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ABSTRACT
The cross section e' + e~ =W + W —>p+ + Vu +e 4+ ;; in which e~

and u+ are detected in coincidence in the colliding beam experiment is
computed with the mass, magnetic moment and leptonic mode branching ratio

of W boson as parameters. The kinematical correlations necessary for the
identification and mass determination of the W meson are discussed. Numer-
ical examples show that the energy-angle correlations of the final e and u
are very sinsitive to the W mass. The analytical expression for the cross
section was obtained by an electronic computer. The characteristics of
dynamical correlations was investigated by numerical examples of angular
distributions of e and u+ for different values of magnetic moment of W.
It was found that the rate of increase of cross section with respect to the
relative angle between the final electron and muon is the most sensitive
dynamical correlation needed for the determination of the W magnetic
moment. We ignore the possibility that W may have form factors and an
anomalous quadrupole moment. Symmetries in the differential cross section

are discussed. Due to one photon exchange, the differential cross section
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of e  and p+ must be symmetric with respect to the plane perpendicu-
lar to the incident beam. Due to time reversal invariance the differ-
ential cross section for p+ must be symmetric with respect to the

plane formed by the incidert team and the Tinal electron. Similarly the
differentiai cross section for e  must be symietric with respect to the
plane formed by the incident beam and the u+. It is also shown that the
charge conjugate decay mode et v e »W o+ W T 3; + e+ v, can
be obtained from our result by simply u+ —>p' and e~ —>e+ in the final
state if one considers only the lowest ovder process. It is pointed out
that the techniques used in this paper can be employed to calculate many

other processes in which two unstable particles are produced.



I. INTRCDUCTION

With the success of the Stanford electron-electron colliding beam
rroject and the building of electron-positron colliding bean machines® at
various piaces in the world. it may be usefui ‘.0 consider again the pro-
duction of weak vector bosons which have so far escaped detection.® The
cross section e + e  —W' + W via the one photon intermediate state
has been calculated by Cabibbo and Gatto.* In this paper we would like to
congider the particular decay modes

>€ + v
. N

e e W+ W (1.1)
|
>~ M + vV o,

in which e~ and u+ are detected in coincidence. The particular W decay
modes given above have the minimum background problem. Other decay modes of
W, such as nw, pn, w1, ete., are extremely interesting from general weak in-
teraction theorysand can be incorporated into our calculation easily. How-
ever, there are so many ways W can decay into pions that even if =n's are
detected, it would be much harder to interpret the result, aside from the fact
that many more pions are produced directly via e+ + e =y — multiple xn's.
Since e and p+ are to be detected in cuincidcnce, they are correlated
both kinematically and dynamically. The kinematical correlations are given by
Egs. (2.20-2.28) which give the constraints among the final electron energy, the
muon energy and thelir relative angle. These kinematical congtraints are sensi-
tive functions of mass of W, and hence they must be used to determine the mass

of W. There are two other unknown parameters® besides mass in our calculation,



nemely the branching ratio R =I'(W —»e + v)/I‘tOt and the magnetic moment
(1 + k) é%% . The expression for our differential cross section is propor-
tional to R® and hence the relative angular distribution depends only upon
k, after the W mass is determined from the kinematics. Once the magnetic
mrment Is deiermined from th~ angular distwibutica, the branching ratio R
can be determined by the magnitude of the cross section, without even measur-
ing other decay modes of W directly. The angular distribution depends upon
the dynamical correlation. This correlation arises from the fact that the
two W's produced are polarized and the polarization cf each is corfelated
to the other, and that the angular distribution of i:ptons from the polarized
W is different from that of an unpolarized W. The polarization state of
two correlated vector particles can be described in general by a 9 X 9
hermitian density matrix. In a covariant description this density matrix is
represented by a rank 4 tensor, each vector index satisfying the usual sub-
sidiary condition for the relativistic polarization vector of a particle.
The possibility of such a representation comes from the requiremeht that the
th component of the polarization vector vanishes in the rest frame of the
particle. This covariant density matrix is obtained in Section 2 and its
properties are given there. The analytical expression for the matrix element
squared (C) as given in Table I was obtained by a computer.7

In Section III we discuss symmetries in the cross sections. In Section IV
the differential cross section e+ + e SW W is discussed. In Section V
the energies of the electron and muon are integrated and the characteristics
of their angular distributions are investigated for an arbitrary set of param-

eters with the mass of the boson W = 2 BeV, incident electron energy E = 3 BeV,
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magnetic moment k = -2,0,2, branching ratio R = 0.25. We found that the
cross section increases rapidly as we increase the relative angle 957
between the final electron and muon. The rate of increase from 300 to 150O
is approximately 1 to 10 for k = -2, 1 4o % Tor k = 0, and 1 to 15 for
k = 2, Thus the different rates of increase in the differential cross
section with respect to the relative angle between the final e~ and u+
is the most sensitive dynamical correlation for determining k. Of course
the over-all rate is also a very sensitive function of k, but we think it
should be reserved to determine the brainching ratic R unless R can be
found by some other means. In Section VI we discuss some general aspects
of our calculation and meke some additional remarks relevant to the planning
of the experiment.

We have tried to write this paper in such a way that all the results can
be used readily by the experimenters. Thus many trivial details are also in-

cluded whenever we think they are useful.

II. CAICULATIONS

All the desired information including kinematical and dynamical correla-
tions of the problem under consideration can be obtained by computing the
Feynman diagram shown in Fig. 1, provided one r=places the square of each
denominator of the W boson propagator which occur in the square of the

matrix element by a & function

1 na(pfq.-wg)
LY
2 2 7 ’
|pw-w2|_ oW

(2.1)



where W, I' and Ry are the mass, the total width and four momentum
of the vector boson. This replacement is allowed if W >> I’ . Denoting

the branching ratio of the mode W —e + v as R and the Fermi constant

as G, we have®

Y S
R énR 6,J§ﬂR

_1.02 X 1075 w3

6\/§T:RM§

where M? is the mass of proton and g is the coupling coznstant between

W and the leptonic current. From the last relation one can obtain criteria
under which the replacement (2.1) is allowed. For example, for W = 2M? and

R =0.25 we have I = 1,14 X 1072 MeV (corresponding to mean life 5 X 10 =° sec)
which is much less than W and thus (2.1) is justified. On the other hand, if

W = 100 M? and R = 0.01, we can no longer use (2.1), but under such circum-
stances the experiment is unfeasible, at least for the foreseeable future.

We shall try to formulate our presentation in such a way that those who
intend to design the experiment can make maximum use of it. The kinematical
correlations which are important for the mass determination are presented in
detgil., We shall see that for each choice of final electron and muon momenta,
there correspond two production angles of W's,

The notations used in this paper are as follows: The four momenta of

particles are denoted by: pl = initial electrdn, p2 = initial positron,
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W boson, p = W boson, p = finial electron, p = Ve neutrino,
3 4 5 6

1

Y

mu meson, and p = vu neutrino. The masses of the electron, muon
7 8

and W boson are denoted by m, p and W respectively. Ei and Pi
renresent the energy and mcwentum of the itk rartizle, the exception is
E =E =E =E =E, 0,, is the angle between Pi and Pj . 6,0
6

1 2 3 4 1J

and wl ~are defined in Figs. 2a and 2b. The coupling constants are de-
7

G/+/Z where G = 1.02 X 10'5/M§. The

metric used is such that (p .p )= EE -PP cos 9
37 7 5 7 37

n

fined as e%/bx = and g2/W3

We adopt the quantum electrodynamics cf vector bosons® by Lee and Yang

in which W has an arbitrary magnetic moment 7YL= (l + k) 5% S , the gquadra-
ek
W2
For convenience of discussion and computation we write the differential

pole moment is not arbitrary but is given by Q = -

cross section in the following way.®

d3P d3P d3P d3P 1 1 n®  e%gt

Wip -p )% n* 2 2E_ (2r)*2 I Ty (2R )4

= (2n)*

84(pl *P, P -P -P - PB) 5((p5 + p6)2 - We) (2.2)

6((p7+p8)2—w2) 128Cc=ABC,

A is a numerical factor and is given by

ofg* 16 _ _90%R®
(2n)* 1 w# (2E)® 4 (2n)2 w4 ES

A =

(2.3)



R is the branching ratio

_D (W —eT+v) _gW

R =
r T 6bx

(2.4)

¢ is essentially the matrix element squared with propagators and coupling

constants taken out and rill be defined in Eg (2.29). Its analytical ex-

pression, obtained by a computer is given in Table I.

Kinematical Correlations

B represents the phase space and contains all the informations about
kinematical correlations which are important in the verification of the

existence of W, and the determination of its mass.

a>p azp a>p a>p ‘
Bzf 5[ 7[ 6[ 8 5*(p +p -P -D =P =-D)
oR \ OF . O N OF 1 2 5 6 7 8
7 =} 8

5

6((p5 + p6)2 - w2> 6((107 + p8)2 - w2)

(2.5)
o7

=5 PAF_PAE do_ae dop 5 (p +p -D - -1 )2

5 5 7 7 5 7 [ 1 2 5 6 7

0 . 1

[dE 6<(p +P_~-P -p)Z—WE)/dP cos 9 6<(p +p)2-W2)

R 6 1 2 5 6 \ 6 6 5 6
o -1

Using the coordinate system shown in Fig. 2, the integrations can be per-

formed by using the © functions.

1

f d(P6 cos 96) 8((1)5 + p6)2 - WZ) 2;') if cos 66 <1, (2.6)
- 5

1

it

0 otherwise,



where
W -2E (E-E)
=)

cos 8 = 5. =cos (wx -8 ) (2.7)
& °2E (E -E ) 56
5 5
[o0] A
~ - . \ 1 8
d + - - = - W = = if E>E 2.
J e o il +p, -2 -2) m  if B>E_ (2.8)
o
= 0 otherwise.

the integration with respect to ¢ 1is slightly more complicated because
6
the argument of the © function vanishes at two points in the range of in-
tegration. The matrix element squared C depends upon ¢ as well as other
&

variables. For the moment we will write C = C(¢p ) and evaluate
&

[‘2ﬂ
dop C 3 + - - - e
| de, (0)8 (o +p, -2 - p)
(@]
o7
= C d5la - b co d
JREICRE 5 9) ap.
O
c(e ) + (-0 ) a
= = = = = if Icos o} | = |€| <1,
s - a 6
=0 otherwise, (2.9)
where
a =W2+y®? -2EE +p E1 (W8 -2EE ) cos @ (2.10)
7 7 5 5 57
and
3
b = Wp Ei(m:(E-E )-wﬂ sin 6 . (2.11)
7 5 5 =1 57



We chose

™ > 9, >0 . (2.12)

For convenience of discussinn let us write

i

cos 6
35

W2
(EE5 - = )/ESP4 (2.13)
and

2, 2
(e -7 g“ )/P_P o (2.1%)
7 ¢ %

cos 6
47

These two equations can be obtained trivially from

2

(p. -2 )*=p°=0 and (p -p )2 =72=o0.
3 5 [ 4 7 8

In terms of 8 - and 6 , We may write a and b in Egs.(2.10) and (2.11)
3 4

as

a==-2PP (cos@ +cosH coseo ) (2.15)
47 47 35 57

b =2 PP sin g in 6
o SR sno (2.16)

The two values of ¢ allowed for each choice of P and P; correspond
6 5

to two production angles for the W pair. To see this we write

wa

+ +
X, =-P.PP/E=~-P .(P P~
“3/ 1 (“5 * “6)/E

H+
$
l_l

E 0 (E -E) oF (2.17)
= - cO - - Q .
5 °%% % g s’ €% 0 v 7
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where
‘ + . .
cos . = -cos 8 cos B8 +sinfg sin H cos ¢ cos @
i6 15 & 15 6 6 7

(2.18)

I+

sin 0 sin 6 sir o :in g
15 € 5 ”

In summary the desired cross section can be written in the form

do 9 r2 m® R® [c(x+) + c(x_)]

dE dE 4Q dQ 512(21)2W4E’P [cos(6 +6 ) + 2 cos 8 cosH cos 6
5 7 5 7 4 47 35 35 47

L
+cos 6 ]°
57 57

(2.19)

where C(X+) and C(X_) correspond to C(@s) and C(—@s) respectively
in Eq. (2.9).
The allowed range of £ , E , 40 and dQ7 of the cross section can be
5

7 5 .
obtained from the inequalities in Egs. (2.6), (2.8) and (2.9). From Eqs. (2.6)

and (2.8) we obtain

E+ P E -P
—_—st > > —k (2.20)
2 5 2
and
E+ P e E-P u®
4 4 (-P)>E > £ 4 E+P) (2.21)
2 ow= 4 7 2 owe 4

These two inequalities give the energy ranges of the electrons and muons
if they are not detected in coincidence. The kinematical constraints due to

coincidence are imposed by Eq. (2.9) which can be written as

cos (6 +8 )+2cos@ <cosg cos@g + cofe >0 (2.22)
a7 35 35 a7 57 57
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From Egs. (2.13) and (2.1h4), we see that @ . and 6 . are related
3 4
to energy of the electron E and of the muon E7 respectively. Thus
5

Eq. (2.22) gives the range of one of the variables (E , E
S iy d

{

. 6 ) when the
57

other two are fixed. The *+hree siturtiors are .ler2rited below.

1. For a given E5 and E7, which necessarily must satisfy Egs. (2.20)

and (2.21), the range of 6 ., is given by
5

(cos 6 ) =-cos O cos O +sind sin @ - (2.2
57 max 47 35 47 35 ( 3)
min
or
l:n-(e +6 )| <o <n-le -9 ' (2.24)
35 47 57 47 35
2. For given E and 6 , the range of 6 is given by
5 57 47
cos 0 = - cos 6 co + si i .
( 4_/) max 45 °OF 657 + sin 635 sin 957 (2.25)
min
E can be obtained by letting (:os ] = cos O in the follow=-
7 max 47/ WAX 47
min min

ing expression

N

E(WZ + u®) + P cos ¢ L(W’2 -p®)2 - W2 P2 gin? g )
F = 4 47 4 47 (2.26)
7 2 (B2 - P cos® 9 )
4 47

3. Similarly, for a given E7 and 6 , the range of 6 is given by
57 35

cos 6 = - CcOs O cos 6 + sin 9
35 Max 47 57

sin @ . (2.27)
e 57 .
min

47
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- max 30 be obtained by letting (cos 635)max = cos 635 in the

min min
following expression:

E = - . : (2.28)

The relations (2.23-2.28) can also be obtained by drawing pictures. Suppose

the electron with energy E 1s moving along the -2 direction. From
5

Eq. (2.13), the W~ meson (P ) must be cn ~ cone around P with angle
3 5

8 given by (2.13). Iet us invert this cone and call it cone C as
35 -3

shown in Fig. 3. Let the muon momentum E; be on the xz plane and draw
a similar cone for W' meson from Eq. (2.14) and call it C as shown in
4

Fig. 3. In order that P5 and P; be detected in coincidence, P and P
3 4

must come back to back, which means that the two cones @ and C must
4

intersect. In general there are two lines of intersection between the two
cones C and C , which correspond to two angles of production for sl
-3 4

for each set of P and P , as mentioned previously. From the picture it
5 7

is obvious that the condition for the intersection of the two cones is given

by Eq. (2.24) and two other relations obtained by permutations 6 @ .
57 3

and 6 « g respectively.
s7 47

To illustrate how sensitive these kinematical correlations are to the

W mass, we give the following example.

Numerical Example (Determination of W Mass)
b

] L5 Be o o
Suppose E = 3 BeV, W =12.0 BeV E5 1 BeV, and 957 Tz
(43.8° for W

- o 1.5 BeV
a5 |63.6° for W

From Eq. (2.13) we obtain @ 5% Bev

-13 -



From Eq. (2.25),

cos 6 o= 82& for W = 1.5 BeV,
and
cos 6 e g:ggg for W =2.0 BeV .
Therefore,
3 = g:ig gZX for V¥ = 1.5 BeV,
and
max _ 1.76 BeV  f. W =2.0 Bev |

E7 min =~ 0.552 BeV

From this example we can see that the mass of W can be determined

easily from kinematics alone.

Dynamical Correlations

The function C represents the matrix elements squared and can be con-

veniently written as

1
5ty Vos Vgt Tegr Ko (2.29)

C =

tuv is the tensor obtained by taking the trace of the initial electron

positron system,

_q_11«(.162+m)7pL (151+m) 7v=1+(P P +P P -2E3% )

t
Hy 1K 2V 1V 2 4%

(2.30)
_ 2
=-8|F%, + 99,
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where

Q

-+
v is the W W  vertex
uoB 7 ’

VMOCB - goﬁ (P4 B P3)H

wr

+
of the W  boson propagator;

Y

;BB, is -,]j the trace of the u’r

= (Pl - P2)/2

+ (1 + k) PBBgua - (1 + k) P‘ﬂg“a . (2.31)

VvV syster and the sqiare of the numerator

Bp = -%TT [(- B+ )1+ 7)) 75 B, 7. (1 - 75)]

s , e
(PGP ¥ B (P51 P, Byrp:)

(W= - f)(P‘LBP‘LB,w'E - gBB,) - L (P‘La(PéP?) W2 -P ) x

o

78

. w"2 _ - D
(P4P7) P_/B ,} 1€t P7aP4b

(2.32)
Xo:x' is the corresponding expression for the e + v system,
Mo = E T - B (@) (B vm) oy, (-
oo ! In 5 57 "7 s A 57 .
-2 -2
(PBO.’P:W we - gaé)(on.”Psy’ we - ga'y')
_ (2 2 -2
= (W= - o) (P P, W - &yyt)
-h(P (PP)w=2_p ><P ,(PPYW2E P ,>
X 3 5 5C = 3 5 50,
+ 2 i ecocda' Psc Pzd .
(2.33)
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The analytical expression for C was obtained by a computer. We
set the mass of the electron m = 0 for simplieity, C 1is first written
. . . 2 2 2 . .
as a function of invariants u=, W=, (P, + P))%, Pl-Ps, PP, P P, PP,
PS-P7 and Pl-P3 . It was found that the expression simplifies greatly

(and also exhibits the symmetries o. the prublca more clearly if one uses

the variables E, Es’ E7, X, ¥, 2 and u defined by

(P, + B,)% = 8% = k&%
P -P_ = E(E5 - P_ cos 915) = E(E5 -y),
P P = E(E7 - B, cos 917) = E(E, - z),
PP =E(E +7), (2.34)
PP = E(E, + 2) ,
P ‘P, = E(E3 +x),
P§R7=E5@7-:g<msesﬁ EE4E7-u).

All the quantities except x 1in the above are directly measurable ex-
perimentally. As shown in (2.17) X 1is not an independent variable but
takes two values xi which are expressible in terms of observable quantities.
The final expression for C is shown in Table I.

It should be noted that if other decay modes of W's are to be considered

we need to change only the expressions for Xﬁa' and Y . The expression

pB!

- 16-



for tuv vaB VVQ’B' is still usable. By explicit calculation we obtain

il

1
Porpet = B “uv'ios Vv

- - g, [FP(R, - 207 ¢ LL(Q'P‘L){J:

2(1 + k) [EZ(gQBPﬂ,Pﬁ, * i Panfag) T 8@ P ) (PgQy - P yis)

* gypr (P (P9, - B, Q.

+

2 2
(l + k) [E <P36P4(X'g0t5' + P4Q(P3gvgo¢'(3 - =B 35 gOU' 4:05 405'%55')

i
- (PBBQ'OC - PMQB)(PBB'Q’Q'- PM'QB’)_;

(2.35)
The density matrix of the W pair produced is actually defined as
- _ -2
Dyyraar = aa'BB'(P F 7w %17)(P33'P37’W g67')
(2.36)
2 -2
(PaPus - 8a5) (Bug PagiW - 8g151)

We have merely incorporated the last four factors into the definitions of

X and Y +to make the writing more compact. The rank 4 tensor D has the

following properties:

1. It is symmetric under simultaneous exchange of two indices vy e y' and

5 & 5!

2. It is invariant under exchange P, *’Pé

- 17 -



3. It is symmetric under simultaneous exchange P3 «>P4 , S ey
and O!' ey!' .

L, It satisfies the subsidiary condition 0.

Pl yyrasr =

ITI. SYMMETRIES IN THE CROSS SECTION

(a) The parity violating effect of the weak interaction does not
show up in the differential cross section. Since only Pl, P2, P5 and P7
are measured experimentally the only psuedoscelar quantity one can construct

is
€ 1v0pPa Py PsPrp = 2E P, - (}35 X E) (3.1)

But this quantity is not time reversal invariant, hence will not appear in
the cross section, The absence of such a term in the cross section implies
that the differential cross section for P} must be symmetric ﬁith respect
to the Pl - P5 plane and the differential cross section for P5 must be
symmetric with respect to the Pl - P, ©plane.

(b) The cross section must be symmetric with respect to the plane per-
pendicular to the incident beam. This is the consequence of the one photon
exchange model. This must be so by the fact that tuv is symmetric respect
to the interchange P, ©P, and hence C must also be invariant under this
exchange. The only other places where P and P, occur are in the flux
factor and the & function, both of which are invariant under the exchange
pl « P, - Thus the differential cross section should not be able to tell

the sense of the current of the incident beam.

- 18 -



(¢) 'The differential cross section for the process

e +e —-W+W (3.2)

is identical to ihe oue we are cousidering [Eq. (1.1)]. This can be proved
by the following steps.

1. The mass of u 1inside the trace of (2.32) does not contribute.

2., The expression of matrix element squared C for (1.1) can be'

written as

_1
C =D, g (Bs+ P By + By) %

Tr [156(1 +7,)7, 16577,1 Tr [158(1 - 7,075 15775,:] (3.3)

where D (pz, p4) is the density matrix defined by Eq. (2.36). Since D is
symmetric under y & y' and % 8! , C is symmetric under 75 © - 75 .

3. Iet us denote e by p ,u by P , Vv by p and v by p

5 7 € & M 8

for the process in (3.2).

Then the matrix element squared can be written as

1
'E D,},,},'aa' (p7 + PB’ PS + pe)

cr o=
Tr [158(1 + 7.7, 16777,] Tri 21 -7 )7 15575,1 (3.4)
Now

D + + =D + +
yinet (B + B B+ P) = Dagioy (>, +p,2 +2)

_19_



from the symmetry property no. 3 of D. Rearranging the dummy tensor
indices and remembering the symmetry under 7s & - v , we arrive at the
5

desired result

c =11, (3.5)

The processes (3.2) and (l.l) are related by the charge conjugation.
The theorem we have just proved combined with the invariance under P, e9p2
of C shows that the charge conjugation violating effect of the weak in-
teraction does not show up in the diffcrential cross sceetion. Experiﬁentally
this theorem implies that if the detectors can distinguish tetween e and u
but cannot distinguish the sign of their charges, one will get exactly twice
the coincident counting rate we have given in this paper. (See Footnote 11.)

(d) If E - W >>yu then the mass of the muon can be ignored from our
consideration. Under these conditions the four leptonic decay modes of W

pair will all have the same differential cross sections.

IV. CROSS SECTION FOR e' + e” oW + W

For completeness we give the differential cross section for this process
sumned over the polarization of the W's.

e% 1 1

d>p a3p
do = [ lf £ 3* (p. +p -p -D)
(2)2 32E2 (2E)% 2F 2F - 2 3 4
3 4 :

-2

-2
8 pOﬂ'BB' (pBQPﬂv W - gw')(p45P4ﬁ' W - gﬁB')
(k.1)

- 20 -



From the sbove we obtain the differential cross section

do B3 .
lhy‘* k2 gin® 6 + {u(l + k)2 - 200 + k) gin® e} ¥ + 3 gin? 9]

dQ4 329502 -

(k.2)

L
where 7 =E/W and B = (1L - y2)2 , Notice that this cross section has a
maximum at 6 = 90o and is symmetric with respect to 900.

The total cross section is
s> 7

G=32w2 [74k2+(k2+3k+l)72+13;J (4.3)
4

Equation (4.2) agrees with the result obtained by Cabibbo and Gatto*
if one lets their form factors be equal to unity, identifies their p with
our k and puts their anomalous quadrupole moment € = O, The numerical
examples of (4.2) and (4.3) are given in Table III.
| As pointed out by Gabibbo and Gatto, the expression for the total cross
section (4.3) cannot possibly be right at high energies because it violates
unitarity. The unitarity relation says that the sum of total.cross sections
of all channels from electron positron annihilation via a single time like
Photon intermediate state can not exceed Bn/hEz, because the initial total
angular momentum of the electron positron system must be unity. The cross
section (4.3) increases with energy as 72 at high energies of k £#0 and

stays constant if k = 0 in the asymptotic limit. The eross section reaches

- 21 -



its unitarity limit at energy equal to

and

X 137 if k=0

e
i
e

The energies at which these limits are reached are considerably
higher than those of the various colliding beam machines proposed. Never-
theless, it is still a serious defect of the theory. It is not immediately

obvious that by considering the higher order electromagnetic effects this

difficulty can be circumvented.®

- 22 -



V.

NUMERICAL EXAMPLES OF THE DIFFERENTIAL CROSS SECTION

+ - - - +
e +e —-e +V +u +V
€ H

In order to facilitate the design

of the experiment it is useful to know

approximately how the electrons and muons are distributed and what their

energy and angular correlations are.

We were told by David Ritson that a

spark chamber with nearly Lrx 50114 angle can be used, and that the muon energy

can be measured with a uigh accuiacy from .58 range anG the electron energy

can be measured from its shower production.

We have integrated the expression

(2.19) with respect to the energies of the muon and electron, and have obtained

dg/dQ dQ7 numerically by a computer.
5

do 9 ri m2R2

an an  (2n)® s12 EWtp
s 7 4

C

L+ C

B E
7 max 5 max
Jf dE U/‘ dE
7 5

7 min 5 min

The limits of integrations are:

[cos(e4

Y
+0_ )42 cos 6 cos 6 cos 6 +4cos2H |2
7 35 35 47 57 -

57

max E + P; uz

.= + (E+P)
7 min ) ng 4
max W2
s min I2ax]

cos ¢

)» ~-cos 6 cos 6
35) in 47

where
57

2[E - P (cos 6 )
4 35

+

min

sin 6 sin 6
47 s7

The result of the computation is shown in Table IV. The unit of the cross

section is. 10 °% cm2

per (steradian)®
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We make the following comments and observations con Table IV.

(a) Due to the symmetry with respect to ¢ < -® we computed the cross
’ 7 7
secticn only from P_ = 0 to n. 'This symmetry is due to the time reversal
invaricnce as discussed in Sectior (3a).

(b) The cross section is symmetric with respect to a simultaneous exchange:

%) “<n -6
15 15

¢ eon -9
7 7

This is due to the symmetry with respcet to twe interchange P +>Pé
1

as discussed in Section (3b). Because of this symmetry we took @ from
15

0 to n/2.

(c) The values of the differential cross section at 957 =0° apa 180°
were not given in Table IV, because of the limits of the E5 integration
pinch (i.e., Ezax = Ezin) amd at the same time the denominator of the inte-

gral vanishes at these two points. However, by taking the limit, the integrals
at these two points give finite numbers as shown in Table V. In general the

cross section increases rapidly with 65 from 0° to 1800. The rate of

7
increase depends critically upon k. For k = -2 the ratio of the cross
section at 6 =30° to 6 =150 is approximately 1/10 or 1/15 depend-
57 57
ing upon whether o = 30° or o _= 90°; for k = 0 +ihe corresponding
5

ratio is 1/33 or 1/13; and for k = 2 the corresponding ratio is 1/18 or
1/28. 1In the absence of dynamical correlations all these ratios should
be identical for all k. Thus we conclude that the effect of dynamical cor
relations is strong and should be utilized advantageously to determine k

(and the anomalous quadrupole moment if it is there).

- 24 -



VI. DISCUSSIONS

(a) All of our considerations will be only of academic interest if there
is no W meson, or if its mass is so large that it can not be produced in
the foreseesble future. However we balieve vari-uc —cnsiderations made in
tgis ﬁéper can be applied to many other similar problems which involve creation
of unstable particles by e+ + e collisions. For example
5 T +p
e + e+ SA+ A

s 43
This reaction gives the electric and magnetic form factors of A for a time
like momentum transfer.

(b) We have completely ignored the fact that some extra photons are always
emitted elther from initial or final charged particles (the so-called radiative
corrections). If a photon is emitted from the initial system, the virtual
photon in our problem will no longer be a pure time like vector (oE, 0), but
will acquire a certain energy and momentum distribution. As a result the kine-
matical correlations we have discussed will no longer have a sharp‘edge at the
boundary, but will be smeared by some radiative tail. In general the radiative
tall smears the particle energy on the low energy side. Thus it will change,
ICr example, Eiin to a lower value but will not affect Efax in the numerical
example given in Section 2. Since Efax depends very critically upon W for
fixed E5 and 957, we conclude that the mass determination via kinematical
correlation will not be affected by the radiative corrections. If the rsdistive

corrections are included then the symmetry under Pl e>P2 will also be

violated by a few percent.ll
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(c) The major background to the process considered is expected to be
due to the accidental coincidence from two reactions

+ - + -
e + e —e +e

and

+ - +
e +e - u +u

Neglecting the radiative corrections and possibilities of form factors,their

. . . o
cross section can be written respectlvelyl as

do r®w® [ 1+ cos* 6/2 2 cos* /2 1+ cos® 6
o
—_— e — - = + (6.1)
a0 (e-) 8 E? sin®* 6/2 sin® /2 2
2 2 5
do re m m=\ [1 + cos® @ n
— == =(1-= + 2sin29 (6.2)
ao (u+) 8 E E 2 oF
At 6 =9° and E = 3 BeV, we have
do = 12.5 X 10 °% en® per steradian
as (e-)
and
dg = 1.4 x 107°% cn® per steradian.
dQ §u+5
Compare these with the result of our Tsble IV at 6 = %0°, 8 = 150°,
5 57

with k = -2 and W = 2:

= 0.1435 X 10734 op® per (steradian)z.

5 7
The accidental coincidence is proportional to the product of (6.1) and
(6.2) if one detects e and p+ or e+ and u- and therefore it is com-

pletely negligible. However if W really exists, then one would expect the
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(e, (u+u-), (e"u™) and (en”) decay modes of the W pair to have almost
identical probability. Turning the argument around, the near identity of all
these four decay modes will serve as an additional proof that W's were
actually produced. The radiative corrections to processess (6.1) and (6.2)
will. then be thé major background for the (9+e-) snd (u+u-) decay modes
respectively of the W pair. The main effects of radiative corrections to
processes (6.1) and (6.2) are: (1) +the final particles will no longer all come
out exactly back-to-back, and (2) their energies will be smeared. These effects
are all rather easy to calculate™ and in general the cross sections drop down
very quickly as one deviates from the elestic Linematics. Thus in principle
there is no major difficulty in distinguishing the processes (6.1) and (6.2)

4 - -
from the (e e ) and (u+p ) decay modes of the W pairs.
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of mass system, there will be more A" coming out along the direction

- +
e than A . This phenomenon is very similar to the difference between
e+p and e p scatterings where e+p in general has a larger cross

section at a Ffixed angle than e p if higher order terms are included.
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FIGURE CAPTIONS

+ - + - + - -
Feynman diagram for the process e +e —-2W +W ->u + vu + e + ve"

The coordinate system chosen to define 957, 96, Pgs 615 and 9,

Kinematical correlstions. Two lines of intersection between cone
. . . . . o . +

and cone v_, glve the two possiple di.eciions of the W boson

produced for each choice of final electron and muon momenta.
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TABIE IT

DIFFERENTTAL CROSS SECTION FOR e' + e” — W' + W™

AT E = 3 BeV, W = 2 BeV

do /aQ
x (dosmoes) (o erertian)
2 0 2.33
30 2.77
60 3.65
90 h.10
-1 0 0
30 0.1
60 0.307

90 0.401




TABIE III

TOTAT. CROSS SEUTION FOR e + e+ W' + W~

E(Bev) W(BeV) k (10732 cn®)
3 2 2 L.yl
Y 2 2 9.2k
10 2 2 54h,7
100 2 2 5240.0

3 2 -1 0.343
i 2 -1 1.08
10 2 -1 11.8
100 2 -1 1310.0

3 2 0 0.289

3 2,2 0 0.191

3 2.4 0 0.116

3 2.6 0 0.060

3 2.8 0 0,020




TABLE IV

DIFFERENTIAL CROSS SECTION FOR e’ + &~ —>p.+ +e + Vu + Ve
AT E = 3 BeV WITH W = 2 BeV, R = 0.25 AND k = -2,0,2.

dac/dﬂs__dﬁv in 10734 on® per steradian®

L 2. s k= -2 k=0 k=2
30 0 30 21289 .N0093k ¢ 02537
60 .03203 02573 .052k5

90 .07312 00251k .1166

120 .1180 .01035 .2h12

150 .1286 03207 4519
30 30 30 .01289 .001017 .02524
60 03244 .001658 .05153

90 .07099 002940 .1152

120 .1138 .011u7 .2394

150 1262 .03294 4606

30 60 30 .01277 00119k .024ko
60 .0307h .002013 .0k632

90 06501 004616 .1084

120 .1028 .01295 .2338

150 1185 03576 4632

30 90 30 .01251 .001380 .02331
60 02755 002537 .0k206

90 05438 .005730 .1000

120 08622 .01503 .2293

150 1119 .03796 4722

30 120 30 01215 001542 .02227
60 02335 002919 L03757

90 04188 006l TL 08857

120 06914 01626 .2083

150 .1049 .03947 s

30 150 30 .01187 .0016kk 02125
60 01967 .002867 .03492

90 .0319% .006852 .07688

120 05485 01682 .1968

150 .1003 Reltots 4688

30 180 30 L0116k .001678 02099
60 01813 002931 .03260

90 02790 .006914 .07121

120 .ok807 .01694 .1907

150 09963 04018 L4681
60 0 30 .01165 .001510 .02018
60 02765 .0020k0 .0k63h

90 .07355 .002229 .1183

120 .1k01 .008009 .26k2

150 L1545 .02390 s02



TABLE IV - (Continued)

dza/dﬂs aa. in 107>* n® per steradian®

s B 57 k= -2 k=0 k=2
60 30 30 .01035 .001583 ,02051
60 ,02819 002292 04713

90 07326 002870 .1169

120 1365 009516 2645

150 .1505 .02596 .bsag

60 60 30 01030 LWOLTT3 .02039
60 72886 002866 .0bs1k

90 07030 005507 Bhky

120 .1258 01276 .2630

150 J1ble .03009 ST

60 90 30 ,01033 002008 01937
60 02669 003421 04165

90 .C6162 006828 1096

120 .1095 01535 2549

150 .1337 .03290 4607

60 120 30 .016u8 .002141 .01778
60 .02133 .003256 .03783

90 .ol725 007305 .09k36

120 09086 .01590 .2378

150 .1295 .03371 RSy

60 150 30 009372 002184 01654
60 01565 003705 .03102
90 03325 007076 08047

120 07827 L0152k 2141

150 .1255 .03274% Jhs506
60 180 30 009078 .002188 01567
60 01027 003630 02756
90 .02720 006905 .0709%

120 07256 01474 2100

150 L1265 .03219 4528
90 ¢} 30 .008996 ,002078 .01535
60 01791 003087 .03372
90 05041 005153 09572

120 .1166 .01024 2477

150 1570 .02387 Jbhog
90 30 30 .009320 .002137 01575
60 .01993 003274 .03593

90 L0541 005709 L1014

120 L1173 01162 ,2507

150 1535 02571 Llk2
90 60 30 009833 002259 01681
60 .02390 2003643 103949

90 06151 006789 113

120 1207 .01k21 2617

150 k76 02904 4513
90 90 30 009237 .002318 01748
60 .02625 .003311 L0LOgH

90 06544 .007211 1154

120 .1220 01533 .2663

150 -1435 .03125 sk



TABLE V

AN EXAMPLE OF THE BEHAVIOR OF THE DIFFERENTIAL CROSS SECTION NEAR 6 4= 0 and 1800,
5

for E=3BeV W=2BeV R=0.25 k- -2, 0 _=3° 6 =30
6 in degrees do/ds 40 in 1077* cn®/steradians®
57 : s 7
1 .009584
5 .009852
30 .01289
90 07312
150 .1286
170 1392

179 .1h22



