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Abstract

In this thesis my personal contributions to the ATLAS experiment
are presented, these consist of studies and analyses relating to tau
leptons.

The first main section contains work on the identification of hadroni-
cally decaying tau leptons, and my specific contribution the electron
veto. This work involved improving the choice of variables to discrim-
inate against electrons that had been incorrectly identified as tau lep-
tons. These variables were optimised to be robust against increasing
pile-up, which is present in this data period. The resulting efficiencies
are independent of this pile-up.

The second main section contains an analysis of Z — 77 decays, my
specific contribution was the calculation of the detector acceptance
factors and systematics.

The third, and final section contains an analysis of the performance
of a new vertex based missing mass calculator for 3-prong hadroni-
cally decaying tau leptons. It was found that in its current state it
performs just as well as the existing methods. However it has a much
greater scope for improvement with the introduction of the Insertable
B-Layer in the ATLAS detector that will dramatically increase the

ability to track and vertex particles.
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Chapter 1

Introduction

This thesis is about the Standard Model (SM) Higgs boson and its decay into
a pair of 7 leptons, specifically those that then decay hadronically. The data
used here were collected with the ATLAS detector at the Large Hadron Collider
(LHC) located at CERN.

The Higgs boson arises as a consequence of spontaneous electroweak symmetry
breaking, and when introduced to the SM it gives masses to the massive fun-
damental particles and ensures the internal consistency of the SM. This particle
has been for a long time the missing link of the SM, which, despite this passed
many tests successfully, including the correct predictions of the W and Z boson
masses. It was with great joy to all those involved that in 2012, the Higgs boson
was discovered at the LHC in decays into vector boson pairs. Subsequent anal-
ysis of this particle has shown that it is in agreement with the predictions made
by the Standard Model. The work presented in this thesis focuses on H — 77,
specifically where the tau leptons decay hadronically. This is an interesting point
of research because it is one of the most sensitive channels for the Higgs to couple
directly to fermions.

Chapter [2| gives an overview of some of the theoretical foundations which under-
pin the analysis and physics for the Higgs boson searches. Chapter [3[describes the
LHC accelerator complex and the ATLAS detector, including some of the periph-
eral systems. Chapter [4] discusses how the hadronically decaying 7 leptons are

reconstructed and identified. Chapter 5| overviews a study on the reconstruction



of Z — 7. The final chapter [f] details an analysis focusing on the development of
an improved method for determining the vertices of hadronically decaying 7 lep-
tons. There are some very valid reasons for wanting to study this specific channel,
hadronically decaying 7 leptons have a very high signal acceptance which arises
from the larger branching ratio and the higher invariant mass resolution. This last
point is because there are only two neutrinos involved in the final state. However,
this channel has a very high background from QCD jet production, which can be
easy to miss identify as hadronically decaying 7 leptons. One method to reduce
this background is to search specifically for the Higgs boson with the Vector Bo-
son Fusion (VBF) production method, this means that two highly energetic jets
are produced in line with the proton beam direction. Or, alternatively, to search
for 77 pairs that have a high transverse momentum, to target the Higgs produced
via the gluon-gluon fusion. This makes identification and background rejection
easier.

The personal contributions of the author are the electron veto in chapter[d. Which
consisted of creating a new list of variables to better discriminate against misiden-
tified tau leptons[l]. In chapter |5 I calculated the fiducial acceptance for the
Z — 77 decay channel [2]. Finally in chapter[f]I participated in the development
of the algorithm used to try and better improve the calculation of the missing
mass of hadronically decaying 3-pronged tau leptons. The fourth body of work
which is not mentioned in this thesis, was a dedicated argument parser for the
ATLAS job transforms software, detailed here [3]. This piece of work was purely
software based and not well suited for inclusion into this thesis, nonetheless it
was still a significant amount of work that was undertaken, and contributed to
the experiment as a whole. This work allowed the author to obtain their ATLAS
authorship qualification, allowing them to be included on ATLAS public papers.
The chronology of this thesis is as follows, the contents of chapter |5 were per-
formed in 2011. Inbetween the work in chapter [5] and chapter [4] the author at-
tained his ATLAS authorship qualification that was previously mentioned. The
contents in chapter [4] were performed in 2012 and chapter [f] was performed from
the Winter of 2012 thereafter.



Chapter 2

The Standard Model of Particle
Physics and the Higgs Boson

2.1 General Overview of the Standard Model of

Particle Physics

According to our current understanding of the universe, all of the building blocks
of matter and their interaction through the fundamental forces can be described
by the Standard Model of Particle Physics (SM). This model is an agglomeration
of knowledge and theories that describe the strong, weak and electromagnetic
interactions. It has been vigorously tested and has been found to agree excep-
tionally well with results of numerous experiments.

In the SM all interactions are mediated by exchange of particles, known as force
carriers, these force carriers follow the Bose-Einstein Statistics. Matter is de-
scribed in terms of fermions, particles that follow the Fermi-Dirac statistics. The
fundamental particles are: three families of leptons and quarks, force carriers and
the Higgs boson. The full list of these particles and some of their properties is
shown in figure 2.1 Bosons are mediators of the fundamental forces in physics,
specifically the strong, electromagnetic and weak forces. Each one of these forces

has its own boson:
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Figure 2.1: The Standard Model, showing the elementary particles, with some
of the particles’ properties: mass, charge, colour and spin. The particles that
interact through the strong nuclear, electromagnetic and weak forces are shown.
The graviton, the mediator of the gravitational force is also shown, even though it
is not part of the Standard Model [4].
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e The electromagnetic interaction is mediated by the photon, v, a massless

particle with no electrical charge,

e The strong interaction holds quarks together to form baryons (protons,
neutrons etc.) and mesons (pions and kaons etc.), is mediated by gluons, g.
Gluons are massless, have no electrical charge and have colour charge (or
anticolour charge), referred to as, red, blue or green ( antired, antiblue or

antigreen),

e The weak interaction, which is responsible for some nuclear decays e.g. [

decay, is mediated by the massive charged W=+ and the neutral Z bosons,

e The gravitational interaction is by far the weakest of all the fundamental
forces (inside of the Planck scale 10! GeV) and is not included in the SM.

Fermions (quarks and leptons) are separated into three generations of identical
structure, aside from the particle mass. Amongst the charged leptons, the elec-
tron, e, is the lightest followed by the muon,  and the tau 7. Whilst the electron
is stable, the muon and the tau leptons are both unstable and decay sponta-
neously (with decay times of 2.2 us and 2.9 x 10~"us respectively). They are
all sensitive to the weak and electromagnetic interactions, have integer electrical
charge and are paired with a neutral lepton of the same flavour called a neutrino
(Ve, v, and v,). The quarks have a fractional electric charge of +2/3e (u, ¢ and
t) or —1/3e (d, s and b), they also have a colour charge which is necessary for
their strong interaction which binds them together to form colourless particles,
baryons or mesons. Quarks are also affected by the weak and electromagnetic
interaction, however both of these are considerably less strong than the strong
force so aren’t usually taken into consideration.

The SM is a quantum field theory that is built from the principle that physics
must be invariant under local symmetry transformation (referred to as gauge
symmetry), it provides a framework in which to describe the electromagnetic,
weak and strong interactions based on a combination of local gauge symmetry
groups: SU(2); @ U(1)y ® SU(3)c. The conserved quantities in this case are I,
the weak isospin, Y the weak hyper-charge and C colour.

In the 1960s Glashow, Salam and Weinberg proposed a theory that describes the
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interaction between quarks and leptons, thus combining the electromagnetic and
weak interaction into one, the Electroweak Force [5, [0 [7]. The Electroweak (EW)
theory is based on the gauge symmetry group SU(2); ® U(1)y and postulates
four massless mediating bosons, of which three belong to the non-abelian group
SU(2), and the fourth, is an isoscalar (I = 0) and belongs to the abelian group
U(1) of weak hypercharge.

Additionally to the matter and force mediating particles described above, a scalar
SU(2) doublet is introduced into the SM, this generates a spontaneous breaking
of the Electroweak symmetry. This mechanism allows three of the gauge bosons
to acquire mass, the remaining scalar field from this is called the Higgs field.
Before the discovery in 2012, the mass of the boson associated with this field was
the only unknown parameter of the theory.

Quantum Chromodynamics (QCD) is a theory based on the gauge symmetry
group SU(3)¢, it describes the strong interaction between the quarks. The gauge
bosons which mediate the interaction carry a colour and an anti-colour and be-

long to an octet of the symmetry group SU(3)c.

2.2 Gauge Symmetries in Quantum Electrody-
namics

Quantum Electrodynamics (QED) is a quantum field theory that is based on a
local gauge symmetry. The QED symmetry group is the abelian U(1), a gauge
transformation is defined by applying an arbitrary phase to the state function of

the system (a U(1) transformation), in the following way:
() = ¥y (x) (2.1)

where 1) is a Dirac spinor. The transformation is local due to the dependency of

¢ on the space time coordinate. The Lagrangian that describes a Dirac fermion
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with spin 1/2 and mass, m, is:

LDirac = 1/}(27#8“ - m)¢ (22)

where 7, are the Dirac matrices. The Lagrangian is invariant under a U(1) trans-
formation like that in equation only if the phase, ¢, is an arbitrary real con-
stant. However, considering that this is not the case, and that the transformation

U(1) is local, equation [2.1| does not remain invariant under the transformation:
Y — @9, +ied, )i (2.3)

In order for the gauge invariance to be restored under the local U(1) transfor-
mation a new vector field, A,, is introduced, this transforms in the following
way:
1
A, (x) — AL(I‘) =A,(x) + E(%(b (2.4)

A covariant derivative is defined as:
D, =0, —ieA, (2.5)
This transforms in a way that is similar to that of the field itself:
Dyt — Dy = €Dyt (2.6)

The Lagrangian for a vector field A*, associated with a particle with spin 1, is:

1 1
,C; = _ZFV“ + §m?4A“AM (27)
where F"F = OFAM — Q¥ AY, is the fields kinetic term. The first term of the
Lagrangian is invariant under a local U(1) transformation, conversely the second

term is not. This means that the vector field has to be be massless (m4 = 0), to

keep the local gauge invariance. After introducing the vector field, the resultant
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Lagrangian is one that represents Quantum Electrodynamics:

_ — 1
Lorp = Y(i7,0" —m)y + ey A, — ZFWFW (2.8)

The vector field A, represents the photon field, the Lagrangian describes the in-

teractions between Dirac (fermions) fields and the photon field.

2.3 The Basics of Quantum Chromodynamics

The strong nuclear interaction is based on the SU(3)¢ symmetry group, this
describes the quark colours (of which there are three, and their associated anti-
colours). The gauge fields G, correspond to the 8 generators, T, with all the
possible combinations of colour (and anti-colour), these combinations are identi-
fied as gluons. The gluon gauge fields have self-couplings this means that they
are able to interact with themselves.

The Lagrangian for QCD is:

" . 1 a apv
Locp =Y a7 (Dy)) ik — Mabik) gk — 1 GG (2.9)
where 1), ;, is the quark field for flavour, ¢ carrying a colour, j. The covariant

derivative D,, and the gluon field strength tensor G, are defined as:
Dy = 0y + g, T A? (2.10)

Go, = 9, AL — ,A% — g f AL AC (2.11)

where A? are the gluon fields with index a, where a=1,2 .. 8. The generators
of the SU(3) group are the Gell-Mann matrices T,, which satisfy the algebra
[T, T = ifaTe, where f®¢ are the group structure constants. g, = /4ras,
where «; is the strong coupling constant.

The properties of QCD are often considered strange, specifically the principles

of asymptotic freedom and confinement. The former can be described as when
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quarks and gluons behave as quasi-free particles at high energies or at short
distances. The latter is when the same particles are at low energies or at large

distance, in these conditions they are confined into hadrons.

2.4 Electroweak Theory and the Higgs Mecha-

nism

2.4.1 Electroweak Theory

The combined theory of electromagnetism and the weak nuclear force, known
as Electroweak (EW) theory, is based on the gauge symmetry group SU(2); ®
U(l)y. As was previously stated, the SU(2); group has the weak isospin (I)
as its conserved quantity and the U(1)y group has the weak hypercharge (Y)
as its conserved quantity. These conserved quantities are connected to the non-

conserved quantity, electric charge (Q) by:
Y
Q=1I+3 (2.12)

where I3 is the third component of the weak isospin.

EW theory is constructed under the principle of gauge invariance, in a similar
fashion as described for QED in section [2.2] There is only one gauge field that is
associated to the U(1)y symmetry, B, and three fields associated to the SU(2);
group, WL These Wﬁ fields only couple to the left-handed component of the
fermion fields, the B, gauge field couples to both left and right-handed compo-
nents, ¢ and ¥g.

The EW Lagrangian has to be invariant, this is ensured by introducing the deriva-

tives D,,;, and D,r. These are defined as follows:

. 0j 7 . Y
Duror = (0, + ngWM + zg’éBu)wL (2.13)
YR
D“R@DR = (a“ + g 7.8“)77[)3 (214)
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where g and ¢’ are the coupling constants of SU(2); and U(1)y respectively. o;
are the Pauli matrices, and Y7, and Yx are the weak hypercharges for the left and
right-handed components of the fermion fields.

From this we can then formulate the full Lagrangian for EW theory as being:

1

N e ]- 7 v 7 v
Lew = Wy Dyrhr + thpy" Dyrtor — ZWNVVV%H - ZB,WBZH (2.15)

where the first two terms describe the kinetic terms for the interaction between
fermions and the gauge fields and the last two terms are the gauge field terms,

which can be further described with:
W, =0.W, — 9,W, — ge"*WIW} (2.16)

B, =08,B,—0,B, (2.17)

where €% are the SU(2); structure constants. The electroweak gauge bosons, 7,

Z and W#* are linear combination of the four gauge fields, which are described
by:

A, = B, cos Oy + Wj’ sin Oy (2.18)

Zy = —Bysin Oy + W, cos Oy (2.19)
Wl Ww?

W= et (2.20)

8 V2

The Weinberg angle (or weak mixing angle), 0y, is defined as:

/

9

cos by = ——— (2.21)
/g2 +g/2
sin Oy = ——2 (2.22)

/g2 + g/2
In the same way as in section 2.2, the EW Lagrangian (equation [2.17]) describes

fermions and gauge bosons as massless, because inserting a mass term into the

Lagrangian would break gauge invariance. However, the W= and Z° bosons that

10
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mediate the weak interaction are known to be massive from experimentation,
having a mass of approximately 80 and 90 GeV respectively. To fix this problem,
Higgs [8] [9] [10], Brout and Englert [IT] and others [I2] proposed in 1964, the
mechanism for the spontaneous breaking of the symmetry, more often known as

the Higgs Mechanism.

2.4.2 The Higgs Mechanism

The Higgs mechanism, introduces a doublet of complex scalar fields to the EW

R £ W S R S 1o
o= (w) -5 (0 i0) 22

where ®* and ®° are a charged and a neutral field respectively. The scalar field

theory:

&y is introduced into the EW Lagrangian via:
Ly = (D'dy) (D, ®y) — V(Py) (2.24)
where the covariant derivative has the form:
. 0; i . /Y‘I>H
D, @y = (0, + ngWu +ig TB#)CI)H (2.25)
V(®p) is a potential, that is defined as:
V(®y) = —p2dh &y + MO, Dp) (2.26)

In Diagram a representation of the potential can be seen for p? < 0 and
A > 0. The negative sign of the p? term forces @y to take a non-vanishing
vacuum expectation value. The ground state of the Higgs field is given by the
minimum of the potential. One state is chosen as the reference for the local gauge

transformation, it is formulated as:

1

(I)min = =
V2

(2) (91 = ¢2 = ¢ = 0,03 =) (2.27)

11
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Figure 2.2: The Higgs potential V(®x) in the R(Pr) — I(Ppy) plane [13].

where v = \/,uQ—/)\ is referred to as the “vacuum expectation value” of the Higgs
field. This minimum, or ground state of the Higgs field is not invariant under
SU(2) @ U(1), and therefore the gauge symmetry of this system is broken spon-
taneously. However, ®,,;, has to be kept invariant under U(1) so that the electric
charge is a conserved quantity and that the photons remain massless. This is
achieved by assigning a weak hypercharge to ®, from equation therefore it

follows that the component, v, has to be neutral.

2.4.3 The Standard Model Higgs Boson

The Higgs field can be parametrised using four real fields 6, (where a = 1,2,3)

and H (z), formulated as:

o 1 10%04 () 0

The fields 6, are known as Goldstone bosons, these are absorbed by a unitary
gauge transformation of the W} fields. This process is colloquially described by
saying that the Goldstone bosons have been eaten by the gauge fields. This forms
the longitudinal components of the W* and Z weak gauge bosons. With this,

12
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these gauge bosons have gained mass.
Substituting equations [2.19] [2.20[ and [2.28]into the Lagrangian shown in equa-
tion you obtain the following Lagrangian for the Higgs:

1
Cu = 50"HO.H + (5)

-V (®g)
(2.29)

The mass terms for the Z and W= bosons are provided by the symmetry breaking,

2 2

2 (WIWHr + W, W) g \° 212,
2 cos Oy

and are related by the weak mixing angle, thus the coupling constant g via:

my = cosbyymy = % (2.30)

Using equation for the potential term, V(®y), one can obtain the Higgs

mass:

my = v/ —2u2 = V22 (2.31)

The vacuum expectation value is, v = /2 /VGr = 246 GeV, this result is from

Gr _ g
P V2 T O8ME
The fermion masses can be introduced through the Higgs field and Yukawa in-

the relation of the Fermi coupling constant

teractions, these have a coupling (Af) that is proportional to their mass and to

the value of the vacuum ground state:

_ A

NG (2.32)

mpy

This leaves the couplings of the Higgs to all the other particles to be well defined

and easy to calculate, after the fermion mass is measured.

2.5 Constraints on the SM Higgs Boson Mass

The Higgs mass is a free parameter of the SM, there are however some theoretical
constraints that can be placed on it, that are derived from assumptions on the
energy range where the SM is valid, that is to say before perturbation theory

breaks down. Experimental constraints come from the direct searches that were

13
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performed at LEP, Tevatron and the LHC, and from experimental measurements

of some of the other SM parameters that have correlations with the Higgs mass.

2.5.1 Theoretical

The main theoretical constraints for the Higgs mass are discussed in this section.
Perturbative

The interactions of the longitudinal components of the massive gauge bosons
increase with their momentum, therefore cross-sections of processes that involve
them lead to energies that would violate unitarity. The best example of this
is elastic WW scattering. When the Higgs mechanism is introduced into this
process, it balances against the contribution that increases with the scattering
energy. Furthermore, it is important to consider that since the WW can couple
with other processes, such as ZZ, HH, ZH, W™ H and W Z, this constrains the
Higgs mass with an upper limit of approximately my < 700 GeV. Simply put,
this means that if the mass of the Higgs boson is greater than 700 GeV, unitarity
would have to have been violated, unless there were some new phenomena that
would restore this principle.

Triviality

The masses and couplings that appear in the SM Lagrangian depend on the
energy. Additionally, the Higgs coupling monotonically increases proportionally
to the energy scale, this leads to constraints on this coupling and therefore on the
Higgs mass. The variation of the Higgs coupling (\) with the energy scale |Q| is

described by the renormalisation group equation:

d 3
dT?ZA(@% = RV(QQ) + ... (2.33)

This equation can be solved by choosing as a reference point the energy at which

the electroweak symmetry breaking scale, Qg = v, i.e.:

AQ2) = A1) (1 _ %A@?) log (—))_1 (2.34)

14
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Equation [2.34] shows that the coupling increases logarithmically with respect to
Q*. When the energy is much smaller than the electroweak symmetry breaking
scale (Q? < v?), the coupling becomes negligibly small to the point of vanishing.
When this occurs it is said that the theory is trivial, that is to say that there is
no longer any interaction since the coupling is zero. In the opposite limit, when
the energy is much higher than the weak scale (Q? > v?), the coupling grows to

the point of infinity, creating a Landau pole:
Ag = ve'™ /3 = et vt Mi, (2.35)

Inside this the energy scale limit the SM is valid. This means that below the
energy cut-off, Aq, the self-coupling (\) remains finite. For a large value of A,
the Higgs mass is required to be small to avoid a Landau Pole. Conversely, a
small A¢ implies that a large Higgs mass is required. Setting the cut-off to be
equal to the Higgs mass (my = A¢), the Higgs mass has to be smaller than 700
GeV, to have the coupling remain finite.

Similar to the perturbative constraints from the WW scattering (when A or My
are too large) perturbation theory can no longer be used and this constraint is
no longer valid. However, from gauge theory simulations of lattices, where non-
perturbative effects are taken into account, the mass limit is calculated to be
My < 640 GeV [14].

15
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Figure 2.3: Diagrams showing one-loop contributions of fermions and gauge (Vec-
tor) bosons to A

Stability Whilst talking about the triviality constraint, only the contribu-
tions from the Higgs boson itself are included in the calculation of the coupling,
A. When additional contributions from gauge bosons and fermions, as can be
seen in figure 2.3 are included the coupling A must not be small. If this was
not the case then the vacuum would have the scalar potential V(Q?) < V(v),
as this has no minimum it would mean an unstable vacuum. This puts a strong
constraint on the Higgs boson mass, depending on the value of the cut-off Ac.

Figure shows the stability (lower band) and triviality (upper band) con-
straints, which provide an allowed range of My as a function of the scale of new
physics, Ag. If this is at the TeV scale then the Higgs boson mass is allowed in
the range:

50GeV < My < 800GeV (2.36)

This requires the SM to be valid up the scale of the Grand Unification theory,

Acur 101 GeV, otherwise the Higgs boson mass would be in the range of:

130GeV < My < 180GeV (2.37)

16
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Figure 2.4: The triviality boundary (red) and the vacuum stability boundary
(green) on the Higgs boson mass as a function of the new physics or cut-off scale
for a top quark mass (m; = 175+ 6 GeV and as(MZ) = 0.118 + 0.002). The
allowed region lies between the bands [15].

Fine-tuning constraint
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Figure 2.5: Diagrams showing one-loop corrections to the SM Higgs boson mass.

The fine-tuning problem comes from radiative corrections to the Higgs boson
mass, these are shown in Figure 2.5 which can involve fermions, massive gauge
bosons and Higgs boson loops. Cutting off the loop integral momenta at a scale

A, keeping only the dominant contributions in this scale the following relation
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2.5 Constraints on the SM Higgs Boson Mass

was found:
2

AM? = ﬁ [ M7+ 2M3, + M} — 4m;] (2.38)
In this only contributions from top quark loops are retained. Equation [2.38|shows
an unusual phenomena within the SM. There are some quadratic divergences in-
stead of the more usual logarithmic ones discussed in previous sections. In the
case of a very large cut-off A, around 10 GeV, there has to be a very fine ar-
rangement between the Higgs mass and the EW corrections to have a physical
My in the range of the EW symmetry breaking scale. This results in My being
in a range from 100 GeV to 1 