
PARALLEL SESSION ON "THEORETICAL THEORY" 1-243 

"THEORETICAL THEORY" 

A Neveu 

Orsay 

INTRODUCTION 

The following reports are not all the theoretical talks presented in the parallel session: see also sessions on high energy 

theory and unified models of weak and e.m. interactions. 

Besides constructive field theory, the main points of interest in the study of formal properties of mathematical models 

are classical approximations, strong coupling limits and connections with statistical mechanics. The general aim is to 

find solutions for quark containment. Interesting developments can be expected in that direction during the next two years. 

STATUS OF CONSTRUCTIVE FIELD THEORY 

Arthur Jaffe 

Harvard University 

Supported in part by the National Science Foundation, 
Grant NSF GP 4035X. 

1. Introduction 

The theme for Constructive Field Theory (CFT) during 

the past two years has been to bring CFT closer to 

physics. We now have reached a point where progress 

on a variety of problems requires new physics 

(i.e. formal) insights. This stands in contrast 

with much of the work up to now: work which was 

directed toward giving proofs about phenomena we 

basically understand. Of course the best of those 

earlier proofs yielded new tools and techniques. 

We first summarize some main areas of progress 

during 1972-74. For extensive references, see \js\. 

We try here to give a reasonably complete list of 

more recent work. 

The model with an interaction energy density 

(P(sKx)) in d space-time dimensions is called 

(P((j))^. The main reason that models in d < 4 

dimensions pose fewer problems in constructive 

field theory, is their super-renormalizable ultra-

voilet divergences. These less divergent models 

are the best understood ones, and the case d = 4 

is still the major challenge. We mention some of 

the known results for (P(«̂> ) ̂  and Yukawa^. In chapter 

4 , we d i s eu s s d = 3. 

(i) Axioms : For weak coupling (P((j>)2 £ 3 1 , 3 3 j , or 

equivalently for a large external field y , 

all the Wightman axioms have been verified. In the 

case of P , all the Wightman axioms are known even 
with the exception of uniqueness of the vacuum 

JJ9, 17^. In the case Xcf> -̂y<J>, for all nonzero y , 

the Wightman axioms are verified [j71 , 7oJ. 

(ii) One Particle States: For weak coupling, 

isolated single particle states exist £_3l] , 

and hence by the Haag-Ruelle construction an S-

matrix exists. 

(iii)Physical Properties: (See more throughout this 

talk.) We have a primitive knowledge of the bound 

state spectrum. We are now getting a more 

detailed knowledge of particle structure, by a 

study of one, two (or more) particle irreducible 

kernels. 
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The generating functional P { A } for the one particle 

irreducible vertex functions can be constructed by 

a Legendre transformation of the generating 

functional ^n Z {J} for the connected parts ̂ 26^. 

The coupling constants are defined In terms of 

these vertex functions. In the case of the ^ 

interaction, reasonable hypotheses show that the 

dimensionless coupling achieves its maximum J^3oJ at 

the critical point (onset of symmetry breaking) 

[ 2 7 J . We call this "critical point dominance". 

Work in progress by J Frohlich, and by Glimm and 

myself, will give quantitative control over (P(<J>)2 

models in which we assume the existence of symmetry 

breaking ( multiple phases). 

(iv) Connections with Statistical Mechanics: There 

are well known connections between field theory 

and statistical mechanics. They have especially 

been emphasized by Symanzik [74 , 7 5 , 76], by Wilson 

[83^] , and also in CFT \see 19~J. There are two 

classes of results: (1) The proof in field theory 

of analogs to known results in statistical mechanics. 

(2) The proof of new results for both subjects, by 

combining complementary points of view. A number 

of results of type (J) have been established, for 

example see Jj79 ] for references. One such inter­

esting result has been announced by Dobrushin and 

Minlos JJO] : the existence of symmetry breaking 

solutions for strongly coupled, even (P(<J))2 models. 

In later parts of this lecture we mention some 

recent results of type ( 2 ) . 

(v) Exact Solutions and Perturbation Theory: How 

do the exact Ap(<f>̂ . solutions agree with 

perturbation theory? It is known for these models 

that the exact Schwinger functions have derivatives 

(with respect to A) of all orders at A = 0 + , [s ] . 

Furthermore, these derivatives are just tlie Feynman 

diagrams of perturbation theory. In other words, 

Dimock shows that P(<J>) 2 is asymptotic to perturbation 

theory. Conversely, in the case of <J>2 , it is known 

that the Feyman diagrams uniquely determine the 

Schwinger functions. In fact, Eckmann, Magnen, and 

Seneor |J l̂J show the weakly coupled ^ theory is Borel 
4 

summable. This gives a fifth method to obtain <j) 

solutions (complementing the multiple proofs of 

existence now known for (P(40 2). 

(vi) The Yukawa 2 Model: There is also progress in 

the Yukawa 2 model. This year, McBryan and Park 

independently verified the Lorentz covariance, the 

last Haag-Kastler axiom £ 5 2 ] . 

An old idea of Matthews and Salam ^ 5 3 3 n a s been 

controlled in an interesting new paper on Yukawa 2 

by E Seiler 1^58] . He has been able to estimate the 

Euclidean action e ^ after integrating the (Gaussian) 

fermion contribution. So far, this method has only 

given a partial proof of known results L 2 l ] . In 

principle, however, these techniques have the 

potential to be generalized to yeild in Yukawa 2 > all 

the (as yet unproved) weak coupling results now 

known for P((j,) [ 3 1 , 3 2 , 33] . 

It is of interest to discover whether critical 

points (zero mass gap) occur in the Yukawa 2 model 

for some certain critical couplings. Are they 

associated with broken symmetries? 

(vii) General Results: In addition to results 

about models, considerable progress has occurred in 

understanding the general relation between Euclidean 

and relativistic theories. The most general result 

is the Osterwalder-Schrader axioms ^ 5 7 , 58, 79] which 

give (necessary and) sufficient conditions for 

Euclidean Schwinger functions to uniquely determine 

a Wightman theory. (See also [ 38 , .) The 

Osterwalder-Schrader construction is quite general, 

applying to fields with arbitrary spin. (Their 

axioms are motivated in part by the definition of a 

scalar Markoff field [74, 54, 55 , 7 9 ^ . The 

Markoff property, central to Nelson's work, requires 

more structure than necessary, and appears special 

to lower dimensions. In fact, it is an open 



STATUS OF CONSTRUCTIVE FIELD THEORY 1-245 

problem to verify whether the Markoff property holds 

in any P O ) 2 model with interaction.) 

The question of using Euclidean Fermi fields in 

CFT is dealt with by [59, 60, 20, 67, 61, 81, 8 2 ] . 

The Osterwalder-Schrader axioms comprise four 

assumptions on Schwinger functions: 

(1) a distribution (regularity) property, 

(2) Euclidean covariance, 

(3) symmetry (or antisymmetry), and 

(4) a positivity property (to ensure the existence 

of a relativistic Hilbert space of states). 

Given these four properties, the 0. - S. theorem 

says that the Schwinger functions have an analytic 

continuation to real time, and that that the real 

boundary values satisfy the Wightman axioms. This 

theorem has been the basis for most recent proofs in 

CFT: We verify Euclidean properties in models and 

deduce their real time consequences for physics. 

2. Mass Spectrum (PC«P)2 

2 2 -

Define the mass operator M = (H - P ) 5 which 

labels the energy momentum hyperboloids. 

Theorem 2.1 [ 3 1 , 3 3 ] : For weakly coupled A (P(<j>)2 

models, M has the spectrum 

a) a simple eigenvalue at M = 0 (vacuum) 

b) an isolated eigenvalue at M = m (one particle 

states) 

c) a continuum for M ^ 2m (two or more particles) 

d) no other spectrum for M.^2m - e. 

2 

Weak coupling means A/m ^ sufficiently small 

(depending on (Pand e > 0 ) , or else{j72] a P((J>) - u<J> 

model with |u| sufficiently large. 

We note that the theorem ensures the existence of 

two gaps in the mass spectrum, the mass gap (0,m) 

and an upper gap (m, m^) where m^ e [2m - e, 2m] . 

The theorem makes no statement about the 

possibility of mass spectrum in the interval 

[2m - e, 2m~\ where two particle bound states may 

occur. To make such statements, it is necessary 

to specify further what the interaction is, for 

some interactions yield repulsive two body forces,. 

while others yield attractive ones. 

The proof of this theorem is based on expansions 

which converge for sufficiently weak coupling. It 

turns out that these expansions are closely related 

to the high temperature expansion in statistical 

mechanics, for example, Kirkwood-Salsburg 

- 2 

expansions. In the convergence, À or m plays 

the role of 3 in statistical mechanics. It is 

intriguing to ask whether low temperature (strong 

coupling) expansions exist in quantum field theory, 

with mean field theory as a lowest order 

approximation. In statistical mechanics such 

expansions exist, and are the basis for the study 

of phase transitions. 

We now specialize to the case P , so the 
even 

Lagrangian has the symmetry <f> -> -<J>. We define the 

theory to be even if the vacuum state is invariant 

under the <J> ̂  -<J> symmetry. If the theory is even, 

we can decompose the Hilbert space ft with respect 

to the symmetry, 

^even ® <ffodd 

We define X , the critical coupling, as the onset 

of symmetry breaking 

A^ = sup A 

Aee 

where the vacuum is unique and m> 0 if A £ E 
Theorem 2.2 [32, 14, 73^: For Ac})4, A < A c > the mass 

operator M on H has no spectrum in (0, 2m), where v even 

m is the mass (gap) on ft . 

One consequence of this theorem is the absence of 

4 

two particle bound states in the cf> model without 

symmetry breaking. An interesting question concerns 

the mass spectrum in the case with a non-unique 

vacuum: Do two particle bound states occur? It is 

sufficient to answer this question in the theory 

with an even vacuum. The general result for each 

of the (symmetry breaking) unique vacuua (ie pure 
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phases, in the language of statistical mechanics) 

follows by a decomposition of the theory into pure 

phase components. 
4 . 

Clearly the repulsive nature of the $ interaction 

depends on the sign of the coupling. Reversing that 

sign, gives an attractive two particle force, but it 

also requires a <j>̂  or other higher degree coupling to 

ensure positivity of the energy. 
Theorem 2.3 [ 3 2 ] : For X ((j)6 - cf)4), with 0 < X « 1, 

the mass operator on H has spectrum in (m, 2m). even 

The quoted proof [32] is based on the variational 

argument and estimates proved using the cluster 

expansion. In this proof, we assume that the mass 

is asymptotic to second order, ie 
2 2 2 2 3 m = m^ + X Z 6m + 0(X J ) . 

A direct proof, as well as discreteness of the bound 

state, should also follow by an analysis of the 

Bethe-Salpeter kernel, see Section 6. 

3. Field Theory - Mean Field Theory 

In this section we discuss one-sided bounds of field 

theory by mean field theory. These field theory 

bounds follow from inequalities true in classical 

ferromagnetic lattice systems, and hence 

the analogous bounds hold in statistical mechanics. 

These bounds describe the qualitative nature of the 

solutions in terms of certain parameters in the 

Lagrangian. 

The mean field, or classical approximation, is 

obtained by determining the absolute minima of the 

Euclidean action V ($). The ground state is supposed 

localized at a minimum (classical or mean value $ 
cl 

of the field) and the mean field value of the mass 

gap is 

Let us consider, for example, the action 

V($) = X<3>4 + i a $ 2 . 

. . . . 2 
In addition to the interaction mass term ^ 0 $ , we 

2 2 
include a bare mass term |m^$ in the free field 

2 
action, with m^ > 0. We now fix À and m^, while we 

vary a. By a scale transormation, this is 

equivalent to fixing o and varying X. In fact, a 

0 0 is the weak coupling limit, while 0 -> - 0 0 is the 

limit of strong (bare) coupling. 

The classical value of the mass gap is 

where the critical point o = 0 ^ is displaced from 
2 . . . . 

-m due to the Wick ordering contribution of 
4 

X : $ :. The numerical value of cr^ depends on X and 

m , and in fact can take on any value for a 

suitable choice of (X, m Q,) (assuming i - » ) , see 

for instance [̂ 27 ] . The numerical value of 

becomes significant only after fixing ( X , m ). 
Theorem 3.1 [̂ 28 ] : Assuming a unique vacuum and a 

4 

mass gap m (a) for the <J> model above 

(3.1) 0 V < ^ « 1 . 

Thus if m(a) -> 0 as o -» o , for a > a , 
c c 

(3.2) m(a) ^ m (a) = (a - a ) i 

c 1 c 
The proof of (3.2) follows by inegrating (3.1) down 

to the critical point a^. The proof of (3.1) is 

quite detailed. It combines some hard analytical 

work with a "correlation inequality", namely 

(3.3) <1234) T = <$(x 1)$(x 2)Mx 3)$(x 4)) T « 0, 

where <̂  ^ denotes the connected part of the 

four point (Euclidean) Schwinger function, 

<1234> T - <1234) - <1 2>{34)-<13^4)- <14>p). 
In statistical mechanics, this inequality is proved 

for ferromagnetic spin J lattices by Lebowitz, in a 

recent paper [j+4]. The inequality in field theory 
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follows by the lattice approximation, in which the 

term exp [ - J (V(j>)2 d x ^ j "*"n t*^ie -^ r e e a c t i ° n yields a 

ferromagnetic nearest neighbor coupling. In the <j)4 

case, the lattice field can be approximated by a sum 

of spin \ Ising spins [ j 7 l ] and the (3 .3) then holds. 

In fact, a whole sequence of inequalities proved in 
4 

Lebowitz' paper are valid for (j) field theories and 

are used in the proofs of Theormes 2 . 2 , 3 . 1 , 3 . 2 , 

and 4 . 1 . These inequalities fail in lowest order 

perturbation theory of a (J)2n interaction, n > 3. 

In order to give some idea of a proof, we study the 
4 

zero field susceptibility in § , namely 

where u indicates an external field. A very simple 

argument gives 

Theorem 3.2 ^28, 78j: For a > o^, 

Such mean field bounds are apparently also new in 

statistical mechanics, and they show that the 

critical exponents for the mass or susceptibility, 

defined by 

m ' v ( o - a ) v X ^ C ^ - O Y a a c c c 

are greater than their classical values: 

v >. y cl Y * Y C L - L 

In the Ising2 or Ising^ model, the exponents are 

known, and do not equal their classical values. 

Questions: What are the <f> exponents? Are they 

non-classical for d = 2,3? What are the anomalous 
4 

dimensions of the <J> field? 
4 

4. <j>2 Progress 
In the past two years, essential steps have been 

4 
taken in cf>̂. Combined, they yield the existence 

. 4 

of the finite volume renormalized <f)̂  model, and set 

up the program to investigate the infinite volume 

limit. I expect that the methods developed to 

handle the infinite volume limit for d = 2 also can 

be used for d = 3. These methods rely heavily on 

the local nature of the interaction, and the control 

of the ultraviolet problem in a finite volume. I 

predict that the technical, barriers will be over­

come in a year or two, yielding a Haag-Ruelle-

4 

Wightman theory for <J>̂, and opening the door to the 

use of d = 3 constructive models as a laboratory 

for investigation of detailed physical properties. 

Theorem 4 . 1 J25*] : Consider the cf)4, finite volume 

Euclidean action V, with counterterms given by 

second and third order perturbation theory, 

where the constant depends on X. 

Corollary |̂ 25^J : The renormalized <j>4 Hamiltonian 

is bounded from below by a constant proportional to 

the volume. 

Theorem 4 .2 p 3 J : Let X be sufficiently small. 

The finite volume Schwinger functions 

S(n)(x,,...,x ) = lim S^ n )( X l,...,x n) 
k 

exist as the limits of ultraviolet cutoff Schwinger 

functions. 
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Theorem 4.3 [_62̂  : The finite volume <J>̂  model is 
4 

a limit of (J>̂  lattice theories. 

5. <j>4 Bound [29J 
(2) 

Assume the two point Sehwinger function S (f,g) 

is a distribution. 

Theorem 5.1: Then 
( s ( n ) ( f . ) . . . ) f n ) | < c V n | f . | 

i=l 

|f I = sup I (l + (x)| 

X 

For some r < 0 0. 

Remark: The growth with n is compatible with the 

Osterwalder-Schrader axioms |~57,58̂ J , where a 
growth n! ̂  is allowed. 

Corollary: The generating functional Z {f} for 

Schwinger functions exists, and is the integral, 

Z{f} = | e * ( f ) d q , 
where dq is a unique path space measure for the 

4 

Euclidean <\> model. 

In more detail, 
Z{f} = I h s ( n )(f,...,f) 

n=0 

is analytic for |f| < c Then by a standard 

theorem (due to Minlos) the path space measure dq 

exists, and 

S ( n ) ( f , f n > = < f r - - f n > = J«(f,)....(f n)dq. 
Another consequence of this bound is the reduction 

4 
of the existence theorem for (j)̂  to a uniform bound 
on the two point Sehwinger function. 

Assume 

(5.1) | s < 2 > (f,g)| * | f | y | g | ^ 

for some distribution norm i • uniform in the 

lattice spacing e. -* 0, 

S ( n ) - lia, 
e. e. 

J 3 

exists and satisfies the Osterwalder-Schrader 

axioms, with the possible exception of Euclidean 

covariance and clustering. 

The bound (5.1) holds in perturbation theory for 

d - 2, 3, 4. For d = 2, it has been proved, while 

for d = 3 it is proved in a finite volume. (I 

expect the d = 3, infinite volume estimate will be 

proved shortly.) 

6. Particle Structure Program 

The particle structure program was begun with the 

study of one particle states and two particle 

bound states described above. The continuation of 

this program should yield insight into many particle 

structure, bound states, resonances, and asymptotic 

completeness. 

The next steps in the program concern the two and 

three particle structure. The two particle 

structure is described by the Bethe-Salpeter kernel, 

and studies of this nature are in progress by Glimm 

and myself, and by Spencer. We can define the Bethe^ 

Salpeter kernels for non-critic al P(<j>)0 models, 

K = R -' - I f 1 

0 

4 

where for <J> , is the integral operator with 

kernel 
R 0(x,y) = < x i y i > T < x 2 y 2 > T + < * , y 2 > T ^ 2 y , ) _ T 

and 

Decay properties of the kernel K should yield 

properties of the mass spectrum up to 4m - e, and 

Spencer is currently trying to establish these for 

weak coupling. 

For the three body problem, the main question is to 

give a qualitative picture of the six point 

function. For instance, do three particle bound 
4 

states occur m 

In the next few years, I expect that much of the 

progress in two dimensional models will concern the 

particle structure program. It is heartening that 

the constructive approach to these problems seems to 

make contact with the more abstract work of Bros, 

Epstein and Glaser on related problems 12, 43J 

and to older heuristic work, see Goldberger and 

Watson. 
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7. Conclusion 

Aside from the particle structure program, there 

are two main open avenues : 

1) Infra red behavior near a critical point. 

2) Ultra violet "behavior in a renormalizable 

(but not super renormalizable) model. 

Each of these directions poses a major challenge: 

Not only are they important problems for 

constructive field theory, but they also pose 

formal problems of interest to heuristic high energy 

physicists. Thus progress on these problems, 

whether by heuristic or by more mathematically 

inclined physicists should be of interest to every 

physicist. 
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