A MUON STORAGE RING FOR NEUTRINO OSCILLATIONS EXPERIMENTS

David Cline University of Wisconsin, Madison, WI 53706

David Neuffer Fermilab,* Batavia, IL 60510

ABSTRACT

 μ^{\pm} decay in a μ^{\pm} Storage Ring can provide ν_{e} , ν_{μ} beams uniquely suitable for the study of ν oscillations. The Fermilab \bar{p} precooler is studied as a possible first μ storage ring.

INTRODUCTION

Recent experimental reports^{1,2} of a non-zero v_e mass and of possible \overline{v}_e oscillations reveal the need for more complete study of neutrino properties. Previously, accelerator v beams have been muon neutrino (v_{μ}) beams from $\pi \rightarrow \mu v_{\mu}$. In this paper we note that a muon storage ring (see Figure 1) can provide v_e and \overline{v}_{μ} beams from $\mu \rightarrow e$ $v_e \overline{v}_{\mu}$ as earlier suggested by Wojicicki and Collins.³ We further note that a μ storage ring provides clean v beams of precisely knowable flux, and therefore an excellent tool for the study of v_e and v_{μ} oscillations.

DESCRIPTION OF A μ STORAGE RING

We also note that the Tevatron \overline{p} precooler (see Figure 2) inescapably functions as a 4.5 GeV/c μ storage ring during the first ms of its cycle, and that its large acceptance designed for \overline{p} acceptance make it a very good storage ring, and therefore a candidate for use in the first experiment of this type.

The 80 GeV proton line, the production target, the transport 13 line and the pre-cooler are shown in Figure 2. Pulses of 1.8 x 10¹³ protons are focussed on the target producing many secondary particles (π ,k,p, etc.) which follow the transport line to insertion in the ring. The production is dominated by π 's which decay (π + μ ν) and a substantial number of the decay muons will circulate in the ring, a first estimate indicates 10¹⁰ μ .⁴ The decay of these muons in precooler straight sections will provide collimated ν and $\overline{\nu}$ beams with \sim 8 x 10⁸ ν per beam per p pulse.

*Operated by the Universities Research Association, Inc., under contract with the U.S. Department of Energy.

0094-243X/81/680856-02\$1.50 Copyright 1981 American Institute of Physics

Figure 1: A μ Storage Ring.

Figure 2: The \overline{p} Precooler/ μ Storage Ring.

Modifications of the precooler to increase and acceptance and to increase the decay straight section length could increase this flux by a factor of ~ 10 and the_proton pulse period of 10 seconds can be reduced from 10 seconds with p cooling (parisitic \vee beam) to two seconds (dedicated mode). These intensities and designs are discussed in Reference 4, and will be improved in future work.

EXPERIMENTAL COMMENTS

The precooler μ storage ring can provide adequate event rate for a variety of experiments. A 100 ton detector, 0.5 km away will receive $\nu 4-400$ events/day with 5 x 10^8 - 5 x 10^9 ν $\bar{\nu}_{\mu}/{\rm pulse}$, 10^4-10^5 pulses/day. The Fermilab 15' bubble chamber could also observe events. A suitable compromise between detector size, sensitivity, and cost is left as a challenge to interested experimenters. Since the ν flux can be precisely known from monitoring the decaying muon current, the μ storage ring can provide a unique tool for future ν experiments.

REFERENCES

- 1. F.H. Reines, et al., this proceedings.
- 2. V.A. Lyubimov, et al., ITEP-62, submitted to Yadernaya Fizika (1980).
- 3. S. Wojcicki, unpublished (1974), T. Collins, unpublished (1975).
- 4. D. Cline and D. Neuffer, paper contributed to XX International Conference on High Energy Physics (1980).