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1 Introduction

1.1 Motivation of this work

Current observations i.e., Type Ia supernova (SNIa) observations [1]-[5],

the observations of the Cosmic Microwave Background (CMB) [6], Baryon

Acoustic Oscillations (BAO) [7], Wilkinson Microwave Anisotropy Probe

(WMAP) [8]-[11] and Planck results [12, 13] have established that the

Universe consists of roughly 25% dark matter, 70% dark energy, about

4% free hydrogen and helium and remaining 1% consisting of stars, dust,

neutrions and heavy elements. These observations also show that the Uni-

verse is undergoing accelerated expansion which is different from Hubble

expansion. Hubble showed that the redshift of distant galaxies increased

as a linear function of their distance i.e., the expansion is linear. Dark

energy is one of the candidates being regarded as the origin of this accel-

erated expansion.

One class of theoretical model to investigate the effects of the pres-

ence of dark energy on cosmological scenarios are k−essence models. A

k−essence model is a scalar field model where the kinetic energy of the

field dominates over the potential energy of the field - hence the name

”k−esence”. In this theoretical model, the lagrangian is not canonical

i.e., L 6= T − V where T is the kinetic energy and V is the potential

energy. The k−essence field theoretic lagrangian is non-canonical i.e., it
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1 Introduction

can not be separated in kinetic energy term and potential energy term

and also it does not depend explicitly on the field itself.

In the k−essence model [14, 15], actions with non-canonical kinetic

terms are strong candidates for dark matter and dark energy. The ra-

diation energy density during the radiation-dominated era is tracked by

the k−essence energy density. But during the matter-dominated era the

k−essence energy density evolves towards a constant-density dark energy

component. In this class of models, the coincidence problem (i.e., why

we live in the particular era during which the dark matter and dark en-

ergy densities are roughly equal) is resolved by linking the onset of dark

energy domination to the epoch of equal matter and radiation. There

is another interesting characteristic of k−essence models. They can pro-

duce a dark energy component where the sound speed does not exceed the

speed of light. These models are observationally distinguished from stan-

dard scalar field quintessence models with a canonical kinetic term (for

which cs = 1), and may provide a mechanism to reduce cosmic microwave

background (CMB) fluctuations on large angular scales [16]-[18].

Historically, a theory with a non-canonical kinetic term was first pro-

posed by Born and Infeld [19] in order to get rid of the infinite self-energy

of the electron. Similar theories were also studied in the literature [20, 21].

Cosmology witnessed these models first in the context of k−essence

driven inflation and subsequently in k−essence models of dark matter

and dark energy [22]-[26]. An approach to understanding dark matter and

dark energy involves setting up of lagrangians for k−essence fields in a

background of the Friedman-Robertson-Walker metric with zero curvature

constant. It is also possible to unify the dark matter and dark energy

components into a single scalar field model [15] with the scalar field φ

3



1 Introduction

having a non-canonical kinetic term.

The general form of the lagrangian for k−essence models is: L =

−V (φ)F (X) where φ is the scalar field and X = 1
2g

µν∇µφ∇νφ and does

not depend explicitly on φ to start with [15, 27, 28]. Relevant literature

involving theories with non-canonical kinetic terms and their subsequent

use in cosmology, inflation, dark matter, dark energy and strings can be

found in Ref. [29]-[43].

With such a form for the lagrangian, what do we mean by kinetic en-

ergy of the fields dominating over the potential energy? For canonical

lagrangians, we write L = T − V and the hamiltonian as H = T + V

where the hamiltonian is a Legendre transform of the lagrangian. Here

T is quadratic in the time derivatives, V is the potential and domina-

tion means that T >> V . When T and V are implicitly mixed up as

in the Born-Infeld lagrangian we will still follow the same principle, v iz.,

identify the quadratic part in the time derivatives and the potential part

which is a function of the fields only and then impose the above condition.

This takes a simple form for the Friedmann-Lemaitre-Robertson-Walker

(FLRW) metric as the background as follows.

The FLRW metric is ( a(t) is the scale factor and k the curvature

constant):

ds2FLRW = dt2 − a2(t)[
dr2

1− kr2
− r2(dθ2 + sin2θdφ2)]

First note that throughout this thesis we asuume that the total energy

density Ω = Ωmatter + Ωradiation + Ωdarkenergy = 1 so that the individual

densities cannot exceed unity. So in our case Ωdarkenergy ≡ φ̇2 < 1. (Also

note that φ̇2 < 1 implies that (1/2)φ̇2 is also less than unity etc.)

In an FLRW background, the Dirac-Born-Infeld lagrangian for a homo-

geneous k-essence field,i.e. φ(r, t) = φ(t), with constant potential V and

4



1 Introduction

φ̇2 < 1 takes the form

L(X, φ) = 1− V (φ)
√
1− 2X

≃ 1− V + V [
1

2
g00∂0φ∂0φ]

= 1− V +
V

2
[φ̇2]

=
V

2
[φ̇2]− (V − 1)

Here we have the lagrangian written in a form reminiscent of canonical

lagrangians i.e. L ≡ T −V ≡ kinetic energy−potential energy, where T

is quadratic in the time derivatives and everything else is potential. This

has been possible because we have taken V to be a constant. So

V

2
[φ̇2] > (V − 1)

i.e.,

V <
1

(1− φ̇2

2 )

Simultaneously V << K = φ̇2

2 . For example, if K = 1
4, then the above

condition gives V < 4
3 . However, if V has to be less than K then say

V = 1
6 . So both the conditions are consistently satisfied. Hence, in

this sense for this particular scenario whenever V is chosen as above, the

kinetic energy of the fields dominate over the potential part. An exactly

similar analysis can be done for the Schwarzschild, Reissner-Nordstrom

and Kerr metrics as backgrounds.In chapters 2, 3, and 4 we will come

back to this issue as and when required.

An interesting consequence of the presence of dark energy is as follows.

There is a difference between relativistic field theories with canonical

kinetic terms and k−essence theories with non-canonical kinetic terms:

5



1 Introduction

Non-trivial dynamical solutions of the k−essence equation of motion not

only spontaneously break Lorentz invariance but also change the metric

for perturbations around these solutions. Thus the perturbations propa-

gate not only in a new medium determined by the background solution

but also in the so-called emergent or analogue curved spacetime [44] with

the metric Gµν different from the gravitational metric gµν . In the con-

text of cosmological perturbations, [45]-[48] showed that for purely kinetic

k−essence theories there exist lagrangians which are proportional to
√
X .

In this thesis we have reported the effects of the presence of dark en-

ergy on cosmological scenarios. Specifically, the thesis comprises of the

following investigations:

(1) Calculation of the Hawking temperature for an emergent gravity

metric in the presence of dark energy where the background metric is

taken to be (a) Schwarzschild, (b) Reissner-Nordstrom and (c) Kerr types.

(2) Establishment of the analogues of the Friedman equations in cos-

mology in an emergent gravity scenario in the presence of dark energy.

The deceleration parameter is then calculated for various scenarios. The

background metric is taken to be Friedman-Lemaitre-Robertson-Walker

(FLRW).

In section 1.2 we briefly review some facts regarding k−essence and

emergent gravity together with some technicalities obtained in paper 1

of List of Publications. In section 1.3 the usual Hawking temperature for

various backgrounds are introduced . In section 1.4 the usual Friedmann

equations and corresponding cosmology is discussed.

6



1 Introduction

1.2 k−essence and emergent gravity

We now give a brief introduction to an emergent gravity scenario when

k−essence fields are also present.

The k−essence scalar field φ minimallly coupled to the gravitational

field gµν has action [47]

Sk[φ, gµν] =

∫

d4x
√
−gL(X, φ) (1.1)

where X = 1
2g

µν∇µφ∇νφ. The energy momentum tensor is

Tµν ≡
2√−g

δSk

δgµν
= LX∇µφ∇νφ− gµνL (1.2)

LX = dL
dX , LXX = d2L

dX2 , Lφ = dL
dφ and ∇µ is the covariant derivative

defined with respect to the metric gµν . The equation of motion is

− 1√−g

δSk

δφ
= G̃µν∇µ∇νφ+ 2XLXφ − Lφ = 0 (1.3)

where the effective metric G̃µν is

G̃µν ≡ LXg
µν + LXX∇µφ∇νφ (1.4)

and is physically meaningful only when 1 + 2XLXX

LX
> 0.

We first carry out the conformal transformation Gµν ≡ cs
L2
X
G̃µν, with

c2s(X, φ) ≡ (1 + 2X
LXX

LX
)−1 ≡ sound speed.

Then the inverse metric of Gµν is

Gµν =
LX

cs
[gµν − c2s

LXX

LX
∇µφ∇νφ] (1.5)

7



1 Introduction

A further conformal transformation Ḡµν ≡ cs
LX

Gµν [Paper 1 of List of

Publications] gives

Ḡµν = gµν −
LXX

LX + 2XLXX
∇µφ∇νφ (1.6)

Note that one must always have LX 6= 0 for the sound speed c2s to be

positive definite and only then equations (1.1)− (1.4) will be physically

meaningful. This can be seen as follows. LX = 0 implies that L does

not depend on X so that in equation (1.1), L(X, φ) ≡ L(φ). So the

k−essence lagrangian L becomes pure potential and the very definition of

k−essence fields becomes meaningless because such fields correspond to

lagrangians where the kinetic energy dominates over the potential energy.

If there are no derivatives of the field in the lagrangian then there is no

question of identifying a kinetic energy part. Also, the very concept of

minimally coupling the k−essence field φ to the gravitational field gµν

becomes redundant and equation (1.1) meaningless and equations (1.4)-

(1.6) ambiguous.

For the non-trivial configurations of the k− essence field ∂µφ 6= 0 (for a

scalar field,∇µφ ≡ ∂µφ ) and Ḡµν is not conformally equivalent to gµν . So

this k−essence field has properties different from canonical scalar fields

defined with gµν and the local causal structure is also different from those

defined with gµν. Further, if L is not an explicit function of φ then the

equation of motion (1.3) is replaced by ;

− 1√−g

δSk

δφ
= Ḡµν∇µ∇νφ = 0 (1.7)

We shall take the Lagrangian as L = L(X) = 1 − V
√
1− 2X with

V a constant. This is a particular case of the Dirac-Born-Infeld (DBI)

lagrangian

L(X, φ) = 1− V (φ)
√
1− 2X (1.8)

8
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for V (φ) = V = constant and V << kinetic energy of φ i.e., V << (φ̇)2.

This is typical for the k−essence field where the kinetic energy dominates

over the potential energy. Then c2s(X, φ) = 1 − 2X. For scalar fields

∇µφ = ∂µφ. Thus (1.6) becomes [Paper 1 of List of Publications]:

Ḡµν = gµν − ∂µφ∂νφ (1.9)

The rationale of using two conformal transformations now becomes clear.

The first transformation is used to identify the inverse metric Gµν . The

second conformal transformation realises the mapping onto the metric

given in (1.9) for the lagrangian L(X) = 1− V
√
1− 2X.

Consider the second conformal transformation Ḡµν ≡ cs
LX

Gµν. Following

[49] the new Christoffel symbols are related to the old ones by

Γ̄α
µν = Γα

µν + (1− 2X)−1/2Gαγ[Gµγ∂ν(1− 2X)1/2

+Gνγ∂µ(1− 2X)1/2 −Gµν∂γ(1− 2X)1/2]

= Γα
µν +

1

(1− 2X)
[−δαµ∂νX − δαµ∂νX +GαγGµν∂γX]

= Γα
µν +

1

(1− 2X)
[−δαµ∂νX − δαµ∂νX +

1

2
(δαµδ

γ
ν + δαν δ

γ
µ)∂γX]

= Γα
µν −

1

2(1− 2X)
[δαµ∂νX + δαµ∂νX]

(1.10)

Note that the second term on the right hand side is symmetric under

exchange of µ and ν so that the symmetry of Γ̄ is maintained. The second

term has its origin solely to the k−essence lagrangian and this additional

term signifies additional interactions (forces). The geodesic equation in

terms of the new Christoffel connections Γ̄ now becomes

d2xα

dτ 2
+ Γ̄α

µν

dxµ

dτ

dxν

dτ
= 0 (1.11)

9
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1.3 Hawking temperatures

We now discuss some salient features regarding usual Hawking tempera-

tures associated with Hawking radiation.

Black holes are special regions of space-time where the curvature is so

strong that even light cannot escape. The edge of the black hole is known

as the event horizon. Schwarzschild showed that the event horizon of

a black hole has a radius rs, known as the Schwarzschild radius, with

rs =
2GM
c2 where G is gravitational constant, M is the mass of the black

hole and the speed of light is c.

In 1975, [50]-[53] Stephen Hawking showed (using quantum theory) that

black holes will radiate energy and evaporate. He also showed that this

emitted radiation (called Hawking radiation) matches that of a perfect

black-body radiator temperature, given by

THawking =
~c3

8πGMkB

where ~ is the Planck’s constant and kB is the Boltzmann’s constant.

For convenience the tunneling mechanism for calculating the Hawk-

ing temperature outlined in [54]-[57] is reviewed. Other literature re-

lated to Hawking temperature can be found in [58]-[64]. We have the

Schwarzschild metric as:

ds2S = (1− 2GM/r)dt2 − (1− 2GM/r)−1dr2 − r2(dθ2 + sin2θdφ2).

(1.12)

Using Eddington-Finkelstein coordinates (v, r, θ, φ)

v = t+ r∗ ; u = t− r∗;

dr∗ =
dr

(1− 2GM/r)
;

10



1 Introduction

r∗ = r + 2GM ln [r − 2GM ]. (1.13)

we get

ds2S = (1− 2GM/r)dt2 − (1− 2GM/r)(dr∗)2 − r2dΩ2

= (1− 2GM/r)(dt2 − (dr∗)2)− r2dΩ2

= (1− 2GM/r)(dv2 − 2dv dr∗)− r2dΩ2

= (1− 2GM/r)dv2 − 2dvdr − r2dΩ2 (1.14)

with dΩ2 = dθ2 + sin2θdφ2. A massless particle in the Schwarzschild

background is described by the Klein-Gordon equation,

~
2(−g)−1/2∂µ(g

µν(−g)1/2∂νΨ) = 0. (1.15)

Assume

Ψ = exp(− i

~
S + ...) (1.16)

Then (1.15) becomes,

~
2(−g)−1/2∂µ[g

µν(−g)1/2(− i

~
)(∂νS)e

(− i
~
S)] = 0 (1.17)

To leading order in ~ one has the equation

gµν∂µS∂νS = 0 (1.18)

Using separation of variables in the form

S = Ev + S0(r), (1.19)

and using (1.14), the equation (1.15) become

−2
∂S

∂v

∂S

∂r
− (1− 2GM/r)(

∂S

∂r
)2 = 0 (1.20)

i.e.,

2ES
′

0(r) + (1− 2GM/r)(S
′

0(r))
2 = 0 (1.21)

11
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with S
′

0(r) =
∂S0(r)
∂r . One solution of S0(r) is a constant C and another is

S0(r) = −2E

∫ r dr

(1− 2GM/r)

= −2E

∫ r dr

(1− rs/r)
. (1.22)

The singularity at the horizon r = 2GM = rs, has to be considered if one

tries to find a solution across it. Change r − rs to r − rs − iǫ. This gives

S0(r) = −2E

∫ r rdr

(r − rs)
= −2E

∫ r

(1 +
rs

r − rs
)dr

= −2E[r + rs . iπ + rs

∫ r

drP (
1

r − rs
)] (1.23)

where P () denotes the principal value.

Therefore the solution of equation (1.19) is

S = Ev + C − 2E[r + rs . iπ + rs

∫ r

drP (
1

r − rs
)]. (1.24)

The imaginary part yields a factor

exp(
i

~
2Ers .iπ) = exp(−4πGME

~
)

in the amplitude, leading to a factor exp(−8πGME
~

) in the probability.

This probability exp(−8πGME
~

) is equivalent to exp(− E
kBTS

).

So the Hawking temperature for Schwarzschild black hole is

TS =
~c3

8πGMkB
(1.25)

where kB is the Boltzmann constant and c is speed of light.

In chapter 2 we show that if the gravitational metric is taken to be

Schwarzschild (1.12) then the emergent gravity metric (1.9) in presence of

12



1 Introduction

dark energy can be mapped into a Barriola-Vilenkin (BV) type metric [65]

where the kinetic energy of the k−essence scalar field φ replaces the global

monopole charge. We next calculate the modified Hawking temperature in

the presence of dark energy. We also show that how the phenomenological

parameters of the analogue gravity experiments of Belgiorno et. al. [66]

are modified in the presence of dark energy.

In the case of Reissner-Nordstrom (RN) black hole the metric is

ds2RN = (1− 2GM/r +Q2/r2)dt2 − (1− 2GM/r +Q2/r2)−1dr2

−r2(dθ2 + sin2θdφ2) (1.26)

and the corresponding Hawking temperature [67, 68] for the two horizons

are:

TRN
+ =

~c3

2πkB

√

G2M2 −Q2

[GM +
√

G2M2 −Q2]2
(1.27)

and

TRN
− = − ~c3

2πkB

√

G2M2 −Q2

[GM −
√

G2M2 −Q2]2
(1.28)

where Q is the charge of the RN black hole.

Similarly, for the Kerr black hole the metric is

ds2K = (1− 2GMr

ρ2
)dt2 +

4GMrαsin2θ

ρ2
dφdt− ρ2

∆
dr2 − ρ2dθ2

−(r2 + α2 +
2GMrα2sin2θ

ρ2
)sin2θdφ2 (1.29)

with

α =
J

GM
; ρ2 = r2 + α2cos2θ and ∆ = r2 − 2GMr + α2,

13



1 Introduction

where J is angular momentum of the Kerr black hole and the Hawking

temperature [69]-[72] for the two horizons are:

TK
+ =

~c3

4πkB

√

(GM)2 − α2

(GM)2 +GM
√

(GM)2 − α2
(1.30)

and

TK
− = − ~c3

4πkB

√

(GM)2 − α2

(GM)2 −GM
√

(GM)2 − α2
. (1.31)

In chapter 3 we obtain the modified Hawking temperatures for the emer-

gent gravity metrics corresponding to Reissner-Nordstrom and Kerr back-

grounds in presence of dark energy. For the RN case we show that the

emergent metric becomes Robinson-Trautman (RT) type along θ = 0. For

some allowed values of the dark energy density, this blackhole can have

zero Hawking temperature ,i.e., it does not radiate.For the Kerr case the

emergent metric remains Kerr type along θ = 0 and the blackhole always

radiates. For both backgrounds the emergent gravity equations of motion

(1.7) are satisfied along θ = 0 and large r.

1.4 Friedmann equations

We now recall the standard Friedmann equations and corresponding cos-

mological parameters.

The Friedmann equations [75, 76] are a set of equations in cosmology

governing the expansion of space in homogeneous and isotropic models

of the universe. The metric used is the Friedmann-Lemaitre-Robertson-

Walker (FLRW) metric which assumes a perfect fluid model for the Uni-

14



1 Introduction

verse with a given energy density ρ and pressure p. The FLRW metric

is:

ds2FLRW = dt2 − a2(t)[
dr2

1− kr2
− r2(dθ2 + sin2θdφ2)] (1.32)

where a(t) is scale factor and k is curvature constant with values 1, 0 and

−1.

A fluid is perfect if there is no viscosity and no heat conduction terms

in the momentarily comoving reference frame. In general relativity, it is

the continuous matter distributions and fields with the energy-momentum

tensor Tµν of the form

Tµν = (ρ+ p)uµuν − pgµν. (1.33)

uµ is a velocity four vector with u0 = 1 and ui = 0, i = 1, 2, 3.

The Friedmann equations [77]-[80] are:

ρ =
3

8πG
[
ȧ2

a2
+

k

a2
] (1.34)

and

p = − 1

8πG
[2
ä

a
+

ȧ2

a2
+

k

a2
] (1.35)

i.e.,

ä

a
= −4πG

3
(ρ+ 3p) (1.36)

where G is gravitational constant.

The solutions of Friedmann equations are:

(a) non-relativistic scenario (ρ >> p) i.e, Matter dominated Universe.

The solution of Friedmann equation is

a(t) ∝ t
2

3 (1.37)

15
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with k = 0. In this case the energy density is

ρ = ρ0(a/a0)
−3 (1.38)

with ρ0 and a0 having the values of energy density and scale factor re-

spectively at present epoch. The deceleration parameter is

q(t) ≡ −aä

ȧ2
=

1

2
. (1.39)

(b) Relativistic scenario (p = ρ
3) i.e., Radiation dominated Universe.

The solution is

a(t) ∝
√
t (1.40)

with k = 0. The energy density becomes

ρ = ρ0(a/a0)
−4 (1.41)

and the deceleration parameter is

q(t) = +1. (1.42)

(c) Dark energy dominated Universe (p ≃ −ρ) the solution is

a(t) ∝ exp(Ht) (1.43)

where H = ȧ
a is the Hubble parameter and the deceleration parameter is

q(t) = −1 (1.44)

with k = 0. Here the energy density ρ is constant and also H =
√

8πGρ
3

becomes constant.

In chapter 4 we show how the Friedmann equations, scale factor a(t),

energy density ρ and the deceleration parameter q(t) change for the above

three scenarios in the presence of dark energy whose origin is again as-

sumed to be k−essence scalar fields.
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CHAPTER 2



2 The Hawking temperature in the

context of dark energy for

Schwarzschild background

We show that the Hawking temperature [50]-[64] is modified in the pres-

ence of dark energy for Schwarzschild background.

The results reported in this chapter have been obtained in Paper 1 of

List of Publications.

If a global monopole falls into a Schwarzschild blackhole the resulting

metric is different from the Schwarzschild case and the blackhole carries

the global monopole charge. Barriola and Vilenkin obtained solutions for

Einstein equations outside the monopole core [65, 81, 82] and showed that

the metric takes the form:

ds2 = (1−8πGη2−2GM

r
)dt2− 1

(1− 8πGη2 − 2GM
r )

dr2−r2(dθ2+sin2θdφ2)

M is the mass of the BV blackhole and M is very large i.e.,M >> δ
G

where δ ∼ λ− 1

2η−1 is the monopole core size. Here the global monopole

lagrangian is

L =
1

2
∂µφ

a∂µφa − 1

4
λ(φaφa − η2)2

where φa is a triplet of scalar fields (a = 1, 2, 3) and the global O(3)

18



2 The Hawking temperature in the context of dark energy for Schwarzschild background

symmetry is spontaneously broken to U(1). η ∼ 1016GeV is the typical

grand unification scale.

We determine the k−essence scalar field configurations φ for which the

metric G̃µν becomes conformally equivalent to the Barriola-Vilenkin (BV)

metric. However, in our case the global monopole charge is now replaced

by the kinetic energy of the k−essence scalar field φ. Thus we show

that BV-type metrics can also result from k−essence theories and not

necessarily from global monopoles only. It should be mentioned that

monopoles are akin to topological defects and there exist substantial and

well-known literature on the subject. Recent interesting developments in

this area can be found in [83, 84].

So one can calculate the Hawking temperature Temergent for such a met-

ric and this is obviously different from that of the Schwarzschild case.

Moreover, if φemergent be the solutions of the emergent gravity equations

of motion for r → ∞ then the rescaled field
φemergent

2GM−1 has exact correspon-

dence with the k-essence scalar field φ configurations for which the BV

metric is realised. This result is phenomenologically interesting in the

context of Belgiorno et al’s [66] demonstration of spontaneous emission of

photons in a gravitational analogue experiment for Hawking radiation.

Before proceeding further, we discuss the Dirac-Born-Infeld lagrangian

(1.8), in the context of the kinetic energy domination. We follow a similar

analysis as in the Introduction. However,for inhomogeneous fields the sit-

uation is more interesting. We take the k−essence fields to be spherically

symmetric and V a constant, and assume that φ(r, t) = φ1(r) + φ2(t).

Here, as before, we expand the square root for φ̇2
2 < 1. Then (prime

denotes differentiation with respect to r)

L(X, φ) = 1− V (φ)
√
1− 2X
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

= 1− V [1− (g00φ̇2 + g11(φ
′

)2)]1/2

= 1− V [1− (g00φ̇2
2 + g11(φ

′

1)
2)]1/2

= 1− V [1− (
1

(1− 2GM/r)
φ̇2
2 − (1− 2GM/r)(φ

′

1)
2)]1/2

It is readily evident that it will be impossible to extricate a pure kinetic

part from the above expression. So we have to be satisfied with the

statement that V << φ̇2
2.

In our scenario (as will be shown below) (2.6) also holds i.e., (φ′
1)

2(1−
2GM/r)2 = K = φ̇2

2 and 0 < K < 1. Then L becomes L = 1− V as the

expression ( 1
(1−2GM/r)φ̇

2
2−(1−2GM/r)(φ

′

1)
2) now vanishes. So L becomes

independent of the kinetic energy of the fields K = φ̇2
2 ! How do we tackle

this situation ?

We proceed as follows.As K is a constant and less than 1 , write L as

L = 1− V = (α+K)− V = K − (V − α) = K − V ′

where α > 0 and also less than unity. If we further stipulate that α < V ,

then V ′ is positve. Obviously if K >> V then K is also greater than V ′.

So the domination of kinetic part is still valid ,although the potential has

now changed !

All this means that for non canonical lagrangians it is difficult to isolate

the lagrangian into pure kinetic and pure potential parts. This is intu-

itively expected because a non canonical lagrangian is fully interacting to

start with and it is difficult to think of a “free” propagator.
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

2.1 Mapping on to the Barriola-Vilenkin type metric

Taking the gravitational metric gµν to be Schwarzschild, ∂0φ ≡ φ̇, ∂rφ ≡ φ′

and assuming that the k−essence field φ(r, t) is spherically symmetric one

has [using (1.9)]

Ḡ00 = g00 − (∂0φ)
2 = 1− 2GM/r − φ̇2

Ḡ11 = g11 − (∂rφ)
2 = −(1− 2GM/r)−1 − (φ′)2

Ḡ22 = g22 = −r2

Ḡ33 = g33 = −r2sin2θ

Ḡ01 = Ḡ10 = −φ̇φ′ (2.1)

For the Schwarzschild metric,

g00 = (1− 2GM/r); g11 = −(1− 2GM/r)−1;

g22 = −r2; g33 = −r2sin2θ; gij(i 6= j) = 0

So the emergent gravity line element becomes

ds2 = (1− 2GM/r − φ̇2)dt2 − ((1− 2GM/r)−1 + (φ′)2)dr2

−2φ̇φ′dtdr − r2dΩ2 (2.2)

where dΩ2 = dθ2 + sin2θdφ2.

Making a co-ordinate transformation from (t, r, θ, φ) to (ω, r, θ, φ) such

that ([85]):

dω = dt− (
φ̇φ′

1− 2GM/r − φ̇2
)dr (2.3)
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

Then (2.2) becomes

ds2 = (1− 2GM/r − φ̇2)[dω2 +
(φ̇φ′)2

(1− 2GM/r − φ̇2)2
dr2

+2
(φ̇φ′)

(1− 2GM/r − φ̇2)
dωdr]− (

1

1− 2GM
r

+ φ′2)dr2

−2φ̇φ′dr[dω +
(φ̇φ′)

(1− 2GM/r − φ̇2)
dr]− r2dΩ2

= (1− 2GM/r − φ̇2)dω2 − [
(φ̇φ′)2

(1− 2GM/r − φ̇2)

+
1

(1− 2GM/r)
+ (φ′)2]dr2 − r2dΩ2

(2.4)

(2.4) will be a blackhole metric if Ḡ00 = Ḡ−1
11 , i.e.

(1− 2GM/r − φ̇2) = [
(φ̇φ′)2

(1− 2GM/r − φ̇2)
+

1

(1− 2GM/r)
+ (φ′)2]−1

or,

φ̇2 = (φ′)2(1− 2GM/r)2 (2.5)

Let us assume a solution to (2.5) of the form φ(r, t) = φ1(r)+φ2(t). Then

(2.5) reduces to

φ̇2
2 = (φ′

1)
2(1− 2GM/r)2 = K (2.6)

K( 6= 0) is a constant (K 6= 0 means k−essence field will have non-zero

kinetic energy). The solution to (2.6)

φ(r, t) = φ1(r) + φ2(t)

=
√
K[r + 2GM ln(r − 2GM)] +

√
Kt (2.7)

with

φ′
1(r) =

√
Kr

(r − 2GM)
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

φ1(r) =
√
K[r + 2GMln(r − 2GM)]; φ2(t) =

√
Kt,

and we have taken an arbitrary integration constant to be zero. So the

line element (2.4) reduces to

ds2 = (1− 2GM

r
−K)dω2 − 1

(1− 2GM
r

−K)
dr2 − r2dΩ2

(2.8)

and this is the Barriola-Vilenkin blackhole which represents the situation

where a global monopole carrying charge K = φ̇2
2 = constant has fallen

into a Schwarzschild blackhole. It should be noted that K has to be always

less than unity because if K is greater than unity the signature of the

metric (2.8) becomes ill defined. This is easily seen : for K > 1, Ḡ00

is negative while Ḡ11 is positive. However, it should also be noted that

K >> V . This is a requirement for k−essence fields where the kinetic

energy dominates over the potential energy. Therefore, we have K < 1

and V << K.

So the metric components are

Ḡ00 = g00 − (∂0φ)
2 = (1− 2GM/r −K);

Ḡ11 = g11 − (∂rφ)
2 = −(1− 2GM/r −K)−1;

Ḡ22 = g22 = −r2 ; Ḡ33 = g33 = −r2sin2θ

(2.9)

In the context of global monopoles [65, 81, 82], the above metric has

been shown to satisfy the Einstein field equations. Thus we have shown

that this metric can also arise from an emergent gravity scenario with

k−essence scalar fields and the global monopole charge is now replaced

by the constant kinetic energy of the k−essence field.
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

Now it is also known that the solutions to the emergent gravity equa-

tions of motion (1.7) for the scalar field under cosmological boundary

conditions are given by [44]-[47]

φemergent(t, r) = const.[t+ r + 2GM ln | r

2GM
− 1|+ 2GM

∫ r

F (r′)dr′]

where the function

F (r) =
r

r − 2GM
[

√

Ar − 2GM

A4r4(r − 2GM) + (A− 1)r
− 1]

where A is a constant. Substituting this solution in (2.5) and taking

the limit r → ∞ and ignoring terms of O( 1
r2 ) and higher gives

limr→∞(φ′
emergent)

2(1− 2GM/r)2 = K(2GM − 1)2 (2.10)

Therefore for r → ∞, the rescaled field
φemergent(t,r)
(2GM−1) has exact correspon-

dence with the k−essence scalar field φ which satisfies the blackhole metric

condition (2.5).

2.2 Hawking Temperature

Let us calculate the Hawking temperature for this metric (2.8) using the

tunnelling formalism as outlined in [54, 55, 56, 57] which corrects for the

factor of two in the Hawking temperature as often mentioned, (e.g. in

[63, 64]). Going over to the Eddington-Finkelstein coordinates (v, r, θ, φ)

v = ω + r∗ ; u = ω − r∗;
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

dr∗ =
dr

(1−K − 2GM/r)
;

r∗ =
r

1−K
+

2GM

(1−K)2
ln [(1−K)r − 2GM ]. (2.11)

we get

ds2 = (1−K − 2GM/r)(dω2 − (dr∗)2)− r2dΩ2

= (1−K − 2GM/r)(dv2 − 2dv dr∗)− r2dΩ2

= (1−K − 2GM/r)dv2 − 2dvdr − r2dΩ2 (2.12)

By analogy with the Schwarzschild case a massless particle in the back-

ground of Ḡµν is described by the Klein-Gordon equation,

~
2(−Ḡ)−1/2∂µ(Ḡ

µν(−Ḡ)1/2∂νΨ) = 0. (2.13)

One expands

Ψ = exp(− i

~
S + ...) (2.14)

Then (2.13) becomes,

~
2(−Ḡ)−1/2∂µ[Ḡ

µν(−Ḡ)1/2(− i

~
)(∂νS)e

(− i
~
S)] = 0 (2.15)

and obtains to leading order in ~ the equation

Ḡµν∂µS∂νS = 0 (2.16)

Using separation of variables in the form

S = Ev + S0(r), (2.17)

and using (2.12), the equation (2.16) become

−2
∂S

∂v

∂S

∂r
− (1−K − 2GM/r)(

∂S

∂r
)2 = 0 (2.18)
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

i.e.,

2ES
′

0(r) + (1−K − 2GM/r)(S
′

0(r))
2 = 0 (2.19)

where S
′

0(r) =
∂S0(r)
∂r . One of the solution of S0(r) is a constant C and

another is

S0(r) = −2E

∫ r dr

(1−K − 2GM/r)
= −2E

∫ r dr

(β − 2GM/r)

= −2E

β

∫ r dr

(1− 2GM
βr

)
(2.20)

with β = (1−K) is constant. Furthermore, there is a singularity at the

horizon r = 2GM
β = rbv, which has to handled if one tries to find a solution

across it.

One way to avoid this singularity is the pole is to change r − rbv to

r − rbv − iǫ. This gives

S0(r) = −2E

β

∫ r rdr

(r − rbv)
= −2E

β

∫ r

(1 +
rbv

r − rbv
)dr

= −2E

β
[r + rbv . iπ + rbv

∫ r

drP (
1

r − rbv
)] (2.21)

where P () denotes the principal value.

Therefore the solution of equation (2.16) is

S = Ev + C − 2E

β
[r + rbv . iπ + rbv

∫ r

drP (
1

r − rbv
)]. (2.22)

The imaginary part gives a factor

exp(
i

~

2E

β
rbv .iπ) = exp(−4πGME

~β2
)

26
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in the amplitude, so the probability is a factor exp(−8πGME
~β2 ). This prob-

ability exp(−8πGME
~β2 ) is equivalent to exp(− E

kBTemergent
).

So the Hawking temperature for BV type metric is obtained as (φ̇2
2 =

constant = K)

Temergent =
~c3(1−K)2

8πGMkB
= TS(1−K)2 (2.23)

where kB is the Boltzmann constant and TS =
~c3

8πGMkB
is the usual Hawk-

ing temperature. So Temergent is less than the usual Hawking temperature

for Schwarzschild black hole as K < 1.

Let us recollect what we have done so far. We have considered a

k−essence scalar field φ (with a non-canonical Born-Infeld type lagrangian

with potential V (φ) = const. = V i.e. L = 1 − V (φ)
√
1− 2X ≡

1 − V
√
1− 2X) minimally coupled to the gravitational metric gµν in

Schwarzschild spacetime. We then obtain the equation of motion for φ,

equation (1.7), in the “effective” metric

Ḡµν = gµν − ∂µφ∂νφ.

We then impose the conditions for a blackhole metric to obtain the

configurations of the k−essence field φ that will give a blackhole. It turns

out that one possible scenario is a Barriola-Vilenkin type blackhole where

the global monopole charge is now replaced by a constant kinetic energy

of the scalar field φ. This kinetic energy K < 1 in order to preserve the

consistency of the signature of the metric. By construction the potential

energy V is a constant and V << K because this is a basic requirement

for k−essence fields. Therefore, the total energy is always a constant and

although the obtained field configurations are linear in time there should

not be any instability. Moreover, the lagrangian does not depend on the

fields φ explicitly. The dependence is only through derivatives of the field.
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2.3 Phenomenological consequences in analogue gravity

experiments

We now discuss how our results can be made to correspond to scenarios

in analogue gravity experiments similar to Belgiorno et. al. [66]. Such an

experiment may help in distinguishing between a Schwarzschild blackhole

analogue and the blackhole analogue described by the metric (2.8) and

(2.9).

First let us briefly discuss Belgiorno et. al’s experiment. They used

ultrashort laser pulse filaments to create a travelling refractive index per-

turbation (RIP) in fused silica glass and reported experimental evidence of

photon emission that bears the characteristics of Hawking radiation and

is distinguishable and thus separate from other known photon emission

mechanisms. They interpreted this emission as an indication of Hawking

radiation induced by the analogue event horizon.

They also have a complete description of the event horizon associated

to the RIP and can calculate a blackbody temperature of the emitted

photons in the laboratory reference frame [86, 87]. However, Belgiorno

et. al. also pointed out that the dielectric medium in which the RIP is

created will always be dominated by optical dispersion and therefore the

spectrum will not be that of a perfect blackbody and that in any case

only a limited spectral portion of the full spectrum will be observable.

To show this last point they described the RIP as a perturbation induced

by the laser pulse on top of a uniform, dispersive background refractive

index n0, i.e.

n(z, t, ω) = n0(ω) + δnf(z − vt),

where ω is the optical frequency, f(z − vt) is a function bounded by 0
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and 1, that describes the shape of the laser pulse. In the reference frame

co-moving at velocity v with the RIP, the event horizon in a 2D geometry

is defined by c/v = n which admits solutions only for RIP velocities

satisfying the inequality [87]:

1

n0(ω) + δn
<

v

c
<

1

n0(ω)
.

This predicts an emission spectrum with well-defined boundaries and it

is precisely this feature of the spectral emission that is peculiar to ana-

logue Hawking radiation. In the experiment a clear photon emission was

registered in the wavelength window predicted by the last inequality, the

emitted radiation was unpolarized, and the emission bandwidth increased

with the input energy. The Bessel pulse intensity evolution along the

propagation direction z was estimated analytically from the input energy.

By fitting the measured spectra with Gaussian functions the bandwidth

was estimated as a function of input energy and Bessel intensity. Using

the fused silica dispersion relation the authors obtained the bandwidth

and the δn as a function of input energy and Bessel pulse peak intensity

(at z = 1 cm where measurements were performed). There was a clear

linear dependence which was in qualitative agreement with the fact that

the emission bandwidth was predicted to depend on δn which in turn is a

linear function δn = n2I of the pulse intensity I. The slope of the linear fit

was in good agreement with the tabulated value [88, 89]. Therefore there

is also an agreement at the quantitative level between the measurements

and the model based on Hawking-like radiation emission.

In this context, we propose that a different Hawking temperature should

give a different set of values for the above mentioned phenomenological

parameters i.e. the slope n2 and also the inequality
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1

n0(ω) + δn
<

v

c
<

1

n0(ω)

etc. because the intensity of photon emission should depend on the rel-

evant blackbody temperature. Therefore, Belgiorno et. al’s gravitational

analogue experiment has scope of being further enhanced into testing the

existence of other cosmological entities like dark energy. In order to in-

clude the effects of dark energy, the RIP method must be accordingly

modified. At a basic level this means that the effect of the presence of the

constant K in the metric must be included. For example, if we consider

the Schwarzschild metric, the Belgiorno et. al. experiment currently has

K = 0. So the experimental situation has to move over to a scenario

which can mimic K 6= 0 i.e. 0 < K < 1.

Here some aspects need to be clarified. First, note that in (2.8) if we

take M ∼ Mmonopolecore i.e. M is very small and negligible we have

ds2 = (1−K)dω2 − 1

(1−K)
dr2 − r2dΩ2

and rescaling r and ω one has

ds2 = dω2 − dr2 − (1−K)r2dΩ2

and this is the metric of the global BV monopole and describes a space

with a deficit solid angle i.e. the area of a sphere of radius r is not 4πr2

but (1 − K)4πr2 , K < 1. Such spaces are not asymptotically flat, but

asymptotically bound.

Secondly, we are dealing with the BV blackhole i.e. M >> Mmonopolecore

i.e.

2GM/r =
2M
r
G
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

is not negligible i.e. for r ∼ δ where δ is the monopole core size. Here

also for r → ∞ the metric (2.8) is not strictly asymptotically flat owing

to the presence of K.

If the Schwarzschild metric is the reference then one has to move over

from an asymptotically flat metric to one which is not exactly asymp-

totically flat but rather asymptotically bound. This aspect can be in-

corporated into the Belgiorno et al analogue gravity experiment in the

following way in order for the results to be compatible to the existence

of an analogue event horizon corresponding to a Hawking temperatute

Temergent. Here we draw heavily from Reference [87]. Consider the wave

equation for a perturbation of a full nonlinear electric field propagating in

a nonlinear Kerr medium where for simplicity the electric field has been

replaced by a scalar field φ, (equation (1) of Reference [87]):

n2(xl − vtl)

c2
∂2
tl
Φ− ∂2

xl
Φ− ∂2

yΦ− ∂2
zΦ = 0

where all coordinates are in the lab frame. The suffix l is omitted from

y, z because they are not involved in the boost relating the lab frame

with the pulse frame. n(xl − vtl) is the refractive index that accounts

for the propagating RIP in the dielectric. The RIP is propagating with a

constant velocity v. The analogue Hawking temperature (equation (13)

of Reference [87]) for the blackhole horizon (x+) is

T+ =
γ2v2~

2πkBc
|dn
dx

|x+

where γ is the boost (γ = 1
√

1− v2

c2

), v is the constant velocity of the RIP,

kB is the Boltzmann constant and x+ denotes the blackhole horizon. Note
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

that in order to have

Temergent = (1−K)2TH

one can have either of the following scenarios:

Case 1:

Realise an experimental situation where

γ2 → γ2
1 = (1−K)2γ2

This would imply

1− v21
c2

=
1− v2

c2

(1−K)2

or,

v21
c2

= 1− 1− v2

c2

(1−K)2

i.e.,

v21 =
v2 − c2K(2−K)

(1−K)2

As v21 must be positive, one should ensure that

v2 − c2K(2−K)

(1−K)2
> 0

i.e.,

K(2−K) <
v2

c2

All this should also be made consistent with

c

v1
= n1|x+

= n10 + k1η1

where the parameter η1 << 1 and k1 is the normalised intensity of the

pulse at the blackhole horizon taking values in the interval (0, 1).

Case 2:
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2 The Hawking temperature in the context of dark energy for Schwarzschild background

Realise an experimental situation with

n → n2 = (1−K)2n

Obviously the RIP propagation velocity v must be changed to some new

value v2 together with a new consistency condition

c

v2
= n2|x+

= n20 + k2η2

Therefore , a realisation of photon emission (similar to Belgiorno et al’s

original experiments) corresponding to a blackbody temperature Temergent

in any of the above described two scenarios will be compatible with a theory

of k−essence fields in an emergent gravity metric in the same way as the

original Belgiorno experiment, though not proving the existence of black-

hole horizons , however , proves the relation between blackhole horizons

and the Hawking radiation.
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CHAPTER 3



3 Hawking Temperature in context of

dark energy for Reissner-Nordstrom

and Kerr backgrounds

Now we determine the Hawking temperature for an emergent gravity met-

ric in the presence of dark energy for two other background metrics. These

are (a) Reissner-Nordstrom (RN) blackhole metric and (b) Kerr blackhole

metric.

The results reported in this chapter have been obtained in Paper 2 of

List of Publications.

As explained in detail in chapter 1, G̃µν contains the dark energy field φ

and this should satisfy the emergent gravity equations of motion. Again,

for G̃µν to be a blackhole metric, it has to satisfy the Einstein field equa-

tions. In chapter 2, this was shown by mapping the emergent gravity met-

ric (having Schwarzschild background) into a Barriola-Vilenkin blackhole

metric which satisfied the Einstein equations.

Here we find that for the RN background case the emergent gravity

metric can be exactly mapped onto a Robinson-Trautman blackhole so

that the Einstein equations are automatically satisfied. However, the k-

essence matter fields satisfy the emergent gravity equations of motion only

for θ = 0.
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3 Hawking Temperature in context of dark energy for Reissner-Nordstrom and Kerr backgrounds

For the Kerr case, the emergent metric satisfies Einstein equations for

large r while the dark energy field φ satisfies the emergent gravity equa-

tions of motion again only for θ = 0.

In this context we clarify that the Hawking temperature is spherically

symmetric from very general conditions and taking θ = 0 does not there-

fore affect this property of the Hawking temperature.

As before, for the DBI lagrangian (1.8), the question of kinetic energy

dominating over the potential energy is tackled as follows.

(a) Reissner-Nordstrom metric along θ = 0 : The DBI lagrangian

L = 1− V [1− (g00φ̇2
2 + g11(φ

′

1)
2)]1/2

= 1− V [1− ((
1

1− 2GM/r +Q2/r2
)φ̇2

2 − (
1

1− 2GM/r +Q2/r2
)(φ

′

1)
2)]1/2

Here also it is impossible to extract a pure kinetic part. Also (3.6) (below)

is true so that again L = 1− V . A similar discussion as given before for

the Schwarzschild case is true here also with a marginal difference i.e.

here α = 0 as K is forced to take the value K = 1 (from other conditions,

page 41,paragraph 3) so that K is still larger than V ,i.e. the kinetic

energy dominates.

(b) Kerr metric along θ = 0 :

The DBI lagrangian

L = 1− V [1− (g00φ̇2
2 + g11(φ

′

1)
2)]1/2

= 1− V [1− ((
ρ2

∆
)φ̇2

2 − (
∆

ρ2
)(φ

′

1)
2)]1/2

with ρ2 = r2 + α2 and ∆ = r2 − 2GMr + α2.
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Now using (3.34) (below) where

φ̇2
2 =

∆2

ρ4
(φ′

1)
2 = K

L becomes L = 1 − V . Exactly same arguments as in the Schwarzschild

case for kinetic part domination is valid here as K < 1.

3.1 The Reissner-Nordstrom case and mapping on to

the Robinson-Trautman type metric

First consider the gravitational metric gµν to be Reissner-Nordstrom. As-

suming that the k−essence field φ(r, t) is spherically symmetric one has

[using (1.9)]

Ḡ00 = g00 − (∂0φ)
2 = 1− 2GM/r +Q2/r2 − φ̇2

Ḡ11 = g11 − (∂rφ)
2 = −(1− 2GM/r +Q2/r2)−1 − (φ′)2

Ḡ22 = g22 = −r2

Ḡ33 = g33 = −r2sin2θ

Ḡ01 = Ḡ10 = −φ̇φ′

(3.1)

For the RN metric,

g00 = (1− 2GM/r +Q2/r2); g11 = −(1− 2GM/r +Q2/r2)−1;

g22 = −r2; g33 = −r2sin2θ; gij(i 6= j) = 0.

Note that the RN metric is spherically symmetric. The emergent gravity

metric (3.1) contains additional terms but all these are independent of θ.

So the emergent metric is also spherically symmetric. So we might as well
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3 Hawking Temperature in context of dark energy for Reissner-Nordstrom and Kerr backgrounds

consider θ = 0. Then the emergent gravity line element becomes

ds2RN,θ=0 = (1− 2GM/r +Q2/r2 − φ̇2)dt2

−((1− 2GM/r +Q2/r2)−1 + (φ′)2)dr2

−2φ̇φ′dtdr (3.2)

Now make a co-ordinate transformation from (t, r) to (ω, r) along θ = 0

such that ([85]) :

dω = dt− (
φ̇φ′

1− 2GM/r +Q2/r2 − φ̇2
)dr (3.3)

Then (3.2) becomes

ds2 = (1− 2GM/r +Q2/r2 − φ̇2)[dω2 +
(φ̇φ′)2

(1− 2GM/r +Q2/r2 − φ̇2)2
dr2

+
2(φ̇φ′)

(1− 2GM/r +Q2/r2 − φ̇2)
dωdr]− (

1

1− 2GM/r +Q2/r2
+ φ′2)dr2

−2φ̇φ′dr[dω +
(φ̇φ′)

(1− 2GM/r +Q2/r2 − φ̇2)
dr]

= (1− 2GM/r +Q2/r2 − φ̇2)dω2 − [
(φ̇φ′)2

(1− 2GM/r +Q2/r2 − φ̇2)

+
1

(1− 2GM/r +Q2/r2)
+ (φ′)2]dr2

(3.4)

(3.4) will be a blackhole metric if Ḡ00 = Ḡ−1
11 , i.e.,

(1− 2GM/r +Q2/r2 − φ̇2)

= [
(φ̇φ′)2

(1− 2GM/r +Q2/r2 − φ̇2)
+

1

(1− 2GM/r +Q2/r2)
+ (φ′)2]−1
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i.e.,

φ̇2 = (φ′)2(1− 2GM/r +Q2/r2)2 (3.5)

Let us assume a solution to (3.5) of the form φ(r, t) = φ1(r)+φ2(t). Then

(3.5) reduces to

φ̇2
2 = (φ′

1)
2(1− 2GM/r +Q2/r2)2 = K (3.6)

K( 6= 0) is a constant (K 6= 0 means k−essence field will have non-zero

kinetic energy). The solution to (3.6) is

φ(r, t) = φ1(r) + φ2(t)

=
√
K[r +

(2G2M2 −Q2)tan−1 (r−GM)√
Q2−G2M2)

√

Q2 −G2M2
+GMln (Q2 − 2GMr + r2)] +

√
Kt

(3.7)

with

φ1(r) =
√
K[r+

(2G2M2 −Q2)tan−1 (r−GM)√
Q2−G2M2)

√

Q2 −G2M2
+GMln (Q2−2GMr+r2)];

and

φ2(t) =
√
Kt,

and we have taken an arbitrary integration constant to be zero. Therefore

the line element (3.4) becomes

ds2 = (1− 2GM

r
+

Q2

r2
−K)dω2 − 1

(1− 2GM
r + Q2

r2 −K)
dr2

(3.8)
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i.e.

ds2 = (β − 2GM

r
+

Q2

r2
)dω2 − 1

(β − 2GM
r + Q2

r2 )
dr2

(3.9)

with β = (1−K). Now going over to the Eddington-Finkelstein coordi-

nates (v, r) or (u, r) along θ = 0 i.e., introducing advanced and retarded

null coordinates

v = ω + r∗ ; u = ω − r∗;

dr∗ =
r2dr

β(r2 − 2GMr/β +Q2/β)
=

r2dr

β(r − r+)(r − r−)
;

r∗ =
1

β
[r +

r2+
r+ − r−

ln |r − r+| −
r2−

r+ − r−
ln |r − r−|]

(3.10)

with

r+ =
GM

β
+

1

β

√

(GM)2 − βQ2

and

r− =
GM

β
− 1

β

√

(GM)2 − βQ2

.

Then the line element (3.9) becomes, for advanced null coordinates

ds2 =
β

r2
(r2 − 2GMr/β +Q2/β)(dω2 − (dr∗)2)

=
β

r2
(r2 − 2GMr/β +Q2/β)(dv2 − 2dvdr∗)

= (β − 2GM

r
+

Q2

r2
)dv2 − 2dvdr (3.11)
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or, similarly for retarded null coordinates

ds2 = (β − 2GM

r
+

Q2

r2
)du2 + 2dudr

(3.12)

which is analogous to the Robinson-Trautman (RT) metric [73, 74] along

θ = 0 where β can take the values +1, 0,−1. The original Robinson-

Trautman metric [73] (page 430) along θ = 0 is

ds2 = 2dudr + (α− 2m

r
+

κ0QQ̄

2r2
)du2

with

Φ1 =
Q̄

2r2
; Φ2 = 0; α = 0,±1.

where Q (complex), m (real) are arbitrary constants and Φ1,Φ2 are elec-

tromagnetic fields. This is known in the literature as type D solutions

of Einstein-Maxwell field equations. For α = 1, these are the Reissner-

Nordstrom solutions.

In our case β 6= +1 because then K = φ̇2
2 = 0 and dark energy is

absent. β 6= −1, i.e. K 6= 2 as the total energy density cannot exceed

unity (Ωmatter +Ωradiation +Ωdarkenergy = 1).

Therefore, the only allowed value of β = 0 i.e., K = 1 and this is a per-

fectly valid solution because the RT metric allows β = 0. Physically this

means that r+ is pushed to infinity while r− is pushed to zero. This implies

the radial coordinate r is a time-like coordinate on the whole space-time

manifold and the outer horizon a sort of cosmological horizon. Thus ,

as argued in reference [90], the case K=1 of (3.8) does not seem have a

Newtonian limit, which makes it unsuitable for describing astrophysical

objects. However, although this may not be suitable as an astrophysical
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object but still is a consistent solution of Einstein’s equation. In this con-

text, it should be noted that even the Schwarzschild blackhole solution

is strictly not astrophysically ever possible because we cannot have static

blackholes. But still the Schwarzschild solution has been a milestone in

understanding various nuances of general relativity. Similar situation pre-

vails also for the Reissner-Nordstrom blackhole as charged blackholes are

highly unlikely in nature for obvious reasons. So any confusion regarding

K taking the value +1 should not arise. We shall show below that K = 1

gives zero Hawking temperature.

Also note that the solution φ(r, t) (3.7) obtained from the blackhole con-

ditions Ḡ00 = Ḡ−1
11 also satisfies the emergent gravity equation of motion

(1.7) at r → ∞ along the symmetry axis, θ = 0:

Ḡ00∂2
0φ2 + [Ḡ11(∂2

1φ1 − Γ1
11∂1φ1)] + Ḡ01∇0∇1φ+ Ḡ10∇1∇0φ = 0.

The first term vanish since φ2(t) linear in t and second term within

third bracket becomes inconsequential at r → ∞ because this term goes

like ∼ − 1
r3 +

1
r2 and for our case β = 0. It can be shown below [using

Γ1
11 =

Q2−GMr
r(r2−2GMr+Q2) ]:

2nd term = −(β−2GM

r
+
Q2

r2
)[
√
K

r(2Q2 − 2GMr)

(r2 − 2GMr +Q2)2
−
√
K

r2(Q2 −GMr)

r(r2 − 2GMr +Q2)2
]

= −
√
KQ2 (βr

2 − 2GMr +Q2)

r(r2 − 2GMr +Q2)2
+
√
KGM

(βr2 − 2GMr +Q2)

(r2 − 2GMr +Q2)2

= −(
√
KQ2)

r2(β − 2GM
r + Q2

r2 )

r5(1− 2GM
r

+ Q2

r2
)2

+ (
√
KGM)

r2(β − 2GM
r + Q2

r2 )

r4(1− 2GM
r

+ Q2

r2
)2
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= −(

√
KQ2

r3
)(β − 2GM

r
+

Q2

r2
)(1− 2GM

r
+

Q2

r2
)−2

+(

√
KGM

r2
)(β − 2GM

r
+

Q2

r2
)(1− 2GM

r
+

Q2

r2
)−2

≃ −(

√
KQ2

r3
)(β − 2GM

r
+

Q2

r2
)(1 +

4GM

r
− 2Q2

r2
)

+(

√
KGM

r2
)(β − 2GM

r
+

Q2

r2
)(1 +

4GM

r
− 2Q2

r2
)

= −(

√
KQ2

r3
)[β +

4βGM

r
− 2βQ2

r2
− 2GM

r
− 8G2M2

r2
+ ...]

+(

√
KGM

r2
)[β +

4βGM

r
− 2βQ2

r2
− 2GM

r
− 8G2M2

r2
+ ...]

(Please note that the second term has been inadvertently missed in

Paper 2 of List of publications ,3rd page,paragraph 2)

The last expression becomes negligible for large r.

r → ∞−−−−→ − O(
1

r3
) +O(

1

r2
)

and the last two terms vanish because Ḡ01 = Ḡ10 = 0.

So the scalar field that one needs to produce an emergent RN black

hole satisfies the equation of motion of emergent gravity (1.7) only for

infinite coordinate radius along the polar axis. One may question what

the geometry discussed has to do with emergent gravity in the first place.

The answer is that as the emergent geometry has a scalar field intricately

linked with it a priori, having a solution at r → ∞ is non-trivial from

various aspects. Let us discuss these.

First note that the solution for the scalar field φ, (3.7), does not vanish

for r → ∞ as is usually expected of well behaved fields. Here
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φ1(r → ∞) =
√
K[r + 2GMlnr +

2G2M2 −Q2

√

Q2 −G2M2

π

2
].

Moreover, if Q−GM = α where α → 0, so that ln r is negligible compared

to the other terms then

φ1(r → ∞) ∼
√
K[r +

√
Q√
2α

π

2
].

All these are solutions of the theory and so deserve mention.

3.2 The Hawking Temperature for Robinson-Trautman

type metric

We use the tunnelling method to calculate the Hawking temperature for

(3.11) [54]-[57], [63, 64, 67, 68]: As discussed in section 1.3, a massless

particle in a black hole background is described by the Klein-Gordon

equation

~
2(−Ḡ)−1/2∂µ(Ḡ

µν(−Ḡ)1/2∂νΨ) = 0. (3.13)

One expands

Ψ = exp(
i

~
S + ...) (3.14)

to obtain the leading order in ~ the Hamilton-Jacobi equation is

Ḡµν∂µS∂νS = 0 (3.15)

Assume S is independent of θ and φ. Then

2
∂S

∂v

∂S

∂r
+ (β − 2GM

r
+

Q2

r2
)(
∂S

∂r
)2
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=
∂S

∂r
[2
∂S

∂v
+ (β − 2GM

r
+

Q2

r2
)
∂S

∂r
] = 0 (3.16)

The symmetries of the metric permit the action to be written as

S = −Ev +W (r) + J(xi) (3.17)

Then

∂vS = −E ; ∂rS = W
′

; ∂iS = Ji (3.18)

Ji are constants chosen to be zero. Combining equations (3.16) and (3.18):

−2EW
′

(r) + (β − 2GM

r
+

Q2

r2
)(W

′

(r))2 = 0 (3.19)

Thus

W (r) =

∫

(Er2 + Er2)dr

β(r − r+)(r − r−)

= 2πi(
E

β
)

r2+
r+ − r−

+ 2πi(
E

β
)

r2−
r− − r+

= W (r+) +W (r−) (3.20)

The two values of W (r) correspond to the processes that the particle

tunnels through the outer and inner horizons respectively.

Therefore

S = −Ev + 2πi(
E

β
)

r2+
r+ − r−

+ 2πi(
E

β
)

r2−
r− − r+

+ J(xi)

(3.21)

The tunneling rates of the outer and inner horizons are

ΓRT
+emergent ∼ e−2ImS+ ∼ e−2ImW (r+)

= e
−4π(Eβ )

r2+
r+−r− = e

− E
KBT+ (3.22)
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ΓRT
−emergent ∼ e−2ImS− ∼ e−2ImW (r−)

= e
−4π(Eβ )

r2
−

r−−r+ = e
− E

KBT− (3.23)

From these two equations the corresponding Hawking temperatures of the

two horizons are respectively

TRT
+emergent =

~c3β

4πkB
(
r+ − r−

r2+
)

=
~c3β

4πkB
[
(GM

β + 1
β

√

(GM)2 − βQ2)− (GM
β − 1

β

√

(GM)2 − βQ2)

(GM
β

+ 1
β

√

(GM)2 − βQ2)2
]

=
~c3β2

2πkB

√

(GM)2 − βQ2

(GM +
√

(GM)2 − βQ2)2

=
~c3(1−K)2

2πkB

√

G2M2 −Q2(1−K)

[GM +
√

G2M2 −Q2(1−K)]2

(3.24)

and

TRT
−emergent =

~c3β

4πkB
(
r− − r+

r2−
)

=
~c3β

4πkB
[
(GM

β − 1
β

√

(GM)2 − βQ2)− (GM
β + 1

β

√

(GM)2 − βQ2)

(GM
β − 1

β

√

(GM)2 − βQ2)2
]

= −~c3β2

2πkB

√

(GM)2 − βQ2

(GM −
√

(GM)2 − βQ2)2

= −~c3(1−K)2

2πkB

√

G2M2 −Q2(1−K)

[GM −
√

G2M2 −Q2(1−K)]2

(3.25)
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Hence, as stated before, the Hawking temperature for this case will vanish

as the dark energy density has to be K = φ̇2
2 = 1. So this RT blackhole

in presence of dark energy cannot radiate as the dark energy density is

constrained to be unity.

3.3 Emergent gravity and Kerr metric

Now take the gravitational metric gµν to be Kerr. The line element is [91]

ds2Kerr = (1− 2GMr

ρ2
)dt2 +

4GMrαsin2θ

ρ2
dφdt− ρ2

∆
dr2

−ρ2dθ2 − (r2 + α2 +
2GMrα2sin2θ

ρ2
)sin2θdφ2 (3.26)

where

α =
J

GM
; ρ2 = r2 + α2cos2θ and ∆ = r2 − 2GMr + α2.

In this context an important point should be stressed. Note that the

above metric (3.26) can be recast (for zero total charge) into the form

given in reference [69] where the identifications are provided below.

ds2 = f(r, θ)dt2 − dr2

g(r, θ)
+ 2H(r, θ)dtdφ

−K(r, θ)dφ2 − Σ(r, θ)dθ2 (3.27)

where

f(r, θ) =
∆(r)− α2sin2θ

Σ(r, θ)
;

g(r, θ) =
∆(r)

Σ(r, θ)
;

H(r, θ) =
αsin2θ(r2 + α2 −∆(r))

Σ(r, θ)
;
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K(r, θ) =
(r2 + α2)2 −∆(r)α2sin2θ

Σ(r, θ)
sin2θ;

Σ(r, θ) = r2 + α2cos2θ;

∆(r) = r2 + α2 − 2GMr.

In [69] it has been elaborately shown how the Hawking temperature is

independent of θ although the metric functions depend on θ. In our case

the emergent metric Ḡµν contains additional terms but these additional

terms are still independent of θ. Therefore, the modified Hawking tem-

perature will still be independent of θ. Therefore we might as well do our

evaluation for some fixed θ, i.e. θ = 0. We consider the Kerr metric along

θ = 0. Then (3.26) becomes [91]

ds2Kerr;θ=0 =
∆

ρ2
dt2 − ρ2

∆
dr2 (3.28)

where

ρ2 = r2 + α2 and ∆ = r2 − 2GMr + α2.

It is to be noted that the same metric (3.28) was rediscovered in [92]-[94]

using a different route.

As before, we take the k−essence field φ(r, t) to be spherically symmet-

ric in keeping with the usual spherically symmetric Born-Infeld type of

lagrangian for the k−essence scalar field. This does imply any necessary

conflict with the non-spherically symmetric background.
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Then one has from (1.9)

Ḡ00 = g00 − (∂0φ)
2 =

∆

ρ2
− φ̇2

Ḡ11 = g11 − (∂rφ)
2 = −ρ2

∆
− (φ′)2

Ḡ01 = Ḡ10 = −φ̇φ′. (3.29)

The emergent gravity line element (3.29) along θ = 0 is now

ds2 = (
∆

ρ2
− φ̇2)dt2 − (

ρ2

∆
+ (φ′)2)dr2 − 2φ̇φ′dtdr (3.30)

Now make a coordinate transformation from (t, r) to (ω, r) such that

dω = dt− (
φ̇φ′

∆
ρ2 − φ̇2

)dr (3.31)

Then (3.30) becomes

ds2 = (
∆

ρ2
− φ̇2)[dω2 − (φ̇φ′)2

(∆ρ2 − φ̇2)2
dr2 +

2(φ̇φ′)

(∆ρ2 − φ̇2)
dtdr]

−(
ρ2

∆
+ (φ′)2)dr2 − 2φ̇φ′dtdr

= (
∆

ρ2
− φ̇2)dω2 − [

(φ̇φ′)2

(∆ρ2 − φ̇2)
+

ρ2

∆
+ (φ′)2]dr2

(3.32)

This equation (3.32) will a black hole metric if Ḡ00 = Ḡ−1
11 , i.e.

(
∆

ρ2
− φ̇2) = [

(φ̇φ′)2

(∆ρ2 − φ̇2)
+

ρ2

∆
+ (φ′)2]−1

i.e.,
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∆φ̇2(φ
′

)2 +∆− φ̇2ρ2 + (φ
′

)2
∆2

ρ2
−∆φ̇2(φ

′

)2 = ∆

i.e.,

φ̇2 =
∆2

ρ4
(φ′)2 (3.33)

We take a solution of (3.33) as φ(r, t) = φ1(r) + φ2(t).

So (3.33) reduces to

φ̇2
2 =

∆2

ρ4
(φ′

1)
2 = K (3.34)

where K( 6= 0) is a constant (K 6= 0 means k−essence field will have non-

zero kinetic energy). (Please note that in Paper 2 ,List of Publications

the equations (42), (43) are erroneous). Now from (3.34) we get

φ̇2 =
√
K

and

φ′
1 =

√
K[

(r2 + α2)

r2 − 2GMr + α2
].

The solution of (3.34) is

φ(r, t) = φ1(r) + φ2(t)

=
√
K[r +

2(GM)2tan−1( r−GM√
α2−(GM)2

)
√

α2 − (GM)2
] +GMln [r2 − 2GMr + α2] +

√
Kt

(3.35)

where

φ1(r) =
√
K[r +

2(GM)2tan−1( r−GM√
α2−(GM)2

)
√

α2 − (GM)2
] +GMln [r2 − 2GMr + α2]
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and

φ2(t) =
√
Kt

and choosing an arbitrary integration constant to be zero. Therefore the

line elements (3.32) becomes

ds2 = (
∆

ρ2
−K)dω2 − 1

(∆ρ2 −K)
dr2

= (
r2 − 2GMr + α2

r2 + α2
−K)dω2 − (

1
r2−2GMr+α2

r2+α2 −K
)dr2

=
(1−K)(r2 − 2G M

1−Kr + α2)

(r2 + α2)
dω2 − (r2 + α2)

(1−K)(r2 − 2G M
1−Kr + α2)

dr2

i.e.

ds2 =
β∆′

ρ2
dω2 − ρ2

β∆′dr
2 (3.36)

where

β = 1−K, M ′ =
M

1−K
, ∆′ = (r2 − 2GM ′r + α2) and ρ2 = r2 + α2.

Here note that K 6= 1 since β cannot be zero, as then the metric becomes

singular. K cannot be greater than 1 because then the signature of the

metric (3.36) will be wrong. K 6= 0 because that would imply dark energy

is absent. Therefore, the only allowed values are 0 < K < 1. So there is

no question of K approaching 1 and confusions regarding this limit should

not arise. It can be shown that for r → ∞ this metric is an approximate

solution of Einstein’s equations as the relevant terms fall of as 1
r3 . The

detail calculations of the relevant terms (viz. Ricci tensors, Ricci scalar) of

the Einstein’s equations for the emergent gravity metric (3.36) are given

in Appendix A.
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We now show that there is a further restriction on the dark energy

density K = φ̇2
2 if we want the fields φ(r, t) given by (3.35) to satisfy the

equation of motion (1.7) along the symmetry axis θ = 0 at r → ∞. For

the axi-symmetric case, the equation of motion (1.7) takes the form

Ḡ00∂2
0φ2 + Ḡ11∂2

1φ1 − Ḡ11Γ1
11∂1φ1 + Ḡ01∇0∇1φ+ Ḡ10∇1∇0φ = 0.

The first term vanishes exactly because φ2(t) is linear in t, and the last

two terms vanish because Ḡ01 = Ḡ10 = 0.

Using the expression for

Γ1
11 =

GM(α2 − r2)

(r2 + α2)(r2 − 2GMr + α2)

the third term for r → ∞ goes as |1−K|3/2
r2 . It is shown below:

Ḡ11Γ1
11∂1φ1 = [

−β∆′

ρ2
][

−GM(r2 − α2)

(r2 + α2)(r2 − 2GMr + α2)
]

[
(
√
r2 + α2)(

√

r2(K − 1) + α2(K − 1) + 2GMr + 1)

(r2 − 2GMr + α2)
]

= [
β(r2 − 2GM ′r + α2)

(r2 + α2)
][

GM(r2 − α2)

(r2 + α2)(r2 − 2GMr + α2)
]

[
(
√
r2 + α2)(

√

r2(K − 1) + α2(K − 1) + 2GMr + 1)

(r2 − 2GMr + α2)
]

= [(1−K)(1− 2GM ′

r
+

α2

r2
)(1 +

α2

r2
)−1]

[
GM

r2
(1− α2

r2
)(1 +

α2

r2
)−1(1− 2GM

r
+

α2

r2
)−1]

[(1 +
α2

r2
)1/2((K − 1) +

α2

r2
(K − 1) +

2GM

r
+

1

r2
)1/2(1− 2GM

r
+

α2

r2
)−1]
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≃ [(1−K)(1− 2GM ′

r
+

α2

r2
)(1− α2

r2
)]

[
GM

r2
(1− α2

r2
)(1− α2

r2
)(1 +

2GM

r
− α2

r2
)]

[(1+
α2

2r2
)
√

(K − 1)(1+
α2

2r2
+

2GM

2r(K − 1)
+

1

2r2(K − 1)
)(1+

2GM

r
− α2

r2
)]

r → ∞−−−−→
(1−K)

√

(K − 1)

r2
∼ |1−K|3/2

r2
.

The remaining second term for r → ∞ goes as |1−K| 32
r . As before this

can be shown below:

Ḡ11∂2
1φ1 = [

−β(r2 − 2GM ′r + α2)

(r2 + α2)
]

[
−r(r2 + 2GMr + α2)(

√

r2(K − 1) + α2(K − 1) + 2GMr + 1)

(
√
r2 + α2)(r2 − 2GMr + α2)2

]

r → ∞−−−−→
−r(2GMr − r2(1−K))(2GMr − r2(1−K))1/2(r2 + 2GMr)

r3(r2 − 2GMr)2

r → ∞−−−−→
r2(1−K)r(r2(K − 1))1/2r2

r7

r → ∞−−−−→
(1−K)

√

(K − 1)

r
∼ |1−K|3/2

r
.
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As per the Planck collaboration results [12, 13], the value of dark energy

density (in unit of critical density)K is about 0.696. Therefore, the second

and third terms is negligible as the denominator goes to infinity. Therefore

in this limit these terms also may be ignored and hence the equations of

motion satisfied. Therefore, K 6= 0, 1 and 0 < K < 1. However K should

be very close to unity for equations of motion to be satisfied at large r.

3.4 The Hawking temperature for Kerr type metric

Now we go over to the Eddington-Finkelstein coordinates (v, r) or (u, r)

along the symmetry axis θ = 0.

v = ω + r∗ and u = ω − r∗, β = 1−K

and

r∗ = β−1[r + (
r2+ + α2

r+ − r−
)ln |r − r+| − (

r2− + α2

r+ − r−
)ln |r − r−|]

(3.37)

with

r+ = GM ′ +
√

(GM ′)2 − α2 =
GM

1−K
+

√

(
GM

1−K
)2 − α2

and

r− = GM ′ −
√

(GM ′)2 − α2 =
GM

1−K
−
√

(
GM

1−K
)2 − α2.

Therefore the line element (3.36)

ds2 = (
β∆′

r2 + α2
)dv2 − 2dvdr =

β(r − r+)(r − r−)

r2 + α2
dv2 − 2dvdr.

(3.38)
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Now proceeding exactly as before we calculate the Hawking tempera-

tures [70]-[72] for the two horizons as follows.

As discussed in section 3.2, using (3.38), a massless particle in a black

hole background is described by the Klein-Gordon equation

~
2(−Ḡ)−1/2∂µ(Ḡ

µν(−Ḡ)1/2∂νΨ) = 0.

One expands

Ψ = exp(
i

~
S + ...)

to obtain the leading order in ~ the Hamilton-Jacobi equation is

Ḡµν∂µS∂νS = 0

Assume S is independent of θ and φ. Then

2
∂S

∂v

∂S

∂r
+ (

β(r2 − 2GM
′

r + α2)

r2 + α2
)(
∂S

∂r
)2

=
∂S

∂r
[2
∂S

∂v
+ (

β(r2 − 2GM
′

r + α2)

r2 + α2
)
∂S

∂r
] = 0

The symmetries of the metric permit the action to be written as

S = −Ev +W (r) + J(xi)

Then

∂vS = −E ; ∂rS = W
′

; ∂iS = Ji

Ji are constants chosen to be zero. Then

−2EW
′

(r) + (
β(r2 − 2GM

′

r + α2)

r2 + α2
)(W

′

(r))2 = 0

Thus

W (r) =

∫

[E(r2 + α2) + E(r2 + α2)]dr

β(r − r+)(r − r−)
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= 2πi(
E

β
)(
r2+ + α2

r+ − r−
) + 2πi(

E

β
)(
r2− + α2

r− − r+
)

= W (r+) +W (r−)

The two values of W (r) correspond to the processes that the particle

tunnels through the outer and inner horizons respectively.

Therefore

S = −Ev + 2πi(
E

β
)(
r2+ + α2

r+ − r−
) + 2πi(

E

β
)(
r2− + α2

r− − r+
) + J(xi)

The tunneling rates of the outer and inner horizons are

ΓK
+emergent ∼ e−2ImS+ ∼ e−2ImW (r+) = e

−4π(Eβ )(
r2++α2

r+−r−
)
= e

− E
KBT+

ΓK
−emergent ∼ e−2ImS− ∼ e−2ImW (r−) = e

−4π(Eβ )(
r2
−
+α2

r−−r+
)
= e

− E
KBT−

From these two above equations the corresponding Hawking tempera-

tures of the two horizons are respectively

TK
+emergent =

~c3β

4πkB
(
r+ − r−
r2+ + α2

)

=
~c3β

4πkB
[

2
√

(GM ′)2 − α2

(GM ′ +
√

(GM ′)2 − α2)2 + α2
]

=
~c3β

4πkB
[

(1−K)
√

(GM)2 − α2(1−K)2

(GM)2 +GM
√

(GM)2 − α2(1−K)2
]

=
~c3(1−K)2

4πkB
[

√

(GM)2 − α2(1−K)2

(GM)2 +GM
√

(GM)2 − α2(1−K)2
]

and

TK
−emergent =

~c3β

4πkB
(
r− − r+
r2− + α2

)
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= − ~c3β

4πkB
[

2
√

(GM ′)2 − α2

(GM ′ −
√

(GM ′)2 − α2)2 + α2
]

= − ~c3β

4πkB
[

(1−K)
√

(GM)2 − α2(1−K)2

(GM)2 −GM
√

(GM)2 − α2(1−K)2
]

= −~c3(1−K)2

4πkB
[

√

(GM)2 − α2(1−K)2

(GM)2 −GM
√

(GM)2 − α2(1−K)2
]

Thus the Hawking temperatures are :

TK
+emergent =

~c3(1−K)2

4πkB

√

(GM)2 − α2(1−K)2

(GM)2 +GM
√

(GM)2 − α2(1−K)2

(3.39)

and

TK
−emergent = −~c3(1−K)2

4πkB
(

√

(GM)2 − α2(1−K)2

(GM)2 −GM
√

(GM)2 − α2(1−K)2
)

(3.40)

where kB is the Boltzmann constant.
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CHAPTER 4



4 Cosmology in presence of dark

energy in an emergent gravity

scenario

A natural question is whether the standard cosmology is modified if we

take into account the presence of dark energy while building up the Fried-

man equations. The motivation of the work in this chapter is to seek

plausible answers to the above question.

The results reported in this chapter have been obtained in arXiv:gr-

qc/1502.06255 of List of Publications.

Taking the backgroundmetric to be Friedman-Lemaitre-Robertson-Walker

(FLRW), we obtain the modifications of the standard cosmological pa-

rameters in the radiation dominated, matter dominated and dark energy

dominated phases of the universe. The dark energy density is identified

with the kinetic energy φ̇2 of the k−essence field. The standard cosmolog-

ical parameters are retrieved when φ̇2 → 0, i.e., the dark energy vanishes.

The domination of the kinetic term in the DBI lagrangian for homo-

geneous dark energy fields [φ(r, t) ≡ φ(t)] and background FLRW metric

has already been discussed in the Introduction.
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4.1 Emergent equations of motion for FLRW

gravitational metric

Take the gravitational metric gµν to be FLRW and assume that the

k−essence scalar field φ(r, t) is spherically symmetric (∂tφ = ∂0φ = φ̇

and ∂rφ = ∂1φ = φ′). Then (1.9) becomes

Ḡ00 = g00 − (∂0φ)
2 = 1− φ̇2

Ḡ11 = g11 − (∂rφ)
2 = − a2(t)

1− kr2
− (φ′)2

Ḡ22 = g22 = −a2(t)r2

Ḡ33 = g33 = −a2(t)r2sin2θ

Ḡ01 = Ḡ10 = −φ̇φ′ (4.1)

where the FLRW metric components are

g00 = 1; g11 = − a2(t)

1− kr2
; g22 = −a2(t)r2;

g33 = −a2(t)r2sin2θ; gij(i 6= j) = 0.

The line element becomes

ds2 = (1− φ̇2)dt2 − (
a2

1− kr2
+ (φ′)2)dr2 − 2φ̇φ′dtdr − a2r2dΩ2 (4.2)

with dΩ2 = dθ2 + sin2θdφ2 and k is curvature constant.

Consider a co-ordinate transformation from (t, r, θ, φ) to (ω, r, θ, φ) so

that [85]:

dω = dt− (
φ̇φ′

1− φ̇2
)dr (4.3)

with

dt2 = dω2 +
2φ̇φ

′

(1− φ̇2)
dωdr + (

φ̇φ
′

1− φ̇2
)2dr2.
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Then (4.2) becomes

ds2 = (1− φ̇2)[dω2 +
2φ̇φ

′

(1− φ̇2)
dωdr + (

φ̇φ
′

1− φ̇2
)2dr2]

−2φ̇φ
′

dr[dω +
φ̇φ

′

(1− φ̇2)
]− [

a2

1− kr2
+ (φ

′

)2]dr2 − a2r2dΩ2

= (1− φ̇2)dω2 − (φ̇φ
′

)2

1− φ̇2
dr2 − [

a2

1− kr2
+ (φ

′

)2]dr2 − a2r2dΩ2

= (1− φ̇2)dω2 − [
a2

1− kr2
+ (φ′)2 +

(φ̇φ′)2

(1− φ̇2)
]dr2 − a2r2dΩ2

. (4.4)

i.e.

Ḡµν =















(1− φ̇2) 0 0 0

0 −Z 0 0

0 0 −(a2r2) 0

0 0 0 −(a2r2sin2θ)















(4.5)

while its inverse is

Ḡµν =















(1− φ̇2)−1 0 0 0

0 −Z−1 0 0

0 0 −(a2r2)−1 0

0 0 0 −(a2r2sin2θ)−1















(4.6)

with Z = ( a2

1−kr2 + (φ′)2 + (φ̇φ′)2

(1−φ̇2)
).

The equation (1.7) means

Ḡ00∇0∇0φ+ Ḡ01∇0∇1φ+ Ḡ10∇1∇0φ+ Ḡ11∇1∇1φ

= Ḡ00∇0∂0φ+ Ḡ11∇1∂1φ
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= Ḡ00(∂0∂0φ− Γ0
00∂0φ− Γ1

00∂1φ) + Ḡ11(∂1∂1φ− Γ0
11∂0φ− Γ1

11∂1φ)

= Ḡ00∂2
0φ+ Ḡ11(∂2

1φ− aȧ

1− kr2
∂0φ− kr

1− kr2
∂1φ)

=
1

(1− φ̇2)
∂2
0φ+ [

−1

a2

1−kr2 + (φ′)2 + (φ̇φ′)2

(1−φ̇2)

](∂2
1φ− aȧ

1− kr2
∂0φ− kr

1− kr2
∂1φ)

=
φ̈

1− φ̇2
− (1− φ̇2)

a2(1− φ̇2) + (φ′)2(1− kr2)
[φ

′′

(1− kr2)− aȧφ̇− krφ
′

] = 0

(4.7)

i.e.

φ̈[a2(1− φ̇2) + (φ′)2(1− kr2)]

= (1− φ̇2)2[φ′′(1− kr2)− aȧφ̇− krφ′] (4.8)

We shall, henceforth, consider the FLRW universe for homogeneous dark

energy fields only. So

φ(r, t) ≡ φ(t) (4.9)

Here φ̇2 6= 0 since the k−essence field must have non-zero kinetic energy.

Also φ̇2 6= 1 because Ωmatter+Ωradiation+Ωdarkenergy = 1 and φ̇2 measured

in units of the critical density is nothing but Ωdarkenergy. Further, φ̇
2 < 1

always in order that the signature of the metric (4.5) does not become

ill-defined. Therefore 0 < φ̇2 < 1. Therefore (4.8) becomes

φ̈a2(1− φ̇2) = (1− φ̇2)2(−aȧφ̇)

i.e.,

ȧ

a
= H(t) = − φ̈

φ̇(1− φ̇2)
(4.10)
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where H(t) = ȧ
a is Hubble parameter (always ȧ 6= 0). So the equations of

motion of emergent gravity relate the Hubble parameter to time deriva-

tives of the k−essence scalar field.

4.2 The analogue of Friedmann equations in presence of

dark energy

Using metrics (4.5) and (4.6) for homogeneous fields φ(t) we get the non-

vanishing connection coefficients as:

Γ̄0
00 = − φ̇ φ̈

1− φ̇2
;

Γ̄0
11 =

1

1− φ̇2

aȧ

1− kr2
;

Γ̄0
22 =

aȧ r2

1− φ̇2
;

Γ̄0
33 =

aȧ r2sin2θ

1− φ̇2
;

Γ̄1
01 = Γ̄1

10 =
ȧ

a
;

Γ̄1
11 =

kr

1− kr2
;

Γ̄1
22 = −r(1− kr2);

Γ̄1
33 = −rsin2θ (1− kr2);
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Γ̄2
02 = Γ̄2

20 =
ȧ

a
;

Γ̄2
12 = Γ̄2

21 =
1

r
;

Γ̄2
33 = −sinθ cosθ;

Γ̄3
03 = Γ̄3

30 =
ȧ

a
;

Γ̄3
13 = Γ̄3

31 =
1

r
;

Γ̄3
23 = Γ̄3

32 = cotθ.

These calculations of connection coefficients are shown in Appendix

B.

Now we calculate the diagonal components of Ricci tensor for homoge-

neous scalar field since off-diagonal components of Ricci tensor are zero.

R̄00 = 3
ä

a
+ 3

ȧ

a

φ̇φ̈

(1− φ̇2)
(4.11)

R̄11 = − a2

1− kr2
[
ä

a

1

(1− φ̇2)
+ 2

ȧ2

a2
1

(1− φ̇2)
+ 2

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
] (4.12)

R̄22 = −a2r2[
ä

a

1

(1− φ̇2)
+ 2

ȧ2

a2
1

(1− φ̇2)
+ 2

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
]

(4.13)
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R̄33 = −a2r2sin2θ[
ä

a

1

(1− φ̇2)
+ 2

ȧ2

a2
1

(1− φ̇2)
+ 2

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
]

(4.14)

The elaborate calculations of Ricci tensors are established inAppendix

C.

To calculate Ricci scalar for homogeneous scalar field using (4.6):

R̄0
0 = Ḡ00R̄00 =

1

(1− φ̇2)
[3
ä

a
+ 3

ȧ

a

φ̇φ̈

(1− φ̇2)
] (4.15)

R̄1
1 = Ḡ11R̄11 = −(1− kr2)

a2
[

−a2

(1− kr2)
[
ä

a

1

(1− φ̇2)
+ 2

ȧ2

a2
1

(1− φ̇2)

+2
k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
]]

= [
ä

a

1

(1− φ̇2)
+ 2

ȧ2

a2
1

(1− φ̇2)
+ 2

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
] (4.16)

R̄2
2 = Ḡ22R̄22 =

−1

a2r2
[−a2r2[

ä

a

1

(1− φ̇2)
+2

ȧ2

a2
1

(1− φ̇2)
+2

k

a2
+
ȧ

a

φ̇φ̈

(1− φ̇2)2
]]

= [
ä

a

1

(1− φ̇2)
+ 2

ȧ2

a2
1

(1− φ̇2)
+ 2

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
] (4.17)

R̄3
3 = Ḡ33R̄33 =

−1

a2r2sin2θ
[−a2r2sin2θ[

ä

a

1

(1− φ̇2)
+ 2

ȧ2

a2
1

(1− φ̇2)

+2
k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
]]
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= [
ä

a

1

(1− φ̇2)
+ 2

ȧ2

a2
1

(1− φ̇2)
+ 2

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
] (4.18)

Therefore the Ricci Scalar:

R̄ = R̄0
0 + R̄1

1 + R̄2
2 + R̄3

3 = 6[
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
]

(4.19)

We have the Einstein’s Field Equation: Ēµν = R̄µν− 1
2
ḠµνR̄ = −8πGTµν

i.e.

Ēν
µ = R̄ν

µ −
1

2
δνµR̄ = −8πGT ν

µ (4.20)

where G is gravitational constant and Tµν is energy-momentum tensor.

Components of Einstein tensor are:

Ē0
0 = R̄0

0 −
1

2
R̄ =

1

(1− φ̇2)
[3
ä

a
+ 3

ȧ

a

φ̇φ̈

(1− φ̇2)
]

−1

2
6[
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
]

= −3[
ȧ2

a2
1

(1− φ̇2)
+

k

a2
]; (4.21)

Ē1
1 = Ē2

2 = Ē3
3 = [

ä

a

1

(1− φ̇2)
+ 2

ȧ2

a2
1

(1− φ̇2)
+ 2

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
]

−1

2
6[
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+

k

a2
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
]

= −[2
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+

k

a2
+ 2

ȧ

a

φ̇φ̈

(1− φ̇2)2
] (4.22)
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The energy-momentum tensor of an ideal fluid is

T ν
µ = (p+ ρ)uµu

ν − δνµp (4.23)

where p is pressure and ρ is the energy density of the cosmic fluid. In the

co-moving frame we have u0 = 1 and ui = 0 ; i = 1, 2, 3.

Now the general k−essence field theoretic lagrangian L(X, φ), which

explicitly depends on φ, is not equivalent to isentropic hydrodynamics

because φ and X are independent and hence the pressure cannot be a

function of the energy density ρ only. So a pertinent question is whether

we are at all justified in assuming a perfect fluid model when dark energy is

present. The answer is yes because our lagrangian L(X) = 1−V
√
1− 2X,

where V is a constant, does not depend explicitly on φ. This class of

models is equivalent to perfect fluid models with zero vorticity and the

pressure (lagrangian) can be expressed through the energy density only

[48].

Then (4.23) becomes

T 0
0 = ρ ; T 1

1 = T 2
2 = T 3

3 = −p (4.24)

Using equations (4.20)-(4.23) we get

Ē0
0 = −8πGT 0

0

or,

−3[
ȧ2

a2
1

(1− φ̇2)
+

k

a2
] = −8πGρd

i.e.,

ρd =
3

8πG
[
ȧ2

a2
1

(1− φ̇2)
+

k

a2
] (4.25)
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and

Ēi
i = −8πGT i

i

with i = 1, 2, 3 or,

−[2
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+

k

a2
+ 2

ȧ

a

φ̇φ̈

(1− φ̇2)2
] = 8πGpd

i.e.,

pd = − 1

8πG
[2
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+

k

a2
+ 2

ȧ

a

φ̇φ̈

(1− φ̇2)2
]

(4.26)

where we now replace ρ by ρd as the total energy density in presence of

dark energy and p by pd as the pressure when dark energy is present.

Note that both ρd, pd reduce to the usual quantities ρ, p [77]-[80] when

dark energy is absent, i.e., (φ̇)2 = 0. The usual Friedman equations

are now modified into the above two equations (4.25) and (4.26) in the

presence of k−essence scalar field φ.

Combining above two equations (4.25) and (4.26) we get,

4πG

3
(ρd + 3pd) = −[

ä

a

1

(1− φ̇2)
+

ȧ

a

φ̇φ̈

(1− φ̇2)2
] (4.27)

Now differentiating equation (4.25) with respect to cosmic time t we get

2ȧä

1− φ̇2
+

2ȧ2φ̇φ̈

(1− φ̇2)2
=

8πG

3
[ρ̇da

2 + 2ρdaȧ],

dividing both sides by aȧ in above equation

ä

a

1

(1− φ̇2)
+ (

ȧ

a
)

φ̇φ̈

(1− φ̇2)2
=

4πG

3
[
ρ̇da

ȧ
+ 2ρd]
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and substituting the above result in equation (4.27) we get,

4πG

3
(ρd + 3pd) = −4πG

3
[
ρ̇da

ȧ
+ 2ρd]

i.e.,

ρ̇d = −3
ȧ

a
(pd + ρd) = −3H(pd + ρd) (4.28)

which is the required energy conservation equation in presence of dark

energy. Again it may be noted that one recovers the usual energy conser-

vation equation [77]-[80] when dark energy is absent.

Now assume that the criterion for non-relativistic scenario remains the

same, viz., ρd ≫ pd. We restrict now to k = 0 as observationally this is

most likely. Then the above condition become [using (4.25) and (4.26)]

3

8πG
[
ȧ2

a2
1

(1− φ̇2)
] >> − 1

8πG
[2
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+ 2

ȧ

a

φ̇φ̈

(1− φ̇2)2
]

or,
1

2πG
[
ȧ2

a2
1

(1− φ̇2)
] >> − 1

8πG
[2
ä

a

1

(1− φ̇2)
+ 2

ȧ

a

φ̇φ̈

(1− φ̇2)2
]

i.e.,
ȧ2

a2
≫ − ä

2a
− ȧφ̇φ̈

2a(1− φ̇2)
.

So the second term on right hand side must be always positive i.e., φ̇φ̈

must be always negative. This means that dφ̇2

dt < 0. This criterion is

consistent with the fact that the dark energy density cannot increase in

a matter dominated era.

Then, neglecting pd in (4.28) gives

ρ̇d
a

ȧ
+ 3ρd = 0
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which has the solution

ρmat
d =

A

a3
(4.29)

where A = constant. Assuming that the total energy i.e. ρda
3 is a

constant, we equate this to the present epoch energy i.e. ρda
3 = ρd0a

3
0,

where ρd0 and a0 are the matter density and scale radius at the present

epoch (t = t0). This fixes the constant A = ρd0a
3
0 in terms of present

epoch values.

For the relativistic situation we assume again that the criterion is same

as in standard cosmology, i.e. pd = ρd
3 . Here this gives the condition

[using (4.25) and (4.26)]

− 1

8πG
[2
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+ 2

ȧ

a

φ̇φ̈

(1− φ̇2)2
] =

1

8πG
[
ȧ2

a2
1

(1− φ̇2)
]

i.e.,
ȧ2

a2
= − ä

a
− ȧφ̇φ̈

a(1− φ̇2)
.

For same reasons as given in the previous case, here also the conditions

are consistent.

We get from (4.28) the solution

ρradd =
B

a4
(4.30)

where the constant B is fixed to be B = ρd0a
4
0 following same arguments

as before.

Finally we consider the dark energy dominated scenario pd = −ρd, i.e.,

[using (4.25) and (4.26)]

− 1

8πG
[2
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+ 2

ȧ

a

φ̇φ̈

(1− φ̇2)2
] = − 3

8πG
[
ȧ2

a2
1

(1− φ̇2)
]
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i.e.,
ȧ2

a2
=

ä

a
+

ȧφ̇φ̈

a(1− φ̇2)
.

This means that here dφ̇2

dt > 0 i.e. the dark energy density must increase.

This is also consistent. Equation (4.28) then leads to

ρd = W (4.31)

where we may choose the constant W to be φ̇2|t=t′ with t′ denoting some

specific epoch.

Therefore, the difference from the standard cosmology lies only in the

fact that in our case the dark energy density (which is being identified with

the kinetic energy of the k−essence field) has the following behaviour: in

the matter and radiation dominated eras the time rate of change of dark

energy density decreases, while in the dark energy dominated epoch this

rate increases.

4.3 Solutions of the modified equations

4.3.1 Non-relativistic case (Matter dominated Universe)

The non-relativistic case means ρd ≫ pd and (4.25) and (4.26) can be

written as follows,

H2

(1− φ̇2)
+

k

a2
=

8πG

3

A

a3
(4.32)

and

2
ä

a

1

(1− φ̇2)
+

H2

(1− φ̇2)
+

k

a2
+ 2H

φ̇φ̈

(1− φ̇2)2
= 0 (4.33)
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Eliminating A using (4.29), and remembering that for t = t0 (present

epoch) ρd = ρd0, a = a0, H = H0 (4.32) becomes

k

a20
=

8πG

3
[ρd0 − ρcd] (4.34)

where

ρcd =
3H2

0

8πG(1− φ̇2)
(4.35)

is the critical value of matter density when dark energy is present. For

φ̇2 < 1 (4.35) becomes

ρcd = ρc + ρcφ̇
2 (4.36)

keeping terms upto O(φ̇2) only. Here

ρc =
3H2

0

8πG
,

the critical value of matter density and ρcd > ρc.

Now consider the FLRW universe with k = 0. We get from (4.34)

ρd0 = ρcd =
3H2

o

8πG(1− φ̇2)
(4.37)

and the critical matter density becomes same as that of ρd0.

Now from (4.32) with k = 0, we have

(
ȧ

a
)2 =

C

a3
(1− φ̇2)

where C = 8πGA
3

. We now take the negative square root of this equation

so as to be consistent with observations. This will be borne out later.

Therefore,

ȧ

a
= −C

1

2

a
3

2

(1− φ̇2)
1

2 . (4.38)
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Using equations (4.10) and (4.38) we get

− φ̈

φ̇(1− φ̇2)
= −C

1

2

a
3

2

(1− φ̇2)
1

2

i.e.,

a(t) = C
1

3 (
φ̇

φ̈
)
2

3 (1− φ̇2) (4.39)

Therefore the deceleration parameter for non-relativistic case with k = 0

q(t)NR = −aä

ȧ2
=

Numerator

Denominator
. (4.40)

where,

Numerator = (1− φ̇2)[(1 + 20φ̇2)(φ̈)4 + φ̇φ(3)(φ̈)2(1− 4φ̇2)

+5φ̇2(φ(3))2(−1 + φ̇2)− 3φ̇2φ̈φ(4)(−1 + φ̇2)]

(4.41)

and

Denominator = 2[(1− 4φ̇2)(φ̈)2 + φ̇φ(3)(−1 + φ̇2)]2

(4.42)

We shall take φ(3), φ(4) to be zero also neglecting higher order of φ̇2, where

φ(3) is 3rd order and φ(4) 4th order derivative with respect to time. Then

the deceleration parameter for non-relativistic case becomes,

q(t)NR =
1

2
(1 + 27φ̇2 + ...) (4.43)

Note that the choice of the sign of the square root (that leads to (4.38))

ensures that the value of the deceleration parameter for the matter dom-

inated era is as in standard cosmology i.e. when dark energy is absent.

This value is 1
2. Moreover, it can be checked that choice of a positive

square root (leading to (4.38)) will give an imaginary scale factor which

is unacceptable.
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4.3.2 Relativistic case (Radiation dominated Universe)

For this case pd =
ρd
3 from (4.30) ρd =

B
a4 then modified Friedmann equa-

tions (4.25) and (4.26) becomes

H2

(1− φ̇2)
+

k

a2
=

8πG

3

B

a4
(4.44)

and

2
ä

a

1

(1− φ̇2)
+

H2

(1− φ̇2)
+

k

a2
+ 2H

φ̇φ̈

(1− φ̇2)2
= −8πG

3

B

a4
(4.45)

Considering the k = 0 model of the Universe , the modified Friedmann

equation (4.44) becomes

(
ȧ

a
)2 =

D

a4
(1− φ̇2)

whereD = 8πGB
3 . Again we take the negative square root of this equations

from physical considerations to get

ȧ

a
= −D

1

2

a2
(1− φ̇2)

1

2 . (4.46)

Again combining equations (4.10) and (4.46) we obtain

− φ̈

φ̇(1− φ̇2)
= −D

1

2

a2
(1− φ̇2)

1

2

i.e.,

a(t) = D
1

4 (
φ̇

φ̈
)
1

2 (1− φ̇2)
3

4 . (4.47)

Therefore the deceleration parameter for relativistic case with k = 0 is:

q(t)R = −aä

ȧ2
=

Numerator

Denominator
(4.48)

where,

Numerator = [(1 + 10φ̇2 − 8φ̇4)(φ̈)4 − 3φ̇2(φ(3))2(−1 + φ̇2)2

+2φ̇2(−1 + φ̇2)2φ̈φ(4)] (4.49)
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and

Denominator = [(1− 4φ̇2)(φ̈)2 + φ̇φ(3)(−1 + φ̇2)]2

(4.50)

Finaly the deceleration parameter (neglecting as above higer order of φ̇2

and higher order derivatives) for relativistic case is

q(t)R = 1 + 18φ̇2 + ... (4.51)

Again, the choice of the sign of the square root (leading to (4.46)) en-

sures that the standard cosmology result is obtained for the deceleration

parameter. This value is 1. Also choice of a positive square root is ruled

out to ensure reality of the scale factor.

4.3.3 Dark energy dominated Universe

For this case pd ≃ −ρd and from (4.31) ρd = constant = W , then the

modified Friedmann equations (4.25) and (4.26) becomes

ȧ2

a2
1

(1− φ̇2)
+

k

a2
=

8πG

3
W (4.52)

and

2
ä

a

1

(1− φ̇2)
+

ȧ2

a2
1

(1− φ̇2)
+

k

a2
+ 2

ȧ

a

φ̇φ̈

(1− φ̇2)2
= 8πGW (4.53)

Again we consider k = 0 model of the Universe, The modified Friedmann

equation (4.52) becomes

ȧ

a
= α

1

2 (1− φ̇2)
1

2 (4.54)

75



4 Cosmology in presence of dark energy in an emergent gravity scenario

where α = 8πGW
3

= constant. Now combining equations (4.10) and (4.54)

we obtain

− φ̈

φ̇(1− φ̇2)
= α

1

2 (1− φ̇2)
1

2

i.e.,

φ̈

φ̇
= −α

1

2 (1− φ̇2)
3

2 . (4.55)

Now from equation (4.54) we get the scale factor

a(t) = e
√
α
∫

√
1−φ̇2dt (4.56)

Using above equation (4.56) we have the deceleration parameter for this

case

q(t)dark = −1 +
φ̇φ̈

√
α(1− φ̇2)3/2

(4.57)

Further, using (4.55) the deceleration parameter becomes

q(t)dark = −1− φ̇2 (4.58)

As φ̇2 is positive the deceleration parameter is always negative.

Consider now an interesting situation. The dark energy density φ̇2 < 1

for reasons mentioned before. Then expanding the binomial in (4.55) and

keeping terms upto O(φ̇2),

φ̈

φ̇
≃ −

√
α(1− 3

2
φ̇2)

or,

φ̈− 3

2

√
αφ̇3 +

√
αφ̇ = 0

and an approximate solution of above equation for the dark energy density

is

φ̇2 =
2
√
α

3
√
α + 2e2

√
αt
. (4.59)
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Now φ̇2 < 1 applied to (4.59) means

√
α + 2e2

√
αt > 0 (4.60)

Note that if
√
α is positive then (4.60) is always satisfied for all values of

t. However, figure 4.1 shows that there is absolutely no agreement of the

predicted values of dark energy density with the observed data [12, 13] at

present epoch. So we reject this choice.

On the other hand, taking the negative square root for α gives encour-

aging agreement of predicted values for the dark energy density φ̇2 with

the observed value at present epoch v iz., 0.6817 [12, 13]. This is evident

in figure 4.2. So we choose the negative square root. The best agreements

are obtained for −10 ≤ α ≤ −2.1.
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Figure 4.1: Variation of dark energy density with time for positive
√
α where values of

√
α are shown down → up.
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Figure 4.2: Variation of dark energy density with time for negative
√
α where values of

√
α are shown up → down.
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CHAPTER 5



5 Conclusions

The conclusions of the thesis are:

5.1 Chapter 2

For the background gravitatinal metric as Schwarzschild, the resulting

emergent gravity metric is similar to a Barriola-Vilenkin metric where the

monopole charge is replaced by the kinetic energy of the k−essence scalar

field. Thus the Einstein’s field equations are automatically satisfied. We

then show that if φemergent be solutions of the emergent gravity equations

of motion under cosmological boundary conditions at ∞, then for r → ∞
the rescaled field

φemergent

2GM−1 has exact correspondence with φ with φ(r, t) =

φ1(r) + φ2(t). The Hawking temperature of the resulting BV-type metric

is found to be

Temergent = (1−K)2TS.

HereK = φ̇2
2 is the kinetic energy of the k−essence field φ andK is always

less than unity and TS is the usual Hawking temperature for Schwarzschild

black hole. We have then indicated why certain phenemenological param-

eters in Belgiorno’s analogue gravity experiment will be modified because

of the difference of the Schwarzschild metric from that of a BV-type met-

ric. In [66, 87] the authors interpreted photon emission (different from

usual photon emission) as an indication of Hawking radiation induced by
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the analogue event horizon for the Schwarzschild metric using ultrashort

laser pulse filaments to create a travelling refractive index perturbation

(RIP) in fused silica glass. In this work we have proposed that a differ-

ent Hawking temperature in the presence of dark energy should give a

different set of phenomenological parameters since the intensity of pho-

ton emission should depend on the relevant blackbody temperature. So

one has a further scope to enhance this analogue gravity experiment for

testing the existance of dark energy. If we include the effects of dark

energy, the RIP method must be accordingly modified. This means that

the effect of the presence of the constant K (dark enegy density) in the

metric must be included. The Belgiorno et al original analogue gravity

experiment currently has K = 0 for the Schwarzschild black hole. So the

experimental situation has to move over to a scenario which can mimic

K 6= 0 i.e., 0 < K < 1. So in the presence of dark energy certain phen-

emenological parameters viz. the boost (γ), the constant velocity of the

RIP (v), refractive index (n = c/v) etc. in Belgiorno’s analogue gravity

experiment can be modified.

5.2 Chapter 3

For the spherically symmetric Reissner-Nordstrom background metric

along θ = 0 the resulting emergent gravity metric is Robinson-Trautman

type so that Einstein’s field equations are automatically satisfied. For

θ = 0 the k-essence scalar field satisfies the emergent gravity equations of

motion. The Hawking temperatures for the two horizons of the Robinson-

Trautman black hole are different from that of the Reissner-Nordstrom

black hole. In this case, the dark energy density is constrained to be unity.
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With this constraint of the dark energy density this blackhole has zero

Hawking temperature i.e. it does not radiate.

We next work with a Kerr background along θ = 0 again so that the

emergent gravity equations of motion are again satisfied by the dark en-

ergy field. In this case the resulting emergent gravity metric is also Kerr

type in the presence of dark energy. The emergent blackhole metric sat-

isfies Einstein’s equations for large r. This type of the emergent black

hole always radiates since there is no constraint on the dark energy den-

sity to be unity. In this case the values of the dark energy density is

(φ̇2
2 = K = constant) 0 < K < 1.

It should be mentioned that if dark energy density K = 0 then the

usual Hawking temperatures for both cases are retrieved. There are two

event horizons and hence two Hawking temperatures in both the cases.

But out of these two temperatures, only one viz., that corresponding to

the outer horizon is observationally relevant.

5.3 Chapter 4

In this work we have investigated the cosmological consequences of incor-

porating dark energy in an emergent gravity scenario. First we obtained

the analogues of the Friedman equations where the background metric

is taken to be FLRW. We consider the FLRW universe for homogeneous

dark energy fields only. Assuming the usual perfect fluid model for the

universe, we next determined the total energy density. Finally, the cos-

mological implications were determined corresponding to various values

of this energy. Our findings are as follows :

(a) For total energy density greater than the pressure (matter dominated
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Universe) the deceleration parameter

q(t) ≈ 1

2
[1 + 27φ̇2 + ...] >

1

2
.

(b) For total energy density equal to 3 times the pressure (radiation dom-

inated Universe),

q(t) ≈ 1 + 18φ̇2 + ... > 1

and

(c) For total energy density equal to the negative of the pressure (dark

energy dominated Universe), the deceleration parameter

q(t) = −1− φ̇2 < −1.

The values of the dark energy density are 0 < φ̇2 < 1.

Note that for dark energy density φ̇2 = 0, the conventional results are

retrieved. Our results indicate that many aspects of standard cosmology

can be accommodated with the presence of dark energy right from the

beginning of the universe where the time parameter t ≡ t
t0
, with t0 being

the present epoch.
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Appendix A

Evaluation of relevant terms of the Einstein’s equations for the

emergent gravity metric (3.36) along θ = 0.

From (3.36) the emergent gravity metric for Kerr background along

θ = 0 is

Ḡµν =





β∆′

ρ2
0

0 − ρ2

β∆′



 (A.1)

and

Ḡµν =





ρ2

β∆′
0

0 −β∆′

ρ2



 (A.2)

with

β = 1−K, M ′ =
M

1−K
, ∆′ = (r2 − 2GM ′r + α2) and ρ2 = r2 + α2.

We calculate the non-vanishing connection coefficients using (A.1), (A.2)

and the relation Γ̄α
µν =

1
2Ḡ

αβ[∂µḠβν + ∂νḠµβ − ∂βḠµν].

Γ̄0
10 =

1

2
Ḡ0α[∂0Ḡα1 + ∂1Ḡ0α − ∂αḠ01]

=
1

2
Ḡ00[∂0Ḡ01 + ∂1Ḡ00] =

1

2
Ḡ00∂1Ḡ00
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=
1

2
(
ρ2

β∆′)∂1(
β∆′

ρ2
)

=
1

2
[

r2 + α2

β(r2 − 2GM ′r + α2)
]

[
β(r2 + α2)(2r − 2GM

′

)− β(r2 − 2GM ′r + α2)2r

(r2 + α2)2
]

=
1

2
[

r2 + α2

β(r2 − 2GM ′r + α2)
]

[
β(2r3 − 2GM

′

r2 + 2rα2 − 2GM ′α2 − 2r3 + 4GM
′

r2 − 2α2r)

(r2 + α2)2
]

=
GM

′

(r2 − α2)

(r2 + α2)(r2 − 2GM ′r + α2)
= Γ̄0

01 (A.3)

Γ̄1
11 =

1

2
Ḡ1α[∂1Ḡα1 + ∂1Ḡ1α − ∂αḠ11]

=
1

2
Ḡ11[∂1Ḡ11 + ∂1Ḡ11 − ∂1Ḡ11] =

1

2
Ḡ11∂1Ḡ11

=
1

2
(
−β∆′

ρ2
)∂1(

−ρ2

β∆′)

=
1

2
[
(r2 − 2GM ′r + α2)

r2 + α2
]

[
(r2 − 2GM ′r + α2)2r − (r2 + α2)(2r − 2GM

′

)

(r2 − 2GM ′r + α2)2
]

=
1

2
[
(r2 − 2GM ′r + α2)

r2 + α2
]
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[
2r3 − 4GM

′

r2 + 2α2r − 2r3 + 2GM
′

r2 − 2α2r + 2GM
′

α2

(r2 − 2GM ′r + α2)2
]

=
−GM

′

(r2 − α2)

(r2 + α2)(r2 − 2GM ′r + α2)
= −Γ̄0

10 (A.4)

Γ̄1
00 =

1

2
Ḡ1α[∂0Ḡα0 + ∂0Ḡ0α − ∂αḠ00]

=
1

2
Ḡ11[∂0Ḡ10 + ∂0Ḡ01 − ∂1Ḡ00] = −(

1

2
)Ḡ11∂1Ḡ00

= −(
1

2
)(
−β∆′

ρ2
)∂1(

β∆′

ρ2
)

=
β2

2
[
r2 − 2GM ′r + α2

r2 + α2
]

[
(r2 + α2)(2r − 2GM

′

)− (r2 − 2GM ′r + α2)2r

(r2 + α2)2
]

=
β2

2
[
r2 − 2GM ′r + α2

r2 + α2
]

[
2r3 − 2GM

′

r2 + 2rα2 − 2GM ′α2 − 2r3 + 4GM
′

r2 − 2α2r

(r2 + α2)2
]

=
β2GM

′

(r2 − α2)(r2 − 2GM ′r + α2)

(r2 + α2)3

=
β2GM

′

(r4 − 2GM
′

r3 + 2GM
′

α2r − α4)

(r2 + α2)3
(A.5)

Now we calculate the diagonal components of Ricci tensor using (A.3)-

(A.5) and the relation R̄µν = ∂µΓ̄
α
αν − ∂αΓ̄

α
µν + Γ̄α

βµΓ̄
β
αν − Γ̄α

αβΓ̄
β
µν.

R̄00 = ∂0Γ̄
α
α0 − ∂αΓ̄

α
00 + Γ̄α

β0Γ̄
β
α0 − Γ̄α

αβΓ̄
β
00
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= ∂0Γ̄
0
00 + ∂0Γ̄

1
10 − ∂0Γ̄

0
00 − ∂1Γ̄

1
00

+Γ̄0
0βΓ̄

β
00 + Γ̄1

0βΓ̄
β
10 − Γ̄0

0βΓ̄
β
00 − Γ̄1

1βΓ̄
β
00

= ∂0Γ̄
1
10 − ∂1Γ̄

1
00 + Γ̄0

00Γ̄
0
00 + Γ̄0

01Γ̄
1
00 + Γ̄1

00Γ̄
0
10

+Γ̄1
01Γ̄

1
10 − Γ̄0

00Γ̄
0
00 − Γ̄0

01Γ̄
1
00 − Γ̄1

10Γ̄
0
00 − Γ̄1

11Γ̄
1
00

= −∂1Γ̄
1
00 + Γ̄1

00(Γ̄
0
10 − Γ̄1

11)

= −∂1Γ̄
1
00 + 2Γ̄1

00Γ̄
0
10 (A.6) [using (A.4)]

We calculate first term of equation (A.6):

∂1Γ̄
1
00 = ∂1[

β2GM
′

(r4 − 2GM
′

r3 + 2GM
′

α2r − α4)

(r2 + α2)3
]

=
β2GM

′

(r2 + α2)4
[(r2+α2)(4r3−6GM

′

r2+2GM
′

α2)−6r(r4−2GM
′

r3+2GM
′

α2r−α4)]

= β2GM
′

[
−2r5 + 6GM

′

r4 + 4α2r3 − 16GM
′

α2r2 + 6α4r + 2GM
′

α4

(r2 + α2)4
] (A.7)

and second term of equation (A.6):

2Γ̄1
00Γ̄

0
10 = 2[

β2GM
′

(r4 − 2GM
′

r3 + 2GM
′

α2r − α4)

(r2 + α2)3
]

[
GM

′

(r2 − α2)

(r2 + α2)(r2 − 2GM ′r + α2)
]

= [
2β2(GM

′

)2

(r2 + α2)4(r2 − 2GM ′r + α2)
]
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[r6 − 2GM
′

r5 − α2r4 + 4GM
′

α2r3 − α4r2 − 2GM
′

α4r + α6] (A.8)

Substituting (A.7) and (A.8) in (A.6) we get

R̄00 = −∂1Γ̄
1
00 + 2Γ̄1

00Γ̄
0
10

=
β2GM

′

(r2 + α2)4
[(2r5 − 6GM

′

r4 − 4α2r3 + 16GM
′

α2r2 − 6α4r − 2GM
′

α4)

+(
2GM

′

(r6 − 2GM
′

r5 − α2r4 + 4GM
′

α2r3 − α4r2 − 2GM
′

α4r + α6)

(r2 − 2GM ′r + α2)
)]

= [
β2GM

′

(r2 + α2)4(r2 − 2GM ′r + α2)
]

[2r7 − 8GM
′

r6 − 2α2r5 + 8(GM
′

)2r5 + 16GM
′

α2r4 − 10α4r3

−24(GM
′

)2α2r3 + 24GM
′

α4r2 − 6α6r] (A.9)

Therefore,

R̄00 r → ∞−−−−→
1

r3
(A.10)

R̄11 = ∂1Γ̄
α
α1 − ∂αΓ̄

α
11 + Γ̄α

β1Γ̄
β
α1 − Γ̄α

αβΓ̄
β
11

= ∂1Γ̄
0
01 + ∂1Γ̄

1
11 − ∂0Γ̄

0
11 − ∂1Γ̄

1
11

+Γ̄0
1βΓ̄

β
01 + Γ̄1

1βΓ̄
β
11 − Γ̄0

0βΓ̄
β
11 − Γ̄1

1βΓ̄
β
11

= ∂1Γ̄
0
01 + Γ̄0

10Γ̄
0
01 + Γ̄0

11Γ̄
1
01 + Γ̄1

10Γ̄
0
11 + Γ̄1

11Γ̄
1
11
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−Γ̄0
00Γ̄

0
11 − Γ̄0

01Γ̄
1
11 − Γ̄1

10Γ̄
0
11 − Γ̄1

11Γ̄
1
11

= ∂1Γ̄
0
01 + Γ̄0

10Γ̄
0
01 − Γ̄0

01Γ̄
1
11

= ∂1Γ̄
0
01 + 2(Γ̄0

10)
2 (A.11) [using (A.4)]

Let us calculate the first term of (A.11):

∂1Γ̄
0
01 = ∂1[

GM
′

(r2 − α2)

(r2 + α2)(r2 − 2GM ′r + α2)
]

= [
GM

′

(r2 + α2)2(r2 − 2GM ′r + α2)2
]

[2r(r4−2GM
′

r3+2α2r2−2GM
′

α2r+α4)−(r2−α2)(4r3−6GM
′

r2+4α2r−2GM
′

α2)]

= [
GM

′

(r2 + α2)2(r2 − 2GM ′r + α2)2
]

[−2r5 + 2GM
′

r4 + 4α2r3 − 8GM
′

α2r2 + 6α4r − 2GM
′

α4] (A.12)

Substituting the values (A.3) and (A.12) in equation (A.11) we get,

R̄11 = ∂1Γ̄
0
01 + 2(Γ̄0

10)
2

= [
GM

′

(r2 + α2)2(r2 − 2GM ′r + α2)2
]

[−2r5 + 2GM
′

r4 + 4α2r3 − 8GM
′

α2r2 + 6α4r − 2GM
′

α4]

+2[
GM

′

(r2 − α2)

(r2 + α2)(r2 − 2GM ′r + α2)
]2

= [
GM

′

(r2 + α2)2(r2 − 2GM ′r + α2)2
]
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[−2r5+2GM
′

r4+4α2r3−8GM
′

α2r2+6α4r−2GM
′

α4+2GM
′

(r4−2r2α2+α4)]

= [
GM

′

(r2 + α2)2(r2 − 2GM ′r + α2)2
]

[−2r5 + 4GM
′

r4 + 4α2r3 − 12GM
′

α2r2 + 6α4r] (A.13)

Therefore,

R̄11 r → ∞−−−−→
1

r3
(A.14)

Now calculate Ricci scalar using (A.2), (A.9) and (A.13):

R̄ = Ḡ00R̄00 + Ḡ11R̄11

= [
βGM

′

(r2 + α2)3(r2 − 2GM ′r + α2)2
]

[2r7 − 8GM
′

r6 − 2α2r5 + 8(GM
′

)2r5 + 16GM
′

α2r4 − 10α4r3

−24(GM
′

)2α2r3 + 24GM
′

α4r2 − 6α6r]

−[
βGM

′

(r2 + α2)3(r2 − 2GM ′r + α2)
]

[−2r5 + 4GM
′

r4 + 4α2r3 − 12GM
′

α2r2 + 6α4r]

= [
βGM

′

(r2 + α2)3(r2 − 2GM ′r + α2)2
]

[2r7 − 8GM
′

r6 − 2α2r5 + 8(GM
′

)2r5 + 16GM
′

α2r4 − 10α4r3

−24(GM
′

)2α2r3 + 24GM
′

α4r2 − 6α6r

−(r2 − 2GM ′r + α2)(−2r5 + 4GM
′

r4 + 4α2r3 − 12GM
′

α2r2 + 6α4r)]

= [
βGM

′

(r2 + α2)3(r2 − 2GM ′r + α2)2
]
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[4r7 − 16GM
′

r6 − 4α2r5 + 16(GM
′

)2r5 + 32GM
′

α2r4

−20α4r3 − 48(GM
′

)2α2r3 + 48GM
′

α4r2 − 12α6r] (A.15)

Again at r → ∞,

R̄ r → ∞−−−−→
1

r3
(A.16)
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Appendix B

Calculation of the connection coefficients for the emergent

gravity metric (4.5)

For homogeneous fields the emergent gravity metrics (4.5) and (4.6) be-

comes

Ḡµν =















(1− φ̇2) 0 0 0

0 −( a
2

1−kr2
) 0 0

0 0 −(a2r2) 0

0 0 0 −(a2r2sin2θ)















(B.1)

and

Ḡµν =















(1− φ̇2)−1 0 0 0

0 −( a2

1−kr2
)−1 0 0

0 0 −(a2r2)−1 0

0 0 0 −(a2r2sin2θ)−1















(B.2)

Now we derive the non-vanishing connection coefficients using the met-

rics (B.1) and (B.2) and the relation Γ̄α
µν =

1
2
Ḡαβ [∂µḠβν+∂νḠµβ−∂βḠµν ].

Γ̄0
00 =

1

2
Ḡ0α[∂0Ḡα0 + ∂0Ḡ0α − ∂αḠ00]

=
1

2
Ḡ00[∂0Ḡ00 + ∂0Ḡ00 − ∂0Ḡ00]

=
1

2
(

1

1− φ̇2
)(−2φ̇φ̈) = − φ̇φ̈

1− φ̇2
(B.3)

Γ̄0
11 =

1

2
Ḡ0α[∂1Ḡα1 + ∂1Ḡ1α − ∂αḠ11]
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=
1

2
Ḡ00[∂1Ḡ01 + ∂1Ḡ10 − ∂0Ḡ11]

= −1

2
Ḡ00∂0Ḡ11 = −1

2
(

1

1− φ̇2
)(

−2aȧ

1− kr2
)

=
1

(1− φ̇2)

aȧ

1− kr2
(B.4)

Γ̄0
22 =

1

2
Ḡ0α[∂2Ḡα2 + ∂2Ḡ2α − ∂αḠ22]

=
1

2
Ḡ00[∂2Ḡ02 + ∂2Ḡ20 − ∂0Ḡ22]

= −1

2
Ḡ00∂0Ḡ22 =

aȧr2

(1− φ̇2)
(B.5)

Γ̄0
33 =

1

2
Ḡ0α[∂3Ḡα3 + ∂3Ḡ3α − ∂αḠ33]

=
1

2
Ḡ00[∂3Ḡ03 + ∂3Ḡ30 − ∂0Ḡ33]

= −1

2
Ḡ00∂0Ḡ33 =

aȧr2sin2θ

(1− φ̇2)
(B.6)

Γ̄1
01 =

1

2
Ḡ1α[∂0Ḡα1 + ∂1Ḡ0α − ∂αḠ01]

=
1

2
Ḡ11[∂0Ḡ11 + ∂1Ḡ01 − ∂1Ḡ01] =

1

2
Ḡ11∂0Ḡ11

= −1

2
(
1− kr2

a2
)(

−2aȧ

1− kr2
) =

ȧ

a
(B.7)

Γ̄1
11 =

1

2
Ḡ1α[∂1Ḡα1 + ∂1Ḡ1α − ∂αḠ11]

=
1

2
Ḡ11[∂1Ḡ11 + ∂1Ḡ11 − ∂1Ḡ11] =

1

2
Ḡ11∂1Ḡ11

= −1

2
(
1− kr2

a2
)(

−2kra2

(1− kr2)2
) =

kr

1− kr2
(B.8)
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Γ̄1
22 =

1

2
Ḡ1α[∂2Ḡα2 + ∂2Ḡ2α − ∂αḠ22]

=
1

2
Ḡ11[∂2Ḡ12 + ∂2Ḡ21 − ∂1Ḡ22] = −1

2
Ḡ11∂1Ḡ22

=
1

2
(
1− kr2

a2
)(−2ra2) = −r(1− kr2) (B.9)

Γ̄1
33 =

1

2
Ḡ1α[∂3Ḡα3 + ∂3Ḡ3α − ∂αḠ33]

=
1

2
Ḡ11[∂3Ḡ13 + ∂3Ḡ31 − ∂1Ḡ33]

= −1

2
Ḡ11∂1Ḡ33 = −r sin2θ(1− kr2) (B.10)

Γ̄2
02 =

1

2
Ḡ2α[∂0Ḡα2 + ∂2Ḡ0α − ∂αḠ02]

=
1

2
Ḡ22[∂0Ḡ22 + ∂2Ḡ02 − ∂2Ḡ02] =

1

2
Ḡ22∂0Ḡ22

= −1

2

1

a2r2
(−2aȧr2) =

ȧ

a
(B.11)

Γ̄2
12 =

1

2
Ḡ2α[∂1Ḡα2 + ∂2Ḡ1α − ∂αḠ12]

=
1

2
Ḡ22[∂1Ḡ22 + ∂2Ḡ12 − ∂2Ḡ12] =

1

2
Ḡ22∂1Ḡ22

= −1

2

1

a2r2
(−2ra2) =

1

r
(B.12)

Γ̄2
33 =

1

2
Ḡ2α[∂3Ḡα3 + ∂3Ḡ3α − ∂αḠ33]

=
1

2
Ḡ22[∂3Ḡ23 + ∂3Ḡ32 − ∂2Ḡ33] = −1

2
Ḡ22∂2Ḡ33

=
1

2

1

a2r2
(−2r2a2sinθcosθ) = −sinθcosθ (B.13)

95



6 Appendix

Γ̄3
03 =

1

2
Ḡ3α[∂0Ḡα3 + ∂3Ḡ0α − ∂αḠ03]

=
1

2
Ḡ33[∂0Ḡ33 + ∂3Ḡ03 − ∂3Ḡ03] =

1

2
Ḡ33∂0Ḡ33

=
1

2
(

−1

a2r2sin2θ
)(−2aȧr2sin2θ) =

ȧ

a
(B.14)

Γ̄3
13 =

1

2
Ḡ3α[∂1Ḡα3 + ∂3Ḡ1α − ∂αḠ13]

=
1

2
Ḡ33[∂1Ḡ33 + ∂3Ḡ13 − ∂3Ḡ13] =

1

2
Ḡ33∂1Ḡ33

=
1

2
(

−1

a2r2sin2θ
)(−2ra2sin2θ) =

1

r
(B.15)

Γ̄3
23 =

1

2
Ḡ3α[∂2Ḡα3 + ∂3Ḡ2α − ∂αḠ23]

=
1

2
Ḡ33[∂2Ḡ33 + ∂3Ḡ23 − ∂3Ḡ23] =

1

2
Ḡ33∂2Ḡ33

=
1

2
(

−1

a2r2sin2θ
)(−2r2a2sinθcosθ) = cotθ (B.16)
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Appendix C

Evaluation of the Ricci tensors for FLRW background in the

presence of dark energy

We calculate the diagonal components of Ricci tensor using non vanish-

ing connection coefficients (B.3)-(B.16) and the relation R̄µν = ∂µΓ̄
α
αν −

∂αΓ̄
α
µν + Γ̄α

βµΓ̄
β
αν − Γ̄α

αβΓ̄
β
µν .

R̄00 = ∂0Γ̄
α
α0 − ∂αΓ̄

α
00 + Γ̄α

β0Γ̄
β
α0 − Γ̄α

αβΓ̄
β
00

= (∂0Γ̄
0
00 + ∂0Γ̄

1
10 + ∂0Γ̄

2
20 + ∂0Γ̄

3
30)

−(∂0Γ̄
0
00 + ∂1Γ̄

1
00 + ∂2Γ̄

2
00 + ∂3Γ̄

3
00)

+(Γ̄0
β0Γ̄

β
00 + Γ̄1

β0Γ̄
β
10 + Γ̄2

β0Γ̄
β
20 + Γ̄3

β0Γ̄
β
30)

−(Γ̄0
0βΓ̄

β
00 + Γ̄1

1βΓ̄
β
00 + Γ̄2

2βΓ̄
β
00 + Γ̄3

3βΓ̄
β
00)

= ∂0Γ̄
1
10 + ∂0Γ̄

2
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ȧ

a
)

φ̇φ̈

1− φ̇2

= 3
ä
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ȧ

a
)2

1

(1− φ̇2)
+

2k

a2
+

ȧ
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ȧ

a
− r sin2θ(1− kr2)(

1

r
)− (sinθ cosθ)cotθ

+
φ̇φ̈

(1− φ̇2)
[
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