On nets of local algebras on the Minkowski lattice \mathbf{Z}^4 *

H.Baumgärtel Karl-Weierstraß Institut für Mathematik, AdW der DDR, 1086 Berlin, DDR.

The results presented refer to the construction of causal nets of local algebras on the Minkowski lattice \mathbb{Z}^4 , considered as subnets of (non-causal) nets on the Minkowski space \mathbb{R}^4 . The results are published in [1], [2].

Let $\mathcal{B}(\cdot)$ denote an isotone and additive net of C^* -algebras, defined on the compact subsets \mathcal{M} of the Minkowski space \mathbb{R}^4 and which is generated by so-called atomic algebras $\mathcal{B}(\{x\}), x \in \mathbb{R}^4$. Let $\mathcal{B} := \operatorname{clo} \bigcup_{\mathcal{M} \subset \mathbb{R}^4} \mathcal{B}(\mathcal{M})$ denote the corresponding quasi local algebra. The net $\mathcal{B}(\cdot)$ is assumed to be \mathbb{R}^4 -covariant, i.e. there is a representation $\mathbb{R}^4 \ni$ $\overset{*}{\longrightarrow} \beta_x \in \operatorname{aut}\mathcal{B}$ such that $\mathcal{B}(\mathcal{M} + x) = \beta_x \mathcal{B}(\mathcal{M})$. Furthermore, it is assumed that there is a \mathbb{R}^4 -invariant state ω of \mathcal{B} which satisfies a positivity condition (i.e. the strongly continuous representation of \mathbb{R}^4 on the GNS-Hilbert space of ω implied by the GNS-representation of \mathcal{B} with respect to ω is spectral).

Let \mathcal{P} denote the discrete Poincare group $\mathcal{P} := \mathbb{Z}^4 \bigotimes \mathcal{G}$ (\bigotimes semidirect product), where \mathcal{G} denotes the subgroup of $SL(2, \mathbb{Z} + i\mathbb{Z})$ consisting of all 2 2-matrices $\binom{a\,b}{c\,d}$ of $SL(2, \mathbb{Z} + i\mathbb{Z})$ where $|a|^2 + |b|^2 + |c|^2 + |d|^2 \equiv 0 \pmod{2}$. \mathcal{G} was already considered by A.Schild [3].

Let $\mathcal{A}(\cdot)$ denote the subnet of $\mathcal{B}(\cdot)$, defined on the finite subsets $\mathcal{O} \subset \mathbb{Z}^4$. Let $\mathcal{A} := \underset{\mathcal{O} \subset \mathbb{Z}^4}{\operatorname{clo}} \mathcal{A}(\mathcal{O})$. The net $\mathcal{A}(\cdot)$ is assumed to be \mathcal{P} -covariant, i.e. there is a representation $\mathcal{P} \ni g \longrightarrow \alpha_g \in \operatorname{aut} \mathcal{A}$ such that $\mathcal{A}(g\mathcal{O}) = \alpha_g \mathcal{A}(\mathcal{O})$ (note that $g = \{x, \Lambda\}, x \in \mathbb{Z}^4, \Lambda \in \mathcal{G}$). \mathcal{A} is assumed to be invariant under $\beta_x, x \in \mathbb{Z}^4$ and $\alpha_{\{x,1\}} = \beta_x, \omega \wedge \mathcal{A}$ is \mathcal{P} -invariant.

Inclusions $\mathcal{A} \subset \mathcal{B}$ of quasilocal algebras just described are called admissible. The quasilocal algebra \mathcal{A} (resp. a corresponding inclusion) is called causal if $\mathcal{O}_1 \perp \mathcal{O}_2$ (causal disjointness in the Minkowski sense) implies that $\mathcal{A}(\mathcal{O}_1)$ and $\mathcal{A}(\mathcal{O}_2)$ commute by elements.

Proposition 1 There are admissible inclusions $\mathcal{A} \subset \mathcal{B}$.

For the construction of admissible inclusions CCR-Weyl algebras over suitable phase spaces (pre-Hilbert spaces) can be used. For example, the following construction is possible: Put $H := L_{\text{fin}}(\mathcal{G}, M(\mathbf{R}^4))$, $H_0 := L_{\text{fin}}(\mathcal{G}, M(\mathbf{Z}^4))$, where $M(\mathbf{R}^4)$ denotes the linear space of all complex-valued Borel measures ν on \mathbf{R}^4 with compact support and $M(\mathbf{Z}^4) \subset M(\mathbf{R}^4)$ the subspace where supp $\nu \subset \mathbf{Z}^4$. By (,) one denotes the semi-scalar product

$$\begin{aligned} (\nu_1, \nu_2) &:= \sum_{\Lambda \in \mathcal{G}} \int_{\mathbf{R}^4} \overline{\hat{\nu}_1(p, \Lambda)} \hat{\nu}_2(p, \Lambda) \mu(\Lambda dp), \\ & \| \nu \| &:= (\nu, \nu)^{1/2} \end{aligned}$$

^{*}Talk given at the XVI. International Colloquium on Group Theoretical Methods in Physics, Varna, Bulgaria, June 15-21, 1987

where the parameter μ denotes a positive finite Borel measure on \mathbb{R}^4 with supp $\mu \subseteq \operatorname{clo} V_+$ (closed forward cone), $\mu(\operatorname{clo} V_+) = 1$. Then the phase spaces are defined by $f_{\mathcal{B}} := H \mod \ker \| \cdot \|$ and $f_{\mathcal{A}} := H_0 \mod \ker \| \cdot \| \cdot f_{\mathcal{A}} \subset f_{\mathcal{B}}$. The action of \mathcal{P} on H_0 is defined by $(V_{\{a,\Lambda\}}f)(x,\Lambda I) := f(\Lambda^{-1}(x-a),\Lambda'\Lambda)$. The required invariant state ω can be chosen as the Fock state on \mathcal{B} (the CCR-Weyl algebra over $f_{\mathcal{B}}$). The nets are defined as usual by localization in the phase spaces $f_{\mathcal{A}}, f_{\mathcal{B}}$.

If the parameter measure μ satisfies the condition

$$\int_{\mathbf{R}^4} \sin \langle a, p \rangle \ \mu(dp) = 0, \ a \in \mathbf{Z}^4, \ a \text{ spacelike}, \tag{1}$$

then the net $\mathcal{A}(\cdot)$ is causal $(\langle \cdot, \cdot \rangle$ means the Minkowski scalar product).

Let $m_0 \geq 0$ and let $H_{m_0} \subset \mathbf{R}^4$ denote the corresponding mass hyperboloid

 $p_0^2 = m_0^2 + \mid g \mid^2, p_0 > 0, \ p = \{p_0, g\}.$

Proposition 2 There is a positive finite Borel measure μ with $supp \mu = H_{m_0}, \mu(H_{m_0}) = 1$, such that (1) is satisfied, i.e. the corresponding inclusion is causal.

A proof is given in [2].

Further absolutely continuous measures μ are considered, which lead to admissible nets. In this case, if supp $\mu = H_{m_0}$, μ is quasiinvariant with respect to \mathcal{G} . This leads to a representation of the phase space $f_{\mathcal{A}}$ by $l^2(\mathcal{G}) \otimes L^2(\mathbb{R}^4, d\gamma_{m_0})$, where $d\gamma_{m_0}$ denotes the Lorentz invariant measure on H_{m_0} (decoupling of shift and geometric action of discrete Lorentz transformations). Using this decoupling and former results on asymptotic constants which commute with Lorentz transformations (see [4]), for the Fock representation of the inclusion one can establish a \mathcal{P} -covariant perturbation theory which leads to the construction of 'interacting nets' given on the Fock space, with prescribed scattering operator via LSZ-scattering.

References

- [1] H.Baumgärtel, On nets of local algebras on \mathbb{Z}^4 , covariant with respect to the discrete Poincare group: causality and scattering theory, to be published.
- [2] H.Baumgärtel, On the existence of measures connected with causality for quantum fields on lattices, to be published.
- [3] A.Shild, Discrete space-time and integral Lorentz transformations, Canadian J. Math 1, 29-47 (1949).
- [4] H.Baumgärtel, M.Wollenberg: A Class of Nontrivial Weakly Local Massive Wightman Fields with Interpolating Properties, Comm. Math. Phys. 94, 331-352 (1984).