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Abstract of the Dissertation

Non-perturbative Studies in Supersymmetric Field Theories via String

Theory

by

Naveen Subramanya Prabhakar

Doctor of Philosophy

in

Physics

Stony Brook University

May 2017

The strongly coupled regime of gauge theories is of great interest in high energy

physics, with quantum chromodynamics at low energies being the prime example. Non-

perturbative effects become important in this regime and it is necessary to understand their

contribution to the observables of interest. Supersymmetry goes a long way in constraining

the structure of these effects and makes their calculation tractable. In the past few decades,

phenomenal progress has been achieved in this direction by exploiting the many rigid

symmetries (spacetime and internal) that are usually present in a supersymmetric field

theory. Novel infinite dimensional symmetries that act on field space have also been

uncovered and summarised in the very general program of the BPS/CFT correspondence.

These novel symmetries offer a deeper explanation for the highly constrained nature of

non-perturbative effects in supersymmetric field theories.

Superstring theory has provided us with new and powerful ways of interpreting field

theoretic non-perturbative objects such as instantons, monopoles and so on. Supersym-

metric field theories and their non-perturbative effects can be realised in string theory

by studying the low-energy dynamics of collections of Dirichlet branes. In this thesis,

we study bound states of Dirichlet branes of various dimensionalities. The underlying
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theme of the thesis is the rich interplay between physics in diverse dimensions and how

superstring theory addresses them all in one go.
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Chapter 1

Introduction

Non-perturbative effects in field theories are of immense importance in understanding

the full quantum structure of the theory. Many physically relevant field theories become

strongly coupled at low energies in which case perturbation theory breaks down and it is

necessary to include non-perturbative effects. In gauge theories, instantons are examples

of non-perturbative effects because their contribution is beyond all orders in perturbation

theory. Indeed, the classical contribution to the partition function of a single instanton in

euclidean SU(n) gauge theory is

exp

✓

�8⇡2

g2

◆

, (1.1)

where g is the coupling constant of the gauge theory, assumed to be much less than 1.

As we can see, the above term is beyond all orders in perturbation theory in g and it

becomes O(1) when g ! 1. Let us derive the above formula as a warm-up exercise. This

will also help us set notation. The euclidean action for an SU(n) gauge field Aµ with field

strength Fµ⌫ is

S
YM

[A] =

Z

d4x Tr


1

2g2
Fµ⌫Fµ⌫ +

i✓
16⇡2

Fµ⌫
?Fµ⌫

�

, (1.2)

where ?Fµ⌫ =

1
2"µ⌫⇢�F⇢� is the dual field strength and ✓ is the microscopic ✓-angle.

Our conventions are such that the generators T↵ are hermitian and the Killing form

TrT↵T� = 1
2�↵� is positive-definite. The partition function of the gauge theory is given

by the path integral

Z =

Z

[dA] exp(�S
YM

[A]/~) . (1.3)

We have omitted gauge fixing terms and ghosts in the exponent but they are necessary to

obtain the correct number of physical degrees of freedom in the path integral. We are
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interested in the semi-classical limit ~ ! 0 in which case the path integral is dominated

by the minima of S
YM

. The action can be re-written as

S
YM

[A] =

Z

d4x Tr
✓

1

4g2
F+
µ⌫F

+
µ⌫ +

i⌧
8⇡

Fµ⌫
?Fµ⌫

◆

,

=

Z

d4x Tr
✓

1

4g2
F�
µ⌫F

�
µ⌫ +

i⌧
8⇡

Fµ⌫
?Fµ⌫

◆

, (1.4)

where F±
µ⌫ = Fµ⌫ ± ?Fµ⌫ is the self-dual (anti self-dual) part of the field strength and ⌧ is

the complexified coupling constant

⌧ =

✓

2⇡
+

4⇡i
g2

. (1.5)

The second term in the action above is a boundary term which captures the topological

winding number of the gauge field configuration and is insensitive to infinitesimal variations

of the gauge field. To proceed, we consider the sector of gauge fields which have a fixed

winding number k:

c2(F ) := � 1

16⇡2

Z

d4x Tr Fµ⌫
?Fµ⌫ = k 2 Z . (1.6)

The first term in the action is a positive definite object since it is a sum of squares. Thus,

the minima of the action are captured by configurations which satisfy

F±
µ⌫ = 0 with c2(F ) = k . (1.7)

It is evident that self-dual fields (F�
= 0) have c2(F ) < 0 and anti self-dual fields (F+

= 0)

have c2(F ) > 0. The contribution of such a configuration to the partition function is then

e�SYM/~
= eik✓e�8⇡2|k|/g2

=

8

<

:

e2⇡ik⌧ k > 0

e2⇡ik⌧ k < 0

(1.8)

One would like to study the space of solutions of the equations F+
µ⌫ = 0 with c2(F ) = k

modulo the gauge invariance �Aµ = Dµ�. This is the moduli space Mn,k of instantons

with winding k in SU(n) gauge theory. The ADHM construction utilises the algebraic

2



properties of the solutions to specify the moduli space in terms of equations on finite

dimensional matrices. We shall take an alternate route following [CG] by studying the

solutions to the massless Dirac equation in the k-instanton background

/
D = 0 ,  is in the n of SU(n) . (1.9)

It can be shown that there are no positive chirality solutions to the equation. Then,

using the index theorem Index /
D = �c2(F ) = �k one can show that there are k negative

chirality solutions to the Dirac equation. More details can be found in the review [BVvN].

Choose the following basis for �-matrices and complex structure for R4:

�1 = �1 ⌦ , �2 = �2 ⌦ , �3 = �3 ⌦ �2 , �4 = ��3 ⌦ �1 , �c = ��3 ⌦ �3 ,

z1 = x1 + ix2 , z2 = x3 � ix4 , @1 =
1
2(@x1 � i@x2) , @2 =

1
2(@x3 + i@x4) . (1.10)

Negative chirality spinors have two components  = �i ��|�,�i +  ++|+,+i. The

signs in |±,±i are the eigenvalues of �3 ⌦ and ⌦ �3 respectively. The Dirac equation

then becomes

D2 ++ = D1 �� , D1 ++ = �D2 �� . (1.11)

We arrange the k solutions  i
±±, i = 1, . . . , k, into two n⇥ k matrices  ±± as follows:

 ±± =

⇣

 1
±±  2

±± · · ·  k
±±

⌘

. (1.12)

Given an instanton solution Aµ of winding k, we have

Aµ ! g�1@µg as |x| ! 1 , (1.13)

where g is an element of the gauge group with winding number k. We then have, in the

limit |x| ! 1,

 �� ! �g�1 �iI†z1 + iJz2
(|z1|2 + |z2|2)2

,  ++ ! �g�1 iJz1 + iI†z2
(|z1|2 + |z2|2)2

. (1.14)

3



for constant n⇥ k matrices I† and J . Next, we assume that the solutions are normalised:

Z

d4x †
(x) (x) = ⇡2

k where  = �i ��|�,�i+ ++|+,+i . (1.15)

Given this, we define the k ⇥ k complex matrices

Ba :=
1

⇡2

Z

d4x za 
†
(x) (x) , a = 1, 2 . (1.16)

Using the properties of the solutions  ±±, one can then derive the following identities

satisfied by the matrices B1, B2, I and J :

µC
:= [B1, B2] + IJ = 0 ,

µR
:= [B1, B

†
1] + [B2, B

†
2] + II† � J†J = 0 . (1.17)

First, we observe that there is a U(k) symmetry acting on the solutions  !  h�1 with

h 2 U(k). Under this symmetry, the matrices transform as

Ba ! hBah
�1 , I ! hI , J ! Jh�1 . (1.18)

Solutions that differ by U(k) arise from the same instanton solution. Hence, U(k) is

a gauge invariance and we call it the reciprocal gauge group. Hence, to establish a

one-to-one correspondence between instanton solutions and the matrices (B1, B2, I, J),

we must divide the space of solutions to (1.17) by U(k). This is precisely the ADHM

description of the moduli space of instantons!

Mn,k =
�

B1, B2, I, J
�

� µR
= 0, µC

= 0

 

/ U(k) . (1.19)

A quick calculation provides the dimension of the tangent space at a sufficiently generic

point in the moduli space. The matrices contain 4k2
+ 4kn real degrees of freedom while

the equations give 3k2 real constraints. The U(k) transformations fix an additional k2 real

degrees of freedom. Thus, at the points where the above reasoning holds, the dimension

4



of the tangent space is

4k2
+ 4nk � 3k2 � k2

= 4nk . (1.20)

This reasoning fails for those points where the configurations preserve a proper subgroup

of U(k). Let us list the symmetries that act on the instanton moduli space.

1. U(k) gauge invariance:

Ba ! hBah
�1 , I ! hI , J ! Jh�1 , h 2 U(k) . (1.21)

2. PSU(n) framing rotations: The asymptotic form of the gauge field is Aµ !
g�1@µg where g(x) is a gauge transformation with winding number k. The above

form is invariant under g ! ↵g with ↵ 2 PSU(n). These are the framing rotations.

We fix a particular PSU(n) equivalence class so that we have instanton solutions

with a fixed framing at infinity.

Demanding that the solutions  ±± in (1.14) are invariant under framing rotations,

we see that PSU(n) acts on the matrices as

I ! I↵�1 , J ! ↵J , Ba ! Ba . (1.22)

3. Rotational invariance: Under mutually commuting rotations of C2 specified by

za ! ei✓aza, the solutions  ±± transform as  ±± ! e⌥ i
2 (✓1�✓2)

 ±±. Demanding that

the asymptotic solutions in (1.14) transform in the same manner gives the following

rules for I and J , and similarly for Ba from (1.16):

I ! e
i
2 (✓1+✓2)I , J ! e

i
2 (✓1+✓2)J , Ba ! ei✓aBa . (1.23)

The ADHM equations are invariant under the rigid symmetries (1.22) and (1.23) and

they commute with the U(k) action, so they persist as rigid symmetries on the moduli

space Mn,k.

The ADHM construction provides the opposite map: given a specific 4-tuple of matrices

in Mn,k, one writes down the instanton solution. Thus, the matrix moduli space provides

5



a complete description of anti self-dual gauge fields.

We are interested in studying the collective dynamics of the k-instanton solution. In

four euclidean dimensions, there is no room for the instantons to move. Hence, we embed

the instantons as time independent solutions of five dimensional SU(n) gauge theory.

This theory is ill-defined in the ultraviolet, but one can imagine (and indeed there exists,

in string theory,) a suitable ultraviolet completion which then has these instantons as

time independent solitonic solutions.

The collective dynamics can then be described by giving the ADHM matrices a time

dependence and writing down the canonical kinetic energies for the matrices. The solutions

to (1.17) are then interpreted as static solutions to the equations of motion. In order to

preserve the U(k) invariance at various times, the U(k) transformations have to be made

time dependent and the time derivative @t has to be promoted to a covariant derivative

Dt = @t + iat. Here, at transforms under U(k) as a gauge field:

iat ! h(t)(@t + iat)h(t)�1 , h(t) 2 U(k) . (1.24)

The action governing the collective dynamics is then

S
1d

=

Z

dt Trk
⇣

|DtB1|2 + |DtB2|2 + |DtI|2 + |DtJ |2 � |µC|2 � (µR
)

2
⌘

. (1.25)

What we have achieved is that the collective quantum dynamics of instantons can be

described by a one dimensional gauged linear sigma model with the above action.

Now, the question is where is the above linear sigma model relevant? Since instantons

are classical minima of the action, the partition function is approximated in the ~ ! 0

limit by a sum over the partition functions Zk corresponding to the instanton sector with

instanton number k:

Z ⇡
X

k�0

qkZk +

X

k<0

qkZ 0
k with q = e2⇡i⌧ . (1.26)

Here, qk and qk are the classical contributions to the path integral that we calculated earlier

6



in (1.8). In principle there are contributions from both instantons and anti-instantons.

In N = 2 theories in four dimensions, the anti-instanton contribution turns out to be

zero due to holomorphy of the partition function in ⌧ [Sei1, Sei2]. The above equation

(with Z 0
k = 0) becomes exact and moreover, the k-instanton partition function Zk is given

by the Euler characteristic of instanton moduli space. The Euler characteristic on Mn,k

can then be obtained by considering the appropriate supersymmetric version of the gauged

linear sigma model in (1.25) and calculating its Witten index, first defined by Witten in

[W4]. That is,

Zk = TrHk
(�1)

F e��H . (1.27)

Here, Hk is the Hilbert space of the supersymmetric quantum mechanics in (1.25) and

H is its Hamiltonian. It is easy to observe that the moduli space Mn,k is singular and

non-compact and hence the definition of Euler characteristic has to be regularised. This

can be performed in a way that is consistent with the rigid symmetries in the problem.

The regularisation proceeds in two steps.

First, we deform the right hand side of µR
= 0 to

µR
= [B1, B

†
1] + [B2, B

†
2] + II† � J†J = r · k , r > 0 . (1.28)

We observe that the above deformation preserves all the symmetries acting on Mn,k.

In what sense is this is a regularisation? It turns out that the above equation cuts out

a slice in (B1, B2, I, J) space which avoids the singular points which preserve a proper

subgroup of U(k). Physically, this procedure deforms the four dimensional space to

non-commutative space with parameter r [NSc]. This has the effect of curing the moduli

space from point-like instantons since point-like objects are no longer well-defined in

non-commutative space.

Next, we choose a pair of supercharges Q, Q in the quantum mechanics such that

{Q ,Q} = 2H and consider all the rigid symmetries which commute with this subalgebra.

Generically, the framing rotations in (1.22) and the spatial rotations in (1.23) commute

with a suitably chosen Q once we also perform a compensating R-symmetry transformation.

7



Then, we can consider the deformed index

Zk(a1, . . . , an; ✏1, ✏2) = TrHk
(�1)

F eia↵T↵ ei✏aJa+i⇠R e��H . (1.29)

Here, T↵ are generators of the maximal torus of U(n) and
P

↵ a↵ = 0 so that eia↵T↵ is in

(the maximal torus of) PSU(n). The Ja, a = 1, 2, are generators of rotations za ! ei✓aza.

Finally, ⇠ is a linear function of the ✏a and R is a generator in the Cartan subalgebra of the

R-symmetry algebra. Let the overall torus group generated by T↵, Ja and R be denoted

T. The deformation due to the torus of spatial rotations is called the ⌦-deformation.

By standard index lore, the above index now receives contributions only from the fixed

points under the various rigid symmetries in the trace above. The key point is that since

spatial rotations are involved, the instanton configurations that now contribute are fixed

points of spatial rotations. In the presence of the non-commutative deformation, these

fixed points correspond to k isolated single instantons which are not exactly point-like

but fuzzy due to the non-commutativity. Thus, the deformed index becomes a finite sum

over the fixed points ⇡k of the torus group T!

Zk(a1, . . . , an; ✏1, ✏2) =
X

⇡k

µ⇡k(a1, . . . , an; ✏1, ✏2) , (1.30)

where µ⇡k is a trigonometric function of the various parameters that one obtains by

calculating the path integral of fluctuations about the fixed point ⇡. The above index

must be suitably generalised to include bare masses when there are matter multiplets in the

theory. The tools for such calculations have been developed in [MNS, LNS] and applied

to N = 2 theories in four dimensions in [N2, NO1] and others. The five dimensional

perspective is developed in [NSh, N5, LN]. The topological version of the five dimensional

theory which calculates the above partition function has also been discussed in [BLN].

1.1 Spiked Instantons

The lesson to take away from the above discussion is the following:

8



The supersymmetries along with the various rigid and gauge symmetries present in

the theory are strong enough to allow us to calculate the full non-perturbative partition

function as a sum over contributions from isolated point-like instantons.

In theories with eight supercharges, there are a host of other observables apart from the

partition function that can be exactly calculated in a manner similar to above. These are

the BPS observables. They are normalised expectation values of operators in the deformed

theory which are invariant under four of the eight supersymmetries. A salient example

[N3] is the following gauge invariant operator inserted at the origin of four dimensional

space

Y(x) = xn
exp

 

�
1
X

`=1

1

`x`
Tr�` |0

!

, (1.31)

where � is the adjoint complex scalar in the N = 2 supersymmetric gauge theory and x

is a parameter. As was pointed out in [N3], the correct BPS observables to consider in

the non-commutative theory is a deformed version of the above.

It is of interest to consider transitions in the gauge theory between configurations

of different instanton number. Such transitions become amenable to a quantitative

study since only point-like isolated instantons contribute to the BPS observables and

the transitions are now discrete processes corresponding to adding or removing several

point-like instantons.

Observables which encode information about these non-perturbative transitions, the

qq-characters X(x), can be expressed as rational functions of the Y-observables with

shifted arguments. See [N3] for a number of examples. In the simplest of cases, the

X-observable can be seen to be the partition function of an auxiliary four dimensional

supersymmetric gauge theory. Since the X-observable is inserted at the origin of C2, the

auxiliary gauge theory can be thought of as living on a second C2 that intersects the

first at the origin. Then, integrating out the degrees of freedom of the auxiliary gauge

theory would correspond to the insertion of an operator at the origin in the original C2. In

this picture, instanton number transitions would correspond to the point-like instantons

hopping between the two C2’s via the origin.

One can generalise and look at another auxiliary gauge theory on a third C2 which

9



intersects the original C2 on a complex line C. These would give rise to surface defects in

the original gauge theory which can change instanton number. In fact, the most general

setup of such intersecting four dimensional worlds which preserves a few supersymmetries

consists of six such C2’s intersecting at the origin of C4 with pairwise intersections of

complex dimension 0 and 1.

The moduli space of instantons bound to some or all six stacks of C2 is known as the

moduli space of spiked instantons, first considered in [N3]. This moduli space is described

as follows. Let 4 = {1, 2, 3, 4} be the set of coordinate labels of the C4 . The six two-planes

C2
A that sit inside the C4 are labelled by the index A 2 6 =

✓

4
2

◆

i.e. the set of unordered

pairs of numbers in 4. Explicitly, 6 = {(12), (13), (14), (23), (24), (34)}. We also start

with positive integers k and nA which denote the total instanton number and the rank of

the unitary gauge groups on each of the six C2’s. Define the following matrices:

B1, B2, B3, B4 : in the adjoint of U(k) ,

IA, JA : in the k ⇥ nA and k ⇥ nA of U(k)⇥ U(nA) for A 2 6 . (1.32)

The equations are then

1. The real moment map:

µR � r · k :=

X

a24

[Ba, B
†
a] +

X

A26

(IAI
†
A � J†

AJA)� r · k = 0 . (1.33)

2. For A = (ab) 2 6 with a < b,

µC
A := [Ba, Bb] + IAJA = 0 . (1.34)

3. For A 2 6, A = 4 r A and a 2 A,

�C
aA := BaIA = 0 , �̃C

aA := JABa = 0 . (1.35)
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4. For A 2 6, A = 4 r A,

⌥

C
A := JAIA = 0 . (1.36)

5. For A,B 2 6 such that A \B = {c} 2 4, and j = 1, 2, . . .

⌥A,B,j := JA(Bc)
j�1IB = 0 . (1.37)

The first and second sets of equations are the analogues of the ADHM equations for

ordinary instantons in four dimensions. The other three sets relate instanton configurations

in different C2’s.

1.2 Enter superstrings

String theory provides more than one way of constructing large classes of supersymmetric

gauge theories with eight supercharges [DM, KKV, W1]. One such class is the class of

quiver gauge theories [DM] which can be engineered by considering the gauge theory

on a stack of D4-branes located at a singularity of ADE type. Instantons in this gauge

theory have an alternate description as D0-branes bound to the D4-branes [D1]. Let us

demonstrate this fact by studying the coupling of k D0-branes along Rt with n D4-branes

along Rt ⇥C2. There is a U(k) gauge theory on the D0-branes and a U(n) gauge theory

on the D4-branes with additional matter fields in the bifundamental of U(k)⇥ U(n).

The low-energy effective action for the D4-branes contains the following coupling to

the (pullback of the) RR one-form gauge field C1:

e4
2

Z

Rt⇥C2

C1 ^ Tr (2⇡↵0F ^ 2⇡↵0F ) , (1.38)

where F is the U(n) field strength on the stack of D4-branes. The RR one-form C1 is a

background field that arises from the low-energy spectrum of closed superstrings. The

U(n) field strength arises from open strings ending on the stack of D3-branes. The charge

quantum e4 is related to the D4-brane tension as e4 = T4 by virtue of its BPS nature and
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is given by

e4 =
1

gs
p
↵0

(2⇡
p
↵0

)

4
, (1.39)

where gs is the string coupling constant and ↵0 is related to the string length as `2 = 2↵0.

Consider a situation in which the gauge field on the D4-brane is time-independent and C1

is independent of the C2 directions. The above coupling becomes

�e0k

Z

Rt

C1 with k = � 1

8⇡2

Z

C2

Tr F ^ F . (1.40)

Here, e0 = (gs
p
↵0
)

�1 is the D0 charge quantum and k is the familiar instanton number

of a U(n) instanton in C2. The above coupling implies that instantons of charge k in

the U(n) gauge theory on the D4-branes induce D0-branes of charge charge �e0k on

the worldvolume. This was first realised in [D1]. In fact, the worldvolume U(k) gauge

theory on the D0-branes is precisely the supersymmetric quantum mechanics we have

been looking at previously!

The spiked instanton scenario is then obtained by adding the appropriate extra stacks

of D4-branes according to the description previously. In this thesis, we consider the

following setup. Write the ten dimensional spacetime R1,9 ' R1,1 ⇥R8 as R1,1 ⇥C4 by

choosing a complex structure on the R8. Let 4 = {1, 2, 3, 4} be the set of coordinate

labels of the C4. Consider a system of D-branes which consists of k D1-branes spanning

R1,1 and nA D5-branes spanning R1,1 ⇥C2
A with A 2 6. Here onwards, R1,1 refers to the

common 1 + 1 dimensional intersection of the D-brane configuration and is taken to be

along the x0, x9 directions.

We would like the above setup to preserve some supersymmetries. Type IIB string

theory has two supersymmetry parameters ✏ and ✏̃ which are Majorana-Weyl spinors of

the same chirality (say left-handed). That is,

�c✏ = ✏ , �c✏̃ = ✏̃ where �c = �
1 · · ·�9

�

0 and (�c)
2
= . (1.41)

The presence of a Dp-brane gives the following constraint on the supersymmetry parame-
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Table 1.1: The intersecting D1-D5 system for spiked instantons. Crosses indicate
worldvolume directions.

R1,9
1 2 3 4 5 6 7 8 9 0

C4 ⇥R1,1
z

1
z

2
z

3
z

4
x t

D1 ⇥ ⇥

D5(12) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

D5(13) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

D5(14) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

D5(23) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

D5(24) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

D5(34) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

ters:

✏̃ =
1

(p+ 1)!

"µ0µ1···µp�
µ0µ1···µp✏ . (1.42)

Here, µ0, . . . , µp take p+ 1 values corresponding to the spacetime extent of the Dp-brane

and �µ0µ1···µp is the totally antisymmetrised product of p + 1 �-matrices. Suppose the

spatial extent of the Dp-brane is along {xi1 , . . . , xip} with i1 < i2 < · · · < ip. Then, the

Levi-Civita symbol " is normalised such that "i1i2···ip0 = +1. In the presence of D1-branes

along R1,1 and D5-branes along R1,1⇥C2
(12), the constraints are ✏̃ = ��90✏ and ✏̃ = �123490✏

which give

�

1234✏ = �✏ . (1.43)

Since �1234 squares to identity and is traceless, half of the sixteen real components of ✏ are

set to zero. This leaves us with a total of eight independent supersymmetry parameters

for the D1-D5(12) system. In order to preserve some supersymmetry when we include all

six stacks of D5-branes, we choose the following signs for the constraints on ✏:

�

1234✏ = �✏ , �

1256✏ = �✏ , �

1278✏ = �✏ , �

3456✏ = �✏ , �

3478✏ = �✏ , �

5678✏ = �✏ .

Only three of the above six constraints are independent, preserving one-sixteenth of the 32

supercharges. Thus, a configuration of D1-branes with six stacks of D5-branes preserves

two supercharges. The above constraints also give �90✏ = ✏ which means that the two
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preserved supercharges are chiral in R1,1. Thus, the low-energy effective theory in R1,1

will be a N = (0, 2) supersymmetric theory.

We need one last ingredient to match the field theory story, and that is to find a way

to bind the D1-branes to the worldvolume of D5-branes to form a stable bound state.

This is when the above D1-D5 system truly represents the spiked instanton scenario.

Fortunately, there exists a way to achieve this:

One has to turn on a constant NSNS B-field along the C4 that is consistent with the

rotational symmetries of the intersecting D-brane system.

A constant NSNS B-field changes the boundary conditions obeyed by an open string

and this changes the spectrum of open strings with ends attached to the D-branes. We

first study open strings propagating in a constant B-field background and study its

consequences for the D-brane spectra in Chapter 2. Next, we set up the formalism of

N = (0, 2) superspace in Chapter 3. This allows us to succinctly write down the form of

the couplings of the N = (0, 2) supersymmetric gauged linear sigma model in R1,1.

In Chapter 4, we get to work. The low-energy effective theory of open strings in the

above D-brane setup corresponds to a specific N = (0, 2) gauged linear sigma model.

The couplings of the model be obtained by studying the scattering amplitudes of the

corresponding string states. Using the formalism developed in Chapter 2, we compute

these amplitudes and ergo the low-energy couplings. When cast into the language of

superspace, these couplings directly give us the spiked instanton equations!

In Chapter 5, we compute the equivariant elliptic genus of the spiked instanton moduli

space. This is a version of the twisted index we considered in (1.29) for two dimensional

supersymmetric models. We infer some properties of spiked instantons by studying the

expression for the equivariant elliptic genus. Then, we conclude with some speculations

and possible directions for future research.
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Chapter 2

Open Strings in a constant B-field

We follow the treatment of background gauge fields in [ACNY]. Consider a open string

propagating in ten dimensional flat spacetime with metric gµ⌫ in the presence of a constant

B-field Bµ⌫ . The N = (1, 1) superconformal worldsheet theory is formulated in terms of

the superfield Xµ with components

Xµ
:= Xµ

||| , i µ
± := (D±Xµ

)||| , iF µ
= (D+D�Xµ

)||| , (2.1)

where the ||| sets all the Grassmann coordinates to zero. Our conventions are such that the

supersymmetry derivatives satisfy D

2
± = i@±±, {D+,D�} = 0 with @±± =

1
2(@⌧ ± @�). The

action is given by

S =

1

⇡↵0

Z

d⌧d�D+D� {(gµ⌫ + 2⇡↵0Bµ⌫)D+X
µ
D�X⌫} ,

=

1

⇡↵0

Z

d⌧d� gµ⌫
�

@++X
µ@��X⌫

+ F µF ⌫ � i µ
�@++ 

⌫
� � i µ

+@�� ⌫+
�

+

� 1

2

Z

d⌧ Bµ⌫

h

(@⌧X
µ
)X⌫ � i µ

� 
⌫
� � i µ

+ 
⌫
+

i�=⇡

�=0
+ total ⌧ -derivative . (2.2)

The boundary terms in the Euler-Lagrange variation of the above action are

�S = � 1

2⇡↵0

Z

d⌧
h

@++X
µ
(gµ⌫ + 2⇡↵0Bµ⌫)�X

⌫ � @��Xµ
(gµ⌫ � 2⇡↵0Bµ⌫)�X

⌫
+

� i µ
+(gµ⌫ + 2⇡↵0Bµ⌫)� 

⌫
+ + i µ

�(gµ⌫ � 2⇡↵0Bµ⌫)� 
⌫
�
i�=⇡

�=0
. (2.3)

The boundary conditions that set the above variation to zero are then given by

@++X
µ
(gµ⌫ + 2⇡↵0Bµ⌫)�X

⌫
= @��Xµ

(gµ⌫ � 2⇡↵0Bµ⌫)�X
⌫ .

 µ
�(gµ⌫ � 2⇡↵0Bµ⌫)� 

⌫
� =  µ

+(gµ⌫ + 2⇡↵0Bµ⌫)� 
⌫
+ . (2.4)
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These must hold separately for � = 0 and � = ⇡. A solution of these boundary conditions

is given by

Bosons Xµ
: �Xµ

= 0 , or @��Xµ
=

✓

g + 2⇡↵0B
g � 2⇡↵0B

◆µ

⌫

@++X
⌫ ,

Fermions  µ
± :  µ

� = Rµ
⌫ 

⌫
+ , or  µ

� =

✓

g + 2⇡↵0B
g � 2⇡↵0B

◆µ

⌫

(R +)
⌫ . (2.5)

where Rµ
⌫ is an O(1, 9) matrix which flips the sign of Bµ⌫ i.e. Rµ

⇢B⇢�R
�
⌫ = �Bµ⌫ . Any

combination of the above boundary conditions for the bosons and fermions solve the Euler-

Lagrange boundary conditions. However, these boundary conditions are not consistent

with supersymmetry as is evident from the standard supersymmetry transformations

�' = (✏+D+ + ✏�D�)' |||:

�Xµ
= i✏+ µ

+ + i✏� µ
� , �F µ

= i✏+@++ 
µ
� � i✏�@�� 

µ
+ ,

� µ
+ = @++X

µ✏+ � F µ✏� , � µ
� = @��Xµ✏� + F µ✏+ . (2.6)

Incidentally, the Euler-Lagrange variations in each column in (2.5) transform into each

other under the following modified transformation rules once we impose the constraint

✏+ = ✏�:

�RX
µ
= i✏+(R +)

µ
+ i✏� µ

� , �RF
µ
= i✏+@++ 

µ
� � i✏�@��(R +)

µ ,

�R 
µ
+ = @++(R

�1X)

µ✏+ � (R�1F )

µ✏� , �R 
µ
� = @��Xµ✏� + F µ✏+ . (2.7)

With the boundary conditions in either the first or the second column of (2.5), we see that

the variation of the action in (2.3) is zero under the supersymmetry of (2.7). One gets an

alternate viewpoint by transporting the R matrix into the action by writing  µ
+ = R�1 0µ

+.

The action then becomes

S =

1

⇡↵0

Z

d⌧d� gµ⌫
�

@++X
µ@��X⌫

+ F µF ⌫ � i µ
�@++ 

⌫
� � i 0µ

+@�� 0⌫
+

�

+

� 1

2

Z

d⌧ Bµ⌫

h

(@⌧X
µ
)X⌫ � i µ

� 
⌫
� + i 0µ

+ 
0⌫
+

i�=⇡

�=0
+ total ⌧ -derivative . (2.8)
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The Euler-Lagrange variations for this action are compatible with the supersymmetry

transformations in (2.6) with  0µ
+ instead of  µ

+.

Another point of view is to add the following boundary term to the original action in

(2.2):

�S = �i
Z

d⌧Bµ⌫ 
µ
+ 

⌫
+ . (2.9)

This new action takes the same form as the action with  0µ
+ in (2.8).

Another solution is to add a boundary term which cancels the fermionic part of the

boundary term in the original action:

�

0S = � i
2

Z

d⌧Bµ⌫( 
µ
� 

⌫
� +  µ

+ 
⌫
+) . (2.10)

This was done in [ALZ]. The authors claim that the above boundary term is the correct

term that extends to the case of general, non-constant B-field. In other words, the

fermionic boundary terms in the original action (2.2) have to be dropped.

Superconformal variation

The terms in the action (2.2) that are proportional to the metric gµ⌫ are invariant under

off-shell superconformal transformations (parameters satisfy @⌥⌥✏± = 0) provided

• the constraint ✏+ = ±✏� is imposed at the boundaries.

• Extra boundary terms of the form 1
2X

µFµ � 1
4@�(X

2
) must be added to cancel

variations from the bulk.

This is the standard story and has been dealt with in great detail in the lecture notes

[RvN]. Work of a similar spirit has been done in [LRvN].

In the case of a constant B-field, once we add the boundary term in (2.10) to cancel

the fermionic boundary terms, only the bosonic term
R

d⌧Bµ⌫@⌧X
µX⌫ contributes to the

superconformal variation. Clearly this cannot cancel on its own and extra terms must be

added. We leave this as an open question and proceed further.
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For the remainder of this section, we assume that the metric gµ⌫ of flat spacetime is

the standard Minkowski metric and choose a coordinate system such that the constant

spatial B-field is in block diagonal form:

2⇡↵0B =

0

B

B

B

B

B

B

B

B

B

@

0 b1

�b1 0

0 b2

�b2 0

. . .

1

C

C

C

C

C

C

C

C

C

A

. (2.11)

If the metric contains off-diagonal components, it is in general not possible to cast the

B-field in the above form since the metric and B-field preserve different subgroups of

GL(1, 9). In such a coordinate system, the above analysis reduces to that of an open

string in R2 with a constant B-field B12 = �B21 = b/2⇡↵0. We study the worldsheet

bosons and fermions separately next.

2.1 Worldsheet bosons

In terms of Z :=

1p
2
(X1

+ iX2
) the boundary condition becomes

(@�Z + 2⇡i↵0B @⌧Z)�Z
�

�

�

�=0
= 0 . (2.12)

Thus, we can have two types of boundary conditions at each end:

Dirichlet (D) : �Z = 0 i.e. Z = z0 2 C ,

Mixed (M) : @�Z + 2⇡i↵0B @⌧Z = 0 or @++Z = e�2⇡iv@��Z . (2.13)

with 2⇡↵0B = tan ⇡v. Note that Dirichlet boundary conditions are realised by taking

v ! 1. In order to accommodate all types of boundary conditions at both ends, we
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introduce the more general boundary conditions

@++Z = e�2⇡i⌫@��Z , at � = 0 ,

@++Z = e�2⇡iµ@��Z , at � = ⇡ . (2.14)

The boundary conditions with B-field can be realised by taking ⌫ = v, µ =

1
2 for the MD

case and ⌫ =

1
2 , µ = v for the DM case. The solution to the Z field equation consists of

independent left-moving and right-moving waves:

Z(⌧, �) = 1
2ZL(⌧ + �) + 1

2ZR(⌧ � �) , (2.15)

with the mode expansions

ZL = zL + `2pL(⌧ + �) + `
X

k 6=0

↵L,k

k
e�ik(⌧+�) ,

ZR = zR + `2pR(⌧ � �) + `
X

k 6=0

↵R,k

k
e�ik(⌧��) . (2.16)

Here, ` is the string length. The boundary conditions relate the modes in ZL and ZR as

pL = e�2⇡i⌫pR , ↵L,k = e�2⇡i⌫↵R,k ,

pL = e�2⇡iµpR , ↵L,k e
�ik⇡

= e�2⇡iµeik⇡ ↵R,k . (2.17)

For ⌫ 6= µ we get pL = pR = 0 and

e2⇡i(k�µ+⌫)
= 1 =) k 2 Z+ µ� ⌫ . (2.18)

Let z =

1
2(zL + zR), ✓ = µ� ⌫ and ✓n = n+ ✓. The mode expansion for Z becomes

Z(⌧, �) = z + `

" 1
X

m=1

↵m

✓m
fm(⌧, �) +

1
X

n=0

�†
n

✓�n
f�n(⌧, �)

#

,

with fn(⌧, �) = e�i⇡⌫e�i✓n⌧
cos[✓n� + ⇡⌫] . (2.19)

The oscillators ↵m, �n are defined as ↵R,m = ↵m for m � 1 and ↵R,n = �†
n for n � 0.
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Note: For ✓ = 0, there will be no �†
0 term above but there will be a momentum

zero-mode `2pRe�i⇡⌫
(⌧ cos ⇡⌫ � i� sin ⇡⌫). We handle this case separately below. We

introduce the notation b = tan ⇡⌫ and b0 = tan ⇡µ. The functions 'n(�) := cos[✓n� + ⇡⌫]

satisfy the completeness relation:

Z ⇡

0

d�
⇥

(✓m + ✓n) + b �(�)� b0 �(⇡ � �)
⇤

'm(�)'n(�) = ⇡✓m�mn . (2.20)

Next, we explore the completeness relations for fn(⌧, �). We have

Z ⇡

0

d� fm

⇥

i
 !
@⌧ + b �(�)� b0 �(⇡ � �)

⇤

fn = ⇡✓m�mn , (2.21)

The fn are orthogonal to the constant mode 1:

Z ⇡

0

d�
⇥

i
 !
@⌧ + b �(�)� b0 �(⇡ � �)

⇤

fn = 0 . (2.22)

Using the above relations one can invert the formula for Z to obtain

z =

1

b� b0

Z

d� [i@⌧Z + (b �(�)� b0 �(⇡ � �))Z] ,

` ↵m =

Z

d�
⇡

⇥

ifm@⌧Z + (✓m + b �(�)� b0 �(⇡ � �)) fmZ
⇤

,

` �†
n =

Z

d�
⇡

⇥

if�n@⌧Z + (✓�m + b �(�)� b0 �(⇡ � �)) f�nZ
⇤

. (2.23)

To quantise the system, we impose the following equal-time commutation relations which

are valid except possibly at the boundaries where there can be finite discontinuities:

[P (⌧, �) , Z(⌧, �0
)] = �i~�(�, �0

) , [P (⌧, �) , Z(⌧, �0
)] = �i~�(�, �0

) ,

[P (⌧, �) , P (⌧, �0
)] = 0 , [Z(⌧, �) , Z(⌧, �0

)] = 0 . (2.24)

The conjugate momentum P (⌧, �) is given by

P (⌧, �) =
@L

@(@⌧Z(⌧, �))
=

1

2⇡↵0



@⌧Z(⌧, �)�
ib0

2

Z(⌧, ⇡)�(⇡ � �) +
ib
2

Z(⌧, 0)�(�)

�

.

(2.25)
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In terms of Z(⌧, �) and P (⌧, �) the zero mode and oscillators are given by

z =

1

b� b0

Z

d�
⇥

2⇡i↵0 P +

�

b
2 �(�)�

b0

2 �(⇡ � �)
�

Z
⇤

,

` ↵m =

Z

d�
⇡

⇥

2⇡i↵0fm P +

�

✓m +

b
2 �(�)�

b0

2 �(⇡ � �)
�

fmZ
⇤

,

` �†
n =

Z

d�
⇡

⇥

2⇡i↵0f�n P +

�

✓�n +
b
2 �(�)�

b0

2 �(⇡ � �)
�

f�nZ
⇤

. (2.26)

Setting 2↵0
= `2 and using the above completeness relations, we get

[z, z] =
⇡`2

b� b0
, [↵m ,↵†

m0 ] = (m+ ✓)�mm0 , [�n , �
†
n0 ] = (n� ✓)�nn0 . (2.27)

Note: In obtaining the above commutation relations, one has to evaluate the integral

Z

d�d�0
(· · · )[Z(⌧, �), Z(⌧, �0

)] .

This integral has been set to zero since, according to our ansatz in (2.24), the commutator

[Z,Z] is non-zero only at isolated points in the interval (�, �0
) 2 [0, ⇡] ⇥ [0, ⇡] and the

integral is not affected by these jumps in the value of [Z,Z].

We now verify that our ansatz for the canonical commutation relations in (2.24) is

correct. Define "m such that "m = 1 for m = 0 and "m = 2 for m � 1. We need the

following series expansions from the Appendix of [MO]. Let 2↵⇡  x  (2↵ + 2)⇡. Then,

we have

1
X

0

"m cos(mx)

m2 � ✓2
= �⇡ cos[((2↵ + 1)⇡ � x)✓]

✓ sin ⇡✓
,

1
X

0

m sin(mx)

m2 � ✓2
=

⇡ sin[((2↵ + 1)⇡ � x)✓]

2 sin ⇡✓
. (2.28)

Similarly, for (2↵� 1)⇡  x  (2↵ + 1)⇡, we have

1
X

0

(�1)

m"m cos(mx)

m2 � ✓2
= �⇡ cos[(2↵⇡ � x)✓]

✓ sin ⇡✓
,

1
X

0

(�1)

mm sin(mx)

m2 � ✓2
=

⇡ sin[(2↵⇡ � x)✓]

2 sin ⇡✓
. (2.29)
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[Z(⌧,�) , Z(⌧,�0)]

[Z(⌧, �) , Z(⌧, �0
)] = [z , z] + `2

1
X

�1

1

✓n
cos(✓n� + ⇡⌫) cos(✓n�

0
+ ⇡⌫) ,

=

⇡`2

b� b0
+

`2

2

s1(� + �0
) +

`2

2

s2(� � �0
) . (2.30)

The terms s1 and s2 arise from writing the product of cosines as a sum of two cosines.

We focus on the two series next. let a1 = ✓(� + �0
) + 2⇡⌫ and a2 = ✓(� � �0

). We have

s1(� + �0
) =

1
X

�1

1

✓n
cos

⇥

✓n(� + �0
) + 2⇡⌫

⇤

,

= �✓ cos a1
1
X

0

"n cos(n(� + �0
))

n2 � ✓2
� 2 sin a1

1
X

0

n sin(n(� + �0
))

n2 � ✓2
,

=

⇡✓ cos[✓(⇡ � (� + �0
))] cos a1

✓ sin ⇡✓
� 2 sin[✓(⇡ � (� + �0

))] sin a1
2 sin ⇡✓

,

= ⇡
cos[(µ+ ⌫)⇡]

sin[(µ� ⌫)⇡]
. (2.31)

In going to the third step, we have used the formulas in (2.28) with ↵ = 0 since the

requirement 0  � + �0  2⇡ is satisfied. Similarly, we have

s2(� � �0
) =

1
X

�1

1

✓n
cos

⇥

✓n(� � �0
)

⇤

,

= �✓ cos a2
1
X

0

"n cos(n(� � �0
))

n2 � ✓2
� 2 sin a2

1
X

0

n sin(n(� � �0
))

n2 � ✓2
,

=

8

<

:

⇡ cos[✓(⇡ + (� � �0
))� a2]/sin ⇡✓ � � �0 < 0

⇡ cos[✓(⇡ � (� � �0
)) + a2]/sin ⇡✓ � � �0 > 0

,

= ⇡
cos[(µ� ⌫)⇡]

sin[(µ� ⌫)⇡]
for � ⇡  � � �0  ⇡ . (2.32)

In the third step, we have split the range of � � �0 into � � �0 > 0 and � � �0 < 0 and

used the formulas in (2.28) with ↵ = 0 and ↵ = �1 respectively. Putting the above two
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results together, we get

`2

2

(s1 + s2) =
⇡`2

2

cos((µ+ ⌫)⇡) + cos((µ� ⌫)⇡)

sin((µ� ⌫)⇡)
= ⇡`2

cos ⇡µ cos ⇡⌫

sin((µ� ⌫)⇡)
=

⇡`2

b0 � b
. (2.33)

Plugging this back in (2.30), we get

[Z(⌧, �) , Z(⌧, �0
)] =

⇡`2

b� b0
+

⇡`2

b0 � b
= 0 . (2.34)

[P (⌧,�) , Z(⌧,�0)]

2⇡↵0
[P (�) , Z(�0

)] =

⇥

@⌧Z(�)� ib0

2 Z(⇡)�(⇡ � �) + ib
2 Z(0)�(�) , Z(�

0
)

⇤

. (2.35)

We calculate each piece individually. First, we have

[Z(⇡) , Z(�0
)] =

⇡`2

b0 � b
� `2

1
X

�1

(�1)

m
cos ⇡µ

✓m
cos(✓m�

0
+ ⇡⌫) , (2.36)

[Z(0) , Z(�0
)] =

⇡`2

b0 � b
� `2

1
X

�1

cos ⇡⌫

✓m
cos(✓m�

0
+ ⇡⌫) . (2.37)

Let us write a0 = ✓�0
+ ⇡⌫. Then the infinite series part of the commutators in (2.36) can

be simplified using the formulas in (2.29) with ↵ = 0.

`2 cos ⇡µ

"

cos a0
1
X

�1

(�1)

m
cos(m�0

)

m+ ✓
� sin a0

1
X

�1

(�1)

m
sin(m�0

)

m+ ✓

#

,

= �`2 cos ⇡µ
"

✓ cos a0
1
X

0

(�1)

m"m cos(m�0
)

m2 � ✓2
+ 2 sin a0

1
X

0

(�1)

mm sin(m�0
)

m2 � ✓2

#

,

= ⇡`2 cos ⇡µ
cos(✓�0 � a0)

sin ✓⇡
= ⇡`2

cos ⇡µ cos ⇡⌫

sin ⇡✓
=

⇡`2

b0 � b
. (2.38)

We get the same answer as above for the commutators in (2.37). Thus, we get

[Z(0) , Z(�0
)] = [Z(⇡) , Z(�0

)] = 0 . (2.39)
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Next, we have, using the commutators in (2.27),

[@⌧Z(�) , Z(�
0
)] = �i `2

1
X

m=�1
fm(�)fm(�

0
) = �i `2

1
X

m=�1
'm(�)'m(�

0
) . (2.40)

We write the above series as the derivative of another series which has better convergence

properties:

1
X

�1
'm(�)'m(�

0
) = @�

1
X

�1

1

✓m
sin(✓m� + ⇡⌫) cos(✓m�

0
+ ⇡⌫) ,

=

1

2

@�

1
X

�1

1

✓m
(sin(✓m(� + �0

) + 2⇡⌫) + sin(✓m(� � �0
))) ,

=

1

2

@� [t1(� + �0
) + t2(� � �0

)] . (2.41)

Recall that a1 = (� + �0
)✓ + ⇡⌫ and a2 = (� � �0

)✓. We have

t1(� + �0
) =

1
X

�1

1

✓m
sin [m(� + �0

) + a1] ,

= �2 cos(a1)
1
X

�1

sin [m(� + �0
)]

✓2 �m2
+ sin(a1)

1
X

�1

1

✓m
cos [m(� + �0

)] ,

=

⇡

sin ⇡✓
(cos a1 sin [(⇡ � (� + �0

))✓] + sin a1 cos [(⇡ � (� + �0
))✓]) ,

= ⇡
sin[⇡(µ+ ⌫)]

sin[⇡(µ� ⌫)]
. (2.42)

t2(� � �0
) =

1
X

�1

1

✓m
sin

⇥

✓m(� � �0
)

⇤

,

= �✓ sin a2
1
X

0

"n cos(n(� � �0
))

n2 � ✓2
+ 2 cos a2

1
X

0

n sin(n(� � �0
))

n2 � ✓2
,

= ⇡ sgn(� � �0
) . (2.43)

This gives, using `2 = 2↵0,

[P (�) , Z(�0
)] = � i

2⇡
@� [t1(� + �0

) + t2(� � �0
)] = �i�(�, �0

) . (2.44)
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Alternate derivation: Let us expand the Dirac delta function �(� � �0
) in terms of

the mode functions fn. In general, we can write

A(⌧, �) = ea0 +

1
X

n=�1

am
✓m

fm(⌧, �) . (2.45)

The coefficients an and ea0 are extracted using the completeness relations in (2.21) and

(2.22):

am =

Z

d�
⇡
fn(⌧, �)

h

i
 !
@⌧ + b�(�)� b0�(⇡ � �)

i

A(⌧, �) ,

ea0 =
1

b� b0

Z

d�
h

i
 !
@⌧ + b�(�)� b0�(⇡ � �)

i

A(⌧, �) . (2.46)

Taking A(⌧, �) = �(�, �0
) (independent of ⌧), we get

ea0 =
1

b� b0

Z

d�
h

i
 !
@⌧ + b�(�)� b0�(⇡ � �)

i

�(�, �0
) =

b�(�0
)� b0�(⇡ � �0

)

b� b0
,

an =

Z

d�
⇡
fn(⌧, �)

⇥

✓n + b�(�)� b0�(⇡ � �)
⇤

�(�, �0
) ,

=

✓n
⇡
fn(⌧, �

0
) +

Z

d�
⇡

⇥

b�(�)fn(⌧, 0)� b0�(⇡ � �)fn(⌧, ⇡)
⇤

�(�, �0
) ,

=

✓n
⇡
fn(⌧, �

0
) +

ei✓n⌧

⇡

⇥

b�(�0
) cos ⇡⌫ � b0�(⇡ � �0

)(�1)

n
cos ⇡µ

⇤

. (2.47)

Thus, we have

�(�, �0
) =

1

⇡

1
X

m=�1
'm(�)'m(�

0
) +

b�(�0
)� b0�(⇡ � �0

)

b� b0
+

+

1

⇡

1
X

m=�1

'm(�)

✓ +m

⇥

b�(�0
) cos ⇡⌫ � b0�(⇡ � �0

)(�1)

m
cos ⇡µ

⇤

,

=

1

⇡

1
X

m=�1
'm(�)'m(�

0
) +

+

b�(�0
)� b0�(⇡ � �0

)

b� b0
+

1

⇡

h b⇡

b0 � b
�(�0

)� b0⇡
b0 � b

�(⇡ � �0
)

i

,

!
=

1

⇡

1
X

m=�1
'm(�)'m(�

0
) . (2.48)
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Finally, using `2 = 2↵0, we get

[P (�) , Z(�0
)] = �i�(�, �0

) . (2.49)

[P (⌧,�) , P (⌧,�0)]

The formula for the momentum P (⌧, �) is

2⇡↵0P (⌧, �) = @⌧Z(⌧, �)�
ib0

2

Z(⌧, ⇡)�(⇡ � �) +
ib
2

Z(⌧, 0)�(�) . (2.50)

We get

(2⇡↵0
)

2
[P (�) , P (�0

)] = [@⌧Z(�) , @⌧Z(�
0
)] +

+

ib0

2

�(⇡ � �0
)[@⌧Z(�) , Z(⇡)]�

ib
2

�(�0
)[@⌧Z(�) , Z(0)] +

� ib0

2

�(⇡ � �)[Z(⇡) , @⌧Z(�
0
)] +

ib
2

�(�)[Z(0) , @⌧Z(�
0
)] . (2.51)

The first term simplifies as follows:

[@⌧Z(�) , @⌧Z(�
0
)] =

1
X

�1
✓m'm(�)'m(�

0
) = @�@�0

1
X

�1

1

✓m
sin(✓m� + ⇡⌫) sin(✓m� + ⇡⌫) ,

= @�@�0
[s1(� + �0

)� s2(� � �0
)] = 0 . (2.52)

Next we look at [@⌧Z(�) , Z(⇡)]. Let a = ✓� + ⇡⌫. Then, the commutator equals

= cos⇡µ

1
X

�1
(�1)

m
cos(✓m� + ⇡⌫) = cos ⇡µ @�

1
X

�1

(�1)

m
sin(✓m� + ⇡⌫)

✓m
,

= cos⇡µ @�

"

cos a
1
X

�1

(�1)

m
sin(m�)

m+ ✓
+ sin a

1
X

�1

(�1)

m
cos(m�)

m+ ✓

#

,

= cos⇡µ @�

"

2 cos a

1
X

0

(�1)

mm sin(m�)

m2 � ✓2
� ✓ sin a

1
X

0

(�1)

m"m cos(m�)

m2 � ✓2

#

,

= ⇡ cos ⇡µ @�
sin(a� ✓�)

sin ✓⇡
= ⇡@�

cos ⇡µ sin ⇡⌫

sin ⇡✓
= 0 . (2.53)

26



Similarly, the other three commutators with delta functions in (2.51) are zero. Thus, we

have

[P (�) , P (�0
)] = 0 . (2.54)

The case µ = ⌫

Let µ = ⌫ i.e. ✓ = 0. From (2.18), we see that the mode numbers are integers. Let

p := pR cos ⇡v e�i⇡⌫ . Recall that b = tan ⇡⌫. The mode expansion for Z becomes

Z(⌧, �) = z + `2p(⌧ � ib�) + `

1
X

m=1



↵m

m
fm(⌧, �)�

�†
m

m
f�m(⌧, �)

�

,

with fn(⌧, �) = e�i⇡⌫e�in⌧
cos[n� + ⇡⌫] . (2.55)

The functions 'n(�) = cos[n�+ ⇡⌫] satisfy the completeness relation in (2.20) with ✓ = 0:

Z ⇡

0

d�
⇥

(m+ n) + b �(�)� b �(⇡ � �)
⇤

'm(�)'n(�) = ⇡m�mn , (2.56)

which can be written as

Z ⇡

0

d�
⇥

(m+ n)� b @�
⇤

'm(�)'n(�) = ⇡m�mn . (2.57)

Given two functions f(x) and g(x), define the operator e@ to satisfy e@(f ·g) = f ·@g�(@f)·g.
Note that if f , g, p, q are such that f · g = p · q, then e@(f · g) 6= e@(p · q) in general. For

example, take f = g = x, p = 1, q = x2. Then, we have e@(f · g) = 0 whereas e@(p · x) = 2x.

Then, we have
Z ⇡

0

d�
⇥

ie@⌧ � b @�
⇤

(fm · fn) = ⇡m�mn , (2.58)

for fn with the constant mode 1:

Z ⇡

0

d�
⇥

ie@⌧ � b @�
⇤

(1 · fn) = 0 , (2.59)
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and for the momentum mode p

with itself :
Z ⇡

0

d�
⇥

ie@⌧ � b @�
⇤�

(⌧ + ib�) · (⌧ � ib�)
�

= �⇡2b(1 + b2) ,

with fn :

Z ⇡

0

d�
⇥

ie@⌧ � b @�
⇤�

(⌧ + ib�) · fn
�

= 0 ,

with 1 :

Z ⇡

0

d�
⇥

ie@⌧ � b @�
⇤�

(⌧ + ib�) · 1
�

= �i⇡(1 + b2) . (2.60)

Using the above relations one can invert the formula for Z to obtain

p =

1

i`2(1 + b2)

Z

d�
⇡

[(i@⌧ � b @�)Z] ,

` ↵m =

Z

d�
⇡

⇥

ifm@⌧Z + (m� b @�) fmZ
⇤

,

` �†
n =

Z

d�
⇡

⇥

if�n@⌧Z + (�n� b @�) f�nZ
⇤

. (2.61)

The conjugate momentum P (⌧, �) is given by

P (⌧, �) =
@L

@(@⌧Z(⌧, �))
=

1

2⇡↵0
⇥

@⌧Z(⌧, �)� ib @�Z(⌧, �)
⇤

. (2.62)

In terms of Z(⌧, �) and P (⌧, �) the zero modes and oscillators are given by

z =

�1

1 + b2

Z

d�
⇡
2⇡↵0

(⌧ + ib(� � ⇡))P +

Z

d�
⇡
Z ,

p =

1

`2(1 + b2)

Z

d�
⇡

2⇡↵0 P ,

` ↵m =

Z

d�
⇡

⇥

2⇡i↵0fm P +

�

m� b (@�fm)
�

Z
⇤

,

` �†
n =

Z

d�
⇡

⇥

2⇡i↵0f�n P +

�

�n� b (@�f�n)
�

Z
⇤

. (2.63)

Setting 2↵0
= `2 and using the above completeness relations, we get

[z, z] = ⇡↵0
sin 2⇡v , [z, p] = i cos2 ⇡v , [↵m ,↵†

m0 ] = [�m , �†
m0 ] = m�mm0 . (2.64)
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Next, we compute

[Z(⌧, �) , Z(⌧, �0
)] =

`2b

1 + b2
(⇡ � � � �0

)+

+ `2
1
X

m=1

1

m
[fm(⌧, �)fm(⌧, �

0
)� f�m(⌧, �)f�m(⌧, �

0
)] ,

=

`2b

1 + b2

"

⇡ � (� + �0
)�

1
X

m=1

2

m
sin (m(� + �0

))

#

. (2.65)

In the last line, we recognise the Fourier series of the sawtooth wave g(!) = ! for

! 2 (0, 2⇡):

g(!) = ⇡ �
1
X

m 6=0

1

m
sinm! = ! . (2.66)

Thus, we have, with # = ⇡↵0
sin 2⇡v,

[Z(⌧, �) , Z(⌧, �0
)] =

8

>

>

>

<

>

>

>

:

+# � = �0
= 0 ,

�# � = �0
= ⇡ ,

0 otherwise .

(2.67)

This is consistent with our ansatz that [Z(⌧, �) , Z(⌧, �0
)] = 0 except at a few isolated

points.

Comments: Our analysis above agrees with that in [CH1, CH2]. In [CH1], the

authors define the following time-averaged symplectic form on phase space described by

(Z,Z, P, P ):

⌦ = lim

T!1
1

2T

Z T

�T

d⌧
Z ⇡

0

d� �P (⌧, �) ^ �Z(⌧, �) + c.c. . (2.68)

By plugging in the mode expansions, they read off the various Poisson brackets between

the modes and obtain the Poisson brackets in (2.64). In [CH2], the boundary conditions are

considered as constraints in phase space and the Dirac bracket is computed. It turns out

that there are an infinite number of second class constraints. The authors directly arrive

at the commutation relations (2.24). Similar work has been done in [AAS1, AAS2, SS]

but with differing results.

29



2.2 Worldsheet fermions

In 1+1 dimensions, right(left)-handed spinors are left(right)-moving on-shell and super-

conformal symmetry relates left-movers to left-movers and right-movers to right-movers:

�Z = i✏+ + + i✏� � , �F = i✏+@++ � � i✏�@�� + ,

� � = ✏�@��Z + ✏+F , � + = ✏+@++Z � ✏�F , (2.69)

where we have introduced the complex combinations  ± =

1p
2
( 1

± + i 2
±) and F =

1p
2
(F 1

+ iF 2
). The presence of a boundary reduces the superconformal symmetry by half

by imposing a relation between the parameters: ✏+ = ±✏�. We impose ✏+ = ✏� at one

end, say � = 0. On the other end, two choices are possible and they correspond to the R

and NS sectors:

� = ⇡ :

8

<

:

✏+ = ✏� Ramond ,

✏+ = �✏� Neveu-Schwarz .
(2.70)

It is evident that rigid supersymmetry is present only in the R sector and that it has

only one parameter ✏ = ✏+ = �✏�. The boundary condition on  ± corresponding to

@++Z = e�2⇡i⌫@��Z at � = 0 is given by

 + = e�2⇡i⌫
 � at � = 0 . (2.71)

Similarly, the boundary condition at � = ⇡ is

At � = ⇡ :

8

<

:

 + = e�2⇡iµ
 � R sector ,

 + = �e�2⇡iµ
 � NS sector .

(2.72)

In order to write down the mode expansions, we combine  +(⌧ + �) and  �(⌧ � �) on

0  �  ⇡ into one field  on the double interval �⇡  �  ⇡ such that

 (⌧ + �) =

8

<

:

 �(⌧ + �) �⇡  �  0 ,

e2⇡i⌫
 +(⌧ + �) 0  �  ⇡ .

(2.73)
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Treating �⇡  �  ⇡ as an angular variable we see that  is continuous at � = 0 by virtue

of (2.71) and twisted-periodic across � = ⇡ due to (2.72):  (⌧ + ⇡) = ±e2⇡i(⌫�µ)
 (⌧ � ⇡).

The mode expansion for  (⌧ + �) in the R sector is

 

R

(⌧ + �) =
`

2

" 1
X

m=1

am e�i✓m(⌧+�)
+

1
X

n=0

b†n e
�i✓�n (⌧+�)

#

, (2.74)

and in the NS sector is

 

NS

(⌧ + �) =
`

2

" 1
X

r=1

cr e
�i✏r(⌧+�)

+

1
X

s=0

d†s e
�i✏�s (⌧+�)

#

, (2.75)

where ✏ = ✓ + 1
2 = µ� ⌫ + 1

2 and ✏n = ✏+ n. The action for the doubled  (⌧ + �) is

S[ ] = 2i
⇡↵0

Z

d⌧
Z ⇡

�⇡
d�  @�� . (2.76)

The boundary term for the fermions in (2.2) measures the jump in  + ++ � � between

two boundary components (� = 0, ⇡) of the worldsheet. Since   is periodic on the

double interval, such a boundary term is absent in the above action. The conjugate

momentum is then

⇧(⌧ + �) =
@L
@ ˙

 

= � 2i
⇡↵0  (⌧ + �) . (2.77)

The correct equal-time anticommutation relation follows from Dirac’s constrained Hamil-

tonian formalism:

{⇧(⌧+�) , (⌧+�0
)} = � i

2

�(���0
) =) { (⌧+�) , (⌧+�0

)} =

⇡↵0

4

�(���0
) . (2.78)

Using the completeness relations and 2↵0
= `2, we get

{am , a†m0} = �mm0 , {bn , b†n0} = �nn0 , {cr , c†r0} = �rr0 , {ds , d†s0} = �ss0 . (2.79)
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The expression for L0 in the R and NS sectors is given by

L
(R)
0 =

1
X

m=1

h

↵†
m↵m + (m+ ✓)a†mam

i

+

1
X

n=0

h

: �†
n�n : +(n� ✓) : b†nbn :

i

,

L
(NS)
0 � E0 =

1
X

m=1

↵†
m↵m +

1
X

r=1

(r + ✏)c†rcr +
1
X

n=0

: �†
n�n : +

1
X

s=0

(s� ✏) : d†sds : . (2.80)

Recall that ✏ = µ� ⌫ + 1
2 . Since |µ|, |⌫| < 1

2 , we have �1
2 < ✏ < 3

2 . The first few states

of the spectrum in the NS sector for different ranges of ✏ are as in Table 2.1. Observe

Table 2.1: Spectral flow in the NS sector

(a) �1
2 < ✏ < 0

E � E0 NS

�✏ d

†
0

✏+ 1 c

†
1

�✏+ 1 d

†
1

✏+ 2 c

†
2

(b) 0 < ✏ <

1
2

E � E0 NS

✏ d0

�✏+ 1 d

†
1

✏+ 1 c

†
1

�✏+ 2 d

†
2

(c)

1
2 < ✏ < 1

E � E0 NS

�✏+ 1 d

†
1

✏ d0

�✏+ 2 d

†
2

✏+ 1 c

†
1

(d) 1 < ✏ <

3
2

E � E0 NS

✏� 1 d1

�✏+ 2 d

†
2

✏ d0

�✏+ 3 d

†
3

that as we dial up ✏, negative energy states from the Dirac sea cross the zero-point energy

and become positive energy states. The first excited state in the NS sector has energy

|✏| or |1� ✏| depending on whether �1
2 < ✏ < 1

2 or 1
2 < ✏ < 3

2 . A similar analysis can be

made for the R sector and the results are in Table 2.2.

Table 2.2: Spectral flow in the R sector

(a) �1 < ✓ < �1
2

E R

✓ + 1 a

†
1

�✓ b

†
0

✓ + 2 a

†
2

�✓ + 1 b

†
1

(b) �1
2 < ✓ < 0

E R

�✓ b

†
0

✓ + 1 a

†
1

�✓ + 1 b

†
1

✓ + 2 a

†
2

(c) 0 < ✓ <

1
2

E R

✓ b0

�✓ + 1 b

†
1

✓ + 1 a

†
1

�✓ + 2 b

†
2

(d)

1
2 < ✓ < 1

E R

�✓ + 1 b

†
1

✓ b0

�✓ + 2 b

†
2

✓ + 1 a

†
1
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2.3 State space

The zero-point energies for a complex boson and a complex fermion with moding Z+v+ 1
2 ,

|v|  1
2 are

1

24

� v2

2

, � 1

24

+

v2

2

respectively . (2.81)

The complex boson Z has moding Z + ✓ and so do the fermions in the R sector. This

is a consequence of rigid supersymmetry on the worldsheet in the R sector. Thus, the

zero-point energy in the R sector vanishes. The fermions in the NS sector have moding

Z+ ✏ and the total zero-point energy in the NS sector is given by

E0 =
1

24

�
�

|✓|� 1
2

�2

2

� 1

24

+

�

�

�|✏� 1
2 |�

1
2

�

�� 1
2

�2

2

,

=

1

8

� 1

2

�

�|✓|� 1
2

�

� . (2.82)

Since [z , z] = `2

b�b0 and [z , L0] = 0, we can build an infinite tower of states (given that

the Z direction is non-compact) from each L0 eigenstate without z, z.

✓ = 0:

The complex boson Z and the R sector fermions have moding Z and consequently the

zero-point energy vanishes in the R sector. The fermions in the NS sector have moding

Z+

1
2 and the total zero-point energy in the NS sector is given by

E0 =
1

24

� 1

2

✓

1

2

◆2

� 1

24

= �1

8

. (2.83)

The Fock space R vacuum |ri is defined by

↵m|ri = �m|ri = am|ri = bm|ri = 0 for m � 1 and p|ri = p|ri = b0|ri = 0 .

(2.84)

Since b0 and b†0 do not occur in L0, the R vacuum is doubly degenerate with basis:

|ri and b†0|ri . (2.85)
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The Fock space NS vacuum |nsi is defined by

↵m|nsi = �m|nsi = cm|nsi = dm|nsi = 0 for m � 1 ,

p|nsi = p|nsi = d†0|nsi = 0 . (2.86)

There is an additional infinite degeneracy in both the NS and R sectors from the bosonic

zero modes z, z, p and p which satisfy

[z, z] =
2⇡↵0b
1 + b2

= # , [z, p] = [z, p] =
i

1 + b2
, [p, p] = 0 . (2.87)

Define the normalised oscillators

z =

p
# ẑ , z =

p
# ẑ† , p =

p̂p
#(1 + b2)

, p =

p̂†p
#(1 + b2)

. (2.88)

which satisfy the algebra

[ẑ, ẑ†] = 1 , [ẑ, p̂] = [ẑ†, p̂†] = i , [p̂, p̂†] = 0 . (2.89)

The expression for L0 becomes L0 � E0 =
p̂p̂†

⇡b(1+b2) + · · · . We construct a basis of states

which have definite value of p̂, p̂†:

|�,�i := exp

�

i�ẑ† + i�ẑ
�

|0i with p̂|�,�i = �|�,�i and p̂†|�,�i = �|�,�i . (2.90)

The L0 eigenvalue is then |�|2
⇡b(1+b2) . Let C(u) be the contour |�| = p

u in the �-plane. We

then define the following set of states:

|n, ui := 1

2⇡i

Z

C(u)

d�
�n+1

exp

�

i�ẑ† + i�ẑ
�

|0i for n 2 Z�0 , u > 0 . (2.91)

We see that all states for a given u are degenerate with L0 eigenvalue u. In the power

series expansion in the operators ẑ, ẑ†, we see that the leading power of ẑ† is n. In the

�! 0 limit, these states persist and have L0 = 0. There are similar states with leading

power of ẑ equal to n. The L0 = 0 states can also be obtained by taking wavepackets
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associated with the following states:

|n+i = ẑn|0i , |n�i = (ẑ†)n|0i . (2.92)

The |n±i are simpler to handle in evaluating string amplitudes.

2.4 Boundary condition changing operators

We map the strip �1 < ⌧ < 1, 0  �  ⇡ to the upper half plane H = {z 2 C | Im(z) >

0} by first Wick-rotating ⌧ = �it and using the map z = exp(t + i�). In particular,

the boundary at � = 0, ⇡ is mapped to z = z > 0 and < 0 respectively. We use this

form of the open string worldsheet to compute string amplitudes. The vertex operators

corresponding to the states |n, ui, |n±i are

V (�,�; x) = : exp
⇣

1p
#
(i�Z + i�Z)

⌘

(x) : ,

V (n, u; x) =
1

2⇡i

Z

C(u)

d�
�n+1

: exp
⇣

1p
#
(i�Z + i�Z)

⌘

(x) : , x 2 @H ,

V (n+; x) =
1

#n/2
: Zn

(x) : , V (n�; x) =
1

#n/2
: Zn

(x) : , (2.93)

where # = ⇡↵0
sin 2⇡v is the non-commutativity parameter in (2.67).

Worldsheet bosons

Consider a complex boson Z with MM0 boundary conditions. Using @++ = iz@ and

@�� = iz@, we can write the corresponding boundary conditions on H:

@Z = e�2⇡i⌫ @Z for z = z > 0 , @Z = e�2⇡iµ @Z for z = e2⇡iz < 0 . (2.94)
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with �1
2  µ, ⌫  1

2 . We define bulk chiral currents J(z) = i@Z, J(z) = i@Z using the

modes in (2.19):

J(z) = i@Z(z) = � i`
2

1
X

n=1

↵n e�2⇡i⌫z�1�✓n � i`
2

1
X

m=0

�†
m e�2⇡i⌫z�1�✓�m ,

J(z) = i@Z(z) = � i`
2

1
X

n=1

↵n z
�1�✓n � i`

2

1
X

m=0

�†
m z�1�✓�m , (2.95)

where ✓ = µ� ⌫ and ✓n = ✓ + n. Since the modes are not integers, we need to specify a

branch cut: we choose it to be at �1 < z  0. We also define the hermitian conjugate

currents

J⇤
(z) := z�2J(z�1

) , J⇤
(z) := z�2J(z�1

) . (2.96)

The gluing conditions for the currents are then:

J(z) = e�2⇡i⌫J(z) for z = z > 0 , J(z) = e2⇡iµJ(z) for z = e2⇡iz < 0 ,

J⇤
(z) = e2⇡i⌫J⇤

(z) for z = z > 0 , J⇤
(z) = e�2⇡iµJ⇤

(z) for z = e2⇡iz < 0 .

(2.97)

The gluing conditions allow us to extend the domain of definition of the currents to the

full z-plane by employing the doubling trick :

J(z) = � i`
2

X

n�1

↵m e�2⇡i⌫z�1�✓n � i`
2

X

m�0

�†
m e�2⇡i⌫z�1�✓�m ,

J⇤(z) =
i`
2

X

n�1

↵†
n e2⇡i⌫z�1+✓n

+

i`
2

X

m�0

�m e2⇡i⌫z�1+✓�m . (2.98)

The doubled stress tensor T(z) is given by

T(z) = lim

w!z

4

`2

✓

J(w)J⇤(z)� `2

4(w � z)2

◆

. (2.99)

The change in boundary conditions from µ to ⌫ at z = 0 and vice-versa at z = 1 can be

interpreted as there being present boundary condition changing operators (BCC) �(0)

and �+
(1) where �+ is the operator conjugate to �. The conformal dimension of � is

obtained from the one-point function of T(z). Following the treatment in [DFMS, FGRS]
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we first define J = J> + J< where J> contains only annihilation operators. We have, for

0 < ✓ < 1,

J>(w) = � i`
2

X

n�1

↵n e�2⇡i⌫w�1�✓n � i`
2

�†
0 e�2⇡i⌫w�✓�1 , (2.100)

and for �1 < ✓ < 0 the last term is absent. Next, we compute

J(w)J⇤(z)� `2

4(w � z)2
= J<(w)J

⇤
(z) + J⇤(z)J>(w) + [J>(w), J

⇤
(z)]� `2

4(w � z)2
,

= J<(w)J
⇤
(z) + J⇤(z)J>(w) +

`2

4

@z



⇣ z

w

⌘(?)
1

w � z

�

, (2.101)

where the exponent (?) is ✓ for 0 < ✓ < 1 and 1 + ✓ for �1 < ✓ < 0. This finally gives

T(z) =
|✓| (1� |✓|)

2z2
+

4

`2
J<(z)J

⇤
(z) +

4

`2
J⇤(z)J>(z) , (2.102)

which gives the one-point function

hT(z)i = |✓| (1� |✓|)
2z2

. (2.103)

This can be interpreted as there being two BCC operators �, �+ inserted resp. at z = 0

and z = 1 with conformal weight h� =

|✓|(1�|✓|)
2 . Their two-point function is

h�(x1)�
+
(x2)i =

1

|x1 � x2|2h�
. (2.104)

To get a more complete understanding of the boundary condition changing operators,

we explore their OPE with the currents J(z), J⇤(z). The in-vacuum |✓i for the worldsheet

bosons Z, Z is defined by the relations:

For � 1 < ✓ < 0 : ↵m|✓i = 0 , �m�1|✓i = 0 , m = 1, 2, . . . ,

For 0 < ✓ < 1 : ↵m|✓i = 0 , �m|✓i = 0 , m = 1, 2, . . . . (2.105)

The in-vacuum is the vacuum of the Hilbert space at t = �1, or using the map

z = exp(t+ i�), at z = 0. It can be interpreted as the state obtained by acting on the
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SL(2,R)-invariant vacuum |⌦i by the operator �(0):

|✓i := �(0)|⌦i . (2.106)

The effect of inserting �(0) is to introduce the branch point at z = 0 with J(z) having a

monodromy e�2⇡i✓ around it and the appropriate branch cut (here �1 < z  0). Let us

focus on the case �1  ✓  0. From the mode expansion of J(z) and J⇤(z), we have

lim

z!0
J(z)|✓i ⇠ � i`

2

e�2⇡i⌫ z�1�✓�†
0|✓i , lim

z!0
J⇤(z)|✓i ⇠ i`

2

e2⇡i⌫ z✓↵†
1|✓i . (2.107)

The ⇠ indicates that we have suppressed less singular terms on the right-hand side. From

this, we infer the following OPE:

J(z)�(0) ⇠ z�1�✓ ⌧1(0) , J⇤(z)�(0) ⇠ z✓ ⌧2(0) . (2.108)

The operators ⌧1(0) and ⌧2(0) are excited BCC operators corresponding to the excitations

�†
0|✓i and ↵†

1|✓i. Similarly, for the case 0  ✓  1, we get

J(z)�(0) ⇠ z�✓ ⌧3(0) , J⇤(z)�(0) ⇠ z�1+✓ ⌧4(0) . (2.109)

Here, ⌧3(0) and ⌧4(0) correspond to the excited states �†
1|✓i and �0|✓i respectively. Note

that �0 is a creation operator for this range of ✓.

Worldsheet fermions

We now describe BCC operators for the worldsheet fermions  ±. Since the fermions have

conformal dimension 1
2 , we should include a Jacobian factor z�1/2 while mapping them

from the strip to the upper half-plane. We employ the doubling trick to directly write the
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R and NS fermions on the full z-plane in the R and NS sectors:

 

R

(z) =
`

2

X

n�1

an z
�✏n

+

`

2

X

m�0

b†m z�✏�m ,

 

NS

(z) =
`

2

X

r�1

cr z
�✓r�1

+

`

2

X

s�0

d†s z
�✓�s�1 . (2.110)

with ✏ = ✓ + 1
2 . In order to describe the BCC operators, we first bosonise  (z) by

introducing an antihermitian scalar H(z):

 (z) = eH(z) ,  

⇤
(z) = e�H(z) with hH(w)H(z)i = log(w � z) . (2.111)

The normal ordering symbol : : is omitted in the above definition for the sake of brevity.

Now, consider the OPE of the operator e�✓H(x) with  :

 (z)e�✓H(0) ⇠ z�✓e(1�✓)H(0)
+ · · · . (2.112)

First, we notice that as z ! e2⇡iz,  picks up a phase e�2⇡i✓, which matches with the

monodromy of  
NS

. Further, we observe that the right-hand side of the first OPE is

regular as z ! 0 for ✓ < 0. This requires that  
NS

(z) annihilate the state e�✓H(0)|0i in

the limit z ! 0 where the state |⌦i is the SL(2,R)-invariant vacuum. From Table 2.1,

we see that the NS vacuum |nsi has the same properties for �1
2 < ✓ < 0. Thus, we can

identify the state e�✓H(0)|0i with the NS vacuum for this range of ✓:

e�✓H(0)|0i = |nsi for � 1

2

< ✓ < 0 . (2.113)

For the range �1 < ✓ < �1
2 , we see from Table 2.1 that  

NS

annihilates the excited state

d†0|nsi. Thus, for this range of ✓ one has to identify e�✓H(0)|0i with the first excited state:

e�✓H(0)|0i = d†0|nsi for � 1 < ✓ < �1

2

. (2.114)
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The NS vacuum is obtained by applying d0 to the above and d0 is contained in the

Hermitian conjugate field  ⇤
(z), defined as

 

⇤
(z) := z�1

 (z�1
) ,

with mode expansion

 

⇤
NS

(z) :=
`

2

X

r�1

c†r z
✓r
+

`

2

X

s�0

ds z
✓�s . (2.115)

The operator corresponding to the NS vacuum for this range of ✓ is then obtained by

fusing  ⇤ with e�✓H(x):

 

⇤
(z)e�✓H(0) ⇠ z✓e�(1+✓)H(0)

+ · · · . (2.116)

Thus the NS vacuum is to be identified with the operator on the right hand side:

e�(1+✓)H(0)|0i = |nsi for � 1 < ✓ < �1

2

. (2.117)

Similarly, for ✓ > 0 there are two cases 0 < ✓ < 1
2 and 1

2 < ✓ < 1 for which the operators

corresponding to |nsi are e�✓H(x) and e(1�✓)H(x) respectively. The same analysis can be

made for the R sector as well. We summarise the results in Table 2.3. We designate the

operator corresponding to the NS and R vacua as sns
(x) and sr(x) respectively. These

shall be the BCC operators for the respective sectors. Also observe that the operators

Table 2.3: Ground BCC operators for the NS and R sectors

Ground BCC operator �1 < ✓ < �1
2 �1

2 < ✓ < 0 0 < ✓ <

1
2

1
2 < ✓ < 1

s

ns(x) e

�(1+✓)H(x)
e

�✓H(x)
e

�✓H(x)
e

(1�✓)H(x)

s

r(x) e

�✏H(x)
e

�✏H(x)
e

(1�✏)H(x)
e

(1�✏)H(x)

sns,r always have the smallest conformal dimension in each range of ✓. The operators

corresponding to the excited states can be inferred in a similar fashion and are summarised

in Table 2.4. Let us study the limiting cases of NN, DD, DN. For both NN and DD
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Table 2.4: Excited BCC operators for the NS and R sectors

Excited BCC operator �1 < ✓ < �1
2 �1

2 < ✓ < 0 0 < ✓ <

1
2

1
2 < ✓ < 1

t

ns(x) e

�✓H(x)
e

�(1+✓)H(x)
e

(1�✓)H(x)
e

�✓H(x)

t̃

ns(x) e

�(2+✓)H(x)
e

(1�✓)H(x)
e

�(1+✓)H(x)
e

(2�✓)H(x)

t

r(x) e

�(1+✏)H(x)
e

(1�✏)H(x)
e

�✏H(x)
e

(2�✏)H(x)

t̃

r(x) e

(1�✏)H(x)
e

�(1+✏)H(x)
e

(2�✏)H(x)
e

�✏H(x)

we have ✓ = 0. From Table 2.3, we see that for either of the two limits ✓ ! 0

+ or

✓ ! 0

�, the NS vacuum is the SL(2,R)-invariant vacuum |⌦i. The first two excited

states corresponding to e±H are degenerate. In the R sector, for ✓ ! 0

±, the vacuum

corresponds to e±H/2 and the first excited state to e⌥H/2. The two states are degenerate,

so either limit gives the same spectrum.

For DN boundary conditions, we have µ = 0 and ⌫ =

1
2 giving ✓ = �1

2 and ✏ = 0. In

the NS sector, the ground state and the first excited state are degenerate, corresponding

to the operators e±H/2. In the R sector, the ground state is the SL(2,R)-invariant vacuum

and the first two excited states corresponding to e±H are degenerate.

For ND boundary conditions, we have µ =

1
2 and ⌫ = 0 giving ✓ = 1

2 and ✏ = 1. The

discussion on the NS and R sector states is identical to the DN case.

For the MD case, we have µ =

1
2 and ⌫ = v giving ✓ =

1
2 � v and ✏ = 1 � v. The

range of ✓ is 0  ✓  1, giving the ground BCC operator e(1�✏)H(x) in the R sector and

e�✓H(x), e(1�✓)H(x) in the NS sector for 0  ✓  1
2 and 1

2  ✓  1 respectively.

For the DM case, we have µ = v and ⌫ =

1
2 giving ✓ = v � 1

2 and ✏ = v. The ground

BCC operators are e�✏H(x) in the R sector and e�(1+✓)H(x), e�✓H(x) in the NS sector for

�1  ✓  �1
2 and �1

2  ✓  0 respectively.
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2.5 The covariant lattice

Consider the following linear combinations of the holomorphic (left-moving) part of the

worldsheet fermions:

 

±ea
=

 2a�1 ± i 2a

p
2

, a 2 4 ,  

±e5
=

 9 ±  0

p
2

. (2.118)

Here em, m = 1, . . . , 5, are unit vectors (em)i = �im of the D5 weight lattice. Along with

their negatives, they form the weights of the vector representation of so(1, 9). Under

complex conjugation the fermions behave as follows:

( 

+ea
)

⇤
=  

�ea , ( 

±e5
)

⇤
=  

±e5 . (2.119)

In order to bosonize these with the correct properties under complex conjugation,

we introduce antihermitian scalars Ha(z) and a hermitian scalar H5(z) which satisfy

hHm(z)Hn(w)i = �mn log(z � w), m,n = 1, . . . , 5. The bosonised versions of the fermions

are

 

±em
(z) := e±Hm(z)c±em , m = 1, . . . , 5 . (2.120)

The object c±em is a cocycle operator which is defined [KLLSW] in terms of the fermion

number operators Nm as

c±em := (�)

N1+···+Nm�1 . (2.121)

These ensure that the fermions  ±em ,  ±en for m 6= n anticommute after bosonisation.

In a broader context, these fermions are used to construct the currents whose modes

satisfy the commutation relations of the affine Kač-Moody algebra ˆD5. The commutation

relations between the generators corresponding to the roots of the Lie algebra involve

certain 2-cocycles. In order to obtain these 2-cocycles correctly via bosonised vertex

operators, we need to include the above cocycle operators in the definition of the vertex

operators. These 2-cocycles were first treated by Bardakci and Halpern [BH] in the physics

literature and by Frenkel and Kač [FK], and Segal [S] in the mathematics literature.
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In terms of the bosons Hm, the number operators are given by Nm := (@Hm)0 where

(@Hm)0 are the zero modes of @Hm. The bosons Hm have the following mode expansion

[PR]:

Hm(z) = hm +Nm log z +
X

k 6=0

↵m,k

k
z�k . (2.122)

The Hermitian conjugate field H⇤
m is defined as follows:

H⇤
m(z) := Hm(z�1

) . (2.123)

Since Ha are antihermitian and H5 is hermitian, the modes satisfy

(ha)
†
= �ha , (Na)

†
= Na , (↵a,k)

†
= ↵a,k , a 2 4 ,

(h5)
†
= h5 , (N5)

†
= �N5 , (↵5,k)

†
= �↵5,k . (2.124)

These properties will be required in the discussion on the cocycle operators. Next,

we discuss superconformal ghosts. The contribution due to these have to be included

appropriately in each vertex operator to ensure that operator products are mutually

local. One bosonises the superconformal ghosts �, � using a hermitian scalar field ' with

h'(z)'(w)i = � log(z�w) and two fermions ⇠(z) and ⌘(z) with h⇠(z)⇣(w)i = (z�w)�1:

�(z) := e�'(z)@⇠(z) , �(z) := ⌘(z)e'(z) . (2.125)

The fermions ⇠ and ⌘ are further bosonised as

⇠(z) = e⇣(z) , ⌘(z) = e�⇣(z) . (2.126)

with ⇣(z) a hermitian scalar with h⇣(z)⇣(w)i = log(z�w). The superghost picture number

operator N6 is given by the zero mode of @⇣ � @'. Under conjugation, it satisfies

(N6)
†
= �N6 �Q = �N6 � 2 , (2.127)

where Q = 2 is the background charge of the �� CFT. The picture charge of eq'(z) is q

and its conformal dimension is �1
2q(q+Q). The operator conjugate to eq' is e�(q+Q)' and
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it also has conformal dimension �1
2q(q +Q).

In the canonical ghost picture, vertex operators in the NS sector acquire a factor of

e�' and those in the R sector a factor of e�'/2. The integer and half-integer exponents

are correlated with the integer and half-integer modes for the NS and R fermions on

the doubled plane. The integer and half-integer ghost numbers can be interpreted as

belonging to a D1 weight lattice which can then be combined with the spacetime D5

weights to get a covariant lattice �5,1. The lattice �5,1 is Lorentzian since h'(z)'(w)i =
� log(z �w) as opposed to hHm(z)Hn(w)i = �mn log(z �w). Writing H6 := �', we have

hHµ(z)H⌫(w)i = ⌘µ⌫ log(z � w) with ⌘66 = �1, ⌘6m = 0 and ⌘mn = �mn. A general vertex

operator in the (worldsheet) fermionic sector is then given by

e�·H(z)c� . (2.128)

where � is a weight in the covariant lattice �5,1, c� is the cocycle operator corresponding

to � and the dot product � ·H is with respect to the Lorentzian metric ⌘µ⌫ . We give a

formula for c� below. The �5,1 weights � with �6 = �1,�1
2 ,�

3
2 directly correspond to

physical states whose mass-squared is given by

↵0m2
=

1

2

�2 + � · e6 � 1 , (2.129)

where e6 is the unit vector (0, 0, 0, 0, 0; 1). The term � · e6 arises due to the background

charge of the �� CFT. The other �5,1 weights do not correspond directly to physical states

but linear combinations of the corresponding vertex operators correspond to physical

operators with picture charge different from the canonical ones.

2.5.1 The D1-D5A-D5A system

Consider the D1-D5A-D5A system. The spacetime Lorentz symmetry SO(1, 9) is broken

down to SO(4) ⇥ SO(4)

0 ⇥ SO(1, 1) with spacetime now being the 1 + 1 dimensional

intersection R1,1 of the D-branes. The worldsheet fermion contribution to the total vertex

operator can thus be described by (2.128) where � is now a weight in the covariant lattice
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D2�D2��1,1. In the presence of a constant B-field, the weights � have to be generalised

to include entries which are neither integral nor half-integral. The precise weights can be

obtained by following the procedure outlined in the previous sections.

An (unintegrated) open string vertex operator with only fermionic oscillators then has

the form

V�(k, z) = !(�) c(z)B(z) e�·H(z) e2ik·X(z)c� , (2.130)

where !(�) is an arbitrary c-number phase, c(z) is the coordinate ghost, B(z) is the

product of the appropriate BCC operators for the worldsheet bosons and k is the 1 + 1

dimensional spacetime momentum. We have suppressed Chan-Paton factors. The mass

formula for a state with weight � becomes

↵0m2
(�) = �↵0k2

=

1

2

�2 + � · e6 � 1 +

X

�|B
h� . (2.131)

The notation
P

�|B indicates the summation of the conformal dimensions h� of bosonic

BCC operators �(z) present in B(z) above.

2.5.2 Cocycle operators

We follow the treatment in [KLLSW] and write the cocycle operators c� as follows:

c� := exp

�

i⇡M⇢��
⇢N�

�

, (2.132)

where N� is the vector of number operators (N1, . . . , N6) and Mµ⌫ is the matrix

Mµ⌫ =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0

+1 0 0 0 0 0

+1 +1 0 0 0 0

�1 +1 �1 0 0 0

+1 +1 +1 +1 0 0

�1 �1 �1 �1 +1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

. (2.133)
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The indices �, ⇢ are raised and lowered using the indefinite metric ⌘µ⌫ . The OPE between

two vertex operators V�(z) and V�0(z) then becomes

V�(z)V�0(w) ⇠ (z � w)�·�
0ei⇡�·M ·�0V�+�0(w) + · · · . (2.134)

The signs in the matrix M are chosen to obtain the correct charge conjugation matrices

in the OPEs

SA
(z)SB

(w) ⇠ (z � w)�1CAB
+ · · · , S

.
A
(z)S

.
B
(w) ⇠ �i(z � w)�1C

.
A
.
B
+ · · · ,

(2.135)

where SA, S
.
B are the 9 + 1 dimensional left- and right-handed spinor vertex operators in

the canonical ghost picture. They are given by the D5,1 weights (±1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ;�

1
2)

with even and odd number of minus signs respectively. The corresponding �-matrices are

obtained from the OPE

 µ
(z)SA

(w) ⇠ (z � w)�1
(�

µ
)

A .
B
S
.
B
(�3/2)(w) + · · · , (2.136)

where  µ
(z) is the 9 + 1 dimensional vector vertex operator from the NS sector with

D5,1 weight (0, . . . , 0,±1, 0, . . . , 0;�1) and S
.
B
(�3/2) is the operator that is conjugate to

the operator S
.
B
(�1/2) in the canonical ghost picture. We obtain the following helicity

representation for the �-matrices and the charge conjugation matrix from the above OPEs

[KLLSW]:

�

1
= �1 ⌦ ⌦ ⌦ ⌦ , �

7
= ��3 ⌦ �3 ⌦ �3 ⌦ �2 ⌦ ,

�

2
= �2 ⌦ ⌦ ⌦ ⌦ , �

8
= �3 ⌦ �3 ⌦ �3 ⌦ �1 ⌦ ,

�

3
= �3 ⌦ �2 ⌦ ⌦ ⌦ , �

9
= �3 ⌦ �3 ⌦ �3 ⌦ �3 ⌦ �1 ,

�

4
= ��3 ⌦ �1 ⌦ ⌦ ⌦ , �

0
= �3 ⌦ �3 ⌦ �3 ⌦ �3 ⌦ (�i�2) ,

�

5
= ��3 ⌦ �3 ⌦ �1 ⌦ ⌦ , �c = �3 ⌦ �3 ⌦ �3 ⌦ �3 ⌦ �3 ,

�

6
= ��3 ⌦ �3 ⌦ �2 ⌦ ⌦ , C� = e3⇡i/4�2 ⌦ �1 ⌦ �2 ⌦ �1 ⌦ �2 . (2.137)
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2.5.3 CPT conjugate vertex operators

In the calculation of the Yukawa couplings arising from the various E-terms and J-terms,

the J-term couplings involve the right-moving fermions while the E-term couplings involve

the conjugate right-moving fermions. Hence we need vertex operators for CPT conjugate

states. The transformation of the cocycle operators under CPT are quite intricate and

must be handled with care.

Recall that the Ha are antihermitian and H5, H6 are hermitian. The number operators

satisfy:

(Na)
†
= Na , a 2 4 , (N5)

†
= �N5 , (N6)

†
= �N6 � 2 . (2.138)

Spacetime CPT is implemented as Hermitian conjugation on the vertex operators. The

operator e�·H thus transforms as

(e�·H)† = (e�aHa+�5H5��6H6
)

†
= e��aHa+�5H5��6H6

=: e�?·H , (2.139)

where we have defined �? := (��a,�5;�6) to be the CPT conjugate weight. The cocycle

operator c� transforms as

(c�)
†
= exp

⇥

�i⇡� ·M ·N †⇤
= exp [�i⇡(� ·M)bNb + i⇡(� ·M)5N5] ,

= exp [i⇡(��aMabNb � �5M5aNa + �6M6aNa � �6M65N5)] ,

= exp [i⇡(�? ·M)aNa + i⇡(�? ·M)5N5]⇥ exp [�2⇡i(�5M5aNa � �6M6aNa)] ,

= c�? e�⇡i

[

2(�5+�6)
P

b Nb]
=: c�0 , (2.140)

where we have defined �0 = (��a,��5 � 2�6;�6) = �? � 2(�5 + �6)e5. Thus, the CPT

conjugate of the operator V�(k, z) in (2.130) is given by

eV�(k, z) = !(�)† c(z)B†
(z) (c�)

†
(e�·H(z)

)

† e�2ik·X(z)

= !(�)† ei⇡�0·M ·�? c(z)B†
(z) e�?·H(z)c�0 e�2ik·X(z) . (2.141)

⇤
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This concludes our exposition of supersymmetric open strings in a constant B-field.

We have constructed the vertex operators for various string states which shall be used

in the sequel to calculate the appropriate amplitudes. Next, we describe N = (0, 2)

superspace.
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Chapter 3

N = (0, 2) superspace

A 1+1 dimensional theory with N = (0, 2) supersymmetry has two supercharges (Q+,Q+)

in the left-moving sector. The corresponding supersymmetry parameters are left-handed

spinors (✏+, ✏+).

The Dirac equation in 1 + 1 dimensions imposes that left(right)-handed fermions

are right(left)-movers on-shell. A scalar has both left- and right-moving parts. The

left-moving part of the scalar will then have a superpartner fermion which is left-moving

on-shell and hence right-handed. Thus, a scalar multiplet has a scalar and a right-handed

fermion as its on-shell degrees of freedom. A fermion which is right-moving on-shell (and

hence left-handed) can form a multiplet on its own under such a supersymmetry. We

next describe these multiplets and their gauged versions in superspace.

N = (0, 2) superspace is described by coordinates (x±±, ✓+, ✓+) where ✓+ and ✓+

are left-handed spinors. The corresponding supercovariant derivatives are denoted by

(@++,D+,D+). They satisfy the algebra

D

2
+ = D

2
+ = 0 , {D+ ,D+} = 2i@++ . (3.1)

We would like to study constrained superfields of the form D+(·) = 0. The natural

complex structure of the supercovariant derivatives then imposes a complex structure on

the space of constrained superfields. There are three kinds of N = (0, 2) superfields that

will be important for us: Vector, Chiral, Fermi. Before we study these representations,

let us briefly discuss the representation theory of SO(1,1): the Lorentz group in 1+1

dimensions.
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3.1 Representations of SO(1, 1)

The group SO(1, 1) is abelian and has a single boost generator T01 with group element

g(�) = exp(�T01) , � 2 R .

All irreducible representations are one dimensional. The representation on coordinates xµ,

µ = 0, 1, is given by T01 = �x0@1+x1@0. In terms of lightcone coordinates x±±
=

1
2(x

0±x1
)

where x++ is left-moving and x�� is right-moving, we have

g(�) · x±±
= e±�x±± . (3.2)

The vector representation mimics the above transformation rule: v±± ! e⌥�v±±.

The spinor representations are the basic representations of the double cover Spin(1, 1)

with T01 =
1
2⇢0⇢1 where ⇢µ are 1 + 1 dimensional Dirac matrices. Let ⇢c = �⇢0⇢1 = ⇢0⇢1

and define left-handed and right-handed spinors v+ and v� to satisfy ⇢cv± = ±v±. We

then have T01 =
1
2⇢c and v± transform as

g(�) · v± = e±
1
2� v± . (3.3)

(Observe that the product v±w± transforms in the same way as x±±.) We raise and lower

the indices using the totally antisymmetric "-symbol with "+� = +1 = "+�:

v+ = "+�v� = v� , v� = "�+v+ = �v+ . (3.4)

We thus conclude that an irreducible representation of SO(1, 1) is an object with some

number of + signs v++···+ (left-moving) or some number of � signs w��···� (right-moving).

Note: The Berezin differentials d✓+, d✓+ transform as d✓+ ! e��
2 d✓+, d✓+ ! e��

2 d✓+.

Thus, the most general superspace action is of the form

Z

d2x d✓+d✓+K�� +

Z

d2x
�

d✓+W� � h.c.
�

, (3.5)

50



where K�� and W� are functions of the various superfields in the theory with K��

unconstrained and D+W� = 0. Equivalently, one can write

Z

d2xD+D+K�� +

Z

d2x (D+W� � h.c.) , (3.6)

upto total @++ derivative terms.

3.2 Chiral

A chiral superfield � is a Lorentz scalar and satisfies D+� = 0 and has components

� := �||| ,
p
2 ⇣+ := (D+�)||| . (3.7)

The object D+D+� contains nothing new: (D+D+�)||| = 2i@++�. Thus, this multiplet

contains a scalar � and a right-handed fermion ⇣. The free action is

S
chiral

= � i
2

Z

d2xD+D+ � @��� =

Z

d2x
�

�@µ� @µ�� i⇣+@��⇣+
�

. (3.8)

3.3 Fermi

A Fermi superfield  � is a left-handed spinor and satisfies D+ � =

p
2E(�) where E(�)

is a holomorphic function of the chiral multiplets �i in the theory.  � has components

 � := ( �)||| , �
p
2G := (D+ �)||| , (D+D+ �)||| = 2

@E

@�i
⇣+,i . (3.9)

The two-derivative action for  � is

S
Fermi

=

1

2

Z

d2xD+D+  � � ,

=

Z

d2x

✓

�i �@++ � + |G|2 � |E(�)|2 +  �
@E

@�i
⇣i+ +

@E

@�i
⇣ i+  �

◆

. (3.10)
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We see that the left-handed fermion  � satisfies @++ � = 0 for E = 0 and hence is

right-moving on-shell.

3.4 Potential terms

Let �i collectively denote all the (0, 2) chiral multiplets in the theory and  a the (0, 2)

Fermi multiplets (we suppress the Lorentz index on  a). We have already seen the

E-term previously when we discussed kinetic terms. We can also write a superpotential,

also known as ‘‘J-term’’ in (0, 2) literature:

SJ = � 1p
2

Z

d2xD+ (Ja
(�i) a)� h.c. ,

=

Z

d2x

✓

Ja
(�i)Ga +GaJa(�)�

@Ja

@�j
⇣j+ a� �  a

�
@Ja

@�j
⇣j+

◆

. (3.11)

Invariance of the above term under N = (0, 2) supersymmetry requires r+( aJ
a
) = 0.

This implies

0 = EaJ
a
=: E · J . (3.12)

This constraint is necessary for the action to be N = (0, 2) supersymmetric. If the action

for a theory can be written in (0, 2) superspace but the above constraint in violated, then

the theory is only (0, 1) supersymmetric.

3.5 Vector

Suppose we have some matter fields ⌥ transforming under a rigid symmetry ⌥ !
eiK
⌥ with K = KaTa an hermitian parameter. We choose hermitian generators Ta

with Tr(TaTb) =
1
2�ab in the fundamental representation. We gauge this symmetry by

introducing gauge-covariant supercovariant derivatives r+, r+ and r±± which transform

as r �! eiKre�iK under gauge transformations. The superspace constraints are

r2
+ = 0 , r2

+ = 0 , and {r+ ,r+} = 2ir++ . (3.13)
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The non-trivial curvatures are given by

�2iv01 = [r++,r��] , �2iF� = [r+,r��] , 2iF� = [r+,r��] . (3.14)

The Bianchi identities give

r+F� = r+F� = 0 , r+F� �r+F� = 2iv01 . (3.15)

The components of the above field strengths are given by

�� := �(F�)||| , D + iv01 := (r+F�)||| . (3.16)

The gauge action is given by

S
gauge

=

1

2g2

Z

d2xD+D+ TrF�F� ,

=

1

g2

Z

d2x Tr
✓

1

2

v201 � i��D++�� +

1

2

D2

◆

. (3.17)

The chirality constraint for a chiral superfield � in a complex representation of the

gauge group becomes r+� = 0 and the components are defined to be

� := �||| ,
p
2 ⇣+ := (r+�)||| . (3.18)

The minimally coupled action is

S
chiral

= � i

2

Z

d2xD+D+ �r��� ,

=

Z

d2x
⇣

�D

µ�Dµ�� i⇣+D��⇣+ + i
p
2���⇣+ � i

p
2⇣+���� �D�

⌘

. (3.19)

Similarly, the constraint for a Fermi superfield  a� in some representation of the
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gauge group becomes r+ a =
p
2Ea(�). The minimally coupled action is

S
Fermi

=

1

2

Z

d2xD+D+ 
a
 a ,

=

Z

d2x

✓

�i a
�D++ a� +GaGa � EaE

a
+  a

�
@Ea

@�j
⇣j+ +

@Ea

@�j
⇣j+  a�

◆

.

(3.20)

3.6 Holomorphic representation

The constraints r2
+ = r2

+ = 0 can be solved by introducing a complex Lie algebra valued

superfield ⌦ = ⌦

aTa called the prepotential :

r+ = e�i⌦
D+ei⌦

:= D+ + i�+ , r+ = e�i⌦
D+ei⌦

:= D+ � i�+ . (3.21)

where we have defined the spinor connections �+ and �+. We also define r±± :=

D±± + i�±±. The gauge transformation r ! eiKre�iK can be reproduced by assigning

the following transformation rule for ⌦:

ei⌦ ! ei⌦e�iK , ei⌦ ! ei⌦e�iK . (3.22)

The above solution has additional gauge invariances:

ei⌦ ! ei⇤ei⌦ , ei⌦ ! ei⇤ei⌦ . (3.23)

where ⇤ is a Lie algebra valued chiral superfield D+⇤ = 0. One can use the hermitian K

to gauge away the hermitian part of ⌦. Equivalently, we look at the K-inert hermitian

object

eV := ei⌦e�i⌦ , with eV �! ei⇤ eV e�i⇤ . (3.24)

(In the gauge where ⌦ = �⌦, we have V = 2i⌦.)

One can go to the holomorphic representation via a (non-unitary) change of basis

r ! ei⌦re�i⌦, ⌥ ! ei⌦
⌥ for a general matter superfield ⌥. The spinor derivatives
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become r+ = e�V
D+eV , r+ = D+ which gives

i�+ = e�V
(D+eV ) , �+ = 0 , (3.25)

thus justifying the name holomorphic. In this representation, the chirality constraint

becomes D+⌥ = 0. All the derivatives are K-inert but transform under ⇤ as r ! ei⇤re�i⇤

with D+⇤ = 0 and the connections transform as

i��+ = �ir+⇤ , ��+ = 0 . (3.26)

The components of �+ are �+ := (�+)|||, v++ :=

1
2(r+�+)||| of which �+ can be set to zero

using the gauge transformation above. The same gauge freedom gives

�v++ =

1

2

(r+��+)||| = �1

2

({r+,r+}⇤)||| = �ir++� , (3.27)

which is the usual transformation for a non-abelian gauge field v++. The final constraint

{r+,r+} = 2ir++ gives 2i�++ = r+�+ whose bosonic part is 2v++. The curvatures are

given by

F� = [D+ ,r��] , eF� = �[r+,r��] . (3.28)

The superspace Lagrangians for the chiral, Fermi and vector multiplets in the holomorphic

representation are �eVr��� ,  eV and TrF� eF� respectively.

3.7 Duality exchanging E $ J

Consider a Fermi superfield  a satisfying r+ a =
p
2Ea. The most general action with

J-term is

S[ a] = �1

2

Z

d2xD+D+ 
a
 a �

1p
2

Z

d2x
�

D+ aJ
a
+D+ 

aJa

 

. (3.29)
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The kinetic term can be reproduced from the following first order action for  a by

integrating out the unconstrained Grassmann superfield ⇤a:

S[⇤a, a] =
1

2

Z

d2xD+D+

�

⇤

a
⇤a � a⇤

a � ⇤a 
a
 

� 1p
2

Z

d2x
�

D+ aJ
a
+D+ 

aJa

 

.

(3.30)

Instead, we could integrate out  a. To do this, we push in D+ in the Lagrange multiplier

term  a⇤
a (and appropriately for its complex conjugate) to get

S[⇤a, a] =
1

2

Z

d2xD+

n

�
p
2Ea⇤

a
+ ar+⇤

a �
p
2 aJ

a
o

� h.c. . (3.31)

Integrating out  a gives r+⇤
a
=

p
2Ja. Relabelling ⇤a

=  

0a, we have r+ 
0a
=

p
2Ja

and the action

S[ 0
a] = �1

2

Z

d2xD+D+ 
0
a 

0a � 1p
2

Z

d2x
�

D+( 
0aEa) + D+( 

0
aE

a
)

 

. (3.32)

Note: The new Fermi multiplet  0a transforms in the conjugate representation of the

various symmetry groups in the theory as compared to  a.

3.8 (2, 2) ! (0, 2)

We shall be schematic here and details can be found in Section 6 of [W2]. A twisted chiral

superfield ⌃ satisfies r+⌃ = r�⌃ = 0. The (0, 2) decomposition is then a chiral and a

Fermi multiplet:

⌃ := ⌃ ||| , with r+⌃ = 0 ,

e

⌃� :=

1p
2

(r�⌃)||| , with r+
e

⌃� = 0 , (3.33)

where ||| indicates that we have set ✓� = ✓� = 0. The (2,2) field strength is a twisted

chiral multiplet: 2
p
2⌃ = {r+,r�}. The complex scalar � now sits in a separate (0,2)

chiral multiplet ⌃ and e⌃� is the familiar (0,2) field strength F� (upto a factor of �i/2).
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A (2,2) chiral superfield � satisfies r+� = r�� = 0. The (0,2) decomposition is then

� := �||| , with r+� = 0 ,

�� :=

1p
2

(r��)||| , with r+�� =

1p
2

{r+,r�}� = 2⌃� , (3.34)

where ⌃ is the (0,2) chiral multiplet that contains the complex scalar �. Thus, a (2,2)

chiral multiplet � splits into a (0,2) chiral � and a Fermi �� which has an E-term

E�� =

p
2⌃�.

A (2,2) superpotential W (�i) gives rise to (0,2) superpotential W(�i,�i�) after the

D� in the measure has been pushed into the action:

Z

D+D�W (�i) =

Z

D+
@W

@�i
r��i =

p
2

Z

D+
@W

@�i
�i� , (3.35)

giving a J-term J i
= �2

@W
@�i

. The constraint r+(J
i
�i�) = 0 becomes

@W

@�i
⌃�i = 0 , (3.36)

which is nothing but the condition of gauge invariance of W (�). ⇤
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Chapter 4

The spiked instanton gauged linear sigma model

4.1 Supersymmetry in a constant B-field background

Consider a constant NSNS B-field background of the form:

2⇡↵0B12 = b1 , 2⇡↵0B34 = b2 , 2⇡↵0B56 = b3 , 2⇡↵0B78 = b4 . (4.1)

This choice of B-field preserves the SO(2)

4 rotational symmetry of the above intersecting

D-brane system. Such a symmetry is essential for eventually considering the generalisation

to the ⌦-background.

We first state our conventions and introduce some notation.

• Introduce the variables va, a 2 4 with

e2⇡iva
=

1 + iba
1� iba

, ba = tan ⇡va , �1

2

< va <
1

2

. (4.2)

The limits va ! ±1
2 correspond to ba ! ±1.

• For each A 2 6, let �A = �

2a�1
�

2a
�

2b�1
�

2b for A = (ab).

• Choose the following representation for the �-matrices. This representation corre-

sponds to a particular choice of the cocycle operators for open string vertex operators
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given in [KLLSW]. See Chapter 2 for more details.

�

1
= �1 ⌦ ⌦ ⌦ ⌦ , �

7
= ��3 ⌦ �3 ⌦ �3 ⌦ �2 ⌦ ,

�

2
= �2 ⌦ ⌦ ⌦ ⌦ , �

8
= �3 ⌦ �3 ⌦ �3 ⌦ �1 ⌦ ,

�

3
= �3 ⌦ �2 ⌦ ⌦ ⌦ , �

9
= �3 ⌦ �3 ⌦ �3 ⌦ �3 ⌦ �1 ,

�

4
= ��3 ⌦ �1 ⌦ ⌦ ⌦ , �

0
= �3 ⌦ �3 ⌦ �3 ⌦ �3 ⌦ (�i�2) ,

�

5
= ��3 ⌦ �3 ⌦ �1 ⌦ ⌦ , �c = �3 ⌦ �3 ⌦ �3 ⌦ �3 ⌦ �3 ,

�

6
= ��3 ⌦ �3 ⌦ �2 ⌦ ⌦ , C� = e3⇡i/4�2 ⌦ �1 ⌦ �2 ⌦ �1 ⌦ �2 . (4.3)

The chirality matrices in C2
A are chosen to be �c(C

2
A) = �A where �A is defined

above and the chirality matrix in R1,1 is �c(R
1,1
) = ��0

�

9.

• The 32C dimensional spinor representation can then be constructed by considering

simultaneous eigenvectors |±,±,±,±,±i of � i

2�
12, � i

2�
34, � i

2�
56, � i

2�
78 and

�1
2�

09, and using the linear combinations �i�1 ± �2, . . . , �i�7 ± �8, �0 ± �9 as

raising and lowering operators respectively. The basis of the representation is

then given by the 32 vectors |±,±,±,±,±i. The left-handed (right-handed) 16C

subspace of �c is then spanned by the subset of the above with even (odd) number

of negative signs.

Next, we study the amount of supersymmetry preserved in the presence of a constant

B-field. In the presence of a constant B-field of the form (4.1), the constraint arising

from the stack of D5A branes becomes

✏̃ = �90RA ✏ , (4.4)

where RA is given by

RA = exp

 

X

a2A
⇡✓a�

2a�1
�

2a

!

, (4.5)

with ✓a := 1
2 � va. Combining this with the constraint ✏̃ = ��90✏ from the D1-branes, we

get

RA ✏ = �✏ for every A 2 6 . (4.6)
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Let r(✓) := exp(i�3⇡✓). Then, we have

R(12) = r(✓1)⌦ r(✓2)⌦ ⌦ ⌦ , R(13) = r(✓1)⌦ ⌦ r(✓3)⌦ ⌦ ,

R(14) = r(✓1)⌦ ⌦ ⌦ r(✓4)⌦ , R(23) = ⌦ r(✓2)⌦ r(✓3)⌦ ⌦ ,

R(24) = ⌦ r(✓2)⌦ ⌦ r(✓4)⌦ , R(34) = ⌦ ⌦ r(✓3)⌦ r(✓4)⌦ . (4.7)

The equations RA✏ = �✏ have a solution if, for some choice of signs,

exp (±i⇡✓a ± i⇡✓b) = �1 with 0  ✓a  1 8 a 2 4 . (4.8)

These equations have solutions corresponding to finite B only when ✓a =
1

2

for all a 2 4

with all plus or all minus signs. This corresponds to va = 0 which is the zero B-field point.

Thus, turning on a finite B-field of the above form does not make the brane configuration

supersymmetric.

Stability

First we observe that supersymmetry is completely lost about the original vacuum for

a non-zero finite value of the constant B-field. Thus, stability is no longer guaranteed.

Secondly, a constant B-field background typically introduces instability in the form of

tachyons in the D-brane spectrum.

In some situations, e. g. the D1-D5 system, the effects of the B-field can be accommo-

dated by turning on a Fayet-Iliopoulos parameter in the low energy effective action. The

tachyon instability leads to the system transitioning to a nearby vacuum at which point

supersymmetry is restored.

We shall see that something similar happens in the spiked scenario as well, with some

differences. To study the stability we need to derive the spectrum of open strings in the

presence of D-branes in a constant B-field background.
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4.2 Spectrum of Dp-Dp0 strings

The boundary conditions for an open string are modified in the presence of a B-field.

Let the worldsheet bosons and fermions along C4 be resp. Za
(�, ⌧) and  ±,a

(�, ⌧), a 2 4.

Neumann boundary conditions along Ca are modified to (cf. Chapter 2):

Mixed (M): @++Z
a
= e�2⇡iva@��Za ,  

a+
= e2⇡iva

 

a� . (4.9)

Neumann and Dirichlet boundary conditions are obtained by setting va = 0 and va ! 1
2

respectively. Sending one of the va’s to �1
2 would give Dirichlet boundary conditions on

an anti D-brane. Consider the more general boundary conditions with �1
2  µ, ⌫  1

2 :

@++Z = e�2⇡i⌫@��Z ,  

+
= e2⇡i⌫

 

� at � = 0 ,

@++Z = e�2⇡iµ@��Z ,  

+
= ±e2⇡iµ

 

� at � = ⇡ , (4.10)

The low-energy spectrum for this system has been worked out in Chapter 2. We summarise

the results here.

1. Non-integer modes: The worldsheet boson Z has moding Z+ ✓ with ✓ = µ� ⌫.

The R sector fermions have the same moding as Z due to rigid supersymmetry on the

worldsheet and the NS sector fermions have moding Z+ ✏ with ✏ = ✓+ 1
2 = µ�⌫+ 1

2 .

2. Excitations: The zero-point energy in the NS sector is given by

E0 =
1

8

� 1

2

�

�|✓|� 1
2

�

� . (4.11)

The first excited state in the NS sector has energy E0 + |✏| or E0 + |1 � ✏| when

�1
2  ✏  1

2 and 1
2 < ✏ < 3

2 respectively.

The zero-point energy in the R sector vanishes due to rigid supersymmetry on the

worldsheet. The first excited state in the R sector has energy |✓| for 0  |✓|  1
2

and 1� |✓| for 1
2  |✓|  1.

3. Spectral flow: When ✏ crosses the integer s from the left (s = 0 or 1), the state
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with energy s � ✏ becomes negative and enters the Dirac sea and the state ✏ � s

crosses into the positive energy region. The raising and lowering roles of the NS

fermion operators ds and d†s are interchanged. Using d†sds = �dsd
†
s + 1, we see that

the number operator changes by one unit Nd ! Nd + 1. This changes the sign of

the parity operator (�)

FNS
:= (�1)

Nd and the GSO projectors 1
2(1 ± (�)

FNS
) are

consequently interchanged. A similar phenomenon occurs in the R sector when ✓

crosses 0.

4.2.1 D1-D1 strings

The open strings satisfy NN boundary conditions along R1,1 and DD boundary conditions

along C4. The worldsheet bosons have momentum zero modes along R1,1 and none along

C4 and hence all the states are supported along R1,1.

NS sector: There are no zero modes for the NS fermions and the NS zero-point

energy is �1
2 . The NS fermion oscillators dµ1

†, µ = 0, 9 and da1
†, a 2 4 raise the energy by

1
2 . The oscillators dµ1

† gives rise to two states which are the components of a gauge field

v±±(x, t) while the four complex oscillators da1
† create four states in the adjoint of U(k)

corresponding to complex scalars Ba(x, t). Assigning the NS vacuum a fermion number

F
NS

= �1, the GSO projection with projector 1
2(1 + (�)

FNS
) projects out the vacuum

while retaining the zero-energy states.

R sector: The R sector has ten zero modes thus giving a real 32 dimensional ground

state transforming in the adjoint of U(k). The fermion parity (�)

FR on the zero modes

is then (�)

FR
= �

1···8
�

90
= �c(R

1,9
). The GSO projection with 1

2(1 + (�)

FR
) gives a

left-handed fermion in 1 + 9 dimensions which splits up into eight right-handed and eight

left-handed fermions in 1 + 1 dimensions.

We decompose the spacetime scalars and fermions into representations of SO(R4
A)⇥

SO(R4
A
) using �c(R

1,9
) = �c(R

1,1
)�c(C

2
A)�c(C

2
A
). Writing each SO(4) as SU(2)⇥ SU(2)

62



with ↵, .↵,↵0, .↵0 denoting the fundamentals of the four SU(2)’s, we have

Scalars : X↵
.
↵ �X↵0.↵0

,

Fermions : �↵↵
0

� � �
.
↵
.
↵0

� � ⇣↵
.
↵0

+ � ⇣↵
0.↵

+ , (4.12)

with reality conditions �↵↵0
� = �"↵�"↵0�0

���
0

� and so on for the fermions.

4.2.2 D1-D5A strings

For a D1-D5A string the boundary conditions are DM for a 2 A and DD for a 2 A.

These boundary conditions imply Z+ va � 1
2 moding for the bosons Za with a 2 A and

Z moding for a 2 A. The R fermions have the same moding as the bosons and the NS

fermions have moding Z+ va for a 2 A and Z+

1
2 for a 2 A. Since the string is orientable,

states from different orientations are distinct and have to be combined together in order

to form a CPT invariant spectrum.

NS sector: Let A = (ab). The NS zero-point energy is given by �1
2(|va| + |vb|).

For va and vb close to zero, the oscillators with lowest positive energy are from the NS

fermions and increase energy by |va| and |vb|. The first four states in the NS sector have

the energies
1

2

(±|va| ± |vb|) or equivalently,
1

2

(±va ± vb) . (4.13)

When either of va and vb crosses zero, the sign of (�)

FNS is flipped (cf. point 3 above). It

is then easy to see that states which have definite values of (�)

FNS are 1
2(±va ± vb) rather

than 1
2(±|va| ± |vb|).

We assign (�)

FNS
= �1 to the state with energy �1

2(va + vb) and choose the GSO

projector to be 1
2(1� (�)

FNS
). The states with energies ±1

2(va � vb) are projected out and

the states that remain are

+

1

2

(va + vb) , �1

2

(va + vb) . (4.14)

These states transform in the (k,nA) of U(k)⇥U(nA). The string with opposite orientation
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furnishes two more states with the same energy and which transform in the (k,nA) of

U(k) ⇥ U(nA). Thus, we get two complex scalars �1 and �2 in the bifundamental of

U(k)⇥ U(nA) with masses given by

m2
= ⌥ 1

2↵0 (va + vb) . (4.15)

In the limit va, vb ! 0, the two states become degenerate. We also have (�)

FNS
= �A =

�c(C
2
A) which implies that the above GSO projection results in a right-handed spinor

�↵ in C2
A. These constitute the two complex scalars of a N = (4, 4) bifundamental

hypermultiplet in R1,1.

R sector: The zero-point energy vanishes in the R sector. There are six zero modes

from fermions along R1,1 ⇥C2
A

which give an eight dimensional ground state consisting

of spinors |↵0,±i and | .↵0,±i where +(�) indicates left(right)-handed spinors in R1,1 and

↵0( .↵0) right(left)-handed spinors in C2
A
. The fermion parity operator (�)

FR is given by

(�)

FR
= �A�

90
= �c(R

1,1
)�c(C

2
A
). The GSO projection with 1

2(1+(�)

FR
) retains the states

that satisfy �c(R
1,1
) = ±1, �c(C

2
A
) = ±1. Together with the states from the oppositely

oriented string, we thus have spinors ⇣↵0�
= �⇣↵0

+ and �
.
↵0+

= �
.
↵0
� . They transform in the

(k,nA) of U(k)⇥U(nA) and constitute the fermionic part of the N = (4, 4) bifundamental

hypermultiplet in R1,1.

4.2.3 D5A-D5A strings

The boundary conditions are MD for a 2 A and DM for a 2 A. These imply the following

modings for the bosons and R fermions:

Z+

1

2

� va for a 2 A and Z+ va �
1

2

for a 2 A . (4.16)

The NS fermions have Z� va and Z+ va moding respectively.
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NS sector: The zero point energy in the NS sector is then

1

2

� 1

2

X

a24

|va| . (4.17)

The lowest excitation energies in the NS sector are |va| for a 2 4. The first few states are

then
1

2

(1± v1 ± v2 ± v3 ± v4) . (4.18)

We assign (�)

FNS
= �1 to the state with energy 1

2(1� (v1+ v2+ v3+ v4)). GSO projection

with 1
2(1 + (�)

FNS
) removes states with an even number of negative signs. The remaining

states are

1

2

[1± (v1 � v2 � v3 � v4)] ,
1

2

[1± (v1 + v2 + v3 � v4)] ,

1

2

[1± (v1 + v2 � v3 + v4)] ,
1

2

[1± (v1 � v2 + v3 + v4)] . (4.19)

For small enough |va|, the above energies are all positive: there is no tachyon or massless

state in the NS sector. There is another copy of these states from the string with opposite

orientation. Together, they form eight massive complex scalars that transform in the

(nA,nA) of U(nA)⇥ U(nA).

R sector: The ground state energy in the R sector is zero as always. The only zero modes

are the ones along R1,1 and we denote them by �0 and �9. We have (�)

FR
= �

90
= �c(R

1,1
).

Assign (�)

FR
= �1 for the ground state |Ri and define

g =

�

9
+ �

0

p
2

, g† =
�

9 � �0

p
2

. (4.20)

Acting on |Ri with g† provides another state of zero energy but with (�)

FR
= +1. The

GSO projection with 1
2(1 + (�)

FR
) retains g†|Ri which is a left-handed fermion. Together

with a similar state from the oppositely oriented string, this fermion transforms in the

bifundamental of U(nA)⇥ U(nA).

For small va, the first two sets of single-oscillator excitations for the worldsheet bosons

and R fermions come from the C4 directions and have energy 1
2 ⌥ va. The GSO projection
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keeps the eight states obtained from the worldsheet bosons acting on g†|Ri and the eight

states from R fermions acting on |Ri. Together with states from the oppositely oriented

string, they form four right- and left-moving fermions with mass-squared 1
2 + va and four

right- and left-moving fermions with mass-squared 1
2 � va.

In the limit va ! 0, the eight right-moving and eight left-moving fermions become

degenerate and the eight right-movers are in fact the superpartners of the scalars from

the NS sector.

4.2.4 D5(ca)-D5(cb) strings

Here C2
(ca) and C2

(cb) share a common Cc. Let the remaining direction be Cd. The

boundary conditions are now MM for Zc, MD for Za, DM for Zb and DD for Zd. The

modings are Z for Zc and Zd, Z+

1
2 � va for Za and Z+ vb � 1

2 for Zb. The R fermions

have the same modings and the NS fermions have the modings shifted by 1
2 . The modings

are the same as for a D1-D5(ab) system. The worldsheet bosons have momentum and

position zero modes along R1,1 ⇥Cc. Hence all the states will be supported on the four

dimensional space R1,1 ⇥Cc.

NS sector: The zero-point energy is �1
2(|va|+ |vb|) and the lowest-lying excitation

energies are |va| and |vb|. Thus, the lowest energy states are 1
2(±va ± vb). We assign

(�)

FNS
= �1 to the state �1

2(va + vb) and perform GSO projection with 1
2(1� (�)

FNS
) to

get the states

�1

2

(va + vb) ,
1

2

(va + vb) . (4.21)

After including states from the oppositely oriented string, these give two complex scalars

�1, �2 which transform as (n(ca),n(cb)) with masses m2
= ± 1

2↵0 (va + vb). In the limit

va, vb ! 0, the two scalars are massless and combine into a right-handed spinor in C2
(ab)

since (�)

FNS
= �c(C

2
(ab)). These constitute the bosonic part of a N = 2 hypermultiplet in

R1,1 ⇥Cc.

R sector: The worldsheet fermions along R1,1 ⇥ C2
(cd) are integer moded, giving six

zero modes and an eight dimensional ground state. The fermion parity operator is given
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by (�)

FR
= �c(C

2
(cd))�

90
= �c(R

1,1 ⇥ Cc)�c(Cd) where �c(R
1,1 ⇥ Cc) = i�2c�1

�

2c
�

9
�

0

and �c(Cd) = �i�2d�1
�

2d. We use the GSO projector 1
2(1 + (�)

FR
) to get a left-handed

fermion � and a right-handed fermion ⇣ in R1,1 ⇥ Cc with �c(Cd) = ±1 respectively.

These constitute the fermionic part of a N = 2 hypermultiplet.

4.3 Crossed instantons

We first consider the simpler configuration of crossed instantons : k D1-branes along R1,1,

n D5-branes along R1,1 ⇥C2
(12) and n0 D5-branes along R1,1 ⇥C2

(34). This setup preserves

four supercharges organised into N = (0, 4) supersymmetry on the two dimensional

intersection R1,1. This setup has been studied in the context of AdS3 holography by

[To, GMMS] and others. Another place where N = (0, 4) supersymmetry appears is the

ADHM sigma model [W3] which has a stringy realisation as a D1-D5-D9 brane system

[D2]. More recently, the authors in [PSY] explore a class of N = (0, 4) superconformal

theories obtained by compactifying M5-branes on four-manifolds of the form P1⇥C where

C is a Riemann surface with punctures.

We are interested in studying the bound states of D1-branes with the crossed D5-

branes above with the constant B-field background in (4.1). As we have seen in the

previous section, there are generically tachyons in the spectrum and supersymmetry is

broken. We are interested in the end point of tachyon condensation [Sen1, A, GS] and the

all-important question: is supersymmetry restored at the end point of the condensation?

We shall find that for a particular locus in the space of B-fields, the supersymmetry

breaking can be described by a Fayet-Iliopoulos term in the low-energy theory. For

small values of B-field, we can then study the condensation of the tachyons in the

low-energy effective theory. The relevant low-energy degrees of freedom are those of a

supersymmetric U(k) gauge theory interacting with various matter multiplets supported

on R1,1. In particular, we freeze the supersymmetric gauge degrees of freedom supported

on the D5-branes to their classical vacuum expectation values.

Note: The above D5-brane system without the D1-branes has been studied in great detail
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by many authors, notably by [IKS]. There are chiral fermions (the field � below) in the

1 + 1 dimensional intersection arising from the strings stretching between the two stacks

of D5-branes. The chiral fermions render the gauge theories on the intersection anomalous

and the degrees of freedom in the bulk of the D5-branes are necessary to cancel these

anomalies via the anomaly inflow mechanism. Since we have frozen these gauge degrees

of freedom, these issues are not immediately relevant to our analysis below. In our case,

the low-energy theory on the intersection has U(n)⇥ U(n0
) as rigid symmetries.

The spacetime Lorentz group SO(1, 9) is broken down to SO(1, 1)⇥SO(4)⇥SO(4)

0. The

low energy theory on R1,1 has the internal rigid symmetry group SO(4)⇥SO(4)

0⇥U(n)⇥
U(n0

). It will be useful to write SO(4)⇥ SO(4)

0
= SU(2)L ⇥ SU(2)R ⇥ SU(2)

0
L ⇥ SU(2)

0
R

with the indices (

.
↵,↵,

.
↵0,↵0

) denoting the fundamental representations of the respective

SU(2)s. The sixteen components of the left-handed spinor ✏ can be written in terms of

spinors which have definite chirality under each of SO(1, 1), SO(4) and SO(4)

0 as follows:

✏ = ⌘↵↵
0

L
� ⌘↵

.
↵0

R
� ⌘

.
↵↵0

R
� ⌘

.
↵
.
↵0

L
. (4.22)

The subscripts indicate chirality in 1+1 dimensions. We see that the product of the three

chiralities is +1 which agrees with ✏ being left-handed in 9 + 1 dimensions. There must

also be a reality condition on each of the ⌘’s that arises from the Majorana condition

on ✏. Since the fundamental representation of SU(2) is pseudoreal, the ⌘’s are in a real

representation of the corresponding SU(2)⇥ SU(2). In other words, we have

⌘↵↵
0

R
= �"↵�"↵0�0

⌘��
0

R
and so on. (4.23)

(To check this, write ⌘↵↵0
= ⌘m(�

m
)

↵↵0 for some dummy real 4-vector ⌘m with �m
=

(�1, �2, �3, i ) , "12 = "1
020

= +1 and "↵�"�� = ��↵�, "
.
↵
.
�".

�
.
�
= ��

.
↵.
�.)

The constraints on ✏ due to the above configuration of branes are �1234✏ = �✏ and

�

5678✏ = �✏ which means ✏ has to be right-handed in both C2
(12) and C2

(34) and hence

left-handed in R1,1. Thus, there are four real left-handed supersymmetry parameters

⌘↵↵
0

L
corresponding to supersymmetry in the left-moving sector: we have N = (0, 4)

supersymmetry in the 1 + 1 dimensional intersection R1,1. The R-symmetry of the
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N = (0, 4) supersymmetry algebra is SU(2)R⇥SU(2)

0
R and the parameters ⌘↵↵0

L
transform

as a bispinor under this R-symmetry. We denote ⌘↵↵0

L
as ⌘↵↵0+ or equivalently ⌘↵↵0

� in the

sequel.

4.3.1 Low-energy spectrum and N = (0, 2) decomposition

We write the low-energy action in N = (0, 2) superspace by choosing a particular

N = (0, 2) subalgebra of the N = (0, 4) supersymmetry algebra. See Chapter 3 for a

description of N = (0, 2) superspace.

We choose the N = (0, 2) subalgebra generated by ⌘110+ := ⌘+ and �⌘220+ = ⌘110+ = ⌘+

(this will be the subalgebra preserved by the spiked instanton configuration). The

supercoordinates are ✓+ and ✓+. The R-symmetry U(1)` of the left-moving supersymmetry

is generated by F` := FL + FR + F 0
L + F 0

R = F34 + F78 where FL =

1
2(�F12 + F34),

FR =

1
2(F12 + F34), F 0

L =

1
2(�F56 + F78) and F 0

R =

1
2(F56 + F78). In our conventions,

⌘+ = ⌘11
0+ has charges F12 = F56 =

1
2 and F34 = F78 =

1
2 giving FR = F 0

R = +1/2 and

FL = F 0
L = 0 and hence a charge of +1 under U(1)`. The N = (0, 2) content of the

various multiplets from Dp-Dp0 strings are summarised in Table 4.1. The various fields

are displayed with indices that indicate their SO(4)⇥ SO(4)

0 representations.

Note: In order to avoid too many indices on the fields, the scalar component of a chiral

multiplet � will be denoted by the same letter and the right-handed spin-12 component by

⇣� in the sequel. Also, the left-handed spin-12 component of a Fermi superfield ⇤a will be

denoted as �a where a is an index that runs over all Fermi superfields in the theory. For

example, the chiral multiplet eJ in Table 4.1b has components e� 20† and e⇣ 1
+
† which will be

alternatively referred to as eJ and ⇣ eJ respectively. The left-moving fermionic component

Fermi superfield ⇤ eJ will be denoted as � eJ .

4.3.2 Tachyons and Fayet-Iliopoulos terms

We are interested in generalising the above setup to one with a constant B-field of the

form (4.1). We have seen in the analysis of the open string spectrum that there are
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Table 4.1: Various N = (0, 2) multiplets for the crossed instanton system.

(a) D1-D1 strings

(0, 4) multiplet Fields (0, 2) multiplets

Vector v�� ; �

↵↵0
� Vector V = (v�� ; �110� ), Fermi ⇤2 = (�120� )

Standard hyper X

↵
.
↵ ; ⇣

↵0.↵
+ ChiralB1 = (X1

.
1 ; ⇣2

0.1
+ ), ChiralB2 = (X1

.
2 ; ⇣2

0.2
+ )

Twisted hyper X

↵0.↵0
; ⇣

↵
.
↵0

+ ChiralB3 = (X10
.
10 ; ⇣2

.
10

+ ), ChiralB4 = (X10
.
20 ; ⇣2

.
20

+ )

Fermi �

.
↵
.
↵0

� Fermi ⇤3 = (�
.
1
.
10� ), Fermi ⇤4 = (�

.
1
.
20� )

(b) D1-D5(12) strings
I, ⇤I transform in the (k,n) of U(k)⇥ U(n) while J , ⇤J transform in the (k,n).

(0, 4) multiplet Fields (0, 2) multiplets

Standard hyper �

↵ ; ⇣

↵0
+ Chiral I = (�1 ; ⇣2

0
+ ), Chiral J = (�2† ; ⇣10+ †)

Fermi �

.
↵0
� Fermi ⇤I = (�

.
20�) , Fermi ⇤J = (�

.
10�†)

(c) D1-D5(34) strings
e

I,

e⇤I transform in the (k,n0) of U(k)⇥ U(n0) while

e

J ,

e⇤J transforms in the (k,n0).

(0, 4) multiplet Fields (0, 2) multiplets

Twisted hyper

e

�

↵0
; e⇣ ↵+ Chiral

e

I = (e� 10 ; e⇣ 2
+), Chiral

e

J = (e� 20† ; e⇣ 1
+
†)

Fermi

e

�

.
↵� Fermi

e⇤I = (�
.
2�) , Fermi

e⇤J = (�
.
1�†)

(d) D5(12)-D5(34) strings
⇤ transforms in the (n,n0) of U(n)⇥ U(n0).

(0, 4) multiplet Fields (0, 2) multiplets

Fermi �� Fermi ⇤ = (��)
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tachyons of mass-squared

� 1

2↵0 |v1 + v2| , � 1

2↵0 |v3 + v4| , (4.24)

in the D1-D5 and D1-D50 spectra. In our conventions these correspond to the fields I, eI

for (v1 + v2), (v3 + v4) > 0 and J , eJ for (v1 + v2), (v3 + v4) < 0. The system is no longer

supersymmetric about the original vacuum (where all the vacuum expectation values

are set to zero) due to the presence of tachyons. Can this supersymmetry breaking be

interpreted as an F -term or D-term breaking?

Let us study the simpler problem k D1-branes along R1,1 and n D5-branes along

R1,1 ⇥ C2
A. The low-energy effective action for the D5-branes contains the following

coupling to the (pullback of the) 2-form RR gauge field C2:

e5
2

Z

R1,1⇥C2
A

C2 ^ Trn (F ^ F) , (4.25)

where F := 2⇡↵0
(F �B) with F the U(n) field strength on the stack of D5-branes and B

the (pullback of the) NSNS B-field. The charge quantum e5 is given by

e5 =
1

gs
p
↵0

(2⇡
p
↵0

)

5
. (4.26)

We know that instantons of charge k in the U(n) gauge theory on the D5-branes induce

D1-brane charge e1k on the worldvolume. A constant B-field along C2
A does a similar job

and induces a D1-brane charge density

J1 =
ne1
8⇡2

B ^B =

ne1
8⇡2

babb
(2⇡↵0

)

2
dVol(C2

A) , (4.27)

The instability is qualitatively different for different ranges of the B-field values [SW3].

Let C2
A have the standard orientation. When va and vb have opposite signs, J1 is negative

and corresponds to induced D1-branes. For va+vb 6= 0, tachyon condensation corresponds

to the external D1-brane dissolving into the D5-brane and forming a bound state with the

induced D1-branes (the Higgs branch of the D1-D5 system). The point with va = �vb 6= 0

corresponds to a anti self-dual B-field in which case the tachyon disappears and the D1-D5
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system forms a bound state at threshold.

When va and vb have the same sign, the charge density is negative and corresponds

to induced D1-branes. The tachyon in the NS sector then corresponds to the standard

D1-D1 tachyon. The condensation of this tachyon results in the annihilation of part of

the D1 charge density and results in an excited state of the D5-brane with excitation

energy proportional to the tachyon mass m2
= � 1

2↵0 |va + vb|.

In either of these scenarios, one can describe these tachyon masses as arising from FI

terms in the low energy effective action, at least for small values of va + vb.

In the present situation of crossed instantons, Fayet-Iliopoulos terms arise as vacuum

expectation values of auxiliary fields in the adjoint representation of U(k). We have

one real auxiliary field D and one complex auxiliary field G2 in the N = (0, 4) vector

multiplet, two complex auxiliary fields G3 and G4 from the N = (0, 4) Fermi multiplets

⇤3 and ⇤4. The FI terms then correspond to the following J-terms in the N = (0, 2)

action:

S
FI

= � 1p
2

Im
Z

d2xD+Tr
n

�
p
2tF� + b2⇤2 + b3⇤3 + b4⇤4

o

,

=

Z

d2xTr
⇢

✓

2⇡
v01 + rD + Re(b2G2 + b3G3 + b4G4)

�

. (4.28)

t =
✓

2⇡
+ ir is the complexified Fayet-Iliopoulos parameter where ✓ is the two dimensional

✓-angle and r is the real FI parameter. The components of the field strength Fermi

multiplet F� are given by

�11
0

� := �(F�)||| , D + iv01 := (r+F�)||| . (4.29)

From the SO(4)⇥ SO(4)

0 properties of the Fermi multiplets in table 4.1a, it is easy to see

that all FI terms except r break the SO(2)

4 rotational symmetry that is preserved by the

B-field in (4.1). Hence, only a non-zero r could possibly account for the effect of such a
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B-field. The terms in the action involving D are

Trk

 

1

2g2
D2 �

X

a24

[Ba, B
†
a]D � IDI† + J†DJ � eIDeI† + eJ†D eJ + rD

!

, (4.30)

which gives the field equation

1

g2
D =

X

a24

[Ba, B
†
a] + II† � J†J +

eI eI† � eJ†
eJ � r · k . (4.31)

The contribution to the Lagrangian from the D-terms is � 1
2g2TrkD2 where D substituted

with its field equation. There are various quartic interaction terms along with the following

mass terms for I, eI, J and eJ :

�g2

2

Trk
⇣

�rII† � reI eI† + rJ†J + r eJ†
eJ
⌘

. (4.32)

As we can see, the mass-squared of I and eI are equal to �g2

2 r and those of J and eJ are

equal to +

g2

2 r. Comparing this with (4.24), we see that the B-fields must be related to

each other and to r as

v1 + v2 = v3 + v4 =
gs
2⇡

r . (4.33)

Here, we have used that the coupling constant g2 is given in terms of ↵0 and the closed

string coupling gs as g2 = gs/2⇡↵
0. Thus, for the low-energy effective action to be

supersymmetric, the constant B-field must satisfy

v1 + v2 = v3 + v4 . (4.34)

We restrict our attention to constant B-field backgrounds satisfying the above constraint.

B-field backgrounds which do not satisfy the above constraint do not allow for a consistent

low-energy limit where the gauge modes of the D5 branes are frozen. Since our requirement

is to have a non-zero FI term r and the above constrained values do give such a term, we

shall not pursue this more general case further. It would be interesting to understand how

the decoupling of the D5-D5 modes actually takes place in the limit v1 + v2 = v3 + v4.
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4.3.3 Yukawa couplings

So far, we have determined the minimally coupled kinetic terms and the masses coming

from D-term interactions in the low energy effective theory. The remaining terms

describing the dynamics are the E-terms and J-terms for the various Fermi multiplets. A

simple way to obtain these is to look at the Yukawa couplings in the theory. Recall from

Chapter 3 that Yukawa terms for a Fermi superfield  are of the general form

E = + a
�
@Ea

@�j
⇣j+ , and J  

= �@J
a

@�j
⇣j+  a� . (4.35)

We obtain these terms in the low-energy effective action by computing 3-point string

amplitudes on the disk. The idea is to look for non-zero amplitudes that involve only

fields in the chiral multiplets but not their complex conjugates i.e. the fields in the chiral

multiplets displayed in Table 4.1.

A general open string vertex operator in a constant B-field background has the form

V�(k, z) = !(�) c(z)B(z) e�·H(z) e2ik·X(z)c� . (4.36)

Here, � is a weight in the covariant lattice D2 �D2 � �1,1 corresponding to the spacetime

symmetry SO(1, 1)⇥SO(4)⇥SO(4

0
) and c� is the associated cocycle operator. B(z) is the

appropriate product of boundary condition changing operators for the worldsheet bosons.

The weights for the various fields and the boundary condition changing operators for the

worldsheet bosons have been derived in Chapter 2 and summarised in Tables 4.2 and 4.3.

The rest of the notation is quite standard: c(z) is the coordinate ghost, H(z) is a

6-dimensional vector containing the five bosons that bosonise the ten worldsheet fermions

and the sixth boson being the one that bosonises the superconformal ghosts, k = (k0, k9
)

is the 1 + 1 dimensional momentum and X = (X0, X9
) are the worldsheet bosons

corresponding to the 1 + 1 dimensional intersection. !(�) is an a priori undetermined

c-number phase.

The general structure of a 3-pt function with open string vertex operators in the
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Table 4.2: Covariant weights for the vertex operators arising from D1-D1 strings. In our
conventions, a right-handed spinor  ↵ of SO(4) is specified by the weights
 ↵=1

= (+,+),  ↵=2
= (�,�) and a left-handed spinor  

.
↵ by  

.
↵=1

= (+,�),
 
.
↵=2

= (�,+).

State Field U(1)` D2 �D2 � �1,1 weight

D1-D1 vector v±± 0 0, 0, 0, 0, ⌥1;�1

D1-D1 scalars X

1
.
1
, B1 0 1, 0, 0, 0, 0;�1

X

1
.
2
, B2 1 0, 1, 0, 0, 0;�1

X

10
.
10

, B3 0 0, 0, 1, 0, 0;�1

X

10
.
20

, B4 1 0, 0, 0, 1, 0;�1

D1-D1 gauginos �

110� , f 1 +, +, +, +, +;�
�

120� , �2 0 +, +, �, �, +;�
�

.
1
.
10� , �3 �1 +, �, +, �, +;�

�

.
1
.
20� , �4 0 +, �, �, +, +;�

⇣

.
120
+ , ⇣1 �1 +, �, �, �, �;�
⇣

.
220
+ , ⇣2 0 �, +, �, �, �;�
⇣

2
.
10

+ , ⇣3 �1 �, �, +, �, �;�
⇣

2
.
20

+ , ⇣4 0 �, �, �, +, �;�

Table 4.3: Covariant weights for D1-D5(12), D1-D5(34) and D5(12)-D5(34) strings.

State Field U(1)` D2 �D2 � �1,1 weight

D1-D5(12) bosons �

1
, I

1
2 � v2 �v1 +

1
2 , �v2 +

1
2 , 0, 0, 0;�1

�

2†
, J

1
2 + v2 +v1 +

1
2 , +v2 +

1
2 , 0, 0, 0;�1

D1-D5(12) fermions ⇣

10
+

†
, ⇣J �1

2 + v2 +v1, +v2, �, �, �;�
⇣

20
+ , ⇣I �1

2 � v2 �v1, �v2, �, �, �;�
�

.
10�†

, �J
1
2 + v2 +v1, +v2, �, +, +;�

�

.
20�, �I

1
2 � v2 �v1, �v2, �, +, +;�

D1-D5(34) bosons

e

�

10
,

e

I

1
2 � v4 0, 0, �v3 +

1
2 , �v4 +

1
2 , 0;�1

e

�

20†
,

e

J

1
2 + v4 0, 0, +v3 +

1
2 , +v4 +

1
2 , 0;�1

D1-D5(34) fermions

e

⇣

1
+
†
,

e

⇣J �1
2 + v4 �, �, +v3, +v4, �;�

e

⇣

2
+,

e

⇣I �1
2 � v4 �, �, �v3, �v4, �;�

e

�

.
1�†

,

e

�J
1
2 + v4 �, +, +v3, +v4, +;�

e

�

.
2�,

e

�I
1
2 � v4 �, +, �v3, �v4, +;�

D5(12)-D5(34) fermions ��, � v2 � v4 +v1, +v2, �v3, �v4, +;�
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canonical ghost picture is given by

hV�1(k1, x1)V�2(k2, x2)V�3(k3, x3)i = !(�1)!(�2)!(�3) hB1(x1)B2(x2)B3(x3)i⇥

⇥ he�1·H(x1)c�1 e�2·H(x2)c�2 e�3·H(x3)c�3i

⇥ hc(x1)c(x2)c(x3)i heik1·X
(x1)eik2·X

(x2)eik3·X
(x3)i

= !(�1)!(�2)!(�3)⇥ hB1(x1)B2(x2)B3(x3)i⇥

⇥
Y

i<j

ei⇡�i·M ·�j
(xi � xj)

1+�i·�j+2↵0ki·kj . (4.37)

A few comments are in order:

1. The phase prefactor
Q

i<j ei⇡�i·M ·�j in the last expression is due to the cocycle

operators c�i commuting across the vertex operators e�j ·H . Here, M is a 6⇥6 matrix

whose form is given in Chapter 2. These phases are crucial for obtaining the correct

low-energy Yukawa couplings.

2. For the case of crossed instantons, all the E-terms and J-terms turn out to be

quadratic in the superfields. Looking at (4.35), it is easy to see that there will be

two different amplitudes that arise from the same E- or J-term. We get relations

between the phases !(�) by equating the coefficients of these two amplitudes.

3. The correlators are non-zero only when the spacetime momenta add up to zero, the

D2�D2��1,1 weights add up to (0, 0, 0, 0, 0;�2) with the first five entries signifying

SO(4)⇥SO(4)

0⇥SO(1, 1) invariance and the �2 indicating that the superconformal

anomaly on the disk is soaked up.

4. When the correlators are non-zero, it can be shown that the different contributions

to the exponent of xi � xj coming from the coordinate ghosts, the BCC operators

for the worldsheet bosons, the vertex operators for the worldsheet fermions and

the vertex operators for the R1,1 directions all add up to zero. This shows that

the correlator is independent of the points of insertion of the vertex operators as it

should be due to SL(2,R) invariance.

After choosing suitable values for the phases [NP], the E-term and J-term Yukawa
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couplings for the various Fermi multiplets are as follows:

J⇤2
= [B3, B4] +

eI eJ , E⇤2 = [B1, B2] + IJ ,

J⇤3
= [B2, B4] , E⇤3 = �[B1, B3] , J⇤4

= [B2, B3] , E⇤4 = [B1, B4] ,

J⇤J
= B3I , E⇤J = JB4 , J⇤I

= �JB3 , E⇤I = B4I ,

J
e⇤J

= �B1
eI , Ee⇤J

= � eJB2 , J
e⇤I

=

eJB1 , Ee⇤I
= �B2

eI ,

J⇤ =

eJI , E⇤ = �J eI . (4.38)

The identity Trk J · E = 0:

We have

Trk
�

([B3, B4] +
eI eJ)([B1, B2] + IJ)� [B2, B4][B1, B3] + [B2, B3][B1, B4]+

+B3IJB4 � B4IJB3 +B1
eI eJB2 � B2

eI eJB1 � IJ eI eJ
 

= 0 . (4.39)

Thus, Trk J · E = 0 is indeed satisfied and the low-energy effective action is indeed

N = (0, 2) supersymmetric. The action is also covariant with respect to the diagonal

SU(2) subgroup of SU(2)R⇥SU(2)

0
R R-symmetry due to the presence of the D5-D50 fermis

which mix standard and twisted hypermultiplets. Thus, it is N = (0, 4) supersymmetric

as well. This is the same result that is obtained in [To] for the case of zero B-field.

4.3.4 The crossed instanton moduli space

The bosonic potential energy U is

U =

g2

2

TrD2
+

X

a

|Ea|2 +
X

a

|Ja|2 , (4.40)

with the auxiliary field D substituted with its field equation in (4.31). The minima of

the potential can be obtained by solving the equations D = 0, Ea = 0 and Ja
= 0. We

relabel I, J ! I12, J12 and eI, eJ ! I34, J34 in anticipation of the spiked instanton case.

The vacuum moduli space is then defined by the following equations upto a U(k) gauge
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transformation:

D-term: (4.41)

µR � r · k =

4
X

a=1

[Ba, B
†
a] + I12I

†
12 � J†

12J12 + I34I
†
34 � J†

34J34 � r · k = 0 .

J-terms: (4.42)

µC
34 = [B3, B4] + I34J34 = 0 , µC

24 = [B2, B4] = 0 , µC
23 = [B2, B3] = 0 ,

�C
3,12 = B3I12 = 0 , �̃C

3,12 = �J12B3 = 0 , �C
1,34 = �B1I34 = 0 ,

�̃C
1,34 = J34B1 = 0 , ⌥

C
12 = J34I12 = 0 .

E-terms: (4.43)

µC
12 = [B1, B2] + I12J12 = 0 , µC

13 = �[B1, B3] = 0 , µC
14 = [B1, B4] = 0 ,

�C
4,12 = B4I12 = 0 , �̃C

4,12 = J12B4 = 0 , �C
2,34 = �B2I34 = 0 ,

�̃C
2,34 = �J34B2 = 0 , ⌥

C
34 = �J12I34 = 0 .

Symmetries

Note that the above equations are invariant under U(k)⇥ U(n)⇥ U(n0
) transformations.

The crossed instanton moduli space is then defined by the solutions of the above equations

modulo U(k) gauge transformations. The group P (U(n)⇥ U(n0
))

⇠
=

U(n)⇥U(n0)
U(1)c

, where

U(1)c is the common centre of U(n)⇥ U(n0
), remains a global symmetry on the moduli

space. These are the framing rotations described in [N4].

There are additional symmetries from the SU(2)L⇥SU(2)R⇥SU(2)

0
L⇥SU(2)

0
R arising

from rotations of the transverse R8. To see how many of these symmetries are preserved

by the vacuum moduli space, we first form real combinations of the holomorphic equations
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above:

sA := µC
A + "AA

�

µC
A

�†
= 0 , for A 2 6 ,

�aA := �C
aA + "abA

�

�̃C
bA

�†
= 0 , for A 2 6 , a 2 A ,

⌥A := ⌥

C
A � "AA

�

⌥

C
A

�†
= 0 for A 2 6 . (4.44)

Using the SO(4)⇥ SO(4)

0 transformation properties of the fields in Table 4.1 it is easy to

see that the equations with r = 0 preserve a diagonal subgroup SU(2)� of the R-symmetry

SU(2)R⇥SU(2)

0
R. The equations µR, s12 and s34 form a triplet and the other real equations

are invariant under SU(2)�.

For r 6= 0, the subgroup SU(2)� is broken down to its maximal torus U(1)� which is

the R-symmetry U(1)` of the N = (0, 2) subalgebra that was chosen above. The factors

SU(2)L ⇥ SU(2)

0
L survive as spectator symmetries. Hence, the total global symmetry on

the crossed instanton moduli space is

P (U(n)⇥ U(n0
))⇥ SU(2)L ⇥ SU(2)

0
L ⇥ U(1)� . (4.45)

Note: The vacuum moduli space for r = 0 splits up into many distinct branches

corresponding to the Coulomb branch, the two Higgs branches (with the D1’s binding

to either of the D5-branes) and mixed branches [To]. Once a non-zero r is introduced,

the D1-branes bind necessarily to some stack of D5-branes and the moduli space becomes

connected. Turning on r also has the effect of reducing the global symmetries as we saw

above. It would be interesting to repeat the R-charge analysis of [To] in this case.

4.4 Spiked instantons

Consider the crossed instanton setup of D1-D5(12)-D5(34) branes. Let us choose the B-field

such that v1v2 � 0 and v3v4 � 0. This ensures that the tachyons are of D1-D1 type. In

this region of the space of B-fields, the tachyon mass can never be zero unless the v’s are

zero.
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Let us introduce a stack of D5(23)-branes to the mix. In order to realise a symmetric

situation where the instability here is also of D1-D1 type, we need v2v3 � 0. This implies

that v1v3 � 0 and v2v4 � 0. Suppose we next add the two stacks of five branes along

R1,1 ⇥C2
(13) and R1,1 ⇥C2

(13). The constraints v1v3 � 0 and v2v4 � 0 and the requirement

that the tachyons should be D1-D1 tachyons automatically force these stacks to be made

of D5-branes. We thus have the following six stacks of D5-branes:

D5(12) , D5(34) , D5(23) , D5(14) , D5(13) , D5(24) . (4.46)

This is the same configuration of six stacks of D5-branes which preserves two supercharges

when the B-field is dialled to zero. One may again enquire as to whether an FI term in

the low-energy effective action can accommodate the effect of the constant B-field of the

form (4.1). The m2 of the tachyons for the various D1-D5 strings can be read off from

the derivation of the open string spectrum in Section 4.2:

� 1

2↵0 |v1 + v2| , � 1

2↵0 |v3 + v4| , � 1

2↵0 |v2 + v3| ,

� 1

2↵0 |v1 + v4| , � 1

2↵0 |v1 + v3| , � 1

2↵0 |v2 + v4| . (4.47)

Repeating the analysis in the crossed case, we see that the field equation for the auxiliary

field D becomes

D =

X

a24

[Ba, B
†
a] +

X

A26

(IAI
†
A � J†

AJA)� r · k . (4.48)

giving rise to the same mass-squared �|r| to all the tachyons. Thus, the B-field values

must satisfy

v1 = v2 = v3 = v4 , (4.49)

in order to be accounted for by the real FI parameter in the low-energy theory.

The presence of the extra four stacks of D5-branes gives rise to additional terms in

the E-terms and J-terms for the Fermi multiplets ⇤3 and ⇤4. There are also additional

Fermi multiplets from the open strings stretching between D1-branes and these stacks
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of D5-branes. Repeating the disk amplitude calculation as above, one get the following

equations:

1. The real moment map:

µR � r · k :=

X

a24

[Ba, B
†
a] +

X

A26

(IAI
†
A � J†

AJA)� r · k = 0 . (4.50)

2. For A = (ab) 2 6 with a < b,

µC
A := [Ba, Bb] + IAJA = 0 . (4.51)

3. For A 2 6, A = 4 r A and a 2 A,

�C
aA := BaIA = 0 , �̃C

aA := JABa = 0 . (4.52)

4. For A 2 6, A = 4 r A,

⌥

C
A := JAIA = 0 . (4.53)

Symmetries

The symmetries of the above equations can be obtained in a similar way to the crossed

instanton case. The total global symmetry is given by

P

 

⇥
A26

U(nA)

!

⇥ U(1)

3 , (4.54)

where U(1)

3 is a maximal torus of SU(4), the isometry group of the transverse C4 which

preserves some fraction of supersymmetry.

4.4.1 Folded branes

The above equations arise from considering D1-D1 strings, D1-D5A strings and D5A-D5A
strings. There are also additional equations that result from the interaction of D1-branes

with states from open strings stretching between D5A and D5B with A = (ac) and B = (bc)
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i.e. two stacks of D5-branes that have a line Cc in common. This is the setup of folded

branes. Once we throw in D1-branes, the classical moduli space of vacua is called the

moduli space of folded instantons.

The open string spectrum for this case was analysed in Section 2 and there we saw that

there were tachyons in the NS sector with m2
= �1

2 |va + vb|. Thus, for the configuration

of branes in (4.46) it is easy to see that the spectrum of tachyon masses is precisely the

same as in (4.47). With the constraint in (4.49), all tachyons have the same m2 which is

equal to � 1
↵0 |v1|.

All the states arising from such strings are supported over the four dimensional

subspace R1,1 ⇥ Cc with a constant B-field tan ⇡vc along Cc which makes the space

non-commutative. It has been conjectured in [N3, N4] that the interaction of these states

with the states supported on R1,1 gives rise to an additional (infinite) set of equations of

the form

⌥A,B,j = JA(Bc)
nIB = 0 , for n = 1, 2, . . . (4.55)

In this section, we derive the above equations by considering n+3-point amplitudes of the

Yukawa type ⇣+��f(�) where f is a polynomial in the scalars. Below, we consider the case

c = 2, A = (12) and B = (23). The other equations follow from similar considerations.

We use the following setup of D-branes: k D1-branes along R1,1, n D5-branes along

R1,1 ⇥C2
(12) and n0 D5-branes along R1,1 ⇥C2

(23). The spacetime isometry SO(1, 9) is now

broken down to SO(1, 1) ⇥ SO(2)

4. The constraints on ✏ are �1234✏ = ✏ and �3456✏ = ✏

which preserve the following spinors:

Right-handed in R1,1
: ⌘� $ |+,�,+,+,�i , ⌘� $ |�,+,�,�,�i ,

Left-handed in R1,1
: ⌘+ $ |+,+,+,+,+i , ⌘+ $ |�,�,�,�,+i . (4.56)

The last entry in the above spinors corresponds to their chirality in the 1 + 1 dimensional

intersection. Left(right)-handed spinors generate left(right)-moving supersymmetry. Thus,

we have N = (2, 2) supersymmetry on R1,1. The R-symmetry group U(1)` ⇥ U(1)r is an

appropriate subgroup of the internal symmetry U(1)

4. We choose the generators F`,r to
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be

F` = F34 + F78 , Fr = F34 � F78 , (4.57)

where F34 and F78 are the generators of U(1)34 and U(1)78 respectively. The choice of

left-moving R-charge F` matches that of the (0, 2) subalgebra in the crossed instanton

case. In the spinor representation, we have

F34 = � i
2

�

34
= ⌦ �3

2

⌦ ⌦ ⌦ ,

F78 = � i
2

�

78
= ⌦ ⌦ ⌦ �3

2

⌦ . (4.58)

This gives Fr[✓
�
] = +1, Fr[✓

�
] = �1, F`[✓+] = +1, F`[✓+] = �1 and F`[right-movers] =

Fr[left-movers] = 0.

Low energy spectrum

The new types of strings are D1-D5(23) strings and D5(12)-D5(23) strings.

D1-D5(23) strings: These give rise to a N = (4, 4) hypermultiplet transforming in

(k,n0
) of U(k) ⇥ U(n0

) when the B-field is zero. The two complex scalars (J 0†, eI 0) of

the hypermultiplet transform as a right-handed spinor in C2
(23) i.e. J 0† and I 0 satisfy

F34 = F56 = ⌥1
2 respectively. This gives F` = ⌥1

2 respectively. When the constant B-field

is turned on, the scalars I 0, J 0 obtain masses

↵0m2
= ⌥1

2

(v2 + v3) . (4.59)

The right-handed fermions (⇣†J 0 , ⇣I0) transform as a right-handed spinor in C2
(14) with

F12 = F78 = ±1
2 and R-charge F` = ±1

2 . The left-handed fermions (�†J 0 ,�I0) transform

as a left-handed spinor in C2
(14) with F12 = �F78 = ⌥1

2 and F` = ⌥1
2 for e�†J and e�I

respectively.

Thus, we have two chiral multiplets (I 0, J 0
) and two Fermi multiplets (⇤I0 ,⇤J 0

) which

transform in the (k,n0
) and (k,n0

) respectively with all multiplets carrying a left-moving

R-charge of +1
2 .
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D5(12)-D5(23) strings: These strings give a N = 2 hypermultiplet that is supported

along the four dimensional intersection R1,1 ⇥Ca=2. We have two scalars (�1, �2
) with

masses

↵0m2
= ±1

2

(v1 + v3) . (4.60)

For v1 = v3 = 0, these transform as a right-handed spinor in C2
(13). There is a left-handed

fermion ⇠↵ which also satisfies �i�78
= 1 and a right-handed fermion ˜⇠

.
↵ which satisfies

�i�78 = �1 where ↵ and .
↵ are spinor indices in R1,1 ⇥Ca=2. These have zero mass. We

give alternate names S = �1, T = �2†, ⇣S =

˜⇠
.
1, ⇣T = ⇠2†, �S = ⇠1 and �T =

˜⇠
.
2†. The

fields S, ⇣S and �S are in the n ⇥ n0 of U(n) ⇥ U(n0
) whereas T , ⇣T and �T are in the

n⇥ n0.

Next, we dimensionally reduce the above states to R1,1. The constant B-field makes

the worldsheet bosonic zero modes z2, z2 non-commutative:

[z2, z2] = #2 = ⇡↵0
sin 2⇡v2 , [z2, p2] = [z2, p2] = i cos2 ⇡v2 , [p2, p2] = 0 . (4.61)

Let the normalised modes be

ẑ2 =
z2p
#2

, ẑ†2 =
z2p
#2

, p̂2 =

p
#2

cos

2 ⇡v2
p2 , p̂†2 =

p
#2

cos

2 ⇡v2
p2 . (4.62)

We define the worldsheet NS and R vacua to satisfy p̂2|nsi = p̂†2|nsi = p̂2|ri = p̂†2|ri = 0.

The tower of states is defined as

|n+;↵i = (ẑ2)
n|↵i , |n�;↵i = (ẑ†2)

n|↵i where ↵ = ns,r and n � 0 . (4.63)

Thus, corresponding to each of the fields ' = {�1, �2, ⇠↵, ˜⇠
.
↵} making up the hypermultiplet

in R1,1 ⇥Ca, we have a doubly infinite tower of fields 'n± in R1,1 with U(1)2 eigenvalue

±n. The L0 eigenvalue of these states is zero they have one of p2 or p2 equal to zero.

Hence, the masses of these states are still at their four dimensional values.
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The open string vertex operators for the 'n� fields take the form

V ('n�
; x) =

1

(#2)
n/2

!(�) c(x)B(x)
�

Z2(x)
�n e�·H(x) e2ik·X(x)c� . (4.64)

Here, c(x) is the worldsheet coordinate ghost, � is the covariant weight for ' in Table

4.4, k is the momentum in R1,1, c� is the associated cocycle operator and !(�) is a

c-number phase factor. B(x) is the appropriate product of boundary condition changing

operators for the worldsheet bosons. The weights of the D5(12)-D5(23) strings mimic those

of D1-D5(13) strings. This can be observed in the relative sign between v1 and v3 in the

vertex operators.

Table 4.4: Covariant weights for D1-D5(23) and D5(12)-D5(23) strings.

State Field U(1)` D1 �D1 �D1 �D1 � �1,1 weight

D1-D5(23) bosons I

0 1
2 � v2 0, �v2 +

1
2 , �v3 +

1
2 , 0, 0;�1

J

0 1
2 + v2 0, +v2 +

1
2 , +v3 +

1
2 , 0, 0;�1

D1-D5(23) fermions ⇣J 0 �1
2 + v2 �, +v2, +v3, �, �;�

⇣I0 �1
2 � v2 �, �v2, �v3, �, �;�

�J 0 1
2 + v2 �, +v2, +v3, +, +;�

�I0
1
2 � v2 �, �v2, �v3, +, +;�

D5(12)-D5(23) bosons �

1
, S 0 �v1 +

1
2 , 0, �v3 +

1
2 , 0, 0;�1

�

2†
, T 0 +v1 +

1
2 , 0, +v3 +

1
2 , 0, 0;�1

D5(12)-D5(23) fermions ⇠̃

.
1
, ⇣S �1 �v1, �, +v3, �, �;�

⇠

2†
, ⇣T �1 +v1, �, +v3, �, �;�

⇠

1
, �S 0 +v1, �, �v3, +, +;�

⇠̃

.
2†

, �T 0 �v1, �, +v3, +, +;�

4.4.2 (n + 3)-point amplitudes

We are interested in calculating amplitudes that give rise to J-terms of the form eJ(B2)
nI

in the low-energy theory. In the effective action they turn up as Yukawa couplings of the

form

J  
= �@J 

@�
⇣+  � , (4.65)
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Here, ⇣+ is the right-handed superpartner of � and  � is the left-handed fermi field whose

J-term is J . The above J-term is in the n⇥n0 of U(n)⇥U(n0
). Such a term should then

arise from an open string disk amplitude involving the insertion of �n�S and the following

n+ 2 vertex operators on the boundary of the disk:

V (⇣J 0
; x�2) , V (�n�S ; x�1) , V (I; x0) , V (B2; x1) , V (B2; x2) , . . . , V (B2; xn) .

(4.66)

Under the map from the strip to the upper half plane, the boundary at � = 0 is mapped

to the positive real axis and the boundary at � = ⇡ is mapped to the negative real axis.

As a consequence, the order of the Chan-Paton factors for the sequence in (4.66) should

be in the reverse order. Indeed, the J-term would correspond to Trk((B2)
nI�n�S J 0

) =

Trn(J 0
(B2)

nI�n�S ).

The total picture number of the above set of vertex operators is �1
2�

1
2�1�n = �n�2.

Since the total picture number has to be �2 on the disk, the above amplitudes must have

n picture changing operators X (zi), i = 1, . . . , n, inserted at points zi in the bulk as well.

Let M(g, b, nC , nO) be the moduli space of genus g Riemann surfaces with b boundaries,

nC bulk punctures (closed string insertions) and nO boundary punctures (open string

insertions). Its real dimension is

dimR M(g, b, nC , nO) = 6g + 3b� 6 + 2nC + nO . (4.67)

At this stage, it is convenient to define the infinite dimensional space P(g, b, nC , nO) to

be the moduli space of genus g Riemann surfaces with b boundaries, nC closed string

insertions and nO open string insertions with a choice of local coordinates around each

puncture.

Here, we have g = 0, b = 1, nC = 0 and nO = n + 3, giving the dimension of

M(0, 1, 0, n+ 3) to be n. The (n+ 3)-point amplitude is then given by the integration

of an n-form over M(0, 1, 0, n + 3). We now describe the construction of the above

n-form following [Sen2, Z]. Let h⌃| be the surface state corresponding to the disk with

n+ 3 insertions and |�i denote the particular state in the Hilbert space of the worldsheet
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superconformal theory corresponding to the n+ 3 insertions in (4.66). The n-form is then

defined as follows:

⌦n(�) := h⌃|Bn|�i with Bn =

n
X

r=0

K(r) ^Bn�r . (4.68)

The Bp are operator-valued p-forms defined as follows. If we adopt the presentation of

tangent vectors of P(0, 1, 0, n+ 3) in terms of Schiffer variation, then each tangent vector

is described by an (n + 3)-tuple of vector fields on the disk: one vector field each for

infinitesimal coordinate changes around the (n+ 3) punctures.

Let ~v1,~v2, . . . ,~vp be p such (n+ 3)-tuples of vector fields on the disk and let wj be the

local coordinate around the j-th puncture. Then,

Bp[~v1,~v2, . . . ,~vp] := b(~v1)b(~v2) · · · b(~vp) , with b(~v) =
n+3
X

j=1

I

dwj

2⇡i
v(j)(wj)b(wj) .

(4.69)

Here, b(z) is the doubled version of the reparametrisation antighost field on the worldsheet

and the contour integral is carried out around a small contour encircling the j-th puncture.

The K(r) are r-forms on the worldsheet constructed out of the picture changing

operators and the ⇠ fields which bosonise the superconformal ghosts. We have

K(r)
:= [(X (z1)� @⇠(z1)dz1) ^ (X (z2)� @⇠(z2)dz2) ^ · · · ^ (X (zn)� @⇠(zn)dzn)](r) ,

(4.70)

where the superscript r on the right hand side indicates that we should take the degree r

part of the inhomogeneous differential form.

Important note: The locations of the picture changing operators have to be chosen

such that picture number is always conserved in any degeneration of the punctured disk.

For our situation with the vertex operators in (4.66), it turns out that the correct

locations of the n picture changing operators are such that one is in the patch of the I

insertion and the rest are in the patches corresponding to the last n� 1 B2 insertions:

z1 = x0 , zj = ↵jxj for j � 2 , ↵j to be taken to 1 at the end . (4.71)
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Using the three conformal Killing vectors on the disk, we fix the positions x�2 = 1,

x�1 = 0 and x0 = 1. The moduli are described by the xj for j = 1, . . . , n. Let z be the

coordinate describing the upper half-plane z 2 C with Im(z) > 0. The coordinate wj

around the j-th puncture is given by

wj = z � xj , v(j)(wj) = �1 . (4.72)

where v(j)(wj) = �1 is the vector field that represents the change in wj ! wj � �xj under

a change in the modulus xj ! xj + �xj. Thus, we get

b(~v) =

n
X

j=1

I

dwj

2⇡i
(�1)b(wj) =:

n
X

j=1

(�bxj) . (4.73)

Plugging the above in to the definition of the operator-valued n-form Bn, we get

Bn = X (x0) (�bx1) Y(↵2, x2) · · · Y(↵n, xn) dx1 ^ · · · ^ dxn ,

with Y(↵j, xj) := [X (↵jxj)(�bxj)� ↵j@⇠(↵jxj)] . (4.74)

The moduli space M(0, 1, 0, n+ 3) is the space of locations of the n+ 3 operators upto

the action of SL(2,R). The SL(2,R) is soaked up by fixing the locations of x�2, x�1 and

x0 to 1, 0 and 1 respectively. Since SL(2,R) does not change the cyclic ordering of the

operators, the moduli space is the union of the space of locations x1, . . . , xn with different

cyclic orderings. Since the vertex operators ⇣ eJ , �
(n�)
S and I change boundary conditions

from one D-brane to another, the permutation group acts only on the positions of the B2

vertex operators. Thus, the amplitude is given by

An+3 =

Z

M(0,1,0,n+3)

h⌃|Bn|�i ,

=

Z 1

1

dx1 · · · dxn hV (⇣ eJ ; x�2) V (�n�S ; x�1) X (x0)V (I; x0)⇥

⇥ (�bx1)V (B2; x1) Y(↵2, x2)V (B2; x2) · · · Y(↵n, xn)V (B2; xn)i . (4.75)

88



The vertex operators (sans the overall phase and cocycle operators) are given by

V (⇣J 0
; x�2) = c �+

2 �
+
3 e�(⇣J0 )·H e2ik�2·X

(x�2) ,

V (�n�S ; x�1) =
1

(#2)
n/2

c �+
1 �3 (Z2)

n e�(�S)·H e2ik�1·X
(x�1) ,

V (I; x0) = c �1�2 e�(I)·H e2ik0·X(x0) ,

V (B2; xj) = c e�(B2)·H e2ikj ·X(xj) , (4.76)

with #2 = ⇡↵0
sin 2⇡v2. We proceed by moving the picture changing operator at x0 to x�1

by writing

X (x0) = X (x�1) + X (x0)� X (x�1) .

(Such a trick was also used in [Sen2].) Using the identity X (x0)�X (x�1) = {Q
B

, ⇠(x0)�
⇠(x�1)}, QB

being the doubled BRST charge, the above amplitude can be written as the

sum of two pieces An+3 = Bn+3 + Cn+3 with

Bn+3 =

Z 1

1

dx1 · · · dxn hV (⇣ eJ ; x�2) X (x�1)V (�n�S ; x�1) V (I; x0)⇥

⇥ (�bx1)V (B2; x1) Y(↵2, x2)V (B2; x2) · · · Y(↵n, xn)V (B2; xn)i ,

Cn+3 =

Z 1

1

dx1 · · · dxn hV (⇣ eJ ; x�2) V (�n�S ; x�1) {QB

, ⇠(x0)� ⇠(x�1)}V (I; x0)⇥

⇥ (�bx1)V (B2; x1) Y(↵2, x2)V (B2; x2) · · · Y(↵n, xn)V (B2; xn)i .
(4.77)

Let us first evaluate Bn+3. The picture changing operator is given by

X = c@⇠ + e'TF � 1

4

@⌘ e2'b� 1

4

@(⌘e2'b) . (4.78)

We have, in the ↵j ! 1 limit,

lim

↵j!1
Y(↵j, xj)V (B2; xj) = lim

↵j!1
[X (↵jxj)(�bxj)� ↵j@⇠(↵jxj)]V (B2; xj) ,

= (i@Z2 + (kj · ) 2) e2ikj ·X(xj) . (4.79)

In the above, we see that the @⇠ term cancels the c@⇠ in X (xj). Only the e'TF term
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gives a first order pole and the last line is the corresponding residue. We have used

 2(z) 2(w) ⇠ ↵0
(z � w)�1, TF =

1
↵0@Z2 2 + · · · , and so on.

The only term in X (x�1)V (�
(n�)
S ; x�1) that contributes to the correlator in Bn+3 are

X (x�1)V (�n�S ; x�1) =
n↵0

(#2)
n/2

e�H2�H6
(x�1)V (�

(n�1)�
S ; x�1) . (4.80)

Also, only the i@Z2 term in (4.79) contributes to the correlator. Thus, the integrand of

Bn+3 becomes

in�1 n↵0

(#2)
n/2

hV (⇣J 0
; x�2) e�H2�H6

(x�1)V (�
(n�1)�
S ; x�1) V (I; x0)⇥

⇥ (�bx1)V (B2; x1) @Z2 e2ik2·X(x2) · · · @Z2 e2ikn·X(xn)i ,
(4.81)

which decomposes into the following product of correlators:

in�1 n↵0

(#2)
n/2

hc(x�2)c(x�1)c(x0)i h�+
3 (x�2)�3(x�1)i h�+

1 (x�1)�1(x0)i⇥

⇥ he�(⇣J0 )·H
(x�2) e�H2�H6

(x�1) e�(�S)·H(x�1) e�(I)·H(x0) e�(B2)·H
(x1)i⇥

⇥ h�+
2 (x�2) :(Z2)

n�1
(x�1) : @Z2(x2) · · · @Z2(xn)�2(x0)i ⇥

⇥ he2ik�2·X
(x�2) e2ik�1·X

(x�1) · · · e2ikn·X(xn)i . (4.82)

All the correlators above are standard except h�+
2 · · · �2i in the third line. To proceed, we

study correlators of the form

Gn(z,w) :=

(�2/↵0
)

n

h�+
(1)�(0)i h�+

(1)J⇤(w1)J
⇤
(w2) · · · J⇤(wn)J(z1)J(z2) · · · J(zn)�(0)i ,

(4.83)

where J and J⇤ are the doubled worldsheet currents. Let us study the n = 2 case first

with 0  ✓  1 where ✓ = 1
2 � v. We need the following OPEs:

J(z)�(0) ⇠ z�✓ ⌧3(0) , J⇤(z)�(0) ⇠ z�1+✓ ⌧4(0) . (4.84)

Based on the above OPEs and the JJ⇤ OPE, we write down the following expression for
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G2:

G2(z,w) =

(�2/↵0
)

2

h�+
(1)�(0)i h�+

(1)J⇤(w1)J
⇤
(w2)J(z1)J(z2)�(0)i ,

= z�✓1 z�✓2 w�1+✓
1 w�1+✓

2



((1� ✓)w1 + ✓z2)((1� ✓)w2 + ✓z1)

(z2 � w1)
2
(z1 � w2)

2
+ {w1 $ w2}

�

.

(4.85)

This expression has the correct properties in the various limits of the insertion points z

and w. The generalisation to Gn is given by

Gn(z,w) = z�✓1 · · · z�✓n w�1+✓
1 · · ·w�1+✓

n ⇥

⇥


((1� ✓)w1 + ✓z1) · · · ((1� ✓)wn + ✓zn)

(z1 � w1)
2 · · · (zn � wn)

2
+ permutations of w1, . . . , wn

�

.

(4.86)

We obtain the correlation function with : (Z)n(w) : by integrating Gn with respect to

w1, . . . , wn and setting wj = w for all j = 1, . . . , n. The result is

eGn(z;w) :=
(�2/↵0

)

n

h�+
(1)�(0)ih�

+
(1) :Zn

(w) : @Z(z1) · · · @Z(zn)�(0)i

=

n! z�✓1 z�✓2 · · · z�✓n wn✓

(z1 � w)(z2 � w) · · · (zn � w)
. (4.87)

The integrand of Bn+3 becomes

in�1 n↵0

(#2)
n/2

⇥ (x�2 � x�1)(x�2 � x0)(x�1 � x0) ⇥
Y

�2i<j1

(xi � xj)
�i·�j ⇥

1

(x�2 � x�1)
2h3

1

(x�2 � x0)
2h2

1

(x�1 � x0)
2h1

⇥
Y

�2i<jn

(xi � xj)
2↵0ki·kj⇥

⇥ (�↵0

2 )
n�1
eGn�1(x2 � x0, . . . , xn � x0; x�1 � x0) . (4.88)

Here, �i and ki are the total covariant weight and momentum at xi respectively. Recall

that we fixed x�2 = 1, x�1 = 0 and x0 = 1 using the SL(2,R) isometry. We set kj = 0
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since that corresponds to the irreducible tree-level vertex part of the amplitude. We get

n(↵0
)

n

(#2)
n/2

(2i)n�1
⇥ (x�2)

2+��2·(��1+�0+�1)�2h3�2h2 ⇥
Y

�1i<j1

(xi � xj)
�i·�j ⇥

⇥ (n� 1)! (x2 � 1)

�✓2
(x3 � 1)

�✓2 · · · (xn � 1)

�✓2

x2x3 · · · xn
. (4.89)

We have 2h3 =
1
4 � v23, 2h2 =

1
4 � v22 and

��2 = �(⇣J 0
) , ��1 = �(�S) + (0,�1, 0, 0, 0; 1) , �0 = �(I) �1 = �(B2) . (4.90)

Using the above expressions, we see that the exponent of x�2 is

2 + ��2 · (��1+�0 + �1)� 2h3 � 2h2

= 2 + (�1
4 � v22 � v23 � 1

4 �
1
4 �

3
4)� (

1
4 � v23)� (

1
4 � v22) = 0 , (4.91)

which vanishes as it should. The integrand thus becomes

n!(↵0
)

n

(#2)
n/2

(2i)n�1
⇥ (x1 � 1)

�v2�1
2
(x2 � 1)

v2�1
2 · · · (xn � 1)

v2�1
2

x1x2 · · · xn
. (4.92)

Changing variables to yj =
xj�1
xj

for j = 1, . . . , n, we get

Bn+3 = Tr(Bn
2 I�

n�
S ⇣J 0

)

n!(↵0
)

n

(#2)
n/2

(2i)n�1
⇥

⇥
Z 1

0

dy1 y
�v2� 1

2
1 (1� y1)

v2� 1
2

n
Y

j=2

Z 1

0

dyj y
v2� 1

2
j (1� yj)

�v2� 1
2 ,

=

n!(↵0
)

n

(#2)
n/2

(2i)n�1
B(�v2 +

1
2 , v2 +

1
2)

n Tr(Bn
2 I�

n�
S ⇣J 0

) . (4.93)

We next evaluate Cn+3:

Cn+3 =

Z 1

1

dx1 · · · dxn hV (⇣J 0
; x�2) V (�n�S ; x�1) {QB

, ⇠(x0)� ⇠(x�1)}V (I; x0)⇥

⇥ (�bx1)V (B2; x1) Y(↵2, x2)V (B2; x2) · · · Y(↵n, xn)V (B2; xn)i . (4.94)

We lasso the contour for the BRST charge around the rest of the punctures in the
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correlator. We need the action of Q
B

on the various operators in the correlator:

[Q

B

,X (z)] = 0 , {Q
B

, @⇠(z)} = @X (z) , [Q

B

, V (z)] = 0 , [Q

B

, bzV (z)] = @zV (z) .

(4.95)

Recall that Y(↵j, xj) = X (↵jxj)(�bxj)� ↵j@⇠(↵jxj). We then have

[Q

B

,Y(↵j, xj)V (B2; xj)] = �X (↵jxj)@xjV (B2; xj)� ↵j@X (↵jxj)V (B2; xj) ,

= �@xj

�

X (↵jxj)V (B2; xj)
�

. (4.96)

Using the above identities, we get

Cn+3 = �
Z 1

1

dx1 · · · dxn

n
X

j=1

@xjEj , (4.97)

with

E1 = hV (⇣J 0
; x�2) V (�n�S ; x�1) (⇠(x0)� ⇠(x�1)) V (I; x0)⇥

⇥ V (B2; x1)Y(↵2, x2)V (B2; x2) · · · Y(↵n, xn)V (B2; xn)i ,

Ej = hV (⇣J 0
; x�2) V (�n�S ; x�1) (⇠(x0)� ⇠(x�1)) V (I; x0) (�bx1)V (B2; x1)⇥

⇥ Y(↵2, x2)V (B2; x2) · · · Y(↵j, xj)X (xj)V (B2; xj) · · · Y(↵n, xn)V (B2; xn)i .
(4.98)

We use Y(1, xj)V (B2; xj) = i@Z2 e2ikj ·X(xj)+· · · . The correlator in E1 is then zero because

the ⇠(x0)� ⇠(x�1) factor cannot be saturated. In addition, the weights in the worldsheet

fermion correlator do not add up to 2e6. To evaluate Ej, we need an expression for

X (xj)V (B2; xj). Since we have to saturate the ⇠-dependent factor, only the ⌘-dependent

terms can give a non-zero contribution. Of these, only the ⌘@(e2'b) term gives a simple

pole:

X (xj)V (B2; xj) = �1

4

⌘ e�(B2)·He2ikj ·X(xj) + other terms which give zero contribution .

(4.99)

However, the worldsheet fermion correlator now evaluates to zero since the weights �i do
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not add up to 2e6. We then find that Ej = 0 as well. This gives

An+3 = Bn+3 =
n!(↵0

)

n

(#2)
n/2

(2i)n�1
B(�v2 +

1
2 , v2 +

1
2)

n Tr(Bn
2 I�

n�
S ⇣J 0

) . (4.100)

We are interested in the non-commutative point particle limit. That is, the limit ↵0 ! 0

such that, in addition, the open string metric G22 and Poisson bivector ⇥22 are constant.

These quantities are the right-hand sides of the zero mode commutation relations:

[z2 , z2] = ⇥
22

=

2⇡↵0b2
1 + b22

, [z2 , p2] = iG22
=

i
1 + b22

. (4.101)

Following [SW1], we achieve this by introducing a small parameter "! 0 and introducing

the following " dependence for the various objects:

↵0
= "1/2, b2 = "�1/2

ˆb2, 2⇡↵0B22 = i"b2, g22 = " . (4.102)

for finite ˆb2. The result of the scaling on B22 and g22 is that the right-hand sides of the

commutators pick up an "�1. In the limit "! 0, we get

⇥

22
= #2 = 2⇡(ˆb2)

�1 , G22
= i(ˆb2)�2 . (4.103)

Since b2 ! 1 in this limit, we have v2 ! 1
2 . The amplitude hits a pole in this limit:

B(

1
2 � v2,

1
2 + v2) = �(

1
2 � v2)�(

1
2 + v2) !

1

1
2 � v2

=

⇡ˆb2
"1/2

. (4.104)

The amplitude is then finite in this limit and is given by

An+3 =

⇣⇡

2

⌘n/2 n!(ˆb2)
3n/2

(2i)n�1
Tr(Bn

2 I�
n�
S ⇣J 0

) . (4.105)

The corresponding J-term can be read off (up to normalisation) as

J�n�
S

= J 0
(B2)

nI . (4.106)

The amplitude for an E-term for �n�S would have to involve �n�S which would have an
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SO(2)34 quantum number of +n. But there are no holomorphic fields from the various

Dp-Dp0 sectors which can saturate +n. So the E-term for such a fermi multiplet is zero.

Repeating the above analysis for �n�T which is in the n⇥ n0 of U(n)⇥ U(n0
) would

give the J-term

J�n�
T

= J(B2)
nI 0 . (4.107)

This completes the derivation of the equations for the folded branes. We now have

generated the spiked instanton equations (1.33) - (1.37) that we wrote down in the

Introduction.

4.5 Additional equations from D5-D5 strings

The states of the D5(12)-D5(12) on the two dimensional intersection have the same covariant

weights as the D1-D1 strings, summarised in Table 4.2. However, there is an additional

doubly infinite tower of massless states corresponding to each additional complex dimension

Ca=1 and Ca=2. In particular, there are fermi multiplets of the form �n1±,n2±
j , j = 2, 3, 4

and n1, n2 2 Z�0, with vertex operators

V (�n1�,n2�
j ; x) = (#1)

�n1/2
(#2)

�n2/2 c (Z1)
n1
(Z2)

n2 e�(�j)·H e2ik·X(x) ,

V (�n1�,n2+
j ; x) = (#1)

�n1/2
(#2)

�n2/2 c (Z1)
n1
(Z2)

n2 e�(�j)·H e2ik·X(x) etc. (4.108)

There is an E-term for �n1+,n2+
2 which arises from the following disk amplitude:

V (⇣J ; x�2) , V (�n1+,n2+
2 ; x�1) , V (I; x0) , V (B1; x1) , . . .

. . . , V (B1; xn1) , V (B2; xn1+1) , . . . , V (B2; xn1+n2) . (4.109)

Again, the contraction of Chan-Paton factors is in the reverse order. For the region

0 < 1 < x1 < x2 < · · · < xn+m < 1, the trace over the Chan-Paton factors is

Tr[⇣J(B2)
n2
(B1)

n1I �n1+,n2+
2 ] . (4.110)
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Let us look at the example of n1 = 1, n2 = 1. We will be able to generalise the answer

to arbitrary n1 and n2. Going through the same procedure as earlier by attaching picture

changing operators appropriately, we get the following expression for the amplitude:

I(x1, x2) =
(↵0

)

2

2i(#1#2)
1/2

⇥ (x1 � 1)

v1�1
2
(x2 � 1)

v2�1
2

x1x2
. (4.111)

We see that when v1 = v2, the integrand is symmetric in x1 and x2. Recall that this is

one the constraints required to consistently freeze the gauge degrees of freedom on the

D5-branes. Now, the full amplitude is given by

A1,1 = Tr I �1+,1+
2 ⇣JB2B1

Z 1

1

dx1

Z 1

x1

dx2 I(x1, x2) +

+ Tr I �1+,1+
2 ⇣JB1B2

Z 1

1

dx1

Z x1

1

dx2 I(x1, x2) ,

= Tr I �1+,1+
2 ⇣J(B2B1 +B1B2)

Z 1

1

dx1

Z 1

x1

dx2 I(x1, x2) ,

=

1
2Tr I �1+,1+

2 ⇣J(B2B1 +B1B2)

Z 1

1

dx1

Z 1

1

dx2 I(x1, x2) ,

=

(↵0
)

2

2i(#1#2)
1/2

B(

1
2 � v2,

1
2 + v2)

2 1
2 Tr (I �1+,1+

2 ⇣J(B2B1 +B1B2)) . (4.112)

In the Seiberg-Witten noncommutative point-particle limit, we get

A1,1 =
⇡ˆb3

4i
1

2

Tr (I �1+,1+
2 ⇣J(B2B1 +B1B2)) . (4.113)

giving the E-term

E�1+,1+
2

=

1
2J(B2B1 +B1B2)I . (4.114)

The same steps apply to general n1, n2 provided we constrain v1 = v2. Then, we get the

following E-terms for �n1+,n2+
2 :

E
�
n1+,n2+
2

=

n1!n2!

(n1 + n2)!
Jsn1,n2(B1, B2)I , (4.115)

where sn1,n2(B1, B2) is the totally symmetrized version of Bn1
1 Bn2

2 with weight 1. For
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example

s2,1(B1, B2) = B2
1B2 +B1B2B1 +B2B

2
1 . (4.116)

The other fields �n1+,n2�, �n1�,n2+ and �n1�,n2� cannot receive E-terms because there are

no holomorphic fields which can soak up the quantum numbers of these fermis. ⇤
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Chapter 5

Equivariant elliptic genus of spiked instanton moduli

space

In this chapter, we compute an important observable of the spiked instanton gauged

linear sigma model: the equivariant elliptic genus a.k.a the flavoured elliptic genus

[BEOT1, BEOT2, GG, GGP1, GGP2], more familiarly known to physicists as the twisted

index.

The study of elliptic genera for moduli spaces of gauge theories in diverse dimensions

was initiated in [N7]. We obtain the elliptic version of the spiked instanton partition

functions described in [N1, N3, N4, N6]. We also briefly study the structure of the

index, leaving further details to the original works above. A more detailed version of the

computation can be found in the forthcoming paper [P].

One can put the N = (0, 2) theory on a cylinder S1⇥R by imposing periodic boundary

conditions for the fermions around S1. Consider the following twisted index, also known

as the equivariant elliptic genus :

Z(⌧, ⇠) = TrH (�1)

FL+FR e2⇡iJ⇠qHRqHL , (5.1)

Here, H is the state space of the theory on the cylinder, q = e2⇡i⌧ and HL,R are the

Hamiltonians and FL,R are the fermion numbers in the left-moving and right-moving

sectors respectively. e2⇡iJ⇠
:= e2⇡i⇠·J is an element in a torus (i.e. compact abelian) subgroup

T of the group of rigid symmetries which commute with the N = (0, 2) superalgebra.

One usually considers the maximal such torus subgroup. Due to supersymmetry in the

left-moving sector, {Q+,Q+} = 2HL, only HL = 0 states contribute to the above index

rendering it independent of ⌧ .

The expression (5.1) can be rewritten as a (euclidean) path integral of the theory on a
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torus with complex structure ⌧ . We have

Z(⌧, ⇠) =
X

'2H

⌦

'
�

�

(�1)

FL+FR e2⇡i⇠·J e2⇡i⌧1P e�2⇡⌧2H
�

�'
↵

. (5.2)

where ⌧ = ⌧1 + i⌧2, H = HL + HR is the total Hamiltonian and P = HR � HL is the

generator of translations in the compact direction x. We recognise the (euclidean) time

translation operator e�2⇡⌧2H on the right hand side. Choose coordinates (x, t) on the

cylinder with x ⇠ x + 2⇡. Let the euclidean time be ⌘ = it and z =

1
2(x + i⌘). The

coordinates x±±
=

1
2(t± x) and derivatives D±± become

x++ ! z , x�� ! �z , D++ ! Dz , D�� ! �Dz . (5.3)

The field configurations on the cylinder, collectively denoted by '(⌘, x), are periodic in x:

'(⌘, x+ 2⇡) = '(⌘, x) . (5.4)

The trace instructs us to sum over those field configurations which also satisfy twisted-

periodic boundary conditions along ⌘:

'(⌘ + 2⇡⌧2, x) = e�2⇡iJ⇠e�2⇡i⌧1P'(⌘, x) = e�2⇡iJ⇠'(⌘, x� 2⇡⌧1) . (5.5)

This corresponds to choosing spacetime to be a cylinder of length 2⇡⌧2 and with its

ends identified after rotating one end by 2⇡⌧1, in other words a torus with complex

structure ⌧ . We can undo the twisted-periodic boundary conditions by the following

trick. Choose coordinates (✓1, ✓2) with periodicity 2⇡ such that x+ i⌘ = ✓1 + ⌧✓2. The

1-cycles ✓2 = const. and ✓1 = const. shall be called the a and b cycles respectively. The

two boundary conditions in (5.4), (5.5) correspond to

a : '(✓1 + 2⇡, ✓2) = '(✓1, ✓2) ,

b : '(✓1, ✓2 + 2⇡) = e�2⇡iJ⇠'(✓1, ✓2) . (5.6)

The twisting along the b cycle can be undone by first weakly gauging the rigid symmetry
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T and then performing the large T-gauge transformation g(✓1, ✓2) = ei✓2J⇠ :

'(✓1, ✓2) ! g'(✓1, ✓2) = ei✓2J⇠'(✓1, ✓2) , (5.7)

so that g' satisfies periodic boundary conditions along both cycles:

g'(✓1 + 2⇡, ✓2) =
g'(✓1, ✓2 + 2⇡) = g'(✓1, ✓2) . (5.8)

The large gauge transformation also results in a constant background gauge field

v✓1 = 0 , v✓2 = g�1@✓2g = iJ⇠ , (5.9)

which adds extra constant pieces to the covariant derivatives Dz and Dz:

Dz �! Dz +
i

2⌧2
J⇠ , Dz �! Dz � i

2⌧2
J⇠ . (5.10)

Thus, the path integral that calculates Z(⌧, ⇠) in (5.1) is the partition function of the

supersymmetric theory on a torus with complex structure ⌧ with the background gauge

field in (5.9). The path integral is given by

Z(⌧, ⇠) =

Z

[d'] e�S['] , (5.11)

where ' collectively denotes all the fields which arise from the N = (0, 2) chiral, fermi

and gauge multiplets. S is the sum of (Wick-rotated) N = (0, 2) actions for the various

superfields:

S = S
gauge

+ S
chiral

+ S
fermi

. (5.12)

The index receives contribution only from states which satisfy HL = 0. Using {Q+ ,Q+} =

2HL, it is easy to see that such states are precisely in the cohomology of Q+ i.e. those

states which are annihilated by Q+ but cannot be written as Q+ on another state.

What is the corresponding operator in superspace? We have the algebra of the
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gauge-covariant supercovariant derivatives:

r2
+ = 0 , r2

+ = 0 , {r+ ,r+} = 2irz , (5.13)

It turns out that we need to consider the cohomology of the operator r+ rather than that

of the superspace counterpart Q+ of Q+. A proof of this statement can be found in the

thesis [De].

In euclidean space, the field strength becomes v01 ! iv01 =: Fzz and the auxiliary field

D also gets an extra i. Recall the following transformations:

r+�� = 0 , r+�i = 0 , r+ a� =

p
2Ea ,

r+�� = �iD � Fzz , r+�
i
= �

p
2 ⇣ i+ , r+ 

a
� =

p
2Ga . (5.14)

The field configurations in the cohomology of r+ then satisfy

Ea(�i) = 0 , D = 0 = Fzz , ⇣ i+ = 0 , Ga
= 0 . (5.15)

Further, by using the action of r+, we also get Dz�i = 0, Dz a� = 0 and Dz�� = 0

where Dz is the ordinary space gauge-covariant derivative. The potential energy and the

field equations for the auxiliary fields D and Ga are

V (�) =
X

a

(|Ja|2 + |Ea|2) +
1

g2
TrD2 ,

Ga
= �Ja ,

2

g2
D =

X

i

�i�
i � r · =: µR � r · .

The moduli space of classical vacua Mc is given by:

Mc =

n

(�i,�
i
)

�

�

�

Ea = 0 , Ja
= 0 , µR

= r ·
o.

G , (5.16)

where G is the gauge group. Plugging the auxiliary field equations into (5.15), we see
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that the cohomology of r+ consists of configurations that satisfy

⇣i+ = 0 , Dz a� = 0 , Dz�� = 0 , Fzz = 0 , Dz�i = 0 ,

Ea = 0 , Ja
= 0 , µR

= r · . (5.17)

The last line in fact consists of the equations defining the classical moduli space of vacua of

the theory. Thus, the index receives contributions only from (a subset of) configurations

in the classical vacuum moduli space. Let us study the equations defining r+-cohomology

next.

5.1 r+ Cohomology

First, we look at Dz�i = 0. We suppress the i index in the following. Write

Dz� = (@z + iC)� = 0 with C := vz � 1
2⌧2

J⇠ , (5.18)

where vz is a flat G-connection (since Fzz = 0) in the G-representation that � belongs to.

This has solution

�(z, z) = e�iCz�0 for some constant �0 . (5.19)

Imposing periodicity under z ! z + 1, z ! z + ⌧ , we get the conditions

e�iC�0
= e�iC⌧�0

= �0 . (5.20)

When ⌧2 6= 0, we have non-trivial solutions only when the matrix C = vz � 1
2⌧2

J⇠ has zero

eigenvalues and the solutions are �(z, z) = �0 2 ker C. In the degenerate limit ⌧2 ! 0, in

order to retain the equivariant parameters ⇠, we need to introduce a ⌧2 dependence for ⇠

such that ⇠(⌧2) ⇠ 2⌧2 in the limit ⌧2 ! 0. In that case, when ⌧1 is a rational number h/k

with g.c.d(h, k) = 1, we have non-trivial solutions when the above matrix has eigenvalues

2⇡nk for some n 2 Z. Thus, r+-cohomology consists of the configurations

vz , (�i)
0 , ( a�)0 , (��)0 , (5.21)
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which satisfy

Fzz = 0 , C(�i)
0
= 0 , C( a�)0 = 0 , C(��)0 = 0 , (5.22)

where the matrix C is in the appropriate representation of G and T for each of the fields

above.

5.1.1 Primer: ADHM equations

Let us study the r+-cohomology of the N = (0, 2) sigma model which describes ordinary

instanton moduli space Mn,k. We studied this in the Introduction. The gauge group is

U(k) and we have a rigid symmetry group U(n). The multiplets are

Chirals: B1 , B2 , I , J ; Fermis: �� ,  2 ,  I ,  J , (5.23)

with B1, B2, �� and  2 in the adjoint of U(k), I,  I in the k⇥n, and J ,  J in the k⇥n

of U(k)⇥ U(n). The equations are

E2 = [B1, B2] + IJ = 0 , µR
= [B1, B

†
1] + [B2, B

†
2] + II† � J†J = r · k . (5.24)

We saw in the D1-D5 analysis that r is proportional to the self-dual part of the B-field

v1 + v2 with v1v2 > 0. We can flip the sign of r by flipping the signs of v1 and v2

simultaneously. Recall that the fields I and J† correspond to the open string states in the

k ⇥ n with energies

I : �1
2(v1 + v2) , J :

1
2(v1 + v2) . (5.25)

When we take r ! �r, the fields I and J† are exchanged. Hence, we can choose r > 0

without loss of generality. The rigid symmetries we consider are

1. Framing rotations: Let g = e�ia↵T↵ 2 U(1)

n, the maximal torus of U(n). Then,

I ! Ig�1 , J ! gJ , Ba ! Ba . (5.26)
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2. Rotational invariance: Let (ei✏1J1 , ei✏2J2
) 2 U(1)

2, arising from mutually com-

muting spatial rotations of the four dimensional support of the instanton. Then,

I ! e
i

2 (✏1+✏2)I , J ! e
i

2 (✏1+✏2)J , Ba ! ei✏aBa . (5.27)

The derivative r+ also transforms as

r+ ! e
i

2 (✏1+✏2) r+ . (5.28)

3. R-symmetry: The R-charge of r+ is +1. The charges of the various superfields

are as follows:

[R ,B1] = 0 , [R ,B2] = B2 , [R , I] = 1
2I , [R , J ] = 1

2J ,

[R ,��] = �� , [R , 2] = 0 , [R , I ] =
1
2 I , [R , J ] =

1
2 J . (5.29)

We have to choose the rigid symmetries such that they commute with the N = (0, 2)

superalgebra. This requires us to include an R-transformation with parameter �1
2(✏1+ ✏2).

Thus,

⇠ = {�a1, . . . ,�an, ✏1, ✏2,�1
2(✏1 + ✏2)} .

The compensating R-transformation vanishes when ✏1 + ✏2 = 0. We proceed with this

case.

Let the eigenvalues of the flat connection vz in the k of U(k) be 1
2⌧2

{�1, �2, . . . , �k}.
Let us analyse the kernel of the matrix C for each of the fields above.

1. Ba. For the matrix element (Ba)i
j, we have

i 6= j : �i � �j = ✏a , i = j : 0 = ✏a , (5.30)

Let ✏a 6= 0. Then the diagonal components of Ba are zero. Since (Ba)i
j and (Ba)j

i

correspond to �i � �j = ±✏a respectively, only one of them can be non-zero.
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2. I and J . For the matrix elements Ii
↵ and J↵

i with i 2 k, ↵ 2 n, we have

Ii
↵
: �i = a↵ +

1
2✏1 +

1
2✏2 = a↵ ,

J↵
i
: ��i = �a↵ +

1
2✏1 +

1
2✏2 = �a↵ . (5.31)

It can be shown that the condition r > 0 implies that J = 0 on the moduli space. By

taking the trace of the real moment map, we see that Tr II† = kr indicating that atleast

one component of I must be non-zero. This forces us to pick at least one equation in the

I row in (5.31). It is straightforward to check that, to get a valid solution, the remaining

�i have to be solved for using (5.30). This frees up the appropriate number of components

of B1 and B2 such that the moment map equations are satisfied. The set of values that

�i can take is precisely encoded in n-coloured partitions of k. That is, an n-tuple of

partitions {�↵}n↵=1 with |�↵| = k↵ and
P

↵ k↵ = k. Write a partition �↵ of k↵ of length `

as

k↵ = �↵1 + �↵2 + · · ·+ �↵` with �↵1 � �↵1 � · · · � �↵` � 0 . (5.32)

Then, for each string of k↵’s and a partition �↵ of k↵, the values of �i are in the set

[

{k↵}

[

�↵

{a↵ + (m� 1)✏1 + (n� 1)✏2 | 1  m  `(�↵) , 1  n  �↵m} (5.33)

The locations of the above values can be written as an n-tuple of Ferrers diagrams by

giving each of a↵, ✏1 and ✏2 small positive imaginary parts. This is to avoid coincident

values of �i when ✏1 and ✏2 are not independent. An example is given in Figure 5.1 for

our choice Re(✏1 + ✏2) = 0.

In this section, we have seen that the cohomology of r+ is (a subspace of) the vacuum

moduli space of the gauged linear sigma model. More precisely, the fixed points of the r+

action coincides with the fixed points of the action of the torus group T in the vacuum

moduli space (from Dz� = 0). The holonomies of the U(k) gauge field which belong to the

r+ cohomology contains information about these fixed points. Finally, as we discussed

earlier, the twisted index localises on to (the T-invariant subspace of) the vacuum moduli

space. Thus, the twisted index encodes geometric information about the vacuum moduli
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a3a1

a1 + ✏1 + ✏2

a2

a1 + ✏2 a1 + ✏1

a1 + 2✏2

a3a1 a2

2.

1.

Figure 5.1: Two examples for the value set of {�i} for k = 18, n = 3. Here,
Re ✏2 = �Re ✏1.

space, including the action of various symmetries.

It turns out that the opposite is also true: starting from the moduli space and its

symmetries, one can write down a path integral that computes precisely the twisted index

above! In fact, this path integral coincides with the path integral of the N = (0, 2) gauge

theory that we described above. This is the machinery of Cohomological Field Theory

(CohFT) introduced by Witten [W5]. The canonical lift of a CohFT in dimension d which

localises to the moduli space M of solutions to some PDE to the corresponding theory in

dimension d+ 2 which computes the elliptic genus of M is described in the paper [BLN].

A familiar example is the Donaldson-Witten CohFT in d = 4 which localises onto

the moduli space of framed instantons and lifts to gauge theory in d = 6. The finite

dimensional version of the d = 4 partition function is described in terms of the matrix

model in d = 0 with ADHM moduli space as target -- this described the collective dynamics

of instanton moduli. It lifts to the d = 2 theory in the fashion described in [BLN] and

computes the equivariant elliptic genus of ADHM moduli space. We consider generalised

versions of this where we are interested in the moduli space of spiked instantons.

The path integral of the gauged linear sigma model involves integrating over the �i

since we must be integrate over the U(k) gauge field. It turns out that the integrand

has poles in the �i which are located precisely at the fixed points described above. The

advantage of this approach is that one can add r+-exact terms to the action which do

not change the answer but simplify the evaluation of the path integral.
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5.2 Cohomological Field Theory

To make contact with the CohFT paradigm, we need to reduce the manifest supersymmetry

to N = (0, 1). Define the derivatives D+,Q+

D+ =

r+ +r+p
2

, Q+ =

r+ �r+p
2i

with Q

2
+ = D

2
+ = irz , {D+,Q+} = 0 . (5.34)

D+ is the real N = (0, 1) gauge-covariant supercovariant derivative and Q+ is the generator

of the extra (non-manifest) supersymmetry. The (0, 2) chiral and fermi multiplets (and

their antichiral counterparts) become complex (0, 1) scalar and fermi multiplets with

components

Chiral : �i , D+�i = ⇣i+ , Fermi :  a� , D+ a� = Ga + Ea =: Fa ,

Antichiral : �i , D+�
i
= �⇣ i+ , Antifermi :  a

� , D+ 
a
� = Ga + Ea =: F a .

The (0, 2) field strength fermi multiplet splits up into two hermitian (0, 1) fermi multiplets

�D� and �F�, one containing the auxiliary field D and the other containing the field strength:

�F� = � 1p
2
(F� + F�) , D+�

F
� = Fzz ; �D� =

1p
2i
(F� � F�) , D+�

D
� = D .

(5.35)

We have r+r+ = �iD+Q+ + irz. We can discard the second term since it gives rise to

a total derivative term. Using that Q+ acts as �iD+ on superfields satisfying r+ = 0, we

can write the (0, 2) actions in (0, 1) superspace:

S
chiral

=

i
2

Z

d2xD+

�

⇣ i+ rz�i + �irz⇣i+ + 2i�i�D��i

�

,

S
fermi

=

Z

d2xD+

�

 a
�
�

1
2Fa � µa

�

+

�

1
2F

a � µa
�

 a�
�

,

S
gauge

=

1

g2

Z

d2xD+ Tr
⇣

�D�(D + g2r) + �F�
�

Fzz +
g2

2⇡✓
�

⌘

,

107



where µa = Ea + Ja. The moduli space of vacua is then

Mc =
�

�i ,�
i
�

� µa = 0 , µR � r · = 0

 �

G . (5.36)

The CohFT formalism computes observables associated to a cohomology theory of the

moduli space M defined by the triple of {Fields ,Equations ,Symmetries}:

M =

n

Fields

�

�

�

Equations = 0

o.

Symmetries . (5.37)

In our context, the equivariant elliptic genus probes the elliptic cohomology of the moduli

space of classical vacua defined in (5.36). The triple is described as follows:

1. The set Fields consists of the scalars �i, �i.

2. Equations is given by the equations in (5.36) defining the moduli space of classical

vacua:

Equations = {µa, µR � r · } .

3. Symmetries correspond to the gauge group G with Lie algebra valued parameter

vz. The notation for the parameter will become clear in a moment.

4. Rigid Symmetries: There are also rigid symmetries in the theory with which we

can work equivariantly.

(a) A torus subgroup of the group of internal rigid symmetries acting on the fields

�i with constant parameters ⇠ and generators J :

��j = (i⇠ · J)�j . (5.38)

(b) There are also the compact z-translations z ! z + c with c 2 C/(Z + ⌧Z)

which act as

�c�i = c @z�i . (5.39)

To complete the description of the cohomological field theory, we introduce additional

fields and a fermionic symmetry �s such that �2s = gauge + rigid symmetries.
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1. We define the action of �s on the parameters vz and ⇠ · J to be

�svz = 0 , �s(⇠ · J) = 0 . (5.40)

2. For each field �j in Fields, introduce a fermionic field ⇣j with the same quantum

numbers as �j such that

�s�i = ⇣i , �s⇣i = i(@z + ivz � i

2⌧2
⇠ · J)�i =: iDz�i ,

�s�
i
= �⇣ i , �s(�⇣ i) = i(@z � ivz + i

2⌧2
⇠ · J)�i

=: iDz�
i . (5.41)

3. For each equation µa in Equations, introduce a doublet ( a, Fa) with  a fermionic

and Fa bosonic, and having the same quantum numbers as µ such that

�s a = Fa , �sFa = iDz a , �s 
a
= F a , �sF

a
= iDz 

a . (5.42)

We include the real moment map µR
= µ0 in the above discussion with F0 = D,

 0 = �D such that these are real.

4. From the transformation rules above, we see that vz plays the role of a connection.

In the theory with Minkowski signature, vz becomes the right-moving part of the

gauge field. It is necessary to include a left-handed component vz as well. We

introduce a new fermion �F and define

�vz = �F , �s�
F
= �Dzvz + @zvz = �Fzz . (5.43)

The first term is the gauge transformation of vz with parameter vz and the second

comes from z-translations. As we can see, these combine to give the field strength

Fzz of the gauge field. Further, we have

�sFzz = ��2s�F = �i(@z�F + i[vz,�F ]) = �iDz�
F . (5.44)
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For the action of the cohomological field theory we choose an expression of the form

�s (in addition to ✓-terms) such that the kinetic energy terms for all the fields are

non-degenerate.

S
CohFT

=

Z

d2z �s( symm.

+ 

eqnn.

) +

i✓
2⇡

Z

d2z TrFzz , (5.45)

where

 

symm.

=

i
2

X

j

⇥

�j
Dz⇣j + ⇣jDz�j

⇤

+

1

g2
Tr
�

�FFzz

�

, (5.46)

 

eqnn.

=

1

g2
Tr
�

�D(D � g2µR
+ g2r)

�

+

X

a

⇥

 a
�

1
2Fa � µa

�

+

�

1
2F

a � µa
�

 a

⇤

, (5.47)

are the gauge fermions corresponding to Symmetries and Equations. After Wick

rotating back to Minkowski space, we see that the above action matches exactly with the

(0, 1) actions above and the fermionic symmetry �s is in fact identical to the N = (0, 1)

supercharge D+. The condition �s(⇠ · J) = 0 corresponds to choosing the torus subgroup

T to be one which commutes with the supercharges r+ and r+.

Localisation

As shown by Witten, the path integral in a cohomological field theory localises onto the

�s-invariant field configurations. These configurations satisfy

⇣i = 0 , Dz�i = 0 , Fa = 0 , Dz a = 0 ,

D = 0 , Dz�
D
= 0 , Dz�

F
= 0 , Fzz = 0 . (5.48)

These equations are identical to the ones from r+(·) = 0 in (5.17) after solving for the

auxiliary field equations and also by using the identity EaJ
a
= 0.

5.3 Computing the path integral

We start with the CohFT version of the N = (0, 2) theory. Starting here, we fix the

gauge group to be U(k) for simplicity. The same analysis can be applied to other groups.
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Recall that the Lagrangian can be written as �s upto ✓-angle terms. The gauge fermion

 is given by  =  

symm.

+ 

eqnn.

with

 

symm.

=

i
2

X

j

⇥

�j
Dz⇣j + ⇣jDz�j

⇤

+

1

g2
Tr
�

�FFzz

�

, (5.49)

 

eqnn.

= Tr
�

�D( 1
g2D � µR

+ r)
�

+

X

a

⇥

 a
�

1
2Fa � µa

�

+

�

1
2F

a � µa
�

 a

⇤

. (5.50)

We next add the following terms to the gauge fermion:

� = g1Tr (�DD) + g2 
aFa . (5.51)

which give the following terms in the Lagrangian:

g1 Tr(D2 � i�DDz�
D
) + g2 (F

aFa � i a
Dz a) . (5.52)

In the limit g1 ! 1, the other terms in the action involving D and �D are negligible

and we can perform the path integral over D to set D = 0. The path integral over �D

becomes gaussian and gives
q

Det0 (@z + i[vz , ·]) . (5.53)

The factors of g1 cancel between the integration of D and �D since one is bosonic and the

other is fermionic. There are zero modes for the fermion �D which do not transform under

any of the rigid symmetries. This will render the determinant equal to zero. The prime

on Det0 is to indicate that we have removed the zero modes. Since the coupling constant

g2 appears inside a �s-exact term, we may evaluate the integral by taking g2 ! 0. In

this limit, the integral over gauge fields localises on to the space of flat connections. The

adjoint fermion zero modes and the g2 ! 0 limit have been treated systematically in

[BEOT1, BEOT2].

Flat connections are parametrized by their holonomies around the two cycles of the

torus. A convenient gauge choice is vz = 0. By z-dependent gauge transformations, one

can set vz = constant and rotate it into the Cartan subalgebra of U(k). The holonomies are

then parametrised by the constant eigenvalues of vz in the fundamental representation of
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U(k). There is still freedom due to Weyl transformations which permutes the eigenvalues.

Thus, one has to divide the answer by the order of the Weyl group.

Similarly, in the g2 ! 1 limit, the auxiliary field Fa can be set to zero we get the

following determinant from the F ,  integration:

Y

a

Det(@z + iv(a)z � i

2⌧2
J
(a)
⇠ ) . (5.54)

Here, v(a)z and J
(a)
⇠ are taken to be in the representations of U(k) and T that  a belongs to.

We notice that the terms involving the moduli space equations have completely dropped

out of the action! The remaining terms for the fluctuating fields are:

S =

Z

d2x
h

�i⇣jDz⇣j + �j
DzDz�j � 1

g2Tr (i�FDz�
F
)

i

. (5.55)

Each of the above are quadratic actions for the various fields. The path integral then

gives

q

Det0(@z + i[vz , ·])
Y

i

Det(@z + i

2⌧2
J
(i)
⇠ )

Det(@z + i

2⌧2
J
(i)
⇠ )Det(@z + iv(i)z � i

2⌧2
J
(i)
⇠ )

. (5.56)

For generic values of the equivariant parameters ⇠, the determinant for @z+ i

2⌧2
J
(i)
⇠ cancels

between the numerator and denominator. This is a consequence of supersymmetry in the

left-moving sector.

The final integrand for the integration over the holonomies of the gauge field is

Det0(@z + i[vz , ·])
Q

a Det(@z + iv(a)z � i

2⌧2
J
(a)
⇠ )

Q

i Det(@z + iv(i)z � i

2⌧2
J
(i)
⇠ )

(5.57)

Each of the determinants can be calculated either in the path integral by a suitable

regularisation or in the Hamiltonian formalism. We choose the latter. The determinant

with periodic boundary conditions around the two cycle of the torus in the presence of

the flat connection vz � 1
2⌧2

J⇠ is nothing but the twisted index (5.1) evaluated over the
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appropriate right-moving Fock spaces! The expression for the index is

TrH (�1)

FR e2⇡i(�2⌧2vz+J⇠)qHR . (5.58)

We need the following expression for a particular Jacobi ✓ function:

✓1(⌧ |z) = i⌘(⌧)e⇡izq1/12
1
Y

n=1

(1� qne2⇡iz
)(1� qn�1e�2⇡iz

) , (5.59)

and also for the ratio
✓1(⌧ |z)
i⌘(⌧)

=: ⇥(z) . (5.60)

Note that ✓1(⌧ |z), and consequently ⇥(z), has a simple zero at z = Z+ ⌧Z.

Let us calculate the first determinant in (5.57). Recall that it arises from the path

integral over the adjoint fermions �D and �F after excluding their zero modes. Let the

eigenvalues of vz taken in the fundamental representation of U(k) be 1
2⌧2

{�1, . . . , �k} and

let

yi = exp(�2⇡i�i) .

Let us consider the complex combination � = i�D � �F . Then, the component �ij

transforms with gauge parameter �i � �j due to the commutator [vz ,�] and it receives a

contribution yiy
�1
j in the above trace. The trace for each diagonal component �ii (with

zero modes removed) is

q2/24(1� q)2(1� q2)2 · · · = ⌘(⌧)2 . (5.61)

The prefactor q2/24 arises from the zero-point energy for a single complex fermion that is

periodic along the spatial direction of the torus. This arose in Chapter 2 (equation (2.81))

where we considered more general boundary conditions along the spatial direction. Thus,

the total determinant for the diagonal components of � is ⌘(⌧)2k. For an off-diagonal
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component �ij, i 6= j, we get

q2/24(y
1/2
i y

�1/2
j � y

�1/2
i y

1/2
j )

1
Y

n=1

(1� yiy
�1
j qn)(1� y�1

i yjq
n
) =

✓1(⌧ |�j � �i)

i⌘(⌧)
= ⇥(�j � �i) .

(5.62)

The first factor is the zero point energy for a single complex fermion. The second factor

comes from the zero mode of the complex fermion �ij which gives rise to a two-dimensional

ground state. One state is bosonic and one is fermionic and they pick up factors (yiy�1
j )

±1/2

respectively. The rest are contributions from non-zero modes of �ij and their complex

conjugates. Thus, the full contribution from the complex fermion � (with zero modes

removed from the diagonal components) is

Det0(@z + i[vz , ·]) = ⌘(⌧)2k
Y

i 6=j

⇥(�j � �i) (5.63)

In fact, this is the full contribution of the N = (0, 2) vector multiplet (cf. [BEOT2] and

references therein).

The rest of the determinants can be derived in a similar fashion once we specify the

representations of the various matter fields and equations of the theory. We specialise to

the case of spiked instantons from now on.

5.4 Elliptic genus for spiked instantons

Let us specify the Fields, Equations and Symmetries for the spiked instanton moduli

space that we described both in the Introduction and in Chapter 4. The fields from the

D1-D1 strings are

B1, B2, B3, B4 : in the adjoint of U(k) ,

IA, JA : in the k ⇥ nA and k ⇥ nA of U(k)⇥ U(nA) for A 2 6 . (5.64)

There are additional infinite towers of fields

The equations are
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1. The real moment map:

µR � r · k :=

X

a24

[Ba, B
†
a] +

X

A26

(IAI
†
A � J†

AJA)� r · k = 0 . (5.65)

2. For A = (ab) 2 6 with a < b,

µC
A := [Ba, Bb] + IAJA = 0 . (5.66)

3. For A 2 6, A = 4 r A and a 2 A,

�C
aA := BaIA = 0 , �̃C

aA := JABa = 0 . (5.67)

4. For A 2 6, A = 4 r A,

⌥

C
A := JAIA = 0 . (5.68)

5. For A,B 2 6 such that A \B = {c} 2 4, and n = 0, 1, . . .

⌥A,B,n := JA(Bc)
nIB = 0 . (5.69)

6. For A 2 6, A = (ab) with a < b, and m, n = 0, 1, 2, . . .

⌥A,m,n := JA(Ba)
m
(Bb)

nIA = 0 . (5.70)

To recast the above equations into the CohFT form, we define 3 = {(12), (13), (14)}.
Take the following combinations of the complex equations above:

sA := µC
A + "AA

�

µC
A

�†
= 0 , for A 2 3 ,

�aA := �C
aA + "abA

�

�̃C
bA

�†
= 0 , for A 2 6 , a 2 A ,

⌥A := ⌥

C
A � "AA

�

⌥

C
A

�†
= 0 for A 2 3 . (5.71)

Here, " is the totally antisymmetric symbol in four indices "abcd. For example, when

A = (12), we have "AA = "1234 = +1.
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There is a U(k) gauge invariance which acts in the appropriate representations on the

fields and equations. The rigid symmetries were listed in Chapter 4 and are given by

P

 

⇥
A26

U(nA)

!

⇥ U(1)

3 . (5.72)

The U(1)

3 is given by the mutually commuting rotations F12, F34, F56, F78 with parameters

✏1, ✏2, ✏3, ✏4 satisfying

✏1 + ✏2 + ✏3 + ✏4 = 0 . (5.73)

This constraint is required since the supercharges of the N = (0, 2) algebra transform

with the phase e i
2 (✏1+✏2+✏3+✏4) and the symmetries one considers are those which commute

with the (0, 2) algebra.

Thus, the equivariant parameters along with their exponentiated versions are

⇠ =

(

[

A

{�am,A}nA
m=1 , ✏1, ✏2, ✏3, ✏4

)

, e2⇡i⇠
=

(

[

A

{xm,A}nA
m=1 , q1, q2, q3, q4

)

. (5.74)

We now calculate the various determinants. First, let us look at the fields. The

calculation of the index for the Ba, a 2 4 proceeds exactly as for the complex adjoint

fermion in the previous section. There is an additional factor of qa in the trace from the

U(1)

3 rotations. The result for a diagonal component of Ba is

1

q2/24(q
1/2
a � q

�1/2
a )(1� qaq)(1� q�1

a q)(1� qaq2)(1� q�1
a q2) · · ·

=

i⌘(⌧)
✓1(⌧ |✏a)

=

1

⇥(✏a)
.

(5.75)

The contributions are in the denominator since the Fock space is bosonic. The first factor

is the zero-point energy for a complex boson with periodic boundary conditions in the

spatial direction. The second factor is due to the zero modes. The remaining are the

non-zero modes from Ba and its hermitian conjugate field B†
a. Similarly, an off-diagonal

component (Ba)i
j, i 6= j, gives

i⌘(⌧)
✓1(⌧ |✏a � �i + �j)

=

1

⇥(✏a + �j � �i)
. (5.76)
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The total contribution for Ba is

Ba :

Y

i,j

1

⇥(✏a + �j � �i)
. (5.77)

Let us look at the bifundamental fields next. The action of U(1)

3 can be read off from

the covariant weights in Tables 4.3 and 4.4:

I(ab) ! ei(�va+
1
2)✏a+i(�vb+

1
2)✏bI(ab) , J(ab) ! ei(va+

1
2)✏a+i(vb+

1
2)✏bJ(ab) . (5.78)

Let ✓a = 1
2 � va and ✓a = 1

2 + va. Then, the index for the components (IA)i
mA , (JA)mA

i is

given by

(IA)i
m
:

1

⇥(✓a✏a + ✓b✏b + am,A � �i)
, (JA)m

i
:

1

⇥(✓a✏a + ✓b✏b � am,A + �i)
. (5.79)

In the Seiberg-Witten point-particle limit, the va ! 1
2 as we saw at the end of Chapter 4.

This gives the index

IA :

Y

m2[nA],i

1

⇥(am,A � �i)
, JA :

Y

m2[nA],i

1

⇥(✏a + ✏b � am,A + �i)
. (5.80)

Here, [nA] is the set of labels {1, 2, . . . , nA}.

Next, let us look at the equations. The fermion for the real moment map is �D which

has been dealt with in the previous section. Under U(1)

3 the various equations transform

as follows:

sA ! ei(✏a+✏b)sA , ⌥A = ei(✏a+✏b)
⌥A , �aA ! ei✏a�aA ,

⌥A,B,n ! ei(✏a+✏b+n✏c)
⌥A,B,n , ⌥A,m,n ! ei(m+1)✏a+i(n+1)✏b

⌥A,m,n . (5.81)
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The index contributions for the corresponding complex fermions are

sA :

Y

i,j

⇥(✏a + ✏b � �i + �j) , ⌥A :

Y

m2[nA],m2[nA]

⇥(✏a + ✏b � am + am) ,

�aA :

Y

m2[nA],i

⇥(✏a � �i + am,A) , ⌥A,B,n :

Y

m2[nA]
m02[nB ]

⇥(✏a + ✏b + n✏c � am,A + am0,B) .

(5.82)

For the equations ⌥A,m,n we have

⌥A,m,n :

Y

p,p02[nA]

⇥((m+ 1)✏a + (n+ 1)✏b � ap,A + ap0,A) . (5.83)

Thus, the integrand of the integration over holonomies yi is given by

⌘(⌧)2k
Y

i 6=j

⇥(�j � �i) ⇥
Y

A23

Y

i,j

⇥(✏a + ✏b � �i + �j) ⇥
Y

A26
a2A

Y

m2[nA]
i

⇥(✏a � �i + am,A)

Y

a24

Y

i,j

⇥(✏a + �j � �i)⇥
Y

A26

Y

m2[nA],i

⇥(am,A � �i)⇥(✏a + ✏b � am,A + �i)
.

(5.84)

and the integration measure is given by

1

k!

Z

dy1dy2 · · · dyk
y1y2 · · · yk

. (5.85)

There is a �-independent prefactor as well:

Y

A23

⌥A ⇥
Y

A,B 26, n

⌥A,B,n ⇥
Y

A2 ,6, m, n

⌥A,m,n , (5.86)

where we have used the symbol of the equation itself for the corresponding expressions

above. The infinite products in the last two factors have to be regularised suitably. In

[N1, N2, N4] an additional prefactor is considered which is of the form

1

Q

A

Q

p,p02[nA]⇥(m✏a + n✏b �mA � ap,A + ap0,A)
, (5.87)

where mA is either ✏a or ✏b.
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Conjecture: These prefactors arise from the scalars in the D5A-D5A vector multiplet

reduced to R1,1 following the procedure in Chapter 4 in the section on Folded instantons.

The discussion from here onwards has been borrowed from [N4]. Since the function

⇥(z) has a simple zeros at z = Z + ⌧Z, we see that the integrand above has poles for

values of the holonomies which satisfy

yjy
�1
i = qa , yi = x�1

m,A , yi = qaqbxm,A . (5.88)

The integral over the U(k) holonomies should be thought of contour integrals which have

poles at the above specified locations. Which poles are picked up depends on the way the

contours for the yj are closed. The contours are specified by first studying the various

possible fixed point sets of the action of subgroups of the maximal torus T.

The most general subgroup of T can be specified as follows [N4]: Consider hyperplanes

in the space of equivariant parameters of the form

L↵(a, ✏) =
X

A26

X

m2 [nA]

!↵;m,A am,A +

X

a24

n↵;a✏a = 0 , (5.89)

where !↵;m,A = +1, 0,�1 and n↵;a 2 Z. For certain values of the parameters a and ✏, the

above equations can be inverted to yield the subgroup TL.

For example, one can find six sets of ordinary ADHM instantons living on each of the

six C2’s by considering the fixed points of the subgroup T
x

= U(1)

5 with action:

(IA, JA) ! (ei✓AIA, e�i✓AJA) , (5.90)

with the overall scaling set to 1. The fixed point set is the direct sum of 6-tuples of

ordinary instanton moduli spaces:

Mk(n)
T

x

=

[

P
A kA=k

⇥
A

MkA,nA . (5.91)

Indeed, one can take completely generic parameters for a and ✏ and look at the poles

of the twisted index above. They are found to be precisely at the values of �i that was
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described in the previous section when we studied the cohomology of r+ in the ADHM

case.

One can now stitch together these six separate sets of moduli spaces by considering

fixed point loci of small torus subgroups which interpolate between the various ADHM

moduli spaces. These interpolating manifolds are picked up by the contour of the yj

above provided the appropriate congruences hold between a and ✏. This way one can

stitch their way up to obtain the entire spiked instanton moduli space. In particular,

this moduli space includes regions which interpolate between ADHM moduli spaces of

different instanton number on the same stack of D5-branes.

We conclude by stating the compactness theorem of Nekrasov which places very strong

constraints on the non-perturbative behaviour of gauge theory. The statement is that the

fixed point loci in Mk(n) of the various torus subgroups TL are compact. Let

xA =

1

nA

X

m2[nA]

am,A . (5.92)

Then, one of the consequences of the compactness theorem is that the twisted index

including the prefactors written above is a polynomial in the xA. The xA correspond to

the centred of mass of the various stacks of D5-branes. The fact that the twisted index is

a polynomial in these variables implies that it well-defined for any values of the centres of

mass and in particular, suggests that there are no runaway-like transitions in the theory.

Somehow, the non-perturbative effects have rendered the theory docile! ⇤
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Chapter 6

Conclusions and Outlook

In this thesis, we have studied the low-energy dynamics of D1-branes bound to a maximal

set of supersymmetric intersecting D5-branes in Type IIB string theory. A particular low-

energy limit enabled us to study the collective dynamics of instantons in four dimensional

gauge theory, including processes in which the instantons escape to an auxiliary four

dimensional world.

A constant NSNS B-field binds the instantons (D1-branes) to the D5-branes. A

peculiar feature was that D1-branes bind in a supersymmetric fashion to the D5-branes

while D1-branes do not. The equations governing the collective dynamics were derived by

studying open string amplitudes in the constant B-field background. This required the

calculation of certain simple (n+ 3)-point tree level amplitudes. The equations described

the classical moduli space of the theory, also called as the spiked instanton moduli space.

The spiked instanton moduli space is, in a sense, the most conservative way of

describing processes that change instanton number. The high amount of symmetry

present in the problem allows one to compute various observables that encode these

transitions as equivariant integrals over spiked instanton moduli space. In Chapter (5),

we computed one such basic observable which is the equivariant elliptic genus.

The intermediate system of crossed instantons which was described in the first part of

Chapter (4) is interesting in its own right. The field theory dual of AdS3 ⇥ S3 ⇥ S3 ⇥ S1

has been evading discovery for some time now. The setup of D-branes that comes closest

to solving the puzzle seems to the one of crossed instantons. Tong [To] has showed that

the central charge for the N = (0, 4) gauged linear sigma model of crossed instantons

agrees with the calculation on the gravity side. The presence of a constant B-field modifies

the setup while making it more tractable. It would be interesting to see if any of the

calculations in this thesis are applicable to this problem.
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Theories with N = (0, 2) supersymmetry display very interesting features like dynami-

cal supersymmetry breaking [GGP1, GGP2], accidental enhancement of symmetries in the

infrared [BMP] and so on. The infrared limit of N = (0, 2) theories also furnish possible

consistent vacua for heterotic strings. Interesting work has been done on exploring the

infrared of N = (0, 2) theories by studying chiral algebras in the spirit of [W6, Ta, De]

and others. It would a logical next step to explore the infrared limit of the N = (0, 4)

gauge theory of crossed instantons and its N = (0, 2) spiked generalisation along the lines

of [SiWi1, SiWi2].

It is well known that the worldvolume theory of D1-brane probes of Calabi-Yau

fourfolds preserve (0, 2) supersymmetry. Quite a lot of work has been done in studying

a version of mirror symmetry for these theories in [FLS1, FLS2, FLSV]. It would be

interesting to explore if our spiked instanton system is part of a duality web involving

theories of the above type.

On a separate note, the spiked instanton moduli space is an instrumental tool in the

overarching program of the BPS/CFT correspondence which relates BPS observables in

four dimensions with analogous observables in two dimensional conformal field theories

subsumes most such relations. Recently, there has been a spur in uncovering such novel

infinite dimensional symmetries in four dimensional quantum field theory. When one

considers the grand canonical ensemble of instantons of all windings in the gauge theory,

the infinite dimensional symmetry becomes evident. One can (and indeed it has been

done) generalise this idea to BPS objects in higher dimensions, say six and eight. This

would correspond to studying ensembles of bound states of D0-D6 and D0-D8 branes.

The study of the grand canonical ensemble of D0-D6 branes reveals the existence of an

SO(10) isometry of the theory and the partition function can essentially be written in

terms of free fields in eleven dimensions [NO2]. We would like to explore a similar point

of view for D0-D8 bound states.
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