well as a baseline measurement for PbPb
collisions.

pA Collisions between protons and heavy ions. The LHC has not provided collisions
between protons and lead-ions yet. For the heavy ion community this is a high
priority, since these asymmetrical collisions, does not have a dense hot medium, and
thus can yield important insights into the initial state of collisions. The LHC will
attempt to deliver the first pA collisions at the end of 2011. The run plans for the
following years will be heavily influenced depending on their success.

In the following an introduction to both proton-proton collisions and heavy ion collisions
is given.

1.4.1 Relativistic Heavy Ion Collisions

While the majority of the results in this thesis are from pp collisions, one should keep in
mind that due to the ALICE experiment being a heavy ion detector, the long range main
focus is still on heavy ion physics. Furthermore the concepts from heavy ion physics might
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prove more and more useful, since pp collisions at very high energies start to resemble
heavy ion collisions more and more, with for instance collective effects appearing [18].

In Figure 1.5 an illustration of a relativistic collision is shown as seen from the laboratory
frame of the nuclei. Each nucleus is highly Lorentz contracted along its direction of motion.

Participants and Spectators

The nucleons directly involved in the collision, called participants, interact strongly giving
rise to a high density volume, known as the fireball. Nucleons outside the overlapping
region of the two nuclei are called spectators. They are unaffected by the collision except
for Coulomb-interactions and they retain their initial momentum, flying away from the
fireball.

Figure 1.5 also introduces the impact parameter, b, which is the transverse distance
between the centres of the two nuclei. Hence a large impact parameter corresponds to a
peripheral collision, where a small region of the nuclei overlap, whereas a small impact
parameter gives a central collision with a large overlapping region. As it is practically
impossible to measure the impact parameter directly, an experimental technique is used to
connect impact parameter with centrality. The centrality can be measured using the total
charged particle multiplicity of the events. This is discussed in section 6.1.3.

The impact parameter is through models connected to the centrality of the collision in
the following way:

c =

∫ bc
0

dσin(b
′)

db′
db′

σin
(1.7)

Here σin,dσin(b
′)

db′
and bc are the total inelastic nuclear reaction cross section, the differential

cross section and a cut-off in the impact parameter respectively. Thus the centrality, c,
denotes the probability that a collision occurs with a impact parameter of b ≤ bc. For a
solid sphere dσin(b)

db
= 2πbdb and thereby under the assumption that nuclei are identical and

spherical the centrality becomes:

c =

∫ bc
0

2πbdb∫ 2R

0
2πbdb

=
b 2
c

4R2
(1.8)

Here R denotes the radius of the nuclei. The impact parameter and the number of partic-
ipants in the collision are statistically related. Their relation can be estimated using the
Glauber model [19]. A short introduction to it can be found in Appendix B.

The Bjorken Picture

A very important contribution to heavy ion physics is a paper from 1983 by Bjorken
[21], which uses a hydrodynamical description of the central rapidity region in heavy ion
collisions. The description relies on four important assumptions on collisions between nuclei
with nucleon number A:

� Boost invariance : The rapidity densities dN
dy

are independent of rapidity for at least
a few units of rapidity around mid-rapidity in pp and pA collisions. From this it is
assumed that the same is true for AA collisions.
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Figure 1.6: Proposed space-time evolution of a heavy ion collision. Quarks and
gluon are at first deconfined in a QGP which thermalises; eventually
the hadrons freeze out and streams away freely. Picture taken from
[20].

� Transparency : The nuclei interpenetrates in the AA collision and the central plateau
is formed through particle production from the breaking of colour strings. The frag-
ments of the original nuclei end up some units of rapidity away from mid-rapidity.
In Lorentz frames with velocities close to the mid-rapidity frame, the nuclei look like
flat pancakes.

� Transverse expansion : The transverse expansion of the source can be ignored
for most of the collisions because of the large initial transverse scale of the source
compared to its longitudinal scale. This is only true for central collisions and reduces
the problem to a 2-dimensional problem in the coordinates z and t.

� Thermalisation : At some early time, assumed to be of the order of the characteristic
hadronic time scale t ∼ 1 fm/c, the system thermalises and hydrodynamics governs
the evolution and expansion of the source.

Figure 1.7: Simplistic view of a collision in the transparent Bjorken picture. Pic-
ture taken from [12].
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If it is assumed that at t ∼ 0 the longitudinal extension, z, is negligible, and the proper
time, τ , is given by:

τ ≡ t

γ
=

√
t2(1− z2

t2
)

=
√
t2 − z2 (1.9)

In a space-time diagram this yields hyperbolas of constant energy densities, which can be
used to distinguish different evolutionary phases in heavy ion collisions. In figure 1.6 a
sketch of the space-time evolution of a central collision is shown.

In the Bjorken picture the incoming nuclei are transparent to each other as mentioned,
allowing them to interpenetrate without loosing much of their initial kinetic energy. How-
ever, upon doing so they leave a highly excited colour field between them, in which particle
production take place due to the breaking of colour strings. The concept of transparency
is illustrated in figure 1.7.

The Landau Picture

Figure 1.8: Simplistic view of a collision in the stopping picture. Picture taken
from [12].

The opposite of the transparent Bjorken picture is a picture where full nuclear stopping
is assumed. This picture was proposed by Landau in [22]. Landau argued that:

� Full stopping : The incoming nuclei are fully stopped when hitting each other. All
their initial kinetic energy is deposited in the fireball.

� Hydrodynamics : Particles in the fireball have small mean free paths, so the fireball
can be treated as an ideal fluid in the sense that it is non-viscous and non-heat
conducting.

� Adiabatic expansion : The fluid expands adiabatically, i.e. the entropy is constant.

A collision in accordance with the Landau picture is illustrated in figure 1.8. These two
extreme pictures corresponds to very different macroscopic physical phenomena. The trans-
parent Bjorken picture is reminiscent of the early Universe, with very high temperature and
low baryo-chemical potential, µB. In the other end of the scale, Landau’s stopping picture
is reminiscent of the conditions inside stellar objects like neutron stars, with large µB and
relatively low temperature. At RHIC it was found by nuclear stopping measurements, that
the higher the collision energy is, the more transparent the collision is [1, 23].
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Figure 1.9: Schematic of a pp collision. Figure is from [24]. An incoming parton
might branch (q → qg) before the collision in an initial-state shower.
Similarly a parton branching after the collision is referred to as a
final-state shower. After the collision colour string span between the
outgoing quarks and gluons. These fragments into colourless hadrons,
as described previously. The fragmented hadrons can be unstable, and
further decay.

1.4.2 Proton-Proton Collisions

Initially, collisions between two protons might seem much simpler than collisions of ions,
with hundreds of participants, but it is a truth with heavy modifications.

pp collisions serve as a great reference measurement for heavy ion measurements due
to a number of reasons. One of the main reasons is that pp collisions have not previously
been believed to create a QGP. Thus deviations in measured quantities in pp and heavy ion
collisions can serve as a probe of the differences between the two systems. And therefore,
if no QGP is created in pp collisions, then differences between the two systems is useful
for directly probing the characteristics of the QGP formed in PbPb collisions. However,
it should be noted that it has been proposed that collective effects, and possibly even the
formation of a QGP, could occur in very high energy pp collisions [18].

Regardless of whether or not such a QGP is formed in pp collisions, pp measurements
does have a full physics motivation in its own right, with an important contribution being
multiplicity results as presented in this work.

A schematic of a pp collisions is shown in figure 1.9.

Diffraction

When dealing with inelastic pp collisions it is customary to distinguish between non-
diffractive, single-diffractive and double diffractive events (ND, SD, and DD respectively).

The concept of diffraction in particle physics is analogous to diffraction in optics, where
light beams scatter on obstacles.

A diffractive event is characterised by the colliding particle(s) being excited. This
excitation creates a diffractive system, that carries the quantum number of the original
particle, and subsequently fragments/decays into final state particles. For SD events only
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Figure 1.10: Left panel: Feynman diagram of a Regge Pole. The two gluons
exchange a particle of spin J = α(t). Right panel: An example of a
Chew-Frautschi plot, with the Regge trajectories for the ρ, ω and f
mesons indicated.

one of the colliding particles becomes a diffractive system, whereas both of the particles
become diffractive systems in the case of DD events. As the name implies no diffractive
systems are created for ND events. The excitation of one or both of the incoming nucleons
are thought to stem from gluons exchanging a so-called Pomeron. In this context the
Pomeron is a strongly interacting colour singlet, which carry the quantum numbers of
the vacuum [25]. However the exact nature and role of the pomeron in QCD is still not
completely clear. [26]. In the following the theoretical motivation for the notion of pomeron
exchange is briefly presented.

The introduction of the Pomeron stem from Regge Field Theory [26]. It describes the
so-called Regge Pole, which corresponds to exchanging an object of spin J (which could
be complex). A schematic Feynman diagram of the Regge Pole exchange is seen in the
left panel of figure 1.10. A way to organise particles is to map them by plotting J as a
function of mass squared, mJ . This plot is called a Chew-Frautschi plot, and is shown in
the right panel of figure 1.10. Hadrons of the same type (in this context meaning same
isospin, same parity etc.) can all be described by so-called Regge trajectories adhering to
the linear form:

J = α(t) = α0 + α′(t)m2
J (1.10)

For all hadrons the intersection value of J at m2
J = 0, ao, is below unity. The first equality

of (1.10) is due to the spin being dependent on the transferred momentum, t.

The contribution to the scattering amplitude in a Regge pole exchange at large energies
s is given by [26]:

A(s, t) ∝ sα(t) (1.11)

Additionally the optical theorem for large s, can be rewritten, and yields the following
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Figure 1.11: The difference in rapidity density shape for ND, SD, and DD events.
Note that the scale is different.

contribution to the total cross section from the Regge Pole [25]:

σtot =
1

s
=(A(s, 0)) ∝ sα(0) (1.12)

Since all hadrons follow Regge trajectories with a0 < 1 this can not explain the experimen-
tal evidence that the total cross-section rises slightly with collision energy. For that a object
with a0 > 1 is needed. This object is named the Pomeron, responsible for creating diffrac-
tive systems. Having a single Regge Pole Pomeron exchange would make the cross-section
rise as a power law of s. This is in contradiction to the Froissart-Martin bound [27], which
states that the cross-section can not increase faster than ln2 s for s→∞. The contradiction
is resolved by including multiple Pomeron exchanges (referred to as eikonalisation), which
in the end ensures that the cross-section increase is within the Froissart-Martin limit6.

Now turning back to the different types of diffractive events. The Pomeron exchange
and excitation of the incoming nuclei heavily affect the distribution of final state particles
observed. Figure 1.11 shows the pseudorapidity density of ND, SD, and DD events. For
ND events the distribution is maximum around mid-rapidity and falls of steeply. For SD
events one of the nuclei continues unaffected ending up at beam rapidity, whereas the other
fragments (mostly) into forward rapidities. In DD events both nuclei fragment giving two
peaks at forward rapidities and a minor dip in the central region.

Since the physics processes of collisions with diffraction and without can be significantly
different one would ideally measure only ND events. However this is seldom possible. His-
torically, experiments have measured Non Single Diffractive events (i.e excluding the SD
events). This is experimentally possible by discriminating the SD events due to their rapid-
ity asymmetry. The DD events however are difficult to separate from the ND events, why
the NSD event class is often used. Furthermore the cross-section of DD events compared
to ND events are not too significant (σDD/σINEL ∼ 0.1 [28]), and thus the NSD event class
is not too different from a pure inelastic event class.

In this work NSD events have been analysed for pp collisions, and Minimum Bias events
have been analysed for PbPb-collisions.

6A closing historical remark on this is that the Regge trajectories can be explained by either the hadrons
being composite objects, or if they are describable by elastic strings. This observation is among the
influences that lead to the realisation by Gell-Mann that hadrons are indeed composite objects, composed
of quarks. The other possibility of having elastic strings heavily influenced the eventual creation of the
first string theories.
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Figure 1.12: Left Panel: Nuclear modification factors measured by BRAHMS [29]
in central AuAu and dAu collisions at

√
s
NN

= 200 GeV. Right
panel: Nuclear modification factors measured in three centrality bins
for PbPb collisions at

√
s
NN

= 2760 GeV by ALICE [30]. The sup-
pression seen at RHIC is confirmed by ALICE. The nuclear modifi-
cation factor rises slowly with pT at very high pT .

1.5 Previous Heavy Ion Results

This section is devoted to giving a brief overview of some of the experimental highlights of
the recent years. It is an intriguing period with two strong experimental programs setting
the stage; LHC gauging the highest energy possible, hoping to discover new physics and
RHIC focused on scanning lower energies, in order to pin-point a possible QCD critical
point7

Interesting results have already been published, and will continue to be so in the coming
time. This chapter will only focus on briefly presenting three of the topics that have been
instrumental in shaping the understanding of the medium created in heavy ion collisions
over the past years. The next chapter is dedicated solely to multiplicity theory and previous
multiplicity results.

High pT Suppression

One of the first indications of a QGP at RHIC was the discovery that high pT particles
in central AuAu collisions at

√
s
NN

= 200 GeV were suppressed compared to pp collisions.
Experimentally this is measured by the nuclear modification factor:

RAA ≡
d2N/dpTdηAA

Nbind2N/dpTdηpp
(1.13)

where RAA is the transverse particle production of A+A collisions relative to a reference
of pp collisions scaled by the number of binary collisions, Nbin.

The results from RHIC [31, 32] prompted the measurement of RAA to be one of the
top priorities at the LHC. The first LHC results confirms the suppression of high pT par-

7QCD predicts a first order phase transition from hadronic matter to a QGP to have a minimum baryo-
chemical potential. The onset of this 1st order transition is called the critical point. At lower potentials
the phase transition is thought to be a smooth crossover.
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Figure 1.13: Nuclear modification factors for various particle species measured
by PHENIX and CMS. Left panel shows PHENIX data [31, 32, 35]
from RHIC for π0, η and direct photons at

√
s
NN

= 200 GeV. Right
panel shows preliminary CMS data [33] for charged particles, isolated
photons and Z0. In both cases it is seen that the photons (and Z0),
which do not interact strongly, are not suppressed.

ticles at LHC energies [30, 33]. Figure 1.12 shows the RAA results for three centrality
classes measured by ALICE in PbPb collisions at

√
s
NN

= 2760 GeV as well as RAA re-
sults from BRAHMS at

√
s
NN

= 200 GeV. It is seen that there is heavy suppression over
a very large pT -range, especially for the most central collisions. The suppression is at-
tributed to coloured objects interacting strongly with the medium, by emitting gluons as
bremsstrahlung [13]. This is in contrast to dAu collisions, as measured by BRAHMS, where
no suppression is seen, in accordance with expectations of no formed hot medium [29].

At very high pT the nuclear modification factor starts rising gently, thus there is less
suppression. The cause of this rise is not fully understood, but various models including
Gyulassy-Levai-Vitev energy loss models predicts this behaviour [33,34].

Direct photons, stemming from the initial interaction point/time, were however found
not to be suppressed at RHIC [35]. Since they only couple to the electromagnetic force it is
indicative that the medium suppressing high pT particles is in fact strongly interacting, but
not electromagnetically interacting. The nuclear modification factor of various particles
including direct and isolated photons8 from PHENIX and CMS respectively is shown in
figure 1.13.

High pT suppression is a clear indication of the formation of a strongly interacting QGP.

Jet Quenching

Another of the early indications of the presence of a QGP at RHIC was the measurement
of dihadron azimuthal correlations. The STAR experiment presented this in [36,37], which
is shown in the left panel of figure 1.14. Dihadron azimuthal correlation revolves around
observing jets of high momentum particles near the fireball edge. One of the jets (the

8Direct and isolated photons are both probes of the very early phase, but the terms are not necessarily
interchangeable. Direct photon analyses have decay photons statistically removed; isolated photon analyses
try to eliminate these by requiring that the selected photon is spatially isolated. Thus there can be subtle
differences between them. However, in the high pT suppression physics perspective they are comparable.
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Figure 1.14: Left panel: Jet Quenching measured by STAR at
√
s
NN

= 200 GeV
[36, 37]. The jet travelling the shortest path through the medium
(∆φ ∼ 0) is enhanced compared to the jet travelling through the
longest path in the medium (∆φ ∼ π). This in not seen in dAu
and pp collisions, and is interpreted as the existence of a strongly
interacting QGP at RHIC. Right panel: A concrete example of a jet
reconstruction from CMS at

√
s
NN

= 2760 GeV [38]. The leading jet
appears to be much more energetic than the away-side jet.

leading jet) is emitted away from the fireball, while the other is emitted in the opposite
direction through the hot medium. In pp and dAu collisions the jets are measured at
∆φ ∼ 0 and ∆φ ∼ π. However in AuAu collisions only the first jet is observed. The
jet traversing the longest distance through the medium is not detected. This is due to it
interacted strongly with the medium; it has been completely quenched by loosing most of
its energy to the medium.

Moving to LHC energies, significant jet quenching is also seen. However at the LHC
the (weakened) away side jet escapes through the medium. This is shown by CMS [38]
in the right panel of figure 1.14. However a lot of energy is missing. This dijet energy
imbalance can be quantified by:

Aj =
pT,1 − pT,2
pT,1 + pT,2

(1.14)

Here pT,i is the transverse momentum of the ith jet. Figure 1.15 shows the number of
events as a function of Aj for various centralities at

√
s
NN

= 2760 GeV, measured by
ATLAS [39, 40]. It is seen that for central collisions the jet events become increasingly
imbalanced, a feature not seen in neither pp collisions or HIJING/PYTHIA simulations.

The energy and momentum balance can be recovered by considering the entire final state
event. For central heavy ion collisions the jet energy lost in the medium is re-distributed
over the full φ-range. This is shown in figure 1.16. It shows (as a function of Aj) the

missing momentum by the quantity p
‖
T , which is the projection of pT on the leading jet

axis. Negative values show an excess towards the leading jet, and positive values show an
excess away from the leading jet. Thus it is seen that the leading jet consists mainly of
high pT particles in the cone region. On the opposite side, the entire momentum of the
away side jet is not found in the cone. Looking in the region outside the cone, it is seen
that the remaining momentum of the away side jet has been redistributed to this region.
Overall the momentum balance of the entire final state is conserved.
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Figure 1.15: Dijet imbalance as a function of centrality for PbPb at
√
s
NN

=
2760 GeV [39,40]. At peripheral collisions pp and PbPb collision be-
haves similarly (in accordance with simulations). However at central
collisions significant imbalances occur for PbPb collisions.

Figure 1.16: The missing energy as a function of the dijet asymmetry measured
by CMS [38, 41]. Left panel shows the total energy balance. The
red block is the leading jet, where as the other colours shows that
the apparently missing energy can be found as low pT particles. The
black points shows that momentum is balanced over the entire event
final state. Middle panel shows the same quantity looking only in the
jet cone regions. ∆R < 0.8 denotes a characteristic size of the cone
algorithm. Right panel: The momentum that appeared missing in
the cone is found outside the cone. The conclusion is that the amount
of energy, the away side jet looses in the medium, is distributed at
very wide angels.
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Figure 1.17: Measurements of flow from ALICE [42–44]. Left panel: The ellip-
tic flow at various centralities, compared to the measurements from
STAR at RHIC energies. It is seen that the elliptic flow is simi-
lar at both energies. Right panel: The flow components, v2 − v5.
Comparisons with hydrodynamical calculations show agreement (to
some extent). It indicates that the medium created flows perfectly
(or close to).

Flow

One of the collective dynamics of particles, which has garnered significant interest in recent
years, is the concept of anisotropic transverse flow. Anisotropic transverse flow is caused by
initial spatial asymmetries in the overlap region between the colliding nuclei. This spatial
asymmetry give rise to pressure gradients, which causes a momentum asymmetry and thus
asymmetry in the azimuthal distribution of particles. The distribution can be described
by a Fourier expansion [45]:

r(φ) =
a0
2π

+
1

π

∞∑
n=1

(xn cos(nφ) + yn sin(nφ)) (1.15)

Here a0 is a constant. xn and yn are the components of the expansion along the respective
axis’. The Fourier transformation of (1.15) is used to quantise the flow [46]:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy
(1 +

∞∑
n=1

2vn cos(n(φ−Ψr))) (1.16)

Here Ψr is the azimuthal angle of the reaction plane to the xz-plane. The reaction plane
is by definition spanned by the impact parameter vector and the z-axis. The harmonics
coefficients vn describes the various types of flow. v1 is called direct flow and v2 is called
elliptic flow. Up until recently, especially the elliptic flow was deemed important in the
description of heavy ion collisions. Now the consensus is that the higher harmonics play a
large role as well.

In the left panel of figure 1.17 the newest measurement by ALICE [42,44] of the elliptic
flow at different centralities can be seen. Comparisons to STAR measurements at RHIC
energies show that the elliptic flow is comparable over the large range of energy.

Traditionally the overlap region between the colliding nuclei have been perceived as an
almond shape. However recent calculations show that the fluctuations in the position of
individual partons for each event causes the overlap to deviate significantly from almond
shape. This can be seen in figure 1.18.
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Figure 1.18: Left panel: An illustration of the concept of reaction plane. Figure
is from [47]. Right panel: Detailed calculations of the overlap region
between the nuclei, show that the shape can deviate significantly
from almond shaped. This is due to fluctuations in the positions of
the individual partons at the time of collisions. Figure is from [48].

In the right panel of figure 1.17 measurements from ALICE [43, 44] show the higher
harmonics (v2 − v5) for semi-peripheral collisions (30-40%). Also shown is the theoretical
predictions from hydrodynamical calculations with the shear viscosity per entropy, η/s,
being either 0 or 0.08 (∼ 1/(4π)).

Anti de Sitter/Conformal Field Theory (AdS/CFT), a proposed duality between string
theory and quantum field theory, predicts that the universally lowest possible value of η/s
is 1/(4π) [16]. This value corresponds to a perfect fluid. As can be seen there is reasonable
agreement between the AdS/CFT calculations and the data, which is the main reason the
QGP of heavy ion collisions is often termed a perfect fluid.

Another thing to note about the right panel of figure 1.17 is that it appears that v2 is
clearly dominant over the higher order harmonics. However the strength of v2 is caused by
the main pressure gradients of the almond shape, which is very prevalent in semi-peripheral
collisons. Going to more and more central collisions will make the overlap region less and
less almond shaped (for a full head on collision it is the shape of the nuclei). However
fluctuations will create variances in each event. Thus for central collisions, v2 becomes
less and less dominant compared to the higher order harmonics. At very central collisions
v2 ∼ v3 ∼ v4.

A clear example of the importance of higher harmonics comes from the measurements
of azimuthal long range correlations i.e., taking one jet particle in a given pT region and
then comparing it to all particles some minimum ∆η away at another pT range. The
measurement by ALICE [43, 44] of this correlation can be seen in figure 1.19. Included as
the dashed lines are the contributions of the different flow types. The red line is the sum of
the dashed lines i.e., it is not a fit to the data. The agreement is excellent. Thus fluctuations
(and hence significant higher order flow) can completely account for the observed double
hump structure of long range azimuthal correlations. Until quite recently this structure
was attributed to a so-called Mach cone shock wave explanation. With the data presented
here it is clear that the Mach cone idea is not needed for explaining the phenomenon.
The other LHC experiments besides ALICE, as well as the PHENIX experiment, have also
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Figure 1.19: Measurement from ALICE [43, 44] of the long range azimuthal cor-
relation for the most central collisions. The observed structure is
explained by the flow fluctuations. The red line, which has excellent
agreement with data, is the sum of the dashed contributions from
the individual flow components.

presented similar recent flow measurements with the same conclusions [49–51].
On a last note it should be mentioned that large elliptic flow components requires a high

number of interactions in the fireball region, since the asymmetry required for non-zero
vn’s would vanish for a non-interacting system [52]. On basis of the data it is concluded
in [53] that the measured flow can only be explained if the system is thermalised in less
than 1 fm/c; a time where the density of the fireball is at least an order of magnitude higher
than the critical density for quark de-confinement. Thus it is concluded that a strongly
interacting QGP is indeed formed.
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Chapter 2

Charged Particle Multiplicity

Measuring the charged particle multiplicity of relativistic collisions, is one of the very fun-
damental measurements. For the same reason the first publications from a new experiment
will often revolve around charged particle multiplicities. These topics will then usually be
revisited later on with improved statistics and better detector understanding.

From this point on, the shorter term ’multiplicity’ will denote ‘charged particle multi-
plicity’, where nothing else is specifically stated.

Multiplicity measurements typically fall into the following sub-groups:

Pseudorapidity density dNch

dη
: Measurement of the average multiplicity as a functions of

η.

Multiplicity distributions P(Nch): Measurement of the distribution of integrated multi-
plicities i.e., the total multiplicities of events in a given η-interval.

KNO scaling 〈Nch〉P(z): Derives from the multiplicity distribution, by plotting it in
KNO-variables, P (Nch) 〈Nch〉 as a function of z ≡ Nch/ 〈Nch〉. This probes the energy
scaling behaviour of multiplicity distributions.

Energy scaling: Derives from either dNch

dη
or the multiplicity distributions by surveying the

multiplicity at a given pseudorapidity as a function of energy.

Measurements of multiplicities yield some insight into the collisions themselves, but are
also crucial as input parameters for a multitude of models, explaining various phenomenons
at later stages in the collisions.

The main goal of this work is to present multiplicity distributions and look for KNO
scaling, but throughout this work, results will be presented on all four sub-groups. The
remainder of this section is devoted to presenting some of the theoretical framework behind
understanding charged particle multiplicity, followed by an overview of the measurements
previously conducted on multiplicities.

2.1 Negative Binomial Distributions

It is found that a Negative Binomial Distribution (NBD) describe the observed multiplicity
distributions at lower energies very well [24]. In general it is given by:

P (n; p; k) =

(
n+ k − 1

n

)
(1− p)npk (2.1)

27
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Figure 2.1: Examples of negative binomial distributions, with different parameter
values. For NBDs with the same 〈n〉, the k-parameter determines
the shape of the distribution. Lower k-values correspond to a flatter
distribution.

To describe NBDs, consider a series of Bernoulli trials, each with two potential outcomes
— ‘success’ or ‘failure’ — with the probabilities p and (1− p) respectively. The NBD then
describes the distribution of number of successes, n, observed before having the kth failure.
For k →∞ the NBD reduces to the Poisson distribution, and for k = 1 it is the geometric
distribution.

Multiplicity distributions are described well using NBDs with p−1 = 1 + 〈n〉 /k, where
〈n〉 is the average multiplicity, thus yielding the following form [54]:

P (n; 〈n〉 ; k) =

(
n+ k − 1

n

)(
〈n〉 /k

1 + 〈n〉 /k

)n
1

(1 + 〈n〉 /k)k
(2.2)

Fig. 2.1 illustrates several NBDs, with different parameters.

Why multiplicity distributions are well described by NBDs are still not fully under-
stood. Various attempts to theoretically generate negative binomially shaped multiplicity
distributions from general particle production principles have been undertaken over the
years [55]. The one most frequently used is referred to as the clan model [56, 57], and will
be introduced in the following.

Multiplicity distributions can be characterized by a recurrence relation between collision
with n+1 particles and n particles. While the individual particles can be of the same type,
they are always distinguishable by their momenta. In general, a given collision of n + 1
particles can be related to n + 1 collisions each having n particles. These n + 1 collisions
(of n particles) are the ones left if any single one of the particles from the initial n + 1
multiplicity collision were removed. Thus the simplest recurrence relation, g(n), is given



2.1. Negative Binomial Distributions 29

by:

g(n) =
(n+ 1)P (n+ 1)

P (n)
(2.3)

Inserting (2.2) into (2.3), and using
(
i
j

)
= i!/j!(i− j)! yields:

g(n) = (n+ k)
〈n〉 /k

(〈n〉 /k) + 1

=
〈n〉 k
〈n〉+ k

+ n
〈n〉
〈n〉+ k

= a+ bn where a =
〈n〉 k
〈n〉+ k

and b =
〈n〉
〈n〉+ k

(2.4)

Thus for a negative binomial distribution the recurrence relation gives that g(n) is linear
in n.

The clan model describes particle multiplicity in terms of clusters (or clans). In this
sense a cluster consists of all particles originating (directly or indirectly) from the originally
produced particle, which is denoted the ancestor of the cluster. The additional cluster
particles can come from various cascading processes such as decays and fragmentation. If an
ancestor does not produce any other particle, it is considered a one-particle cluster, and is
its own ancestor. In the clan model it is assumed that ancestors are created independently,
i.e. with no regard to whether other ancestors exist.

Thus, the production of the (N + 1)th ancestor is independent of the existance of the
other N ancestors. The production follows a Poisson distribution, P (n) = γne−γ/n! [58].
It is characterized by having g(n) = γ = constant, and thus the production of ancestors
is represented by the constant term of (2.4). The linear term, bn, then represents the
effect of the particles created within clusters. It is a reasonable assumption that this effect
is proportional to the number of already present particles in the cluster, and thus the
n-dependence.

As discussed the probability, P ′(N), to produce N clans is given by a Poisson distri-
bution. The probability, Pc(nc), to produce nc particles in the cth clan is given by the
requirement that a clan cannot be empty

Pc(0) = 0 , (2.5)

and the assumption that producing nc + 1 is proportional to nc with the probability p

(nc + 1)Pc(nc + 1)

Pc(nc)
= pnc . (2.6)

By induction, it can be shown that

Pc(nc) = Pc(1)
pnc−1

nc
. (2.7)

The probability to produce a total of n particles is given by

P (n) =
n∑
N

[
P ′(N)

(
n1+...+nN=n∑ N∏

c

Pc(nc)

)]
, (2.8)

where nci ∈ [1, n] is the number particles produced by the cth clan. Using the definition of
the Poisson distribution and inserting (2.7) into (2.8) yields:

P (n) ∝ pn
n∑
N

[
1

N !

(
〈N〉Pc(1)

p

)N (n1+...+nN=n∑
(n1...nN)−1

)]
. (2.9)
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The expression in (2.9) can be identified as a NBD by Taylor expanding the relation
(1− z)−L = exp(−L ln(1− z)), and equating its coefficients [56]. This yield an identity of
the form:

n∑
N

kN

N !

n1+...+nN=n∑
(n1...nN)−1 = k(k + 1)...(k + n− 1)/n! (2.10)

where

k =
〈N〉Pc(1)

p
(2.11)

Thus we end up with the expression:

P (n) ∝ pn
k(k + 1)...(k + (n− 1)

n!
=

(
n+ k − 1

n

)
pn (2.12)

which is recognized as the negative binomial form from (2.1) (without a factor of pk).
We end this section by summarising, that if the collision dynamics follows the clan

model, the resulting multiplicity distributions will be well described by negative binomial
distributions.

2.2 Koba–Nielsen–Olesen Scaling

In his 1969 paper [59], Feynman concludes that the mean total number of particles rises
logarithmically with

√
s. He argues that the probability of finding a particle of type i,

mass m, transverse momentum pT , and longitudinal momentum pz is of the form:

Pi(pT , pz,m) = fi(pT , pz/W )
dpzd

2pT
E

(2.13)

where the energy of the particle E, and the parameter W is given by:

E =
√
m2 + p2T + p2z =

√
m2
T + p2z and W =

√
s

2
(2.14)

The function fi(pT , pz/W ) is a structure function and is known as the Feynman function.
Feynman’s assumption is that fi is independent of W, which is called Feynman scaling.
Furthermore the fractional longitudinal momentum in fi, xF ≡ pz/W , is often referred to
as the Feynman-x.

One can rewrite (2.13) using the invariant cross section, σ:

1

σ
E

d3σ

dpzd2pT
= fi(pT , xF ) (2.15)

Integrating (2.15) and using that fi factorizes such that
∫
fi(pT , xF )d2pT = fi(xF ) [24]

gives the following expression for the mean multiplicity:

〈N〉 ≡
∫ ∞
−∞

1

σ
E

d3σ

dpzd2pT

d3p

E
=

∫ ∞
−∞

fi(pT , xF )
d3p

E
=

∫ ∞
−∞

fi(xF )
dpz√

W 2x2F +m2
T

(2.16)

which by changing integration variable through dpz = WdxF becomes:

〈N〉 =

∫ 1

−1
fi(xF )

dxF√
x2F +

m2
T

W 2

(2.17)
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For collisions of identical particles fi(xF ) is symmetrical, and thus the integral is also
symmetrical9. Integration by parts of (2.17) yields:

〈N〉 =

[
2fi(xF ) ln

(
xF +

√
x2F +

m2
T

W 2

)]1
0

− 2

∫ 1

0

∂fi(xF )

∂xF
ln

(
xF +

√
x2F +

m2
T

W 2

)
dxF

(2.18)
The second term can be shown to converge to a constant for all W [24]. Thus, (2.18) then
becomes:

〈N〉 = 2fi(1) ln

(
1 +

√
1 +

m2
T

W 2

)
− 2fi(0) ln

(mT

W

)
+ constant (2.19)

In the limit of W →∞, (2.19) becomes:

lim
W→∞

〈N〉 = lim
W→∞

2fi(1) ln

(
1 +

√
1 +

m2
T

W 2

)
− lim

W→∞
2fi(0) ln(mT ) +

lim
W→∞

2fi(0) ln(W ) + lim
W→∞

constant

= 2fi(0) ln(W ) + constants (2.20)

The limit of the first, second and fourth term in (2.20) are all constants, and thus under
the assumption Feynman made, that fi(0) > 0 it is clear that for large W:

〈N〉 ∝ ln(W ) ∝ ln(
√
s) (2.21)

The concept of Feynman scaling was the main assumption when Koba, Nielsen, and Olesen
suggested a similar scaling in 1972 [60]. This scaling is now called KNO scaling. It is derived
from generalising (2.17) to a q-dimensional Feynman scaling function, f (q) i.e., q particles
with energy Eq, momenta pz,q and pT,q and Feynman-x xF,q. Thus we have:

〈n(n− 1)...(n− q − 1)〉 =

∫
f (q)((xF,1, pT,1); ...; (xF,q, pT,q))

dpz,1
E1

dp2T,1...
dpz,q
Eq

dp2T,q (2.22)

As in the Feynman scaling case integration by parts is used for all xF,q in (2.22) which
ultimately (after a significant amount of calculations [60]) leads to:

〈n(n− 1)...(n− q − 1)〉 =

∫ [
f q((0, pT,1); ...; (0, pT,q)) +O

(
1

ln(s)

)]
×
∏
q

ln

(
s

p2T,q +m2

)
d2pT,1...d

2pT,q

= f̃ (q)(0, ..., 0)(ln(s))q +O((ln(s))q−1) (2.23)

O((ln(s))q−1) refers to all terms which go at most like ln(s)q−1 and f̃ (q)(xF,1, ..., xF,q) =∫
d2pT,1...d

2pT,qf
(q)((xF,1, pT,1); ...; (xF,q, pT,q)). It can be shown [60] that (2.23) can be

rewritten in the form

〈nq〉 ≡
∑
n

Pn(s)nq ∼
∫ ∞
0

Pn(s)nqdn = f̃ (q)(0, ..., 0)(ln(s))q +O((ln(s))q−1)(2.24)

9For collision systems where the participants are not identical, the integral can be done separately for
negative and positive xF , yielding the same result as in the symmetric case [24].
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By dividing both sides of (2.24)by (ln(s))q(f̃ (1)(0))q it takes the form:∫ ∞
0

Pn(s)zq ln(s)f̃ (1)(0)dz = cq +O
(

1

ln(s)

)
(2.25)

where

z =
n

ln(s)f̃ (1)(0)
and cq =

f̃ (q)(0, ..., 0)

(f̃ (1)(0))q
(2.26)

The moments cq, which are independent of W , thus uniquely determines the multiplicity
distribution:

Pn(s) =
1

ln(s)f̃ (1)(0)
Φ

(
n

ln(s)f̃ (1)(0)

)
+O

(
1

ln(s)2

)
(2.27)

It can be shown that 〈n〉 ∼ ln(s)f̃ (1)(0) [60], and thus z = n/ 〈n〉, which yields the
KNO scaling law in the following form:

Pn(s) =
1

〈n〉
Ψ(z) +O

(
1

〈n〉2

)
(2.28)

The functional form of Ψ(z) is not known a priori, and in principle could be different for
different collision systems, and dependent on which type of particle being measured.

Substituting z = n/ 〈n〉 into (2.25) yields the moments in the following form:

cq =
〈nq〉
〈n〉q

(2.29)
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2.3 Previous Multiplicity Measurements

This section is devoted to presenting previous multiplicity measurements. Since multiplicity
is one of the fundamental quantities it has been measured at various accelerator facilities
around the world over many decades.

This section will first present measurements on multiplicity distributions (including in
KNO variables), followed by measurements on dNch

dη
and energy scaling.

2.3.1 Multiplicity Distributions

The very first hadron collider was the ISR (Intersecting Storage Ring). It was located at
CERN, and was operated from 1971 to 1984. The ISR has collided pp, pp̄, and pα at a top
center of mass energy 63 GeV. At the ISR the Split Field Magnet detector [61] measured
multiplicities at four energies;

√
s = 30.4, 44.5, 52.6 and 62.2 GeV [62]. These can be seen

in figure 2.2.

Figure 2.2: Charged particle multiplicity distributions from the Split Field Mag-
net detector at the ISR at four energies [62]. Left panel shows the
normalised distributions and the right panel show them in KNO vari-
ables. It is clear that KNO scaling is valid at ISR energies.

In 1976 CERN started operating the SPS (Super Proton Synchroton). Over the years
the SPS has accelerated e−, e+, p, p̄ and ions in various combinations. Later on, after
modifications, the SPS collided pp̄ at the top energy

√
s = 900 GeV10.

At the SPS two different experiments have published a variety of multiplicity measure-
ments; UA1 [69] and UA5 [70] (Underground Area 1 & 5 respectively). Both published
results at

√
s = 200, 540 and 900 GeV [63–68]. Besides these common energies, UA1 also

published multiplicities at
√
s = 500 GeV [67].

Measurements from UA5 of multiplicity distributions with |η| < 1.5 at their three
energies can be seen in figure 2.3. Furthermore the UA1 results (|η| < 2.5) can be seen
in figure 2.4. Even though UA5 and UA5 published for different η-ranges it is interesting
to compare the two. UA1 finds that KNO scaling holds up to and including 900 GeV,

10In this period it is sometimes referred to as Spp̄S. However throughout in this work it will still be
referred to as SPS.
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Figure 2.3: Charged particle multiplicity distributions for |η| < 1.5, measured
by UA5 at three energies [63–66]. Left panel shows the normalised
distributions and the right panel show them in KNO variables. UA5
concludes that KNO scaling is broken at

√
s = 900 GeV.

Figure 2.4: Charged particle multiplicity distributions for |η| < 2.5, measured by
UA1 at three energies [67,68]. Left panel shows the normalised distri-
butions and the right panel show them in KNO variables. Contrary
to UA5, UA1 does not see the KNO scaling being broken at

√
s = 900

GeV.
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whereas UA5 concludes that it is broken at 900 GeV. Since the UA5 and UA1 results are
at different η ranges their conclusions can differ and both still be valid. However it is an
interesting fact that their conclusions are different. It is not addressed in the papers.

Figure 2.5: Charged particle multiplicity distributions at two η-intervals mea-
sured by CDF [71] at

√
s = 1800 GeV.

In 1983 Fermi National Accelerator Laboratory started operating the Tevatron, which
collides pp̄ at energies up to

√
s = 1960 GeV. At the Tevatron the CDF (Collider De-

tector Fermilab) [72] has published multiplicity distributions at
√
s = 1800 GeV. Their

measurements are presented in figure 2.5.
Recently the LHC experiments have also presented multiplicity distributions. The CMS

experiment has published data for
√
s = 900, 2360 and 7000 GeV for a wide range of η-

intervals [75]. ALICE has also published results at the same energies, however only for
central η intervals. The measurements of ALICE and CMS are shown in figure 2.6.

Comparisons between the two experiments reveal good agreement. A more detailed
comparison will be made in chapter 8.

As mentioned previously, the main ambition of this work is to extend the measurements
already published by ALICE. This is done by using the forward detectors of ALICE, making
it possible to measure multiplicity distributions over more than 8 units of η. This makes
it possible to present both results for more η-intervals including very forward regions, as
well as extending the multiplicity reach for existing measurements.

While lower energy multiplicity results are described well by a single NBD, this is not
sufficient for the higher energies. Here a multi-component approach is needed, which is
discussed in the following section.
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Figure 2.6: Charged particle multiplicity distributions at various η-intervals mea-
sured by ALICE [73,74] and CMS [75] at

√
s = 900 GeV, 2360 GeV,

and 7000 GeV.
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Multiple Negative Binomial Distributions

Multiplicity distributions from UA5 is found to be best described by a sum of two NBDs
[76]. An example of this is found in figure 2.7. The fit consists of five free parameters and
are given by:

P (n) = αsoftP (n; 〈n〉soft ; ksoft) + (1− αsoft)P (n; 〈n〉semi−hard ; ksemi−hard) (2.30)

As the subscripts indicate, the two NBDs are found to correspond to a soft and semi-hard
component respectively [77]. The semi-hard component is understood as being events
where mini-jets are observed, and the soft component are the events where there are no
mini-jets. The fraction of mini-jets events seen by UA1 is consistent with the value of
αsemi−hard = 1− αsoft, obtained by fitting the UA5 data.

Figure 2.7: Single and two-component NBD fits to UA5 data at
√
s = 900 GeV.

The right panels show the residuals between the data and the fit. It
is clear that the fits with two NBDs describe the data better. Figure
is from [24].

By fitting UA5 energies at
√
s =200 GeV, 546 GeV and 900 GeV it is found [77] that

the mean multiplicities of the two components depend on collision energy in the following
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way:

〈n〉soft = −5.54 + 4.72 ln(
√
s) (2.31)

〈n〉semi−hard ∼ 2 〈n〉soft (2.32)

In [77] a correction of the order 〈n〉 ln2(
√
s) to (2.32) is also proposed. However, due

to the quality of the fits to the data in [77], it is still debated if the correction is actually
there, or (2.32) is valid.

On a similar note it should be mentioned that the fits to the UA5 data finds that
the shape parameter of the soft component is energy independent (ksoft ∼ 7), which is
equivalent to KNO scaling being valid. For the semi-hard component this is not true. At
higher collision energies a third component has been proposed [78].

The authors of [79] and [80] conclude that the second and possibly third components are
the results of multi-parton interactions. Multi-parton interactions denote having multiple
independent parton-parton interactions within a single collision. In the context of this
discussion the semi-hard and the third component are identified as double-parton and
triple-parton interactions. Thus, said in a different way, the cause of mini-jet events might
be double-parton interactions.

2.3.2 dN/dη measurements

Figure 2.8: dNch

dη
measurements from pre-LHC experiments [62, 63, 65, 68, 81–83].

Going up in collision energy increases and widens the distribution. All
distributions are from NSD collisions except the lowest energy result
from SFM, which are INEL.
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Figure 2.9: Left panel: dNch

dη
measurements in pp collisions at

√
s =900, 2360 and

7000 GeV from CMS [84] and ALICE [73]. Right panel: Preliminary
results from CMS on dNch

dη
in PbPb collisions at

√
s
NN

= 2760 GeV

[85].

The experiments introduced in the previous section not only published multiplicity dis-
tributions for pp (pp̄) collisions but also dNch

dη
measurements. For the pre-LHC experiments

these are presented in figure 2.8. Included in the figure is also dNch

dη
at
√
s = 630 GeV by

the P238 (LHCb Test Beam) Experiment [81], located at the SPS. They did however never
publish multiplicity distributions.

Figure 2.10: Preliminary results from ATLAS on dNch

dη
in PbPb collisions at

√
s
NN

= 2760 GeV [86].

Left panel of 2.9 show the dNch

dη
results at three energies from CMS and ALICE for pp

collisions. One of the ambitions for ALICE is to extend these measurements to forward
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Figure 2.11: Still unpublished dNch

dη
measurements over the entire η-range of AL-

ICE for PbPb collisions at
√
s
NN

= 2760 GeV [87].

regions using the FMD system.
Right panel of figure 2.9 show the preliminary dNch

dη
measurements in PbPb collisions

at
√
s
NN

= 2760 GeV from CMS. Similarly figures 2.10 and 2.11 show preliminary PbPb
results from ATLAS and ALICE respectively.

In general, it is found that the plateau in mid-rapidity increases and widens as a function
of collision energy.

2.3.3 Mean Multiplicity Energy Dependence

In this last section results on the energy scaling of the mean multiplicity is presented. Figure
2.12 show dNch

dη
at mid-rapidity published by many experiments over a wide interval of

collision systems and energies. The mean multiplicity is scaled by the number of participant
pairs of the collisions, to correct for different collision systems and centrality selections.
It is seen that AA and pp collisions have slightly different behaviours. Both, however are
proportional to sANN .

Figure 2.13 show the theoretical predictions for the dNch

dη
at mid-rapidity in PbPb colli-

sions at
√
s
NN

= 2760 GeV, compared to the measurement from ALICE. It is obvious that
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predicting this is far from trivial, as seen by the large variance in predicted values11. The
reference numbers for the individual models in figure 2.13 corresponds to the references
in [88], where the figure is from.

Figure 2.12: Mean multiplicity at mid-rapidity scaled with number of participant
pairs, over a wide range of collision systems and energies. For both
pp and PbPb collisions the mean multiplicity increases as sANN , but
with different values of A. Figure is from [88].

Figure 2.13: Theoretical predictions of the dNch

dη
at mid-rapidity in PbPb collisions

at
√
s
NN

= 2760 GeV. In the top the measured value from ALICE
is indicated. The reference numbers for the individual models in the
figure corresponds to the references in [88], where the figure is from.

11though these predictions at LHC energies are more in agreement with each other, than the predictions
made about RHIC energies, when it started operations.
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Chapter 3

Experimental Setup

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [90] is located under the Swiss-French border near
Geneva. It is CERNs latest collider, reusing the existing tunnel from the Large Electron
Positron (LEP) collider. The LHC tunnel has a circumference of approximately 27km, and
houses more than 1200 super-conducting dipole magnets. The LHC is designed to collide
protons with up to

√
s = 14000 GeV, and lead ions up to

√
s
NN

= 5500 GeV. A schematic
of the CERN accelerator complex can be seen in figure 3.1.

During the very last preparations (only hours/days from the first ever collisions) in the
planned September 2008 start up, the LHC encountered a serious problem. A faulty elec-
trical connection between two super-conducting magnets sparked an electrical arc, which
punctured the Helium enclosure, leading to a massive leak of liquid Helium. Once investi-
gated it was obvious that the same construction defect existed numerous places around the
ring. A conclusion of the investigation was that further safety mechanisms had to be imple-
mented before the LHC could safely collide particles at the top design energy. Meanwhile,
the LHC repaired the parts of the ring, which were deemed to have the worst electrical
connections. A full year later LHC operations started again, culminating in the first colli-
sions of protons at

√
s = 900 GeV on 23rd of November 2009. The current top energy is√

s = 7000 GeV for protons and
√
s
NN

= 2760 GeV for lead ions. The schedule currently
is to have a full year of shut down in 2013, where the remaining safety mechanisms are
implemented, allowing the LHC to run at top design energies in 2014 and onwards.

3.1.1 Colliding Protons

The protons used for p+p collisions stems from Hydrogen, being stripped of the electrons
in the linear accelerator LINAC 2. They are injected from LINAC 2 into the BOOSTER
at an energy of 50 MeV. The BOOSTER accelerates them to 1.4 GeV before they are sent
to the Proton Synchroton (PS), which further accelerates the protons to 25 GeV. From
the PS they are sent to the Super Proton Synchroton (SPS), where they yet again are
accelerated, this time to 450 GeV. And finally they are transferred to the LHC ring. They
are split into 2808 bunches travelling the ring either clockwise or counter-clockwise. The
bunches of protons are then accelerated to their final energy, and made to collide at the
location of the four experiments ALICE, ATLAS, CMS and LHCb.

43
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Figure 3.1: Schematic view of the CERN accelerator complex. The figure is
adapted from [89].

3.1.2 Colliding Lead Ions

For running the LHC with lead ions the procedure is similar, but with some differences.
The lead ions are produced by heating a highly purified lead sample up to around 550°.
This lead vapour is ionised by an electron current. This creates a number of charge states,
with Pb27+ being the dominant one. The ions are accelerated in LINAC 3 to 4.2 MeV
per nucleon. Afterwards they are sent through a carbon foil, which strips most of them to
Pb54+. The Pb54+ beam is lead to the Low Energy Ion Ring (LEIR), where it is accelerated
to 72 MeV per nucleon, before being transferred to the PS, where another acceleration is
done bring the ions energy to 5.9 GeV per nucleon. The ions once again are sent through
a foil, stripping them to Pb82+, which is the final ionisation used for collisions. After the
PS the now fully stripped ions arrive at the SPS, where they are accelerated to 177GeV
per nucleon, before being sent into the LHC ring for acceleration to their collision energy.
Like in the proton case, the ions are split into bunches, which are sent either clockwise
or counter-clockwise around the ring. The collision of lead ions only occur at 3 of the
experiment sites, namely ALICE, ATLAS and CMS.

Apart from the facilities mentioned, figure 3.1 also show several accelerator/detector
systems at CERN not related to the LHC operation. These are the heavy isotope separator
ISOLDE, the anti-matter production facility AD (Anti-proton Decelerator), the n-TOF
(neutron - Time Of Flight) neutron source and last, but not least, the neutrino oscillation
facility CNGS (CERN Neutrinos to Gran Sasso). CNGS has recently gotten significant
attention in the media, after announcing measurements of muon neutrinos moving faster
than the speed of light.
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Figure 3.2: Overview of the ALICE detector. The beams are brought to collision
in the very centre of the detector (just around the area marked ITS).
The different sub-detector systems are shown with name and arrows.
Descriptions of each are found in the text. The figure is from [91].

3.2 The ALICE Experiment

ALICE (A Large Ion Collider Experiment) [92] is designed as a general purpose detector,
optimised for the study of high multiplicity central heavy ion collisions. The design is
optimised for dNch/dη up to 4000, but has been designed to handle up to 8000. Even
though ALICE is designed foremost as a heavy ion detector, a full physics program for pp
collisions exist.

The defining abilities of ALICE is the capability of tracking and identifying charged
particles over four magnitudes in particle momentum (10−2 − 102 GeV/c. This allows
extensive studies of topics from soft physics to jet physics, and high-pT particle production.

ALICE can be divided into three main sections; the central barrel detectors, the forward
detectors and the Muon spectrometer [93]. The central barrel consists of the ITS, TPC,
TRD, TOF, HMPID, EMCAL and PHOS [94–100]. The forward detectors include FMD,
T0, V0, ZDC and PMD [101–103]. The individual subsystems will be discussed briefly
later in this chapter. Fig. 3.2 shows an overview of the ALICE detector seen from the side.

ALICE covers a large range of pseudorapidity. The coverage of the individual subsys-
tems is shown in fig. 3.3. For the purpose of this work we note at this time that the
detectors used for analysis, the FMD and SPD, allows a η-coverage of −3.4 < η < 5.1.

3.3 Central Barrel Detectors

The central barrel of ALICE contains a number of sub-detector systems, covering the
central region (roughly |η| < 1). The main role of the central barrel is to identify charged



46 Chapter 3. Experimental Setup

Figure 3.3: The pseudorapidity coverage of ALICE. Subsystems not having full
azimuthal coverage is marked with an asterisk. The figure is from [24].

particles and their pT , using a variety of different methods and technology. Fig. 3.4 shows
the central barrel detectors.

3.3.1 Inner Tracking System

The Inner Tracking System (ITS) [92,94] consist of 6 layers of Silicon. They are located at
radii between 3.9 cm to 43 cm from the interaction point. This makes the innermost layer
the detector closest to the interaction point.

The ITS is divided into 3 subsystems; the two innermost layers constitute the Silicon
Pixel Detector (SPD), the middle two layers are named the Silicon Drift Detector (SDD)
and finally the two outermost layers are the Silicon Strip Detector (SSD).

The SPD layers are based on hybrid silicon pixels consisting of silicon detector diodes
with a thickness of 200 µm. When a charged particle traverse a pixel a digital signal is read
out from that pixel. The SPD does not retain any information on the energy deposition.
Thus, SPD signal is binary; either there is a hit or there is not. The signals in the two SPD
layers are sufficient to form so-called tracklets, which can be used to measure the charged
multiplicity in |η| < 2.1. Due to extreme fine segmentation of the SPD, only an occupancy
of around 1% is expected, making it extremely capable of multiplicity measurements. The
SPD is used for analysis in this work, and will be revisited in more detail in section 4.

The SDD works as a drift chamber, where the charged particles ionise the gas when
traversing the SDD volume. The created electrons drifts towards the readout, due to an
electric field over the SDD. The coordinates of the particle are then directly correlated to
the drift time.

The SSD utilises the energy loss from charged particles traversing strips of silicon. The
SSD in this manner is quite similar to the FMD, which will be described in more detail
later.

The main purposes for the ITS as a whole is:
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Figure 3.4: Illustration of the ALICE central barrel seen from the end. The az-
imuthal coverage of each of the barrel detectors is evident here. The
figure is from [91].

� Act as a trigger detector.

� Determination of the primary collision vertex and the secondary vertices, necessary
for the reconstruction of charm and hyperon decays.

� Particle identification and tracking of low-momentum particles.

� To improve the momentum and angle resolution in conjunction with the TPC.

3.3.2 Time Projection Chamber

The ALICE Time Projection Chamber (TPC) [92, 95] is the main tracking detector, and
with its drift volume of 95 m3 it is the single largest sub-detector in ALICE, as well as the
largest TPC in the world. The TPC’s cylindrical drift volume encompasses the ITS.

The basic principle of the TPC is that charged particles traversing the gas-filled drift
volume will ionise the gas, causing electrons to drift away from the central electrode towards
the end-caps, where the drift time is read out and used to determine the trajectory of the
original charged particle through the TPC.

The main objectives for the TPC is to provide tracking and particle identification
of charged particles. Particle identification is done by using the energy loss in the gas.
Tracking is done by utilising a Kalman filtering method [104,105], which is a computational
efficient recursive method of track finding.

Due to the big drift volume (and hence long drift times of up to 90µs) the TPC sets
an upper limit to the overall trigger rate in ALICE, since no new event should be accepted
until after the read out of the previous event has passed. Thus the maximum trigger rate
of ALICE (with the TPC in the read-out partition) is around 10kHz.
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3.3.3 Transition Radiation Detector

The Transition Radiation Detector (TRD) [92,96], located radially right outside the TPC,
relies on the phenomenon of transition radiation for particle identification. Transition
radiation occurs when a particle crosses the boundary between two materials with differ-
ent dielectric constants. The emitted radiation is linearly dependent on the γ factor of
the particle, thereby making it very useful at distinguishing pions and electrons at high
momenta.

The TRD is built up from six layers each containing a radiator, drift chamber and read
out electronics. The radiator material is responsible for creating the transition radiation
photons, which are then converted in the drift chamber to electrons, being detected in the
read out electronics. The information of the six layers are then combined into tracklets,
which are used to identify high momentum electrons. This is used as a trigger to enhance
the recorded yield of Υ’s and high pT J/Ψ.

The TRD does not have full azimuthal coverage. This is a design decision in order for
the HMPID and PHOS detectors to also have areas without too much material in front of
them. This is seen in figure 3.4.

3.3.4 Time Of Flight

The Time Of Flight (TOF) [92,97] detector is placed just outside the TRD, and measures
the flight time of particles going from the interaction point through the TOF. The mo-
mentum information, p, and the length of the trajectory, l, of the particle is known from
the tracking in the ITS, TPC, and TRD. This is used together with the flight time, t, to
determine the particle mass, m :

m = p

√
t2

l2
− 1 (3.1)

The TOF consists of Multigap Resistive Plate Chambers, which are stacks of very thin
structures, featuring a gas volume with a uniform high electric field over. When a particle
traverse the gas it immediately looses energy triggering an avalanche, which is detected at
the anode of the detector.

As with the TRD, the TOF does not have full azimuthal coverage, due to a desire to
minimise the material in front of HMPID and PHOS.

3.3.5 Photon Spectrometer

The PHOton Spectrometer (PHOS) [92, 100] is an electromagnetic calorimeter, composed
of lead-tungsten crystals. It is located in the bottom part of ALICE outside the TOF.
Charged particles are rejected by multi-wire proportional chambers in front of the PHOS.

The PHOS detects photons, π0, and η mesons. The measurements are used for analysing
the initial temperature through direct single photons and/or di-photons, as well as probing
deconfinement through jet quenching of high pT π

0’s and investigating signals of restoration
of chiral symmetry12.

12Chiral symmetry restoration, which is the restoration of invariance under parity, is one of the truly
smoking guns of a QGP.
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3.3.6 Electro Magnetic Calorimeter

The Electro Magnetic CALorimeter (EMCAL) [92,99] was never meant to be a part of the
first run period of the LHC. However due to the initial breakdown and subsequent repairs,
the EMCAL was partially installed for the first runs. It is located outside the TOF.

The focus of the EMCAL is jet quenching in heavy ion collisions. Together with the
tracks from the TPC and ITS, the EMCAL allows complete reconstruction of jets.

Furthermore the EMCAL functions as a trigger for hard jets, photons and electrons.

3.3.7 High Momentum Particle Identification Detector

The High Momentum Particle Identification Detector (HMPID) [92,98] is a Ring Imaging
Cherenkov detector (RICH), which is used to identify high momentum particles. It consists
of a layer of radiator material, and a Multi-Wire Proportionality Chamber behind to detect
Cherenkov radiation. Any particle traversing a medium with a speed higher than the speed
of light in that medium, will emit Cherenkov radiation. The radiation is emitted as a
shock wave at an angle with respect to the track of the particle, defined by the speed of
the particle. This Cherenkov angle, θC , is given by:

cos θC =
1

nβ
(3.2)

Here β=v/c is the particle velocity relative to the speed of light and n is the refractive index
of the medium. The emitted Cherenkov radiation is read out as a ring on the read-out
plane. The ring radius is used to determine the velocity of the particle. This information is
then used together with momentum information from for instance the TPC, to determine
the mass of the particle.

3.4 Muon Spectrometer

The Muon spectrometer [92, 93] is sitting in the very forward region of ALICE, with a
coverage of −4 < η < −2.5. The purpose of the Muon spectrometer is to measure the
complete spectrum of heavy quark vector-meson resonances (i.e. J/Ψ, Ψ′, Υ, Υ′, and Υ′′)
and the φ meson. All of these measurements are done in the µ+µ− decay channel. The
Muon spectrometer can be seen in figure 3.5. Closest to the interaction point is the front
absorber. The absorber consists of mainly carbon, concrete, and steel in order to prevent
anything else but muons from passing through.

After the front absorber, tracking stations 1 and 2 are located. Tracking station 2 is
located such that it determines precisely where the muons exit the solenoidal field of L3,
encompassing most of ALICE. Then follows a dipole magnet, yielding the momentum of
the muon by deflection. Inside the dipole magnet, tracking station 3 is placed to enhance
the determination of the deflection. After the dipole magnet two more tracking stations
sits, with an iron absorber in between them. In the end there are resistive plate chambers
to determine the time of flight, and thus the particle mass (as in the TOF).

3.5 Forward detectors

The forward detectors of ALICE is comprised of the PMD, T0, V0 and the FMD. The
first three will be briefly discussed in the following. A more complete description of the
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Figure 3.5: The Muon Spectrometer. The figure is from [91].

FMD system will follow in the next chapter. Figure 3.6 shows a schematic of the forward
detector systems. The role of the forward detectors is to improve the η-range of multiplicity
measurements in ALICE, as well as to determine more global event characteristics i.e.,
collision time, collision vertex, centrality, event plane and trigger conditions.

3.5.1 Photon Multiplicity Detector

The Photon Multiplicity Detector (PMD) [92, 102] measure the photon multiplicity in
forward regions (2.3 < η < 3.7 with full azimuthal coverage). It consists of two high
granularity gas proportional chambers, with a three radiation length converter in between.

The first chamber acts as a veto on charged particles. The converter, consisting of lead
and stainless steel, causes photons traversing it to create electromagnetic showers. These
showers are detected in the second gas proportional chamber giving a signal in several cells.
The thickness, and material of the converter is chosen such that there is minimum overlap
between showers in the detection plane i.e., small angle showers.

3.5.2 T0

The T0 [92, 101] detector is designed to determine the collision time with high precision
and to determine the collision vertex. T0 consists of two units, one on each side of the
interaction point. It is the coincidence between signals in both sides that is used for both
vertex and time determination.

Each T0 unit is comprised of quartz Cherenkov radiators glued to photo multiplier
tubes. The radiator emits Cherenkov radiation, when hit, which is then detected in the
photo multiplier tubes.
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Figure 3.6: The forward detectors of ALICE. The figure is from [91].

T0 furthermore acts as a early wake-up signal to other detectors. Due to the low
acceptance of T0 it is only reliable for AA collisions where the particle multiplicity is much
higher than in pp collisions.

3.5.3 V0

Since the T0 has a low trigger efficiency in pp collisions, the V0 [92, 101] detector was
designed with a much larger acceptance, in order for it to perform as a minimum bias trigger
in both pp and AA collisions. Furthermore it is used to determine the event centrality and
the event plane. It can also be used at studies of multiplicities at very forward angles,
however with less precision than the FMD and PMD.

V0 consists of two units of scintillator counters located on each side of the interaction
point.

3.5.4 Zero Degree Calorimeter

The Zero Degree Calorimeters (ZDC) [92,103] are positioned at very forward angles. Their
role is to measure the spectator nucleons from heavy ion collisions, in order to estimate
the number of participants, and hence the centrality.

The two ZDC themselves are positioned on each side of the interaction point, 116 meters
away from it. Counted as part of the ZDC system are also two electromagnetic calorimeters
(ZEM). These are placed on either side of the beam pipe, but only 7 meters away from
the interaction point on the opposite side of the muon absorber. The ZEM measures
the photons from particles emitted at forward rapidities, which is used for determining the
centrality of very central collisions where few spectators escape to the ZDCs. Similarly they
are also used for very peripheral collisions. For very peripheral collisions, the spectators
resemble the incoming nuclei (both in amount and direction), and thus might continue
inside the beam pipe, avoiding detection in the ZDCs.
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3.6 Data Acquisition System

This chapter ends with a brief overview of the Data AcQuisition (DAQ) [92,106] in ALICE.
The DAQ is responsible for collecting the signals from the various sub-detectors, and
building the event. Furthermore the DAQ exports the collected events for storage.

Event building is a two step procedure. The data from the sub-detectors are transferred
via Detector Data Link (DDL) optical fibers to Local Data Concentrators (LDCs). On the
LDCs, the received data is gathered into sub-events, which are then shipped to Global
Data Concentrators (GDCs). The GDCs collect the sub-events from all the LDCs, and
assemble the final event from this.

The event is sent for immediate storage in a disc system called Transient Data Storage
(TDS), before being transferred to permanent storage at magnetic tapes.

The full DAQ system of ALICE consists of 200 LDCs and 60 GDCs. [24].
When running, the DAQ can manage data taking in several partitions at the same time.

A partition includes a subset of sub-detectors, that run under the same conditions. As an
example of partitions, one could have separate partitions with fast or slow trigger rates
respectively. Detectors that for some reason are restricted by long read-out times, like the
TPC, can then run in the slow partition at one interaction rate, while the other detectors
run at a higher interaction rate in the fast partition.
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The FMD and SPD

This work relies on the measurements of charged particles from the FMD, as well as from
the first layer of Silicon in the SPD. Both are Silicon semi-conductor devices. The FMD is
a strip detectors, where as the SPD is a pixel detector.

This chapter will start by detailing basic concepts regarding Silicon detectors in general,
before moving on to presenting the two detectors.

4.1 Semi-conductor properties

Semi-conductors is a term denoting materials, characterised by the band-gap between the
valence and conduction bands being quite small. This means that it takes little energy
to excite an electron into the conduction band, leaving a hole in the valence band. Semi-
conductors fall in between insulators, characterised by a large band-gap, and metals, that
have no band-gap, allowing electrons to roam freely. A schematic of all three material
types can be be seen in figure 4.1

Semi-conductors, such as Silicon and Germanium, are popular mediums for physics
detectors. The basic principle of semi-conductor detectors is analogous to gas ionisation
detectors such as drift chambers etc.. The main advantage of semi-conductors is that the
energy required to create electron-hole pairs are ten times smaller than for gas ionisation
[107]. Thus the amount of ionisation at a given energy will be much higher, leading to a
better energy loss resolution.

Figure 4.1: Illustration of the band-gap between the valence and conduction
bands in insulators, semi-conductors and metals.

53
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Figure 4.2: (a) At low temperatures the tetravalent Silicon crystal form four co-
valent bindings with neighbouring Silicon atoms. (b) At non-zero
temperatures valence electrons can be thermally excited into the con-
duction band, leaving holes in the valence band. (c) A Silicon crystal
have been doped with a pentavalent donor impurity. The excess elec-
tron create allowed energy states between the conduction and valence
bands. The figure is from [91].

4.1.1 Doped Crystals

In pure Silicon crystals the electrons are bound covalently. The small band-gap allows even
minor thermal excitation to bring the valence electrons into the conduction band, leaving
an extra electron in the conduction band, as well as a hole in the valence band, both of
which function as charge carriers. To increase the numbers of charge carriers the Silicon
crystals are doped.

The basic idea is to introduce material with either one extra or one less valence electron
than the material to be doped. Silicon is tetravalent13. Doping Silicon with pentavalent
atoms thus gives one extra electron. This creates another allowed energy state in the band-
gap just below the conduction band. The electron is easily exited into this state, increasing
the conductivity. In figure 4.2 the covalent binding of Silicon, thermal excitation of valence
electrons and a doped Silicon crystal is illustrated.

Doping with trivalent atoms on the other hand ensures that there are not enough
electrons to fill the valence band. Furthermore it introduces another allowed energy state
in the band gap, this time close to the valence band. Thus electrons in the valence band
can easily be excited into this state, leaving even more holes in the valence band.

Semiconductors with an excess of electrons are called n-type semi-conductors, and if
there is an excess of holes they are called p-type semi-conductors. Normally the concen-
tration of the dopant impurities is very small, around 10−9 [107].

However, heavily doped semi-conductors (usually labelled n+ and p+ respectively) are
also used extensively in for instance electrical contacts. In heavily doped semi-conductors
dopant concentrations can be as high as 10−3, leaving them highly conductive [107].

13Tetravalent atoms have four valence electrons. Similarly petravalent and trivalent atoms have five and
three valence electrons respectively.
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4.2 Semi-conductor detectors

The basic idea behind Silicon detectors uses the fact that if a particle traverse the Silicon it
excite electrons into the conduction band, leaving electron-hole pairs behind. If one applies
an external electrical field over the crystal, the electrons drift to the anode, and the holes
toward the cathode, thereby inducing a current over the crystal. This current can be read
out.

However, just using n or p type crystals as described in the last section is not viable.
Since the band-gap is sufficiently small, thermal excitations would also create a current
and thus the detector would be very noisy. In the following will be described what is done
to avoid this.

4.2.1 n-p junctions

The practical implementation in detectors is to make a junction between a n-type and
a p-type semi-conductor. Due to the difference in concentration of electrons and holes
between the two sides there will be an initial diffusion of electrons towards the p-side and
of holes towards the n-side. Since each side was initially neutral it follows that the p-side
will become negatively charged, due to the added electrons, and the n-side will become
positive, due to the added holes. This creates an electrical field gradient over the junction,
which eventually stops the diffusion, since the electrons and holes need to perform work to
overcome the created contact potential over the junction. This leaves a region of immobile
charge carriers near the junction. Any electron or hole created in this region, which is
called the depletion zone, will immediately be swept away by the electric field. Thus any
external particles traversing the depletion zone, will create new electron-hole pairs, that
are swept away, and can be read out.

The depletion zone depth, d, in a regular n-p junction is quite small and is given
by [107]:

d ∼ αc ·
√
ρc · V0 (4.1)

where αc is a constant of the order of unity, slightly different depending on whether
it is the n or p-side, ρc is the crystal resistivity, and V0 is the contact potential. Taking
typical values for the n-side for instance (αn=0.53, ρn ∼ 5000 Ωcm and V0 ∼ 1 V) yields
a depletion depth of roughly 35µm. This depth is very small compared to the radiation
length in Silicon, making it less likely that any radiation traversing the sensor would
create a significant amount of electron-hole pairs. Furthermore the noise from the sensor
is proportional to the capacitance, C, of the crystal, which is connected to the depletion
depth through [107]:

C = ε · A
d

(4.2)

Here ε is the dielectric constant of Silicon, A is the crystal area and d is the depletion
zone depth. Thus in order to decrease the noise, and increase the chance that a traversing
particle will be detected, it is necessary to increase the depletion depth.

This is done by applying a so-called reverse bias voltage, Vb. It is a negative voltage
applied to the p-side of the junction. It causes the excess holes and electrons to be drawn
further away from the junction, thereby increasing the depletion depth. The depletion
depth is still given by (4.1), with the substitution of V0 with Vb. There exist a maximum
voltage, determined by the resistivity of the crystal, which limits the depletion depth. If
the reverse bias voltage is above this maximum the n-p junction breaks down.



56 Chapter 4. The FMD and SPD

Ideally, the n-p junction is not conducting, even when applying a reverse bias voltage.
However for various reasons this is not completely true. When the reverse bias voltage is
applied a small current may flow over the sensor. This current is called the leakage current,
and it contributes to the read-out noise of the sensors.

4.3 Energy loss in Silicon

Silicon detectors generally works through the detection of the energy lost when particles
traverse the Silicon sensor. The average energy loss per unit length is called the stopping
power, and is well described by the Bethe-Bloch equation [5]:
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where
NA Avogadro’s number 6.0221415(10)× 1023 mol-1

re Classic electron radius 2.817940325(28) fm
me Electron mass 0.510998918(44) MeV
c Speed of light
z Charge of incident particle e
Z Atomic number of material Si: 14
A Atomic mass of material Si: 28.0855
β = p/m of incident particle

γ = 1/
√

1− β2 of incident particle
Tmax Maximum energy transfer in a single collision MeV
I Mean excitation energy eV

δ(βγ) Density effect correction to ionisation energy loss
C Shell correction

Tmax is a measure of the maximum energy transferred in a single interaction between the
incident particle and the electrons in the material. It is given by:

Tmax =
2mec

2β2γ2

1 + 2γme/m+ (m2/m)2
(4.4)

with m being the mass of the incident particle. The mean excitation energy, I, is ex-
perimentally found to vary quite a bit with atomic number [5]. Its main features are
parametrised by:

I

Z
=

{
12 + 7

Z
Z < 13

9.76 + 58.8Z−1.19 Z ≥ 13
, (4.5)

Bethe and Bloch derived the main portion of (4.3) (the exception is the terms in
curly brackets) from a quantum mechanical description of particles scattering softly on the
electrons in dense matter.

The terms in the curly brackets were added later on as corrections for density effects
(δ(βγ)/2) and shell effects (C/Z). They are important at high and low energies respectively.

The density correction takes into account the fact that the electrical field of the incident
particle will polarise the atoms it passes. This polarisation makes electrons contribute less
to the total energy loss. The polarisation becomes bigger at higher particle velocities, as
well as in denser media.



4.3. Energy loss in Silicon 57

Figure 4.3: The stopper power for µ in Copper [5]. The low and high energy loss
regimes can not be described adequately by the Bethe-Bloch equation.
However for medium energy losses around the minimum ionisation the
Bethe-Bloch equation is a good description.

The need for the shell correction stems from the assumption by Bethe and Bloch that
the electrons are at rest compared to the incident particle. However when the orbital
electron velocity becomes comparable to the incident particle velocity this assumption
breaks down, and the correction comes into play.

Shown in figure 4.3 is the stopping power of muons, µ, in Copper. It is given as a
function of both momentum and βγ = β√

1−β . In the very low regime (βγ < 0.1) the

description by (4.3) is not valid. Other models are indicated in the figure for the low end.
Similarly at very high energies the Bethe-Bloch equation again becomes insufficient. In
this regime radiative effects like brehmsstrahlung and Cherenkov radiation occur, requiring
the description by other models.

The minimum of the Bethe-Bloch curve (around βγ ∼ 3.5 in figure 4.3) denote the
minimum ionisation energy. A traversing particle depositing this energy is said to be a
Minimum Ionising Particle (MIP).

Equation (4.3) and the full curve shown in figure 4.3 requires the thickness of the struck
materials to be comparable to the mean interaction length of particles in that material.
However for thin absorbers, such as the FMD and SPD this is not true.

For thin absorbers the following apply [108]:

� The incident particle will not suffer enough collisions for the central limit theorem
to hold. Thus the energy loss probability distribution, dN/d∆, is not Gaussian (as
is the case for thick absorbers).

� The incident particle does not encounter enough material for the radiative effects to
build up.
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� At high energy, enough energy can be transferred in order to knock out electrons,
which escapes the absorber completely. These are labelled δ-electrons. They lead to
a lower average energy loss than the one in figure 4.3.

This was first treated in detail by Landau [108], who made the following assumptions:

� The maximum possible energy transfer per collision in (4.3) goes to infinity

� The energy transfers are sufficient to treat the excited target electrons in the absorber
as free.

� The incident particles do not loose significant kinetic energy traversing the absorber,
i.e their velocities are constant.

For thin absorbers, single large energy transfers thus have a relatively higher probability
than in thick absorbers, skewing the energy loss probability distribution, and thus giving
rise to a very long high energy loss tail. This distribution is called the Landau distribution,
and is given by:
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C is Euler’s number, ξ is an approximation to the mean energy loss from the Bethe-
Bloch equation, ε is the minimum energy transfer to fulfil the free electron assumption
above [107] and ∆ is the energy loss.

An example of the shape of a Landau distribution can be seen in figure 4.4. A conse-
quence of the long tail of the distribution is that the mean and peak of the distribution
does not coincide. Typically the distribution is thus parametrised by the energy loss value
in the peak, called the Most Probable Value (MPV), which is labelled by ∆p and is is given
by:
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~ωp = 28.816 eV
√
ρZ
A

is the plasma energy, and j = 0.2 [91]. As seen by (4.7), the MPV

flattens out for high βγ. Thus for thin absorbers, the energy loss can be expected to be
almost constant if the incident particle has βγ > βγMIP .

Vavilov and Shulek improved the theory of Landau [109,110] by including convolution
of the Landau by a Gaussian, to account for excitations of inner shells in the atoms. But
the Landau still makes a fine first order approximation.

Furthermore, occasionally the same sensor is hit several times, describable by multiple
(Gauss convoluted) Landau distributions. Thus in total the energy loss can be described
by [108]:
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Figure 4.4: Left panel: Example of the form of a landau distribution. The most
probable value and the mean differs, in contrast to a Gaussian where
they are identical. Right panel: Example of the differences between
the original Landau distribution, and further developments in describ-
ing the energy loss in thin absorbers. While the Landau is not the
most correct of them, it remains a very good first approximation.
Figure is from [91].
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with Li and Gi denoting Landau with most probable value ∆p,i and width ξi and Gaussian
distributions for i particles depositing energy respectively. The ai’s are the weights of each
of the convoluted distributions.

It can be shown that (4.8) has n + 2 free parameters [108]. Three of those stem from
the Landau and Gaussian, and are the σ of the Gaussian component and the single particle
Landau parameters ∆p and ξ. The remaining parameters are the ai’s of the n individual
Landau distributions. a1 is defined to be unity, which leaves n− 1 ai’s as parameters.

The Landau parameters for the ith distribution are connected to the single particle
distribution by [111]:

ξi = iξ (4.9)

∆p,i = i∆p + ξi ln i (4.10)

To sum up, the energy deposits in thin absorbers, like the FMD, can be described by
multiple landau distributions, convoluted by Gaussians. From the amplitudes of the indi-



60 Chapter 4. The FMD and SPD

Figure 4.5: Overview of the FMD system. FMD2 and FMD 3 are placed nearly
symmetrically around the interaction point, and FMD1 is located
some distance away from the interaction. Ideally, one could have
hoped for another FMD at around z = -320 cm (mirroring FMD1), but
due to the massive Muon absorber sitting there, this is not possible.

vidual Landau distributions it can thus be inferred for a given energy deposit whether it
was caused by a single or more incident particles.

4.4 Forward Multiplicity Detector

The Forward Multiplicity Detector (FMD) is one of the main contributions to ALICE from
the Niels Bohr Institute at the University of Copenhagen. It is designed, built and tested
locally before being installed in ALICE. The FMD is a Silicon strip detector, with fine
η-segmentation, and adequate φ-segmentation.

The FMD system consists in total of 5 Silicon rings, grouped into 3 sub-detectors named
FMD1, FMD2 and FMD3. The latter two consist of 2 rings each, an inner ring and an
outer ring. FMD1 only consists of an inner ring. Thus when referring to individual rings,
the name will consist of the sub-detector name, with an addition of either I or O (Inner or
Outer) i.e., FMD1I, FMD2I, FMD2O, FMD3I, FMD3O.

Figure 3.6 in the previous chapter showed the location of the different FMD sub-
detectors with respect to the beam pipe, ITS and interaction point.

4.4.1 Design and Motivation

The main physics purpose of the FMD detector is to extend the charged particle coverage
of ALICE into very forward rapidity regions, as seen in figure 3.3. This is essential for
getting a more complete picture of particle production, as well as generally understanding
the most forward regions.

Another of the main motivations for the FMD is its capability to provide independent
measurements of the collision reaction plane and furthermore measurements of the various
flow harmonics, vn, in the forward region. The independence from the mid-rapidity barrel
detectors in determining the reaction plane, will allow those detectors to use that measure-
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ment in their determination of vn in the mid-rapidity region (and vice versa the FMD will
utilise their reaction plane measurements).

The mentioned physics goals for the FMD lead to the following design requirements:

� Broad η coverage.

� Fine η segmentation. This is important in order to have a low average detector
occupancy, and thus a high measurement resolution for multiplicities. There are 512
and 256 η-segments in inner and outer rings respectively.

� Full φ coverage. The segmentation in φ however is limited, with 20 and 40 segments
in inner and outer rings respectively.

Ideally, tracking capabilities would be available to a detector like the FMD. However
due to the very forward η coverage this is not possible. Particles emitted in forward
regions have extremely high momentum, and thus are deflected very little in the magnetic
field. Hence, in order to have a tracking detector with good momentum resolution at these
pseudorapidities, the detector would need to be located very far from the interaction point.

Sub– Ring # ϕ # r z rin rout
detector segments segments [cm] [cm] [cm]
FMD1 I 20 512 320.0 4.2 17.2
FMD2 I 20 512 83.4 4.2 17.2

O 40 256 75.2 15.4 28.4
FMD3 I 20 512 -62.8 4.2 17.2

O 40 256 -75.2 15.4 28.4

Table 4.1: Overview of the segmentation and placement of the individual FMD
rings.

The design requirements lead to a detector design, with rings (positioned around the
beam pipe) of Silicon semi-conductor sensors. In Table 4.1 and Figure 4.5 the placement
of the rings, and several characteristics are shown.

4.4.2 FMD Sensors and Electronics

Each of the FMD rings consist of a number of identical base units, referred to as FMD
sensors. The top part of figure 4.6 shows both an inner and outer ring, consisting of 10
and 20 sensors respectively. Each FMD sensor has two sectors on it, meaning that inner
rings consist of 20 sectors and outer rings consist of 40 sectors. Each inner ring sector is
radially divided into 512 Silicon detection strips, whereas the outer rings are only divided
into 256 strips per sector.

In total this means that each FMD ring has 10240 channels, totalling up to 51200
individual detection channels for the entire FMD system. The bottom part of figure 4.6
shows the layout of both an outer and inner FMD sensor.

Each FMD sensor has an electronics card glued to it, which handles the pre-amplification
of the incoming analog signal for the two sectors of the sensor. The amplification is taken
care of by so-called V A13 chips each responsible for 128 strips. Thus each hybrid cards has
either 4 or 2 V A13 chips depending on if it is an inner or outer sensor. The electronics cards
of each half-ring send the analog signal to a digitiser board, where the signal is converted
to a digital signal by an Analog-to-Digital Converter (ADC). Converting from analog to
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Figure 4.6: Top: The geometrical outline of the FMD rings. Left side shows an
inner ring, consisting of 10 sensors. Right side shows an outer ring,
consisting of 20 sensors. Bottom: Close up view of FMD sensors from
an inner (left) and outer (right) ring. The sensors are cut from 6′′

Silicon wafers, the largest possible, in the needed quality, at the time
of manufacturing. The sensors are divided radially into 512 and 256
strips respectively, depending on if it is a inner or outer sensor.
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digital is done by the ALTRO chip, which is an ADC developed for the ALICE TPC14.
Besides the TPC and FMD, it is also utilised by the EMCAL and PHOS.

The output of the ALTRO chip is the signal strength given in ADC counts, ranging
from 0 to 1023. The digital signal is sent for the Read-out Controller Unit (RCU), which
manages the readout of the ALTRO chips, as well as handling triggers, monitoring and
controlling the states of the digitiser cards. Individual RCUs exist for each of the three
FMDs. The RCUs used in the FMD are also originally developed for the ALICE TPC15.

From the RCU the digital signals are sent to the DAQ for read-out and storage. A
schematic presentation of the front end electronics of the FMD is shown in figure 4.7.

Figure 4.7: Schematic of the FMD electronics. Analog signals in the sensors are
sent via the V A13 chips to the digitiser cards, where the ALTROs
convert the analog signals into digital signals. These are sent for the
RCUs, which handles read-out and sending it onwards for the DAQ,
where it might be stored.

The individual sensors have been extensively tested by the manufacturer, Hamamatsu.
Figure 4.9 shows the capacitance, and thus noise, and leakage current of an arbitrarily
chosen inner and outer sector as a function of the reverse bias voltage.

Once full depletion is reached the capacitance becomes flat. The leakage current con-
tinuously increase as a function of the bias voltage. Therefore the optimal bias voltage is
set just above the point where full depletion is reached. For inner sectors this is around 70
V and for outer sectors it is around 120 V.

Next, figure 4.8 shows the test measurements of the leakage current stability over time
in the same two sectors. It is found that there is little variation over time.

Additionally in figure 4.8 the depletion depth of all FMD sectors is shown. For all
sectors it is 325± 3µm.



64 Chapter 4. The FMD and SPD

Figure 4.8: The capacitance and leakage current as a function of the reverse bias
voltage for an inner and outer sector. For the outer sector a bias
voltage of 120 V is chosen, whereas it is 70 V for the inner sectors.
The figure is taken from [91].

Figure 4.9: Top panel: The depletion depth of the individual sectors of the FMD.
Bottom panel: The stability of the leakage current under optimal
operating conditions for an arbitrarily chosen inner and outer sector.
The figure is from [91].
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Figure 4.10: Left panel: Example of the pedestal distribution of a strip. The mean
of the distribution is considered the pedestal value for that strip,
whereas the standard deviation is the noise of the strip. Right Panel:
Example of the concept of gain calibration of a strip. Each point
corresponds to the read-out signals from a known input pulse, which
is converted to a analog signal by a Digital-to-Analog Converter
(DAC). The slope of the fit to the 8 points are the gain of that
particular strip.

4.4.3 Pedestals and Gain

Due to the constant large external voltage kept over the FMD and noise from the electronics
itself, there will always be signals in each strip, that are read out, regardless of whether
there was a collision or not.

These signals are labelled pedestals, and must be subtracted from the data, when
reconstructing the events. The pedestal calibrations are recorded in special calibration runs
with no beams in the LHC. Roughly 1000 events are recorded, and all channels are read
out. This yields pedestal distributions for each strip. The mean of the pedestal distribution
is the pedestal value used for subtraction. The width of the pedestal distribution is labelled
the noise of the strip. The left panel of figure 4.10 show a typical example of a pedestal in
a pedestal calibration run.

In the top of figure 4.11 the means of the pedestals for all strips are shown. Similarly
the noise of all strips can be seen in the middle of that figure. It is seen that the pedestal
means are ∼ 100 ADC counts, and the noise of the strips are ∼ 2 and ∼ 2.5 ADC counts
for inner and outer rings respectively.

The pre-amplification of each strip can vary slightly. Thus each strip need to be cali-
brated to the same gain. This is again done in a special gain calibration run, which uses
a pulser with a known output voltage. The 128 strips of a V A13 chip are calibrated se-
quentially, which means, that for each event the same strip on each V A13 chip is being
calibrated. For each of 8 different pulser inputs, 100 events are collected to estimate the
response of the strip. Thus in total at least 102400 events are needed for the calibration.
The response of each of the inputs are fitted to a straight line. The slope of this is what is
labelled the gain of that strip. The right panel of figure 4.10 show an example of the gain
calibration procedure. Figure 4.11 show the gains for all strips.

The noise and pedestal are used for subtracting the pedestals online. This dramatically

14ALTRO is an acronym for ALice Tpc ReadOut
15The choice of using the ALTRO chips dictates also using the TPC RCU
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Figure 4.11: From top to bottom: Pedestal, noise, and gain values for all the
51200 channels of the FMD. In the pedestal and noise panels, one
notices that an area in FMD1I (∼ channel 3500) is malfunctioning.
It is an entire V A13 chip being dead. These channels are removed
during analysis.

decrease the read-out volume of the FMD, since only events with signals above the pedestal
signal are read out.

4.5 Silicon Pixel Detector

The SPD is the innermost part of the ITS. It is the detector closest to the interaction
point. As described in section 3.3.1 it consists of two concentric cylindrical layers of Silicon,
enveloping the beam pipe. Figure 4.12 shows a schematic of the ITS.

The innermost layer of the SPD is located at only r = 3.9 cm, just roughly 7 mm
outside the beam pipe, whereas the outer layer is located at r = 7.6 cm.

The SPD is grouped into base modules, labelled half-staves, each consisting of two
sensor ladders and the corresponding readout electronics. Each ladder contain 40960(=
160× 256) Silicon pixels. In total the SPD consists of 60 such half-staves. Thus the SPD
has extremely fine segmentation with more than 2 million channels. In figure 4.13 a zoomed
view of the SPD seen from the end is shown.

The individual SPD pixels do not retain the energy deposition information when a
particle traverse it. Instead it solely registers if a pixel was hit with signal above a certain
threshold. Due to the extremely fine segmentation of the SPD, particles traversing the
detector can easily fire multiple pixels. Such a group of hits in adjacent pixels are referred
to as a cluster. Using the clusters of both layers and the primary vertex information, it is
possible to form so-called tracklets, pointing back to the interaction point. Since tracklets
by definition points back to the interaction points, they are particles stemming directly
from the collision and thus tracklets has very low contamination from particles created
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Figure 4.12: Overview of the ITS detector system. As seen the SPD is the two
innermost concentric layers of the ITS.

Figure 4.13: Close up view of the SPD, as seen from the end. Indicated in the
bottom is the location of the beam pipe, only 7 mm from the inner
layer of the SPD. The placement of the detector staves is shown.

later on in decays, material interactions etc..
Ideally, the information from the tracklets could just be used in the central region to

count charged particles for this work. However since the aim is to provide multiplicity
distributions for wide pseudorapidity intervals this is not possible. The tracklet coverage
is limited by the coverage of the second SPD layer, which is around |η| < 1.5 (for vertices
around vz ∼ 0). Thus, creating a continous wide η-interval multiplicity distribution is not
possible, but would have large gaps in it. These gaps would be different depending on
the vertex position. However, the innermost layer of the SPD has a coverage of roughly
|η| < 2 for collisions around the nominal interaction point. This means that by selecting
only events in a limited z vertex region there is full overlap between the inner layer of the
SPD and FMD in every event. Thus in this work the inner layer of the SPD is used for
analysis16.

16One might state that the inner layer of the SPD is treated as ’yet another’ FMD ring, in the sense that
it is treated similarly. The drawbacks of this obviously is that one can not utilise the powerful tracking
capabilities of the SPD to eliminate contamination from particles away from the interaction point. But as
described it allows for the analysis of a very broad continuous η interval.
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Chapter 5

Off-line Data Processing

In this chapter the tools used for analysis is presented. These tools include the basic analysis
programs over the specific analysis framework structure of ALICE to the simulations used.

Presented in this chapter is also information on the selected data sets being analysed
in this work. The analysis itself is presented in the next chapter.

5.1 ROOT and AliROOT

The base tool for analysis is called ROOT17 [112]. ROOT was mainly developed at CERN
as a platform on which to build systems for entire experiments. ROOT contain functions
for handling most analysis tasks; data storage, data management, data visualisation as
well as a wealth of mathematical and statistical tools.

AliROOT (Alice ROOT) [113] is an extension to ROOT, developed specifically by the
ALICE collaboration. AliROOT has implemented the detector geometry of ALICE as
well as a full simulation environment. In addition to this AliROOT also contains the
reconstruction code for all sub-detectors, and the analysis code.

5.2 Simulations

In this section an overview of the simulations used in this work is given. In general,
simulated data play a crucial role in heavy ion physics. The ability to describe the physics
and detector setup in high detail in simulations yield great possibilities for comparisons
with theoretical predictions as well as using the simulation results for corrections on the
physics data.

Simulations consist of two separate components: An event generator and a transport
code. The event generator is responsible for creating simulated particles according to the
theoretical understanding of collision dynamics. Event generators are typically tuned to
best match physics results from earlier experiments. Quite a number of different event
generators exist. They include various physics processes and theories.

In this work three different event generators are used:

PYTHIA This is the most widely used general-purpose generator for pp and pp̄ collisions.
PYTHIA has a wide variety of physics implemented, including hard/soft QCD pro-
cesses, Heavy-flavour production, Prompt photon production, photon-induced pro-
cesses, deep inelastic scattering, W/Z production etc. Furthermore there are imple-
mentations for non-Standard Model theories such as Technicolour, SUperSYmmetry

17recursively short for ROOT’s Object Oriented Tools.
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(SUSY) and non-Standard Higgs doublet production [114]. ALICE uses PYTHIA
version 6.4.

PHOJET This pp event generator is a implementation of the Dual Parton Model, which
focuses on the description of diffractive physics by Pomeron exchanges as described
in section 1.4.2 [115].

HIJING (Heavy Ion Jet INteraction Generator) This event generator has implementations
for both pp and heavy ion collisions. However the main usage of HIJING [116] is for
heavy ion collisions. HIJING uses a pQCD approach. For the description of multiple
interactions in heavy ions it uses a Glauber model.

The event generator output is a stack of particles, used as input for the transport
model. In this work the transport model used is GEANT 3.21 (GEometry ANd Tracking)
[117]. GEANT has implementations of most interactions, such as hadronic interactions,
bremsstrahlung, decays, Compton/multiple scatterings and many more.

Each particle is propagated through a virtual model of the experiment in small steps. At
each step, possible interactions or decays are calculated. If new particles are created from
such a process, it is placed on the stack and are subsequently propagated independently.
Each time a particle enters or exits an active sub-detector volume, routines specific to that
sub-detector determines which information to store as a hit. As an example, consider a
particle hitting the FMD. Here the procedure is that this hit is stored with both space-time
and detector coordinates (x, y, z, t, detector, ring, sector, strip), as well as the total energy
loss by the particle and the length of the trajectory through that strip. The informations
about the hits are the output of the GEANT transport.

The simulated data is often referred to as Monte Carlo (MC) simulations, even though
the transport models does not exclusively use Monte Carlo techniques. However, the
nomenclature is heavily ingrained in the community. In this work the term MC will still
be used occasionally for some concepts.

5.2.1 Digitisation

Creating hits in GEANT is not the end of the road for a simulation. To make the simulated
data look more like physics data, it undergoes another step, known as digitisation.

In the case of the FMD the digitisation takes the integrated energy loss, ∆i, from all
particles hitting strip i in an event, and converts this into a ADC count. This value is also
referred to as a digit. The conversion from hit to digit for a given strip i is given by:

ci = pi + x+ gi∆iΩ (5.1)

where pi and gi are the pedestal mean and gain of the strip respectively. x is a random
value from a Gaussian with a standard deviation of the noise of the strip, ni. Ω is a
constant factor describing the relation between gain calibrated signals and ADC counts. Ω
is dependent on the FMD electronics, and has the value Ω = 29.67 MeV/DAC [91].

Finally, the digits18 are processed into the event format defined by the ALTRO’s, en-
suring that the simulation data are in the exact same raw format as the physics data. This
has the advantage that both can be reconstructed from digits.

18The hits are also stored as summable digits (s-digits). The only difference between digits and s-digits
in the FMD is the inclusion of the random noise component, x, in the digits. The s-digits are useful
if looking for rare signals, where the s-digits of background events and signal events are added, before
applying noise to the combined signal instead of the individual signals.
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5.3 Reconstruction

As described, both physics data and simulated data end up in the same raw data format.
This raw data is then reconstructed using the same algorithms. The extent of operations

performed during reconstruction vary a lot from sub-detector to sub-detector.
For the FMD the procedure is as follows. For each digit the reconstruction calculates

the pedestal subtracted ADC counts. However this contains the noise of the pedestal
distribution. Thus a noise cut is applied in the following way:

c′i =

{
ci − pi for ci > pi + fni

0 otherwise
(5.2)

where c′i denotes the ADC value after the cut. f is how many standard deviations of the
noise distribution that will be suppressed. For this work f = 3 is chosen, which should cut
away 99.7% of the pedestal tail, since the noise is approximately Gaussian distributed.

The pedestal subtracted ADC values are then converting into energy depositions (in
units of MIP energy):

E ′dep,i
EMIP

= c′i
1

giΩ
(5.3)

Most particles hitting the FMD do not traverse the strips perpendicularly. Thus the path
length is different depending on the incident angle. The energy signal is corrected for the
different path length by:

Edep,i
EMIP

= cos(θ)
E ′dep,i
EMIP

(5.4)

where

θ = tan−1(
ri

zi − vz
) ,where ri =

√
x2i + y2i (5.5)

Thus θ is the angle between the beam axis (at interaction z-vertex vz) and the strip being
hit.

The output of the FMD reconstruction is
Edep,i

EMIP
as well as the η of strip i and the strip

coordinates.
Reconstruction in the SPD (and ITS) is done in more steps, and has more output. The

process will be outlined in the following.

� The digits are first run through a clusteriser, which identifies pixels that have a hit
above a certain threshold. A cluster can consist of a single hit or hits in several
adjacent pixels. The vast majority (around 97%) of the clusters consist of only a
single pixel, or two adjacent pixels. This will be discussed further in section 6.3.

� Next, the clusters of the two layers are matched up to form so-called tracklets, whilst
determining the collision vertex. It is done by matching a cluster in the inner layer
with all possible clusters in the outer layer within a small azimuthal window. In
this way a number of tracklets are found, and extrapolated back to the z-axis, where
they are checked for distance to other tracklets. The vertex is then determined as
the minimisation of distances between tracklets. The entire procedure is then run
again, this time with more narrow cuts. Clusters that cannot be matched up to form
tracklets are still kept, being stored as what is labelled unused clusters.

� Now the tracklets from the SPD are matched with tracklets from the SSD and SDD,
forming what is labelled ITS tracks.
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Figure 5.1: Left side shows tracklets construction. Clusters from the first layer
looks for another cluster in the second layer in a narrow ∆φ window,
in order to define a tracklet. Right hand side shows a number of
tracklets all pointing back towards the interaction vertex.

Detector Signal Tracking Vertex Finder

FMD Edep/EMIP None None

SPD Unused clusters Clusters matched into tracklets Yes
Tracklets Tracklets matched into ITS

tracks
ITS tracks ITS tracks matched into global tracks
Global tracks

Table 5.1: Reconstruction in the FMD and SPD. The signal column show the
various stored signals from the two detectors. The tracking column
denotes the stored tracks, based on the measured signals.

� The last step is that the ITS tracks are matched to tracks in the TPC and TRD,
forming global tracks.

Therefore, the output from the ITS reconstruction is the collision vertex (x, y, z) loca-
tion, unused clusters, tracklets, ITS tracks and in combination with the TPC and TRD,
global tracks.

The reconstruction process of the FMD and SPD is summarised in table 5.1.

5.4 Analysis Structure

The reconstructed data are stored in so-called Event Summary Data (ESD) files. The ESD
files contain all relevant information for all sub-detectors for all analyses. This is typically
trigger information, collision vertex measurements from several sub-detectors, individual
particle tracks from several sub-detectors, particle identification measurements etc.

The ESD files are often stored online, and are not practical for local analysis, due to
their shear size. They are however the natural starting point for any analysis.

Instead of storing the ESDs locally Analysis Object Data (AOD) files are created. The
idea behind AODs is to make a first pass over the ESDs, storing only information relevant
for a more specific analysis. This makes AOD files useful for local analysis.
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Figure 5.2: Schematic of analysis train structure. The analysis managers loops
over the ESD/AOD data. The various analysis tasks can get inputs
from simulated truth and/or separate acceptance and efficiency ob-
jects. Each analysis task is run on the data, storing its output in the
AOD file(s).

The actual specific analysis can run with the AOD files as input. This in principle also
enables one to create another AOD, with for instance stricter cuts, from an existing AOD,
and use the new AOD as input.

The transition from ESDs to AODs is done by using the ALICE analysis framework.
This is done by running so-called ’analysis trains’ [118] over the physics or simulation data.
In principle the input data can be in the form of either ESDs or AODs.

The analysis trains consist of an ’engine’ called the analysis manager, which handles
all input/output, and are responsible for the actual loop over the data. The engine can
have any number of ’cars’, called analysis tasks, attached to it. The analysis tasks are
performing the main analyses. Each analysis task do one analysis, and stores the output
in the AOD file(s).

The analysis presented in this work uses this framework to create AODs with mainly
the relevant information from the SPD inner layer, the FMD, as well as other relevant
information regarding vertices, centrality and trigger conditions.

Figure 5.2 illustrates the analysis framework.

Figure 5.3 summarises the flow of the simulation/physics data analysis. The figure
shows the process of going from simulated particles in the top left corner to raw data in
the bottom and then back up to reconstructed particles in the top right corner. Included
is also the path for physics data, where the output from the DAQ leads to the raw data
format, and from there on out through the same reconstruction as for simulations.

As a final remark on simulated data, it is useful to distinguish between two simulation
concepts:

MC Truth This refers to the actual output information from the event generators them-
selves. Thus it is in no way modified by the analysis. In figure 5.3 it corresponds to
the top left corner.

MC Analysed This refers to the result of reconstructing the digitised simulated events,
and performing the same analysis as on physics data. In figure 5.3 it corresponds to
the top right corner.



74 Chapter 5. Off-line Data Processing

Figure 5.3: Schematic of the software chain in ALICE, going from either simula-
tions or physics data recorded in the DAQ, through the reconstruction
to ESD data.

5.5 GRID and AliEn

Analysing high energy physics data on local computers or computer farms is becoming
increasingly difficult, due to the data volume as well as the processing power requirements
increasing dramatically.

At the LHC it is estimated that roughly 15 million Gigabytes of data are stored annually
[119]. Besides that data volume, significant extra space is needed for backup of the data,
space for users etc. This is a task which can not be handled by a single computer facility.

This challenge is solved by parallel computing, where computer centres around the world
share resources. This system is named the LHC Computing Grid (LCG), or typically The
Grid for short. The name is an analogy to the electricity in our everyday lives. When
turning on the TV at home, we do not care where exactly the electricity comes from, or
how it was produced. And we do not need to care since we are connected to the electrical
grid.

Similarly with The Grid, the main motivation is that the end user should not care
exactly where their data is stored, or where it is analysed. The only thing the end user
should care about is that their request of computing resources and storage is met.

The Grid currently consists of more than 150 computer centres around the world,
working together as a huge virtual file system. These centres are tiered, with the biggest
centre being the CERN tier 0 centre. The tier 0 stores the first copy of the raw data,
as well as being responsible for the first reconstruction of data. The tier 0 furthermore
distributes raw data and reconstruction output to 11 tier 1 centres. These 11 centres
are major national computer centres, and are responsible for also storing raw data and



5.5. GRID and AliEn 75

Figure 5.4: Overview of the GRID computing centres in Europe and Egypt. The
coloured circles denote the live status of the centres, where read means
no jobs are currently running (or possible) and green/yellow shows
jobs running.

reconstruction output. They are also responsible for the distribution to a large number of
tier 2 centres. A tier 2 centre could typically be the computer farm of a single university.
Similarly tier 3 denote the individual user’s computer.

Doing analysis on The Grid is done using a middleware software. The ALICE middle-
ware is called AliEn (ALICE Environment), and is responsible for all the details of getting
the data and assigning computing resources.

When submitting an analysis job on The Grid, AliEn splits the job into subsets of data
to be analysed at the individual computer centres. The sub-jobs are run in parallel each
resulting in output files, that must be merged afterwards.

The concept of The Grid means that a user could submit a job from Copenhagen, that
requires data stored in Japan, to be analysed on a centre in USA, with the output being
stored in Italy. This obviously put high requirements on the network capabilities of the
centres. In general AliEn tries to optimise this process by allocating processing units that
are close to the storage units.

Each computer centre is supposed to have identical versions of the analysis software
installed. This is ensured by taking weekly tags of AliROOT and propagating them to
all centres. Similarly synchronised upgrades to other softwares are performed. If a user
requires newer revisions for an analysis, it is possible to send the updated code along with
the job to the individual machines, recompiling the software.

Due to both network issues, individual machines crashing etc. one can never be certain
that two identical jobs will end up analysing exactly the same fraction of the data. Failed
sub-jobs can be re-submitted, and thus a sub-job completion rate of 95% is obtainable,
without too many iterations of re-submitting.
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Run Period Collision system Energy Run numbers ∼ no.events
[GeV] [×106]

LHC10c pp 900
118506, 118507, 118512, 118556,

10.6118558, 118560, 118561, 121039,
121040

LHC11a pp 2760

146686, 146688, 146689, 146746,

66.9
146747, 146748, 146801, 146802,
146803, 146804, 146805, 146806,

146807, 146817, 146824

LHC10d pp 7000

125085, 125097, 125101, 125847,

67.3
125848, 125849, 125850, 125851,
125855, 126097, 126351, 126352,
126359, 126404, 126406, 126407,
126408, 126409, 126422, 126424

LHC10h PbPb 2760
138190, 138364, 138396, 138442,

7.7
138534, 138653

Table 5.2: Data samples used.

It is possible to monitor the services from AliEn through MonALISA (Monitoring A
Large InfraStructure Architecture) [120]. Figure 5.4 illustrates this, showing the activity
in AliEn of the computer centres in Europe and Egypt.

5.6 Data sets for analysis

In this section, the data sets used for analysis in the next chapter are presented. For pp
collisions three separate energies,

√
s = 900 GeV, 2760 GeV and 7000 GeV, are analysed,

whereas for the PbPb collisions a single energy is available
√
s
NN

= 2760 GeV. For all
energies the following types of data are used at some point in the analysis:

Physics data Not surprisingly, the main ingredients of the physics analysis is the actual
physics data.

Flat MC This is a special simulation specifically for this type of analysis. The flat MC
does not have a physical multiplicity distribution, but instead is tuned such that
the probability of having N particles (inside |η| < 1) is the same, up until around
N = 100. This is needed for creating detector response matrices (which are detailed
in section 6.6), where significant statistics are needed for high multiplicities as well.

Normal MC The normal simulation productions are needed for various checks, including
the correction dependence on choice of event generator as well as quality measures.
In principle the normal MC could be used for the creation of response matrices, but
the amount of statistics needed to populated the higher multiplicities makes this
unpractical.

Table 5.2 shows the physics data runs chosen for analysis. Similarly table 5.3 and table
5.4 shows the data sets used for flat multiplicity distributions as well as normal simulation
runs.
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Production Description Runs no.events
[×106]

LHC10f1 pp, 900 GeV, PYTHIA ,Flat 118506- 7.1
LHC10c anchor runs 121040

LHC11b10c pp, 2760 GeV, PYTHIA, Flat 146686- 1.4
LHC11a anchor runs 146860

LHC10h16 pp, 7000 GeV, PYTHIA, Flat 125186- 4.2
LHC10d anchor runs 126437

Table 5.3: Flat multiplicity productions used to create response matrices. The
concept of anchor run denotes that the simulation is run with the
exact settings of the corresponding physics run period.

Production Description Runs no.events
[×106]

LHC11b1a pp, 900, PYTHIA 118506 2.1
LHC10c anchor runs

LHC11c1 pp, 900 GeV, PHOJET 118506 2.1
LHC10c anchor runs

Table 5.4: Normal simulation productions used.
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Chapter 6

Analysis

This chapter is devoted to going through the details of the analysis procedure done in this
work. The main headlines of the analysis are summarised here:

Event Selection This denotes all of the analysis pertaining the global event selections,
specifically trigger, vertex, and centrality selection.

FMD Particle Counting The main ingredients of this section is the measurement in the
FMD of energy deposition distributions, as well as presenting two methods for count-
ing hits. Furthermore the concept of hit merging i.e., correcting for particles hitting
several strips, is also covered in this part.

SPD Particle Counting The method of counting particles in the SPD is presented in this
section.

Secondary particles Particles, not stemming from the initial collision, constitute a signif-
icant part of the signals, especially in the FMD. This section discuss the secondary
particle contamination in ALICE, and how to correct for it.

Strangeness Correction In the simulations, too few secondary particles containing strange
quarks are created. This must be corrected for.

Unfolding The measured distributions need to be corrected for detector response. This is
done by unfolding the measurements with the simulated response of the detector.

Trigger-Vertex Bias Correction At low multiplicities, the efficiency of reconstructing a
vertex and triggers drops. This is corrected for through simulations.

6.1 Event Selection

Event selection covers global cuts applied to the data. In the following, three selections
are presented: Trigger, vertex, and centrality selection.

6.1.1 Trigger Selection

Selecting only the relevantly triggered events is the very first selection criteria of the anal-
ysis. A special analysis task ensures the selection of the proper trigger words for a given
configuration of the Central Trigger Processor (CTP).
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System Energy [GeV] Name Trigger condition
pp 900 INEL V0A or V0C or SPD pixel fired

NSD (V0A and V0C) or SPD pixels fired ≥ 5
pp 2760 INEL V0A or V0C or SPD pixel fired

NSD (V0A and V0C) or SPD pixels fired ≥ 5
pp 7000 INEL V0A or V0C or SPD pixed fired

NSD (V0A and V0C) or SPD pixels fired ≥ 5
PbPb 2760 MB Min. fulfil 2 of:

a) Pixels fired in SPD outer layer > 2
b) V0A
c) V0C

Table 6.1: Overview of the trigger conditions used in this work. V 0A and V 0C
refers to having a single signal in the V 0 on the A- and C-side respec-
tively. The SPD pixels fired requirement refers to having a signal in
that number of pixels in the SPD.

In general one can distinguish between online and offline triggers. Online triggers
designate trigger signals obtained while running. Combinations of trigger detector signals
constitute different so-called trigger words. When the condition of a trigger word is fulfilled,
that trigger word is sent along with the data of the event. Many trigger words can be
fulfilled for a single event. After reconstruction the trigger conditions are recreated from
the reconstructed trigger detector signals. Only events fulfilling both the online trigger
words as well as the reconstructed trigger words are kept for analysis.

Offline triggers under one heading, are selection conditions put on the reconstructed
data. The replayed online triggers are technically an offline trigger, but there are also
offline triggers that have no online counterpart. These are what is typically labelled offline
triggers.

For this work a few trigger words, summarised in table 6.1, are of particular interest:

INEL The physical motivation of the INEL trigger mask is to select actual inelastic colli-
sions. It is an online trigger, that uses the V0 and SPD detectors. It requires that
there is a signal in either the SPD or at least one of the sides of the V0 (labelled V0A
and V0C), in conjunction with a beam bunch crossing signalled from the LHC itself.

NSD The purpose of the NSD trigger is to select the subset of the INEL events that are
NSD events. It is an offline trigger that requires coincidence between both sides of
the V0, or more than 5 pixels fired in the SPD, in conjunction with a bunch crossing.
The NSD trigger class is the main trigger class for pp collisions analysed in this work.

MB The Minimum Bias trigger is only used for the PbPb collisions, and as the name im-
plies it aims at providing a sample with minimum or virtually no bias. The condition
for the MB trigger is that at least two out of three requirements are fulfilled. These
requirements are a) 2 hits in the outer SPD layer, b) signal in V0A and c) signal in
V0C.

INEL>0 ALICE occasionally use this trigger condition as an alternative to the NSD trig-
ger. As indicated by the name it selects inelastic collisions with at least one pixel
fired in the SPD. If the trigger efficiency for NSD collisions is unknown INEL>0 can
be used.
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Figure 6.1: η-acceptance for the combination of the FMD and the SPD inner
layer as a function of z-vertex. Red denotes there is acceptance,
and blue denotes no acceptance. The black lines are there to guide
the eye to better illustrate the extent of the SPD (dashed lines) and
FMD2O/FMD3O (solid lines). There is full overlap between FMD3I
and FMD3O. To minimise the acceptance gaps, only events with
−4 < vz < 4 is selected. The selection is indicated by the light
blue dashed lines.

Pile Up Occasionally, several collisions occur near the interaction point in the time window
of a single event. This is referred to as a pile up event. These are flagged by the
offline pile up trigger, which uses the SPD tracklets to identify the additional vertex
of the second collision. The requirement for an event to be flagged as pile up is that
at least three tracklets contribute to determining the second vertex, and that the
two vertices are at least 0.8 cm apart. Events that are triggered as pile up events are
discarded. The pile up removal is however not very efficient. It is estimated that only
around half the actual pile up events are removed in this manner [121]. This is due
to the requirement of the vertices being minimum 0.8 cm apart. There is currently a
working group in ALICE, determining how to best correct for this. This correction
is not done in this work.

6.1.2 Vertex Selection

The determination of the vertex position of an event is done by the SPD, as described in
section 5.3. There are a few considerations regarding selecting vertex range.

The vertex z-distribution, vz, is maximum around the nominal interaction point (z ∼ 0),
falling off on either side. Assuming that the probability of having beam-gas interactions is
roughly independent of z, there will from some high |z| be a point, where the amount of
beam-gas events is comparable to the amount of physics events.

Thus one restricts analysis to within a certain vz-range to avoid this. To avoid problems
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Figure 6.2: The measured z-vertex distribution for pp collisions at
√
s =900 GeV,

2760 GeV, and 7 GeV, as well as PbPb collisions at
√
s
NN

= 2760 GeV.
The selected vertex interval for this analysis is indicated.

with beam-gas interaction pollution even a wide vz-range of −10 < vz < 10 would suffice.

However for this particular analysis an extra requirement further limits the vertex
selection. We require that for each event, maximum η-coverage must exist between the
SPD inner layer and the FMD. This is illustrated in figure 6.1, where the red area denotes
the acceptance of the combined SPD and FMD system. The blue area denotes areas
without acceptance. On the basis of this, the selected z-vertex range used in this work is
−4 < vz < 4.

The areas without acceptance between the FMD rings is corrected for later on by un-
folding (see section 6.6). In principle it is possible to also do this for the gaps between the
SPD and FMD for |vz| > 4. However it is decided best to use the biggest possible accep-
tance, keeping the correction to be made as small as possible. In section 6.8 comparisons
with different vertex selections will be presented.

In figure 6.2 the z-vertex distribution, including the selection of this work, is shown.
Figure 6.3 shows the vertex distribution in the xy-plane. It is seen that a minor offset of
a few millimeters from (0,0) is found. This offset has no effect on the analysis, since it
only affect the η of the particles minamally. When using simulations, the same off-sets are
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Figure 6.3: The measured xy-vertex distribution for pp collisions at
√
s =900

GeV, 2760 GeV, and 7 GeV, as well as PbPb collisions at
√
s
NN

=
2760 GeV.

however included, due to the concept of anchoring the simulations to the particular physics
runs. There is no cut imposed on the xy-vertex range.

6.1.3 Centrality Selection

When analysing PbPb collisions an additional selection criteria is imposed on the data to
only select the desired centrality classes.

The centrality selection in ALICE is done by using the V 0 detector. The centrality
classes are determined by counting fractions of the total multiplicity from the top multi-
plicity. It is done by integrating the multiplicity distribution from the high end, until for
instance the integral is 5% of the total number of events. This selection, the 5% events
with highest multiplicities, is thus the centrality class, 0-5%. One should note that the
multiplicity distributions used for centrality selection are just raw measurements with an
arbitrary scale. For centrality, the absolute multiplicity value does not matter, only the
fraction of the multiplicity.

Figure 6.4 show an example of the centrality determination from the V 0.
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Figure 6.4: An example of the measured centrality classes by the V 0 detector.
The insert show the very peripheral centrality classes.

6.2 FMD Particle Counting

This section is devoted to the details of the particle counting methods of the FMD, describ-
ing the process of going from the initial energy deposits in the Silicon strips to calculating
the final number of charged particles for that event.

6.2.1 Energy distributions

As described in section 4.3, particles traversing the Silicon strips of the FMD deposits
energy, which to first approximation is Landau distributed. Figure 6.5 shows the measured
energy distributions in FMD2I for pp collisions at

√
s =900 GeV, 2760 GeV, and 7 GeV,

as well as PbPb collisions at
√
s
NN

= 2760 GeV. The Landau shape is clearly visible,
with a MPV around 0.6EMIP . However it is immediately apparent that at the low energy
deposition, other effects are at play. The sharp peak at very low energy deposition is
identified as remnants of the pedestals, surviving the pedestal subtraction. Between the
pedestal remnant and the Landau peak is a plateau of energy depositions. These are shared
energy signals, stemming from particles traversing multiple strips. This concept is aptly
labelled hit sharing, and is described in section 6.2.2.

For pp collisions at
√
s = 2760 GeV it appears there is an extra peak at very low

energy distributions. The data quality of
√
s = 2760 GeV will be discussed later on in this

chapter.

The energy distributions for simulated data show the same overall structure, but there
are a few distinct differences. Firstly, the MIP peak is shifted a little downwards in energy.
This is due to slight differences in how the energy deposition is calculated in data and
simulations [87]. These differences give rise to a simple linear scaling between the two.
Secondly, the higher order MIP peaks are significantly more broadened in data compared to
simulations. This is due to the Gaussian convolution not being sufficient in the simulation.
The differences in energy distributions between the used simulations and measured data is
shown in figure 6.6.

Ways of tuning the simulated energy distributions to better match the measured ones
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Figure 6.5: The measured energy distributions in FMD2I for pp collisions at√
s =900 GeV, 2760 GeV, and 7 GeV, as well as PbPb collisions

at
√
s
NN

= 2760 GeV. At very low energy deposits remnants of
the pedestals are seen, following by a region of shared signals. At
Edep/EMIP ∼ 0.5 the Landau distribution begins.



86 Chapter 6. Analysis

MIP/Edepx = E
0 0.5 1 1.5 2 2.5 3

 N
(x

) 
[s

ca
le

d 
to

 1
st

 L
an

da
u 

pe
ak

] 
 

-310

-210

-110

1

10 =900 GeVsFMD2I in pp @  

MIP/Edepx = E
0 0.5 1 1.5 2 2.5 3

 N
(x

) 
[s

ca
le

d 
to

 1
st

 L
an

da
u 

pe
ak

] 
 

-310

-210

-110

1

10 =2760 GeVsFMD2I in pp @  

MIP/Edepx = E
0 0.5 1 1.5 2 2.5 3

 N
(x

) 
[s

ca
le

d 
to

 1
st

 L
an

da
u 

pe
ak

] 
 

-310

-210

-110

1

10 =7000 GeVsFMD2I in pp @  

Data

MC

MIP/Edepx = E
0 0.5 1 1.5 2 2.5 3

 N
(x

) 
[s

ca
le

d 
to

 1
st

 L
an

da
u 

pe
ak

] 
 

-310

-210

-110

1

10 =2760 GeVNNsFMD2I in PbPb @  

Figure 6.6: Energy distributions in the simulations compared to the measured
energy distributions from figure 6.5. It is found that the peaks are
shifted slightly and are smeared more in the physics data compared
to the simulations.
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Figure 6.7: Illustration of the concept of hit sharing. The left particle hits the
FMD strips at an angle, and thus deposits energy in two strips. The
right particle just hits a single strip.

are being investigated. Section 8.5 discuss this more.

6.2.2 Hit Sharing

Occasionally, particles traversing the FMD, hit and deposit energy in more than one strip.
This is called hit sharing. For particles coming directly from the interaction point it is
unlikely to hit more than at most two strips going through the FMD. However, particles
hitting material, thus being deflected can hit the FMD at small angles, enabling them to
traverse more than two strips.

Shared signals must be merged into single signals. This is done by a algorithm, which
searches for strips with energy signals in adjacent bins. Based on the energy depositions
in the strips, the algorithm determines whether to merge the signals. For the sharing
algorithm in this work a shared signal can at most hit three strips. Signals hitting three
strips are already only an insignificant part of the hits in the FMD, why it is justified to
allow at maximum three strips for a shared signal.

Figure 6.8 show the relation between neighbouring strips before and after hit merging.
The anti-correlation for low energy deposits in the left panel show exactly the shared
components.

The sharing algorithm has two thresholds associated with it, a lower and higher energy
cut (Elow and Ehigh respectively).

Elow This is the lowest energy deposition value that is accepted for a shared signal com-
ponent. The main motivation for this threshold is to ensure that remnants of the
pedestal are not mistaken for a shared component. Elow is set at approximately
three times the strip noise above the pedestal mean. For inner rings this means
that Elow = 0.1 and for outer rings Elow = 0.15. Strips with signals below Elow are
discarded in the analysis.

Ehigh This is the highest energy deposition value that is accepted for a shared signal
component. It is set at the value where the low part of the Landau peak becomes
comparable with the the shared energy signals in the energy distributions. Thus two
deposits above this threshold in adjacent strips are considered to be two separate
particles. A hit above Ehigh can still be merged with a low energy deposit however.
The threshold is set at Ehigh = 0.7∆p. By defining it in terms of the MIP peak it takes
into account the differences between simulations and data energy distributions19, as
well as ensuring a consistent cut across all strips.

19assuming different fits are used in simulation and physics data, which is the case.
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Figure 6.8: Relation between the energy deposit in neighbouring strips before and
after hit merging. The anti-correlation at low energy deposits explic-
itly show the shared components. After the hit merging it is clear
that the low energy shared signals are merged with their neighbours.

Whether or not to merge strips depends on the energy values of the strips in question.
A simple example is to consider two adjacent strips both with energy deposits above the
low threshold and below the high threshold. They will be merged as a single signal. If one
of the strips had a energy deposition above the high threshold they would still be merged
into one hit. However, if both of the strips were above the high threshold, they would not
be merged, but instead considered two individual particles traversing only one strip each.
In the same manner evaluations are done for all possible outcomes. For more information
on the implementation of the hit merging algorithm, consult appendix C.

Figure 6.9 shows the energy distribution contribution of single signals, and merged
signals from two (doubles) or three (triples) strips for physics data. The double signal,
which constitute roughly 10% of the total amount of signals, resembles the single particle
Landau distribution, which is a clear indication that the double signals are indeed shared
components. The triple distribution however, does not resemble it, which could be an
indication that the triple signals are in fact two particles hitting three strips. This can
happen if it is indeed a double signal neighboured by either a single or another double signal.
The contribution from triples are however insignificant, constituting only roughly 1% of
the total amount of signals. The exact fractions of single, double and triple contributions
can be found in appendix C.

An interesting observation in figure 6.9 for pp collisions at
√
s = 2760 GeV is that

the double distributions does not look at all like the single distribution. The low end of
the distribution does not behave as a Landau distribution, but appears to have an extra
component. This is a serious issue, that indicate that there might be significant extra
’noise’ in the physics data, which is then being merged with neighbor strips, either being
hit by a particle, or also having a noise signal. The latter is clearly the most problematic,
since it will count as a separate particle, insted of just an existing particle with slightly
higher energy deposition.

Ideally, running the sharing algorithm would remove the entire plateau before the MIP
peak. However, after the sharing algorithm there are still single signals left in that very



6.2. FMD Particle Counting 89

MIP/EdepE
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

 E
ve

nt
s

1

10

210

310

410

510

610
Singles
Doubles
Triples

=900 GeVspp @  

MIP/EdepE
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

 E
ve

nt
s

1

10

210

310

410

510

610
Singles
Doubles
Triples

=2760 GeVspp @  

MIP/EdepE
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

 E
ve

nt
s

1

10

210

310

410

510

610
Singles
Doubles
Triples

=7000 GeVspp @  

MIP/EdepE
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

 E
ve

nt
s

1

10

210

310

410

510

610

710

810 Singles
Doubles
Triples

=2760 GeVNNsPbPb @  

Figure 6.9: Energy distributions after hit merging for single, double and triple
signals in physics data.
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Figure 6.10: Energy distributions after hit merging for single, double and triple
signals in simulated data. The low energy deposit plateau after hit
merging is about an order of magnitude lower than in physics data.
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region when analysing physics data at all energies. As seen in figure 6.9, after hit merging
it is indeed only single signals left at those low energy deposition values. Thus we have a
component of strips having small amount of energy deposited in them, without adjacent
strips being hit.

This hints towards it being either shared signals, where the adjacent strip is not detect-
ing the passing of the particle, or that the signal is not necessarily from a relevant physical
particle 20 traversing the strip.

The former can be caused by two things; either a strip next to a strip with a hit is
not working or the FMD module is not sufficiently efficient. Neither are likely though.
The FMD only has very few permanently malfunctioning strips, which is discussed in
section 6.2.4. Furthermore, results from the test beam facility ASTRID show that the
FMD modules are more than 99.7% efficient [122].

It is worth mentioning that this low energy component after hit merging is much smaller
in simulated data. For physics data the low energy deposit plateau after hit merging is
about an order of magnitude below the first MIP peak. For simulation data the plateau
is more than two orders of magnitude below the first MIP peak. This is seen in figure
6.10, where the single, double and triple distributions are shown for simulated data. It
is generally found that fewer triple signals are present in the simulated data. The extra
signals found in pp collisions at

√
s = 2760 GeV, is, as expected, not found in simulated

data.

Looking closer at the energy distributions as a function of strip number yield interesting
information. This is presented in figure 6.11 for both physics and simulation data. The
upper panels show the energy distributions of data and simulations as a function of strip
number in a contour plot. One notices that the overall level of the MIP peak and high
energy tail, increases going to lower strip numbers. This is expected since the lower strips
cover more forward η-regions where the solid angle covered per strip is larger, and thus
more particles hits them on average. Thus for physical particles from collisions one would
expect this rising trend. However the low energy part does not experience this increase;
it is constant over the entire strip range. The lower panels of figure 6.11 highlights this
by grouping 32 strips together and drawing their integrated energy distributions. For the
MIP peak and high energy tail the increase is clear, but it is not visible for the low energy
part.

Another peculiar thing is that there are two bumps visible around strip 180 and 50
for the very low energies. The bumps are clearly visible in the lower panel as well. This
behaviour is also not expected if it is particle signals.

The strip-independence of the low energy deposition part is a clear indication that
the low energy component is not (at least fully) caused by charged particles traversing
the detector. Thus we attribute the signals to being some sort of noise components, that
are not understood. In this context noise is a very broad terms, covering everything not
coming from the collision. In the light of these indications we impose another threshold,
Ehit, which denote the lowest energy deposition accepted for analysis after the hit merging
is done. Investigating and understanding this noise component fully should be a clear
priority in the coming time.

Figure 6.12 summarises this section by showing the effect of the sharing algorithm, and
consequent hit merging.

20In this regard ’relevant’ refer to particles connected to the collision. Cosmic rays causing a signal in
the detector is very physical, but not relevant in this context.
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Figure 6.11: Top Panels: The single energy distributions for each strip of FMD2O
for PbPb collisions at

√
s
NN

= 2760 GeV. Both physics data (left)
and simulated data (right) is shown. Lower panels: The energy
distributions of groups of 32 strips. It is found that there is a distinct
difference at the low energy deposits, where there is many more
signals in data compared to simulations. The reason for this extra
component is not understood. Since it is not in the simulations a cut,
Ehit ∼ 0.7δp, is imposed to cut away single strips with low energy
deposits.



6.2. FMD Particle Counting 93

Figure 6.12: Example of the effect of merging shared signals on the energy dis-
tributions. Shown is each individual FMD ring in pp collisions at√
s = 900 GeV.
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Figure 6.13: Example of a multiple (Gaussian convoluted) Landau fit to the en-
ergy distributions for pp collisions at

√
s = 900 GeV and PbPb colli-

sions at
√
s
NN

= 2760 GeV. Fits including 1-3 Landau distributions
are shown.

6.2.3 Counting Methods

Next step in the analysis is to take into account the high occupancy i.e., cases where
several particles hit the same strip21. This is what gives rise to the higher order MIP
peaks, discussed previously. However, a single slow-moving particle depositing a lot of
energy, and several particles depositing lower energies are indistinguishable in the FMD.
Thus when counting the actual number of charged particles hitting the FMD, this must
be taken into account. It has been tested using two distinct methods, which are described
in this section.

Energy Fit Method

Multiple Landau distributions, each convoluted with a Gaussian, as described in section 4.3,
are fitted to the energy distributions. Each of the fitted Landau distributions corresponds
to 1, 2 or 3 MIPs depositing energy in the detection element. Figure 6.13 show the results
of fitting the data with 1-3 Landau distributions respectively. The fits are shown for pp
collisions at

√
s = 900 GeV and PbPb collisions at

√
s
NN

= 2760 GeV. Even using only
a few Landau distributions yield excellent agreement with the data. For the analysis 3
Landau distribution fits are sufficient.

The energy fit method takes high occupancy into account by directly using the fits to
the energy distributions. It is done by calculating the weighted mean of the entire energy
distribution, by using the weights, ai, for the individual MIP peaks.

Nch =

∑3
i=1 iaiFi∑3
i=1 aiFi

(6.1)

where the fit (and thus the sum) is restricted to include the first 3 Landau distributions.
Fi = Li(∆)⊗Gi(∆) denotes the ith Gaussian convoluted Landau distribution as described
in section 1.4.1.

21Not to be confused with hit sharing as discussed in the previous section, where a single particle hit
several strips.
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Figure 6.14: The correction for high occupancy in the Poisson counting method.
Left panel shows the correction factor for different region sizes as
a function of the occupancy. The analytical expression is shown as
the solid black line. Right panel: The ratio between the correction
factors of the different region sizes and the analytical solution. It
is seen that the agreement becomes better and better for increasing
region sizes.

Poisson Method

The second method used for counting particles in the FMD takes high occupancy into
account by using Poisson statistics.

To illustrate this, let us start out by defining the true occupancy for a region of the
FMD as the mean number of particles per strip traversing this region.

µ = Nch/Nchannels (6.2)

Similarly the measured occupancy of a single event is given by:

µmeas = Nhits/Nchannels (6.3)

where Nhits is the number of strips with a hit above Ehit. If the assumption is made that
the distribution of particles hitting a region of the FMD is uniform, then the number of
particles hitting that region is described by Poisson statistics i.e., the probability of finding
Nch = n particles in the region is:

P (n) =
µne−µ

n!
(6.4)

The measured occupancy, which is the probability of having any number of hits in the
region, can then be related to the true occupancy:

µmeas = P (n > 0) = 1− P (0) = 1− e−µ (6.5)
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Now, for a strip being hit the average number of particles hitting it will be:

C =

∑
n>0 nP (n)∑
n>0 P (n)

=
e−µ

1− e−µ
∑
n>0

nµn

n!

=
e−µ

1− e−µ
µ
∑
n>0

µn−1

(n− 1)!

=
e−µ

1− e−µ
µ
∑
k=n−1

µk

k!
=

e−µ

1− e−µ
µeµ

=
µ

1− e−µ
(6.6)

µ can in principle be calculated analytically, but can also be found by inverting (6.5),
yielding

µ =
1

ln(1− µmeas)
(6.7)

This is done in regions of the FMD each containing 256 strips. Thus each strip being hit
in this region takes high occupancy into account by scaling with C for that region.

Figure 6.14 shows the motivation for using at least 256 strips as a region. The left
panel shows the correction factor as a function of the occupancy for several choices of
region size. Also included is the analytical calculation plotted on top as a solid black line.
The right panel shows the ratio of the correction of the various region sizes compared to
the analytical curve. It is clear that for our selection of 256 strips there is great agreement
with the analytical curve to very high occupancies. The regions used, consists of 64 strips
in 4 adjacent sectors.

Even better agreement could be reached by using 512 strips, but it comes at a cost in
the sense that it would mean larger regions in either η or φ. Having too large regions can
cause problems due to the number of particles varying over the region. Thus, we aim at
having regions with sufficient strips to ensure agreement with the analytical calculation
without washing out changes in number of particles over a region. The difference between
256 and 512 strips in figure 6.14 is around 0.1%.

As seen regions of 256 strips has good agreement until the highest occupancies. Figure
6.15 show the distribution of region occupancies for one of the FMD rings for pp collisions
at
√
s =900 GeV and PbPb collisions at

√
s
NN

= 2760 GeV. As is evident, even in PbPb
collisions the mean region occupancy of the FMD system is low enough to ensure that the
chosen regions of 256 strips are in accordance with the analytical curve.

Comparison between Poisson and Energy Fit counting

Both methods of counting are viable. Figure 6.16 show the comparison between the two
methods for each FMD ring in pp collisions at

√
s = 900GeV. The comparison for pp

collisions at
√
s = 2760 GeV and 7000 GeV and PbPb collisions at

√
s
NN

= 2760 GeV can
be found in appendix D.

In both cases good agreement is found between the two methods, with the regression
slope close to unity. The agreement is better for the inner rings, compared to outer rings.
The reason for this is not understood and must be studied more. For the results presented
in chapter 8 the Poisson method is used, since it is the simpler of the two methods. The
minor disagreements between the two methods are included as a systematic uncertainty.
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Figure 6.15: Occupancy distribtion in regions of 256 strips in FMD2I for pp colli-
sions at

√
s = 900 GeV, 2760 GeV, and 7000 GeV, as well as PbPb

collisions at
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6.2.4 FMD Acceptance

As any other detector, the FMD does not have perfect acceptance. The issues with accep-
tance can be grouped into three types of acceptances, that will be corrected for separately:

η acceptance The edge of the outermost η bins in each ring might not coincide with the
actual η value of the outermost strip. This means that the outermost bin might
be only partially full, and thus consist of fewer strips. This can cause corrections in
those bins to blow up, as well as general edge effects from rapidly changing acceptance
compared to limited resolution. Thus a cut is imposed to cut away the outer partial
bin. In section 6.8 comparisons between the analysis with 0,1 or 2 bins cut away will
be discussed.

φ acceptance The FMD is in principle built as a detector with full φ-coverage. However,at
the time of construction, it was not possible to manufacture silicon wafers at the
quality required for the FMD, in sizes bigger than 6”. To maximise the η coverage
it was decided to cut away the corners of the individual sensors (as seen in figure
4.6). Thus the outermost strips span a shorter arc length than the rest, and therefore
does not have full φ acceptance. This is solved by geometrically calculating the ratio
between the length of the actual strip and the length of the strip if the corners had
been there, and correcting the signal by this ratio. An example of this correction is
shown in figure 6.17.

Dead Channels Over time individual strips will permanently malfunction. Typically,
what will happen, is that individual strips become completely unresponsive. But
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Figure 6.16: Comparison between the Poisson and Energy fit counting methods
for pp collisions at

√
s = 900GeV. Overall good agreement is found

between the two methods in the inner rings.
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Figure 6.17: Example of the φ-acceptance of an inner ring. There is full azimuthal
coverage until the outermost strips, where the acceptance drops due
to the corners being cut off on the FMD silicon wafers.

in principle one could also have strips malfunction such that they are giving a high
signal every event, regardless of whether or not there is a hit. This latter effect has
not been observed yet however.

The dead strips must be taken out of the analysis, and a correction for the missing
strips must be made. A channel in the FMD is considering active and well if it fulfils

0.5 < gi < 5

0 < ni < 10 (6.8)

where gi and ni corresponds to the gain and noise of strip i respectively.

For the initial run period at
√
s = 900 GeV the fraction of dead channels amount to

0.93%. Due to a better implementation of the software on the front-end electronics,
the amount of dead channels decreased to 0.25% after the initial run period.

It is found that the 0.25% stems almost solely of a single V A13 chip in FMD1I being
entirely faulty. This particular dead region was also pointed out in in the figures
4.11, 4.11 and 4.11.

The correction factor for a given (η, φ)-bin is given by calculating the ratio of working
strips to the total number of strips in that bin.

6.3 SPD Particle Counting

Counting particles in the SPD inner layer is simpler than in the FMD case.
The analysis procedure does not make use of the tracklets, but instead only uses the

clusters from the inner layer. In some sense the analysis procedure is very similar to the
one used for the FMD rings i.e., the inner layer is seen as a silicon layer with no tracking
information.

In the reconstruction of the SPD data, both the tracklets and unused clusters were
saved as described in section 5.3. Thus the number of particles in the SPD in a given η
range is simply given by:

Nch =
∑
t

1 +
∑
c

1 (6.9)
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Figure 6.18: The frequency of various cluster patterns in the SPD [123]. The
yellow bars are for physics data and the black points are for simula-
tions. It is seen that 68% of hits in the SPD are single pixels being
hit. Less than 3% of hits consist of more than two adjacent pixels
firing.

Here the sum is over c and t, which are the unused clusters and the tracklets in the
first layer respectively.

The big challenges in the FMD with hit sharing and high occupancy are not present in
the SPD. Due to the very fine segmentation in η it is very unlikely to have multiple signals
in the same pixel, which removes the need for taking high occupancy into account.

The individual clusters can consist of signals in several adjacent pixels. But again, due
to the fine resolution, it is unlikely that two particles would hit adjacent pixels.

Therefore even multi-pixel signals are very likely to be just a single particle. Further-
more, since the SPD is a pixel threshold detector, the deposited amount of energy is not
available, and thus no hit merging could be done if needed.

Figure 6.18 show the frequency of the various cluster signatures in the SPD, both for
physics data and from simulated data [123]. 97% of all cluster are either single pixel clusters
or clusters made up of two adjacent pixels.

6.3.1 SPD Acceptance

As in the case of the FMD there are similar acceptance issues regarding the SPD inner
layer.

η acceptance In the same manner as in the FMD, the first η bin is cut away, since it
might be partly filled with pixels only.

φ acceptance The SPD is designed with full 2π φ-coverage.
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Figure 6.19: The actual φ-acceptance of the SPD as a function of η. As discussed
in the text, cooling issues has meant that parts of the SPD is turned
off. This leaves large holes in the acceptance.

Dead channels The SPD have two contributions to dead channels. The first is malfunc-
tioning pixels, connectors, etc., analogous to the malfunctioning strips in the FMD.
This type of dead channels only amount to less than 1 % of the number of pixels [123].

The second contribution is much bigger. The cooling requirements for the SPD are
very large. And so far the cooling capabilities of the SPD has not been sufficient.
The unfortunate consequence is that parts of the SPD has been turned off for data
taking to avoid overheating. Thus while the SPD is designed with full φ-coverage,
it does not have it, due to turned off channels. Figure 6.19 shows the acceptance
correction as a function of η for the running conditions, and later on, figure 6.26
shows the large holes in the (η,φ) acceptance of the SPD.

6.4 Secondary particles

Particles can be grouped as either primary particles or secondary particles. For this work
all particles stemming directly from the initial collision are considered primary particles.
On the other hand, particles created by decays, interaction with materials on the way to
the SPD or FMD is labelled secondary particles.

This section will discuss the secondary contamination in both detectors, as well as
describe how to correct for secondary particles.

We start out by looking at the amount of secondary particles hitting each detector, as
well as where they were created. This is done using simulated data. If the implemented
virtual model of the experiment, as well as the physics processes in the transport model,
is accurate, then the simulation describes the actual physics collisions well. Figure 6.20
show an example of the origin of all secondary particles in the central (z, r) region. It is
immediately possible to identify sub-detectors, support structures etc., by the secondary
particles created in their material. Figure 6.21 shows a similar example, but this time only
the the origin of the secondary particles eventually hitting one of the FMD rings.

What is apparent is that there is a vast difference in the amount of material in front
of the SPD and FMD respectively. The SPD, sitting just outside the beam-pipe, has very
little material in front of it, and thus a low secondary particle contamination. The FMD
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Figure 6.20: The origin of secondary particles within the central region of ALICE.
Secondary particles created by interaction with the detector material
immediately show the detailed structure of the individual detectors,
and their support structures.

Figure 6.21: The origin of the secondary particles, which eventually hit the FMD
system.
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on the other hand has a considerable amount of material in front of it.
Another point worth bringing up is that secondary particles hitting a detector element

in a certain region in η is quite likely to originate from that same η region. Thus, most
secondary particles created continues in a similar direction as their primary ancestor. This
is illustrated in figure 6.22, which show the origin of secondary particles hitting each of the
individual FMD rings.

Using figure 6.20 as a reference it is possible to define geometrical shapes in (z, r),
that correspond to certain detectors. Summing up everything inside these shapes will thus
yield the secondary particles contribution from that selection. For this study, five different
selections are sufficient to get a clear picture of the origin of the secondary particles hitting
the SPD or FMD. These are:

Early Decay This is used as a common name for all secondary particles created inside the
beam pipe.

Beam Pipe These are the secondary particles created in the beam pipe material, as the
primary (or early decay secondary) particles traverse it.

ITS These secondaries are created inside the ITS volume.

FMD These secondaries are created inside the FMD volume.

OTHER All the rest of the secondary particles are grouped together. This is viable, since
the vast majority of secondary particles hitting either the FMD or SPD falls into one
of the four other categories.

In figure 6.23 the total contamination of secondary particles for both the FMD and
SPD region is shown. In the region of η-overlap between FMD3I and FMD3O i.e., around
η ∼ −2, contributions from each sub-detector is added together, giving a peak structure. In
figure 6.24 the same information is shown per sub-detector. It is seen that the secondary
particles hitting the FMD stems mainly from itself and the ITS. Going more and more
forward in η yields a bigger and bigger contribution from the beam pipe, since the effective
path length through the beam pipe becomes longer and longer22. The amount of secondary
particles hitting the FMD is in some areas almost twice as big as the amount of primaries
hitting it. In the SPD the amount of secondaries is in the order of 10% of the amount of
primaries.

It is necessary to correct for the secondary particles, in order to retrieve the primary
distribution. This can either be done in a separate step, which we label the secondary
correction, or be done later on during the unfolding process, described in section 6.6.

The secondary correction is done by using simulations, to determine the amount of
secondary particles compared to the total number of particles in each (η, φ) bin. Thus, the
correction factor for a given (η, φ) bin is:

Csec(η, ϕ) =

∑
iN

i
ch, prim(η, ϕ)∑

iN
i
ch, sec + prim(η, ϕ)

(6.10)

The sums run over the simulated data sample, having a valid vertex and trigger. The total
number of charged particles hitting the chosen FMD bin in event i is denoted N i

ch, sec + prim.
Similarly N i

ch, prim is the number of primary charged particles as given immediately after

22This is not the only reason though. At z ∼ −35 cm, the Beryllium beam pipe stops, replaced by steel,
which create many more beam pipe secondary particles in FMD3I, compared to the other rings.
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Figure 6.22: The origin of secondary particles hitting each individual FMD ring.
The top panel show the two outer rings, and the middle panel show
the inner rings of FMD2 and 3. The lower panel shows FMD1, where
the scale on the x-axis is different. It is seen that the majority of
secondary particles continue in roughly the same direction as their
primary ancestor particle.
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Figure 6.23: The origin of secondary particles hitting either the FMD or SPD
inner layer as a function of η. In regions of detector overlap the con-
tributions are summed for each detector, which explains for instance
the ’peak’ in the overlap between FMD3I and FMD3O at η ∼ −2.
The grey area show the primary particle distribution.

the collision. Thus the secondary correction yields a (η, φ) map of the average number of
primaries compared to total number of particles. The secondary maps varies slightly with
vz, and thus the secondary correction is performed independently in vz bins of 2 cm.

Left panel of figure 6.25 shows an example of a secondary map from FMD31. The right
panel shows the same map, with the edges cut away (as described in section 6.2.4), and
with data superimposed as black boxes. This serve as a good test that the simulation and
data actually do cover the same region.

Figure 6.26 shows the same for the SPD. The distinct holes in acceptance, due to lack
of cooling, are clearly seen.

Comparison of the effects of doing the secondary correction or letting the unfolding
handle the secondaries follows in section 6.8.

As a closing remark on secondary corrections, it is useful to keep in mind that any
analysis using the approach of correcting for secondary contamination by the secondary
maps is said to be secondary corrected. Analyses that handle the secondary contamination
in the unfolding is in this terminology not said to be secondary corrected. Thus in essence
the term secondary correction only refer to the separate correction procedure, even though
secondary particles are removed using both methods.

Material budget overhaul

The very studies of the origin of secondaries presented in the previous section, concluded
at a early time that the description of the ITS material budget in particularly the forward
region was not accurately enough described in the simulation. Thus it prompted a complete
overhaul of the ITS geometry implementation from the spring of 2010 and throughout that
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Range Correction factor
0.00 < pT < 0.17 1.00
0.17 < pT < 0.40 1.00 + 0.3(pT − 0.17)
0.40 < pT < 0.60 1.07 + 0.9(pT − 0.4)
0.60 < pT < 1.20 1.25 + 0.42(pT − 0.6)
1.20 < pT 1.50

Table 6.2: Strangeness correction parametrisation.

year. This was crucial to particularly the FMD analysis effort, due to the large secondary
particle contamination, as well as the lack of any tracking capabilities (since tracking
detectors can immediately cut away secondary particles, not pointing back to the nominal
interaction point.)

The changes made was a great leap forward for the analysis efforts of the forward
detectors. The case of the material budget is still not closed however. There are still
suspicions that there might still be minor inaccuracies in the material description in the
forward regions. There are plans in place to hopefully once and for determine this. These
will be discussed in section 8.5

6.5 Strangeness Correction

In the central (|η| < 0.5) region, there is found a discrepancy between simulations and
data in the amount of secondary particles, containing strange quarks [124]. Thus too few
strange secondary particles are included in the simulations, and this must be corrected for.

The excess of strange secondary particles in data is found to be dependent on pT . The
correction factor parametrisation as a function of pT is found in table 6.2.

This parametrisation is applied to each secondary particle in a special simulation run,
and then compared to a reference simulation. The strangeness correction factor is thus

Figure 6.27: The strangeness correction factor as a function of η, given as the
ratio between a special simulation, where each secondary particle is
weighted in accordance to data, and a reference simulation.
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given as the ratio between the two. The correction factor as a function of η is seen in figure
6.27. It is found to be roughly a 2% correction over all η.

However it must be stressed that this is a quite ill-determined correction. It assumes
that all conditions in the midrapidity region holds for the forward region as well. However
strangeness production could in principle easily depend on η, 〈pT 〉 or other quantities
changing when moving to forward regions. To illustrate this we assign a relative error of
100% to the correction such that the correction becomes 2± 2%.

6.6 Unfolding

If one had ideal detectors, the measured distribution of a quantity would by definition also
be the ‘true’ distribution of that quantity. However detectors are not ideal systems. Thus
in real detectors the actual ‘true’ measurement of a quantity can be complicated by the
following effects [125]:

Limited acceptance The detector acceptance is generally less than unity, as described in
sections 6.2.4 and 6.3.1.

Transformation Often, the desired quantity is not measured directly. Instead another
related quantity is measured. The transformation from one to the other can have
non-linear terms in some detector components. An example on such a transformation
is the measurement in the FMD system, where the energy deposited in the Silicon
strips are measured, and then transformed into a number of particles.

Finite resolution Measurements conducted will be smeared, due to finite resolution of the
detector.

All these effects can be corrected by unfolding the measured distribution. Unfolding is
a term mostly used in heavy ion physics. The concept of unfolding however is also known
in mathematics in general as inverse problems, and in other areas of application it is known
as deconvolution or unsmearing.

The basic idea behind all unfolding techniques is to construct the detector response
in the form of a response matrix. The response matrix connects the true signal to the
measured signal in the detector. The correlation given by the response matrix is then used
recover the true signal.

The relation between the measured distribution m̄, and the truth distribution t̄ is thus
given by:

m̄ = R̂t̄ (6.11)

where R̂ is the response matrix.
Unfolding aims to find the truth distribution by matrix inversion, either directly or by

some approximation i.e.,:

t̄ = R̂−1m̄ (6.12)

There exists several methods of unfolding. This work concentrates on two methods, namely
the so-called Bayesian iterative unfolding and Single Value Decomposition (SVD) unfolding.

As discussed in section 5.6 the response matrices used in this work are constructed
using special flat multiplicity simulations. This is necessary, since it is imperative that the
very high multiplicity part of the response matrix is well populated. Figure 6.28 shows an
example of a response matrix.
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√
s =900 GeV pp

collisions. Each generated true multiplicity is propagated through
the detector simulation and analysis code, resulting in a distribution
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6.6.1 Bayesian Iterative Unfolding

One way of doing the unfolding is using a technique known as Bayesian iterative unfolding.
The starting point is Bayes’ Theorem

P (A|B) =
P (B|A)P (A)

P (B)
(6.13)

where P (A) and P (B) are probabilities of two outcomes A and B, and P (A|B) is the
conditional probability of having A under the condition of B being true (and vice versa
for P (B|A)).

Let A denote a collision with a given true multiplicity, and B is collision with a given
measured multiplicity in the detector. P (B) is then the measured multiplicity distribution,
and P (A) is the true distribution, we aim to determine through unfolding. Similarly
P (B|A) is identified as the response matrix.

The two unknown quantities of (6.13) is the true distribution, P (A) and P (A|B), which
is sometimes referred to as the smearing matrix. Determining these is the main ingredient
of the Bayesian iterative unfolding method.

It can be done by following a iterative procedure by D’Agostini [126, 127]. Equation
(6.13) is rewritten as:

Stm =
RmtPt∑
t′ Rmt′Pt′

(6.14)

Stm denotes the smearing matrix entry (t,m) and Rmt is the response matrix. Pt is an a
priori guess of the true distribution. The denominator in (6.14) comes from the concept of
the detector response i.e., that the true distribution folded with the response matrix will
yield the measured distribution.
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Figure 6.29: The unfolded solution from Bayesian unfolding, stopping the unfold-
ing after different numbers of iterations. It is seen that few itera-
tions are needed. For this work 20 iterations is used for the Bayesian
method. The lower panel shows the ratio of the different solutions
to the solution involving 30 iterations. It is found that going from 20
to 30 iterations changes to solution with at maximum 1-2% locally.

The choice of prior distribution Pt is somewhat arbitrary. One can choose for instance
the measured distribution as prior, or even a flat distribution if no previous knowledge of
the distribution is available. The choice of prior has very little effect on the solution, but
mainly on the number of iterations needed for the unfolding [128].

Having found the smearing matrix, Stm from (6.14) one can determine the unfolded
solution:

P †t =
∑
m

StmMm (6.15)

Here Mm is the mth value of the measured distribution. If P †t = Pt, then Pt is the exact
true unfolded distribution. If not P †t will be between Pt and the true distribution [126].
The iterative part of the method is that P †t is used as the next prior for the next iteration.
In general the number of iterations can be decided on beforehand, or one can set up a
convergence criteria for when the difference between P †t and Pt is within a predefined
tolerance.

For this work the Bayesian unfolding is stopped after a predetermined number of itera-
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tions. Figure 6.29 show several Bayesian unfolding with different number of iterations for
pp NSD collisions at

√
s = 900 GeV for |η| < 2.4. It is found that the unfolded solutions

changes only slightly after just 5 iterations. Going from 20 to 30 iterations changes the
solution less than a percent. For this work 20 iterations are used whenever the Bayesian
method is used.

6.6.2 Single Value Decomposition Unfolding

The SVD unfolding is also occasionally referred to as χ2 minimisation unfolding. The
basic principle behind SVD unfolding is to construct a quantity reminiscent to a normal
statistical χ2, and through iterations minimise this quantity.

The χ2 definition used is this work and others [24,129], consists of a sum of the square
of residuals and a so-called regularisation choice penalty factor, βF (d̄):

χ2(d̄) = (m̄− R̂d̄)T Ĉ(m̄− R̂d̄) + βF (d̄)

=
∑
o

(
mo −

∑
tRotdt

eo

)2

+ βF (d̄) (6.16)

Here R̂ denotes the response matrix and m̄ is the measured raw multiplicity distribution
vector. Ĉ is the covariance matrix of m̄. The only non-zero terms of Ĉ are in the diagonal,
and are given by the inverse of the statistical errors squared for a given multiplicity. The
variable d̄ is the unfolded guessed solution vector. χ2 is minimised once the guessed dis-
tribution multiplied with the response matrix is equal to the measured one23. β and F (d̄)
deals with the concept of regularised solutions. Solving (6.16) without the last term will
often give rise to highly oscillating (unphysical) solutions. By imposing a regularisation
one imposes both a smoothness requirement and a functional bias on the solution.

Equation (6.16) presents χ2 both in matrix and sum notation. In the latter mo denotes
the o′th entry of m̄, i.e the value in observed multiplicity bin m. In the same fashion dt
denotes the value in the unfolded (true) multiplicity bin t. eo is the statistical error on the
observed multiplicity.

Various functional forms F (d) can be used for regularisation. For this work the following
are used:

F (d̄) =
∑

t

(
dt−dt−1

dt

)2
, pol0 : Favours constant function (6.17)

F (d̄) =
∑

t

(
dt−1−2dt+dt+1

dt

)2
) , pol1 : Favours linear function (6.18)

F (d̄) =
∑

t

(
ln dt−1−2 ln dt+ln dt+1

dt

)2
, log : Favours exponential function (6.19)

Equation (6.17) is minimised for guessed distributions with small variations from bin to
bin. Similarly (6.18) favours distributions where the slope difference between adjacent bins
is minimal and finally (6.19) favours distributions where the logarithmic slope differences
between adjacent bins are minimal i.e., exponential distributions. They will be referred to
throughout the text as pol0, pol1 and log24 regularisation functions.

The main objective when using this particular unfolding method is to determine the
best choice of regularisation function and weight. If β is too small the solution could

23And thus the guessed distribution is equal to the true distribution.
24The best name for this regularisation function can be discussed. Depending if one prefers to focus on

the favoured solution, or the form of the regularisation function it can be labelled exp or log respectively.
In this work the latter is used.
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Figure 6.30: Example of the effects of the choice of regularisation weight. All un-
foldings are done by using a pol1 regularisation function. Top panel:
Extreme β values yields either highly oscillating under-regularised
solutions, or over-regularised solutions. Middle panel: Less extreme
values of β. Still the solutions are over- and under-regularised. Bot-
tom panel: β values that yields sensible regularisations. These are
obviously the desired regularisation weights for this regularisation.
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Figure 6.31: Illustration of the various characteristic regions of a multiplicity dis-
tribution. The quality of the unfoldings are assessed in each region
independently. The criteria used for the boundaries between regions
are indicated.

be wildly oscillating; if β is too large the solution will be measurement-independent, and
the solution will just describe the choice of regularisation function. Oscillating solutions
are said to be under-regularised, and solutions that are measurement independent are
said to be over-regularised. These concepts are illustrated in figure 6.30, where a single
simulated distribution is unfolded using a wide range of regularisation weights. The MC
truth distribution is included for comparisons with the individual unfolding solutions.

6.6.3 Unfolding Quality Measure

Determining the success of the unfolding by visually comparing the unfolded distribution
to the truth distribution is not enough. Therefore some way of quantifying the quality of
the unfolding is needed.

We start by defining three characteristic regions of multiplicity distributions:

The peak This is the region where the multiplicity distribution rises, reach a maximum,
and then starts decreasing again. Characteristics of the peak is that the slope of the
distribution changes rapidly.

Constant exponential slope After the peak follows a region where the exponential slope
of the distribution is fairly constant.

Low statistics At high multiplicities the data sample runs low in statistics. This is consid-
ered a region for itself, since the limited statistics could have a significant influence
on the quality assessment of the constant slope region.

For each of these it is possible that a given unfolding would be more or less successful.
Thus it makes sense to gauge the quality of the unfolding of each of these regions separately.
In the ideal case the best choice of unfolding would be the same in each region, but this is
not necessarily the case.
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Where to exactly make the distinction between each region (especially when analysing
various η intervals) is not predetermined. For this work the limits are chosen such that the
constant exponential slope start when the distribution has fallen to 50% of the maximum
value of the peak. Similarly the onset of the low statistics region is defined as when the
probability of a given multiplicity falls below 10−4. Figure 6.31 illustrates the various
regions. Variations of the limits between the regions have been tested. The conclusions
presented in the following have been the same for these variations.

The quality of a given unfolding can be assessed by the following quality parameter:

Q1 =
1

t2 − t1 + 1

t2∑
t=t1

∣∣∣∣Tt − Utet

∣∣∣∣ (6.20)

Tt and Ut denote the value of the the tth multiplicity bin of the truth and unfolded distri-
butions respectively, and et is the error on Ut.

Q1 is normalised to be independent of the region (going from t1 to t2) by the terms in
front of the sum in (6.20). It was decided not to let the sum be in quadrature (like in in
a traditional χ2), in order to not give too much importance to possible massive single-bin
deviations. Like for a traditional χ2 the ideal unfolding should have a Q1 around unity. If
Q1 is less than unity, the errors are overestimated. If it is above unity, it is not the perfect
unfolding.

The best choice of unfolding can thus be decided upon, by examining Q1 of the various
regions. The solution that globally best minimises Q1 is the best unfolding. The Q1 of
the individual regions are additive, by weighting with the region sizes and renormalising.
However, by keeping Q1 separated into regions, it is possible to put particular emphasis
on a specific region. In one analysis, it might be crucial to retrieve the high multiplicity
tails accurately, while in another analysis it might be the peak region, which is of most
importance. Thus it is possible to fine-tune the unfolding parameters to fit each analysis.

To test the unfolding quality, simulated data is used. The following discussion is based
on PHOJET simulations used as data distributions, with the flat PYTHIA simulations
used for response matrices. Using normal PYTHIA simulations as data distributions have
also been tested, and the conclusions are the same.

Figure 6.32 show Q1 for multiplicity distributions in |η| < 2.4 using SVD unfolding
with pol0, pol1 and log regularisations for a wide range of regularisation weights. Included
in the plot is also Q1 for the Bayesian unfolding method. Since it does not have any
regularisation parameters it is represented as a horizontal line. Similar plots for a more
narrow η-interval, |η| < 1.0, can be found in appendix E.

Evaluating figure 6.32 yield:

Peak For the peak region it is found that best SVD solution is pol1 regularisation with β
in the order of 10−2 − 1. pol0 and log has minimas in β around 1-10 and 102 − 103

respectively, but are not as good a solution as pol1. However, the best match for the
peak region is the Bayesian unfolding, which has a lower Q1 than any SVD solution.

Constant exponential slope For the constant exponential slope region all three SVD regu-
larisation functions does very well at various β values. The minima of the three SVD
regularisations are for β around 10 (pol0), 10 (pol1) and 105 (log). The Bayesian
unfolding is marginally worse than the three SVD solutions for this region.

Low statistics For the high multiplicity region the best of the SVD regularisations are
pol0 and pol1 at β = 103. As in the case of the constant exponential region log is
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continuously falling having its minimum at the high limit of the survey. Bayesian
unfolding does equally well as pol0 and pol1 for this region.
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Figure 6.32: The unfolding quality parameter, Q1, for the three distinct multi-
plicity distribution regions for |η| < 2.4 . SVD unfolding with three
regularisation functions are checked over a large range of β weight
parameters. Included is also the Bayesian unfolding as the horison-
tal dashed red line. The Bayesian unfolding is found to be the best
solution.

As discussed, the log regularisation is falling continuously in both the constant expo-
nential and low statistics regions. However for the Peak, log regularisation rapidly becomes
worse for very high β. Thus, even though the minima is perhaps not reached for the regions
besides the peak, there is found no reason to expand the β range surveyed. This is due to
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the peak region becoming worse and worse at higher regularisation weights, and thus the
overall solution will never become the best.

Figure 6.33 shows a comparison of the best SVD and Bayesian unfolding for |η| < 2.4.
Overall it is found that the Bayesian unfolding is the best solution for unfolding. Of the
SVD regularisations it is found that pol1 is the best choice with a β around 1. The next
best choices for pol1 are also included in figure 6.33. These illustrate an issue with the SVD
method at broader η-intervals. Lowering the β value increases the accuracy of the very first
bins. But doing so, causes oscillations in the higher multiplicities. This is not seen for the
narrow η-intervals, the oscillations set in at lower β-values. Thus for the narrow η-intervals
the SVD unfolding is a reasonable option, and has been used by ALICE previously [73,74].

Figure 6.33: The best unfolding solutions for |η| < 2.4. It is found that Bayesian
unfolding overall show best agreement with MC truth. SVD unfold-
ing with pol1 and β = 1 is the best SVD solution. The insert show
the very first multiplicity bins. It is found that β = 10−1 gives better
agreement in the very low bins, but the oscillations start appearing
at higher multiplicities. The lower panel show the ratio to MC truth
for the various solutions. The oscillations of the under-regularised
solutions are seen.
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6.7 Trigger-Vertex Bias Correction

After unfolding the measured distributions, they need to be corrected for trigger and vertex
inefficiency. This is referred to as the trigger–vertex bias correction.

At very low multiplicities, few particles hit the detectors, which makes reconstruction
of a vertex increasingly difficult, and thus the vertex efficiency decreases. Similarly few
particles makes it difficult for the trigger algorithms to recognise a given collision trigger.

The trigger–vertex bias correction is done by simulations, and is given by:

C =
P (Nch,MCNSD)

P (Nch,ESDNSD)
(6.21)

The subscript MCNSD denote events that have a vertex between −4 < vz < 4, and are
NSD events according to the simulation truth. Similarly the subscript ESDNSD denote
events, where a vertex is reconstructed within −4 < vz < 4, and that are triggered as a
NSD event in the analysis.

The correction for pp collisions at
√
s = 900 GeV is shown in 6.34. As seen the main

part of the correction is in the very low multiplicity region. A thing worth mentioning
is that the correction becomes slightly less than unity in some range before ending at
unity for higher multiplicities. This drop below unity is caused by the triggering algorithm
misidentifying SD events as NSD events. This is not clearly visible in figure 6.34.

For the very broad η-intervals the limited statistics becomes an issue. This is due to
the extremely low probability of having a triggered NSD event with a vertex but with no
particles over 8 units of η. As an example, the first point (Nch = 0) of the −3.4 < η < 5.1
curve in figure 6.34, stems from only 3 ESDNSD events, and 5400 MCNSD events out of
the roughly 3 millions events of the simulation. This obviously means that there will be a
huge error assigned to the correction (which is already very large) in this point. This error
can in theory be reduced drastically by running over many times more simulated data. For
this work, this has not been possible.
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Figure 6.34: Trigger–Vertex bias correction factor for various η-intervals for pp
NSD collisions at

√
s = 900 GeV. It is seen that it only affects the

very low multiplicity bins. For the broader η-intervals, the uncer-
tainty on the correction becomes quite large for the first few multi-
plicity bins, due to lack of statistics.
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6.8 Defining Analysis Parameters

This section is devoted to presenting some of the choices of analysis parameters, used for
the final analysis results presented in chapter 8.
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Figure 6.35: The analysis effect of letting the response matrix correct for sec-
ondary particle contamination, or having a separate statistical sec-
ondary correction. As can be seen there is no significant difference.
The figure is from |η| < 2.4 PHOJET simulations using flat multi-
plicity simulations for response matrices.

Unfolding method The first topic covered is the choice of unfolding method. This choice
picks up the discussion from section 6.6.3. There it was found that overall the Bayesian
unfolding is better than any of the regularisations of the SVD unfolding. Particularly it
was found that for wide η-intervals, it is not possible for the best SVD regularisation, pol1,
to obtain a great solution for the very low multiplicities, while avoiding the oscillating
behaviour of a under-regularised solution at higher multiplicities. The best SVD solution
thus overcounts at the very low multiplicities.

When this is coupled with the very high trigger–vertex bias correction factors at very
low multiplicities for wide η-intervals, as well as the huge errors, it is clear that this pose
a problem.

Correcting a unfolded distribution, that is already too high, with a factor in the order of
103, having a relative error above 50%, obviously is not desirable. It can give complications
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with the zero bin being much too high, when renormalising the multiplicity distribution,
and thus pushing the overall distribution significantly downwards.

The Bayesian unfolding does a better job at the zero bin, and thus is not as affected
by this. However also in this case, one should keep the massive uncertainty of the first bin
in mind.

Thus the choice is made to use the Bayesian unfolding method. The performance of the
SVD unfolding will be used to estimate the uncertainty on the results due to the unfolding.
This is discussed in the next chapter.

Figure 6.36: Comparisons of the analysis effect of changing the amount of accep-
tance gaps allowed. It is decided to use the setting, where a single
edge bin in each FMD ring and the SPD is but away.

Secondary particle contamination The next test presented revolves around using the
correction maps for secondary particle correction as described in section 6.4, or letting the
unfolding handle it. The result is shown in 6.35.

It is found that it makes very little difference which approach is used. At the very low
multiplicities, letting the unfolding handle the secondary contamination is closer to the
simulation truth, whereas the multiplicity tail show very slightly better agreement for the
separate secondary correction approach.

For the analysis, it is decided to use the method of removing the secondaries as part of
the unfolding in pp collisions.
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For PbPb collisions the separate secondary correction is used, due to the very high mul-
tiplicities of very central collisions. Including secondary particles, a very central collisions
can create more than 30000 particles in the detector acceptance, which means the response
matrix would be at least 30000× 30000, and thus computer intensive.

Acceptance gaps For the remainder of this section the focus is on some of the tests
performed on physics data to see the differences in the unfolded multiplicity distributions
depending on various choices of parameters. Common for the plots is that they show
multiplicity distributions for a narrow central η-interval (|η| < 1.0) and a wider η-interval
(|η| < 2.4).

Figure 6.36 shows the result of changing the size of the acceptance gaps in the FMD/SPD
system. This is tested by removing 0,1 or 2 η-bins on the edges of each FMD ring in
separate analyses. Furthermore another test is run where the chosen vertex-z range is
−10 < vz < 10, and 2 bins are cut away. Of the four setting it is the one with clearly the
biggest acceptance gaps.

Included in figure 6.36 is the ratio of the settings to the chosen setting (1 bin cut away,
−4 < vz < 4). It is found that for the setting where the vertex range is enlarged point
to point oscillations occur compared to the others. For the three remaining settings little
variation is found.

Response matrix event generator Now we turn to looking at the generator used for
the response matrix. There are three possibilities in ALICE as discussed in section 5.6:
PYTHIA, PHOJET and the special flat multiplicity PYTHIA productions. The results are
shown in figure 6.37. Each of the test simulations are run as anchored in run 118506, such
that the number of events are comparable. It is clearly seen that using the flat multiplicity
runs as response matrix greatly enhances the multiplicity range (for a limited number of
events). Overall there is good agreement between all three in the range where all three has
adequate statistics. In the very low multiplicities deviations are seen. There, the ratios
differ significantly. However, since the distribution is very steeply rising in that region, a
small uncertainty in the particle multiplicity (x-axis) will translate into a very big difference
in the probability (y-axis).

Vertex range Next test elaborate on the selection of vertex range. Figure 6.38 show the
unfolded multiplicity distributions using four different vertex selections. The selections are:

� −10 < vz < −4 and 4 < vz < 10, which both has big acceptance gaps between the
FMD and SPD.

� −4 < vz < 4, which is the chosen vertex selection which has no acceptance gap
between the FMD and SPD.

� −10 < vz < 10. This setting contains the previous three settings.

It is found that the vertex selections with big acceptance gaps between the FMD and SPD
causes the results to oscillate. For the combined setting oscillations are still present, but
to a smaller degree. This is a consequence of combining regions with big acceptance gaps
(−10 < vz < −4 and 4 < vz < 10), with a region of almost no gaps (−4 < vz < 4), thereby
lowering the relative amount of gaps over the entire range. From figure 6.38 it is clear that
the best choice for analysis is to use events inside −4 < vz < 4.
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Figure 6.37: Effect on the analysis of changing the event generator used for the
response matrix. Each sample is run over the same amount of events.
It is found that the flat PYTHIA production has a far superior mul-
tiplicity range.
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Summary of parameter choices To summarise, in this section the best analysis pa-
rameters have been determined. Thus the final analysis is done for events in the range
−4 < vz < 4 cm, where we cut away the first edge bin of the η-acceptance for both FMD
rings, and the SPD. Furthermore it has been illustrated that the flat multiplicity distribu-
tions are best suited as the input for the response matrices. It is also found that letting
the response matrices deal with the secondary particle contamination or performing the
statistical secondary correction makes little differencce. For pp the former approach is used,
where as the latter is used for PbPb collisions.

For unfolding method the Bayesian method yield better agreement to simulated truth,
and is therefore used.

Figure 6.38: Comparisons of the analysis effect when using different z-
vertex ranges. The setting with the minimum acceptance gaps
(−4 < vz < 4) is chosen.
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Chapter 7

Systematic Errors

This chapter is devoted to the treatment of systematic errors for multiplicity distributions.
The systematic errors are composed of three parts; the systematic error on the number of
measured particles in a given event, a contribution from the trigger–vertex bias correction,
as well as a contribution from the choice of unfolding method.

7.1 Uncertainty on event multiplicity
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Figure 7.1: Effect of scaling the material density of all of ALICE up and down
by 10%. The left panel shows the ratio of the changed material sim-
ulations to the reference simulations. The change in material yields
a 7% difference. The right panel shows the same for the SPD. The
effect of adding and removing material is only around 1%.

The following effects are considered for determining the systematic error on the event
multiplicity.

Material budget The accuracy of the description of the material budget is by far the
biggest contribution to the systematic error in the FMD, and also constitute a significant
part for the SPD. The accuracy of the material description directly effect the response
matrix, and thus the unfolded solution.

The systematic error from the material budget is estimated by using special simulations,
where the material density of every single component in ALICE is scaled up and down by
10%. These special runs are then compared to a reference simulation.

125
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For the FMD this yields an estimate of the systematic error of ∼ 7% on the measured
multiplicity. Since the amount of material in front of the SPD is much less, the effect is
smaller there. The estimate of the systematic error in the SPD is ∼ 2%. For both detectors
the estimate can be seen in figure 7.1.

While it is quite unlikely that there are global inaccuracies in the material description
of this magnitude, it could however occur locally. This might especially be true in for-
ward regions, which do not only house the forward detectors. The service structures of
the central barrel detectors are also located in this region. These include large amounts
of bundled cables, which can not be modelled individually, but instead are modelled as
effective volumes.

Section 8.5 will discuss how to determine how accurate the current description is.

Event generator The implemented physics of different input generators leads to differ-
ences in the production of secondary particles, and thus yields a systematic uncertainty.
This contribution is estimated by testing PHOJET and PYTHIA, and using the ratio of
secondary particles produced as the uncertainty estimate. The effect amounts to ∼ 2% in
both the FMD and SPD. Illustrations of this are shown in figures 7.2 and 7.3 for the FMD
and SPD respectively.
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Figure 7.2: Effect of the choice of event generator in FMD3I. The left panel shows
PYTHIA/PHOJET ratio as a function of (η, φ). The right panel
shows the projection onto the η-axis. The choice of event generator
yields a 2% difference.

Strangeness Correction The strangeness correction is not well determined as described
in section 6.5. Thus it was decided to impose a large systematic uncertainty of 2% (= 100%
relative error) to it for both the SPD and FMD.

Sharing cuts Variation of Ehit and Ehigh, discussed in section 6.2.2, yields a ∼ 2% un-
certainty in PbPb collisions, and ∼ 3% in pp collisions. Concretely, this estimate is gotten
by changing Ehigh and Ehit up and down with 0.1EMPV , and comparing the results to the
reference analysis. This systematic effect only applies to the FMD analysis.
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Figure 7.3: Effect of the choice of event generator in the SPD. The left panel shows
PYTHIA/PHOJET ratio as a function of (η, φ). The right panel
shows the projection onto the η-axis. The choice of event generator
yields a 2% difference.

Counting methods Two counting methods have been tested, the Poisson method, and
the Energy Fits method. The uncertainty on the event multiplicity due to the choice of
counting method is estimated to be∼ 4% for pp collisions and∼ 2% for PbPb collisions [87].

Centrality There is an uncertainty on the centrality determination. This yield a system-
atic uncertainty on the event multiplicity from < 1% in the most central collisions (0-5%)
up to ∼ 6% for peripheral collisions (70-80%) [130].

The individual contributions are added in quadrature, yielding the total systematic un-
certainty on the number of charged particles in each of the detectors. Table 7.1 summarises
this information for both pp and PbPb collisions.

pp coll. PbPb coll.
FMD SPD FMD SPD
δFMD δSPD δFMD δSPD

Ehit and Ehigh variation 3% N/A 2% N/A
Material budget variation 7% 1% 7% 1%
Event Generator 2% 2% 2% 2%
Strangeness Correction 2% 2% 2% 2%
Counting Method 4% N/A 2% N/A
Centrality N/A N/A 1 - 6% 1 - 6%
Total 9.1% 3% 8.1 - 10.0% 3.2 - 6.7%

Table 7.1: Systematic uncertainties on the number of charged particles measured
in the FMD and SPD in pp and PbPb collisions.

Depending on which η-interval is analysed different fractions of the measurements are
performed by either sub-detector. Thus the total systematic error on the event multiplicity
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Range Systematic Error (δmult)
pp coll. PbPb coll.

-0.5 < η < 0.5 3.0% 3.2 - 6.7%
-1.0 < η < 1.0 3.0% 3.2 - 6.7%
-1.5 < η < 1.5 3.0% 3.2 - 6.7%
-2.0 < η < 2.0 3.9% 3.9 - 7.1%
-2.4 < η < 2.4 5.1% 4.8 - 7.6%
-3.0 < η < 3.0 6.1% 5.6 - 8.1%
-3.4 < η < 3.4 6.5% 5.9 - 8.4%
-3.4 < η < 5.1 7.0% 6.4 - 8.7%

Table 7.2: Overview of the systematic error on the event multiplicity in the
different η-intervals. The line denote the change from SPD-only
η − intervals to combined SPD and FMD η-intervals.

must reflect this.
This is done by weighting the systematic error for each of the sub-detectors by the

fraction in η covered by that detector in the specific measurement. Three areas are con-
sidered: the FMD only region, the SPD only region and the region of overlap between the
two sub-detectors. Each region gets the weights

αFMD =
Nbins,FMD

Nbins

αSPD =
Nbins,SPD

Nbins

αoverlap =
Nbins,overlaps

Nbins

(7.1)

The overlap region is treated as if half of it is governed by the FMD error, and the
other half by the SPD error.

Thus the total systematic error is given by:

δ2mult = αFMDδ
2
FMD + αSPDδ

2
SPD + 0.5αoverlap(δ

2
FMD + δ2SPD) (7.2)

where by definition
αFMD + αSPD + αoverlap = 1 (7.3)

The total systematic error on the event multiplicity are summarised in table 7.2, for the
η-intervals used for analysis.

The error on the event multiplicity corresponds to a error on the x-axis of the multi-
plicity distribution. This is translated into an error on the y-axis, by doing the following.

� The measured distribution is scaled up and down with the systematic error, δmult.

� The up and down scaled distributions are unfolded using the response matrix used
for the data distribution25

� The resulting distributions are used as the error boundaries i.e., the lower limit is
evaluated as the minimum of the two distributions, and similarly the upper limit is
given by the maximum of the two distributions.

25An alternative test has been performed, where instead the same data distribution has been unfolded
with different (scaled) response matrices. The results of the two methods are consistent.
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Figure 7.4: Example of the systematic uncertainty on the event multiplicity for
|η| < 2.4 in

√
s = 900 GeV collisions. The raw multiplicity distri-

bution is unfolded by the detector response, yielding the unfolded
distribution. The systematic error bands are estimated by scaling
the raw distribution upwards and downwards with the uncertainty on
counting particles, and then unfolding these distributions with the
same response matrix.

� The errors are now translated to the y-axis, yielding a band around the unfolded
distribution.

7.2 Uncertainty on trigger–vertex bias correction and un-
folding method

Besides the uncertainty on event multiplicity, error contributions from both the trigger bias
vertex correction and unfolding method has to be taken into account. Both are treated in
this section.

We start by considering the trigger–vertex bias correction. As discussed in section 6.7,
the trigger–vertex bias correction require a large amount of statistics, especially for the
broadest η-intervals. Thus any error assigned to it, can be decreased by having a larger
simulated sample.

The systematic uncertainty on the correction is given by:

δ2bias = ε2MCNSD + ε2ESDNSD (7.4)

εMCNSD is the error on the number of events labelled NSD by the simulation, and εESDNSD
is similarly the number of events found by the analysis as NSD events. These errors are
given as εx = 1/

√
Nx, where x is either MCNSD or ESDNSD.

Thus (7.4) reduces to:

δbias =

√
1

NMCNSD

+
1

NESDNSD

(7.5)
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√
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shown. In the tail region the total uncertainty is fully dominated by
δmult.

The error contribution from the trigger–vertex bias correction is only significant in the very
lowest multiplicity bins.

The last contribution is from the unfolding method itself. Figure 6.33 presented the
best unfolding solutions for both the Bayesian method and the SVD method. In that
figure it was found that there was generally good agreement between the unfoldings and
the simulated truth. Over the entire multiplicity range it is estimated that the deviations
from simulated truth are of the order of 10 %. This will be used as a systematic uncertainty
of the unfolding method, δunfold.

The systematic uncertainty of the hit merging i.e., the variation of Ehigh and Ehit could
be a component in both δmult as well as δunfold. How much it factors into δunfold is not
known.

However in comparison to some of the other errors its contribution is not dominant,
and thus it has little effect on the final errror. Therefore it is assumed that it does not
factor into δunfold.
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7.3 Total systematic error

The total systematic uncertainty is thus constructed by adding the three contributions in
quadrature bin-by-bin:

δ2tot = δ2unfold + δ2bias + δ2mult (7.6)

In figure 7.5 an example of the total systematic uncertainty is shown.
For PbPb collisions the uncertainties become much simpler, since trigger and vertex

efficiency is unity [87]. Furthermore, as discussed in the previous chapter, PbPb collisions
are not unfolded. Thus the only systematic uncertainty is given by the event multiplicity
uncertainty, δtot = δmult.
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Chapter 8

Results

In this chapter the results of this thesis are presented. The chapter is divided into four
sections: Multiplicity distribution results, KNO scaling results, dNch

dη
results, and mean

multiplicity energy dependence results. The first three have separate subsections for pp
and PbPb collisions, whereas the fourth section treats them simultaneously.

chN
0 20 40 60 80 100 120 140 160 180

)
ch

P(
N

-610

-510

-410

-310

-210

-110

1

10

210

310

410

510

610

710

This work
CMS (publ.)
UA5 (publ.)
ALICE (publ.) 

|<0.5η|
|<1.0   (x10)η|

)2|<1.5   (x10η|
)3|<2.0   (x10η|
)4|<2.4   (x10η|
)5|<3.0   (x10η|
)6|<3.4   (x10η|

)7 <5.1 (x10η-3.4 <

I

II

III

IV

V

VI

VII

VIII

I
II

III

IV

V

VI

VII

VIII

NSD Collisions
Bayesian Unfolding

=900 GeVs

Figure 8.1: Charged particle multiplicity distributions for NSD pp collisions at√
s = 900 GeV. Included in the plot are previously published results

from CMS, UA5 and ALICE.
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Figure 8.2: Charged particle multiplicity distributions for NSD pp collisions at√
s = 2760 GeV. As discussed in the text there are clear indications

that the data quality of this run period is bad.

8.1 Multiplicity Distributions

8.1.1 pp collisions

The first results presented in this section are considered the main measurement of this
work, namely the multiplicity distributions for pp NSD collisions at the available energies.
Figures 8.1, 8.2 and 8.3 show these at the three energies

√
s = 900 GeV, 2760 GeV and

7000 GeV respectively.
For both

√
s = 900 GeV and 7000 GeV it is found that there are good agreement

between the results in this analysis, and the published results from other experiments.
This is particularly true for the more narrow η-intervals. For the very broad intervals
the tails are systematically higher in this analysis, compared to CMS and UA5. However
they are still consistent within the uncertainties. The cause of this systematic deviation is
currently unknown, but a likely explanation is that the implementation of the geometry in
the forward region is not accurate enough, as described in section 6.4.

The published ALICE results are made using SPD tracklets, which restricts that anal-
ysis to the very central region. One of the ambitions of this work is to expand the already
existing ALICE measurements.

It is found that the collisions at
√
s = 2760 GeV has serious problems. The bump at

very high multiplicities is clearly unphysical. It is present already in the raw multiplicity
distributions. It is not present in simulations, and thus the unfolding can not handle it.

It is the culmination of the trend seen from various of the plots in the analysis chapter,
where the

√
s = 2760 GeV behaves abnormally. All seems to indicate that these data are

heavily polluted, compared to the other energies, with some form of background signals.
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Figure 8.3: Charged particle multiplicity distributions for NSD pp collisions at√
s = 7000 GeV. Included in the plot are previously published results

from CMS and ALICE.

The data at
√
s = 2760 GeV is recorded in 2011, compared to the other energies, which

were recorded in 2010. There are other indications that both the FMD in particular and
ALICE in general might have problems with the data quality in the latter run periods26.

While the results for
√
s = 2760 GeV are presented here alongside the results for the

other two energies, they will not be used further in derived results. Understanding and
hopefully improving the data quality for

√
s = 2760 GeV is a high priority issue in the

coming time.

While figures like 8.1, 8.2 and 8.3 are good for an overview, they are not very useful
for detailed comparison. Figures 8.4 and 8.5 show two examples of detailed comparisons
between the individual measurements for |η| < 0.5 at

√
s = 900 GeV and for |η| < 1.0 at√

s = 7000 GeV. In appendix F the comparisons for the remaining multiplicity distributions
can be found.

In both figures good agreement between measurements of this work and the previously
published values is found. For the

√
s = 7000 GeV comparison it is found that there is

better agreement with the CMS measurement than with the ALICE measurement. This is
attributed to the fact that the CMS measurements also use the Bayesian unfolding method,
whereas the published ALICE measurements use the SVD method.

26This seem to be a problem which has gotten progressively worse over time. On a ALICE level it has
gotten so bad, that ALICE currently does not start taking data immediately when the LHC declare stable
beams. Instead they wait until the background levels are tolerable. This is a new practise, and was not
implemented during the

√
s = 2760 GeV runs. The cause and precise extent of the background is not fully

understood.
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Figure 8.4: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 900 GeV in the η-interval, |η| < 0.5.

There is excellent agreement over the entire multiplicity range.
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Figure 8.5: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 7000 GeV in the η-interval, |η| < 1.0.

There is good agreement over the most of the multiplicity range. At
low multiplicities the agreement with CMS is better than with the
tracklets in ALICE. At high multiplicities this analysis measures an
excess of events compared to CMS.
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8.1.2 PbPb collisions

For PbPb collisions at
√
s
NN

= 2760 GeV the multiplicity distribution have also been
measured. In figure 8.6 the multiplicity distribution is presented for 0-5% centrality using
the same η-intervals as in the pp case.

In figure 8.7 the multiplicity distribution for −3.4 < η < 5.1 for a number of centrality
bins is seen. As expected the distributions for the individual centrality bins add up to the
black 0-100% centrality distribution.

The dashed lines denote the centrality bin regions if they were determined by the FMD
distribution. This is similar to what was presented for the V0 centrality in figure 6.4. Thus
the first dashed line from the right show the limit between 0-5% centrality and 5-10%
centrality and henceforth.

While the measurement of centrality using the FMD and SPD combination is still quite
preliminary it is clear that further development of the method can yield another measure
of collision centrality, either as an independent measurement or as an internal cross check.

This method has the advantage of using a very wide range in η, which means that a
large fraction of the total event multiplicity is actually measured. This lessens the risk of
putting events into a wrong centrality class, due to the measured part of the event not
being representative of the total event. The more of the total multiplicity that is actually
measured, the lower that risk.

Potentially, the resolution of centrality determination for very peripheral collisions are
better determined by the SPD and FMD combination, than for the V0.
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Figure 8.6: The charged particle multiplicity distribution for 0-5% central PbPb
collisions at

√
s
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= 2760 GeV for the same η-intervals used in the
analysis of pp collisions.



138 Chapter 8. Results

chN
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

)
ch

P(
N

10

210

310

410

510

=2760 GeVNNsPbPb collisions @  0-5%

 5-10%

10-20%

20-30%

30-40%

40-50%

50-60%

60-70%

70-80%

80-100%

0-100%

Figure 8.7: The charged particle multiplicity distribution in −3.4 < η < 5.1 for
PbPb collisions at

√
s
NN

= 2760 GeV. The different centrality classes,
determined by the V0 detector, are shown. The vertical dashed lines
show the centrality selections as it would be if centrality was deter-
mined by the multiplicity distributions of this work.



8.2. KNO 139

〉
ch

N〈/chz = N
0 2 4 6 8 10 12

)
ch

 P
(N

〉
ch

N〈

-610

-410

-210

1

210

410

610

810

1010

1210

1410

=900 GeVs

=7000 GeVs

|<0.5η|
)2|<1.0   (x10η|
)4|<1.5   (x10η|
)6|<2.0   (x10η|
)8|<2.4   (x10η|
)10|<3.0   (x10η|
)12|<3.4   (x10η|

)14 <5.1 (x10η-3.4 <

I

II

III

IV

V

VI

VII

VIII

I

II

III

IV

V

VI

VII

VIII NSD Collisions
Bayesian Unfolding

Figure 8.8: pp NSD collisions in KNO variables at
√
s = 900 GeV and 7000 GeV.

It is found that KNO scaling is violated in all η-intervals, except
perhaps the most central η-region.

8.2 KNO

The next group of results revolves around KNO scaling. The first results presented will be
for pp collisions, and in the next subsection the results from PbPb collisions are shown.

8.2.1 pp collisions

Figure 8.8 show pp NSD collisions at
√
s = 900 GeV and 7000 GeV in KNO variables. It

is found that the broader the observed η-interval, the more KNO scaling is violated when
moving from

√
s = 900 GeV to

√
s = 7000 GeV. For the most narrow η-interval, |η| < 0.5,

it is difficult to conclude whether KNO scaling is also violated, but any violation is at best
very small. CMS concludes that KNO scaling holds for |η| < 0.5 [75].

Figure 8.9 show comparisons between this work and CMS for |η| < 0.5 and |η| < 2.4.
It is seen that there is good agreement in both intervals. The ratio between

√
s = 900 GeV

and 7000 GeV for both set of measurements is included in figure 8.9.

It is interesting to notice that the shape of the ratio-distribution is the same for both
|η| < 0.5 and |η| < 2.4. For the latter this is a clear sign that the KNO multiplicity
distributions are distinctly different, and thus KNO scaling is violated. For |η| < 0.5 the
shape is similar, but the magnitude of the effect is clearly smaller. However it appears as
if the overall picture is the same, namely that KNO scaling is possibly violated also for
the |η| < 0.5 interval. In order to reach a firm conclusion on this, better control of the
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Figure 8.9: Detailed comparison of KNO scaling in |η| < 0.5 and |η| < 2.4 be-
tween CMS and this work. Good agreement is found between the
experiments for the multiplicity distributions in KNO variables. The
shape of the ratio between

√
s = 900 GeV and 7000 GeV is similar

for both η intervals, however the scale of the deviations from unity is
less in the |η| < 0.5 case. This might indicate that KNO scaling is
also violated for |η| < 0.5, however very slightly.
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experimental uncertainties is needed.

Another interesting feature of figure 8.9 is that the tails of the KNO distributions are
not higher in the analysis of this work, compared to CMS. This is a indication that the
deviations seen in the multiplicity distributions can be explained by a minor scale factor;
i.e. that the measurements of this work are consistently a few % higher (the ratio of the
mean between CMS and this is work is around µALICE ∼ 1.02µCMS). This might be a clue
to better understanding the differences between the two measurements. An inaccuracy
in the material description could for instance have this effect, due to too few secondaries
being produced in the simulations.

We return to the concept of KNO violation. To further investigate it we turn to the
statistical moments, c2−c5, as given by (2.29). Figures 8.10 and 8.11 show the moments as
a function of collision energy for |η| < 0.5 and |η| < 2.4 respectively. In the latter interval,
all the moments increase as a function of collision energy. By definition the moments must
be constant as a function of collision energy for KNO scaling to remain valid. For |η| < 0.5
the moments c2, c3 and c4 are all constant over all collision energies. c5 has large errors
associated with it, and it becomes increasingly difficult to determine if it is constant or
increasing slightly. Both a constant or a line could be fitted to the data points with a good
agreement.
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Figure 8.12: Multiplicity distributions of various centrality classes in PbPb colli-
sions in KNO variables. No scaling with respect to the mean multi-
plicity is apparent.

8.2.2 PbPb collisions

For PbPb collisions the multiplicity distributions have also been studied in KNO variables.
In figure 8.12 they are shown for a number of centrality classes. It is seen that there
is no apparent scaling with respect to the mean multiplicity. It does however look as if
normalising to the mean multiplicity is not the best choice. Looking at the two most central
distribution, which only span 5% centrality each, it is found that they are significantly
different than the rest, which span 10% centrality each.

Thus the distributions are not independent of the choice of centrality bins, which ob-
viously makes it a sub-optimal choice. For further studies it could be interesting to see if
it is possible to find another way to scale the distributions. Letting the scaling involve the
mean number of participants springs to mind as a place to start. This avenue has not been
pursued further in this work.

However, another study has been performed. Figure 8.13 shows the multiplicity dis-
tributions in KNO variables for various η-intervals. The top panel includes the same
η-intervals as for pp collisions. It is seen that there is a clear scaling with respect to the
mean multiplicity that persists over even the broadest η-interval. The origin of this scaling
is currently not understood. Going forward in η, each interval includes the previous one.
If there is any changes going to forward regions, this could be washed out by the inclusion
of the more central region. To rule this out, the KNO multiplicity distributions are also
measured for narrow η-intervals of ∆η = 0.5. These are presented in the lower panel of
figure 8.13. There is clear scaling with respect to the mean multiplicity visible for all the
η-intervals. Quite surprisingly there are two intervals which deviate slightly from the rest,
namely 2.0 < η < 2.5 and 3.5 < η < 4.0. The reason for this is not understood.

The scaling itself is also not understood at this time. It is entirely possible that it is a
mundane effect, or could perhaps hint at interesting physics.
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Figure 8.13: An attempt at looking at KNO scaling in PbPb collisions for the
centrality class 0-5%. The upper panel shows the the multiplicity
distributions for the same η-intervals used for analysis of pp colli-
sions. The lower panel show small ∆η = 0.5 intervals. For both
representations, a clear scaling with respect to the mean multiplicity
is seen.
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8.3 dNch
dη

Next up are the derived measurements of dNch

dη
. These are created by running the analysis

for very narrow pseudorapidity intervals, ∆η = 0.5, as described in the previous section.
The mean value of these distributions each give a point in the dNch

dη
distributions.

8.3.1 pp collisions

Figure 8.14 show dNch

dη
for pp NSD collisions at

√
s = 900 GeV and 7000 GeV. It is found

that for the mid-rapidity region, there is good agreement between this method and the
published data from other experiments. For the forward region in

√
s = 900 GeV the

agreement is not very good. For
√
s = 7000 GeV there is no published data at forward

angles, and the ALICE comparison is done to the trigger class INEL>0.
The cause of the disagreement at forward angles is not fully understood, but it is

likely that it is due to problems unfolding the very narrow η-intervals. At especially√
s = 900 GeV the raw multiplicity distribution for a narrow η-interval does not extend to

very high multiplicities. In the forward region the secondary contamination is very large,
and thus the unfolding changes the shape of the multiplicity distribution dramatically.

When the multiplicity distribution only spans few multiplicity values, this can cause
problems with the unfolding precision. This can give unfolded distributions, which are
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Figure 8.14: dNch

dη
in pp NSD collisions measured as the mean of narrow unfolded

multiplicity distributions. Included are measurements from CMS,
UA5 and ALICE for reference. In the mid-rapidity region good
agreement is seen. For forward regions there are significant devi-
ations.
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Figure 8.15: dNch

dη
in PbPb collisions at

√
s
NN

= 2760 GeV, measured as the mean
of narrow unfolded multiplicity distributions. Included is a reference
measurement from another preliminary ALICE analysis [87]. Overall
reasonable agreement is found between the two methods.

not reminiscent to the true distribution, and thus the mean value determination will be
inaccurate 27.

However, for the mid-rapidity region, the contamination of secondaries are very low,
and thus the response matrix is almost diagonal. Thus the unfolding does not dramatically
change the shape.

This can explain why good agreement is seen for the SPD range, where there are few
secondaries, compared to the poor agreement in the secondary rich forward regions.

8.3.2 PbPb collisions

Figure 8.15 shows the dNch

dη
for PbPb collisions at

√
s
NN

= 2760 GeV. Included as grey

points are also the preliminary measurements of another current analysis by ALICE [87].
It is found that there overall seem to be reasonable agreement between the two methods.

Making dNch

dη
measurements in this way, was never a main ambition of this work. Instead

it is meant as a simple, and fun exercise. Given more time it is possible to further enhance
the method, thereby providing a real alternative for dNch

dη
measurements.

27for η-bins of size ∆η = 0.2 the unfolding has been tested, and regularly breaks down completely,
yielding very unphysical solutions.
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8.4 Mean Multiplicity Energy dependence

The last result presented is the collision energy scaling of the mean multiplicity in mid-
rapidity per participant pair. In this context mid-rapidity is the η-interval |η| < 0.5. The
results for pp NSD collisions at

√
s = 900 GeV and 7000 GeV, as well as PbPb collisions

at
√
s
NN

= 2760 GeV are shown in figure 8.16.
The measurements are consistent with the published values from ALICE, as well as for

the CMS measurement for pp NSD collisions at
√
s = 7000 GeV.

Thus, the conclusions from those experiments, that the mean multiplicity in mid-
rapidity scales in both pp and PbPb collisions as a function of sa [88] is supported by
these measurements. The scaling is different for the two collision systems. It is found that:

1

0.5 〈Npart〉
dNch

dη
∝ s0.11 , for pp collisions

1

0.5 〈Npart〉
dNch

dη
∝ s0.15NN , for PbPb collisions (8.1)

(8.2)
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8.5 Outlook

While the FMD is fairly well understood, as demonstrated throughout this thesis, there
are still numerous issues where a better understanding is needed. Improving upon these
areas is paramount to increasing the accuracy of measurements of the FMD.

Material budget of ALICE

The largest uncertainty in the FMD measurements is the accuracy of the virtual model
of the experiment. While the major geometry revision in 2010 definitely was a great leap
forward, there could be inaccuracies still in the geometry description.

There are immediately plans for starting a study, that can once and for all put this issue
to rest. This study is similar to how the TPC has mapped their geometry very precisely
in the mid-rapidity region.

Their method revolves around photons interacting with material, thus creating electron-
positron pairs, that are eventually tracked in the TPC. By extrapolating the tracks back
it is possible to determine exactly where the photon conversions happened. By doing so
it is possible to get very detailed information of the material distribution in ALICE. In
some sense it is reminiscent to the secondary particles origin plots presented in section 6.4.
However the main advantage of the TPC method is that the actual physics data are used,
and can be directly compared to the simulations. By using this method the TPC group
was able to discover, amongst other things, a thin layer of glue missing in the material
description.

The TPC only covers the mid-rapidity region, for collisions around the nominal inter-
action point. However if collisions with vertices at high |vz|, are used, particles stemming
from conversions in the forward regions are possible to be measured by the TPC.

Getting this study underway in collaboration with the TPC group has highest priority.

FMD energy distributions

Another issue which was touched upon in section 6.2.1 is the differences between the energy
distributions in physics data and simulated data. The energy distributions of simulations
have much less smeared Landau peaks than in physics data.

A way to tune the simulations to better match the physics data is outlined in the
following. First, it is assumed that the underlying energy loss signal is described by a
Landau distribution, given by the variable (∆−∆p)/ξ where ∆p is the MPV energy loss,
∆ is the energy loss and ξ denotes the spread of the landau distribution. The energy
distribution we are looking for after tuning is similarly given by (∆′ − ∆′p)/ξ

′. For now,
focus is only on changing the width of the distributions, not the peak location, and therefore
we set ∆′p = ∆p. Thus the relation between the two distributions are given by:

∆−∆p

ξ
=

∆′ −∆′p
ξ′

, and thus ∆′ =
ξ′

ξ
∆ +

(
1− ξ′

ξ

)
∆p (8.3)

Retrieving ξ/ξ′ from fits of the physics data and simulations respectively, it is possible to
recalculate the tuned energy distribution from the original one.

Two examples of this are shown in figure 8.17. As seen the simulated energy distri-
butions changes to better resemble the physics data energy distributions after tuning. In
the same manner it is possible to also shift the Landau peaks of the simulated energy
distributions.
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Figure 8.17: Preliminary tests of tuning the simulated energy distributions. Fur-
ther tests will help ensuring that the energy distributions in sim-
ulations matches energy simulations in physics data as closely as
possible

It is worth mentioning that the fraction of singles, doubles and triples in simulations
compared to physics data is seemingly unaffected by the tuning of the energy distributions.
Similarly the tuning will not have any effect on the appearance of very low energy deposition
signals in physics data. These are issues which has to be dealt with separately.

Once the energy distributions for simulations matches the physics data, it needs to be
included in new official ALICE simulation productions.

pPb collisions

The LHC has so-far successfully provided both pp and PbPb collisions. At the end of 2011
they will attempt to setup and make the first pPb collisions.

As briefly discussed in section 1.4 this asymmetric collision systems is very interesting,
since it is hoped that it will yield major insights into the initial conditions of the collisions.

In particular it will be exciting to study whether the gluon density is saturated, which
would be clearly indicative of a Colour Glass Condensate state of matter. Colour Glass
Condensate is theorised to be the state of matter of the nuclei just before they collide.

The existence of a Colour Glass Condensate can explain some of the unsolved problems
of how exactly particles are produced in relativistic collisions as well as the distribution of
matter inside particles themselves [131].

The FMD is perfect to look for signs of gluon saturation by examining how the multi-
plicity scales in pPb collisions as opposed to either pp or PbPb collisions.
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Chapter 9

Conclusion

When the LHC succeeded providing pp collisions at
√
s =900 GeV on 23rd of Novem-

ber 2009, it was the culmination of 25 years of planning and extraordinary experimental
ingenuity. Since then the LHC has provided pp collisions at higher energies, as well as
PbPb collisions at

√
s
NN

= 2760 GeV. This work has presented analysis of these initial run
periods.

The analysis framework and capabilities of the FMD has been discussed in detail. A
method of using the FMD together with the inner layer of the SPD has been presented.
This method have enabled ALICE to perform multiplicity analysis over a very large range
in pseudorapidity.

With this method the charged particle multiplicities for pp NSD collisions at three col-
lision energies have been measured for many η-intervals, the largest covering more than 8
units of η. It has been found that the measurements in this work are consistent with pre-
vious measurements from CMS and UA5. Even though they fall within the uncertainties,
the multiplicity tails are systematically, if only slightly, higher in this analysis.

For
√
s = 2760 GeV collisions the conclusion is that the data quality is too poor,

that reliable analysis is not a possibility at this time. The exact extent of this is being
investigated extensively in ALICE. Hopefully a focused effort can help improve the data
quality.

Going from
√
s = 900 GeV to 7000 GeV it is concluded that KNO scaling is strongly

violated for at least all η-intervals except perhaps |η| < 0.5, where no clear conclusion can
be drawn from the available data. This was further investigated in the presentation of
the statistical moments for |η| < 0.5 and |η| < 2.4. Smaller systematic uncertainties are
needed to conclude definitively whether KNO scaling is violated at |η| < 0.5.

For PbPb collisions scaling in KNO variables has also been investigated; both as a
function of centrality and η-interval. In the former case, no scaling is seen. For the latter
there is clear scaling over all η-ranges. The multiplicity distributions are very similar in
KNO variables from mid-rapidity to the most forward regions. The origin of this scaling
is not understood, and must be investigated further.

It has furthermore been demonstrated that it is possible to make dNch

dη
distributions by

taking the mean value of multiplicity distributions from very narrow η-intervals. Partic-
ularly in pp collisions there are however unsolved issues in the forward regions, but good
agreement with previous experiments in the mid-rapidity region.

The last result presented was the mean multiplicity per participant paris in |η| < 0.5
for both pp and PbPb collisions. It is found that there is good agreement with previous
measurements from CMS and ALICE.

Summing up, a variety of the first LHC results of analysis using the FMD has been
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presented in this work. There are however still much room for improvement in the de-
tailed understanding of the FMD system. This continued effort of reducing the systematic
uncertainties is very important for both the analyses presented in this work, but also for
subsequent analysis, that might be even more susceptible to the remaining issues.

Gaining a better understanding of the FMD, and solving the remaining issues, will
leave the FMD in great shape when the LHC finally starts colliding particles at the design
top energy in 2014.

Casper Nygaard, October 2011



Appendix A

Lorentz Invariance of dy

The Lorentz transformation is given by:

E∗ = γE − γβpz
pz∗ = −γβE + γpz (A.1)

Here β velocity of the frame from which we view the collision and γ is defined as
γ = 1√

1−β2)

The transformation is done by inserting the transformations of E and pz into the defi-
nition of the rapidity:

y∗ =
1

2
ln
E ∗+pz∗
E ∗ −pz∗

=
1

2
ln
γE − γβpz − γβE + γpz
γE − γβpz + γβE − γpz

=
1

2
ln
E + pz
E ∗ −pz

+
1

2
ln
γ − γβ
γ + γβ

= y +
1

2
ln
γ − γβ
γ + γβ

(A.2)

(A.3)

This means that:

dy∗ = y ∗2 −y∗1 = y2 − y1 = dy (A.4)

Thus rapidity differences are Lorentz invariant.
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Appendix B

The Glauber Model

In the Glauber model three assumptions are made [132]:

1. Nucleons are distributed according to a density function (e.g. Woods Saxon).

2. Nucleons travel in straight lines and are not deflected by interactions.

3. Nucleons interact with the inelastic cross section σNN measured in pp collisions at
the same initial energy even after multiple interactions.

Presented in fig. B.1 is the correlation between Npart and b in AuAu collsions, based on
the Glauber model.

Figure B.1: Npart versus impact parameter using the Glauber model. Picture
taken from [133].
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Appendix C

Sharing algoritm
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Figure C.1: Illustration of the concept of hit sharing. Incoming particles can
traverse multiple strips, deposting energy in all of them. A hit sharing
algoritm searches for neighboring strips with energy signals above the
low threshold. The shared energy signals are merged into one signal.

In figure C.1 a few examples of hit merging with 3 strips hit are illustrated. In figure
C.2 the flow chart of the sharing algorithm is shown.

In the case of merging two strips, the merged signal is always placed in the strip with
the highest energy deposition. For three strips being merged, the signal is placed in the
middle strip. There are arguments for/against placing it in the middle strip compared to
placing it in the highest deposit strip like for the two-strip case. The difference however is
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Figure C.2: Flow chart of the sharing algoritm. Up to three adjacent strip are
searched through and their deposited energy merged depending on
the energy deposits in each of the strips.

completely negligible due to the tiny η difference between two adjacent strips, as well as
the fact that having merged signals from three strips are quite rare.

pp @
√
s = 900GeV

Signal FMD1I FMD2I FMD2O FMD3I FMD3O
Single 86.99 % 87.07 % 92.26 % 85.65 % 91.96 %
Double 12.71 % 12.67 % 7.64 % 13.99 % 7.86 %
Triple 0.30 % 0.26 % 0.10 % 0.36 % 0.18 %

PbPb @
√
s = 2760GeV

Signal FMD1I FMD2I FMD2O FMD3I FMD3O
Single 88.95% 88.48% 91.22 % 88.24 % 91.79 %
Double 9.67 % 9.95% 7.91 % 10.17 % 7.37 %
Triple 1.38 % 1.58 % 0.87 % 1.59 % 0.84 %

Table C.1: Overview over the amount of single, double and triple signals in each
of the FMD rings.



Appendix D

Comparison between Poisson and
Energy Fits counting

Figure D.1: Comparison between the Poisson and Energy fit counting methods
for pp collisions at

√
s = 2760GeV.
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Figure D.2: Comparison between the Poisson and Energy fit counting methods
for pp collisions at

√
s = 7000GeV.
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Figure D.3: Comparison between the Poisson and Energy fit counting methods
for PbPb collisions at

√
s
NN

= 2760 GeV.
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Appendix E

Q1 in central η-interval

Figure E.1: The unfolding quality parameter, Q1, for the peak region for |η| < 1.0.
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Figure E.2: Q1 for the constant exponential slope region and the low statistics
region for |η| < 1.0.



Appendix F

Detailed comparisons of multiplicity
distributions

pp NSD collisions at
√
s = 900GeV
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Figure F.1: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 900 GeV in the η-interval, |η| < 0.5.
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Figure F.2: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 900 GeV in the η-interval, |η| < 1.0.
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Figure F.3: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 900 GeV in the η-interval, |η| < 1.5.
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Figure F.4: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 900 GeV in the η-interval, |η| < 2.0.
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Figure F.5: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 900 GeV in the η-interval, |η| < 2.4.
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Figure F.6: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 900 GeV in the η-interval, |η| < 3.0.

pp NSD collisions at
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Figure F.7: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 7000 GeV in the η-interval, |η| < 0.5.
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Figure F.8: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 7000 GeV in the η-interval, |η| < 1.0.
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Figure F.9: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 7000 GeV in the η-interval, |η| < 1.5.
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Figure F.10: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 7000 GeV in the η-interval, |η| < 2.0.
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Figure F.11: Detailed comparisons of the measured multiplicity distributions for
NSD pp collisions at

√
s = 7000 GeV in the η-interval, |η| < 2.4.
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