
Defining a trend for time series using the intrinsic
time-scale decomposition

Juan M Restrepo1,2,3, Shankar Venkataramani1,2, Darin Comeau2 and
Hermann Flaschka1,2
1Mathematics Department, University of Arizona, Tucson, AZ 85716, USA
2 Program of Applied Mathematics, University of Arizona, Tucson, AZ 85716, USA
3 Physics Department, University of Arizona, Tucson, AZ 85716, USA
E-mail: restrepo@math.arizona.edu

Received 22 October 2013, revised 14 April 2014
Accepted for publication 3 June 2014
Published 14 August 2014

New Journal of Physics 16 (2014) 085004

doi:10.1088/1367-2630/16/8/085004

Abstract
We propose criteria that define a trend for time series with inherent multi-scale
features. We call this trend the tendency of a time series. The tendency is defined
empirically by a set of criteria and captures the large-scale temporal variability of
the original signal as well as the most frequent events in its histogram. Among
other properties, the tendency has a variance no larger than that of the original
signal; the histogram of the difference between the original signal and the ten-
dency is as symmetric as possible; and with reduced complexity, the tendency
captures essential features of the signal. To find the tendency we first use the
intrinsic time-scale decomposition (ITD) of the signal, introduced in 2007 by
Frei and Osorio, to produce a set of candidate tendencies. We then apply the
criteria to each of the candidates to single out the one that best agrees with them.
While the criteria for the tendency are independent of the signal decomposition
scheme, it is found that the ITD is a simple and stable methodology, well suited
for multi-scale signals. The ITD is a relatively new decomposition and little is
known about its outcomes. In this study we take the first steps towards a
probabilistic model of the ITD analysis of random time series. This analysis
yields details concerning the universality and scaling properties of the compo-
nents of the decomposition.
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1. Introduction

Finding the trend of a time series is a fundamental analytical task. To varying degrees, the
definition of the term ‘trend’ is dependent on the methodology used to compute it. Some
trending strategies are optimal and thus very attractive because the optimality criteria provide
mathematical constraints with which to interpret the time series trend. Not all optimal trends
deliver useful trends. An example of a non-optimal trend is the Hodrick–Prescott filter (see
Hodrick and Prescott 1997), which is widely used in econometrics. This paper proposes a new
empirically-defined trend for an inherently multi-scale, finite time series.

In an econometric context, the trend is often used to capture the longer time scale structure
of the markets, by filtering out high frequency events that might be more relevant to shorter time
scale changes. It is used this way in the physical sciences as well. Our interest in this topic was
motivated by the problem of trend determination in a geoscience context, where, in addition to
the removal of biases, one is often confronted with the necessity of analysing signals with the
aim of recovering structural aspects of the signal that can be captured or explained by physical
models.

Geoscience problems often involve multi-physics and other sources of complexity which
manifest themselves in a time series with a rich variety of time scales. There is no rigorous
definition of ‘multi-scale’ signals, but in the physical modeling community the adjective is
applied to signals that are the result of the coupling of inherent degrees of freedom (sometimes
given by spectral components). Furthermore, it is frequently the case in geoscience that the time
series to be analysed is short, of length much shorter than the number of degrees of freedom of
the system that generated the series; sometimes too short to be amenable to law-of-large
numbers statistics.

The procedure we propose to find the tendency is a two-stage process: we first decompose
the signal in a series of time series of progressively lower complexity, and then we apply a set
of criteria to these and single out the decomposition mode that best satisfies the criteria. This
mode is declared to be the tendency of the signal.

While we employ the intrinsic time decomposition (ITD) of Frei and Osorio (2007), the
strategy could be applied to other algorithms, such as the emprical mode decomposition (EMD)
(Huang et al 1998, Wu and Huang 2009, Wu et al 2007). In fact, a similar procedure has been
proposed in connection with EMD (see Moghtaderi et al (2011, 2013)): the EMD modes are
calculated, and a time series representing the trend is built according to certain prescriptions.

Most everything that is known to date about the ITD will be reviewed in section 2; the
algorithm that performs the decomposition appears in the appendix. In section 2 we summarize
results of computer experiments on random signals that suggest certain probabilistic and scaling
features in the ITD decomposition. In section 3 we initiate a mathematical analysis of these
numerical results. This analysis might be applicable to the EMD its variants, such as those
proposed by Hou and Shi (2011) and Oberlin et al (2012). We also use computer experiments to
draw attention to the influence of boundary conditions on the outcomes, focusing only on the
ITD. Boundary effects are seldom highlighted in the EMD and ITD papers, but we find that for
some signals, the boundary conditions can have a significant effect on the outcomes and thus on
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the construction of the tendency from the components of the decomposition. This discussion
appears in section 4.

Section 5 introduces the criteria that are used to pick the ITD mode that is declared to be
the tendency. The criteria are empirically-based notions of signal information whose
implementation is discussed in section 6. In that section, we illustrate the application of the
two-step process for finding the tendency on deterministic and random signals as well as on real
geophysical signals. In the latter group, we will feature an analysis of the post-industrial
temperature record in Moscow (available from NASA/GISS (2013)). Rahmstorf and Coumou
(see Rahmstorf and Coumou (2011)) set out to determine whether the extreme Moscow summer
temperatures of 2010 were outlier samples of climate or the result of an ever warming Earth.
Their analysis of extreme events depends on the proper determination of a sensible long-time
trend, or ‘climate’. In section 7 we summarize the outcomes of the analysis and the outcomes of
the tendency calculations, and take the opportunity to compare, in general terms, the ITD
tendency and the EMD trend.

2. The ITD

The ITD is a purely algorithmic, non-lossy iterative decomposition of a time series =Y i{ ( ) }i
N

1.

At the first stage, the signal is decomposed into a proper rotation R i( )1 , an oscillating mode in
which maxima and minima are positive and negative, respectively, and a residual B i( )1 called
baseline.

The baseline B1 is now decomposed in the same fashion, producing a proper rotation R2

and a baseline B2, and so on. The process stops when the resulting baseline has only two
extrema, or is a constant.

If there are D steps altogether, the decomposition has the form

∑= = + =
=

B i Y i B i R i i N( ) : ( ) ( ) ( ), 1 ,..., . (1)D

j

D
j0

1

Rotations and baselines satisfy the relation

= + = =+ +B i B i R i i N j D( ) ( ) ( ), 1 ,..., ; 0 ,..., . (2)j j j1 1

Parenthetically, we note that in the algorithm as described in Frei and Osorio (2007) there
is one, and only one, adjustable parameter denoted by α, which has been set to α = 1/2 in ouer
study.

In general, the rotation signal at the jth level will be ‘noisier’ than the rotation signal at
+j( 1) th. The proper rotations are not orthogonal; moreover, the decomposition is not linear, in

the sense that a decomposition of the sum of time series is not equal to the sum of the
decompositions of each of the signals.

Let τ{ }k
j , =k K1, 2 ,.., be the times at which the extrema of B i( )j occur. (In the event that

there are several successive data points with the same extremal value, we take τk
j to correspond

to the time of the rightmost of these extremal values). The baseline +B i( )j 1 is constructed by a

piecewise linear formula: in the interval τ τ∈ +
⎤⎦(i ,k

j
k
j

1 , between successive extrema,
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−
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−+ + +
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+

( )
( ) ( )B i B
B B

B B
B i B( ) ( ) , (3)j

k
j k

j
k
j

k
j

k
j

j
k
j1 1 1

1 1

1

where the knots are τ=B B: ( )k
j j

k . The formula that generates the knots is

τ
τ τ

τ τ
= = +

−

−
− ++ + −

−

+ −
+ −

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

( )
( ) ( )B B B B B B: ( )

1
2

1
2

. (4)k
j j

k k
j k

j
k
j

k
j

k
j k

j
k
j

k
j

1 1 1

1

1 1

1 1

The construction guarantees that the residual function

= − =+ +R i B i B i i N( ) ( ) ( ), 1, 2 ,..., , (5)j j j1 1

is monotonic between adjacent extrema. Figures illustrating the construction may be found in
Frei and Osorio (2007).

One must also decide on a boundary condition at the two ends. The effects of different
choices will be discussed in section 4. We shall interpret the end points as extrema, and take the
corresponding baseline knots to be averages of the first and last pair of extrema, =B B (1)j j

1 ,

and =B B N( )
K
j j

j :

= + = ++ +
−( ) ( )B B B B B B

1
2

and
1
2

. (6)j j j
K
j

K
j

K1
1

2 1
1

j j j1

These will be called free boundary conditions.
The decomposition ends when j = D, which is when a proper rotation cannot be

constructed from this last baseline. Baseline B i( )D will only have two knots: =Bk
D

1,2, the two end
points.

We now state a few important properties of the ITD decomposition, largely following Frei
and Osorio (2007).

(i) The baselines given in (3) can be rewritten as a convex combination; viz.,
= − + =+

+
−
−+

( )B i s i B s i B s i( ) 1 ( ) ( ) , ( ) ,j
k
j

k
j

k
j

k
j

k
j B i B

B B

1
1

( )j
k
j

k
j

k
j

1
where ∈s i( ) [0, 1]k

j , and
=j D0, 1 ,.., .

(ii) The knots, (3), at level +j 1 can also be written as

τ τ τ
τ τ

= + +
+ −

+
−+ + −

+ −
+ −( )B B B B B

1
2

1
2

2
, (7)k

j
k
j

k
j k

j
k
j

j
j

k
j

k
j k

j
k
j1 1 1

1 1
1 1

where the overline indicates average of nearest neighbors.

(iii) The ITD decomposition is ambiguous with regard to handling the end points of a finite
time series, and thus, different end conditions can generate different ITD decompositions,
see section 4.

(iv) The baseline extraction step can be thought of as a nonlinear operator , homogeneous
with respect to independent rescaling of the abscissa and also the ordinate: =+ B Bj j1 and

= −+ R B(1 )j j1 .

(v) The B j and R j are monotonic between successive extrema, since they are obtained, in
succession, through linear transformations.
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(vi) It follows from the above property, that the ℓ2-norm of B j is similar (to within a constant) to
the ℓ2-norm of an approximation of the same signal, built by connecting extrema with
piece-wise linear segments.

(vii) The extrema of B j are inflection points or extrema of +B j 1.

(viii) Between extrema of B j, +B j 1 has the same smoothness as B j.

(ix) At extrema of B j, +B j 1 will be continuous and differentiable, but not always twice
differentiable.

(x) +R i( )j 1 will have extrema at the same locations as B i( )j .

2.1. Random signals

We want to understand some basic features of the ITD before we try to extract the tendency of a
realistic signal. Since we use the ITD to strip random noise from a time series, it is appropriate
to begin by applying the method to purely random signals, and furthermore, since the ITD
extracts the rotation components in order of increasing wavelength, we start with a random
series in which every point is a local extremum. As already mentioned above, we study the
scaling properties of the wavelengths of the baseline B j, numerically in this section, and
analytically in the next.

Our time series has the form

= − =Z i z i N( ) ( 1) , 1, 2 ,..., . (8)i
i

The random variables zi are drawn from a normal σ ( )0, 2 . Definition (4) for the baseline at the

initial step becomes

= + + = …− +( )B Z Z Z k N
1
4

2 , 1, 2, , .k k k k
1

1 1

The corresponding proper rotation is

= − = − − +− +( )R Z B Z Z Z
1
2

2 .k k k k k k
1 1

1 1

By periodizing and taking N even data points, the ratio of the discrete Fourier transform of this
B1 to Z yields

ω
ˆ
ˆ = +B

Z

1
2

(1 cos ), (9)
1

where ω πν= N2 / , and ν⩽ ⩽ N0 /2, the integer frequency. Similarly, the ratio of the
transform of R1 and Z gives

ω
ˆ
ˆ = −

ˆ
ˆ = −R

Z

B

Z
1

1
2

(1 cos ). (10)
1

One sees that B1 and R1 are obtained by convolving the signal Z with a low-pass, resp.
high-pass, filter. If Z were a discrete sinusoid with a highest frequency of N /2, R would be an
exact copy of Z, while B would be zero, and there would be no further decompositions.
Generally, however, the averaging operator (2.1) will tend to smooth features that appeared in
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the original signal, and thus, the resulting baseline will generally have a different distribution of
extrema than the original signal, see section 3. Parenthetically we note that the Hodrik–Prescott
filter (see Hodrick and Prescott 1997), used in econometrics to find the large-scale trend of
financial data, produces a trend H with a transfer function

λ ω
λ ω

ˆ
ˆ = −

+ −
H

Z

4 (1 cos )

1 4 (1 cos )
,

2

2

where Ĥ is the Fourier transform of the filter output, and λ is a free parameter. This filter is a
windowed low pass filter, capable of handling data from a non-stationary process, however, it is
hard to make sense of its outcome if the time series is not at least I (2) (non-stationary and must
be differenced twice to obtain stationarity).

Figure 1 illustrates a typical ITD decomposition of a noisy signal; figures 2, 3, and 4 depict
empirical scaling properties that will be studied quantitatively in section 3. panel 2(a) shows the
spectum of the energy of (8). Panels 2(b) and (c) show the normalized enegy spectrum of B and

Figure 1. (a) Signal Z, as in (8), with N = 128 and zi from  (0, 4); (b), (c), (d) are the
first three baselines, and (a’)–(d’) the corresponding rotations.
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R, respectively. We can see how the energy is shared between baseline and rotation: the ratio
∥ ∥ ∥ ∥B Z/2 2 is about 0.37, and the ratio of∥ ∥ ∥ ∥R Z/2 2 is about 1.77. (Subscript 2 denotes the

ℓ2 norm.)
Next, we estimate the rate at which the wavelength of the baselines in our all-extrema

signal increases as the high-frequency components R j are removed. We measure this by
computing the ratio of the spacings between extrema from one stage to the next, averaged over
an ensemble of decompositions of random all-extrema signals of the same length and statistical
distribution. Experiments of this kind were done for the EMD in Wu and Huang (2004),
Flandrin and Goncalves (2004); because of the very regular scaling behavior, the EMD could be

10−4

10−3

10−2

10−1

100

101

102

10−4

10−3

10−2

10−1

100

101

102

10−4

10−3
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100
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100 200 300 400 500
frequency

100 200 300 400 500
frequency
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Figure 2. (a) Energy spectrum of Z, as in (8), normalized to∥ ∥ =Z 12 . N = 1024, and zi

drawn from (0, 4). Normalized spectra of resulting B1 and R1 are in panels (b) and (c),
respectively. Note that the original signal has most of its energy concentrated in the
highest frequency, 512.

Figure 3. Ensemble average of the ITD of Z as per (8), with zi drawn from a normal,

with variance σ = 42 , as function of j. Mean values at each j of 50 000 realizations of Z
and their analyses. The length of the signals was =N 16, 64, 128, 512, 1024. (a) The
log2 of the mean number of extrema, of the baselines, normalized to N; (b)

∥ ∥ ∥ ∥( )B Zlog mean /meanj
2 2 2 . The total number of j levels in the ITD decomposi-

tion of random signals is of order Nlog .
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interpreted as a filter bank. We found that the ITD has similar scaling universality, and offer a
partial analytical explanation in the next section.

The slopes of the lines in panels 3(a) and (b) and the data in table 1 show that the spacing
of the extrema of the B j increases by a factor 2.6, and the number of extrema drops by a factor
0.4, as j increases. The energy ratio ∥ ∥ ∥ ∥B Z/j

2 2 drops by about 0.4 for j = 1, and by about

Figure 4. For an =N 216 random normally-distributed time series, with variance σ = 42 , as
a function of j: (a) log2 of the mean number of extrema, normalized to N; (b) log

2
of the

mean distance between the extrema of the baselines; (c) ∥ ∥ ∥ ∥( )B Zlog mean /meanj
2 2 2 ;

(d) ∥ ∥ ∥ ∥( )R Zlog mean /meanj
2 2 2 .

Table 1. Analysis of the average of the first six levels of an ITD decomposition of all-
extrema signals, length N = 512, with zi drawn from  (0, 4). See figure 3. Average

results from 50 000 experiments (with =B Z0 of the same length and statistical dis-
tribution). NE denotes the average number of extrema, normalized to N. DE refers to the
average distance between extrema. In the last column, subscript 2 denotes the ℓ2 norm.

j NE DE NE ×DE ∥ ∥Bmean j
2/ ∥ ∥Bmean 0

2

0 1.000 1.00 1.000 1.00
1 0.422 2.38 1.00 0.37
2 0.166 6.10 1.01 0.21
3 0.065 15.9 1.04 0.14
4 0.026 42.0 1.1 0.09
5 0.017 112 1.3 0.06
6 0.006 290 1.8 0.04
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0.63 for >j 1. As would be expected, the number D of levels required for a full decomposition
increases with N. Table 1 summarizes the data for the N = 512 case in figure 3, up to level j = 6.
The trends shown in the table and the figures were very stable to changes in the variance of the
original signal changes in the outcomes of the order of tenths of a percent for a range of
variances between 1 and 20. We also tested an all-extrema time series with the zi drawn from a
uniform distribution, and found that the scaling factors are close to those of the normal case
reported above.

A decomposition of a signal that consists of 216 normal variates drawn from  (0, 4)
(discrete white noise) yields the results portrayed in figure 4.

There were 13 baselines (approximately log 2
2

16). From the slopes of the lines in panels

4(a) and (c) and the corresponding data (not shown) we estimate that the number of extrema
again drops by the factor 0.4, the distance between extrema increases by the factor 2.55, and the
normalized ℓ2 of the baselines decreases by about 0.61. The analytical model developed in
section 3 yields a value of 0.55. The scaling pattern deteriorates as the baselines and rotations
flatten.

3. ITD of random signals: universality

In this section, we will attempt to understand the scaling laws from the section 2.1 that were
obtained numerically for ITD applied to random signals. We first propose a surrogate model for
the baselines of a random ITD signal using the scaling/translation symmetries of the ITD
process and intuition gained from numerical experiments. We then validate the surrogate model
by comparing predictions of the surrogate model with the ITD of random Gaussian signals. This
comparison also suggests ways to improve the surrogate model. Finally, we analyze one step of
the ITD process applied to the surrogate baselines, and this analysis helps explain the observed
self-similarity of the ITD baselines for random signals, and also provides estimates for the
decay rates for the L2 norm and the number of extrema in the baselines.

3.1. Surrogate model for the baselines

Associated with the ITD at level j, we define the set τ τ τ= …{ }S , , ,j j j
m
j

1 2 j of cardinality

= | |m Sj j , the location of the extrema in B j, and the vector ∈b j m j

, the values of the baseline
B j at the extrema. We denote by  the operator that extracts the locations and values of the

extrema of an arbitrary time series, so in particular, =⎡⎣ ⎤⎦ { }B S b,j j j .  is a nonlinear but

homogeneous operator i.e. =⎡⎣ ⎤⎦ { }cB S cb,j j j for any constant ≠c 0.

To determine + +{ }S b,j j1 1 we do not need to know the entire baseline B j; it suffices to

know{ }S b,j j (see equation (4)). The ITD procedure therefore gives a reduced dynamics on the

pairs =  ( ){ }S b B,j j j . The operator  is not one-to-one, and hence not invertible. In order to

compare the reduced dynamics on { }S b,j j with the ‘full’ ITD baselines B j, we define a

surrogate baseline B̃
j
by ˜ = ∑ =B b e

j

k

m
k
j

k
j

1

j

where ek
j is a piecewise linear function (time-series)
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which is 1 at location Sk
j and 0 on every other Sℓ

j. Then ˜ = = ( ) ( ) ( )B B S b,
j j j j and since B j

and B̃
j
are both monotone between their (common) extrema, we expect B̃

j
to be a good

approximation to B j. The surrogate baseline is a ’rough’ analog of the intrinsic mode functions
(IMFs) in the EMD method; in that construction, the modes arise from cubic spline
interpolations of the maxima and minima in the signal (Huang et al 1998).

Certain extrema in S j
‘disappear’ in +S j 1, so that the extrema at level +j 1 satisfy

⊆+S Sj j1 . There are two types of processes which decrease the number of extrema. These are
illustrated in figure 5. In the top panel, neighboring extrema flip their relative positions; in
dynamical systems language, this is a saddle-node bifurcation. In the bottom panel an extremum
changes type and its two neighbors disappear; this is a pitchfork bifurcation. We ran the ITD
process with 216 initial points and computed the frequencies of occurrence of the two bifurcation
types. After an initial transient (corresponding to j = 1 and 2) the saddle-node bifurcation occurs
with probability γ ≈ 0.58, and the pitchfork bifurcation with probability β ≈ 0.21, and these
probabilities are independent of the level j. Also, γ β β− − ≈ ≈(1 ) 0.21 , which corresponds to
the probability of no (local) change in the nature of the extremum. This gives the (a priori
unexpected) conclusion that every local maximum at level j remains a maximum or becomes a
local minimum with roughly equal probabilities β at level +j 1. Further, these probabilities are
independent of j.

Our numerical experiments suggest that after a few iterations, usually one or two, the
extrema disappear independently of their neighbors. At that stage, the sets S j evolve by an
independent random decimation process, so the ‘lifetime’ for any given point ∈x S1 as an
extremum, i.e, the maximal j such that ∈x S j, has a geometric distribution with parameter γ
(the probability of losing an extremum via the pitchfork bifurcation). The probability that the
lifetime equals j is γ γ− −(1 ) j 1 .

The initial distribution of the inter-extremal spacings is given by the chosen initial
conditions. e.g., the distribution is concentrated at l = 1 for the all-extremum signal Z(i) in (8).

Figure 5. The dark circles represent extrema, and the light squares are points which go
from being extrema at level j to not being extrema at level +j 1.
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Evolution by independent random decimation at each extremum implies that each site at level j
the inter-extremal spacings lk are a sum of a random number nk

j of ‘initial’ separations, where nk
j

is drawn from a geometric distribution. After an initial transient, ≫n 1k
j , so the law of large

numbers will imply that ≈ ⎡⎣ ⎤⎦l n E lk k
j

k
0 were ⎡⎣ ⎤⎦E lk

0 is the average spacing between extrema in

the initial condition. Consequently, lk is approximately geometrically distributed with a j-
dependent mean denoted by λk. This agrees qualitatively with numerical simulations of the ITD
with random gaussian initial conditions, as shown in figure 6. Numerical experiments also
suggest that the initial transient is short, typically j = 1 or 2 ITD steps.

The ITD algorithm equation (4) which computes the extrema at level +j 1 can be written

as = ++ + ⎡⎣ ⎤⎦{ } ( )S b I M b, ,j j j j1 1 where I is the identity matrix and M j is a matrix whose rows

sum to zero; when we are only interested in baseline extraction, we omit the symbol +S j 1.

+( )I M j is thus a stochastic matrix, and the entries of M j are determined by S j via (4). In

particular, for any vector b, if =v M bj , then

= − + + −− + + −( ) ( )v b b b
q

b b
1
4

2
4

, (11)k k k k
k

j

k k1 1 1 1

where ∈ −q ( 1, 1)
k
j is given by

τ τ τ τ

τ τ τ τ
τ τ τ

τ τ
=

− − −

− + −
=

− −
−

− +

− +

− +

+ −

( ) ( )
( ) ( )

q
2

. (12)
k

j k
j

k
j

k
j

k
j

k
j

k
j

k
j

k
j

k
j

k
j

k
j

k
j

k
j

1 1

1 1

1 1

1 1

(See equation (7).) The parameter q
k
j measures the asymmetry in the distances of the knot τk

j

from the neighboring extrema. If the vector b is obtained by sampling a smooth function B(x),

then M bj can be interpreted as sampling ″ + ′B x q x B x( ) ( ) ( ).j1

4

1

2
We can thus interpret

+( )I M bj j as the numerical solution at one time step of the forward-time, center-difference

approximation to the solution to

Figure 6. A graphical representation of the sets S j for six levels of an ITD starting with
a random time series consisting of 512 normal variates.
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∂
∂

= ∂
∂

+ ∂
∂

= ∂
∂

∂
∂

⎡
⎣⎢

⎤
⎦⎥t

B
x

B q x
x

B
w x x

w x
B

x

1
4

1
2

( )
1

4 ( )
( ) ,j

j
j

2

2

where ∫= ⎡⎣ ⎤⎦w x q t t( ) exp 2 ( ) dj x j

0
.

In what follows, we will be assuming periodic boundary conditions, so there are as many
local minima as maxima, and the cardinality of S j is always even. If the underlying time signal
is mean zero and stationary, then the expected value of a maximum is the negative of the
expected value of a minimum. We now make two approximations to obtain a form for bk

j. First,
we assume that each maximum or minimum is a random Gaussian perturbation of the
expectation. Second, we postulate that the values of the maxima and minima are independent
random variables (for a test of this assumption, see below, and figure 7(b)). It now follows that

μ α≈ − +b n( 1)k
j j k j

k

where μ j is the mean value of the maxima (or the negative of the minima) in B j, the nk are

independent normal variates and αj
2 is the variance of the maxima (or also the minima). The fact

that αj only depends on j and not on τk
j is a consequence of the underlying random process being

stationary.
We can test this ansatz numerically by computing the auto-correlation

μ α δ= = − ++
⎡⎣ ⎤⎦ ( ) ( )R l E b b( ) : ( 1)j

k
j

k l
j j l j

l

2 2
where δ is the Kronecker delta. Figure 7(a) depicts

the average over 100 runs of the normalized autocorrelation R l R( )/ (0) for lags ⩽ ⩽l0 31 for
the first 6 levels of the ITD (the six curves are superimposed). Note that the auto-correlation is
for the signal b j at level j which consists of only the extremal values (the signal sampled at τk

j

and then exhibited as a function of k), and not the full baseline B j. In each run, the initial time
series has 216 i.i.d normal variates. =R l R( )/ (0) 1 for l = 0 (zero lag) and otherwise
| | ⩽R l R( )/ (0) 1. As one would expect, there is a high frequency oscillation in the auto-
correlation corresponding to the alternation between maxima and minima. We can remove this

oscillation by considering the absolute value of the autocorrelation α δ μ| | = +( ) ( )R l( ) .j
l

j2 2

The assumed ansatz for bk
j thus predicts that | |R l R( ) / (0) should be a constant, less than 1, for

all ≠l 0.

Figure 7. (a) The averaged auto-correlation at the first six levels of the ITD normalized
by the ℓ2-norm. (b) The absolute value of the averaged and normalized autocorrelation.
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Figure 7(b) shows | |R l R( )/ (0) for different levels j. After an initial transient, the
normalized correlations collapse on to a single universal curve for ⩾j 3. Further, this universal
curve is well described by a single, j independent, constant, except for persistent deviations at
l = 1 and l = 2. This implies there is a universal self-similar description of bk

j for large j, and
there is indeed a short range correlation between the extrema (nearest neighbor l = 1 and next
nearest neighbor l = 2). Our assumption, that μ α≈ − +b n( 1)k

j j k j
k where the nk are

independent, can likely be improved by accounting for this correlations between the values
of the extrema.

3.2. Analysis: universality and decay rates

Given this approximate description of the signal b j, we can now compute the signal +b j 1 and also the

surrogate baseline B̃
j
, and thus study the evolution of the baselines as a function of the index j

of the ITD. Since + − =I M( ) ( 1) 0j k , the mean periodic oscillation between the maxima and the
minima is in the null space of the matrix + M(1 )j . Therefore α+ = +M b M n(1 ) (1 )j j j j

k and

α= ++ b I M n( ( ) )j j j1 , where = nn k is a vector of independent normal variates. This motivates

the consideration of the signal + I M n( ( ) )j . If x x,1 2 and x3 are consecutive entries of the vector

+I M n( )j , we have

= ≈
− +

− +
− +

≡
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where n n n n, , ,1 2 3 4 and n5 are independent normal variates and q
k
is defined in (12). For every

given realization of q q,
1 2

and q
3
, the entries x x,1 2 and x3 are jointly Gaussian with mean zero

and covariance

Σ = =

+ + − + −

+ − + + −

+ − + − +

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )
( ) ( )

( ) ( )
q q q AA

q q q q q

q q q q q

q q q q q

, ,
1

16

6 2 4 2 2 1 1

4 2 2 6 2 4 2 2

1 1 4 2 2 6 2

.T

1 2 3

1
2

1 2 1 3

1 2 2
2

2 3

1 3 2 3 3
2

The conditional joint density of x x,1 2 and x3 is given by

π Σ
Σ= −

−⎡
⎣⎢

⎤
⎦⎥( )

( )( )
( )p x x x q q q

q q q
q q qx x, , , ,

1

8 Det , ,
exp

1
2

, , . (13)T
1 2 3 1 2 3

3
1 2 3

1 2 3

1

To proceed further, we now compute the joint density of q q,
1 2

and q
3
. For this we need the

distribution of the inter-extremal separations τ τ= −+lk k k1 . A typical realization of the sets

τ τ= …{ }S , ,j j j
1 2 is shown in figure 6. As we argued earlier, at every level j the inter-extremal

separations lk have a geometric distribution, with a parameter that depends on j. If the number of

nodes is large, then we can ignore the discrete nature of the underlying sets S j and consider
instead the exponential distribution which is the continuous analog of the discrete distribution.

13

New J. Phys. 16 (2014) 085004 J M Restrepo et al



The probability density of the inter-extremal separation is then given by

λ λ= −( )p l l( ) 1/ exp /j j j where λ j is the mean inter-extremal spacing at ITD level j (see

figure 6).
The variables q j

1
and q j

2
are defined by ratios of l l,1 2 and l3 in equation (12), so their

distribution does not depend on the parameter λ defining the mean of the exponential
distribution. Alternatively, we are free to pick our unit for length for l l,1 2 and l3 as the mean of
the exponential distribution for lk, and this does not affect q

k
which are non-dimensional.

Without loss of generality, we can thus assume the mean inter-extremal spacing is 1. The

probability = > <( )( ) ( )P y z q y q z( , ) Prob and
1 2

is the probability of the event > +
−l ly

y1
1

1 2

and > −
+l lz

z3
1

1 2,

∫ ∫ ∫= = − +
− + +

∞

−
+

∞

+
−

∞
− + +P y z l l l e

y z

y z yz
( , ) d d d

(1 ) (1 )

3
.( )

z
z

l
y
y

l

l l l

0
2 1

1

3 1
1

1
2 2

1 2 3

The joint density of q
1
and q

2
is given by

ρ = − ∂
∂ ∂

=
− +

− + += =

( ) ( ) ( )
( )

q q
y z

P y z
q q

q q q q
, ( , )

8 1 1

3
.

y q z q

1 2

2

,

1 2

1 2 1 2

3

1 2

We can also compute the marginal distribution of q
2
by

> = − = +( )q z P z
z

Prob ( 1, )
1

2
,

2

showing that q
2
is uniformly distributed in −( 1, 1). This yields the conditional density

ρ = =
− +

− + +
( ) ( )

( )
q q z

q z

q z q z

16 1 (1 )

3
.

1 2

1

1 1

3

Equation (12) shows that there are no common intervals lk in the definition of q
3
and q

1
, and

by translation invariance, the joint distribution of q
2
and q

3
is identical in form to the computed

joint distribution of q
1
and q

2
. The joint density of q q,

1 2
and q

3
is therefore

ρ =
− + − +

− + + − + +
( ) ( ) ( ) ( ) ( )

( ) ( )
q q q

q q q q

q q q q q q q q
, ,

128 1 1 1 1

3 3
. (14)

1 2 3

1 2 2 3

1 2 1 2

3

2 3 2 3

3

The joint density for ( )x x x q q q, , , , ,1 2 3 1 2 3
is the product of the densities in equations (13)

and (14). An important observation is that the joint density is independent of the level j of the
ITD so we should expect self-similar behavior in the ITD decomposition of a random signal.

We will define an (approximate) marginal distribution on x x,1 2 and x3 by positing that this
distribution is still jointly Gaussian. We can compute the covariance of this distribution as
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∫ ∫ ∫Σ Σ ρ=

=
… …

…
… …
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⎛
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We now obtain the joint density of x x,1 2 and x3 by integration,

π Σ
Σ≈ − −⎡

⎣⎢
⎤
⎦⎥p x x x x x( , , )

1

8 Det ( )
exp

1
2

.T
1 2 3 3

1

The probability β that x2 is a local maximum is the probability of the event <x x1 2 and >x x2 3,
i.e.

∫ ∫ ∫β = ≈
−∞

∞ ∞

−∞
x x x p x x xd d d ( , , ) 0.24.

x

x

3 2 1 1 2 3
3

2

The probability that a given site is a local minimum is also β since

∫ ∫ ∫ ∫ ∫ ∫=
−∞

∞ ∞

−∞ −∞

∞

−∞

∞
x x x p x x x x x x p x x xd d d ( , , ) d d d ( , , )

x

x x

x
3 2 1 1 2 3 3 2 1 1 2 3

3

2 3

2

by the symmetry of p, thus explaining the observation that an extremum in ITD level +j 1 was
equally likely to be a maximum or a minimum independent of its type at level j. The decay rate
for the number of extrema is given by

β≈ ≈+m m m m2 , which implies that (0.48) , (15)j j j j1 0

which is in approximate agreement with the numerically determined decay rate of 0.4 for the
number of extrema is ITD for a random i.i.d Gaussian signal (figure 4).

We can also compute the mean and the variance of the distribution of the maxima of

+( )I M nj by the conditional expectations

∫ ∫ ∫μ
β

= > = =
−∞

∞ ∞

−∞

⎡⎣ ⎤⎦E x x x x x x x x p x x xmax ( , )
1

d d d ( , , ) 0.48
x

x

2 2 1 3 3 2 1 2 1 2 3
3

2

and

∫ ∫ ∫
α μ

β
μ

= > −

= −

=
−∞

∞ ∞

−∞

⎡⎣ ⎤⎦E x x x x

x x x x p x x x

max ( , )

1
d d d ( , , )

0.30
x

x

2
2
2

2 1 3
2

3 2 1 2
2

1 2 3
2
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2

From this, we obtain + =− ( )( ) ( )I M S bn ,j j j1 where μ α≈ − + ′ = ×b n( 1) 0.48j k

− + ′n( 1) 0.55 ,k where ′n is a vector of | |S j i.i.d normal variates. If B̃
j
is the piecewise linear

interpolating function defined by the extremal values bk
j on the set τ τ τ= …{ }S , , ,j j j

m
j

1 2 j
, then a

direct calculation shows that
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∑ ∑ ∑ μ α μ α˜ ≈ ˜ ≈ + = +
=

⎡⎣ ⎤⎦ ( )B E B l
L2

3 3
2 ,

i
i

j

i
i

j

k

m

k
2 2

1

2 2
2 2

j

where = ∑L lk is the total number of data points in the time series, and we are assuming that

| | = ≫S m 1j
j so we are justified in replacing the (random) sum by its expected value. The

second approximation is replacing the sum by the corresponding integral which is valid for

≫L 1. Observe that the ℓ2 norm of the surrogate baseline B̃
j
only depends on the two numbers

μ and α, and not on the set S j!.

Since + =− ( )( ) ( )I M S bn ,j j j1 and α + ′ = + + ( ) ( )( )I M S bn ,j j j1 1 , it immediately

follows that α∥ ˜ ∥ ∥ ˜ ∥ = =+
B B/ 0.55

j j1
. This also gives a decay rate for the ℓ2 norm equal to

α ≈ 0.55 in comparison to the numerically obtained figure of 0.61 (see figure 4). This estimate,
as well as the decay rate of the number of maxima in (15), both differ from the empirical
parameters by about 17%. We saw that extrema disappear through nearest neighbor
interactions, figure 5, and it is plausible that the nearest-neighbor correlations seen in figure 7
cause extrema to persist longer than is predicted when independence is postulated.

Finally, we observe that μ μ α+ ≈( )/ 0.452 2 2 in good agreement with | |R l R( ) / (0) for

≠l 0 in figure 7(b). We believe that this type of analysis can be extended to EMD and it is an
interesting question whether this will explain the observed self-similar behavior in EMD for
random signals (Wu and Huang 2004, Flandrin and Goncalves 2004).

4. End effects

The results of the ITD decomposition of a signal may depend strongly on the boundary
conditions. Consider the time series π= + =( )f t e a t t( ) 0.5 cos 10 , {0: 0.01: 2 },i

t
i i

i where
a = 10 or a = 50. Variation of the parameter a will cause significant changes in the baselines at
the right endpoint. Supposing the knot conditions are free at both ends, figure 8(a) shows the
time series (thin), for a = 50, as well as one of the baselines that will become the tendency
(thick), described in section 5 below. Now, we decrease a = 10. We note that the right-most
local extremum has moved away significantly from the end of the time interval. The tendency,
with both end knots free, is the thick line in figure 8(b). The dashed line, on the other hand, was
the result of a decomposition with the left end knot free, but the right one clamped:

=+B B N( )
K
j j1

j . The dashed-line tendency in this case is arguably more reasonable.
There are other end effects. We emphasize just one. As stated in the Introduction, the ITD

decomposition of a signal of specified length will not be necessarily the same as the same signal
with added points to the right, say. (This is also the case in the empirical mode decomposition
of (Huang et al 1998).) Hence, the outcomes of these methods are by no means unambiguous
when used for extrapolating or forecasting over a time range exceeding that of the time series.

5. The tendency

Most notions of trend for a time series come equipped with a methodology that in itself defines
the sense in which it captures a characteristic of the original signal. In order to distinguish our
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trend from other versions, we refer to our analysis as the process of computing the tendency

=T i{ ( ) }i
N

1 of the time series =Y i{ ( ) }i
N

1. The process of determining a tendency for a time series
amounts to applying a set of criteria that we define a tendency to have to a collection of time
series that are related to the original one. The tendency is thus independent of the manner used
to obtain the collection of time series. We use the ITD decomposition process to generate this
collection of time series. We use the ITD because it is adaptive, fast, robust, and because the
application of a mulitscale diffusion process as a filter captures the spirit of the modeling
enterprise, wherein one wants to find characteristics of the signal that are prominent and obtain
a complement that could be conceivably well captured by a simple stochastic parametrization.

The tendency, in some informal way, should capture some essential elements of a time
series: its inherent time scale structure and the most significant part of its histogram; the
tendency of a strictly monotonic series is the series itself; and the tendency of a series of
constant values is the series itself.

The multiscale structure of a signal can be ascertained qualitatively from the distribution of
the locations of its local extrema, and the importance of these local extrema to the total density,
estimated by the histogram. This is extracted from projections onto the time axis. The
distribution of the data is encoded in a histogram of the projection of the signal on the vertical
axis. Our two principal diagnostics extract certain quantitative information from these two
aspects of the decomposition.

5.1. Horizontal projection: the correlation cj

The measure that most critically determines the choice of the baseline to be the tendency is the
empirically determined correlation. We have found that the quantity

Figure 8. (a) The signal is = + ( )f t e t( ) 0.5 50 cos 10i
t

i
i ; the tendency is shown as thick

line. The ITD was computed with free boundary conditions at both ends; (b) the signal
is = + ( )f t e t( ) 0.5 10 cos 10i

t
i

i ; the tendency is shown as a thick line. It was computed
with free boundary conditions at both ends; for comparison, the first ITD baseline
computed using a free knot condition on the left, and a clamped knot condition on the
right, is shown as a dashed line. This mixed boundary condition is designed to capture
the end behavior.
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= − ˜
− ˜

˜ = − = −( )c
c

c
c Y Y B j d:

1

1
, where corr , , 1, 2 ,.., 1.j

j
j j

1

is convenient for graphical depiction of numerical results.
We think of the process of ITD iteration as extraction of the noise-like rotation

components to reveal the part of the signal that carries inherent information found in the signal.
When all this noise has been removed, the next baseline is declared to be the tendency. As can
be inferred from the analysis in section 3, the correlation between the signal and the first
rotations should be low, and the correlation between the first baselines and the signal, high.
Further iterations break up the meaningful component artificially, and those baselines and
rotations should be more correlated. Indeed one can see in figure 11, which is typical in this
respect, that both B j and R j become flatter, and are therefore correlated for a trivial reason. In
our experience, there is a noticeable downward jump of the parameter c j at a certain j, and after
that, not much of a pattern. The tendency is the a baseline that is still highly correlated with the
signal, but one that is not too highly correlated with the rotations. The choice of a suitable
baseline for the tendency is made less ambiguous by the symmetry statistic s j described next.

5.2. Vertical projection: the symmetry statistic sj

The other determining diagnostic is a measure comparing the symmetry of the baselines to the
symmetry of the signal. Define the fluctuation time series of the signal Y with respect to a signal
T (which will be the candidate tendency) by = − =F i Y i T i i N( ) : ( ) ( ), 1, 2 ,..., . After the
ITD decomposition is done, the histogram of the fluctuation is computed for each baseline.
Each B j is considered to be a potential tendency. We employ an empirical measure of

symmetry, namely, the x-percentiles, = ( )Pr Pr F:x
j

x
j , from which we define the symmetry

estimator s j for level j to be

=
− −

−( )
s

Pr Pr Pr

Pr Pr

2j
j j j

j j

75 50 25

75 25

We pick baseline candidates whose associated fluctuation time series is the most
symmetric, ∼s 0j . In most instances we just compare the absolute values of s j; however, we
retain sign information as it is sometimes useful in further choices between potential tendencies.

5.3. Supplementary diagnostics

Symmetry and correlation are the most important properties of our tendency, but we look for
confirmation to two other diagnostics (they are included in the examples below).

The spread v j: for a given j, the spread v j is the unsigned difference between the standard
deviation of the baselines and the rotations. These are normalized to the standard deviation of
the signal Y. The standard deviation of the baseline is always decreasing. The spread will reflect
certain qualities of the signal and its decomposition. A signal that is random and stationary will
have a v j that remains small throughout the j range. This is especially so for a signal that has all
scales, in the sense of having a dense and wide spectrum. If the signal is mutiscale, meaning that
its spectrum contains several dense spectral ranges separated by gaps, the spread is large and it
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decreases as j increases. It is typical that the spread reaches zero before j reaches the last
baseline index D.

The Hellinger distance: for two probability densities p
1

and p
2

on , define

∫ ∫= − = −H p p p p p p( , ) [ ] 1 .
1 2

1

2 1 2
2

1 2
This is a special case of the Hellinger distance,

a measure of the difference between probability measures. Since the tendency should capture
the most important, non-random, features of the time series, its Hellinger distance to the pdf of
the original signal should be small.

5.4. Choosing B j� ¼ T , the baseline that becomes the tendency

In the examples presented in the next section, we follow these steps.

(1) By normalization, the correlation parameter is initially equal to 1. Typically, it decreases
gradually as j increases, indicating that the correlations between baselines and rotations are
small. Often, there is a *j beyond which c j drops significantly, meaning that the rotation

and baseline become correlated. See figure 11, first panel. The baseline
*

B j becomes the
candidate tendency.

(2) As in figure 14, the correlation parameter may sometimes decrease gradually. In those
cases, we may need to choose two or three candidates B j for the tendency, and use the
symmetry criterion, i.e. that sj be close to zero, to single out *j .

(3) The choice of a particular baseline as tendency can be further tested by examination of
spread and Hellinger distance. Those quantities are shown in the examples below.

Recent papers (Moghtaderi et al 2011, 2013) have proposed a definition of trend in terms
of the IMFs of the EMD. The number of zero crossings of IMFs decreases, on average, by a
factor of 1/2 per step. At some point, this pattern breaks down. The trend is now defined to be
the sum of all the subsequent IMFs. This criterion is probably related to our requirement of an
increase in correlation between rotation and baseline. In both approaches, the oscillatory
components extracted by the respective algorithms become spurious modes; they no longer
represent noisy fluctuations.

6. Examples

6.1. Synthetic signals

6.1.1. A stochastic process. We analyzed a signal consisting of 512 points from a fractional
Brownian motion process with Hurst exponent of 0.7. We pretended that it consists of a non-
random ‘carrier’ perturbed by noise. This is of course not true; the signal is random, but
nonetheless, our criteria combine to pick out the best prospect for a tendency. They are satisfied
only approximately, but that is the typical situation.

The tendency appears as the heavy line in figure 9(a). It was determined to be the baseline
B5, based on the following observations (see figures 10 and 9(b)). The correlation parameter c j

jumps down at j = 5. The symmetry measure s5 is not close to zero, but figure 9(b) shows that
the fluctuation time series, −Y B5, nonetheless has a very symmetric empirical pdf, with
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Figure 9. The tendency is baseline B5 for the 512-point =H 0.7 fractional Brownian
motion signal. (a) The signal (thin) and the tendency (thick), (b) the empirical pdfs of
the original signal Y (thin) and of the fluctuation time series −Y B5 (heavy). See the text
for explanation.

Figure 10. Diagnostics for the 512-point =H 0.7 fractional Brownian motion signal. In
(a) we plot the c j as connected dots. The signal has a multiscale nature, as evidenced by

the lighter solid curve, which corresponds to corr −( )Y Y B, j and the dashed curve

which is a plot of corr ( )Y B, j . In (b)–(d) the baseline data are dotted and rotation data

are solid. See the text for discussion.
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variance smaller than that of the original signal. Because the correlation jump at c5 is so

pronounced, we chose =*
B Bj 5.

There are eight baselines; it is generally true that the first baseline is close to the original
signal, and the last one is flat and uninformative. The first six baselines show significant large-
scale structures with small-amplitude small scale structures, superimposed. This is clear in
figure 11.

The spread v j (the difference between the top and bottom curves in figure 10(b)) decreases
more rapidly from j = 5 on, indicating that the variances of rotation and baseline become more
equal; this suggests that they fluctuate on the same scale, and the noise has been removed.

The Hellinger distance of B5 from the signal is small. The histograms of the signal and the
baseline are similar (they are not pictured here).

The baseline B5 is more or less the ‘tendency’ one would draw by hand. However, here it
is produced algorithmically by the ITD, and chosen from the list of candidates by reasonable
quantitative measures.

6.1.2. Deterministic signals. Fully deterministic signals with strong multiscale character are
particularly problematic for the estimation of trends, when nothing is known about the
underlying structure of the signal. Here we consider data that have been carefully engineered to
have multi-scale character. An example of a multiscale signal with challenging qualities is

Figure 11. The original signal, baselines and rotations B R,j j, for the 512-point H = 0.7
fractional Brownian motion. The sixth from the top is the tendency B5.
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for ∈ti [0:0.0025:1]. This signal was investigated in Hou and Shi (2011). It was designed to be
a test of standard Fourier-based resolution or wavelet-based multi-resolution techniques. The
result of the determination of the tendency appears in figure 12. Because the ITD algorithm is
based on extraction of extrema, even if they are not equally spaced, it is capable of removing the
faster oscillations more efficiently than a global spectral method, for example. For this example,
the j = 1 baseline is the chosen tendency. We found that the ITD decomposition was sensitively
dependent on the sampling rate. We did not pursue this issue further, other than to confirm its
existence computationally.

6.2. Climate data

6.2.1. Ocean temperatures. We next consider a long time series of monthly ocean
temperature anomalies dating back to 1880 (available via ftp://ftp.ncdc.noaa.gov/pub/data/
anomalies/monthly.ocean.90S). The anomaly signal consists of fluctuations about the 20th
century average. The analysis appears in figures 13 and 14. In figure 13(a) we display the
temperature anomaly (light) and the tendency (dark). The baseline chosen for the tendency
corresponds to =*j 3. According to the correlation criteria, baselines j = 3 and j = 4 are
suitable, but the symmetry is higher for j = 3; see figure 14. The diagnostics indicate that the
tendency is suitably close, with regard to the Hellinger distance, to the signal itself. The spread
difference suggests that this is an inherently multiscale signal. The tendency choice leads to a
fluctuation histogram shown in figure 13(b). Its symmetry and fast decay in the tails lead us to
compare the fluctuation to a Gaussian. The fit appears in figure 13(c).

6.2.2. Arizona surface temperature anomalies. The annually-averaged temperature in
southwest Arizona for the period 1948–2011 appears in figure 15(a), with tendency in red.
Figure 15(b) shows the corresponding empirical pdfs of the raw data (thin) and tendency
fluctuation (heavy). The data can be obtained from the NOAA National Weather Service GISS
system. When all 768 monthly records are used for the input time series we obtain the results
portrayed in figures 15(c) and (d). In this case we note that the tendency is consistently below
the data mean (dashed), and as a result the empirical pdf of the tendency fluctuation will shift to

Figure 12. Determination of the tendency for the signal given by (16). (a) The signal
(thin) and the tendency (heavy); (b) the empirical pdfs of the original signal (thin) and of
the fluctuating component for the ITD tendency (heavy).
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the right, as compared to the data pdf. The reason is that the tendency is more sensitive to the
asymmetry of the input signal: the lower portion of the signal is far less uniform than the highs.

6.2.3. Moscow temperatures. We now apply our method to the time series of July
temperatures in Moscow from 1881 to 2011. The data are found at the NOAA web site and on

Figure 13. (a) Ocean temperature anomalies (thin), in degrees Celsius. The horizontal
axis is the number of months, starting with January of 1880, and ending in December of
2012. The tendency is (dark). (b) Histogram of the signal (thin), histogram of the
fluctuation associated with the tendency (dark). (c) Fit to a normal distribution (dashed)
of the fluctuation associated with the tendency (solid). See also figure 14.

Figure 14. Diagnostics for the tendency, accompanying figure 13. In lexicographic
order: c j, v j baselines (dots), rotations (lines), s j, and the Hellinger distance of the
baselines (dots) and the rotations (lines).
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the homepage of SRahmstorf. Rahmstorf and Coumou (2011) define a nonlinear trend of this
series, and conclude that the unusually high Moscow summer temperatures of 2010 were a
result of a gradual increase in the global temperature, rather than being an exceptionally large
but otherwise normal fluctuation of the weather. Since the data set was relatively short (131
points), their conclusion was also based on expert knowledge of Earthʼs climate, e.g., of climate
scales, on which to base the windowing of a moving average calculation, and an assumption of
an underlying Gaussian distribution, about a mean, for the temperature data.

Our goal here is not to focus on the authors’ conclusions or methodology. Rather, we are
interested in estimating the moving average and testing the Gaussianity using only the intrinsic
structure of the time series.

In figure 16(a) we show the filtered, or moving, average (which they call ‘nonlinear trend
line’) calculated by Rahmstorf and Coumou (light), and the tendency (heavy). We followed the
procedure described in their paper.The empirical cumulative distribution functions (cdf)
associated with these data are shown in figure 16(b). The tendency was calculated using only
the 131 data points, without availing ourselves of knowledge about the underlying climate
dynamics or statistics of the temperature distribution.

Figure 15. Determination of the tendency for the signal given by annual temperature
data in southwest Arizona, from 1948 to 2011. The data are drawn from the NOAA/
NWS/GISS web site. (a) Annually-averaged temperature anomalies. The signal (light),
and the tendency (heavy); (b) annually-averaged temperature anomalies. The empirical
pdf of the fluctuating component and the pdf of the signal (light). (c) The tendency for
the time series of monthly temperature anomalies. The mean is shown as dotted line. (d)
The empirical pdfs of the signal and of the fluctuating fields.
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7. Discussion and conclusions

With the aim of addressing the challenge of computing trends for multi-scale signals which are
not amenable to law-of-large-number arguments we propose a notion of a signal trend which we
call the tendency of the time series. This tendency has been designed to agree closely with an
intuitive, rather than a statistical, notion of what a trend for a discrete time series could be. It is a
time series, of lesser complexity than the original series, that conveys the most salient features
of the histogram and the local time development of the series being analyzed. It emphasizes the
importance of more frequent time series values and more uncommon extremal value locations.

The ITD process yields a decomposition that respects the inherent multiscale nature of
complex signals. In this regard, the ITD and the EMD yield similar decompositions. The
tendency is found by then applying a set of criteria that will identify one of the members of the
ITD decomposition as a candidate for the tendency. Recently, Moghtaderi et al (2011) and
Moghtaderi et al (2013) proposed criteria to determine a trend for a signal using an EMD
decomposition. (Another alternative definition of trend, based upon the EMD decomposition, is
found in Wu et al (2007).) When the method in Moghtaderi et al (2011, 2013) is applied to the
Moscow temperature series, the trend is very similar to ours. The criteria proposed for the trend
in connection with the EMD analysis consists of examining the ratio of the energy in the IMFʼs
as well as the ratio of the number of zero crossings. For random signals it has been observed
that the energy ratios of consecutive IMFʼs as well as the ratio of the number zero crossings of
consecutive IMFʼs are very similar. On the other hand, a signal consisting spectrally-uniform
random noise over a structured signal with long timescale features will yield a decomposition
whose ratios will differ at the IMF level corresponding to when the decomposition method no
longer picks out mostly noise. The EMD trend consists of the sum of the remaining IMFʼs. The
tendency will qualitatively agree with the EMD trend for signals of this sort. The tendency and
the EMD trend will differ when the underlying process that best describes the time series is a

Figure 16. July temperatures at the Moscow station (data from NOAA/NWS/GISS), for
1881–2011. (a) The superposition of the real data (light) and the tendency (dark). The
Rahmstorff and Coumou nonlinear trend (dashed). (b) Empirical cdf of the fluctuations
associated with the tendency (stars) the filtered curve calculated by Rahmstorff and
Coumou (circles).
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random, intermittent jump process (see Branicki and Majda 2013), and for signals that have
underlying trends with significant jumps.

Until now, very few analytical properties of the products of the ITD process were known,
and those were derived in the original paper (Frei and Osorio 2007). It was established that the
decomposition method iteratively produces baselines that are guaranteed to have monotonicity
when the signal or the adjacent lower baseline has local monotonicity. From this we can infer
that the tendency responds to this by producing a notion of trend that has a high H1-like norm (a
norm that combines the ℓ2-norm of the signal and that of its time-scaled difference values).
Moreover, if a signal is globally monotonic the tendency would also be globally monotonic. We
feel that this is a very strong characteristic of a raw signal that should be included in some
notion of a trend for this signal. In this paper we made some headway in understanding the ITD
process. We studied the decomposition of random stationary signals, numerically and
analytically. The numerical results suggested existence of a certain scaling universality, and we
propose a probabilistic model of the ITD algorithm that exhibits scaling of precisely the type
observed experimentally. The scaling coefficients obtained by our method are reasonably close
to the computed ones, but refinements of the model are needed. Because the number of extrema
in the baselines scales geometrically, the number of baselines generated from a signal of length
N is only of order Nlog , we suspect that a rigorous explanation will require an → ∞N limit,
together with some sort of renormalization. We observe that in a formal continuum limit, still
for a random signal, the ITD steps amount to the solution of a diffusion equation; this feature
should be exploited. It would be interesting to extend this analysis to the EMD.

The tendency, we believe, can find use in the analysis of data in which one would like to
discern structure in a signal from aspects of the signal that might well be described as random
noise of high frequency variability, beyond the standard examples from econometrics. This sort
of analysis is commonly done in climate variability, where one wants to identify aspects of the
signal that can be explained by physical models. Just as other notions of a trend, the tendency
requires interpretation. This challenge is presumably one we are willing to accept.
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Appendix A.

Algorithm 1. The ITD algorithm.
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(Continued.)

Algorithm 1. The ITD algorithm.
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