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The excitations referred to as oscillons are long-lived time-dependent field configurations which emerge 
dynamically from non-linear field theories. Such long-lived solutions are of interest in applications that 
include systems of Condensed Matter Physics, the Standard Model of Particle Physics, Lorentz-symmetry 
violating scenarios and Cosmology. In this work, we show how oscillons may be accommodated in a 
supersymmetric scenario. We adopt as our framework simple (N = 1) supersymmetry in D = 1 + 1
dimensions. We focus on the bosonic sector with oscillon configurations and their (classical) effects on 
the corresponding fermionic modes, (supersymmetric) partners of the oscillons. The particular model 
we adopt to pursue our investigation displays cubic superfield which, in the physical scalar sector, 
corresponds to the usual quartic self-coupling.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The study of field-theoretic non-linear systems is an area of 
increasing interest over the past few decades [1–3]. Evidences of 
non-linear behavior is, nowadays, found in a considerable part 
of physical systems. This includes systems of Condensed Matter 
Physics, field-theoretic models related to particle phenomenology, 
modern Cosmology and a large number of other domains of the 
physical sciences [4–34]. As examples, we can cite studies on non-
linear acoustic metamaterials (NAMs) [5], in the resonances of 
two-dimensional (2D) materials [6], in nonlinear sigma models [7], 
in hard x-ray pulses in free-electron lasers (FELs) [8], and in super-
symmetric quantum field theories with kink excitations [9].

In classical field theory, there is a class of configuration quite 
common and important called solitons [10], which are solutions of 
a set of classical relativistic non-linear field equations. Such con-
figurations are characterized by some topological index, related to 
their behavior at spatial infinity. Solitons have the important fea-
ture of having energy density localized at space and having its 
profiles restored to their original shapes and velocities after col-
lisions. Nowadays, those configurations is well understood in a 
broad number of scenarios. For instance, one can find investiga-
tions regarding monopoles, textures, strings and kinks [11].
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Within the universe of non-linear field theories, it is impor-
tant to highlight a specially important class of time-dependent 
stable solutions referred to in the literature as breathers. This con-
figurations comes from Sine-Gordon like models. Another time-
dependent field configuration whose stability is granted for by 
charge conservation are the Q -balls as named by Coleman [31]
or non-topological solitons, according to Lee [32]. On the other 
hand, besides these physical systems that exhibit a metastable be-
havior, a new class of solutions was discovered in the years 1970 
by Bogolyubsky and Makhankov [33], and re-assessed afterwards 
by Gleiser [36]. These solutions were identified during the study 
of the dynamics of first-order phase transitions, where oscillons 
arise from collapsing unstable spherically-symmetric bubbles in 
models with symmetric and asymmetric double-well potentials. 
Since that work, a series of investigations is addressed to study 
these objects [37–59]. For instance, we can find interesting inves-
tigations and consequences in Abelian–Higgs models [60,61], in 
massive Yang–Mills theories [62], and when there are nonlinear 
Schrodinger equations [63].

Oscillons do not keep their shape indefinitely. Indeed, for a φ4

theory in (1 + 1) dimension, Segur and Kruskal [34] have shown 
that oscillon configurations slowly emit their energy. A similar con-
clusion was obtained in the cases of (2 +1) and (3 +1) dimensions 
[35]. Also, the radiation rate for quantized oscillons was worked 
out by Hertzberg [59], who showed that there is a significant dif-
ference between the classical and quantum decays.
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The most common oscillon profile is a bell-like shape with a 
sinusoidal oscillation. A quite different oscillon configuration may 
be found in Ref. [53]. In that work, one analyzes the properties 
of oscillons in an expanding Universe. Interestingly, a new kind of 
oscillon which presents a plateau at its top is found, and cosmolog-
ical applications can be implemented. It is also shown that these 
configurations present a stable behavior against localized pertur-
bations.

In this contribution, we endeavor to present a (1 + 1)-dimen-
sional supersymmetric framework where oscillon configurations 
show up and it is our interest to focus on the oscillon fermionic 
partner, that we may refer to as oscillino. The reason to consider 
oscillons in connection with supersymmetry (from now on, SUSY) 
is not of a purely academic interest. We take the viewpoint that 
fermions are the truly elementary matter excitations of space-time. 
Associating SUSY with oscillons is a natural way to couple oscil-
lons to fermions if we wish to inspect their interaction. In so do-
ing, besides the interest in identifying the profile of the fermionic 
configurations coupled to oscillons (which we do by building up 
oscillino-type solutions), it would be interesting to consider the 
behavior of oscillino condensates to find out whether it is possible 
to identify them with scalar or vector bosonic excitations present 
in lower-dimensional systems. Also, in a SUSY scenario, oscillino 
condensates, in turn, induce correction effects on the oscillons, and 
it might be interesting to assess how these effects may interfere 
on the stability of the oscillons. These are the primary motivations 
underneath our proposal to inspect oscillons in connection with 
SUSY.

This work is organized as follows: in Section 2, we introduce 
the general features of the supersymmetric model. After that, in 
Section 3, we review the oscillon configurations in the purely 
bosonic sector, with SUSY not yet switched on. Next, in Section 4, 
we investigate the fermionic partner’s solutions in an oscillon 
background and we discuss on two different paths to get oscillino 
solutions. Finally, we present our Concluding Comments in Sec-
tion 5. An Appendix follows, where we set up conventions and 
present the off-shell version of the SUSY action we adopt to carry 
out our inspections.

2. The supersymmetric model

The investigation of supersymmetric models in the context of 
nontrivial classical field configurations finds a remarkable result in 
the paper by Witten and Olive [64], where a connection between 
topological configurations and central charges of the SUSY alge-
bra is established. Furthermore, many other field-theoretic models 
have been discussed in this context. Specifically, in D = 1 + 1
dimensions, we highlight a number of seminal works [65–67], 
which explored non-perturbative classical solutions and non-linear 
sigma-models. We also point out some works [68–75], where the 
quantum aspects of (non-)topological solutions in a supersymmet-
ric scenario are discussed. However, one notices a lack of the atten-
tion related to oscillon configurations and supersymmetry. Here, 
we present a first contribution to this topic. In this Section, the 
Lagrangian density describing a theory in D = 1 + 1 dimensions 
in a supersymmetric framework is introduced. Our aim in working 
with a supersymmetric theory comes from the fact that, in its lin-
ear realization, SUSY provides the existence of a new class of field 
configurations, which correspond to the supersymmetric partner 
of the oscillons, named from now on oscillino. The on-shell N = 1
supersymmetric Lagrangian density is given by

L = 1
(∂μϕ)2 + i

ψ̄γ μ∂μψ − [Vϕ(ϕ)]2

− ψ̄ψ
Vϕϕ(ϕ), (1)
2 2 2 2
where ϕ and ψ are, respectively, a real scalar field and a Majo-
rana spinor. Here V (ϕ), an arbitrary function, is referred to as the 
prepotential, and we denote Vϕ ≡ ∂V /∂ϕ and Vϕϕ ≡ ∂2 V /∂ϕ2. 
Moreover, we highlight that the scalar potential is related to V (ϕ)

as below:

U (ϕ) = 1

2
[Vϕ(ϕ)]2. (2)

In the Appendix A, we present our conventions as well as the 
off-shell Lagrangian density obtained in the superspace formula-
tion.

One can check that the action is invariant under the transfor-
mations

δϕ = ξ̄ψ , (3)

δψ = −i γ μξ ∂μϕ − ξ Vϕ , (4)

where ξ is a Majorana spinor parameter.
From the Lagrangian density (1), we obtain the following cou-

pled equations of motion

�ϕ + Vϕ Vϕϕ + ψ̄ψ

2
Vϕϕϕ = 0, (5)

iγ μ∂μψ − ψ Vϕϕ = 0. (6)

In this work, we investigate the particular case

V (ϕ) = a

3
ϕ3 − b

2
ϕ2, (7)

where a and b are real (positive) parameters. V (ϕ) is cubic, so that 
the scalar self-interaction becomes quartic, as given in Eq. (2).

In the sequel, we turn our attention to the problem of how to 
proceed to decouple the equations. In order to solve the equations 
to obtain oscillon-type configurations, we consider, as our initial 
step, the approximation that the interaction with the fermionic 
condensate (ψ̄ψ) can be neglected. One possible situation where 
this consideration is not an approximation is the case of half-
SUSY, where the spinor field is Majorana–Weyl; but, this is not 
the case here. We start with the scalar field behaving like a classi-
cal background. A non-trivial fermionic solution shall be obtained 
by solving Eq. (6) in the oscillon background or, equivalently, by 
perturbing the oscillon configuration by means of a SUSY transfor-
mation, (Eqs. (3) and (4)). Thus, Eq. (5) becomes

�ϕ + Vϕ Vϕϕ = 0. (8)

Using the Eq. (7), we can rewrite the Eq. (8) as follows below:

�ϕ + 2a2ϕ3 − 3abϕ2 + b2ϕ = 0. (9)

As one notices, the equation above involves only the scalar 
sector. In the next Section, we shall work out the oscillons con-
figurations from this scenario.

3. Bosonic sector: the usual oscillons

Since our first interest is to find periodic and localized solu-
tions, it is useful to introduce a scale transformations in x and t , 
given by

τ = ωt, y = εx, (10)

with ω = √
1 − ε2 and 0 < ε ≤ 1. Thus, Eq. (9) becomes

ω2∂2
τ ϕ − ε2∂2

yϕ + 2a2ϕ3 − 3abϕ2 + b2ϕ = 0. (11)
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From this equation, it is possible to find a oscillon configuration, 
which are localized in the central vacuum ϕv = 0 of the model 
described in Eq. (7). In this case, the classical scalar field ϕ is spa-
tially localized and periodic in time. The usual procedure to obtain 
oscillon configurations in D = 1 + 1 dimensions consists in apply-
ing a small amplitude expansion of the scalar field in powers of ε
in the form that follows:

ϕ(y, τ ) =
∞∑
j=1

ε jϕ j(y, τ ). (12)

Let us replace this expansion of the scalar field into the field 
equation (11). Doing that yields:

ε
(
∂2
τ ϕ1 + b2ϕ1

)
+ ε2

(
∂2
τ ϕ2 + b2ϕ2 − 3abϕ1

)

+ ε3
(
∂2
τ ϕ3 + b2ϕ3 − ∂2

τ ϕ1 − ∂2
yϕ1 − 6abϕ1ϕ2 + 2a2ϕ3

1

)
+ ...

= 0. (13)

We notice that the procedure of performing a small amplitude 
expansion shows that the scalar field solution ϕ can be obtained 
from a set of scalar fields which satisfy coupled non-linear dif-
ferential equations. This set of differential equations is found by 
taking the terms to all orders in ε in the above equation. Thus, it 
becomes immediately clear that, up to ε3, this procedure leads to

∂2
τ ϕ1 + b2ϕ1 = 0, (14)

∂2
τ ϕ2 + b2ϕ2 − 3abϕ2

1 = 0, (15)

∂2
τ ϕ3 + b2ϕ3 − ∂2

τ ϕ1 − ∂2
yϕ1 − 6abϕ1ϕ2 + 2a2ϕ3

1 = 0. (16)

From Eq. (14), we can propose that

ϕ1(y, τ ) = �(y) cos (bτ ) , (17)

where � (y) is function of the spatial variable y. We notice that 
the lowest order term of the solution is just a harmonic oscillator 
in time, with frequency b.

On the other hand, the solution to the Eq. (15), which is a linear 
inhomogeneous equation, can be found by considering the Eq. (17). 
Thus, the solution for ϕ2(y, τ ) is written as below:

ϕ2(y, τ ) = a�(y)2

2b
[3 − cos (2bτ )] . (18)

From these solutions, Eqs. (17) and (18), we can obtain 
ϕ3(y, τ ). Then, after straightforward calculations, one can verify 
that Eq. (16) takes the form

∂2
τ ϕ3 +b2ϕ3 =

(
�′′ − b2� + 6a2�3

)
cos (bτ )−2a2�3 cos (3bτ ) ,

(19)

where �′′ = d2�/dy2.
Our aim is to get configurations which are periodical in time. 

Then, if we solve the above partial differential equation in the pre-
sented form, we will have a term linear in τ . As a consequence, 
the solution for ϕ3 is neither periodical nor localized. This result 
comes from the contribution of the function cos (bτ ) in the right-
hand side of the partial differential equation (19). However, we can 
build up solutions for ϕ3 which are periodical in time if we impose 
that

�′′ − b2� + 6a2�3 = 0. (20)
In this case one gets

�(y) = b

a
√

3
sech (by) . (21)

From the above results, as one can see, the leading order corre-
sponding solution for the classical field is given by

ϕ(x, t) � εb

a
√

3
sech (εbx) cos

(
b
√

1 − ε2t
)

. (22)

We note that the bosonic sector accommodates usual oscillons 
configurations with small amplitude.

Finally, it is worthy to emphasize that we have expanded the 
scalar field up to 3th order in ε , obtaining thereby a system of 
equations (Eqs. (14)–(16)). The solutions to this system have a lo-
calized spatial profile with a sech(by)-functional dependence; the 
leading contribution is therefore the term proportional to ε . No-
tice that it is necessary to use the expansion up to 3th order in ε
to obtain Eq. (20), whose solution determines the function �(y), 
which is responsible for the spatial profile of the oscillons. We 
then present the leading-order contribution for the scalar, given by 
Eq. (22). Also, in Ref. [59], it is shown that the leading contribution 
for the oscillon radiation is of order ε , so that the other terms are 
subleading for the analysis of the oscillon stability. A similar pro-
cedure shall be adopted in the fermionic case, in dealing with the 
oscillino solution.

In the next Section, we shall study the fermionic sector in the 
background of this oscillon.

4. The SUSY partners of oscillons

Having established the oscillon configuration, we now turn our 
attention to the fermionic sector. Our goal is to find the supersym-
metric partner of the oscillon, which we shall refer to as oscillino. 
To do this, let us start by rewriting the Dirac equation (6) in the 
presence of the potential (7). In this case, we have

iγ μ∂μψ − (2aϕ − b)ψ = 0. (23)

As we are working with two dimensions, the fermions are de-
scribed by two-component spinors,

ψ(x, t) =
(

ψ1(x, t)
ψ2(x, t)

)
. (24)

As already mentioned in the Appendix, we adopted the Majo-
rana representation of the gamma matrices (γ 0 = σy , γ 1 = iσx). 
Therefore, by using this representation and Eqs. (23) and (24) one 
can arrive at following coupled pair of first order differential equa-
tions:

∂tψ2 + ∂xψ2 − S(ϕ)ψ1 = 0, (25)

−∂tψ1 + ∂xψ1 − S(ϕ)ψ2 = 0, (26)

where S(ϕ) ≡ 2a(ϕ − b/2a).
Now, with the purpose of decouple these equations, it is neces-

sary to substitute the Eq. (25) into (26) and vice versa, which leads 
to the corresponding second order differential equations:

�ψ1 + Sϕ(ϕ)

S(ϕ)
[(∂tϕ + ∂xϕ)(−∂tψ1 + ∂xψ1)] + S2(ϕ)ψ1 = 0,

(27)

�ψ2 − Sϕ(ϕ)

S(ϕ)
[(∂tϕ − ∂xϕ)(∂tψ2 + ∂xψ2)] + S2(ϕ)ψ2 = 0.

(28)
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As we are interested in obtaining the supersymmetric oscillons, 
it is natural to apply the scales transformation in x and t intro-
duced in Eq. (10). Thus, the above equations can be rewritten in 
the form

ω2∂2
τ ψ1 − ε2∂2

yψ1 + Sϕ

S

[
(ω∂τϕ + ε∂yϕ)(−ω∂τ ψ1 + ε∂yψ1)

]
+ S2(ϕ)ψ1 = 0, (29)

ω2∂2
τ ψ2 − ε2∂2

yψ2 − Sϕ

S

[
(ω∂τϕ − ε∂yϕ)(ω∂τ ψ2 + ε∂yψ2)

]
+ S2(ϕ)ψ2 = 0. (30)

After that, let us use the small amplitude expansion for the 
fields ψ1 and ψ2. Here, we will assume that

ψ1(y, τ ) =
∞∑
j=1

ε jσ j(y, τ ), (31)

ψ2(y, τ ) =
∞∑
j=1

ε jρ j(y, τ ). (32)

By replacing the expansion given above into Eqs. (29) and (30), 
we obtain

ε(∂2
τ σ1 + b2σ1) + ε2

[
∂2
τ σ2 + b2σ2 − 4b2 cos(bτ ) sech(by)σ1√

3

−2b sech(by) sin(bτ )∂τ σ1√
3

]

+ ε3
[
∂2
τ σ3 + b2σ3 + 4

3
b2 cos2 (bτ ) sech2(by)σ1

−4b2 cos(bτ ) sech(by)σ2√
3

− 4

3
b cos (bτ ) sech2(by) sin(bτ )∂τ σ1

+ 2b cos(bτ ) sech(by) tanh(by)∂τ σ1√
3

− 2b sech(by) sin(bτ )∂τ σ2√
3

− ∂2
τ σ1

+2b sech(by) sin(bτ )∂yσ1√
3

− ∂2
yσ1

]
+ O (ε4) = 0, (33)

ε(∂2
τ ρ1 + b2

1ρ) + ε2
[
∂2
τ ρ2 + b2ρ2 − 4b2 cos(bτ ) sech(by)ρ1√

3

−2b sech(by) sin(bτ )∂τ ρ1√
3

]

+ ε3
[
∂2
τ ρ3 + b2

3ρ3 + 4

3
b2 cos2 (bτ ) sech2(by)ρ1

− 4b2 cos(bτ ) sech(by)ρ2√
3

− 4

3
b cos (bτ ) sech2(by) sin(bτ )∂τ ρ1

+ 2b cos(bτ ) sech(by) tanh(by)∂τ ρ1√
3

− 2b sech(by) sin(bτ )∂τ ρ2√
3

− ∂2
τ ρ1

−2b sech(by) sin(bτ )∂yρ1√
3

− ∂2
yρ1

]
+ O (ε4) = 0. (34)
The procedure of performing a small amplitude expansion 
shows that the fields ψ1- and ψ2-fields can be obtained from a 
set of fields which satisfy coupled non-linear differential equations. 
This set of differential equations is found by taking the terms in all 
orders of ε in the above equation. Thus, one can check that up to 
ε3 the above supposition leads to the following set of equations

∂2
τ σ1 + b2σ1 = 0, (35)

∂2
τ ρ1 + b2ρ1 = 0, (36)

∂2
τ σ2 + b2σ2 − 4b2 cos(bτ ) sech(by)σ1√

3

− 2b sech(by) sin(bτ )∂τ σ1√
3

= 0, (37)

∂2
τ ρ2 + b2ρ2 − 4b2 cos(bτ ) sech(by)ρ1√

3

− 2b sech(by) sin(bτ )∂τ ρ1√
3

= 0, (38)

∂2
τ σ3 + b2σ3 + 4

3
b2 cos2 (bτ ) sech2(by)σ1

− 4b2 cos(bτ ) sech(by)σ2√
3

− 4

3
b cos (bτ ) sech2(by) sin(bτ )∂τ σ1

+ 2b cos(bτ ) sech(by) tanh(by)∂τ σ1√
3

− 2b sech(by) sin(bτ )∂τ σ2√
3

− ∂2
τ σ1

+ 2b sech(by) sin(bτ )∂yσ1√
3

− ∂2
yσ1 = 0, (39)

∂2
τ ρ3 + b2

3ρ3 + 4

3
b2 cos2 (bτ ) sech2(by)ρ1

− 4b2 cos(bτ ) sech(by)ρ2√
3

− 4

3
b cos (bτ ) sech2(by) sin(bτ )∂τ ρ1

+ 2b cos(bτ ) sech(by) tanh(by)∂τ ρ1√
3

− 2b sech(by) sin(bτ )∂τ ρ2√
3

− ∂2
τ ρ1

− 2b sech(by) sin(bτ )∂yρ1√
3

− ∂2
yρ1 = 0. (40)

From now on, we shall solve these equations. For the sake of 
simplicity, let us propose a particular solution for the first two 
equations, namely,

σ1(y, τ ) = σ(y) cos(bτ ), (41)

ρ1(y, τ ) = ρ(y) sin(bτ ). (42)

Plugging the solutions (41) and (42) into Eqs. (37) and (38), we 
have

σ2(y, τ ) = −2σ(y) [−3 + cos(2bτ )] sech(by)

3
√

3
, (43)

ρ2(y, τ ) = −ρ(y)√ sech (by) sin(2bτ ). (44)

3
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Using the results (41)–(44), the Eqs. (39) and (40) can be 
rewritten as

∂2
τ σ3 + b2σ3 = −8b2σ(y) cos (bτ ) [−3 + cos(2bτ )] sech2(bx)

9

−b sech(by) sin(2bτ )σ ′(y)√
3

+ cos(bτ )σ ′′(y)σ (y) (45)

− 1

18
b2 cos(bτ ) sech2(by)

[
17 + 16 cos(2bτ ) + 9 cosh(2by)

− 12
√

3 sin(bτ ) sinh(by)
]
σ(y),

∂2
τ ρ3 + b2ρ3 = −b2ρ(y) sin(bτ )

−b2ρ(y) cos(2bτ ) sech2(by) sin(bτ )

−4

3
b2ρ(y) cos(bτ ) sech2(by) sin(2bτ ) (46)

− 2√
3

b2ρ(y) cos2(bτ ) sech(by) tanh(by) sin(bτ )

+ρ ′′(y) sin(bτ )

+ 2√
3

b2ρ ′(y) sech(by) sin2(bτ ).

We remember that our aim is to get configurations which are 
periodical in time. In this sense, it is necessary to impose that the 
contribution of the functions cos (bτ ) and sin (bτ ) in the right-
hand side of the above partial differential equations should be 
annulled. Therefore, we can obtain the functions σ(y) and ρ(y), 
which are given by

σ(y) = sech(by), ρ(y) = − sech(by). (47)

Then, using the solutions (43), (44), and (47), the fermionic sec-
tor can be written as

ψ(x, t) ∼
(

ε sech(bεx) cos(b
√

1 − ε2t)
−ε sech(bεx) sin(b

√
1 − ε2t)

)
. (48)

Hence, it was also possible to find oscillon-type configuration in 
the fermionic sector. This fermionic oscillon is the supersymmetric 
partner of the oscillon in the bosonic sector. It is worthy to high-
light that this fermionic solution is consistent with the idea of a 
supersymmetric multiplet. Indeed, by applying the transformation 
(4) as a perturbation on the initial configuration (oscillon, Eq. (22), 
and ψ = 0), one generates solutions with non-trivial fermionic sec-
tor, which at order-ε read as follows

ψ(x, t)

� ε
b2

a
√

3
sech(εbx)

(
ξ1 cos(b

√
1 − ε2t) + ξ2 sin(b

√
1 − ε2t)

ξ2 cos(b
√

1 − ε2t) − ξ1 sin(b
√

1 − ε2t)

)
.

(49)

In the particular case ξ2 = 0, we recover the result in Eq. (48)
(except for some factors in the amplitude). Here, we re-inforce 
that Eq. (49) shall be obtained as a solution to the field equa-
tions, if one considers a general solution with both sin(bτ )- and 
cos(bτ )-contributions in Eqs. (41) and (42).

The oscillon and oscillino solutions have the same functional 
behavior at order-ε , namely, spatial-localized and periodical-
time dependences, given by sech(εbx) and sin(b

√
1 − ε2t) or 

cos(b
√

1 − ε2t), respectively. However, if we do not restrict our-
selves to order-ε in the transformation (4), the contributions com-
ing from the non-linear part in ξ Vϕ and iγ μξ ∂μϕ will introduce 
higher powers in ε leading then to different behavior for the os-
cillino.

5. 

D 
am
pe
fer
tio
sam

the
os
on
fer
for
of 
tio
int
SU
is 
ho
fer

the
ah
tio
as 
sat
we
Ab
ma
tha

Ac

(FA
po
De
CN

Ap

sk
po
is 
us
tat

co
(C
sen
the
sat
Ma
the

co
giv
ram

tra

x′ μ
Concluding comments and further steps

In this work, we have shown that oscillon configurations in 
= 1 + 1 dimensions, which in this context are also dubbed small 
plitude oscillons, can be accommodated and suitably in a su-

rsymmetric framework. We have analyzed both the bosonic and 
mionic sectors and noticed that the oscillon and oscillino solu-
ns display similar features at the ε-order; by that, we mean the 

e oscillation frequency and functional behavior.
As we have already stated in the Introduction of our work, 
re are several reasons that support our proposal of investigating 

cillons in connection with SUSY. The main motivation is based 
 the fact that, if we wish to consider the interaction between 
mions and oscillons, SUSY provides a natural set-up. SUSY trans-
mations on oscillon configurations yield the fermionic partners 
the oscillons that lie in the same multiplet. The fermionic excita-
ns induced as SUSY perturbations on the oscillons propagate and 
eract with the latter. In turn, the condensates of the (fermionic) 
SY partners directly affect the oscillons’ propagation, so that, it 
an interesting issue, for a forthcoming contribution, to compute 
w the oscillon stability changes by virtue of the presence of the 
mionic excitations.
On the other hand, by taking the viewpoint that fermions are 
 most elementary matter excitations in Nature, we intend to go 

ead in our endeavor to search for possible quasi-particle excita-
ns in low-dimensional charged systems that we might identify 
oscillino-like (if the modes are fermionic) or as oscillino conden-
es, in the case of bosonic modes. For that, it is mandatory that 
 focus on the study of charged oscillons in the framework of an 
elian gauge model to, afterwards, embed the system of charged 
tter-gauge bosons in a SUSY context. We shall be reporting on 
t elsewhere in a forthcoming contribution.
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pendix A. Conventions and superspace formulation

Initially, let us fix our conventions. In two-dimensional Minkow-
i space-time, we adopt the metric ημν = diag(+1, −1). One 
ssible choice to satisfy the Clifford algebra, 

{
γ μ,γ ν

} = 2ημν , 
given by γ 0 = σy and γ 1 = iσx , where σx and σy denote the 
ual Pauli matrices. This choice is known as Majorana represen-
ion of the gamma matrices.
In order to define a Majorana spinor, we introduce the charge 

njugation matrix, C , which is antisymmetric (Ct = −C), unitary 
† = C−1) and satisfies Cγ μ t C−1 = −γ μ . In the Majorana repre-
tation, we have C = −γ 0. The charge conjugation operation is 
n defined by ψc ≡ C ψ̄ t , where ψ̄ = ψ†γ 0. A Majorana spinor 
isfies the constraint condition ψc = ψ and, particularly, in the 
jorana representation, we obtain that ψc = ψ ⇒ ψ∗ = ψ , i.e., 
 spinor has real components.
In what follows, we present the Superspace Formulation. We 

nsider the Supersymmetry N = 1 in which the superspace is 
en by the coordinates (xμ, θ), where θ is a Majorana spinor pa-
eter.

We implement the superspace coordinate transformation as a 
nslation, namely,

= xμ + i ξ̄γ μθ , (A.1)
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θ ′
α = θα + ξα , (A.2)

where α = 1, 2 and ξ is also a Majorana spinor parameter.
The simplest superfield, including two real scalar fields (ϕ, F )

and a Majorana spinor field (ψ), is given by

�(x, θ) = ϕ(x) + θ̄ ψ(x) + θ̄ θ F (x) . (A.3)

With the aforementioned transformations, Eqs. (A.1) and (A.2), 
one may obtain the supersymmetric charge operator Q , by consid-
ering the variation

δ� ≡ �(x′, θ ′) − �(x, θ) = ξ̄ Q �(x, θ) , (A.4)

which reads

Q α = −Cαβ

∂

∂θβ

+ i
(
γ μθ

)
α

∂

∂xμ
. (A.5)

By comparing Eq. (A.4) with δ� = δϕ + θ̄ δψ + θ̄ θ δF , one may 
conclude that

δϕ = ξ̄ψ , (A.6)

δψ = −i γ μξ ∂μϕ + 2 F ξ , (A.7)

δF = ∂μ

(
− i

2
ξ̄γ μψ

)
. (A.8)

Having established the supercharge and transformations, we in-
troduce the supersymmetric covariant derivative,

Dα = −Cαβ

∂

∂θβ

− i
(
γ μθ

)
α

∂

∂xμ
, (A.9)

which satisfies 
{

Dα, Q β

} = 0.
We propose the following action in terms of the superfield and 

covariant derivative,

S =
∫

d2x d2θ

[
−1

4
D̄� D� + V (�)

]
, (A.10)

where 
∫

d2θ ≡ i 
∫

dθ2dθ1 and V (�) denotes the superpotential, 
namely, an arbitrary function of the superfield �.

After using some Fierz rearrangements, such as θ̄ψ θ̄ψ =
− 1

2 θ̄ θ ψ̄ψ , and carrying out the Grassmann integral, one can ob-
tain the off-shell Lagrangian density

Loff-shell = 1

2
(∂μϕ)2 + i

2
ψ̄γ μ∂μψ + 2F 2 + 2F Vϕ − ψ̄ψ

2
Vϕϕ .

(A.11)

Finally, we notice that F is an auxiliary field. Then, we work 
out its equation of motion and conclude that

δLoff-shell

δF
= 0 ⇒ F = − Vϕ

2
. (A.12)

Hence, if we substitute this constraint in Eqs. (A.11) and 
(A.6)–(A.7), we arrive at the on-shell Lagrangian density (1) and 
the supersymmetry transformations (3)–(4), respectively.
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