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Abstract

The Standard Model of particle interactions triumphed when the discovery of the Higgs bo-

son was announced by the CMS and ATLAS collaboration at the Large Hadron Collider July 4th,

2012. The Standard Model has been very successful, but has limitations as well as some aes-

thetic problems. Many of these problems are related to the Higgs field. By replacing the Higgs

sector of the Standard Model with a new strongly coupled sector some of these problems can

be solved. These new strong interactions are referred to as Technicolor interactions.

In this thesis we present results from lattice studies of two concrete Technicolor models,

the SO(4) fundamental Minimal Walking Technicolor (MWT) model and the SU(3) sextet MWT.

After motivating this type of models by discussing some experimental constraints, we present

results from our numerical investigations of their spectra. Our results disfavor the existence of

an infrared fixed point in either model.

This thesis also contain a presentation of our attempt to accelerate Monte Carlo simula-

tions of lattice gauge theories, by performing the calculations on graphics processing units

(GPUs). We discuss several optimizations and test the performance using as test cases SU(2)

gauge theories with Wilson fermions transforming in the fundamental and adjoint representa-

tion.
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Resumé

Partikelfysikkens Standardmodel triumferede da opdagelsen af Higgs bosonen blev annonceret

af CMS og ATLAS sammenslutningerne ved Large Hadron Collider den 4. juli 2012. Standard-

modellen har været meget succesful, men har sine begrænsninger og skønhedsfejl. Mange af

disse problemer er relateret til Higgsfeltet. Ved at erstatte Standardmodellens Higgssektor med

en ny stærkt vekselvirkende sektor kan nogle af disse problemer løses. Disse nye stærke vek-

selvirkninger kaldes Technicolor interaktioner.

I denne afhandling præsenterer vi resultater fra studier af to konkrete Technicolor modeller

formuleret på et gitter: SO(4) fundamental Minimal Walking Technicolor (MWT) modellen og

SU(3) sekstet MWT modellen. Efter at motivere modeller af denne type ved at diskutere nogle

eksperimentelt fastsatte begrænsninger, præsenterer vi resultater fra vores numeriske under-

søgelser af deres spektre. Vores resultater antyder, at spontant, globalt symmetribrud finder

sted i begge modeller.

Denne afhandling indeholder også en præsentation af vores forsøg på at accelerere Monte

Carlo simuleringer af gitterfeltteorier ved at udføre beregninger på grafikprocessorer (GPU’er).

Vi diskuterer forskellige optimeringer og tester ydelse på en SU(2)-model med Wilson fermioner

i den fundamentale og adjungerede repræsentation af gaugegruppen.
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Notation, conventions and

abbreviations

In this thesis all results and calculations are performed in natural units

ħ= 1 = c .

Similarly,when presenting results from lattice calculations it will always be in units of lattice

spacing a such that the correct dimensions are recovered.

ABBREVIATIONS

BSM Beyond Standard Model

ChPT Chiral Perturbation Theory

ETC Extended Technicolor

FCNC Flavor Changing Neutral Current

HPE Hopping Parameter Expansion

SCE Strong Coupling Expansion

SM Standard Model

TC Technicolor

WChPT Wilson Chiral Perturbation Theory
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1Introduction

The Standard Model(SM) of particle interactions is very successful in describing almost all ob-

servations in the realm of particle physics. The model is guided by the gauge principle which

means that interaction terms are forced by making certain symmetries local. One example is

the symmetry between the quarks of different color. The localization of this symmetry forces

the 8 gluons in the theory along with the interactions among quarks and gluons. This sector

of the standard model is referred to as the Strong Interactions and is described by Quantum

Chrome Dynamics(QCD).

Even though the gauge principle has served as a guide to the construction of the Standard

Model, not all interaction terms are derived from this. This has to do with the Higgs field,

which is a special ingredient in the SM since it is a scalar field. All remaining fields, the quarks,

leptons and neutrinos are all fermions. The existence of a scalar field allows for the existence

of renormalizable interactions of Yukawa type. That is, interactions between the Higgs field

and two fermionic fields. All the matter fields are listed in table 1. The gauge principle does

not demand the Yukawa interactions, but they are there nonetheless. This poses a problem of

aesthetic nature1. Especially since the Yukawa interactions adds to the SM a large number of

independent numerical constants distributed over several orders of magnitude.

Another problem of aesthetic character also arises as a consequence of a scalar field in the

Standard Model. The Higgs mass receive severe quantum corrections and develops power low

dependence on the scale at which new physics occur. Now, if no new physics where to be

expected then this would not be a problem. However, gravity provides a universal regulator,

the Planck scaleΛ∼ 1019 GeV.

Already it seems that the scalar Higgs field is stirring up a bit of trouble. And it does not end

here. Perturbative renormalization tells us that the Higgs quartic coupling becomes negative

1Aesthetics is matter of opinion. Here, the only opinion taken into account is that of the author
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at very high scales. If we were to trust this all the way to the Planck scale we would conclude

that the Universe is in a metastable state[1, 2, 3].

Of course the Higgs has a role to play. It is needed in order too give mass to the Standard

Model particles. In particular to the Z and the W bosons, but also the quarks and leptons. In

total, three massless degrees of freedom are needed to provide the longitudinal components of

the massive gauge bosons. An additional degree of freedom must acquire a vacuum expecta-

tion value in order to provide a mass scale.

A simpler, but very similar picture, is the Ginzburg-Landau model of superconductivity.

In superconductivety we deal only with one gauge boson, the photon, and it is given a mass

by a complex scalar field. In this case the angular part of the field provides the longitudinal

photon component and the radial part acquires an expectation value. This is the spontaneous

breakdown of the U(1) gauge symmetry of electromagnetism.

In the Higgs sector of the standard model, the symmetry breaking pattern is different. The

weak and hypercharge gauge group SU(2)L ⊗ U(1)Y is broken to the electromagnetic U(1)EM.

The initial symmetry had 3+1 generators whereas the U(1)EM only has one. According to to the

Goldstone theorem[4] this gives rise to exactly the three massless degrees of freedom needed

for the longitudinal components of the Z and W bosons. The Higgs vacuum expectation value

v = 246 GeV provides the mass scale.

1.1 A NEW STRONG SECTOR

In this section we will briefly describe how a new strong sector, referred to as Technicolor, can

replace the fundamental Higgs. A Higgsless Standard Model would in fact break electroweak

symmetry by the formation of a quark condensate 〈q̄q〉 6= 0 mediated by Strong interactions.

The associated Nambu-Goldstone bosons[4, 5], the pions, would provide the longitudinal com-

ponents of the W ’s and Z . The masses of the W and Z would be proportional to the pion decay

Name Symbol U(1)Y SU(2)L SU(3)S Spin

3× Left handed quarks qL = (uL dL) 1
6 ä ä 1

2
3× Right handed up-type quarks uR

2
3 1 ä 1

2
3× Right handed down-type quarks dR −1

3 1 ä 1
2

3× Left handed leptons lL = (eL νL) −1
2 ä 1 1

2
3× Right handed leptons eR −1 1 1 1

2
1× Higgs H 1

2 ä 1 0

Table 1: Standard Model matter field content

10



constant fπ. In fact it would replace the vacuum expectation value of the Higgs field in the

expression for the mass

MW or Z ∼ g v → g fπ , (1.1)

where g is the weak gauge coupling. The problem with this picture is that fπ ' 93 MeV whereas

v ' 246 GeV so the Z and W’s would be much too light. Early versions of Technicolor[6, 7] was

therefore to a certain extend scaled up versions of QCD. This picture has changed today.

In the 1970’s, when Technicolor(TC) was developed, the top quark had not been discovered

yet and was not expected to be nearly as heavy as it turned out to be. Technicolor was therefore

not intended to give mass to fermions. Today the framework in which the origin of fermion

masses is explained is called Extended Technicolor (ETC). The ETC interactions couples to both

ordinary SM fermions and to techniquarks. The ETC gauge group is supposed to break down to

the ordinary Technicolor group at some scaleΛETC. The SM fermion mass terms in a low energy

effective theory will be non-renormalizable four fermion operators suppressed byΛ2
ETC.

mSM fermion ∼ g 2
ETC

〈q̄TCqTC〉|ΛETC

Λ2
ETC

. (1.2)

〈q̄TCqTC〉|ΛETC is the technifermion condensate evaluated at the ETC scale. At this point Tech-

nicolor is facing a problem. Four fermion interactions involving only SM fermions will also

appear with same appearant suppression by the ETC scale. This will give rise to flavor chang-

ing neutral currents (FCNC) which are highly constrained experimentally[8]. This means that

the ETC scale must be ∼ 103 TeV or higher. If Technicolor is simply a scaled up version of QCD,

the Top quark would be too light due to theΛ2
ETC suppression.

This led to the idea of Walking Technicolor[9, 10] models in which the dynamics is not QCD-

like, but rather quasi conformal. This means that the coupling runs very slowly, i.e. walks,

between the TC scale and the ETC scale. The techniquark condensate would then be power

law enhanced by renormalization effects between the TC and the ETC scale

〈q̄TCqTC〉|ΛETC
= 〈q̄TCqETC〉|ΛTC

(
ΛETC

ΛTC

)γ∗
. (1.3)

γ∗ is the anomalous dimension of the fixed point governing the dynamics in the walking re-

gion. That is, the fixed point at the critical number of flavors N∗
f where the model develops

an infrared fixed point. The flavor content of the walking model will be slightly lower2 but the

dynamics in the walking region is assumed to resemble that of the nearby fixed point.

2Actually the pure Technicolor model might be conformal, but driven away from conformality by ETC induced
four fermion interactions. This is referred to as ideal walking[11].
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This is different from QCD-like theories where the condensate enhancement is only loga-

rithmic.

We have now seen how Technicolor has adapted to survive the constraints on FCNCs. An-

other assassination attempt on the Technicolor idea came from electroweak precision con-

straints. Experiments like LEP I, LEP II, LHC and Tevatron can measure electroweak precision

parameters and infer stringent and somewhat model independent constraints on new physics.

This discussion can be rather lengthy, but we will only touch briefly on the subject to motivate

the choice of models that we study.

In the above mentioned collider experiments, the external fermions are light compared to

the Z mass. As a consequence the qµqν part of the propagators are suppressed in processes in-

volving the electroweak gauge bosons. This means in turn that direct corrections from beyond

the Standard Model (BSM) are suppressed. In other words the so called oblique corrections will

be the dominating effect from new physics. Oblique corrections are electroweak gauge boson

vacuum polarization effects. A classic review is the one by Peskin and Takeuchi[12] and some

original work on the subject is [13, 14, 15]. There are many ways for experiments to estimate,

or rather constrain, the size of the oblique BSM corrections.

Consider the weak mixing angle θw . At tree level this is simply determined by the the ratio

between the Z and the W masses.

cos2θW = M 2
W

M 2
Z

= 0.2233 (def. 1). (1.4)

In fact we could promote this relation to be the defining relation of the renormalized mixing

angle. This is referred to as the on shell scheme. However there are equally good definitions.

For instance

sin2θw =
√

4παSM*(M 2
Z )p

2GFM 2
Z

(def. 2). (1.5)

where αSM*(M 2
Z ) is the fine structure constant calculated at the MZ scale from SM contributions

to the running. GF is the Fermi constant which can be measured very precisely from muon

lifetime.

Several other definitions could be chosen. Had we known all the the relevant corrections

to these quantities we could calculate one from the other and the weak mixing angle would be

highly overdetermined. This is exactly the point. The discrepancy between various determina-

tions of this quantity tells us something about the size of the corrections we do not know. In

this way we can parametrize our ignorance of the BSM corrections. For instance, the difference

12



between the two definitions above gives

cos2θdef 1
W −cos2θdef 2

W = αc2

c2 − s2

[
− 1

2
16π

(
Π′

33(0)−Π′
3Q (0)

)
︸ ︷︷ ︸

≡S

+ c2 4π

s2c2M 2
Z

(
Π33(0)−Π3Q (0)

)
︸ ︷︷ ︸

≡T

+ c2 − s2

4s2 16π
(
Π′

11(0)−Π′
33(0)

)︸ ︷︷ ︸
≡U

]
,

(1.6)

where c ≡ cosθW, s ≡ sinθW and ΠX Y (q2) is the coefficient in front of the metric in the vacuum

polarization amplitude ΠµνX Y (q2) =ΠX Y (q2)gµν+∆X Y (q2) qµqν

q2 . The X ,Y takes values 1,2,3,Q

where 1,2,3 relates to the generators of SUL(2) and Q to the generator of a linear combination

of ’3’ and hypercharge. S, T and U are the Peskin-Takeuchi parameters. They are all finite and

they provide a parametrization of the oblique SM and BSM effects on electroweak precision

observables. The SM contributions to S, T and U can be calculated leaving the unknown BSM

corrections as parameters which are then experimentally constrained. Note that the Peskin-

Takeuchi parametrization is not unique.

The S parameter is particularly sensitive to Technicolor extensions of the Standard Model.

The Gfitter project[16] provides a global analysis of the electroweak precision constraints on

S, T and U . They find that an S parameter above ∼ 0.3 is incompatible with data regardless

of the value of the T parameter. The U parameter is not very sensitive to new physics and is

projected away in this analysis. The T parameter is a measure of isospin violation and since

isospin symmetry is broken in the Standard Model a complete ETC theory must violate isospin

and therefore give contributions to the T parameter. In this thesis ETC models will not be dis-

cussed, but the bound on S . 0.3 will be present nonetheless. This bound on the S parameter

is to be interpreted as the difference upon replacing the Higgs sector with a Technicolor sector.

Thus we need to subtract the Higgs contribution before adding the TC contribution. We refer

to a recent paper [17] for a detailed discussion of this issue. To get an intuition about the inter-

pretation of the S parameter we can have a look at the result in perturbation theory. A 1-loop

evaluation was done by Peskin and Takeuchi in [14]

S1-loop = Nfd [r ]

12π
, (1.7)

where d [r ] is the dimension of the representation of the gauge group under which Nf degener-

ate fermions transform. Note that the definition used here uses the zero external momentum

limit when evaluating the vacuum polarization amplitudes. In other papers[18, 19, 20] the ex-

ternal momentum is kept as a parameter. This computation can not be trusted outside the
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Bank-Zaks regime with an infrared fixed point at small coupling. However, this naive compu-

tation suggests an interpretation of the S parameter as a measure of the size of the TC sec-

tor. Consequently when picking candidate technicolor models, one should choose so called

minimal models. That is, models with a minimal choice of technicolor charged matter. We

can use the 1-loop calculation (1.7) as a naive guide in our choice of models, but a full non-

perturbative calculation of the S parameter is required once the models have been selected.

Such non-perturbative evaluations in lattice gauge theories have been performed by Boyle et

al.[21], DeGrand[22] and the LSD collaboration[23].

On the lattice, many different scales are present and it is important to evaluate the S param-

eter in the correct regime. For instance, the computation will necessarily be performed at finite

external momentum, but also temperature will enter the problem. In [20] we have suggested

a suitable generalization of the definition of the S parameter and evaluated it in perturbation

theory.

Minimal Walking Technicolor models

We have now discussed how we should pick candidate technicolor models. This can be sum-

marized very briefly

Minimal Our models should have a minimal amount of TC matter to survive constraints from

electroweak precision measurements.

Walking Our models must have walking dynamics in order to explain the top quark mass while

not violating the experimental bounds on flavor changing neutral currents.

Appearantly, these two ideas is at some tension with one another, since more TC fermion fla-

vors are needed to get close to an IR fixed point and walking dynamics. To meet both demands,

models with fermion matter in higher representations of the technicolor gauge group is an at-

tractive option[24]. In this thesis we will present non-perturbative lattice studies of two mod-

els of Minimal Walking Technicolor (MWT). The SO(4) fundamental MWT and the SU(3) sextet

MWT. Both models have two technifermion flavors.

Before discussing our findings in chapter 5 and 6 we will briefly introduce the lattice action

(chapter 2) and how findings in a lattice gauge theory can be related to the physical system

(chapter 3). In chapter 4 a more technical presentation is given of how graphics processing

units (GPUs) can be used to accelerate lattice simulations. Finally, in chapter 7 we summarize

and discuss future perspectives.
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2Gauge Theories on a Lattice

A thorough introduction to the euclideanized path integral and various discretisation tech-

niques can be found in many good textbooks like [25, 26]. To exhaust this subject is beyond the

scope of this report. We will however summarize very briefly the formulation of fermions on a

spacetime lattice.

2.1 PATH INTEGRAL REPRESENTATION OF FERMIONIC MATTER

Disregarding the 125 GeV Higgs resonance observed at the LHC[27, 28] , which might or might

not be a fundamental object, all elementary matter fields observed in nature are fermionic.

The models analysed in our work are those of technicolor interacting fermionic matter, so we

can deploy techniques which have been developed for the analysis of QCD. The generating

functional of the Greens functions, i.e. the path integral, will involve integration over anti-

commuting fields.

{ψa ,ψb} = 0, (2.1)

where a and b indexes the fermionic degrees of freedom. They could for instance represent

flavors. (2.1) is the Grassman algebra. The Grassman algebra makes integration quite trivial

since power series of functions over Grassman variables will terminate at first order. The only

integration rules needed are therefore∫
dψ= 0 and

∫
dψψ= 1. (2.2)

The integration measure dψ is to be regarded as a Grassman variable as well. As a consequence

the generic Gaussian integral can be written as∫
dχ1 · ... ·dχN dψ1 · ... ·dψN e−χa Mabψb = det M , (2.3)
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where χa and ψa , a = 1, ..., N are Grassman variables. Note that the corresponding bosonic

gaussian integral is ∫
dφ1 · ... ·dφN e−

1
2φi Mi jφ j = (2π)N /2

p
det M

. (2.4)

Indeed, the generating functional for the fermionic techni quark degrees of freedom will be of

gaussian type. We can evaluate the correlation functions through integrals of the type∫
DχDψ

L∏
i
ψai

L∏
j
χa j e−χa Mabψb , (2.5)

where Dψ is shorthand for dψ1 · ... ·dψN . The products involve some subset of the Grassman

variables. The integral can be reexpressed as

(−1)L(L−1)/2 det M
∑
{P }

(−1)σP
L∏

i , j

(
M−1)

ai bP j
. (2.6)

σP is the sign associated with the permutation P arising when commuting the Grassman vari-

ables. The actual correlation functions are normalised by Z = ∫
DχDψe−χa Mabψb = det M . In

particular

〈ψaχb〉 =
∫

DχDψ
∏L

i ψai

∏L
j χa j e−χa Mabψb∫

DχDψe−χa Mabψb
= (

M−1)
ab . (2.7)

This is all we need to know about generating functionals of fermionic variables. We can now

write down the fermion action explicitly and introduce gauge interactions.

2.2 GAUGE INTERACTIONS

The continuum action of interest to us have the form

S =−
∫

d 4x

(
1

4g 2 TrFµνFµν− q̄(i /D −m)q

)
. (2.8)

where

Fµν
a = ∂µAν

a −∂νAµ
a + g fabc Aµ

b Aν
c , (2.9)

is the field strength tensor of the (techni) gluon field and fabc is the structure constants of the

Gauge group. /D is the covariant derivative contracted with the Dirac γ matrices

/D = γµ(∂µ+ i g Ai
µτ

i
R) , (2.10)

where τi
R, i = 1, ...,d [G] is the generators of representation R of the gauge group. The Minkowski

space path integral is

Z =
∫

D ADq̄Dqe i S . (2.11)
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Source terms can be added for the gluonic and both fermionic fields in order to use Z as a

generating functional. At this point we define a corresponding field theory living in euclidean

space-time by making the substitution (x0 →−i x0, A0 → i A0). This implies that∫
d 4x TrFµνFµν→ i

∫
d 4x TrFµνFµν , (2.12)∫

d 4xq̄(i /D −m)q →−i
∫

d 4xq̄( /D +m)q , (2.13)

and we can define the euclidean action as

SE =
∫

d 4x

(
1

4g 2 TrFµνFµν+ q̄( /D +m)q

)
. (2.14)

such that S = i SE and Z = ∫
D ADq̄Dqe−SE . We notice that we could formally integrate out the

fermion fields using the Grassman gaussian integral formula (2.3), but before doing that we will

briefly discuss the discretisation of the action to a hypercubic space-time lattice.

2.3 LATTICE FORMULATION

There are many discretisation strategies, but in our work we have used the Wilson prescription

exclusively.

The Wilson lattice action is

SE,L =
∑

j ,x,y
q̄(x)D(U , x, y)q(y)+β∑

ä

[
1− 1

Nc
TrUä

]
. (2.15)

D(U , x, y) is the Wilson-Dirac matrix which is a particular choice of discretization of the Dirac

operator + the fermion mass term. Uä is the plaquette operator constructed from the product

of four matrices Uµ(x) associated with the links between adjacent lattice sites. Uµ(x) has the

interpretation as the parallel transport of the gauge field from site x to the µ-neighbour site.

Uµ(x) = exp

(
i g

∫ x+aµ̂

x
d zµAµ(x)

)
(2.16)

We note that in the continuum limit, that is a → 0 we recover the continuum (euclidean) action

SE,L
Continuum−→

∫
d 4x

(
1

4g 2 FµνFµν+ q̄( /D +m)q

)
. (2.17)

When formulating the fermion action on the lattice there will always be some compromise

involved. The Nielsen-Ninomiya theorem[29] tells us that it is impossible, on a lattice, to for-

mulate a chirally and translationally symmetric, real bilinear fermion action which is local and

doubler-free. Doublers are extra fermion degrees of freedom arising in the continuum limit of

a naively discretized fermion action.
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What we are looking for is exactly a lattice action with the above mentioned properties, but

since this is not possible we must settle for a compromise. When using Wilson fermions we

have sacrificed chiral symmetry. Therefore, putting the bare fermion mass term to zero in the

action will not correspond to zero physical quark mass. The Wilson prescription introduces

additive renormalization, which must be compensated by shifting the bare quark mass to a

negative value. For each value of the coupling β there is a critical bare mass mC < 0 which

exactly cancels the additive renormalization. This critical mass can be estimated in perturba-

tion theory[30], but it is necessary to do a scan in the bare mass m0 calculating the physical

quark mass in order to get the correct non-perturbative value. The Wilson prescription has

the advantage that it is fairly simple to implement and the fact that it is strictly local makes it

numerically light.
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3Approaching physics from the

lattice

It is in the nature of the lattice approach that simulations are performed at:

1. Finite volume.

2. Non-zero lattice spacing.

3. Non-zero quark mass.

All of which are aspects in which the simulated system differ from the physical system we ulti-

mately aim to study. These issues has of course been given a lot of attention through the years,

but since we are using Wilson fermions a relevant discussion is [31]. The non-zero quark mass

is actually a true feature of QCD, so in lattice QCD only the lattice spacing and finite volume

differ from the physical system. However, due to limited computing resources, for many years

it has not been possible to simulate quarks as light as the Up and Down. Studying lattice tech-

nicolor, we are interested in the zero quark mass limit.

In this chapter, the discussion will be directed towards spectrum calculations in the chi-

rally broken phase. Usually, when computing the spectrum, the volume is chosen to be large

enough while extrapolations are used in order to probe the continuum (zero lattice spacing)

limit as well as the chiral (zero quark mass) limit. The volume is large enough if the hadron fits

inside the system along with the associated cloud of virtual particles. Often this requirement is

rephrased in terms of the Compton wavelength λ= 1/mHadron by demanding the linear extent L

of the system to be much greater than the Compton wavelength of the pion.

Another concern regarding the finite extent of the lattice is that the system can undergo a

deconfinement phase transition if L is decreased below the quark confinement length scale.
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This can be observed through the breaking of center symmetry via the Polyakov loop observ-

able. In this chapter we will assume our system to be in the confining phase.

3.1 MASS SHIFTS FROM FINITE SIZE

In the following it is assumed that our lattice has dimensions L3 ×T in lattice units where T is

the temporal extent and is assumed to be large. Periodic boundary conditions are imposed. A

central formula for the mass shift of hadronic states in a quantum field theory was derived by

Lüscher [32] in 1986. In his paper he remarks that finite size effects are quite insensitive to the

ultraviolet regulator.

Let mi (L) denote the mass of particle i at lattice size L. The mass shift is defined as

∆mi (L) = mi (L)−mi , where mi = lim
R→∞

mi (R) . (3.1)

We will describe the approach of mi (L) to mi in the L →∞ limit keeping all other (bare) pa-

rameters fixed. The formula derived by in [32] holds to all orders in perturbation theory and

possibly also beyond. In [32] scalar field theories with a mass gap is considered. This can be

seen as an effective theory for the mesons.

The euclidean propagator has the form

〈φ(x)φ(0)〉 =
∫

d 4p

(2π)4 e i pxG(p) , (3.2)

where

G(p)−1 = p2 +m2 −Σ(p) . (3.3)

At the mass pole p2 = −m2 the normalization of φ is chosen such that Σ(p) = 0 = ∂
∂pµΣ(p). At

finite volume (keeping the temporal dimension infinite) the momentum integral becomes a

momentum sum ∫
d 4p

(2π)4 −→ L−3
∑

p

∫
d p0

2π
, (3.4)

where p = 2π
L n, n ∈Z3. Also the irreducible self energy will be different at finite volume

Σ(p) −→ΣL(p) . (3.5)

If we are at large L the mass shift∆m will be small, and we can expand the pole equation in this

value

GL (i m(L),0)−1 = 0 =−2m∆m(L)−ΣL(p̂)− i
∂

∂p0ΣL(p̂)∆m(L)+O
(
∆m(L)2) , (3.6)
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giving the expression

∆m(L) =− ΣL(p̂)

2m + i ∂
∂p0ΣL(p̂)

+O
(
∆m(L)2) , (3.7)

where p̂ = (i m,0) is the infinite volume pole. We expect that the difference between ΣL(p̂) and

Σ(p̂) is small. In fact it can be shown that to any order in perturbation theory

ΣL(p̂)−Σ(p̂) =O
(
e−

p
3m/2

)
, (3.8)

∂

∂p0ΣL(p̂)− ∂

∂p0Σ(p̂) =O
(
e−

p
3m/2

)
. (3.9)

After quite some work the final asymptotic formula for the mass shift becomes

∆m(L) =− 3

16πm2L

[
λ2e−

p
3m/2 + m

π

∫ ∞

−∞
d ye−

p
m2+y2LF (i y)+O

(
e−m̃)]

, (3.10)

where m̃ is larger than m and λ is the cubic coupling. F (x) is the elastic forward scattering

amplitude with x being the crossing variable. The careful proof of this formula is quite long

and will not be recited here. The details can be found in [32].

If we consider the scalar field theory discussed above an effective theory for the pions of our

gauge theory in the chirally broken regime, the cubic couplingλwill be zero since the pions are

pseudoscalars. Furthermore the mass can be directly translated into the pion mass mPS and the

forward scattering amplitude F is also that of the pions. Chiral perturbation theory tells us that

F =−m2
PS

f 2
PS

to leading order.

Inserting this in the asymptotic formula (3.10) we get

∆mπ(L) ' mPS

3

8π2mPSL

m2
PS

f 2
PS

· 2

π

∫ ∞

−∞
d ye

−
√

m2
PS+y2L

(3.11)

to leading order in chiral perturbation theory and to order e−m̃L . The last part is a modified

Bessel function

2

π

∫ ∞

−∞
d ye

−
√

m2
PS+y2L = K1(mPSL) . (3.12)

For large mPSL this goes as

K1(mPSL) ' e−mPSL

p
mPSL

. (3.13)

If the regime being probed is not close enough to the infinite volume limit the behaviour might

differ somewhat[33]. Also in [31] a different relation than (3.11) is observed. Their results for

SU(3) with Wilson fermions in the fundamental representation on L = 10,12,14,16 and 24 sug-

gests a dependence on L in physical units3 rather than mPSL.

3The scale is set using the Sommer radius.
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3.2 CONTINUUM LIMIT

Finding the continuum limit of a physical quantity computed on the lattice is a major chal-

lenge. Simulating a lattice theory at a very small cutoff length scale while retaining a large

enough volume is numerically very demanding. The final leap from lattice measurements to a

continuum prediction is based on extrapolation. In our work we have not made use of any of

the improvement schemes available that can accelerate the approach to the continuum limit.

We use the standard Wilson prescription for the fermion action which solves the fermion dou-

bler problem by introducing a double derivative term in the fermion action

γµ∂µ −→ 1

2

(
γµ∂FW

µ +γµ∂BW
µ − r a∂FWµ∂BW

µ

)
. (3.14)

Here ∂FW
µ and ∂BW

µ denotes the forward and backward derivatives. r is a parameter which we will

usually set to unity. a is the lattice spacing. The double derivative term will vanish linearly with

a so that the correct continuum limit is reached. The term gives a mass ∝ 1/a to the unwanted

fermion degrees of freedom sitting at the edges of the Brillouin zone, but it also breaks chiral

symmetry explicitly.

Although the lattice regulator was put in place in order to study strongly coupled gauge

models non-perturbatively, lattice perturbation theory can be used to gain confidence in the

existence of the correct continuum limit. Indeed it has been shown to all orders in perturbation

theory[34, 35] that all terms diverging as a → 0 cancel. The remaining leading correction from

the lattice cutoff is O (a). Consequently a linear extrapolation towards the chiral limit should

be reasonable if the lattice spacing is small enough.

3.3 CHIRAL LIMIT

The last limit that we have yet to discuss is the chiral limit. This work has focused on two

models of technicolor where we observe chiral symmetry breaking in both cases. Therefore it

is natural to discuss the chiral limit in the framework of chiral perturbation theory. The issue

is certainly a non-trivial one as can be read in the notes from a "Panel discussion on chiral

extrapolation of physical observables"[36] in 2002. In particular it is noted that using normal

chiral perturbation theory, the coefficient of the chiral log in the pion mass is fixed by the value

of the pion decay constant which can be determined independently.

m2
PS

mq
= A

[
1+ Amq

16π2Nf f 2
PS,0

log

(
Amq

Λ2

)]
+O (mq ) . (3.15)
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Fitting to lattice data from the JLQCD collaboration a very different value for the pion decay

constant fPS,0 is found by fitting this coefficient compared to the value found by looking directly

in that channel. Also the coefficient of the chiral log in the pion decay constant should be, but

is not, consistent with one value of fPS,0 since

fPS

fPS,0
= 1− ANfmq

32π2 f 2
PS,0

log

(
Amq

Λ2

)
+O (mq ) . (3.16)

In the panel discussion[36] it was suggested that the QCD data used in the fits were simply not

close enough to the chiral limit.

Although the data could not provide a consistent value of fPS,0 within chiral perturbation

theory, it is possible to achieve nice fits to lattice data by letting the chiral log coefficients be

varied independently.

A possible explanation is that lattice artefacts cannot be neglected in the derivation of the

effective Lagrangian. For Wilson fermions a chiral expansion has been carefully developed[37,

38, 39, 40, 41]. At order a2 at next-to-leading order in the chiral expansion, the effective La-

grangian contains more parameters (3 for Wilson fermions). Consequently, the pion decay

constant fPS,0 is no longer overdetermined by the chiral fits to m2
PS and fPS.

Hyperscaling in mass deformed conformal gauge theories

If chiral symmetry is not spontaneously broken in the model under consideration then we will

expect an approach towards the massless limit which is characterized by a critical exponent,

the anomalous dimension γ which is universal for the entire spectrum. This is referred to as

hyperscaling relations. A discussion of the hyperscaling relations in mass deformed conformal

gauge theories can be found in [42]. Here the derivation of the hyperscaling relations will not

be given although they follow quite simply from a scaling hypothesis. The relations relevant in

our work are

mPS = Am
1

1+γ , mV = Bm
1

1+γ and FPS =C m
1

1+γ . (3.17)

Later in this project we will perform fits to the spectral data from our lattice simulations us-

ing both the predictions from Wilson chiral perturbation theory and the above hyperscaling

relations.
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4GPU accelerated Hybrid Monto

Carlo algorithm

The growth in computational peak performance compared to price is rapid and has been so

for many years. This is true for both high-end supercomputers as well as personal computers.

Modern cutting-edge computing units have multiple computing cores and in order to harness

their full potential one must properly parallelize the tasks given to them. Of course, some prob-

lems are more suited for parallel architectures than others. Fortunately, the numerical investi-

gation of lattice gauge theories represents a task which is well suited for a very high degree of

parallelism. Graphics processing units (GPUs) admits very high parallelism even compared to

todays multi-core CPUs. Therefore they might make a better choice as the hardware to drive

modern lattice gauge theory computations. In this chapter we demonstrate how one can tai-

lor a state-of-the-art software suite for modern lattice simulations[43] with fermions in higher

representations to run with high performance on GPUs. In particular we will demonstrate how

SU(2) lattice gauge theories with fermions in the fundamental or adjoint representation is im-

plemented, and we will perform benchmark tests and compare with performance on an Intel

Xeon CPU cluster.

4.1 INVERSION OF THE FERMION MATRIX

The Wilson fermion action is

S f (U , q, q̄) =∑
f

∑
x,y

q̄ f (x)D(x, y)q f (y) , (4.1)

24



with f running over fermion flavors. The Wilson-Dirac matrix D(x, y) is given by∑
y

D(x, y)q(y) = (4+m0)q(x)

− 1

2

∑
µ

[
(1+γµ)U †

Rµ(x − µ̂)q(x − µ̂)

+ (1−γµ)URµ(x)q(x + µ̂)
]

.

(4.2)

UR are the gauge links in the representation R. Without the subscript the representation is

fundamental.

As discussed in chapter 2 the fermionic part of the action is Gaussian and it can be formally

integrated out using formula (2.3) yielding a determinant. This determinant can in turn be

expressed, using formula (2.4), as a functional integral over scalar fields termed pseudofermions

(detD)N f =
∫

DφDφ̄exp
[
−φ†D−N f φ

]
. (4.3)

To simulate the theory we use the Hybrid Monte Carlo (HMC) algorithm[44]. Numerically the

most demanding part of the algorithm is the inversion of Dirac operator, i.e, solving x from the

following equation

Dx =φ. (4.4)

There are multiple algorithms available, but the most efficient ones are Krylov subspace invert-

ers. We use the Quasi-Minimal Residual Algorithm (Alg. 1) to solve Eq. (4.4).

Even-odd preconditioning

Due to the nearest-neighbor type interactions of the fermions on the lattice it is possible to

precondition the linear system (4.4). We will not go into too many details with this procedure,

but merely outline the strategy.

If the vectors in the linear system (4.4) have all degrees of freedom corresponding to the

even lattice sites in the upper half and the odd lattice sites in the lower half then we can write

the system using a block matrix notation 1
κ1 −DEO

−DOE
1
κ1

xE

xO

=
φE

φO

 (4.5)

Note that κ= 1
2m0+8 is the Hopping parameter and that we have scaled out a factor of 1

2 . Writing

out the two equations yield

1

κ
xE −DEOxO =φE , (4.6)

1

κ
xO −DOExE =φO . (4.7)

25



Applying DEO to the second equation gives

1

κ
DEOxO −DEODOExE = DEOφO . (4.8)

DEOxO can be isolated from the first equation and inserted in the above. This gives(
1

κ2 −DEODOE

)
xE =χE , (4.9)

where χE = 1
κφE +DEOφO. The linear system 4.9 is called the even-odd preconditioned system.

It is practical to solve this system rather than the unpreconditioned one since the convergence

of the iterative solver is faster.

For all simulations in our work we use even-odd preconditioning. For the benchmark tests

of our GPU implementation (section 4.5) it is specified when even-odd preconditioning is used.

Algorithm 1 Quasi-Minimal Residual Algorithm

x0 := initial guess
r0 :=φ−Dx0

γ1 := |r0|
w1 := v1 := r0/γ1

w0 := v0 :=β1 := δ1 := 0
for m=1,2... until |γm | < ε|b| do

{ LANCZOS BIORTHOGONALIZATION }
αm = (wm , Avm)
tmp1 := Dvm −αm vm −βm vm−1

tmp2 := D†wm −α∗
m wm −δ∗m wm−1

δm+1 := |(tmp1,tmp2)| 1
2

βm+1 := (tmp1,tmp2)/δm+1

vm+1 := tmp1/βm+1

wm+1 := tmp2/δm+1

{ UPDATE QR FACTORIZATION OF MATRIX Tm }
for i = 1,2, ...,m −1 do

tm :=Ωi tm {Ωi are Givens rotations (4.17), tk are columns of Tm}

end for

ConstructΩm using (4.18)
tm :=Ωm tm

γm+1 :=−smγm

γm := cmγm

{ NEXT ITERATE }
pm := (v − tm−2,m pm−2 − tm−1,m pm−1)/tmm

xm = mm−1 +γm pm

end for

26



4.2 QUASI-MINIMAL RESIDUAL ALGORITHM

The algorithm 1 is based on the Lanczos Biorthogonalization procedure which builds a pair of

biorthogonal basis {v j }, {w j }, j = 1, . . . ,m for the Krylov subspaces Km = span{v1,Dv1, . . . ,Dm−1v1}

and K ∗
m = span{w1,D†w1, . . . , (D†)m−1w1}. Here D is the matrix defining the linear system to

be solved.

In Alg. 1 the coefficients α j ,β j and δ j are computed. These can be arranged into a tridiag-

onal m ×m matrix Tm

Tm =



α1 β2

δ2 α2
. . .

. . .
. . . βm

δm αm


. (4.10)

Tm is the oblique projection of D onto Km orthogonal to K ∗
m ,

DVm =VmTm +δm+1vm+1e†
m ≡Vm+1T m , T m =

 Tm

δm+1eT
m

 , (4.11)

where Vm is a matrix with column vectors v j , j = 1, ...,m. Similarly T †
m is the oblique projection

of D† onto K ∗
m orthogonal to Km ,

D†Wm =WmT †
m +βm+1wm+1e†

m , (4.12)

Now, since we define the first vector v1 to be a multiple of the first residual r0, we can calculate

the residual of some approximate solution xm = x0 −Vm y by

φ−Dx =Vm+1

(
βe1 −T m y

)
if v1 =βr0 .

The game is now to choose y in order to minimize the residual. This problem would have been

greatly simplified had the vectors v1, ..., vm been orthogonal. In that case the minimizer y of

∥∥∥Vm+1

(
βe1 −T m y

)∥∥∥
would have coincided with the minimizer y of

∥∥∥βe1 −T m y
∥∥∥ . (4.13)

This is the kind of minimization problem that arizes in the Generalized Minimal Residual (GM-

RES) algorithm and similar Arnoldi based algorithms. In the QMR algorithm the fact that
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v1, ..., vm are not orthogonal is ignored and the approximate solutions are simply chosen to

minimize (4.13) which is referred to as the quasi-residual. We will deal with this minimization

problem shortly.

An important advantage of this algorithm compared to the GMRES algorithm is that the

number of system-sized vectors needed to be stored does not increase with the dimension of

the Krylov subspace.

From a practical point of view the QMR algorithm is attractive also because it is possible to

use the γ5 hermiticity of the fermion matrix to save the D† operation.

If one replaces in the initialisation of algorithm 1 the assignment of w1 with

v1 := v1√(
v1,γ5v1

) (4.14)

w1 := γ5v1 , (4.15)

then the Lanczos biorthogonalization can be achieved using only the Dm operation. The scal-

ing of v1 is to maintain (vi , w j ) = δi j . When this is in place biorthogonalization can be achieved

efficiently by noting that the temporary variables in algorithm 1 obey

tmp2 = γ5tmp1.

Notice also that the scalars entering the QMR algorithm will be real in this case.

Breakdown of the QMR algorithm

The Lanczos biorthogonalization in algorithm 1 breaks down if δm+1 = |(tmp1,tmp2)| 1
2 is zero

or very close to. This can happen for one of two reasons:

Lucky breakdown One of the vectors tmp1 or tmp2 are zero. In this case an exact solution to

the linear system has been found.

Serious breakdown tmp1 and tmp2 are orthogonal. In this case the current iterate is not an

exact solution to the linear system. Some procedure to deal with this scenario must be

put in place. There are several options. One of them is to implement so called look-ahead

algorithms which will allow the QMR to skip the problematic Lanczos step and move on.

However this will greatly increase the complexity of the algorithm. It is noted in [45] that

it is often more convenient to restart the iterative process.
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Minimizing the Quasi-Residual

We have seen that finding the approximate solution in the QMR algorithm involved finding the

minimizer y of the quasi-residual 4.13. This is a fairly simple task. The technique uses so called

Givens rotations to rotate away the subdiagonal entries of the tridiagonal T m matrix. Consider

the case of m = 4

T m =



α1 β2

δ2 α2 β3

δ3 α3 β4

δ4 α4

δ5


Ω1−→



t (1)
11 t (1)

12 t (1)
13

t (1)
22 t (1)

23

δ3 α3 β4

δ4 α4

δ5


Ω2−→



t (2)
11 t (2)

12 t (2)
13

t (2)
22 t (2)

23 t (2)
24

t (2)
33 t (2)

34

δ4 α4

δ5



Ω3−→



t (3)
11 t (3)

12 t (3)
13

t (3)
22 t (3)

23 t (3)
24

t (3)
33 t (3)

34

t (3)
44

δ5


Ω4−→



t (4)
11 t (4)
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24

t (4)
33 t (4)
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t (4)
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
. (4.16)

The kth rotation will have the form

Ωk =



1

. . .

1

cosθk sinθk

−sinθk cosθk

1

. . .

1



, (4.17)

where the first cosθk appears in the kth diagonal element, and the angle of rotation is given by

cosθk =
t (k−1)

kk√(
t (k−1)

kk

)2 +δ2
k+1

, sinθk = δk+1√(
t (k−1)

kk

)2 +δ2
k+1

. (4.18)

Here t (0)
00 =α1. Conventionally the product of all the Givens rotations are denoted by Q

Q =ΩmΩm−1 · · ·Ω1 , (4.19)
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and the product of T m with Q is called the R such that

T m =Q†R , (4.20)

This decomposition of T m is a so called QR factorization. Clearly Q is unitary and it follows

that

∥∥∥βe1 −T m y
∥∥∥

2
=

∥∥∥βQe1 −R y
∥∥∥

2
. (4.21)

The minimum as well as the minimizer of the right hand side is easy to find. Note that the

(m +1)×m matrix R only has zeros on the bottom row so we can write

R =
 R

0 · · · 0

 , (4.22)

where R is an m ×m matrix. This means that the minimizer of (4.21) solves the linear upper

triangular system

g −R y = 0, (4.23)

where g denotes the fist m components of βQe1. The quasi-residual is then the (m+1)th com-

ponent of βQe1.

4.3 MIXED PRECISION SOLVERS

The single precision floating point operations are faster than double precision operations, e.g.,

a single precision Dirac operator is about three times faster than a double precision Dirac op-

erator. Therefore it is advantageous to use mixed precision solvers. The strategy is to invert

the system to single precision and then update the solution and residual in double precision.

Then repeating the single precision inversions until the desired precision is reached. One way

of implementing this is written in algorithm 2, where double precision variables are indicated

by a hat. This is called defect correction and is the method we employ. There are alternative

update methods like reliable updates[46, 47].

A disadvantage of mixed precision solvers are that they are difficult to use as multi-shift

solvers, but for our purposes, simulating doublets of fermions with the HMC algorithm, this is

not a serious issue.
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Algorithm 2 Mixed-Precision Quasi-Minimal Residual

x̂ := initial guess
r̂ := φ̂− Âx̂
while |r̂k | > ε̂|b̂| do

r := r̂
p := r̂
x := 0
Use Algorithm 1 to solve x = D−1r to precision precision ε
x̂ := x̂ +x
r̂ := b̂ − Âx̂

end while

4.4 GPU IMPLEMENTATION AND OPTIMIZATION

The GPU code was implemented by modifying a parallel lattice code HiRep[43]. It is a generic

code which can simulate any number of colors, number of fermion flavors, and fermion repre-

sentation. This makes it ideal for studying theories beyond the Standard Model.

The GPU version of the code was programmed using the CUDA framework. The implemen-

tation of the code required writing of all the computationally intense parts in CUDA-kernels.

Since the inversion of the Dirac operator is by far the most computationally demanding part,

the most effort were put into the Dirac operator. This involves writing all the linear algebra

routines with spinor fields as CUDA-kernels. The actual inverters need not be changed since

they operate on a higher level and need not know where the linear algebra is carried out. Even

though the gauge update is not very demanding a factor of two roughly was achieved by im-

plementing it on the GPU. Thus it removes a lot of memory transfer between the host machine

and the GPU, which is relatively slow and otherwise constitutes a bottleneck.

Spinor linear algebra

The implementation of almost all of the linear algebra operations of spinors are trivial since

spinor fields are just vectors of complex numbers. Each operation on the individual com-

plex components are simply distributed to individual CUDA threads. The exceptions being

the summations needed in the inner product of two spinor fields along with variants of that

like the γ5 inner product. To implement these we used a temporary spinor field to store indi-

vidual components si
tmp = si∗

1 · si
2 and then performed the summation using parallel reduction.

We found that optimizing the global summation kernel did give a performance enhancement

well worth the effort. One of the optimizations that proved rewarding was to do the first parallel

reduction step already in the kernel calculating the product of complex numbers.
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(a) Uncoalesced memory layout of gauge field

(b) Coalesced memory layout of gauge field

Figure 1: The ordering of the gauge field variables as it was before (a) and as it was changed to (b)
in order to accommodate coalesced memory access. Here the index in square brackets refers to the
indices of each gauge link matrix. Here we have used as an example a fundamental gauge link having
N 2

c entries.

Coalesced memory access

In the CUDA programs, special consideration has to be put into the organization of memory.

The granularity of the GPU memory controller is 64 or 128 bytes. If one double precision num-

ber of 8 bytes is accessed, the controller loads 64 bytes and discards 56 bytes. However, if

threads in a half warp (16 threads on the Tesla C2070) load consecutive memory addresses

only one load is performed. This is called coalesced memory access.

In the Dirac operation and the gauge update, the objects being read from memory are gauge

link matrices and Dirac spinors. The memory layout of the gauge links has been totally re-

ordered in this implementation in order to ensure coalesced memory access. The old and the

new memory layout can be seen from figure 1. Before the reordering the link matrices Uµ(x)

was stored in a natural order as U0(0),U0(1) . . .U3(V4 −1), where V4 is the lattice 4-volume. In

other words, all entries in a gauge link matrix was stored at consecutive memory addresses.

In our implementation the ordering starts with first gauge component of first link matrix

U0(0)[0], then first gauge component of the second link matrix U0(1)[0] as shown in figure 1b.

This means that a single gauge link matrix is not localized in memory. Now, when the thread 0

is operating on link matrix U0(0), thread 1 on U0(1) etc., they will be read in a coalesced manner

from the global memory.

Coalescing the memory access increases the performance by about an order of magnitude.

This probably makes it the most significant optimization step.
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Packing the gauge links

The performance bottleneck of GPU calculations is usually the memory transfer bandwidth

from global memory to the local memory. The actual computations on GPU take up only

a small fraction of the total time. To increase the Compute-to-Global-Memory-Access ratio

(CGMA) one can pack the global memory data to decrease the amount of data transfer. The

unpacking then requires more computations, but typically an overall performance enhance-

ment is achieved. This is indeed what we observe as well. Another advantage of the packing of

memory is that bigger lattices will fit in the memory of each GPU. This is important since com-

munication between different GPU units will have to pass through the host and is therefore

very slow. Our implementation does not yet have support for multi-GPU scaling.

SU(2) gauge links

An SU(2) gauge link matrix is a 2×2 complex matrix meaning that 8 real numbers will have to

be stored in memory if no packing is done. Clearly, there are potential for significant packing

since in principle the information could be stored in a real 3-vector in the algebra.

However, since the mapping between 3 degrees of freedom an SU(2) matrix requires trigono-

metric functions, which are slow on GPU, we have decided to store the matrices in following

format with four degrees of freedom

U = a0I + i
3∑

k=1
σk , (4.24)

where σi are the Pauli matrices and a0, a1, a2, a3 satisfy

3∑
µ=0

aµ = 1. (4.25)

Note that one cannot just store three of aµ and solve the fourth using Eq. 4.25, since the sign

would be unknown. This, of course, is nothing but the familiar identification of the group

elements with unit quarternions.

On-the-fly construction of represented gauge links

When simulating gauge models with fermions transforming under other representations than

the fundamental, a represented gauge field enters the fermion action (4.2). In the original CPU

version of the HiRep code[43] this represented gauge field is constructed explicitly and stored

in memory. It is possible to work out a mapping from the fundamental gauge matrices U to the
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represented ones UR. The explicit mappings relevant in our work are

SU(2) adjoint: U ab
Adj =

1

2
Tr

[
τaUτbU †

]
, (4.26)

SU(3) sextet: U ab
S = Tr

[
T a

S U T b
S U

]
. (4.27)

In the above τa = σa/2 are the generators of the fundamental representation of SU(2) andT a
S

constitute a basis for the sextet representation. These are given by


1 0 0

0 0 0

0 0 0

 ,


0 0 0

0 1 0

0 0 0

 ,


0 0 0

0 0 0

0 0 1

 ,


0 1p

2
0

1p
2

0 0

0 0 0

 ,


0 0 1p

2

0 0 0

1p
2

0 0

 ,


0 0 0

0 0 1p
2

0 1p
2

0

 .

The traces are over fundamental gauge indices.

The advantages of representing the gauge field on the fly are similar to those obtained by

the packing of the gauge field. 1) the memory transfer from global to local memory is reduced

thereby increasing the CGMA ratio. 2) The amount of allocated memory is reduced allowing

bigger lattices to fit on one GPU.

Reduction of spilling

One of the limitations of GPUs is the number of registers. In large kernels, like the Dirac op-

erator kernel, all the variables and intermediates will often not fit in the available registers. In

this case the content of the registers need to be transferred to local memory. This is is referred

to as spilling. Clearly, if the gauge group is small, like SU(2), the Dirac operator will not need

as many registers as is the case for larger gauge groups. This is of cause also depending on the

representation of the fermions.

To alleviate the spilling it is possible to spread the calculations over more computing threads.

The downside of this procedure is often that the same variables need to be loaded multiple

times from memory. For the SU(3) sextet model we have not managed to avoid the spilling,

but for SU(2) with fundamental fermions the spilling could be avoided altogether4 while in the

case of adjoint fermions the spilling was drastically reduced. However, even small amounts of

spilling have severe impact on performance.

In the double precision Dirac operator kernels we calculated only one component of each

spinor pr. thread. This increases the memory transfer from the optimal since we need to load

the same gauge link multiple times and the spinor twice. This means that the achieved mem-

ory bandwidth will be sub-optimal since multiple transfers of the same variable will only be

4When even-odd preconditioning is used a small amount of spilling is introduced. The impact of this is dis-
cussed in section 4.5.
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Number of GPUs 1
Number of CUDA cores 448
CUDA core frequency 1.15 GHz
Memory bandwidth 144 GiB/s
Memory 6 GB GDDR5

Table 2: Nvidia Tesla C2070 Specifications

Number of cores 4
Clock frequency 2.66 GHz
Memory bandwidth 32 GiB/s
Instruction set 64 bit
L2 cache 4×256 KB
L3 cache 8 MB

Table 3: Intel Nehalem-EP CPU (X5550) Speci-
fications

counted once. However, even with this downside taken into account, the spilling reduced Dirac

kernel is faster than the one allowing the spilling.

The single precision Dirac operator kernels only require half the registers. This means that

dividing the calculation into one spinor component pr. thread would be redundant. In fact,

spreading out the calculation will in this case decrease performance due to unnecessary mem-

ory access.

With the next generation GPU cards, like the Nvidia Tesla K20, with more registers these

optimization efforts will be redundant and the potential memory bandwidth can be exhausted

even in the double precision kernels. Also, more registers might allow for spilling free Dirac

operator kernels with bigger groups like SU(3).

4.5 PERFORMANCE OF SU(2) LATTICE GAUGE THEORIES ON GPU

To test our implementation we have performed various speed measurements on Nvidia Tesla

C2070 GPUs. The specifications can be found in table 2. For comparison we have tested the

CPU version on a computer cluster equipped with X5550 Intel Nahelem CPUs. The specifica-

tions of the CPUs can be found in table 3. Each node in the cluster has two CPUs. The Intel

X5550 CPUs do not represent the cutting edge of modern CPUs. However, the Nvidia Tesla

C2070 is not the fastest GPU on the market either, so we believe that the comparison is not

unreasonable.

The performance of the Dirac operation on the GPU is summerized in figure 2. Here the

achieved memory throughput is plotted at different lattice sizes. Figure 2a shows the perfor-

mance when the fermions are in the fundamental representation and figure 2b shows the re-

sults when the fermions are in the adjoint representation. In both figures results for both single

and double precision versions are displayed. For comparison we have also shown the perfor-

mance achieved without the packing of the gauge fields and on-the-fly construction of the ad-

joint gauge field. The performance enhancement is clearly visible with fundamental fermions.
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(a) Fermions in the fundamental representation.
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(b) Fermions in the adjoint representation.

Figure 2: The memory throughput in the SU(2) Dirac operator with a) fermions in the fundamental
representation and b) fermions in the adjoint representation. Where "Quat." is indicated in the legend
the gauge fields have been stored using 4 real numbers and are represented on-the-fly. The tests have
been carried out on lattices of size L4.

However, with adjoint fermions the memory throughput is slightly smaller when the packing

and on-the-fly representation is implemented, but since the packed gauge field occupies less

memory a similar memory throughput means faster execution of the Dirac operator.

Notice from figure 2a that in the Dirac operation in single precision with fundamental

fermions the memory throughput is roughly at the maximum theoretical value. This means

that the actual computations are almost instantaneous.

Figure 3 shows a similar test with even-odd preconditioning enabled. In this case the per-

formance is not as great in terms of memory bandwidth. There is no striking reason why this

is so. In the case of the double precision Dirac operator kernels with even-odd precondition-

ing we were unable to remove all the spilling from the registers. However, with more work this

could probably be achieved. Even though the memory throughput is below the unprecondi-

tioned Dirac operation, the even-odd preconditioned Dirac operator will perform better in an

actual simulation where iterative inversion of the Dirac operator is carried out.

Figure 4 shows the reduction in the time it takes to perform a Dirac operation upon packing

the gauge field in a four component, quaternion format and representing the gauge field on the

fly. As can be seen in the figure, a roughly 40 % reduction in time consumption is achieved in

single precision with fermions in the fundamental representation and about 35 % in double
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(a) Fermions in the fundamental representation.
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(b) Fermions in the adjoint representation.

Figure 3: The memory throughput in the SU(2) Dirac operator with even-odd preconditioning. Where
"Quat." is indicated in the legend he gauge fields have been stored using 4 real numbers and are
represented on-the-fly.
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(a) Single precision.
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Figure 4: The relative reduction in the time it takes to perform a Dirac operation when the SU(2) gauge
field is packed as unit quaternions and the gauge field is represented on-the-fly.

37



precision. With adjoint fermions the gain is somewhat smaller with about 20 % time reduction

in single precision and about 15 % in double precision.

This might contradict the expectations since in the transfer of the represented gauge field is

saved when representing the adjoint gauge field on-the-fly. Evidently this is not the case indi-

cating also that the memory bandwidth is not the only component limiting the computational

speed.

0 10 20 30 40 50 60 70
Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

U
p

d
at

es
/h

Fund. fermions
Fund. GPU
Adj. fermions

Adj. GPU

Figure 5: Comparison of actual simulation time between CPU version of the HiRep code and the GPU
implementation. The ordinate axis denotes the number of HMC updates pr. hour. Both fundamental
and adjoint model were simulated on a 324 lattice. The bare parameters for the fundamental model
was β= 2.2, m0 =−0.72. For the adjoint model we used β= 2.5, m0 =−1.05. The abscissa represents
the number of CPU cores used. Note that each node has two CPUs with 4 cores each.

It is of course of interest to compare the GPU implementation with the original CPU version

of the code. We use the same setup as before, an Nvidia Tesla C2070 GPU (see table 2) in this

test and compare against simulations performed on up to 64 Intel Nahelem X5550 CPU cores

(see table 3). Each node in the CPU cluster has two quad-core CPUs giving a total of 8 cores

pr. node. The simulations were carried out on a 324 lattice and even-odd preconditioning

was used in the inversion of the Dirac operator. The parameters used in the simulations are
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specified in the caption of figure 5. The figure also shows the results. The GPU performs better

than a 4 node/32 core CPU simulation and almost as well as an 8 node/64 core simulation.

4.6 SUMMARY AND OUTLOOK

We have demonstrated that simulations of lattice gauge theories make suitable tasks for GPUs.

The naive transfer of the computations from CPU to GPU does not perform well, but with op-

timizations in place we were able to achieve good performance. In the case of an SU(2) gauge

theory with fermions in the fundamental representation, we were able to achieve a memory

throughput in the Dirac operator very close to the hardware maximum. The two most impor-

tant optimization steps were the reordering of memory to accommodate coalesced memory

access and the elimination/reduction of spilling in the Dirac operator kernels.

The packing of the SU(2) gauge field along with on-the-fly representation also accelerated

the execution time of the Dirac operator, but this optimization gave ’only’ a 20 - 45 % speedup.

In the case of SU(3) with sextet fermions we have not performed detailed benchmarking.

The results would not be as good as with SU(2) models since spilling in the Dirac operator

kernel is more severe. We did implement on-the-fly representation of the gauge field which

gives a speedup of about 10 - 20 %.

The future of GPUs in scientific computing is promising. New generations of GPU devices

with increased memory bandwidth and more registers will increase performance and make

the GPUs easier to use. For larger scale simulations where multiple GPUs are required it will be

necessary to carefully consider which inverter algorithm to use. This is because the transfer of

memory between GPUs likely will be a bottleneck, especially if the GPUs are distributed over

several nodes. Some research in this direction was presented in [48] where reasonable scaling

was achieved with up to 256 GPUs. Technological progress is also being made in this direction.

The Nvidia GPUDirect technology5 allows copying of memory directly between GPUs on the

same node. A recent development even bypasses the host memory completely while transfer-

ring memory between GPU cards on different nodes.

Considering these advancements in research and technology, GPU clusters provide an at-

tractive platform for future large scale lattice gauge theory simulations.

5More information about this can be found at https://developer.nvidia.com/gpudirect.
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5SO(4) Fundamental Minimal

Walking Technicolor with

Wilson fermions

In this chapter the results of the article [49] by A. Hietanen, C. Pica, F. Sannino and UIS will be

presented and discussed.

5.1 INTRODUCTION

We study the dynamics of an SO(4) gauge theory with two Wilson fermions in the fundamen-

tal representation. The lattice phase diagram is determined by locating the strong coupling

bulk phase transition line and the zero PCAC mass line. We present results for the spectrum of

the theory obtained at a fixed value of the lattice spacing. In particular we measure the pseu-

doscalar, vector and axial meson masses. The data favor a chiral symmetry breaking scenario

rather than a conformal one.

When used to break the electroweak symmetry dynamically the model leads to a natural

dark matter candidate.

5.2 CHIRAL SYMMETRY BREAKING PATTERN

The global flavor symmetry is enlarged in SO(N) gauge theories compared to SU(N) for N > 2

due to the following symmetry of the Dirac operator:

( /D +m)Cγ5 =Cγ5( /D +m)∗, (5.1)

where /D = γµ(∂µ−i g Aa
µτa), a = 1, ...,d [G] where d [G] is the dimension of the adjoint represen-

tation of the gauge group. C = iγ0γ2 is the charge conjugation matrix. This symmetry is not
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present for complex representations of SU(N) gauge groups like the sextet representation of

SU(3) that we will address in chapter6. For Nf massless Dirac fermions transforming under the

fundamental representation of SO(N), the classical global symmetry will be U(2Nf). As usual

the U(1) axial symmetry is anomalous so the quantum global symmetry is SU(2Nf).

Assuming maximal breaking of axial symmetries[50, 51] and respecting the Vafa-Witten

theorem[52] by not breaking any vector symmetries, the resulting breaking pattern will be

SU(2Nf) −→ SO(2Nf) . (5.2)

The Goldstone manifold SU(2Nf)/SO(2Nf) has 2N 2
f +Nf−1 generators leading to nine Nambu-

Goldstone bosons in the massless limit of the Nf = 2 case.

The effective theory for the pseudo-Goldstone modes reads

Leff =
f 2

2
Tr

(
∂µΣ∂µΣ

†
)
−G ReTr(MΣ) , (5.3)

G is a phenomenological coefficient, M = m(δi ,i+Nf +δi+Nf,i ), i = 1...Nf is the quark mass ma-

trix, and Σ is a symmetric unitary matrix in flavor space. Σ can be written as deviations around

an average orientation Σ̄.

Σ=U Σ̄U T , U = exp

(
i

2 f
Π

)
,

where f is a normalization constant and Π = πa Xa/
p

C is a linear combination of generators

Xa of the broken symmetries. C is their trace normalization Tr Xa Xb =Cδab often chosen to be

2Nf.

The quark mass introduces a preferred direction in flavor space for chiral condensation to

happen. The Gell-Mann–Oakes–Renner relation (GMOR)[53] relates phenomenological coef-

ficients G and f to the pseudo Goldstone mass

m2
PS =

mG

f 2 , (5.4)

In the chiral limit m → 0 the coefficient G is related to the chiral condensate through the rela-

tion G = 〈q̄q〉/2Nf and f can be identified the with pseudo scalar decay constant.

If the model does not have an intrinsic chiral scale and 〈q̄q〉 vanishes as m goes to zero the

GMOR relation (5.4) will not work. A more thorough analysis can be found in [54].
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Baryonic diquarks

To ease the language we will concentrate on the two flavour case and call these u and d . The

Dirac spinors, uD and dD, can be constructed from Weyl spinors in the following way

ua
D =

 ua
α

¯̃uaα̇

 , d a
D =

 d a
α

¯̃d
aα̇

 .

a = 1, ...,d [r ] denotes the SO(Nc) index where d [r ] is the dimension of the representation of

the fermions. In the case of SO(Nc) with fundamental fermions d [r ] = Nc. The α indices

on the Weyl fermions follow the SL(2,C) transformation notation of Wess and Bagger[55] and

Martin[56].

To construct gauge and Lorentz invariant states the color indices are contracted using a

symmetric tensor δab and the spinor indices are contracted using an antisymmetric tensor

εαβ. In Appendix A this is done carefully, but here we will just state the resulting states

Πuu ≡ uT
D CuD , Π̃uu ≡ uT

D γ
5CuD , (5.5)

Πdd ≡ d T
D C dD , Π̃dd ≡ d T

D γ
5C dD , (5.6)

Πud ≡ uT
D C dD , Π̃du ≡ d T

D γ
5CuD (5.7)

Πdu ≡ d T
D CuD , Π̃ud ≡ uT

D γ
5C dD . (5.8)

C = iγ0γ2 is the charge conjugation matrix. All of the above have non-zero baryon number.

The states of course also come with their conjugatesΠq̄1 q̄2 and Π̃q̄1 q̄2 .

Mesons

The scalar and pseudoscalar mesons read

Πūu ≡ ūDuD , Π̃ūu ≡ ūDγ
5uD (5.9)

Πd̄d ≡ d̄DdD , Π̃d̄d ≡ d̄Dγ
5dD , (5.10)

Πūd ≡ ūDdD , Π̃ūd ≡ ūDγ
5dD , (5.11)

Πd̄u ≡ d̄DuD , Π̃d̄u ≡ d̄Dγ
5uD . (5.12)
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When implementing this new sector in the electroweak sector one will usually choose a more

convenient basis for the technimesons

r ≡Πūu +Πd̄d Θ≡ Π̃ūu + Π̃d̄d ,

A0 ≡Πūu −Πd̄d Π0 ≡ Π̃ūu − Π̃d̄d ,

A+ ≡Πd̄u Π+ ≡ Π̃d̄u ,

A− ≡Πūd Π− ≡ Π̃ūd . (5.13)

These will be charge eigenstates. Note that Π0, Π+ and Π− are pseudo Goldstone bosons

whereas the others are not. The r state is analogous to the σ of QCD.

The vector mesons and baryons are stated in Appendix A. The states constructed above will

be relevant for any theory with real representation fermions. All representations, except the

spinorial, of the special orthogonal groups are real, but also the adjoint representation of any

gauge group is real. There is however an important difference. If fermions transform under the

adjoint representation, like in the SU(2) adjoint MWT model, we can also make gauge singlet

quark-gluon states. With the simplest hypercharge assignments the quark-gluon state will be

fractionally charged which demand careful attention from the model builder. In this sense

the SO(4) MWT model is simpler than SU(2) adjoint MWT. Also, since every technifermion

charged under the weak SU(2) gauge group, comes in multiples of four, the dimension of SO(4)

fundamental, and not three as in SU(2) adjoint, there is no Witten topological anomaly[57] to

be dealt with.

Phenomenology of the scalar diquarks

Important properties about the scalar diquarks can be inferred from the pseudoscalar mesons.

In fact their correlation can be shown to be exactly identical. A proof of this for fermions in

pseudoreal representations of the gauge group was given in [58]. When the fermions are in a

real representation of the gauge group the reality property of the representation translates into

the following symmetry of the Dirac operator

( /D +m)Cγ5 =Cγ5( /D +m)∗, (5.14)

The symmetry also holds for the Wilson Dirac matrix in the lattice action (2.15).

A generic mesonic correlator will have the form

c(Γ)
q̄q ′(x − y) = Tr

([
q̄(x)Γq ′(x)

]† q̄(y)Γq ′(y)
)

, (5.15)
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where Γ can be any of the matrices 1,γ5,γµ,γµγ5. A baryonic diquark correlator will have the

form

c(Γ)
qq ′(x − y) = Tr

([
qT (x)CΓq ′(x)

]†
qT (y)CΓq ′(y)

)
. (5.16)

Rewriting the diquark correlator slightly gives

c(Γ)
qq ′(x − y) = Tr

(
Γq ′(y)q̄ ′(x)γ0Γ†C †(γ0)T [

q(y)q̄(x)
]T C

)
. (5.17)

Now we can invoke two identities

(γµ)T =−CγµC † , (5.18)

q(x)q̄(y) =C † [
q(y)q̄(x)

]T C . (5.19)

The latter identity follows from the symmetry of the Dirac matrix given in (5.14) along with γ5-

hermiticity γ5( /D +m)γ5 = ( /D +m)†. Invoking the identities in the expression for the diquark

correlator (5.17) we have

c(Γ)
qq ′(x − y) = Tr

(
Γq ′(y)q̄ ′(x)γ0Γ†γ0q(x)q̄(y)

)
= c(Γ)

q̄q ′(x − y) . (5.20)

A similar identity holds for the conjugated diquark state so

c(Γ)
qq ′(x − y) = c(Γ)

q̄ q̄ ′(x − y) = c(Γ)
q̄q ′(x − y) . (5.21)

We can infer that the mesons and baryons come in degenerate trios - a meson, a diquark with

opposite parity along with its antiparticle. In particular, the three standard parity odd Gold-

stone ’pion’ states come with six parity even Goldstone diquark baryons.

When electroweak interactions are switched on, the six Goldstone diquarks will form a

complex isospin triplet T +,T 0,T −. The neutral component will be lighter due to isospin in-

teractions and is a dark matter candidate in the model. This was discussed in more detail in

[59], where also it was given the name "iTIMP" (isotriplet Technicolor Interacting Massive Par-

ticle).

Since this state has non-zero baryon number this can be an ingredient in an asymmetric

dark matter scenario.

5.3 PERTURBATIVE ESTIMATES OF THE SO(N) CONFORMAL WINDOW

For model builders it is of utmost importance to know the details of the conformal window

of gauge theories with fermion matter. The upper bound in the number of flavors Nf, where
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Figure 6: Perturbative estimates of the renormalization of the gauge coupling. Calculations are per-
formed in the MS scheme.

asymptotic freedom is lost, is easily determined in perturbation theory. The lower bound,

where the IR fixed point is lost is another matter. Perturbative estimates exist, and we will

state how they look for SO(N) gauge theories, but this is really overextending the realm of ap-

plication of perturbation theory. Truly non-perturbative calculations are necessary in order to

examine the infrared behaviour of the model.

Having stated this precaution, we proceed with the perturbative β function for the SO(4)

gauge theory with Nf fermions in the fundamental representation. To 4 loop order in the MS

scheme this reads

1

2
β4-Loop(a) =+a2

(
4Nf

3
− 22

3

)
−a3

(
136

3
− 58Nf

3

)
−a4

(
Nf

(
514Nf

27
− 14767

54

)
+ 11428

27

)
+a5 1

972

(
−168(1080ζ(3)+3841)N 2

f +9(38976ζ(3)+452449)Nf

−10784N 3
f −32(45144ζ(3)+148853)

)
,

which for the case of Nf = 2 is

1

2
β4-Loop(a) =−14

3
a2 − 20

3
a3 + 1283

27
a4 +

(
356681

486
− 13600ζ(3)

9

)
a5 .
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The coupling a is defined as

a = g 2

(4π)2 = α

4π
.

The generic formula for the 4 loop β function for any gauge theory with fermionic matter was

presented in [60]. If we set the β function to zero and solve for the coupling we find the pertur-

bative estimates for the fixed points. Figure 6a shows the IR fixed point couplings as a function

of the number of flavors calculated to 2, 3 and 4 loop order. We can see that with two Dirac

flavors, which is the model we investigate in this work, the 2 loop calculation does not predict

an IR fixed point. At 3 loop order a fixed point appears, but goes away again at 4 loop order. The

perturbative calculation is therefore inconclusive regarding the existence of an IR fixed point.

The perturbative conformal window for a range of Dirac flavors Nf is shown in figure 6b.

We will spend no more time on perturbation theory and rush on to the non-perturbative lattice

studies of SO(4) with 2 Dirac flavors of Wilson fermions.

5.4 DELINEATION OF THE LATTICE PHASE DIAGRAM

The pure gauge sector of SO(N) gauge theories have previously been studied on the lattice. Ear-

lier numerical studies focused mainly on the SO(3) gauge group [61] which is interesting due to

the local, but not global isomorphism with SU(2). However Bursa et al. [62] have also studied

higher values of N. Their studies are focused mainly on large N orbifold equivalence between

SO(2N) and SU(N), but we can use their values for the location of the bulk phase transition

to compare against ours. For SO(4) it was found that the bulk phase transition happens for

4.62(3) <β< 4.87(3), which is in agreement with our result in figure 7, where the same physics

should be found at large bare quark mass.

Since this is the first lattice study of SO(4) with Wilson fermions, we have made a rough scan

of the (β,m0) parameter space on an 83×16 lattice. The bulk phase transition, determined from

figure 7 at three different values of the bare mass m0, is mapped to the phase diagram outlined

in figure 9. The interval over which the measured average plaquette jumps is represented as

horizontal errorbars on the phase diagram.

To determine the line of zero physical quark mass we use Partial Conservation of the Axial

Current (PCAC)

mPCAC = lim
t→∞

1

2

∂t VPS

VPP

, (5.22)
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where the currents are

VPS(x0) = a3
∑

x1,x2,x3

〈q̄1(x)γ0γ5q2(x)q̄1(0)γ5q2(0)〉 ,

VPP(x0) = a3
∑

x1,x2,x3

〈q̄1(x)γ5q2(x)q̄1(0)γ5q2(0)〉 . (5.23)

We identify mPCAC with the physical quark mass. At each lattice spacing we measure mPCAC at

various values of m0. Linear fits are made to data presented in figure 8. From the fits the inter-

section with the abscissa can be read. The results are plotted with circles in the phase diagram

in figure 9.

With an outline of the lattice phase diagram in place we can proceed to measure the spec-

trum as we approach the chiral limit.

5.5 THE SPECTRUM OF SO(4) MWT

Numerical simulations

For these studies we have not been able to use the GPU implementation of the HiRep code[43]

that was presented in chapter 4. This is because the study of the SO(4) model was conducted

before the GPU enabled code was made. Therefore the configurations was made on CPU using

the HMC algorithm[44] and in some cases the RHMC algorithm[63]. A summary of the gauge

configurations used in these studies can be found in table 4. For the final calculations of the
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Figure 9: Lattice phase structure outlined on an 83 ×16 lattice. Circles represent points of critical bare
mass where mPCAC = 0. The transition to the bulk phase is first order. The error bars represent the
interval over which the measured average plaquette jumps.

Volume β Iterations Thermalization

83 ×16
4.1,4.2. . . 4.9, 5.2, 5.4, 5.6 2000 500

4 4.5 5, 5.5, 6, 7 5000 2000
123 ×64 5.5, 7 5000 1500
243 ×64 7 850 - 2000 600

Table 4: Simulation parameters and thermalization times. For each coupling we performed multiple
simulations with appropriate bare masses. The thermalization column refers to the number of discarded
initial configurations.

spectrum of the theory we have used only data from the biggest lattices. Since only one lattice

spacing is available at the biggest volume no continuum extrapolation is attempted.

The simulations were performed on three different lattices 83 × 16, 123 × 64 and 243 × 64

where in all cases the larger dimension is the temporal one. The smallest lattice has only been

used to outline the lattice phase diagram in figure 9. The simulations on the 123 × 64 lattice

revealed an unexpected phase separation, where two or more phases with different properties

coexisted. We will return to this phenomenon in section 5.6.
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Figure 11: Pseudoscalar, vector, and axial vector
meson masses measured on a 243 ×64 lattice at
β= 7.

Results at fixed lattice spacing

The meson masses are estimated using time slice averaged zero momentum correlators of the

kind (5.15). In figure 10 we have shown an example of how the effective mass plateau of the

pseudoscalar meson looks when computed on 123 ×64 and 243 ×64 lattices keeping fixed the

bare parameters. At the larger volume a mass plateau is easily identified and the pseudoscalar

mass can be extracted fairly accurately. On the 123 ×64 the situation is different. There is a rise

in the effective mass towards larger time separations. This is unexpected since all the heavier

states will decay first and will therefore only dominate the correlators at small time separations.

Due to this kind of odd behavior we restricted our spectrum analysis to the 243 × 64 data. A

discussion concerning the unexpected 123 ×64 results will be given in section 5.6.

Figure 11 shows the pseudoscalar, vector and axial vector meson masses measured on the

243 ×64 lattice as m0 is decreased towards the critical value. Clearly, the determination of the

axial vector meson is very poor towards the chiral limit and we can not really conclude anything

from this channel. More studies of this model is underway and hopefully this will allow a better

determination of the axial vector mass. If the axial vector meson remains approximately degen-

erate with the vector meson deep in the chiral regime it could indicate walking dynamics. This

originates from the second Weinberg sum rule being modified by the continuum contribution

not relevant in ordinary QCD[64].

More precise are the measurements of the pseudoscalar and vector mesons. What can be
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Figure 13: Psudoscalar mass squared divided by
the quark mass measured on a 243 ×64 lattice at
β= 7.

seen from figure 11 is that at large bare quark mass the vector and pseudoscalar is roughly

degenerate and their masses are proportional to the quark mass. This is expected if the bare

quark mass is the only scale or if it is dominant with respect to a dynamical mass scale. At

small quark masses a significant mass splitting is observed indicating indeed the dynamical

generation of a mass scale consistent with chiral symmetry breaking. This can be seen more

clearly in figure 12 where the ratio mV/mPS is plotted. If a mass for the vector is generated

dynamically this ratio should diverge in the chiral limit since the pseudoscalar is a Goldstone

boson. Keep also in mind that, due to the identity (5.21), mPS is exactly the same as the mass of

the scalar diquarks which are also Goldstone bosons of the theory.

Another indication of a chiral symmetry breaking scenario can be found in the way the

psudoscalar mass decreases with the quark mass. In section 3.3 we have already discussed the

pseudoscalar mass in the chiral limit although for a different chiral symmetry breaking pattern.

Neglecting chiral logs, which does not seem to play a role in this range of quark masses, the

squared mass of the pseudoscalar is roughly proportional to the quark mass

m2
PS 'ΛmPCAC . (5.24)

This is nothing but the GMOR relation (5.4).

In the case the model is only deformed from conformality by the quark mass, there is no

dynamical scale available and we will expect the hyperscaling relations (3.17) to govern at low

quark masses.
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Meson fit Fit function Best parameter χ2/dof

PS ChSB a
p

m a = 1.167(6) 0.49/2

PS conformal Am
1

1+γ , γ= 1.1675 A = 1.047(7) 4.19/2

PS alternative 1 Am
1

1+γ , γ free
A = 1.17(5)

0.48/1
γ= 0.99(5)

PS alternative 2 a +b
p

m
a =−0.001(10)

0.47/1
b = 1.17(4)

Vector ChSB a +bm
a = 0.16(1)

3.3/1
b = 2.3(2)

Vector conformal Am
1

1+γ , γ= 1.1675 A = 1.105(10) 9.25/2

Vector alternative Am
1

1+γ , γ free
A = 0.85(4)

0.31/1
γ= 1.71(12)

Combined hyperscaling ∝ m
1

1+γ γ= 1.17(15) 13.5/4

Table 5: Different types of fit functions in the chiral regime for the data with m identified with the
mPCAC.

Figure 13 shows a plot of the ratio m2
PS/mPCAC as a function of mPCAC and it shows that this

ratio tends towards a constant in chiral limit. This is consistent with a chiral symmetry breaking

scenario.

To further test the chiral symmetry breaking hypothesis we have performed some fits to

the data in the chiral regime. By the chiral regime we are referring to measurements with quark

masses below 0.1 in lattice units. Three data points are available in this regime. This particular

choice of the extend of the fit region is motivated by the observations in figure 13. It shows that

the points in this region is consistent with the GMOR relation (5.24). Note that in this region

we have fPSL ' 0.8−0.9. Ideally this quantity should be larger.

In figure 14 the pseudoscalar and vector masses are displayed in the fit region and solid

lines show the chiral fits. The hyperscaling fits (3.17) are shown in figure 15. Various fit types

was compared and the results are shown in table 5. Attention should be paid to the "ChSB"

and "conformal" fits. Looking at the pseudoscalar the ChSB fit, i.e. the GMOR relation (5.24),

is clearly stronger than the "PS conformal" fit using the hyperscaling relations (3.17). Note that

the anomalous dimension γ in the conformal fit is chosen as a best fit to both the pseudoscalar

and vector meson data. The quality of the fit is determined from χ2/dof, which will be small

for good fits. We have also given a couple of alternative fit types. "PS alternative 1" allows a

scaling function with γ being a free fit parameter. This fit has essentially the same χ2 value as

the chiral fit but only half the degrees of freedom. Notice also how γ is forced to ∼ 1 by the fit

recovering the functional form of the GMOR relation. In the last fit, "PS alternative 2", the mass
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Figure 14: The ChSB fits to the pseudoscalar and
vector meson masses on a 243×64 lattice at β= 7.
For details of the fits see table 5.
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hyperscaling hypothesis. For details of the fits see
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in the chiral limit is not forced to zero. Remarkably the best fit demands the pseudoscalar mass

to vanish in the chiral limit. This lends further confidence in the chiral symmetry breaking

hypothesis.

The second part of table 5 summarizes the fit results for the vector meson. Also in this case

is the "ChSB fit" favored over the conformal hyperscaling hypothesis. However, if we look at

the data points in figure 14 they curve slightly making the "ChSB" fit a little less convincing.

Considering the χ2/dof values for the two fits stated in table 5 it is evident that to rule out any

one of them, on the basis of the vector meson data, would be premature.

It is worth mentioning that if we let γ be unconstrained in the scaling fit, an excellent fit is

achieved, but this would not be consistent with the universal hyperscaling expected in a mass

deformed conformal model.

Having performed these fits we can also give a very rough estimate of the vector meson

mass in physical units. From table 5 we see from the ChSB fit that mV = 0.16(1) in the chiral

limit. This is given in lattice units. To fix the scale we can use the pseudoscalar decay constant

fPS which must take the value of the Higgs vacuum expectation value ∼ 246 GeV. In lattice units

we have measured fPS = 0.034(4) giving a ratio mV/ fPS = 4.71± 0.96
0.76 . This means that the mass of

the vector in physical units will be

mV = 1.2± 0.3
0.2 TeV.
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It can not be stressed enough, that this number is very uncertain. The errors stated are just the

uncertainties of the fit values. No estimate of the size of the finite volume effects has been taken

into account and no continuum extrapolation has been performed. Therefore, the strongest

justifiable statement is that it can not be excluded that the model admits a vector meson as

light as 1.2 TeV.

5.6 FINITE SIZE EFFECTS

In this model there are two separate issues concerning finite size effects that need to be ad-

dressed. Like in other lattice gauge theories, we can expect a mass shift as a consequence of

the finite size of the system. This was the subject of section 3.1. The finite volume effects can

be quite sizable in SO(N) gauge theories. This is because the bulk phase transition occurs at

weak coupling meaning that the lattice spacing corresponds to very small physical length.
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Besides this effect we also observe a phase separation phenomenon taking place in all lat-

tice simulations smaller than our biggest volume 243 ×64. Two or more phases coexist on the

the lattice and they are separated by domain walls. These phases have different properties such

as correlation lengths and Polyakov loop expectation values. This causes the unexpected rise

in the effective mass plateaus of the mesons as seen in figure 10.

First we will discuss the finite volume mass shifts relevant for our measurements of the

spectrum. It has been difficult to really estimate the size of the mass shifts still present in our

data on the 243 ×64 lattice data. This is because the smaller volumes are affected by the phase

separation phenomenon. However, in the data from one of the simulations at 123 × 64, the

rise in the effective mass plateau was not observed, so we seize the opportunity to use this

dataset to provide estimates for the mass shifts. The bare parameters of the data set isβ= 7 and

m0 = 0.2 corresponding to mPCAC ' 0.15. Of course we would ideally like to do this measurement

at smaller quark mass, but this happened to be the only mass where the analysis was possible.

The smallest lattice volume 83×16 does not have long enough temporal extend for any rise

in the mass plateau to show up or for any plateau to appear in the first place. Consequently we

have used the central effective mass point as the estimate for the pseudoscalar mass.

In figure 16 mPS is plottet for the three lattice sizes available. If one tries to fit a function of

the form

mPS(L) = mPS + A
e−mPSL

p
mPSL

, (5.25)

in correspondence with the discussion in section 3.1, one will find that the fit is not convinc-

ing. However, as was also discussed in section 3.1, other groups have found deviations from

the asymptotic formula (3.11). In our case the reason might simply be that the 83 × 16 mass

measurement was still affected by heavier states in the same channel due to the short temporal

extent. At any rate, we have included an additional parameter in the fit in order to accommo-

date the data. The fit now looks like

mPS(L) = mPS

(
1+ A

e−BmPSL

p
BmPSL

)
, (5.26)

where A, B and mPS are fit parameters. Note that there are no freedom left in the fit. The

coefficients are determined to

A = 7.385, B = 0.483 mPS = 0.464. (5.27)

Based on this fit, we can conclude that in order to get a mass shift of less than 5 % we must

have mpsL & 8.8. For 10 % it would be mpsL & 7.6. If we are to take this seriously it would mean
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that all points with a pseudoscalar mass less than about ∼ 0.36 in lattice units would have finite

size corrections of 5 % or more. This includes the entire range of masses used in the chiral

fits. It is possible, based on the above fit, to make infinite volume extrapolations in the chiral

regime. However, since this fit is based on data from three simulations where two are known to

be problematic, it would be unsound to promote this to a universal prescription for the infinite

volume correction. We therefore await more results on bigger lattices in order to properly asses

the finite volume mass shifts.

Domain walls

It is well known that the Polyakov loop can acquire a non-zero expectation value is the lattice

becomes too small. The definition of the Polyakov loop in dimension µ is

lµ = 1

Nc
TrLµ(x⊥µ) , (5.28)

where

Lµ(x⊥µ) = Pexp

[
−

∫ 1/(aLµ)

0
d xµAa

µ(x⊥µxµ)τa
]

=∏
xµ

Uµ(x⊥µ, xµ) . (5.29)

However, we observe the coexistence of more than one phase on the same 4-volume. These

phases are separated by domain walls and differs in this respect from the so called femto-world

regime[65, 66, 67] of SU(N) models. As mentioned earlier, this unexpected phenomenon was

first indicated to us by the unusual behavior of the mesonic correlators. Figure 10 shows an

example of this. This motivated the resolution of the average Polyakov loop to each timeslice.

In detail, the operators are

Lk (t ) =
〈

1

Ni N j

∑
xi ,x j

1

N
Tr

∏
xk

Uk (t ,x)

〉
, (5.30)

where i 6= j 6= k are spatial directions. The phenomenon can be seen in figure 17a which shows

the time resolved Polyakov loops on a 123 ×64 lattice at β = 7 and m0 = −0.3. To illustrate the

difference from the small volume phase in SU(N) models we have in figure 17b shown the time

resolved Polyakov loop in an SU(2) pure gauge theory on a 123 ×64 lattice. The coexistence of

two phases in the SO(4) simulations with different values of L2 is clear from the figure. The two

phases are long-lived and do not move inside the 4-volume of the lattice during the simulation.

The phenomenon appears in all simulations performed on small lattices. The location of the

phase boundaries and the direction in which the Polyakov loop has non-zero average is ran-

dom. In some cases more than two phase boundaries appear in the same system. Notice also
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(a) SO(4) gauge theory with two Wilson fermions on
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(b) SU(2) pure gauge theory on a 123 ×64 lattice at
β= 6

Figure 17: Average Polyakov loops wound around the three spatial dimensions computed at each times-
lice of the lattice.

that in one of the two phases the average value of the Polyakov loop vanishes. To make sure

that the domain walls we are seeing are actually walls traversing the entire 3-volume and not

just bubbles, we have also resolved the Polyakov loop in two of the three spatial volume. The

result can be seen in figure 18. The configurations are the same as the ones used to produce

figure 17a as well as the odd looking mass plateau in figure 10. The two spatial directions in

the plot is the ones orthogonal to the direction of the Polyakov loop observed to have non-zero

expectation value in some range.

To better understand how these phases affect the correlators we have reanalyzed the con-

figurations of 17a as well as the odd looking mass plateau in figure 10. In the procedure we

usually employ to compute the correlators, the source is placed at a random timeslice. Fig-

ure 19a shows the pseudoscalar and vector meson correlators computed instead from a fixed

source at timeslice 20. After the decay of excited states we observe a constant decay rate, i.e.

constant effective mass, until about 35 timeslices from the source. Here the decay rate sud-

denly increases. This behavior continues after the inflection point. Counting 35 timeslices on

top of 20 gives 55. In figure 17a we see that the phase boundary is indeed located at timeslice

55.

Figure 19b shows the the derivative of the log of the correlator in 19a. In the region immidi-

ately around the inflection point of the correlator this quantity has no physical meaning. Away

from the inflection point of the correlator, this quantity measures the exponential decay rate of
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Figure 18: Local Polyakov loop along the y-direction averaged over 500 Monte Carlo updates. Resolving
the volume orthogonal to the y-axis in the data for the 123 ×64 lattice at β= 7 and m0 =−0.3.
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(a) Mesonic correlators.
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(b) Effective mass plateaus.
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Figure 19: Using a fixed source at timeslice τ = 20 for calculating the mesonic q̄Γq correlators on a
123 × 64 lattice at β = 7 using a bare mass m0 = −0.3. The norm of the slopes of the correlation
functions in (a) is depicted in (b) and is an estimate of the meson masses in the regions away from
the inflection point and away from the edges of the ∆τ interval. Figure (c) shows a fit to two of such
regions.
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the correlator i.e. the effective mass.

The figure reveals two mass plateaus, one before ∆τ ' 35 and one after. Figure 19c shows

the best fit to the spectrum in these regions. The spectrum in the phase 〈ly 〉 ' 0 is very light

and it appears that the pseudo scalar and the vector mesons are all approximately degenerate.

In the 〈ly 〉 6= 0-phase the spectrum is much heavier and interestingly there is a mass splitting

among the vector mesons. Clearly, such a mass splitting is unphysical.

A relevant question at this point is if the 〈ly 〉 ' 0 phase is related to the continuum physics.

The answer to this question is probably no. Comparing the spectrum with that measured on

the bigger lattice, 243 × 64, we see that there is a clear disagreement. The mesonic states are

heavier on the bigger lattice, where so far we see no sign of the formation of domain walls.

Notice that, even though all the figures 17a, 10, 18,19 relating to the phase separation phe-

nomenon was based on the same simulation, the observations were similar in all simulations

performed on the 123 ×64 lattices and smaller.

Evidently, the correlation functions measured on these lattices cannot be used to extract

the physical spectrum of the model.
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6SU(3) Sextet Minimal Walking

Technicolor with Wilson

fermions

The work presented in this chapter is unpublished and done in collaboration with my supervi-

sors and Dr. Luigi Del Debbio, Edinburgh University.

6.1 STRONG COUPLING EXPANSION

Motivation

The treatment of the SU(3) lattice gauge theory with a doublet of Wilson fermions will be

started with some analytical calculations in the strong coupling regime. Although this model

has been studied by other groups in the past[68, 69, 70, 71] the use of this particular lattice ac-

tion is new. We use the HiRep[43] code to conduct our investigations. On the bigger lattices the

GPU enabled version was deployed. Facing a new model it is always comforting to have some

analytical predictions which can act as a sanity check for the implementation. Various checks

of each component of the code can be, and of course has been, performed. However, it is desir-

able to be able to compare actual observables in a regime accessible to analytical calculations

and make quantitative comparisons.

In this section a strong coupling expansion is worked out where the fermion action is ne-

glected. Since the gauge action is identical to that of ordinary QCD, this calculation has already

found its way into the textbooks[26]. It is retained in this thesis in order to set up the nota-

tion, which will be useful when the fermions are taken into account. The effect of fermions

are taken into account through an expansion in the Hopping parameter. Since the fermions
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are in the sextet representation the Hopping parameter expansion will give rise to a sextet pla-

quette term in the effective action. Consequently, when calculating observables, the combined

expansion will give rise to non-trivial mixed terms.

For our purposes the plaquette expectation value will be good since it is simple to calcu-

late both numerically and analytically. The analytical calculations will be presented in quite

some detail since the somewhat formal approach allows for easy generalization to other gauge

theories with Wilson fermions in higher representations.

Introduction

The action is defined as

S = SG +SF , (6.1)

where

SF =− ∑
A,B

q̄A(n)Kn A,mB [UR ]qB (m) , (6.2)

is the Wilson fermion action and will be ignored in this section. The gauge action reads

SG =β∑
P

(
1− 1

2Nc
Tr

[
Uµν+U †

µν

])
. (6.3)

From this point on Nc will be put to 3 explicitly. The partition function is

Z (β) =
∫

[dU ]e−SG . (6.4)

The plaquette expectation value is

〈P〉 = 1

3

∫
[dU ]Tr(Up )e−SG∫

[dU ]e−SG
(6.5)

Character expansion

The first constant in (6.3) is of no importance and will just factor out in the partition function.

Therefore it will be omitted from now on. Then

e−SG = e−
∑

p Sp = e
∑

p
β

6 Tr
[
Up+U †

p

]
(6.6)

Clearly, if β→ 0 then e−Sp → 1. It is possible to be more precise by doing a character expansion

exTr[U+U †] = N (x)
∑

r
dr Ar (x)χr (U ) = N (x)

(
1+ ∑

r 6=0
dr Ar (x)χr (U )

)
. (6.7)
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r runs over the irreducible representations of the gauge group. The character χr (U ) is just the

trace over U in representation r . x is just a shorthand for β/6 and is the natural expansion

parameter. N (x) and Ar (x) are coefficients of the expansion. The characters are orthonormal.∫
[dU ]χr (U )χ∗r ′(U ) = δr,r ′ , (6.8)

where χr ∗(U ) = χ∗r (U ) = χr (U †) if r∗ and r are conjugate representations. For SU(2) and U(1)

there are closed form expressions for the coefficients N (x) and Ar (x). For SU(3) this is not the

case. However, the coefficients are known to arbitrarily high orders in x and can be found in

[72]. Letting a representation be denoted by two integers r = (λ,µ) related to the Young tableau,

the relevant formulae goes

d(λ,µ) =
1

2
(µ+1)(λ+1)(µ+λ+2) , (6.9)

Γk
r (x) =

∞∑
n=0

n∑
m=0

2m+1(3n +3r +3)!xm+2n

m!(n −m)!(n + r +1)!(k +n + r +2)!(m +2n +3r +3)!
, (6.10)

N (x) = Γ0
0(x) (6.11)

A(λ,µ)(x) = 1

N (x)
x(λ+µ)

µ∑
s=0

s!

(
λ

s

)(
µ

s

)
λ+µ−2s∑

k=0

(
λ+µ−2s

k

)
xλ+µ−2s−k

×
2k+s∑
r=0

(
2k + s

r

)
x2rΓk+s

λ+µ+r−k−s(x) . (6.12)

The most important thing to notice here is the fact that the lowest power of x in A(λ,µ)(x) is

xλ+µ and that N (x) → 1 for x → 0.

The partition function can now be written as

Z (x) =
∫

[dU ]
∏
p

N (x)

(
1+ ∑

r 6=0
dr Ar (x)χr (Up )

)
(6.13)

where x =β/6. LetΩ denote the 4-volume of the lattice (the total number of lattice sites). Then

we can rewrite the above

Z (x) = N (x)6Ω

(
1+

∫
[dU ]

∑
G

∏
p∈|G |

drp Arp (x)χrp (Up )

)
. (6.14)

Now G denotes a graph which is a mapping from every plaquette p in the lattice to a repre-

sentation rp . |G | denotes the support of G i.e. all the plaquettes which does not map to the

singlet representation. Here we are not going to spend time evaluating all the contributions to

the partition function, but we have to make a few observations and simplifications.

• N (x)6Ω is gauge-independet and factorizes in the partition function. If we want to com-

pute the free energy at some point we will have to include it, but for explicit evaluations

of expectation values such as (6.5) we can omit it.
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• The 1 is the contribution from the trivial path mapping all plaquettes to the singlet rep-

resentation. This could be included instead in
∑

G .

The partition function to O
(
(β/6)10

)
When computing the partition function as and expansion in x = β/6 the first contributions

are easy to find. Clearly the only graphs that survive the group integrals comes from closed

surfaces. The smallest one being an elementary cube. Since the lowest order in x = β/6 in the

coefficients A(µ,λ)(x) are xµ+λ the cube with fundamental (µ,λ) = (1,0) plaquettes comes with

a factor of x6 which will be the leading order. In fact the contribution is easy to evaluate.

Z (x) = 1+4Ωd 2
(1,0)(A(µ,λ)(x))6 +O

(
x10) . (6.15)

The 4 comes from the possible orientations of the cubes. d 2
(1,0) comes from the gauge integra-

tion and tracing. To be more explicit we could insert the expansion

A(1,0)(x) = x

3
+ x2

6
− 5x4

72
− x5

24
+ 7x6

720
+O

(
x7) . (6.16)

so

Z (x) = 1+4Ωd 2
(1,0)

( x

3

)6
+O

(
x10) . (6.17)

Note that to order x12 we would have a contribution from the expansion of (A(1,0)(x))6 as well as

paths with 12 fundamental plaquettes (e.g. two disconnected cubes). On top of this we would

have a contribution from unit cubes covered with plaquettes in the adjoint (1,1) and sextet (2,0)

representation and even (1×1×2)-cubes with higher representation inner wall. This will not

be considered here. Instead we consider the order x10 contribution which only comes from

the (1× 1× 2)-cubes. There are 36 different orientations of these pr. site so the contribution

becomes

36Ωd 2
(1,0)(A(µ,λ)(x))10 .

This last contribution is really not that important, it was just to outline the method with which

one would proceed to higher orders. The point of this detour is to convince ourselves that up to

order x5 we do not need to worry about the denominator when computing expectation values

like in (6.5).
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Plaquette expectation value to O
(
(β/6)4

)
We can go about calculating this in two different ways. At this point the simplest way is to

calculate the free energy and then differentiate with respect to β. This would go as follows:

F =− ln Z (6.18)

so

〈P〉 =− 1

6Ω

dF

dβ
.

Here the most important part of the partition function is the factor N (β/6)6. The explanation

for this is not trivial. Since at higher powers of β there will be more and more disconnected

contributions to the partition function (6.14) it will also contain higher and higher powers of

Ω. The only way the free energy can be proportional to Ω (for large Ω) is if all the powers of Ω

exponentiates. It can be shown explicitly that this is indeed the case. To find the exponent we

can just look at the terms linear inΩ in the β-expansion (6.15). This term will be a series in β/6

starting at order (β/6)6. Therefore the free energy will be

F =−6Ω ln N (β/6)+O
(
(β/6)6) (6.19)

This means that up to O
(
(β/6)6

)
we can get the free energy from the expansion

N (x) = 1+x2 + x3

3
+ x4

2
+ x5

4
+O

(
x6) . (6.20)

Note also that

d ln N (β/6)

dβ
= A(1,0)(β/6) (6.21)

so

〈P〉 =− 1

6Ω

dF

dβ

= A(1,0)(β/6)+O
(
(β/6)5)

= β

18
+ β2

216
− 5β4

93312
+O

(
(β/6)5) .

Note that we do in fact have enough information to proceed to O
(
(β/6)9

)
in the plaquette.

Now I will perform the calculation explicitly through formula (6.5). That is

〈P〉 = 1

3

∫
[dU ]Tr(Up )e−SG∫

[dU ]e−SG
(6.22)

= 1

3

∫
[dU ]Tr(Up ′)

∑
G

∏
p∈|G |

drp Arp (x)χrp (Up )+O
(
(β/6)6) . (6.23)
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Notice that sinceχ(1,0)(Up ′) = Tr(Up ′) we can use the orthogonality relations to reduce the num-

ber of graphs we need to consider. The simplest contribution is the graph only supported on

p ′ mapping p ′ to the (anti-)fundamental representation. The next simplest kind of path is the

ones supported on a box opened at plaquette p ′. These will contribute only at order (β/6)5, so

we can write

〈P〉 = 1

3

∫
dUpχ(1,0)(Up )d(0,1) A(0,1)(x)χ∗(1,0)(Up )+O

(
(β/6)5)

= A(1,0)(β/6)+O
(
(β/6)5) .

where we have used the fact that A(1,0) = A(0,1). The result is the same as before. Remarkably

the only term that mattered in this calculation was the one we neglected in the free energy

calculation and the only term that mattered there could be disregarded in this calculation. This

is a consequence of (6.21).

Both methods have their uses. The second one will probably be more handy when includ-

ing the fermions and expanding also in the Hopping parameter κ.

6.2 HOPPING PARAMETER EXPANSION

Integrating out the fermions we can write the effective action

Seff = SG − lndetK .

The fermion matrix K can be written as 1−κM where.

M [U ]x,y =
∑
µ
δx,x+µ(r +γµ)U (R)

µ (x) .

The sum over µ goes both backwards and forwards in all 4 dimensions. In this notation γ−µ =
−γµ, r is the Wilson parameter and U (R) is the gauge link in representation R of the fermions.

We can rewrite lndetK = TrlnK and expand in the Hopping parameter κ= 1
2m+8 .

Tr lnK =−
∞∑

l=2

κl

l
Tr

(
M l

)
= const.+8κ4N f (1+2r 2 − r 4)

∑
P

Tr
[
U (R)

p +U (R)†
p

]
+O (κ6) . (6.24)

The trace is over both colour, flavour and spin indices. Now we will derive the above O (κ4)

expansion in detail.

Due to the sparse structure of M we can write

Tr
(
M l

)
= N f

∑
{xi ,µi }∈Cl

Trc

(
l∏

i=1
U (R)(x)µi

)
Trs

(
l∏

j=1
(r +γµ j )

)
. (6.25)
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Cl denotes all directed closed paths of length l . Some paths should be counted multiple times

since the same path can be started at every lattice point on its route. Clearly for l = 2 there

is only one kind of closed path that can contribute. Namely directly back and forth. There

are 8 directions from each lattice site in which one can start the path. Thus the contribution

becomes

Tr
(
M 2)= N f Ω8Trc

[
U (R)U (R)†

]
Trs

[
(r +γµ)(r −γµ)

]
(6.26)

= N f Ω8dR 4(r 2 −1) . (6.27)

So if r = 1, which is a common choice, this contribution vanishes. This is true for all paths

involving a backtracking of a link since, as was the case here, they will introduce a factor of

(r 2 −1) through the spin trace. The next order i.e. l = 4 has two different kind of contributions.

There is the plaquette along with some backtracked paths.

•
◦

◦
◦ •

◦
◦ ◦

•
◦

The filled circle in the above diagrams represent the lattice point from which the path origi-

nates. This can help the counting. Clearly, the second and third diagram have similar contri-

butions. The multiplicity of the second diagram will be 8 ·7. For the third diagram it will be 8 ·8.

In total we should count this diagram 120 times pr. site. Therefore we get

N f Ω120dR 4(r 2 −1)2 . (6.28)

The plaquette term is the first non-trivial term in the Hopping parameter expansion (HPE).

The multiplicity is 8 ·6 pr. site. Normally when summing over plaquettes we count 6 plaquettes

pr. site. This means that each plaquette enters 8 times in this contribution. The contribution

therefore becomes

N f 8
∑
p

ReTrcU (R)
p Trs

[
(r +γµ)(r +γν)(r −γµ)(r −γν)

]
= N f 8 ·4(r 4 −2r 2 −1)

∑
p

ReTrcU (R)
p .

Taking the real part of the plaquette is justified since each plaquette enters with both directions

in the computation.
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Now we are ready to collect the contributions up to order κ4

TrlnK =−
∞∑

l=2

κl

l
Tr

(
M l

)
=−κ2N f Ω16dR (r 2 −1)−κ4N f Ω120dR (r 2 −1)2 (6.29)

−κ4N f 8(r 4 −2r 2 −1)
∑
p

ReTrcU (R)
p +O

(
κ6)

This is the result from (6.24). Now we need to calculate the plaquette in the combined HPE and

SCE.

6.3 PLAQUETTE EXPECTATION VALUE IN SCE AND HPE

From now on we will specialize to the case of r = 1 so

TrlnK = κ4N f 16
∑
p

ReTrcU (R)
p +O

(
κ6) (6.30)

The calculation now goes like

〈P〉 = 1

3

∫
[dU ]Tr(Up )e−Seff∫

[dU ]e−Seff
(6.31)

Notice that we still do not need to worry about the denominator of (6.31) since at order κ4 this

can be put to 1 for the same reason as in the SCE. One could again do a character expansion

of exp(TrlnK ). However, since we are dealing with the trace of the represented plaquette, the

expansion coefficients would not be the same. These coefficients could be worked out, but we

will settle for the first term which is

eTrlnK =∏
p

(
1+κ4N f 16ReTrcU (R)

p

)
+O

(
κ6)

=∏
p

(
1+κ4N f 8

[
χR (Up )+χ∗R (Up )

])+O
(
κ6) .

Now inserting this into (6.31) and explicitly using the sextet representation for the fermions we

get

〈P〉 = 1

3

∫
[dU ]χ(1,0)(Up ′)

∑
G

∏
p∈|G |

drp Arp (β/6)χrp (Up )

×∏
p ′′

(
1+κ4N f 8(χR (Up ′′)+χ∗R (Up ′′)

)+O
(
κ6)+O

(
(β/6)6)

The above computation will simplify at this order since we can disregard non-minimal graphs.

Notice also that the first term will be exactly the SCE plaquette expectation value

〈P〉 = 〈P〉SCE +
κ4N f 8

3

∫
dUχ(1,0)(U )

∑
r

dr Ar (β/6)χr (U )
(
χ(2,0)(U )+χ∗(2,0)(U )

)
+O

(
κ6)+O

(
(β/6)5)
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From the above formula it is clear that in the case of higher representation fermions. We will

not have any contributions at order κ4(β/6)0 which we would have for fundamental fermions.

We can go to the next order, i.e κ4(β/6)1, by using the property of the characters

χr1 (U ) . . .χrk (U ) =∑
λ

χλ(u) ,

where lambda goes over the irreducible representations contained in r1⊗·· ·⊗rk . In other words∫
dUχr1 (U ) . . .χrk (U ) = # of singlets .

which gives us

〈P〉 = 〈P〉SCE +
κ4N f 8

3

∫
dUχ(1,0)(U )d(1,0) A(1,0)(β/6)χ(1,0)(U )χ∗(2,0)(U )+h.o.

= 〈P〉SCE +κ4N f 8A(1,0)(β/6)+h.o.

= (1+κ4N f 8)A(1,0)(β/6)+h.o.

where h.o. is a shorthand for O
(
κ6

)+O
(
(β/6)5

)+O
(
κ4(β/6)3

)
.

Now inserting the expansion of A(1,0)(β/6) we get

〈P〉 = (1+κ4N f 8)

(
β

18
+ β2

216
− 5β4

93312

)
+h.o. . (6.32)

We can try to compare our data with the calculations. This has been done in figure. 20, which

shows lattice data in a region where good statistics on the plaquette was available and where

the theoretical uncertainty (higher orders in β/6 and κ) does not exceed the κ4-correction).

The lattice data and the SCE+HPE expansion is clearly in agreement. The results are different

from ordinary QCD with fundamental fermions, where the leading order Hopping parameter

correction would be order zero in β and therefore be about ten times as big for β' 1.5.

The agreement of the lattice data with the analytical calculations gives confidence in our

lattice simulations and we can start probing regions not accessible with analytical methods.

6.4 BULK PHASE AND DELINEATION OF THE LATTICE PHASE DIAGRAM

The strong coupling expansion can actually capture many interesting properties of a lattice

gauge theory, but since the expansion per construction is one on a coarse lattice (low β), we

will need to abandon it to probe the continuum limit. At strong coupling the lattice is in a bulk

phase which is not connected to the continuum. As we increase β a phase transition will be

crossed where an abrupt rise in the plaquette expactation value occurs. At this point the strong
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Figure 20: m0 =−1 data for the plaquette zoomed in a region where good statistics on the plaquette
was available and where the theoretical uncertainty (higher orders in β/6 and κ) does not exceed the
κ4-correction).

(a) Breakdown of the SC-HPE at the bulk phase
transition.

(b) Bulk phase transition from peak in plaquette
susceptibility.

Figure 21: Lattice data used to determine the location of the bulk phase transition at a fixed value of
the bare mass m0 = 0
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coupling expansion breaks down as can be seen from figure 21a. In this model the transition is

somewhat broad and the exact point of the transition is not conveniently read off. Better is it

to look at the plaquette susceptibility χP (Fig. 21b) which peaks at the transition. This can be

done for multiple values of the bare mass and in this way the bulk phase was outlined in the

lattice phase diagram shown in figure 22.

Figure 22: Phase diagram delineated on a 124 lattice. The red data points shows where the deconfine-
ment phase transition has been detected. The red, blue and black points with errorbars reflect actual
data whereas the lines are drawn with free hand.

In the phase diagram the deconfinement transition on a 124 lattice is also indicated by the

red points. The errorbars are given by the distance between simulation points. An example of

this can be seen from figure 23 where a scan in the bare mass was performed while holding fixed

β at 5.75. A density plot in the complex plane of the Polyakov loops around all four directions

is shown for each value of the mass. Clearly at the lowest bare mass, m0 = −1.2 the Z3 center

symmetry is broken, while for the highest masses it is not. At m0 = −1.1 the density plot is

clearly tending towards a more triangular shape and the same thing might even be hinted at

m0 = −1.0. In this case the conservative approach has been taken and the value indicated in

the phase diagram spans the mass range from −1.2 to −1.
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Figure 23: Data taken on a 124 lattice with β= 5.75 for the Polyakov loops around all directions mapped
as a density plot at different values of the quark mass. The first 400 configurations out of a total of
3000 were discarded for the Polyakov loop plot.

6.5 THE SPECTRUM OF SU(3) SEXTET TECHNICOLOR

In this section we will present the numerical studies of the spectrum of the SU(3) lattice gauge

theory with two Dirac flavors of Wilson fermions in the sextet (2-index symmetric) representa-

tion. This is a complex representation and therefore the assumed pattern of chiral symmetry

breaking pattern is SU(2)⊗SU(2)→SU(2). This means that three Goldstone bosons would ap-

pear in the spectrum had the SU(2)⊗SU(2) global flavour symmetry been exact. Due to the

explicit breaking by the non-zero quark mass we can expect pseudo Goldstone modes when

the quark mass is decreased below the chiral scale of the theory. The discussion is somewhat

similar to the one for SO(4) MWT except that there are no baryonic diquarks in the low energy

spectrum. The three pseudo Goldstone bosons has the same form as the pseudoscalar pions in

(5.13). In fact all of the mesons will have the same naive quark content as for SO(4) MWT, but

since the Dirac operator no longer has the symmetry (5.1), i.e

( /D +m)Cγ5 6=Cγ5( /D +m)∗, (6.33)

the spectrum does not come in degenerate trios of two baryons and a meson.
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Numerical simulations

For these studies we have used configurations generated using the HiRep[43] code. The config-

urations generated on small lattices below L = 16 has been generated with a CPU driven HMC

algorithm and in some cases the RHMC algorithm. All configurations on bigger lattices are gen-

erated using a GPU accelerated version of HiRep which is described chapter 4. In this version

the represented sextet gauge field was constructed on the fly from the fundamental gauge field.

As for the case of the quaternion representation of SU(2) this was done to reduce the memory

transfer to the GPU. In this case however the speedup is only about 15%. This is because the

Dirac operator kernel spills memory from the registers, which introduces another bottleneck.

Table 6 shows a listing of the simulations performed along with acceptance ratios and ther-

Volume β m Iterations Acceptance Thermalization

123 ×12 5 [−1.5,0] 3000-5000 76%-84% 1000
123 ×12 5.5 [−1.2,0] 3000-5000 59%-85% 1000
123 ×12 5.75 [−1.2,−0.6] 3000 78%-89% 1000
123 ×12 6 [−1.15,0] 3000 75%-84% 1000
123 ×12 7 [−1,0] 2000-5000 75%-83% 1000
123 ×12 [1.5,7] 0 3000-5000 76%-85% 1000
123 ×12 [1.5,7] −1 2000-5000 66%-85% 1000
123 ×12 [4,6] −1.1 1577-5000 75%-82% 1000
163 ×16 6 [−1.41,0] 2431-3460 88%-95% 1000
163 ×32 5.75 [−1.45,−1.3] 2228-2631 84%-89% 1000
163 ×32 5.75 [−1.51,−1.475] 932-1160 87%-92% 500−700
163 ×32 6 −1.4 1672 91% 700
203 ×32 6 −1.4 1524 88% 700
243 ×32 6 −1.4 1299 90% 600

Table 6: Simulation parameters and typical values used for thermalization times and acceptance ratios.
Brackets [·, ·] denote a scanned range in that particular parameter.

malization times. Note that in some cases the simulations were started from a configuration

thermalized at another mass.

Results

As is can be seen from table 6, we have investigated the spectrum at two different lattice spac-

ings. This will allow for a crude continuum extrapolation in the end. The figures 24, 25, 26, 27

, 28 and 29 summarize the results at two different lattice spacings, β= 5.75 and β= 6. We will

return to the scale fixing shortly.
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Figure 24: The quark mass determined from the axial ward identity mPCAC vs. the bare quark mass m0.
Note that the errors are smaller than point markers so they do not show in the plot.

For the convenience of the reader figure 24 shows the PCAC quark mass as a function of the

bare mass parameter m0.

When looking at the spectrum the first thing one can look at for a sign of chiral symmetry

breaking is if there is a tendency in figure 25 towards a mass splitting between the pseudoscalar

and the vector meson as the quark mass is decreased. It maybe seems there is, but this is

more evident when looking at figure 26 where the ratio is plotted. As also discussed in chapter

5 , if chiral symmetry breaks we expect the mV/mPS to diverge at zero quark mass since the

pseudoscalar mesons, i.e. the ’pions’, are Goldstone bosons of the model, whereas the vector

meson should retain a mass. This indicates that chiral symmetry breaking is taking place in

this model and this confirms the results of Fodor et al. [68, 73, 69].

Figure 27 shows the pseudoscalar meson decay constant fPS as a function of the quark mass

mPCAC in lattice units. It is seen to decrease more rapidly towards the lower quark masses and the

analytical expectation of the approach towards the chiral limit is required to reliably extract fPS.

Of course this quantity in particular is important when making predictions for the LHC since,

as discussed earlier, it will be used to fix the scale of the theory in a technicolor scenario. Upon

fixing the physical scale with fPS in the chiral limit the ratio mV/ fPS becomes interesting since

this will tell us the physical scale of the vector meson. This ratio is plotted in figure 26. It is not

easy from this plot, to determine accurately what this ratio is in the chiral limit. It seems that for
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Figure 25: Pseudoscalar and vector meson masses vs. the quark mass. Some fits to the data has been
included as well
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Figure 26: Ratio between messes of the vector meson and the pseudocalar meson.
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Figure 27: The decay constant for pseudoscalar meson as a function of the quark mass.

small quark masses this ratio rises. In particular the β = 6 data in figure 28b increases rapidly

as the quark mass is decreased. With the present data it is hard to determine the precise reason

for this rise, but a couple of things come to mind. Finite size effects might decrease the value of

fPS when the pions are sufficiently light. This could possibly result in a rise in the mV/ fPS ratio.

Another possibility is that chiral logarithms are relevant at these quark masses. If this is

the case the pseudoscalar decay constant should obey the formula (3.16) presented in chapter

3. As we will see shortly, this is indeed the case. Before moving on to the chiral fits it is worth

having a look at figure 29 showing the ratio m2
PS/mPCAC as the chiral limit is approached. In the

β= 6 data shown in figure 28b this ratio also rises rapidly as the quarks become lighter. Again, it

can be hard to pinpoint the explanation for this, but the same considerations apply. It is worth

mentioning that in Wilson Chiral Perturbation Theory logarithmic terms ∼ logmquark divergent

in the mquark → 0 limit appear at second order in the lattice spacing[41]. This is in contrast to

the usual mquark logmquark terms appearing without including the lattice artifacts.

When doing chiral extrapolations we are sensitive in particular to the measurements at

small quark masses, but the spectral observables have large uncertainties in this regime. This is

due to large correlation times. Figure 30a illustrates this by binning configurations and plotting

the expectation value of fPS in each bin as a function of the number of completed Hybrid Monte

Carlo updates with unit trajectory length. Figure 30b shows a similar plot for mPS.

In order for the statistical errors not to be underestimated we have used binsizes up to 200
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Figure 28: Vector meson mass divided by the pion decay constant.
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Figure 29: Pseudoscalar mass squared over the quark mass vs the quark mass.
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when computing expectation values for the spectrum.

We would have liked to include measurements of the mass of the axial vector meson. How-

ever, we have been unsuccesful in extracting reliable estimates in this channel. Hopefully, with

more data, we will be able to successfully revisit this analysis.
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Figure 30: Pseudoscalar decay constant and mass measured in bins of 50 configurations and plottet
as a function of Monte Carlo updates. The measurements were done on a 164 lattice at β = 6 and
m0 =−1.4 corresponding to mPCAC = 0.027. The solid lines are guides for the eye.

Finite size effects

In the work by Fodor et al.[69] it is reported that the infinite volume limit is reached within 1%

if mPSL ≥ 5. At the lightest quark mass used in the simulations at β = 6 on the 164 lattice we

have mPSL ' 4.2, but at the next-to lowest mass point the quantity is mPSL ' 5.5. In the β= 5.75
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simulations on the 163 ×32 lattice we find at the lightest quark mass that mPSL ' 5.1.

Since data from bigger lattices are not available at the lowest quark masses we can not make

a fit to the asymptotic formula (3.11). This could otherwise have been used to make an infinite

volume extrapolation. Simulations on bigger lattices are underway, but until then we will try to

quantify our sensitivity to the lightest quark mass data by performing chiral fits both with and

without these points.

An estimate of the magnitude of the finite size correction can be made from the observa-

tions of Fodor et al.[69]. They observe approximately 15 % decrease from the value of mPS at

mPSL ' 3.2 to the infinite volume extrapolation. From mPS at mPSL ' 4.3 the decrease is about 3

%. For the decay constant of the pseudoscalar the relative increase is roughly similar.

According to these results we should be unable to detect any finite size effects at the next-

to-lowest mass point on the β = 6, 164 lattice, where mPSL ' 5.5. For this particular set of pa-

rameters there are simulation data available on three volumes: 163 ×32, 203 ×32 and 243 ×32.

A plot showing the dependence of fPS, mPS and mPCAC on L can be found in figure 31. The data

does not reveal any finite size effects significant beyond the statistical errors.
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Figure 31: Finite size effects. Configurations are measured at β= 6, m0 =−1.4 on lattices of size L3×32.
At L = 16 we have mPSL ' 5.5

Chiral limit

In order to extract the chirally extrapolated quantities we use different kinds of fits. Our choices

are based on the assumption of chiral symmetry breaking on one side and a mass deformed
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conformal scenario on the other. The corresponding fits are those of chiral perturbation theory

(3.15), (3.16) on one side and hyperscaling relations (3.17) on the other. For the pion decay

constant we test for two different kind of fits:

Wilson ChPT fit: fPS(m) = F0 + Am +Bm log(m) , (6.34)

Conformal fit: fPS(m) =C m
1

1+γ . (6.35)

m is the PCAC quark mass. For the mass of the vector meson we deploy the following fits

Three term fit: mV(m) = M0 + c2m2
PS + c3m3

PS , (6.36)

Polynomial fit: mV(m) = M0 + c1m + c2m2 + c3m3 , (6.37)

Conformal fit: mV(m) =C m
1

1+γ . (6.38)

The "Three term fit" is again motivated by Chiral Perturbation Theory, whereas the polynomial

fit is included to give a good versatile fit able to provide a chiral extrapolation without prejudice.

For the pseudoscalar we include the following fit types

GMOR fit: mPS(m) = A
p

m , (6.39)

Conformal fit: mPS(m) =C m
1

1+γ . (6.40)

In our conformal fits we have allowed the anomalous dimension to vary independently. It is

seen in tables 7, 8 and 9 that these scaling fits, termed "Conformal fits", gives quite good results

with the exception of the mV fit at β= 6. This fit improves significantly if the lightest mass point

is disregarded. As we have just discussed, this might be justified by finite size considerations.

Even though these fits are good their preferred value for the anomalous dimension varies from

channel to channel. This is in conflict with the hyperscaling hypothesis. Consider for instance

the fits to fPS in table 7. They favor a value around γ ' 1.5 whereas the best fit values for the

pseudoscalar meson mass is γ' 1.0 and γ' 0.85 for β= 5.75 and β= 6 respectively.

Note that the conformal fits to fPS and mV are shown in figure 27 and 25 respectively.

Next we consider the fits relating to a scenario where chiral symmetry is spontaneously

broken. Also these fits are shown in the figures 27 and 25. Stating with the fPS data we can see

in table 7 that the "Wilson ChPT" fits are somewhat better than the conformal fits, but clearly

both fit types are compatible with data having χ2/d.o.f of order one or less. This is of course

only because γ is not fitted globally but is left unconstrained in the fits. The significance of the

fits being "Wilson ChPT" fits and not just "ChPT" fits is that the coefficients in (6.34) are totally

unconstrained. In ordinary chiral perturbation theory, the B coefficient should be related to F0
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Fit β Values d.o.f χ2/d.o.f
fPS Wilson ChPT fit

5.75
F0 = 0.113(7) 6 0.437

fPS Conformal fit γ= 1.51(4) 7 1.05
fPS Wilson ChPT fit

6.00
F0 = 0.083(1) 7 0.0323

fPS Conformal fit γ= 1.47(6) 8 1.70
Excluding the lightest point

fPS Wilson ChPT fit
6.00

F0 = 0.083(2) 6 0.0373
fPS Conformal fit γ= 1.48(7) 7 1.94

Table 7: Summary of fits to the pseudoscalar decay constant.

Fit β Values d.o.f χ2/d.o.f
mV Three term fit

5.75
M0 = 0.406(7) 2 0.00768

mV Polynomial fit M0 = 0.46(1) 5 0.0936
mV Conformal fit γ= 1.81(6) 3 0.14987
mV Three term fit

6.00
M0 = 0.46(1) 4 0.221

mV Polynomial fit M0 = 0.49(2) 5 0.380
mV Conformal fit γ= 1.2(1) 8 11.2

Excluding the lightest point
mV Conformal fit β= 6.00 γ= 1.09(2) 7 0.289

Table 8: Summary of fits to the vector meson spectrum. In the fits a number of heavy mass points
were discarded in the fit. This number was determined by the one minimizing χ2/d.o.f while including
an acceptable number of points in the fit.

Fit β Values d.o.f χ2/d.o.f
mPS GMOR fit

5.75
4 0.107

mPS Conformal fit γ= 1.002(7) 7 0.139
mPS GMOR fit

6.00
6 2.25

mPS Conformal fit γ= 0.854(6) 7 0.0908

Table 9: Summary of fits to the pseudoscalar meson spectrum. In the fits a number of heavy mass
points were discarded in the fit. This number was determined by the one minimizing χ2/d.o.f while
including an acceptable number of points in the fit.
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Figure 32: Vector meson mass vs the pseudoscalar mass.

and the A coefficient in the GMOR fit (6.39). This correspondence was discussed in chapter 3

and can be seen from equation (3.15) and (3.16). The fits allow us to read off the decay constant

in the chiral limit in lattice units. Conversely we can use this to determine our lattice spacing

in physical units if we fix the scale to fPS = 246 GeV. For example we can write with all factors of

lattice spacing, Planck constant and speed of light

fPSaβ=5.75

hc
= 0.113 ⇔ aβ=5.75 ' 5.68 ·10−19 m. (6.41)

A similar calculation for β= 6 gives

aβ=6.00 ' 4.18 ·10−19 m. (6.42)

Moving on the the vector meson fits in table 8 we see that the quality of the three-term fits

and the polynomial fits are excellent. The polymanial fit is displayed in figure 25 while the

three-term-fits are depicted in figure 32. Which of these two functional forms is best suited for

the chiral extrapolation is difficult to say. Due to the fact that the three term fit has a theoretical

motivation behind it, this is a reasonable choice. However, if we look in figure 32 it appears that

the flattening of the fit curve towards small quark masses is supported by very few datapoints.

For this reason we will retain both chiral extrapolation procedures in our analysis.

The fits give us chirally extrapolated values of the vector meson masses in lattice units.

Since we have already determined our lattice spacings in physical units we can immediately
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state the results in physical units:

Three term extrapolation: mβ=5.75
v ' 0.89 TeV,

Polynomial extrapolation: mβ=5.75
v ' 1.0 TeV,

Three term extrapolation: mβ=6.00
v ' 1.4 TeV,

Polynomial extrapolation: mβ=6.00
v ' 1.4 TeV.

At this point we have not stated any errors in these values. In order to estimate the errors we use

the following proceedure. We force the M0 paramter in the three term fit (6.36) and polynomial

fit (6.37) to a range of values in the vicinity of the best fits stated in table 8. At each of these

values we compute the corresponding χ2. We can for each χ2 compute the probability Q of the

outcome of our measurements given the forced value of M0 and the functional form of the fit

is correct

Q =
(
2d/2Γ (d/2)

)−1
∫ ∞

χ2
d ssd/2−1e−t/2 . (6.43)

d is the number of degrees of freedom. The errors are then found by computing the values of

M0 corresponding to Q = 0.159 (one sigma). The accepted interval around the best fit value

need not be symmetric. However, we find that they very nearly are, so we will state only one

error for each estimate of mV .

Three term extrapolation: σ
mβ=5.75

v
' 0.33 TeV,

Polynomial extrapolation: σ
mβ=5.75

v
' 0.24 TeV,

Three term extrapolation: σ
mβ=6.00

v
' 0.19 TeV,

Polynomial extrapolation: σ
mβ=6.00

v
' 0.19 TeV.

Now we are ready to perform our continuum extrapolation and extract our best estimate for

the physical mass of the vector meson.

Continuum extrapolation

We should in principle also estimate the errors for our lattice spacings in order to fully estimate

the uncertainty of the final extrapolation. However, we will not do this at this point since the

continuum extrapolation is anyway very uncertain due to the fact that we only have data at two

lattice spacing which are not very for from each other.

In figure 33 we have plotted the chiral values of mV in physical units against the lattice

spacing. The plot also shows the linear continuum extrapolations. To the left in the plot the
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Figure 33: The above plot shows the linear continuum extrapolation of the mV data obtained by two
different chiral extrapolation schemes. The red points are the mPS values obtained from the three term
fit and the blue points are from the polynomial fits. The colored bars to the left denote the range of
continuum values compatible with data within one sigma.

range of continuum values compatible with data within one sigma is marked. This range is

again determined by the method used to estimate the errors in the chiral extrapolations.

We will end the presentation of our numerical investigation of the SU(3) sextet MWT model

by stating our preliminary results for the physical mass of the vector meson. For this final

estimate we will use the data obtained by the polynomial chiral extrapolations. This choice is

motivated by the lack of data at small mPC. This causes the three term fits shown in figure 32 to

look somewhat unreliable. Therefore

mV = 2.71 +1.39
−1.39 TeV .

The value is in agreement with what is found by Fodor et al.[69]. It will be very interesting to

get a more accurate determination of this mass allowing a possibility of testing this model at

the LHC.
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7Summary and outlook

In this thesis we have outlined some of the methods used in the non-perturbative, lattice regu-

larized studies of technicolor models relevant for physics beyond the Standard Model. After a

brief discussion of the transition from a lattice gauge theory to real world phenomenology, we

presented a GPU accelerated algorithm for lattice simulations. The particular implementation

presented in this thesis builds upon the HiRep code[43], which is a versatile suite for lattice

simulations with Wilson fermions in arbitrary representations of SU(N). The GPU code uses a

mixed precision γ5-QMR algorithm to perform the computationally intensive inversion of the

Dirac operator. The mixed precision solver will perform the inversion in single precision and

accumulate the result in double precision. This should take advantage of the fast single pre-

cision operations on the GPU. A rearrangement of the memory layout was done. This allows

for coalesced memory access and enhances the performance drastically. Futhermore, packing

and on-the-fly representation of the gauge field was introduced in order to reduce the amount

of data transfer between global and local memory. This gave up to 40 % performance enhance-

ment in the Dirac operation.

Besides the more technical aspects relating to algorithms and performance of simulation

software, some new results in models of physics beyond the Standard Model was presented.

Two explicit models have been considered, and their spectrum investigated on the lattice. The

two models are the SO(4) Minimal Walking Technicolor model and the SU(3) sextet Minimal

Walking Technicolor model. The two models have in common that they have only one doublet

of fermions. Besides that, the phenomenology of the models are quite different due to their

different patterns of global symmetry breaking. If chiral symmetry breaks, the SO(4) model

has an SU(4)→SO(4) flavor symmetry breaking pattern. This gives 6 additional Goldstone

modes compared to the SU(2)×SU(2)→SU(2) breaking pattern seen in models with fermions in

a complex representation. When charged under the electroweak interactions, these additional
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Goldstone bosons form a complex, baryonic isospin triplet with interesting phenomenological

consequences[59].

Simulations of the SO(4) model at fixed lattice spacing was performed. Evidence is pre-

sented in this thesis that favor a chiral symmetry breaking scenario over an infrared conformal

one. More studies are underway and more data will allow a more systematic study, where finite

volume effects can be taken into account. This should make possible a more definite conclu-

sion about the infrared behavior of the model and possible give more accurate estimates of the

spectrum. This might be relevant for the Large Hadron Collider since we show that the vector

meson in this model can be as light as ∼ 1.2 TeV.

We also present numerical results for the SU(3) Sextet Minimal Walking Technicolor model.

Most simulations were performed using the GPU accelerated version of the HiRep code. Sim-

ulations were carried out at two different lattice spacings. We present evidence in favor of

chiral symmetry breaking in agreement with recent work[73, 69]. Other studies[71], using

Schrödinger functional techniques on smaller lattices, suggest that an infrared fixed point ex-

ists, but are unable to rule out a slowly running coupling. While the simulations carried out in

[73, 69] was done using staggered fermions with rooting of the fermion determinant, we use

Wilson fermions. We perform a continuum extrapolation of our vector meson masses and find

it to be mV = 2.71 +1.39
−1.39 TeV .

It would of course be very interesting if we would be able to extract a mass for the Higgs

like 0++ state in both the SO(4) MWT and the SU(3) sextet MWT model. It presents a huge

technical and numerical task. The correlators involved in the calculations are both gluonic and

fermionic since the 0++ glueball will mix with the flavor singlet meson with the same quantum

numbers. Furthermore the fermionic part will have contributions from disconnected quark

loops meaning that "all-to-all" lattice correlators are required in the evaluation. The authors

of [69] have already commenced in this challenging task in the SU(3) sextet model. A reliable

estimate of the 0++ state can potentially allow the model to be excluded by present LHC data.

Another direction for future studies are the calculation of the electric and magnetic form

factors. This will be relevant especially for the SO(4) MWT model, since it contains a dark mat-

ter candidate.

Last but not least it would very interesting to estimate non-perturbatively the size of the

contribution to the S parameter coming from these models. This could potentially provide

another means of excluding them.
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AConstruction of hadrons in

SO(4)

An example of a gauge and Lorentz invariant object could be

δabua
αε

αβub
β . (A.1)

Suppressing now the Technicolor indices and writing this in terms of Dirac spinors the projec-

tion operators can conveniently be introduced

PL = 1−γ5

2
, PR = 1+γ5

2
, (A.2)

giving us

δabua
αε

αβub
β ↔ (PLuD)T

εαβ 0

0 X

 (PLuD)

The X is at this point arbitrary since it only affects the right handed part of the Dirac fermions

which is projected away. One particular choice, which will prove convenient, is X = εα̇β̇. In this

case the matrix will be the charge conjugation matrix:

C =
εαβ 0

0 εα̇β̇

= iγ0γ2 . (A.3)

Note that {γ5,γµ} = 0 so [γ5,C ] = 0 and [PL ,C ] = 0. Note also that P T
L = PL since (γ5)T = γ5 and

P 2
L = PL . The operator in question can now be expressed as

ΠL
uu ≡ uT

D PLCuD . (A.4)

The analogous operator for the opposite projection is

ΠR
uu ≡ uT

D PRCuD ↔ δab ¯̃uaα̇εα̇β̇
¯̃ubβ̇ . (A.5)
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The operatorsΠL
uu andΠR

uu does not have definite parity so it is custom to consider instead the

two linear combinations

Πuu ≡ΠR
uu +ΠL

uu = uT
D CuD , (A.6)

Π̃uu ≡ΠR
uu −ΠL

uu = uT
D γ

5CuD . (A.7)

Note that P (Π̃uu) = +1 = −P (Π̃ūu) and P (Πuu) = −1 = −P (Πūu). The remaining scalar and

pseudoscalar baryons can be constructed in a similar way.

The mesonic operators can be constructed from similar considerations. However we will

now use uα and ũβ as a starting point.

ũαε
αβuβ = ũαuα ↔ (PR uD)†γ0(PLuD) = ūDPLuD , (A.8)

where we have suppressed the color indices. Similarly

ūDPR uD , (A.9)

is a valid combination and as with the diquark states we choose the linear combinations with

definite parity

Πūu ≡ ūDPLuD + ūDPR uD = ūDuD , (A.10)

Π̃ūu ≡ ūDPLuD − ūDPR uD = ūDγ
5uD . (A.11)

Vector mesons and baryons

The vector mesons and baryons can be constructed through the same considerations as for the

scalar operators. However one includes a Dirac γ-matrix in the building blocks:

qT
D C = (

qα , ¯̃qα̇
)

and γµqD =

 σ
µ

αβ̇
¯̃q β̇

(σ̄µ)α̇βqβ

 , (A.12)

for the baryons and

q̄D and γµqD , (A.13)

for the mesons. This gives the following baryons:

V µ
uu ≡ uT

D CγµuD , Ṽ µ
uu ≡ uT

D γ
5CγµuD , (A.14)

V µ

dd ≡ d T
D CγµdD , Ṽ µ

dd ≡ d T
D γ

5CγµdD, (A.15)

V µ

ud ≡ uT
D CγµdD , Ṽ µ

ud ≡ uT
D γ

5CγµdD , (A.16)

V µ

du ≡ d T
D CγµuD , Ṽ µ

du ≡ d T
D γ

5CγµuD , (A.17)
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and the following mesons:

V µ
ūu ≡ ūDγ

µuD , Ṽ µ
ūu ≡ ūDγ

µγ5uD , (A.18)

V µ

d̄d
≡ d̄Dγ

µdD , Ṽ µ

d̄d
≡ d̄Dγ

µγ5dD , (A.19)

V µ

ūd ≡ ūDγ
µdD , Ṽ µ

ūd ≡ ūDγ
µγ5dD , (A.20)

V µ

d̄u
≡ d̄Dγ

µuD , Ṽ µ

d̄u
≡ d̄Dγ

µγ5uD . (A.21)
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We compute the finite-temperature and matter density corrections to the S-parameter at the one-loop

level. At nonzero temperature T and matter density � Lorentz symmetry breaks and therefore we suggest

a suitable generalization of the S-parameter. By computing the plasma correction, we discover a reduction

of the S-parameter in the physically relevant region of small external momenta for any nonzero � and T.

In particular, the S-parameter vanishes at smallm=T, wherem is the mass of the fermions, due to the finite

extent of the temporal direction. Our results are directly applicable to the determination of the S-parameter

via first-principle lattice simulations performed with antiperiodic boundary conditions in the temporal

direction.
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I. INTRODUCTION

Models of dynamical electroweak symmetry breaking
are quickly gaining momentum. The reason why these
models featuring uncolored techniquarks are harder to
constrain, even at the LHC, is that they typically predict
a heavier spectrum, compared to the electroweak scale, of
new particles.1 For this reason it is interesting to analyze
the indirect constraints from electroweak precision data
established at LEP. It is well known that any extension of
the standard model replacing the electroweak symmetry
breaking sector can be constrained analyzing the electro-
weak gauge bosons vacuum polarizations as proved long
time ago by Kennedy and Lynn [1]. Indirect constraints
were therefore set using LEP results via the S, T and U
parameters, or any linear combinations of them in [1–4].
It is therefore crucial to gain as much information as
possible about these important correlators. In particular,
the S-parameter is especially relevant for models of elec-
troweak symmetry breaking. Several estimates have ap-
peared in the literature making use of model computations
[5–17] and/or first-principle lattice computations [18,19].
The latter ones are necessarily carried out on finite lattices,
i.e. at finite volume and temperature. Surprisingly the finite
size corrections to such parameters have not yet been
investigated. Here we analyze the impact of the finite-
temperature corrections on the S-parameter.

This correlator can be determined for any asymptotically
free gauge theory with matter transforming according to a
given representation of a generic underlying gauge group.
Once the number of colors of the new gauge dynamics is
fixed, we can have a number of distinct phases in which
the theory can exist. For example, it can display large
distance conformality or break the global chiral

symmetries spontaneously. In both cases this correlator is
well defined [12–14] and worth computing.
We provide here the first one loop determination of the

S-parameter at nonzero matter density � and temperature
T. These computations are either under perturbative con-
trol when applied to the upper end of the conformal win-
dow or can be viewed as naive estimates, à la Peskin and
Takeuchi, when used below the conformal window. Since
at nonzero temperature and matter density Lorentz sym-
metry breaks we suggest a suitable generalization of the
S-parameter and investigate the various limits in the ratios
of the relevant energy scales.
In Sec. II we compute the plasma corrections to the

S-parameter and we show that, at small external momenta,
it is reduced with respect to the zero T and � case. We
consider different limits for which analytical expressions
can be derived, better elucidating the physical results.
In Sec. III we discuss the relevance of our results for

lattice determinations of the S-parameter and we finally
conclude in Sec. IV.
A detailed derivation of our results is provided in the

Appendices.

II. THE S-PARAMETER AT NONZERO
TEMPERATURE AND CHEMICAL

BARYON POTENTIAL

The definition of the S-parameter used by He, Polonsky
and Su [20] and in [12,14] is

S ¼ �16�
�3Yðk2Þ ��3Yð0Þ

k2
; (1)

where �3Y is the vacuum polarization of the third compo-
nent of the isospin into the hypercharge current, and we
have used, as a reference point, an external momentum k2,
instead of the usual Z boson mass. The S-paramter in
Eq. (1) also depends on the fermion masses mu, md.

*sondergaard@cp3.sdu.dk
†pica@cp3-origins.net
‡sannino@cp3-origins.net
1Light states can also be present, depending on the specific

dynamics. Here we are referring to the QCD-like states.
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The definition by Peskin and Takeuchi [2] is recovered
in the k2 ! 0 limit:

S ¼ �16�
d�3Yðk2Þ

dk2

��������k2¼0
: (2)

At nonzero temperature, Lorentz invariance breaks, and
therefore one should differentiate between the temporal
and spatial components of the 4-momentum k. Also several
new scales will enter in the definition of the S-parameter.

The partition function of a four-dimensional field
theory with (anti)periodic boundary conditions in the

Euclidianized temporal direction coincides with the parti-
tion function of a three-dimensional theory at finite tem-
perature. The compactification of the temporal direction
makes k0 discrete. For a pedagogical introduction of the
formalism we refer to the book by J. I. Kapusta and C. Gale
[21]. For a system in thermal equilibrium at temperature T
and chemical baryon potential �, the allowed frequencies
have values k0 ¼ i!n þ� where !n ¼ 2n�T for bosons
and !n ¼ ð2nþ 1Þ�T for fermions.
At nonzero temperature, we extend the definition of the

He-Polonsky-Su S-parameter in the following way:

S��ðmu;md; x; k
2; T; �Þ ¼ �16�

���
3Y ðmu;md; x; k

2; T; �Þ ����
3Y ðmu;md; x; 0; T; �Þ

k2
; (3)

with the reference external 4-momentum given by ðk0;kÞ
with k0 ¼ xjkj and k2 ¼ k20 � k2. Note that the external
4-momentum can also be written as

k0
jkj

� �
¼ k cosh�

k sinh�

� �
; x ¼ coth� � 1; (4)

with � the rapidity of the 4-vector ðk0;kÞ. As expected
from the breaking of Lorentz invariance, the generalized
S-parameter in Eq. (3) does not depend only on k2, but also
on x ¼ coth�.

We also extend the Peskin-Takeuchi definition at finite
temperature, by taking the limit k2 ! 0 of Eq. (3):

S��ðmu;md; x; T;�Þ

¼ �16�
d�

��
3Y ðmu;md; x; k

2; T; �Þ
dk2

��������k2¼0
: (5)

The complete expressions for the finite temperature
���

3Y ðmu;md; x; k
2; T; �Þ and the S-parameter are derived

in Appendix B. To make contact with the zero temperature
S-parameter we still consider the term proportional to g��.
This is, according to us, a natural choice of extending
the S-parameter at nonzero temperature and chemical po-
tential. Furthermore, we have explicitly checked, see
Appendix B, that in the degenerate fermion mass limit
S�� ¼ Sg��.

The S-parameter being a pure number can only depend
on adimensional ratios of the physical scales entering in its
definition. In the case of degenerate u- and d-type fermions
we have mu ¼ md ¼ m, and the S-parameter will only
depend on the pure numbers x, k2=m2, �m and ��:
Sðm; x; k2; T; �Þ ¼ Sðx; k2=m2; �m;��Þ. As shown in
Appendix B, the total S-parameter is given by its zero
temperature and zero chemical baryon potential part S0
plus a plasma contribution Sþ: S ¼ S0 þ Sþ. The explicit
expression of the plasma contribution to the S-parameter
is given by

Sþðx; ðk=mÞ2; �m;��Þ

¼ ]

6�

Z 1

0
dqq224

~Fð�m;��; qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

lnðuþu�Þ
4q k

m

þ x2 � 1

2ðq2ðx2 � 1Þ þ x2Þ
��

m

k

�
2
; (6)

where we used the shorthand notation:

u�¼�4
k

m
q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p
þ k2

m2
ðx2�1Þ�4ðx2þq2ðx2�1ÞÞ;

(7)

and the function ~F is defined as:

~Fð�m;��; qÞ ¼ 1

expð�m ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p � ��Þ þ 1

þ 1

expð�m ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p þ ��Þ þ 1
: (8)

In Eq. (6), the factor ] ¼ d½r�Nf=2 accounts for

ND ¼ Nf=2 doublets of fermions in the representation r

with dimension d½r� of the gauge group. To understand the
plasma contribution to the S-parameter, we plot in Fig. 1
the finite-temperature S-parameter, in the case � ¼ 0, as a
function of k2=m2 for a particular value of �m. The zero-
temperature part S0 was computed in [12] and it is dis-
played for comparison by the dashed-dotted lines (the real
part corresponds to the thick line, while the imaginary
part to the thin line). The plasma contribution Sþ is shown
by the dashed lines, and the total S-parameter is displayed
by the solid lines. As we will show below with a direct
computation, Sþ vanishes in the zero-temperature limit as
expected. At nonzero temperature the structure of the real
and imaginary parts of Sþ is similar to the one of S0, and, at
small k2=m2, reduces the total S-parameter. When increas-
ing the temperature, Sþ grows in absolute value, and in the
limit �m ! 0 exactly cancels the zero-temperature part,
so that the S-parameter vanishes in this limit. In the case of
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zero chemical potential, this cancellation is encoded
directly in the Matsubara frequency sum formula (B3).
Physically one can understand this cancellations by recall-
ing that in this limit the fermions decouple.

Adding a nonzero chemical potential does not alter this
picture, as we shall see below, and a similar reduction at
small k2=m2 is observed.

A. The k2=m2 ! 0 limit

Starting from Eq. (6) we expand the term in parenthesis
as a power series in k2=m2. We have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p lnðuþu�Þ
4q k

m

þ x2 � 1

2ðq2ðx2 � 1Þ þ x2Þ ¼
X1
i¼1

ai

�
k2

m2

�
i
; (9)

where the first coefficients in the expansion are

a1 ¼ �ðx2 � 1Þ2ðq2ð3x2 þ 1Þ þ 3x2Þ
24ðq2ðx2 � 1Þ þ x2Þ3 ; (10)

a2¼�ðx2�1Þ3ðq4ð5x4þ10x2þ1Þþ10q2ðx4þx2Þþ5x4Þ
160ðq2ðx2�1Þþx2Þ5 :

(11)

By inserting the expansion in Eq. (9) into Eq. (6), we obtain

Sþ ¼ ]

6�

X1
j¼0

Cj

�
k2

m2

�
j
; (12)

where

Cjðx; �m;��Þ ¼ 24
Z 1

0
dqq2

~Fð�m;��; qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p ajþ1: (13)

The generalized S-parameter in Eq. (5) can be easily
read from the above expression:

Sðk2=m2 ! 0Þ ¼ ]

6�
½1þ C0ðx; �m;��Þ�: (14)

We plot in Fig. 2 the generalized S-parameter in
Eq. (5) and (14) as a function of the temperature and
chemical potential. We find the interesting result that the
S-parameter reduces in the presence of nonzero tempera-
ture and/or chemical potential.
We have already discussed why the S-parameter is re-

duced at small k2=m2 at high temperature. The decrease as
a function of the chemical potential is due to the fact that
only one species of fermions survives at large �, effec-
tively restoring chiral symmetry. At large chemical poten-
tial there will be instabilities at the Fermi surface leading to
the breaking of the vacuum, which we are not considering
here.

B. High-temperature limit

In the limit of large temperature �m ! 0, we expand ~F
as a power series in �m:

~Fð�m;��Þ¼1�sech2
�
1

2
��

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þq2

q
�mþOð�3m3Þ;

(15)

and insert this expansion in the integral defining Sþ (6).
The first term in the expansion (15), constant in �m, gives
a contribution which is identical in size but opposite in sign
to the zero temperature S-parameter S0. The second term,
linear in �m, can also be computed leading to

FIG. 2 (color online). The generalized S-parameter in Eq. (5)
at finite temperature and chemical potential for coth�¼x¼ ffiffiffi

2
p

.

FIG. 1 (color online). The finite-temperature S-parameter (3)
(real part: thick solid line, imaginary part: thin solid line) is
given by the sum of the zero-temperature part S0 (dashed-dotted
lines) and a plasma contribution Sþ (6) (dashed lines). In this
plot coth� ¼ x ¼ ffiffiffi

2
p

, � ¼ 0 and �m ¼ 1.
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Sþ¼�S0þsech2
�
1

2
��

�
coshð�ÞSð1Þþ ðk2=m2Þð�mÞ

þOð�3m3Þ; (16)

where:

Sð1Þþ ðk2=m2Þ ¼ 3�

k2=m2

�
1þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

k2

m2
� 1

s �
: (17)

In the limit k2=m2 ! 0 the generalized S-parameter in
Eq. (5) is given by

Sðk2=m2 ! 0Þ
¼ ]

16
sech2

�
1

2
��

�
coshð�Þð�mÞ þOð�3m3Þ: (18)

Interestingly we note that, in this limit, the contribution
to S-parameter depending on ��, �, k2=m2 and �m all
factorize.

C. Low-temperature limit

When the ratio�m is large enough, corresponding to the
low-temperature limit of the theory, we expect to recover
the familiar zero-temperature result. To show that this is
indeed the case, we start from the expression for Sþ in
Eq. (6) and perform a change of variable and rewrite the

integral in terms of the new variableQ¼�mð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þq2

p �1Þ.
We then expand the integrand as an asymptotic series for
large �m. In the final expression the dependence on the
chemical potential factorizes, as in the case of the high-
temperature expansion. This can be easily seen as, at large
�m, the function ~F appearing in Eq. (6) can be approxi-
mated by

~Fð�m;��Þ � 2 coshð��Þe��m
ffiffiffiffiffiffiffiffiffi
1þq2

p
: (19)

Keeping only the first term in the expansion of S we
obtain

Sþ ¼ � ]

6�

coshð��Þsech4ð�Þ
1� ð k=m

2 cosh�Þ2

� 3
ffiffiffiffiffiffiffi
2�

p

ð�mÞ3=2 e
��m �

�
1þO

�
1

�m

��
: (20)

Higher order terms in the expansion can easily be obtained
in the same way.

The final expression (16) contains an exponential
Boltzmann-like suppression factor as expected.

We compare the high- and low-temperature expansions
in Eq. (16) and (20) to the complete numerical result for the
generalized S-parameter in the k2=m2 ! 0 limit in Fig. 3.
The expansions converge within their respective domain of
validity temperature regions.

We also note that the accuracy of the low-temperature ex-
pansion in Eq. (20) depends critically on the value of k2=m2

as the coefficient of the first term in the expansion diverges
for k=m ¼ 2 cosh�. This divergence is unphysical, as it is
clear from the fact that it is not present in the full expression.
We compare in Fig. 4 the value of Sþ with its asymptotic
expansion at low-temperature for a finite, low value of
the temperature �m ¼ 5 and at finite density �� ¼ 3.
The dip at k2=m2 ¼ 4 of Sþ is the kinematical threshold.

0 1 2 3 4 5
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0.4

0.6

0.8

1
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6
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(k
2 /m

2
 0

)/
#

FIG. 3 (color online). The generalized S-parameter in Eq. (5)
(thick lines) at finite temperature and chemical potential as
compared to the high-temperature (16) and low-temperature
(20) expansions. The three different curves correspond to
�� ¼ 0 (top, dashed line), �� ¼ 2:33 (middle, solid line)
and �� ¼ 4:33 (bottom, dashed-dotted line). In this plot we
use coth� ¼ ffiffiffi

2
p

.

FIG. 4 (color online). The plasma contribution to the
S-parameter (6) (solid line) at finite temperature �m ¼ 5 and
finite chemical potential �� ¼ 3 compared to the low-
temperature expansion (20) (dashed line).
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III. APPLICATIONS TO LATTICE FIELD THEORY

Our result can be used to estimate the finite-
temperature corrections to the S-parameter as computed
using numerical lattice simulations. These are typically
performed at nonzero temperature, when antiperiodic
boundary conditions are used in the temporal direction, so
that it is crucial to disentangle the finite-temperature effects
to extrapolate to zero temperature. We demonstrated that
the S-parameter in the phenomenologically relevant pa-
rameter region of small external momenta, is reduced by
the effects of nonzero temperature. The smaller is �m
the larger the negative corrections. There is also a depen-
dence on the rapidity � which has to be taken into account.
At large �m such a dependence disappears, while it in-
creases at smaller �m. This dependence is shown in Fig. 5.
In the large rapidity regime, corresponding to x ! 1, one
approaches the zero-temperature result. This can be better
understood considering that in this limit the temporal and
spatial momentum both diverge in order to keep k2 finite, as
required by our definition of the S-parameter.

To better elucidate the size of the corrections to the
S-parameter, we plot in Fig. 6 the contour lines of S=S0
in the �m� coth� plane. We also show in Fig. 7 the
contour plots of S=S0 as a function of �m and ��, for

coth� ¼ ffiffiffi
2

p
corresponding to Fig. 2.

To compare to the lattice results, we show in Fig. 8 the
dependence on the fermion masses of the S-parameter at
zero chemical potential and finite T for two different
values of the reference momentum k2. The decrease in S
at small m is not due to a chiral restoration but the finite-
temperature corrections. From Fig. 8 it is possible to
estimate the range of masses for which a reliable estimate

of the S-parameter can be extracted from lattice results,
assuming that the infinite volume regime has been reached.
In order to be able to directly compare with lattice re-

sults we need to consider two cases. In a theory displaying
large distance conformality the relevant mass scale, at
infinite volume and zero temperature, is the explicit femion
mass term. Therefore in the conformal window our com-
putations are directly applicable and reliable in the Banks-
Zaks regime. In a theory developing a chiral condensate
dynamically such as QCD our computations constitute an
extremely crude estimate of the thermal corrections upon
identifying the fermion mass m with the dynamical gen-
erated mass scale. Having in mind these two different
regimes we can now revisit recent lattice determinations
of the S-parameter. For example, Boyle et al. [19] deter-
mined the S-parameter in lattice QCD with 2þ 1 fermion

0 1 2 3 4
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6
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2 /m
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/#

=0
=1
=2
=3

FIG. 5 (color online). The rapidity dependence of the
S-parameter in the limit k2=m2 ! 0 for � ¼ 0. The finite-
temperature corrections vanish at large rapidity. The curves
correspond to different values of the rapidity ranging from
� ¼ 0 (lowermost) to � ¼ 3 (uppermost).
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FIG. 6 (color online). Contour plot of S=S0 at � ¼ 0.
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FIG. 7 (color online). Contour plot of S=S0 for coth� ¼ ffiffiffi
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p
corresponding to Fig. 2.
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flavors. Using the vector meson masses as an extremely
naive measure of the chiral scale of the theory i.e.
m���m� one has �m�m�L0 where L0 is the lattice

temporal extension. For the lowest quark mass used in their
work one then has �m� ’ 11 which is well beyond the

point around �m ’ 2:5 where the thermal corrections be-
come important, say above 5%, as shown in Fig. 7.
Similarly the results reported by the LSD Collaboration
[22] seem also away from substantial thermal corrections
having �m� ’ 16.

In the work by DeGrand [23] the S-parameter is deter-
mined for a SUð3Þ gauge theory with two flavors in the
sextet representation. If this theory is below the conformal
window, thermal effects are expected to be small for the
setup used since �m� ’ 6:6. However, if the theory is

conformal the relevant mass is the quark mass yielding a
�m ranging between �0:4 and 1.2. This suggests poten-
tially significant thermal corrections.

Furthermore, and independently from thermal correc-
tions, lattice computations should also carefully choose the
kinematical regime in which the interesting S-parameter
should be measured. Since, as first noted in [12–14] the
order of the limits is crucial. Considering the aforemen-
tioned lattice simulations we find that the first two lattice
determinations [19,22] are approaching the k2=m2 zero
limit while the third one seems still far away from this
limit, having a ratio larger than 10 (see figure 12 of [23]).

IV. CONCLUSIONS

In this work we provided a suitable generalization of the
S-parameter at nonzero temperature and chemical poten-
tial. By computing the plasma contributions Sþ we dis-
covered a reduction of the S-parameter in the physically
relevant region of small k2=m2 for any nonzero � and T.

Our results are directly applicable to the determination
for the S-parameter via first-principle lattice simulations
performed with antiperiodic boundary conditions in the
temporal direction. In this case we find that the vanishing
of the S-parameter at small �m is due to the finite extent
of the temporal direction.
We have explicitly compared our results with the

most recent lattice determinations, however finite spatial
volume corrections, which can be sizable, still need to be
investigated.
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APPENDIX A: VACUUM CONTRIBUTION
TO THE S-PARAMETER

At zero temperature T ¼ 0 and chemical potential
� ¼ 0, the perturbative expression for the S-parameter,
as defined by He, Polonsky and Su, has been calculated
at one-loop in [20] and at two-loop in [24]. At one-loop
order the He-Polonsky-Su S-parameter, as defined in
Eq. (1), reads

S¼NDd½r�
6�

�
2ð4Yþ3Þzuþ2ð�4Yþ3Þzd�2Y log

�
zu
zd

�

þ
��

3

2
þ2Y

�
zuþY

�
GðzuÞþ

��
3

2
�2Y

�
zd�Y

�
GðzdÞ

�
;

(A1)

with

GðzÞ ¼ �4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z� 1

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4z� 1
p

�
;

where Y is the hypercharge, zi ¼ m2
i =k

2, i ¼ u, d,mi is the
mass of the fermionic species and ND ¼ Nf=2 is the

number of doublets transforming under a technicolor group
representation r with dimension d½r�.

APPENDIX B: DETAILED CALCULATION
OF PLASMA CONTRIBUTION

TO THE S-PARAMETER

The S-parameter can be written in terms of the following
vacuum polarization amplitudes:
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FIG. 8 (color online). S-parameter at finite temperature as a
function of the fermions mass for k2�2 ¼ 0:1 (dashed line) and
k2�2 ¼ 2 (solid line). In this figure coth� ¼ ffiffiffi

2
p

.
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where the wavy lines represent electroweak gauge bosons,
once we specify the hypercharge and isospin of the fermion
doublets. We use the choice of Table I. The amplitude
�

��
3Y , entering in the S-parameter, can then be constructed

in terms of �
��
LL and �

��
LR . We have

4�
��
3Y ðk;mu;mdÞ¼y½���

LLðk;mu;muÞþ�
��
LRðk;mu;muÞ�

�y½���
LLðk;md;mdÞþ���

LRðk;md;mdÞ�
þ���

LRðk;mu;muÞþ���
LRðk;md;mdÞ:

(B1)

In the equations above we have suppressed the explicit
dependence on the temperature T and the chemical poten-
tial �. In the case of degenerate fermion masses, ���

3Y ðkÞ
becomes independent of the particular choice of hyper-
charge, and we have

���
3Y ðk;mÞ ¼ 1

2
���

LRðk;mÞ: (B2)

Evaluation of diagrams

The explicit expression for the amplitudes, at finite
temperature and chemical potential, have the form:

�
��
LH ¼ T

X1
l¼�1

Z d3p

ð2�Þ3

� Tr

�
��PL

6pþm

p2 �m2
��PH

6kþ 6pþm

ðkþ pÞ2 �m2

�
;

where p0 ¼ ið2lþ 1Þ�T þ� and H ¼ L, R. Let N
��
LH

denote the numerator of the expression in square brackets.
By evaluating the traces we get

N��
LL ¼ 2½p�ðpþ kÞ� þ p�ðpþ kÞ� � p � ðpþ kÞg���;

N��
LR ¼ 2m2g��:

Introducing the shorthand

b ¼ ðp0 þ k0Þ2 � p2 � k2 �m2;

we can rewrite the amplitude in a more compact form:

�
��
LH ¼ T

X1
l¼�1

Z dp3

ð2�Þ3
1

p2 �m2
� N��

LH

b� 2jp k kj cos� :

We now use the Matsubara frequency sum formula (see
e.g. [21])

T
X1

l¼�1
fðp0Þ ¼ i

2�

Z þi1þ�þ"

�i1þ�þ"
dp0fðp0Þ~fðp0 ��Þ

þ i

2�

Z þi1þ��"

�i1þ��"
dp0fðp0Þ~fð�� p0Þ

� i

2�
⨖

C
dp0fðp0Þ � i

2�

Z i1

�i1
dp0fðp0Þ;

(B3)

to evaluate the sum over the frequencies. In this expression
C is a rectangular path (i1, �i1þ�) going counter-

clockwise and ~fðp0Þ ¼ ðe�p0 þ 1Þ�1 where � ¼ T�1.
This formalism allows for a neat separation of the vacuum
contribution���

LH;0 ¼ ���
LHjT;�¼0 and the plasma contribu-

tion ���
LH;þ ¼ ���

LH ����
LH;0. The last term in the sum

formula gives the zero temperature and chemical potential,
and reads:

���
LH;0ðkÞ ¼ �i

Z d4p

ð2�Þ4
1

p2 �m2
� N

��
LH

b� 2jp k kj cos� :

For evaluation of this term we refer to standard textbooks,
see e.g. Peskin and Schroeder [25]. The final result for this
integral corresponds to the S-parameter as stated in (A1).
In this paper we compute �

��
LH;þ. We first consider the

case where no poles are contained inside the closed path C.
This depends on the values of the chemical potential� and
the external momentum. In this case only the first two
integrals contribute to the result:

���
LH;þ ¼ i

Z i1þ�þ"

�i1þ�þ"

dp0

2�

Z d3p

ð2�Þ3
1

p2 �m2

N
��
LH

b� 2jp k kj cos�
~fðp0 ��Þ

þ i
Z i1þ��"

�i1þ��"

dp0

2�

Z d3p

ð2�Þ3
1

p2 �m2

N
��
LH

b� 2jp k kj cos�
~fð�� p0Þ:

TABLE I. Hypercharge and isospin assignments for the fermi-
ons. y is an arbitrary real number.

T3 Y

uL 1=2 y=2
uR 0 ðyþ 1Þ=2
dL �1=2 y=2
dR 0 ðy� 1Þ=2
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Changing to spherical coordinates the angular part of the integration over p can be performed (note that also N
��
LL depends

on the angle �). The results for the two amplitudes are

���
LL;þ ¼ i

Z i1þ�þ"

�i1þ�þ"

dp0

2�

Z 1

0

djp k pj2
ð2�Þ2

2~fðp0 ��Þ
p2 �m2

�
a�� þ bg��

4jp k kj ln

�
bþ 2jp k kj
b� 2jp k kj

�
� g��

�

þ i
Z i1þ��"

�i1þ��"

dp0

2�

Z 1

0

djp k pj2
ð2�Þ2

2~fð�� p0Þ
p2 �m2

�
a�� þ bg��

4jp k kj ln

�
bþ 2jp k kj
b� 2jp k kj

�
� g��

�
;

���
LR;þ ¼ i

Z i1þ�þ"

�i1þ�þ"

dp0

2�

Z 1

0

djp k pj2
ð2�Þ2

2~fðp0 ��Þ
p2 �m2

N
��
LR

4jp k kj ln
�
bþ 2jp k kj
b� 2jp k kj

�

þ i
Z i1þ��"

�i1þ��"

dp0

2�

Z 1

0

djp k pj2
ð2�Þ2

2~fð�� p0Þ
p2 �m2

N
��
LR

4jp k kj ln
�
bþ 2jp k kj
b� 2jp k kj

�
;

where

a�� ¼ 2p�ðp� þ k�Þ þ 2p�ðp� þ k�Þ � 2p0ðp0 þ k0Þg�� þ 2jpj2g��:

Evaluating the integrals in p0 by closing the contours at infinity gives

���
LL;þ ¼ �2

Z 1

0

djp k pj2
ð2�Þ2

~fðEp ��Þ þ ~fðEp þ�Þ
Ep

Re

�
a�� þ bg��

4jp k kj ln

�
bþ 2jp k kj
b� 2jp k kj

�
� g��

�
p0¼Ep

;

�
��
LR;þ ¼ �2

Z 1

0

djp k pj2
ð2�Þ2

~fðEp ��Þ þ ~fðEp þ�Þ
Ep

Re

�
N��

LR

4jp k kj ln
�
bþ 2jp k kj
b� 2jp k kj

��
p0¼Ep

:

In the above expression we have

Re fðk0Þ ¼ 1

2
½fðk0Þ þ fð�k0Þ�; Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

q
:

The computation was performed in the case where no poles reside in the interior of C. However it is straightforward to
verify that this result holds also if some of the poles are located inside the contour C.

We are now ready to piece together the S-parameter from (B1) and the definition in Eqs. (3) and (5). We first write the
expression for �3Y;þ:

���
3Y;þðk0;k; mu;mdÞ

¼ y

2
Re

Z 1

0

djp k pj2
ð2�Þ2

�~fðEp;d ��Þ þ ~fðEp;d þ�Þ
Ep;d

�
�a�� þ bdg

�� þ ð1� 1
yÞN��

LR;d

4jp k kj ln

�
bd þ 2jp k kj
bd � 2jp k kj

�
� g��

�
p0¼Ep;d

�
~fðEp;u ��Þ þ ~fðEp;u þ�Þ

Ep;u

�
�a�� þ bug

�� þ ð1þ 1
yÞN��

LR;u

4jp k kj ln

�
bu þ 2jp k kj
bu � 2jp k kj

�
� g��

�
p0¼Ep;u

�
;

where the subscript u, d denotes which mass is used. To write down the explicit expression for the S-parameter in Eq. (3),
we now take the limit k ! 0 keeping k0 ¼ coshð�Þk, jkj ¼ sinhð�Þk:

lim
k!0

���
3Y;þðcoshð�Þk; sinhð�Þk;mu;mdÞ

¼ y

4

Z 1

0

djp k pj2
ð2�Þ2

�~fðEp;d ��Þ þ ~fðEp;d þ�Þ
Ep;d

�
� a�� þ ð1� 1

yÞN��
LR;d

�2ðm2cosh2ð�Þ þ p2Þ � g��

�
p0¼Ep;d;k¼0

�
~fðEp;u ��Þ þ ~fðEp;u þ�Þ

Ep;u

�
� a�� þ ð1þ 1

yÞN��
LR;u

�2ðm2cosh2ð�Þ þ p2Þ � g��

�
p0¼Ep;u;k¼0

�
:
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The plasma contribution to the S-parameter Sþ can be computed from the explicit expressions for�3Y;þ and limk!0�3Y;þ
above

Sþðk2; x; mu;mdÞ ¼ �16�
�3Y;þ � limk!0�3Y;þ

k2
;

where x ¼ cothð�Þ and �3Y;þ is the coefficient of the g�� part of ���
3Y;þ.
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We study the gauge dynamics of an SO(4)-gauge theory with two Dirac Wilson fermions transforming

according to the vector representation of the gauge group. We determine the lattice phase diagram by

locating the strong coupling bulk phase transition line and the zero quark mass line. We present results for

the spectrum of the theory obtained at a fixed value of the lattice spacing. In particular we measure the

pseudoscalar, vector and axial meson masses. The data are consistent with a chiral symmetry breaking

scenario rather than a conformal one. When used to break the electroweak symmetry dynamically the

model leads to a natural dark matter candidate.
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I. INTRODUCTION

Understanding the phase diagram of strongly interacting
theories will unveil a large number of theories of funda-
mental interactions useful to describe electroweak symme-
try breaking, dark matter and even inflation [1–4]. To gain
a coherent understanding of strong dynamics besides the
SU(N) gauge groups [5,6], one should also investigate the
orthogonal, symplectic and exceptional groups. SO(N) and
SP(2N) phase diagrams were investigated with analytic
methods in Ref. [7], while the exceptional ones together
with orthogonal gauge groups featuring spinorial matter
representationswere studied in Ref. [8]. So far lattice simu-
lations have been mostly employed to explore the phase
diagram of SU(N) gauge theories while a systematic lattice
analysis of the smallest symplectic group was launched in
Ref. [9].

Here we move forward by analyzing on the lattice the
dynamics of the SO(4) gauge group with two Dirac fermi-
ons in the vector representation of the group. This choice is
based on the following theoretical and phenomenological
considerations. The theory is expected to be below or near
the lower boundary of the conformal window [7,10], and
therefore break chiral symmetry. The theory can be used as
a technicolor [11,12] template similar, from the global
symmetry point of view, to minimal walking technicolor
(MWT) [5,13,14].

Although the chiral symmetry breaking pattern is iden-
tical to the one of MWT there are substantial differences in
the massive spectrum of the theory with important phe-
nomenological consequences. This is because for MWT
the technifermions, like the technigluons, transform ac-
cording to the adjoint representation of the underlying
gauge group. Consequently, one can immediately construct
technicolor gauge singlets, which are made from one

technifermion and one techniglue. This forces model
builders to choose nonstandard model hypercharge assign-
ments for the technifermions in order to make sure that the
composite fermonic states have integer electric charges.
Furthermore, the Witten anomaly [15] of MWT is resolved
by adding new leptonlike fermions that are doubly charged
because of the hypercharge choice with interesting phe-
nomenology. The theory we investigate here has the fol-
lowing features: Being an SO(4) gauge theory it has an
even number of technifermions gauged under the electro-
weak avoiding the Witten anomaly; the technigluons
belong to the two-index antisymmetric representation
[the adjoint of SO(4)] while the technifermions to the
vector representation, therefore forbidding the construc-
tion of a technifermion-technigluon bound state. These
features renders orthogonal technicolor a simpler model
than MWT.
Furthermore the orthogonal technicolor theory leads to a

weak isotriplet with the neutral member being an ideal
dark matter candidate [7,10], the isotriplet technicolor
interactive massive particle (iTIMP). This state is a pseudo
Goldstone and therefore can be light with respect to the
electroweak scale making it a natural candidate to resolve
some of the current experimental puzzles [10,16]. The first
model featuring composite dark matter pions appeared in
Refs. [17,18] and the first study of technipion dark matter
on a lattice appeared in Ref. [9].
Due to the reality of the fermion representation the

quantum global symmetry group is SU(4) expected to
break spontaneously to SO(4), yielding nine Goldstone
bosons. Once gauged under the electroweak theory
three are eaten by the SM gauge bosons. Six additional
Goldstone bosons form an electroweak complex triplet of
technibaryon with the neutral isospin zero component to be
identified with the iTIMP of Ref. [10].
SO(4) is a semisimple group, SOð4Þ ffi SUð2Þ � SOð3Þ,

and it has a nontrivial center Z2. The theory is asymptoti-
cally free and since the two-loop �-function for different
number of flavors loses the infrared zero for Nf ¼ 2:3
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while the all-orders beta function [19,20] predicts the
anomalous dimension of the mass to be unity for Nf ¼
2:86 we expect that chiral symmetry breaks for two
Dirac flavors. However, we want to confirm here this result
via first principle lattice simulations. Furthermore, there is
also the possibility that the theory shows a certain degree
of walking [9,10,21–23] unless the phase transition is
of jumping type [24,25]. Jumping conformal phase tran-
sitions have been demonstrated to occur in a wide class of
theories [26].

As a natural first step, we study the phase diagram in the
ð�;m0Þ-plane to find the relevant region of parameter space
to simulate. We then determine the zero partial conserva-
tion of the axial current (PCAC) mass line as well as the
strong coupling bulk phase transition line. In addition, we
report on the pseudoscalar, vector and axial vector meson
masses. From the measured spectrum we infer that the
theory breaks chiral symmetry dynamically. Part of these
results appeared in Ref. [27].

In Sec. II we present the analytic expectations for the
phase diagram of SO(N) as a function of the number of
flavors. We also summarize the expected breaking pattern
of the quantum global symmetries for theories below the
conformal window. We also prove the spectral degeneracy
between certain diquarks and ordinary mesonlike states. In
Sec. III we recall the lattice formulation of the theory and
summarize the physical observable studied here. The re-
sults of the simulations are reported in Sec. IV and con-
clude in Sec. V.

II. ORTHOGONAL CONFORMALWINDOWAND
CHIRAL SYMMETRY BREAKING PATTERN

The two loop �-function for an SOðNÞ theory with Nf

Dirac fermions transforming according to the vector rep-
resentation of the gauge group is

�ð�Þ ¼ � �2

2�

�
b0 þ b1

�

2�

�
; (1)

where

b0¼11

3
Nc�4

3
Nf�22

3
;

b1¼�10

3
ðNc�2ÞNf�ðNc�1ÞNfþ17

3
ðNc�2Þ2:

(2)

A naive estimate of the lower bound of conformal window
is given when the second coefficient b1 changes sign. For
SO(4) this happens when Nf ¼ 68

29 ’ 2:3. The correspond-

ing values for three and four-loops in the MS-scheme are
Nf ¼ 1:8 and Nf ¼ 3:0. The all-orders beta function pre-

dicts as lower boundary Nf ¼ 2:86, see Fig. 1. Hence,

perturbative and nonperturbative methods suggest that chi-
ral symmetry breaks for two Dirac flavors. However, lattice
simulations can seal this expectation. Since the vector
representations of orthogonal groups are real the quantum

global symmetry of the theory is, for a generic Nf SUð2NfÞ
which is larger than SUðNÞfÞ � SUðNfÞ � UVð1Þ valid for
complex fermion representations. The reality property of
the representation translates in the following property of
the Dirac operator

ð 6DþmÞC�5 ¼ C�5ð 6DþmÞ�; (3)

where 6D ¼ ��ð@� � igAa
��aÞ, a ¼ 1; . . . ; d½G� where

d½G� is the dimension of the adjoint representation of the
gauge group and C ¼ i�0�2 is the charge conjugation
operator.
The global SUð2NfÞ is assumed to break to the maximal

diagonal subgroup

SUð2NfÞ ! SOð2NfÞ; (4)

for the massless theory and for Nf below the conformal

window. A common mass for the Dirac fermions leads to
the same pattern of explicit symmetry breaking. The ex-
plicit interpolating operators for the Goldstones can be
naturally divided in three independent antifermion-fermion
bilinears

�c f�
5c f0 ; (5)

with f and f0 the flavor indices f ¼ 1, 2 and six difermion
operators

c T
fC�

5c f0 and �c f�
5C �c T

f0 : (6)

The reader can find a useful summary of the global sym-
metry breaking patterns tailored for lattice computations in

3 4 5 6 7 8
0

2

4

6

8

10

Nc

N
f

FIG. 1 (color online). Conformal window of SOðNcÞ with Nf

Dirac fermions in the fundamental representation. Upper bound
is when asymptotic freedom is lost. Lower bounds are 2-loop
(red, dashed), 3-loop (yellow, dotted) and 4-loop estimates
(green, solid).
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Ref. [28], while applications to beyond standard model
physics for similar patterns appeared in Refs. [17,29].
Notice that whereas the usual pions have odd parity, the
corresponding diquarks are parity even. It was noticed in
Ref. [9] that when fermions are in a pseudoreal represen-
tation, the diquark correlator is exactly identical to the
corresponding mesonic correlator. In the Appendix we
give a similar proof for fermions in real representations.
The proof uses the symmetry (3) of the Dirac operator
along with the �5-hermiticity �5ð 6DþmÞ�5 ¼ ð 6DþmÞy
property. The result can be stated as

cð�Þ�c f
�c f0
ðx� yÞ ¼ cð�Þ�c fc f0

ðx� yÞ ¼ cð�Þc fc f0
ðx� yÞ; (7)

where cð�Þ�c fc f0
is the correlator for the operator �c f�c f0 and

cð�Þc fc f0
is the correlator for the corresponding diquark

operator c T
f�Cc f0 . � can be any of the matrices 1, �5,

��, ���5.
Having discussed the generic features expected for or-

thogonal groups we now turn to the lattice formulation and
results for the relevant case of SO(4) with two Dirac
flavors.

III. LATTICE FORMULATION

In this work we have used theWilson prescription for the
lattice action

S ¼ SF þ SG; (8)

where

SG ¼ �
X
x

X
�;�<�

�
1� 1

Nc

TrU��ðxÞ
�
; (9)

is the Yang-Mills gauge action. We have normalized the
lattice spacing to a ¼ 1.U��ðxÞ is the plaquette defined in
terms of the link variables as

U ��ðxÞ¼U�ðxÞU�ðxþ�̂ÞUT
�ðxþ�̂þ �̂ÞUT

�ðxþ �̂Þ:
(10)

The Wilson fermion action is

SF ¼ X
f

X
x;y

�c fðxÞMðx; yÞc fðyÞ; (11)

with f running over fermion flavors and the Wilson-Dirac
matrix Mðx; yÞ given by

X
y

Mðx; yÞc ðyÞ ¼ ð4þm0Þc ðxÞ

� 1

2

X
�

�
ð1þ ��ÞUT

�ðx� �̂Þc ðx� �̂Þ

þ ð1� ��ÞU�ðxÞc ðxþ �̂Þ
�
: (12)

Here the gauge and spinor indices have been suppressed.
The bare parameters are the inverse of the bare coupling
� ¼ 2Nc=g

2
0 appearing in the gauge action and the bare

mass m0 of the Wilson fermions.
We employ the PCAC relation to define the physical

quark mass

mPCAC ¼ lim
t!1

1

2

@tVPS

VPP

; (13)

where the currents are

VPSðx0Þ¼a3
X

x1;x2;x3

h �c 1ðxÞ�0�5c 2ðxÞ �c 1ð0Þ�5c 2ð0Þi;

VPPðx0Þ¼a3
X

x1;x2;x3

h �c 1ðxÞ�5c 2ðxÞ �c 1ð0Þ�5c 2ð0Þi:

(14)

The meson masses are estimated using time slice aver-
aged zero momentum correlators

Cð�Þ
�c 1c 2

ðx0Þ ¼ a3
X

x1;x2;x3

Trð½ �c 1ðxÞ�c 2ðxÞ�y �c 1ð0Þ�c 2ð0ÞÞ;

(15)

where � ¼ �5 for pseudoscalar, � ¼ �k (k ¼ 1, 2,3) for
vector, and �5�k for axial vector meson.

IV. RESULTS

The simulations were performed on three different lat-
tices 83 � 16, 123 � 64 and 243 � 64where in all cases the
larger dimension is the temporal one. All the simulations
were started from a random configuration and the first
500–2000 iterations were discarded. This is enough to
thermalize the system for the quantities we measured.
For a complete list of the simulations see Table I where
we have omitted the values of the bare masses.
The smallest lattice was used for exploration of the

parameter space spanned by the bare mass m0 and the
coupling �. Figure 2 shows an outline of the lattice phase
structure measured on this 83 � 16 lattice. For small values
of � the system is in a bulk phase not connected to
continuum physics. The bulk phase is separated from the
small coupling (large �) phase by a first order phase
transition. Figure 3 shows the discontinuous behavior of

TABLE I. Simulation parameters and thermalization times.
For each coupling we performed multiple simulations with
appropriate bare masses. The thermalization column refers to
the number of discarded initial configurations.

Volume � Iterations Thermalization

83 � 16
4:1; 4:2; . . . ; 4:9; 5:2; 5:4; 5:6 2000 500

44.55, 5.5, 6, 7 5000 2000

123 � 64 5.5, 7 5000 1500

243 � 64 7 850–2000 600
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the average plaquette when crossing the bulk phase tran-
sition, for three different values of m0. The uncertainty
on the location of the bulk phase transition shown in Fig. 2
is due to taking discrete values of � between simulation
points.

We can compare our result for the location of the bulk
transition to previous studies of SO(N) pure gauge theories.
Earlier simulations focused mainly on the SO(3) gauge
group [30] with the exception of Ref. [31] where also other
values of N were considered. For SO(4) the authors of
Ref. [31] find that the bulk phase transition happens for
4:62ð3Þ<�< 4:87ð3Þ, which is in agreement with our
result in Fig. 3.
The critical line where the physical quark mass vanishes

is determined from the PCAC relation (13). The critical
line of mq ¼ 0 in the phase diagram (Fig. 2) is constructed

by linear fits to the PCAC mass. Figure 4 shows the bare
mass dependency of the PCAC mass at three different
couplings on the 83 � 16 lattice.

A. Finite size effects

According to the perturbative estimates discussed in
Sec. II the running of the gauge coupling is expected to
be slow. This also suggests that attention should be paid to
finite size effects, which need to be estimated nonpertur-
batively by measuring physical observables as a function
of lattice size.
In the case of SO(N) pure gauge theories [30,31] the

bulk phase transition occurs at such a weak coupling that
extremely large lattices are required for simulations in the
confined phase, the one connected to the continuum phys-
ics. However, in the presence of dynamical quarks, we find
that somewhat smaller volumes (243 � 64) are enough to
probe the chiral regime of the system.

FIG. 2 (color online). Lattice phase structure outlined on an
83 � 16 lattice. Circles represent points of critical bare mass
where mPCAC ¼ 0. The transition between the bulk phase is of
first order. The error bars represent the interval over which the
measured average plaquette jumps.

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6
β

0.3
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0
 = -0.3

m
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FIG. 3 (color online). Average plaquette hPi vs � on an 83 �
16 lattice at three different values of the bare mass.
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FIG. 4 (color online). mPCAC in units of inverse lattice spacing
at three different couplings. The measurements are performed on
a 83 � 16.
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In Fig. 5 the mass of the pseudoscalar mesonmPS and the
PCAC quark mass mPCAC is plotted for different lattice
sizes. The PCAC mass has little dependence on the lattice
size being a UV quantity. The pseudoscalar meson mass,
on the contrary, is very sensitive to finite size effects even if
it is still somewhat heavy at the bare mass used in Fig. 5.

Another interesting property which seems to occur at
small volumes is a phase separation characterized by
the existence of domain walls. As explained below, this
would be different from what happens in simulations of
SU(N) gauge models in the so-called femto-world regime
[32–34].

We observe the coexistence, inside the same 4-volume,
of two distinct phases which can be characterized by the
spatial average of Polyakov loops wrapping around the
three spatial directions taken on each time slice separately.
In detail, the operators we consider are defined as

LkðtÞ ¼
�

1

NiNj

X
xi;xj

1

N
Tr
Y
xk

Ukðt;xÞ
�
; (16)

where i � j � k are spatial directions. The two phases are
separated by domain walls which are stable for the whole
length of our simulations, of the order of �5000 hybrid
Monte Carlo updates. As an illustration of this phenome-
non, Fig. 6 shows the time resolved Polyakov loops on a
123 � 64 lattice at � ¼ 7 and m0 ¼ �0:3. Given that the
two phases are long-lived and do not move inside the
4-volume of the lattice during the simulation, we show
the average of the time-resolved Polyakov loops over 700
consecutive, thermalized configurations. The coexistence

of two phases with different values of L2 is clear from the
figure. The phenomenon appears in all simulations per-
formed on small lattices. The location of the phase bounda-
ries and the direction in which the Polyakov loop has
nonzero average is random. In some cases more than two
phase boundaries appear in the same system. Notice also
that in one of the two phases the average value of the
Polyakov loop vanishes.
The behavior just described for this model is in contrast

with what is normally observed in simulations done with
SU(N) gauge groups in a small boxes. In the so-called
femto-world regime of SU(N) gauge theories, one also
expects the Polyakov loops to spontaneously generate a
nonvanishing expectation value, but stable domain walls
inside the lattice volume are not observed.
The coexistence of two phases is also reflected in an

anomalous behavior of mesonic correlators measured for
volumes smaller than 243 � 64. An example is shown in
Fig. 7 where the effective mass plateaux of the pseudosca-
lar meson shows a visible rise at large separations, consis-
tent with the two phases having different pseudoscalar
correlation lengths.
In order to understand whether these phase separations

are related to the presence of dynamical fermions we have
also performed pure gauge simulations on 123 � 64 latti-
ces. The phase separation occurs also for the pure gauge.
Thus the phenomenon seems to be a feature stemming
from the pure gauge sector.

5 10 15 20 25 30
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0.4

0.6

0.8
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m

m
PCAC

m
PS

FIG. 5 (color online). Finite size effects on mPS and mPCAC in
units of inverse lattice spacing. The measurements are performed
on a 243 � 64 lattice at � ¼ 7 and m0 ¼ �0:2.

0 10 20 30 40 50 60
t

-0.2

-0.15

-0.1

-0.05

0

L
k

L
1

L
2

L
3

FIG. 6 (color online). Average Polyakov loops wound around
the three spatial dimensions computed at each time slice of the
lattice. This measurement was performed on a 123 � 64 lattice at
� ¼ 7 and m0 ¼ �0:3. The values are averages over 700
configurations starting at 1800 where the system does not appear
to thermalize further.
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We will not explore this feature further in this work, but
it would be interesting to continue its investigation in the
future.

In order to avoid the complications stemming from the
phase separation described above we use 243 � 64 lattices
for the rest of the paper.

B. Spectrum and chiral symmetry breaking

We address the dynamical fate of the chiral symmetries
of the theory by determining the pseudoscalars and (axial)
vectors spectrum.

Figure 8 shows the pseudoscalar, vector, and axial vector
meson masses measured on a 243 � 64 lattice at � ¼ 7 as
the bare quark mass is decreased towards the critical value.
At the lightest quark mass the pseudoscalar meson has a
mass of about mPS ’ 0:15 in lattice units corresponding to
about mPSL ’ 3:6. Since two of the three volumes used in
this study are affected by the presence of the phase sepa-
ration phenomenon discussed above, it is difficult to esti-
mate the finite volume effect on the light states. However,
we will take the values of the pseudoscalar and vector
masses obtained here as reasonable first estimates and
leave a more systematic investigation of the finite volume
effects for the future. The reader should also be aware that
in previous studies of non-QCD models such as the so-
called sextet model [35] or MWT [36] it was found that
larger values of mPSL than in QCD are needed to accu-
rately measure the light states.

At large quark masses the vector and pseudoscalar are
degenerate with the common mass increasing linearly with
the quark mass. At smaller masses the vector meson be-
comes heavier than the pseudosclar. This is consistent

with dynamical generation of a chiral scale. To see this
more clearly the ratio of the vector and the pseudoscalar
masses have been plotted in Fig. 9. Indeed the mass
ratio approaches unity for large quark masses. However,
when approaching the chiral limit the ratio increases
signaling chiral symmetry breaking. In fact this result
is consistent with the expectation that if spontaneous
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FIG. 7 (color online). Effective mass of pseudoscalar meson
for two different volumes.
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FIG. 8 (color online). Pseudoscalar, vector, and axial vector
meson masses measured on a 243 � 64 lattice at � ¼ 7.
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FIG. 9 (color online). Ratio between pseudoscalar and vector
meson masses measured on a 243 � 64 lattice at � ¼ 7.
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symmetry breaking occurs, the vector meson remains mas-
sive whereas the pseudoscalar meson is massless. A di-
verging ratio mV=mPS therefore indicates chiral symmetry
breaking. This is the trend we observe in Fig. 9. However to
nail this conclusion more studies have to be performed.

The axial mass in the chiral limit is poorly determined
Fig. 8. In the future we plan on improving its determina-
tion. We will then be able to use it to infer interesting
properties of the chiral transition. For example one can
investigate whether the axial remains (near) degenerate
with the vector in the chiral regime which could signify
the onset of walking dynamics [29,37].

To extract further properties of the theory we analyze in
more detail the functional dependence of the pseudocalar
mass on the quark mass. It is well known that, for these
kinds of theories, spontaneously broken chiral symmetry
leads to the Gell-Mann-Oakes-Renner relation [38]

m2
PS ’ �mPCAC; (17)

valid in the chiral limit, where � ¼ �2h �c c i=f2PS is a

dynamically generated scale. For conformal theories the
behavior is different [39,40]. In Ref. [40] it was also shown
that the instanton contributions to conformal chiral dynam-
ics can be neglected when the anomalous dimension of the
mass operator is less than one. This property has been
investigated and confirmed via lattice simulations in
Ref. [41]. A clever separation of the ultraviolet and infra-
red modes presented in Refs. [42,43] led to a better under-
standing of the conformal chiral scenario but without
discussing the instanton contributions [40]. Building
upon these results, an interesting method to determine

the anomalous dimension of the fermion masses was put
forward in Ref. [44]. To sum up, for a conformal scenario
the dynamical scale �mutates into a fermion-mass depen-
dent quantity [40] and thereforem2

PS must vanish asm2
PCAC.

In Fig. 10 we plot the ratio m2
PS=mPCAC for decreasing

fermion mass. We see that the ratio approaches a constant
for vanishing fermion masses which is consistent with the
chiral symmetry breaking scenario (17).
In Table II we report the fit to the data for the depen-

dence of the pseudoscalar mass as well as the vector
mass as a function of the mPCAC within the believed chiral
regime of the theory. This corresponds to the three lowest
values of mPCAC where the ratio m2

PS=mPCAC becomes

roughly constant as shown in Fig. 10. The data points
used for the chiral fits in the table are shown in Fig. 11.
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FIG. 10 (color online). Psudoscalar mass squared divided by
the quark mass measured on a 243 � 64 lattice at � ¼ 7.

TABLE II. Different types of fit functions in the chiral regime
for the data with m identified with the mPCAC.

Meson fit Fit function Best parameter �2=dof

ps chiral a
ffiffiffiffi
m

p
a ¼ 1:167ð6Þ 0:43=2

ps conformal am a ¼ 4:69ð3Þ 364=2
ps alternative 1 aþ bm a ¼ 0:111ð6Þ 6:4=1

b ¼ 2:9ð1Þ
ps alternative 2 aþ b

ffiffiffiffi
m

p
a ¼ �0:001ð10Þ 0:41=1
b ¼ 1:17ð4Þ

Vector chiral aþ bm a ¼ 0:16ð1Þ 3:3=1
b ¼ 2:3ð2Þ

Vector conformal am a ¼ 4:91ð3Þ 273=2
Vector alternative 1 a

ffiffiffiffi
m

p
a ¼ 1:231ð6Þ 18=2

Vector alternative 2 aþ b
ffiffiffiffi
m

p
a ¼ 0:07ð2Þ 0:69=1
b ¼ 0:96ð7Þ
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FIG. 11 (color online). The chiral fits to the pseudo scalar and
vector meson masses on a 243 � 64 lattice at � ¼ 7.
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For these three points we have fPSL � 0:8–0:9. The best fit
curve, determined by the lowest �2=dof, for the pseudo-
scalar mass corresponds to the first line of the table which
is in agreement with the GMOR expectation. It is remark-
able that by even allowing for an offset of the mass value in
the chiral limit the best fit demands the offset to vanish, see
the last line of the table. We have tried also to test the
possibility that the pseudoscalar mass vanishes linearly
with the fermion mass and found that this is highly dis-
favored. If the theory would have been conformal we
would have expected this case to fit much better.

Similarly, by fitting the vector masses dependence on the
fermion mass, in the lower part of Table II, we observe a
reasonable agreement with the expected chiral behavior of
the theory. The two best fits correspond to the first and last
line of the lower part of the table. We would have expected
the first line to yield a better fit if chiral symmetry breaks
like in ordinary quantum chromodynamics. We believe that
for this case more statistics is needed to resolve which of
the two cases is actually realized given that the data cannot
yet differentiate between the two. As for the pseudoscalar
case the would-be conformal case is highly disfavored (see
second line of the lower part of the table).

Using the identity for the hadronic correlators (8) we can
immediately infer the baryonic diquark masses.

V. CONCLUSIONS

Orthogonal lattice gauge theories with dynamical fermi-
ons have so far been terra incognita. However, as ex-
plained in the introduction, these theories can be relevant
for models of dynamical electroweak symmetry breaking
as well as for the construction of interesting dark matter
candidates. Furthermore to have a deeper understanding of
strong dynamics it is essential to gain information on
different gauge theories. We have chosen to start inves-
tigating the orthogonal gauge groups dynamics with a
phenomenologically relevant example, i.e., the SO(4)
gauge theory with two Dirac flavors transforming accord-
ing to the vector representation of the group.

We have uncovered the lattice phase diagram and shown
that there is a novel phase separation phenomenon at small
volumes which persists even in the pure gauge case. We
have shown that the phase separation can be circumvented

and the chiral regime of the theory studied using large but
still feasible lattices.
Finally we investigated the spectrum of the theory for

the pseudoscalar, vectors and axial vectors. The results for
the spectrum are consistent with chiral symmetry breaking
and strongly disfavor a conformal behavior. The spectrum
was obtained using lattices with a fixed value of the UV
cutoff, corresponding to � ¼ 7. Further investigations will
be needed using different values of the cutoff to better
address the continuum limit.

APPENDIX: DIQUARK CORRELATORS

A generic mesonic correlator will have the form

cð�Þ�c c 0 ðx� yÞ ¼ Trð½ �c ðxÞ�c 0ðxÞ�y �c ðyÞ�c 0ðyÞÞ; (A1)

and the baryonic diquark correlator will have the form

cð�Þc c 0 ðx� yÞ ¼ Trð½c TðxÞC�c 0ðxÞ�yc TðyÞC�c 0ðyÞÞ:
(A2)

Rewriting the diquark correlator slightly gives

cð�Þc c 0 ðx� yÞ ¼ Trð�c 0ðyÞ �c 0ðxÞ�0�yCyð�0ÞT

�½c ðyÞ �c ðxÞ�TCÞ: (A3)

Now we can invoke two identities

ð��ÞT ¼ �C��Cy; (A4)

c ðxÞ �c ðyÞ ¼ Cy½c ðyÞ �c ðxÞ�TC: (A5)

The latter identity follows from the symmetry of the
Dirac matrix given in (3) along with �5-hermiticity
�5ð 6DþmÞ�5 ¼ ð 6DþmÞy. The identity (A5) extend to
the Wilson lattice formulation of the Dirac matrix. This
is demonstrated for pseudoreal representations in the
Appendix of Ref. [9]. Invoking the identities in the ex-
pression for the diquark correlator (A3) we have

cð�Þc c 0 ðx� yÞ ¼ Trð�c 0ðyÞ �c 0ðxÞ�0�y�0c ðxÞ �c ðyÞÞ
¼ cð�Þ�c c 0 ðx� yÞ: (A6)

A similar derivation holds for the antiparticles leading to
the identity (8).
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