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Abstract

Observation of CP Violation in the Neutral B Meson System

by

Stephen Levy

This dissertation presents a measurement of time-dependent CP -violating asym-

metries in neutral B meson decays collected with the BABAR detector at the

PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Cen-

ter. The data sample consists of about 88 million Υ (4S) → BB decays collected

between 1999 and 2002. We study events in which one neutral B meson decay to

the CP -eigenstates J/ψK0
S
, ψ(2S)K0

S
, χc1K

0
S
, and ηcK

0
S
, or to flavor-eigenstates

involving D(∗)π/ρ/a1 and J/ψK∗0(K∗0 → K+ π−), is fully reconstructed. The

flavor of the other neutral B meson is tagged at the time of its decay, mainly

using the charge of identified leptons and kaons. The proper time elapsed

between the meson decays is determined by measuring the distance between

the decay vertices. The amplitude of the CP -violating asymmetry, which in

the Standard Model is proportional to sin2β, is determined from a simultane-

ous maximum-likelihood fit to the time-difference distribution of the flavor- and

CP -eigenstate samples. We measure sin2β = 0.755±0.074 (stat)±0.030 (syst).
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Chapter 1

CP violation in the Standard

Model

For every one billion particles of antimatter there were one billion
and one particles of matter. And when the mutual annihilation was
complete, one billionth remained – and that’s our present universe.

Albert Einstein

The Standard Model (SM) [1] of particle physics successfully accommodates

all current experimental results. However, due partly to the large number of

ad hoc inputs the theory requires, it is widely believed that the SM will be

relegated to a low energy approximation of a more comprehensive theory in the

near future. Consequently, many experiments now aim to probe the Standard

Model’s less well constrained parameters in the hopes of uncovering unexpected

results that will illuminate the path to new physics.

Charge-parity (CP ) symmetry violation is one area where experiment has

only recently begun to rigorously test the theory. As will be shown, the Stan-

dard Model Lagrangian is not required to be invariant under the CP transfor-

mation. The existence of at least three quark generations in the SM allows for

a non-zero phase in the Cabibbo-Kobayashi-Moskawa (CKM) matrix [2] that

relates the quark eigenstates in the weak basis to the mass eigenstates. This
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irremovable phase in the CKM matrix is the only SM source of CP violating ef-

fects 1. While CP violation was discovered in the kaon system [4, 5], it remains

to be proven that the CP violating mechanism of the Standard Model accounts

for the CP violating effects seen in nature. It may be possible to determine

this in the B meson system by making enough theoretically clean CP violating

(along with complementary CP conserving) observations. This thesis reports

on the most anticipated first observation of CP violation in the B meson system

made by the BABAR collaboration at the Stanford Linear Accelerator Center

(SLAC).

This chapter describes the mechanism of CP violation in the Standard

Model as it applies to the B meson system and how its effects may be mea-

sured. In Sec. 1.1 we introduce the elementary particles and interactions of the

Standard Model, assuming some prior familiarity. We define the discrete sym-

metry operators representing parity, charge conjugation, and time reversal and

discuss some of their properties in Sec. 1.2. Sec. 1.3 presents the relationship

between CP violation and the observed baryon asymmetry of the universe. In

Sec. 1.4, we describe the experimental discovery of CP violation that occurred

well before a theoretical foundation existed to explain it.

At this point the focus shifts to understanding the theory as it developed

in a historical manner. In Sec. 1.5, we flesh out fully the details of the already

introduced CKM mechanism and describe the unitarity triangle, which is useful

in determining the amount of CP violation that can be measured in the B

meson system. Following this, in Sec. 1.6, we present the three ways that

CP violation may be manifested in the SM. This section concludes with the

form of a time-dependent CP violating asymmetry between the difference in

proper decay-times of neutral B mesons that decay to CP eigenstates. This

asymmetry, for CP eigenstates consisting of a charmonium and K0
S

meson, will

be the main focus of this thesis as it allows the determination of one angle in

1We ignore non-perturbative corrections to the SM tree-level Lagrangian that are expected
to induce a second possible source of CP violation [3].
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the unitarity triangle called β.

The theoretical interest of a final CP eigenstate that consists of a char-

monium and K0
S meson is explained in Sec. 1.7 and the experimental issues

which make the asymmetry’s measurement non-trivial are given in Sec. 1.8.

Pre-existing constraints on the apex of the unitarity triangle, and hence the

angle β, are reviewed in Sec. 1.9. Finally, the results of other collaborations’

efforts to measure β are presented in Sec. 1.10.

1.1 The Standard Model

Quarks 2 and leptons are the fundamental particles of the Standard Model

which comprise all known matter. Termed fermions, they have half integer

values of spin measured in units of Planck’s constant h̄. Nature has been found

to exhibit three forces, named the strong, electroweak and gravitational, which

dictate the manner in which these particles interact. The forces mediate the

interactions of the quarks and leptons through the exchange of gauge bosons

(particles with integer values of spin). Quarks and leptons are distinguished

based on their coupling to the strong force: quarks have color charge, meaning

they interact strongly, while leptons do not. There is experimental evidence

for the existence of 6 quarks and 6 leptons (as well as their anti-particles) each

divided into three generations:

⎛
⎝ u

d

⎞
⎠
⎛
⎝ c

s

⎞
⎠
⎛
⎝ t

b

⎞
⎠ (1.1.1)

⎛
⎝ νe

e−

⎞
⎠
⎛
⎝ νµ

µ−

⎞
⎠
⎛
⎝ ντ

τ−

⎞
⎠ (1.1.2)

Of these particles, the top quark (t) and tau neutrino (ντ ) were the most

recently detected, both by Fermilab experiments [8, 9].

2Gell-Mann [6] and Zweig [7] independently proposed the existence of quarks in 1964.
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In the quark sector, the doublets of each generation have identical proper-

ties except for mass which increases from a few MeV/c2 for the up quark to

174 GeV/c2 for the top quark. This trend holds for the charged lower entry of

each lepton doublet as well, where the mass ranges from 0.511 MeV/c2 for the e−

to 1.78 GeV/c2 for the τ−. Recent experimental evidence confirming neutrino

mixing implies non-zero neutrino masses [10]. Analyses of the low energy beta

decay of tritium atoms limits the electron neutrino mass to less than 3 eV [11].

The Standard Model provides no explanation for the orders of magnitude mass

differences between generations.

One can give a complete characterization of the quarks and leptons by spec-

ifying their quantum numbers: effectively listing which particles will respond

to which force. The electric charge of the upper entry in each quark doublet

of 1.1.1 is +(2/3)e and the charge of the lower entry is −(1/3)e where −e is the

electron charge. The electric charge of the lower entry in each lepton doublet

of 1.1.2 is −e while the 3 neutrinos have zero electric charge. The left-handed

chiral projection of each fermion pair transforms as a weak isospin SU(2) 3

doublet with the upper (lower) entry having a component of +1(−1) along the

quantized axis. The right-handed fermions transform as weak isospin singlets 4.

As already stated, gauge bosons act as the transmitters of forces between

quarks and leptons. Gravitons, which have yet to be experimentally observed,

couple to massive quarks and leptons. The strength of the gravitational force

between elementary particles is orders of magnitude weaker than any of the

other forces to be discussed. A relativistic quantum field theory of gravity has

not yet been successfully formulated.

Eight gluons, each carrying two units of color charge, couple quarks through

the strong force. As gluons have non-zero color charge, they also couple to

themselves, a generic feature of non-abelian field theories. At short distances

3Some familiarity with group theory is assumed.
4Right-handed neutrinos have not been observed but non-zero neutrino masses indicate

they should exist. if they are Dirac particles.
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the coupling strength approaches zero, allowing the theory to be described per-

turbatively [12]. This free behavior of the quarks at short distances is commonly

called asymptotic freedom. At large distances the coupling strength becomes

too large for perturbation theory to be valid. The photon carries the electro-

magnetic interaction, coupling to a charged quark or lepton with a strength

proportional to the electric charge. Electromagnetic and strong interactions

conserve quark flavor.

Finally, all quarks and leptons interact weakly through W+, W−, and Z0

boson exchange. For leptons, this coupling strength is proportional to the

Fermi constant (GF ). While weak neutral currents also conserve quark flavor,

weak charged currents couple quarks of different flavors, as well as different

generations. The relative strength of these flavor changing quark couplings are

described by the elements of the CKM matrix. After reviewing the history of

CP violation, we will return to a discussion of the CKM matrix in Sec. 1.5.

Isolated quarks have not been observed in nature, but colorless bound states

of a quark-antiquark pair called mesons and three quarks called baryons (both

of which are termed hadrons) do exist. We shall often use the term B meson in

this thesis to refer to a particle which contains a b and d quark. For reference,

a B0 is composed of a bd pair, a B0 of a bd pair, a B+ of a bu pair, and a B−

of a bu pair. When discussing the meson with quark content bs, the common

notation Bs will be used.

1.2 Parity, charge conjugation, and time re-

versal

In order to understand CP violation in the Standard Model, we must nec-

essarily begin with a precise definition of the parity, charge conjugation and

time reversal operators. Such operators have historically been interesting to

study because of Noether’s theorem [13] that links conserved quantities to sym-
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metries, transformations that do not alter the equations of motion of a given

system.

Parity, denoted P , is a discrete unitary (P−1 = P †) space-time transfor-

mation which reverses the momentum of a particle, flipping the handedness of

the coordinate system used to describe space. A particle’s four vector (t, �x)

transforms under P to four vector (t,−�x). Since spin may be thought of as a

quantum mechanical analog of angular momentum, given by �r×�p, one sees that

spin remains invariant under P as both the momentum and position change

sign. The projection of spin along the particle’s direction of motion, termed

helicity, will also change sign. By definition, we require P acting twice on a

particle to leave it invariant,implying P = P−1 and that the eigenvalues of P

are ±1.

Charge conjugation, denoted C, is a unitary non-spacetime discrete trans-

formation which transforms particles into anti-particles. C reverses the charge

of all internal quantum numbers (not just electric charge), leaving momentum

and spin unchanged. The C operator also leaves a particle invariant when ap-

plied twice, yielding C = C−1 = C†. The combined operation CP changes a

particle to its anti-particle, reversing its momentum and helicity.

A final discrete space-time transformation we are concerned with is time re-

versal, T . An anti-unitary operator, T transforms (t, �x) → (−t, �x) interchang-

ing the forward and backward light cones and flipping the particle’s spin. Any

Lorentz-invariant quantum field theory with a Hermitian Hamiltonian must

have the combination CPT as an exact symmetry [14].

1.3 CP violation and cosmology

We have stated that one reason we are interested in studying CP violation is

to determine whether CP violating effects can be explained within the context

of the SM. In addition, there is an important cosmological motivation for un-

derstanding CP violation related to the observed preponderance of matter over
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antimatter in the universe [15]. No primordial antimatter has been observed

in the universe. The evidence for a matter dominated universe consists of null

searches for light antinuclei near the vicinity of the earth [16], observations of

cosmic rays that only contain antimatter consistent with secondary production

from collisions with interstellar matter, and the lack of an anomaly in the back-

ground γ ray spectrum that would have been enhanced by the annihilation of

matter and antimatter galaxies. These constraints have led to the conclusion

that on scales larger than 100 Mpc (1Mpc ∼ 3 · 1019 km) to 1 Gpc the universe

consists only of matter [17].

In 1967, Sakharov pointed out that this cosmological asymmetry could arise

dynamically during the evolution of the universe if three conditions are satisfied:

the existence of a baryon number violating mechanism, C and CP violation,

and a departure from thermal equilibrium in order to produce a net baryon

number [18]. It is natural to wonder whether the CP violation required to

explain this asymmetry can be provided by the CKM mechanism of the SM.

While an explanation of the argument is beyond the scope of this thesis, it

seems most theorists believe [19] that sources of CP violation beyond the SM

are required to produce the observed baryon number violation 5. Further, it

appears that this question is not even relevant since it has been shown that the

the third condition of a departure from thermal equilibrium cannot be fulfilled

within the SM [21].

Consequently, examinations of CP violation in the B meson system will

not directly shed light on the matter asymmetry of the universe. However,

theories that can explain this asymmetry must include additional sources of

CP violation [19]. These new sources are strongly constrained by current ex-

perimental results from CP violation in the kaon system and from the absence

of flavor changing neutral currents. Therefore, determining the pattern of CP

violation in the neutral B system may be extremely useful in excluding classes

5Models in which the CKM mechanism does receive a large enhancement at high temper-
atures (see Ref. [20]) are usually regarded as unconvincing.
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of SM extensions and indirectly lead to insights concerning the nature of the

cosmological matter asymmetry.

1.4 Discovery of CP violation

Following Fermi’s (incomplete) ansatz of vector-vector weak current cou-

pling in nuclear beta decay [22], most theoretical particle physicists believed

C, P , and T were conserved by all the Standard Model forces. However, after

surveying the evidence in 1956, Lee and Yang pointed out that experiments

had not yet tested parity invariance of weak decays [23]. Motivated by this

work, Wu et. al conducted an experiment where the spin of 60Co nuclei were

aligned with the direction of an externally applied magnetic field [24]. They

observed that electrons from the decay 60Co → 60Ni∗ + e− + νe were preferen-

tially emitted in the direction opposite to that of the external magnetic field

(see Fig. 1.1a). This observation can be explained if the weak decay couples a

helicity −1 electron with a helicity +1 antineutrino as shown in Fig. 1.1b. If

parity were conserved, one would observe both negative and positive helicity

electrons emitted in this decay process. Consequently, the Wu result indicated

that parity is violated in weak interactions. Further, according to Lee and

Yang’s work, the large value of the observed asymmetry suggested that charge

conjugation was also violated [23].

Subsequent experiments have revealed that parity and charge conjugation

are maximally violated in weak decays. This follows directly from the vector-

axial vector (V −A) structure of the weak current. However, a V −A current

that connects two quark fields transforms under CP to its hermitian conjugate

(taking the coupling constant to be real). Consequently, after parity and charge

conjugation invariance were separately shown to be violated in weak interac-

tions, most physicists still assumed that CP was an exact symmetry [25].
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(a)

60Co

ν

-e

=+1HJ

H

Observed

Parity

60Co

-e

ν

=+1HJ

H

Not Observed

(b)

Figure 1.1: (a) Asymmetry in the angular distribution of electrons from po-
larized 60Co decay. The electrons are preferentially emitted in the direction
opposite to the applied magnetic field ( �H) along which the 60Co nuclei are
polarized. As the experimental apparatus warms, the polarization becomes
random and the asymmetry vanishes; (b) The results can be explained if the
weak decay couples negative helicity electrons with positive helicity antineutri-
nos. The parity transformed version of the experiment is not observed.

1.4.1 Experimental confirmation of CP violation

Cronin, Fitch, Christenson, and Turlay falsified the assumption of CP sym-

metry in 1964 by detecting the decay of the long lived neutral kaon, termed

the K0
L

(the short lived kaon meson is called the K0
S
), to two charged pions. In

the absence of orbital angular momentum, the 2π and 3π final states of neutral

kaon decays have P of +1 and −1, C of +1 and +1, and consequently CP of

+1 and −1 respectively. Following the phase convention,

CP |K0〉 = |K0〉, (1.4.1)

it was thought that the neutral kaon mass eigenstates were also eigenstates of

CP :

|K0
S〉 =

√
1
2

(
|K0〉 + |K0〉

)
[CP = +1]

|K0
L
〉 =

√
1
2

(
|K0〉 − |K0〉

)
[CP = −1]

(1.4.2)

However, observing K0
L decays to 2π (CP = +1) final states with an probability

of ≈ 10−3, the experimenters demonstrated that nature violates CP conserva-

tion at a very small level. Cronin and Fitch subsequently received the Nobel
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Prize for this work in 1980. In his Nobel Prize lecture, Fitch interestingly

pointed out that there were “no precursive indications, either theoretical or

experimental” for their discovery [26].

1.4.2 Theoretical model for CP violation

In the same year of Cronin and Fitch’s remarkable observation, Cabibbo

began laying the theoretical foundation required for understanding CP viola-

tion [27]. He proposed that charged current interactions couple the u quark to

the rotated quark state d′, where

d′ = d cos θc + s sin θc (1.4.3)

and θc is referred to as the Cabibbo angle. This framework explains the sup-

pression of ∆S = 1 leptonic kaon decays (K+ → µ+νµ) relative to ∆S = 0

leptonic pion decays (π+ → µ+νµ); the decays have the same Feynman dia-

gram after making the quark substitution s → d. The sine of the Cabibbo

angle has been measured to be 0.22.

A three quark model (u,d, and s) coupling via Cabibbo mixing contains

significant contributions from flavor changing neutral currents (s → d transi-

tions). This implies a sizable branching fraction for the decay K0
L → µ+µ−.

The failure to observe this decay led Glashow, Iliopoulos, and Maiani (GIM)

to propose the existence of the c quark before its experimental discovery [28].

Building upon the mechanism of Cabibbo to include c→ s′ coupling, with⎛
⎝ d′

s′

⎞
⎠ =

⎛
⎝ cos θ sin θ

− sin θ cos θ

⎞
⎠
⎛
⎝ d

s

⎞
⎠ (1.4.4)

the decay K0
L
→ µ+µ− can proceed through two second order diagrams. The

diagrams are identical except for the substitution of a c quark for the virtual

u quark connecting the s and d of the K0
L as shown in Fig. 1.2 Neglecting the

mass difference of the u and c quarks, the diagrams destructively interfere,

with the relative minus sign coming from the − sin θ matrix element of 1.4.4,

yielding an overall null rate for the decay.
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Figure 1.2: Feynman diagrams which contribute to K0 → µ+µ−. Note that the
left and right diagrams are identical except for the quark substitution u↔ c.

1.5 The CKM matrix

In 1973, Kobayashi and Maskawa expanded the GIM mechanism of 1.4.4 to

include a third quark generation 6 in the commonly referred to CKM matrix:

⎛
⎜⎜⎜⎜⎝
d′

s′

b′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
d

s

b

⎞
⎟⎟⎟⎟⎠ . (1.5.1)

The matrix describes the coupling strength of weak charged quark currents. In

this section, we attempt to explain the origin of the CKM matrix in the SM in

terms of its fundamental connection to fermion masses. Then we show that the

CKM matrix has exactly one phase in a 3 quark generation universe. Finally,

we illustrate the manner in which this phase leads to CP violation in the SM.

1.5.1 Higgs mechanism origin

In the SM, fermionic masses are generated by Yukawa couplings between

left-handed fermion SU (2) doublets, right-handed singlets, and the Higgs dou-

6In fact, the expansion involved an arbitrary number of quark generations, but we restrict
our study to the experimentally established three families of the SM here.
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blet [29]:

LY = −∑
i,j

⎡
⎣Γij( p̄jL n̄jL )

⎛
⎝ φ+

φ0

⎞
⎠niR + ∆ij( p̄

j
L n̄jL )

⎛
⎝ φ0†

−φ−

⎞
⎠ piR + h.c.

⎤
⎦

(1.5.2)

where p (n) are the positively (negatively) charged quark fields, Γ and ∆ are

arbitrary complex matrices, φ0 and φ+ are the neutral and charged components

of the Higgs doublet respectively, i and j run over the three quark generations,

and L and R denote chiralities of −1 and +1 respectively. Charged current

interactions mediated by W bosons are given by:

Lcc =
g√
2

∑
i,j

[
W+
µ p̄

i
Lγ

µniL +W−
µ n̄

i
Lγ

µpiL
]

(1.5.3)

Expanding the Higgs doublet around its vacuum expectation value v, with

quantum fluctuations given by a Higgs field H(x),

φ =

⎛
⎝ φ+

φ0

⎞
⎠ =

1√
2

⎛
⎝ 0

v +H(x)

⎞
⎠ , (1.5.4)

we find that the mass terms of 1.5.2 become

Lmass = −∑
i,j

[
Γijn̄

j
Ln

i
R + ∆ij p̄

j
Lp

i
R + h.c.

] v√
2

(1.5.5)

The Yukawa coupling matrices, Γ and ∆, may be diagonalized by a unitary

transformation to the quark mass eigenstate basis (the physical basis) which

transforms the quark states according to:

piL = U ij
u u

j
L

niL = U ij
d d

j
L (1.5.6)

This transformation leads us to rewrite the charged boson current of 1.5.3 in

the quark mass basis as

Lcc =
g√
2

[
W+
µ ū

i
Lγ

µ
(
U †
uUd
)
ij
djL +W−

µ d̄
i
Lγ

µ
(
U †
uUd
)†
ij
ujL

]
(1.5.7)
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Consequently, flavor-changing weak interactions relate the uiL quarks with a

unitary transformation of the diL quarks where the rotation is given by the

CKM matrix of 1.5.1,

V = U †
uUd (1.5.8)

Defined as a product of unitary matrices, the CKM matrix is unitary by con-

struction. This framework elucidates the close connection between CKM ele-

ments and the generation of fermionic masses in the SM.

1.5.2 Parameter counting

To understand CP violation in the SM, it is necessary to determine how

many physical parameters this complex CKM matrix requires. In general, an

n×n complex matrix has 2n2 real parameters. Unitarity provides n constraints

from the normalization of each column and

2

(
n

2

)
= n(n− 1) (1.5.9)

constraints from the orthogonality of the columns. This leaves 2n2 −n−n(n−
1) = n2 real parameters. However, we are still free to attach an arbitrary phase,

qiL → exp [iαi] qiL, to each of the quark fields, thereby reducing the number of

phases in the CKM matrix. Examining the first term of 1.5.7 we see that the

freedom to rephase the ( dL sL bL ) quark fields allows us to make one row

of V real. Similarly, the freedom to rephase the ( uL cL tL ) fields, allows us

to make a column of V real. In general, then, we can remove 2n− 1 phases of

V in this manner (one of our column and one of our row elements must be the

same). This leaves us with

Nparam = n2 − (2n− 1) = (n− 1)2 (1.5.10)

physical parameters of V . An n × n matrix which is orthogonal has Nreal =

n(n − 1)/2 real parameters, sometimes referred to as Euler rotation angles.
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Consequently, an n generation CKM matrix has

Nphases = Nparam −Nreal

= (n− 1)2 − n(n− 1)/2

Nphases = (n− 1)(n− 2)/2

phases. Thus, in a 2 generation SM, V has no complex phase while it has

exactly one phase in a 3 generation SM. We will now explain the manner in

which this phase causes CP violation.

Let’s consider a flavor changing process in which a quark with negative

electric charge radiates a W− and a positively charged quark is created, dj →
W−ui. According to 1.5.7, this coupling is proportional to Vij. Of interest

is whether the Lagrangian remains invariant when we consider this process

after acting with the CP operator. It can be shown [30] that this process

transforms under CP to d̄j → W+ūi, with the coupling constant, Vij , remaining

unchanged. In order for the SM Lagrangian to be invariant under CP , this CP

conjugated term must be contained in Eq. 1.5.7 and should correspond to the

term representing the physically CP conjugate process. However, we find that

the physically CP conjugate process is given by the second term of 1.5.7 and

is proportional to V ∗
ij . Consequently, the SM Lagrangian is only CP invariant

if the CKM matrix is real. As has just been shown, a three generation CKM

matrix does not generally satisfy this requirement. More generally, we see that

a Lagrangian containing coupling terms with complex coefficients that have a

relative phase different from zero or π will not be CP invariant.

1.5.3 CKM parameterization

Parameterizing the CKM matrix by incorporating the constraints of three

generation unitarity and experimental observations proves useful in comparing

the relative strengths of different weak decays. As has been shown, rephasing

the quark fields allows us to remove the phase from five of the CKM elements.
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It then seems natural to parameterize the remaining elements in terms of three

Euler angles and one phase that cannot be eliminated by any additional rephas-

ings.

In 1983, Wolfenstein introduced an approximate parameterization of the

CKM matrix [31] in terms of an expansion in the sine of the Cabibbo angle,

λ = sin θc, which still remains useful. His novelty was incorporating the exper-

imental evidence that |Vcb| ∼ |Vus|2 which is not obvious a priori, as one might

naively guess that any single generation transition should be of the same order.

Wolfenstein’s parameterization

V =

⎛
⎜⎜⎜⎜⎝

1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

⎞
⎟⎟⎟⎟⎠+ O(λ4), (1.5.11)

where A is a constant of order unity, preserves unitarity to order λ3. The

experimental evidence that |Vub|/|Vcb| ∼ λ/2 implies that ρ and η should be

less than one. In this expansion, Vub and Vtd carry the complex phase. The

usefulness of this parameterization becomes apparent when we introduce the

unitarity triangle in the next section.

1.5.4 Unitarity triangle

Consider the orthogonality condition imposed on the first and third columns

of the CKM matrix:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.5.12)

We note that each term in the sum is of order λ3. This equation, first empha-

sized by Bjorken and Chau and Keung, can be interpreted as representing a

triangle in the complex plane as shown in the top of Figure 1.3 [32]. As all

the sides have comparable lengths, the angles of this triangle should be ap-

proximately π/3 radians each. Other triangles one may obtain by this same

procedure have equal area but two angles near zero and one angle near π as
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one side of the triangle is much larger than the others. To leading order in the

Wolfenstein parameterization,

VudV
∗
ub

|VcdVcb| = ρ+ iη (1.5.13)

VcdV
∗
cb

|VcdVcb| = −1 (1.5.14)

VtdV
∗
tb

|VcdVcb| = 1 − ρ− iη (1.5.15)

This result motivated the labeling of the vertices of the triangle shown in Fig-

ure 1.3. We note that while the overall orientation of the triangle is arbitrary,

the lengths of its sides and the angles between them remain unchanged after

a rephasing of the CKM matrix. The inner angles of the triangle are defined

by 7

α ≡ arg

(
− VtdV

∗
tb

VudV ∗
ub

)

β ≡ arg

(
−VcdV

∗
cb

VtdV
∗
tb

)

γ ≡ arg

(
−VudV

∗
ub

VcdV ∗
cb

)
(1.5.16)

Using this definition and the result z2/z1 = |z2/z1| exp[i(θ2 − θ1)], where zi =

|zi| exp(iθi), we can write

sin2β = Im

(
V ∗
cbVcd
VcbV

∗
cd

VtbV
∗
td

V ∗
tbVtd

)
(1.5.17)

which will be useful in our later discussions. As a phase invariant quantity,

the angle β is a physically meaningful parameter which, as we will show, can

be measured using neutral B decays to charmonium final states. First we will

discuss the various ways in which CP violation is manifested in the SM.

7These angles are also commonly labeled φ1, φ2, and φ3 in the literature.
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Figure 1.3: The CKM unitarity triangle: (a) the orthogonality condition of the
first and third columns of the CKM matrix may be represented in the complex
plane as a closed triangle as shown, whose overall orientation is arbitrary; (b)
we have rescaled the lengths of each side by |VcdV ∗

cb| and adopted a phase
convention in which VcdV

∗
cb is real and negative; (c) we have relabeled the sides

using the approximation Vud = Vtb = 1. Figure courtesy of Jeff Richman’s Les
Houches lectures [38].

1.6 Manifestations of CP violation

We have shown that in the SM with three generations the CKM matrix has

an irreducible phase which necessarily leads to CP violation. There are three
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ways this phase factor can be manifested: CP violation in direct decay, CP

violation in mixing, and CP violation in the interference between decay and

mixing. For this paper, we are most concerned with understanding this last

type of CP violation. However, as it incorporates elements of the first two types,

we will briefly describe the SM constraints which permit observation of all three

types. As will be shown, the essential ingredient common to all of these is

quantum mechanical interference between at least two amplitudes for a particle

transition. We will focus our discussion on the decay and mixing processes

of pseudoscalar P 0 and CP conjugate P 0 mesons. We assume that neither

is an eigenstate of CP . The following sections parallel work from additional

sources [29, 38, 39].

1.6.1 CP violation in decay

First, we consider the condition necessary to generate CP violation in decay

by comparing the decay rate Γ(P 0 → f) with Γ(P 0 → f). The CP transfor-

mation of the states |P 0〉, |P 0〉, and |f〉 is arbitrarily defined to be

CP |P 0〉 = eiζP |P 0〉 (1.6.1)

CP |P 0〉 = e−iζP |P 0〉 (1.6.2)

CP |f〉 = eiζf |f〉 (1.6.3)

We denote the transition matrix T and assume that CP is conserved in the

transition, [T, CP ] = 0. Then we find

〈f |T |P 0〉 = 〈f |(CP )†(CP )T (CP )†(CP )|P 0〉 (1.6.4)

〈f |T |P 0〉 = ei(ζP −ζf )〈f |T |P 0〉 (1.6.5)

Defining the amplitude A as A ≡ A(P 0 → f) = 〈f |T |P 0〉 and A ≡ A(P 0 →
f) = 〈f |T |P 0〉, we find that a phase independent requirement of CP invariance

in decay is ∣∣∣∣∣AA
∣∣∣∣∣ = 1 (1.6.6)
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There are three types of phases which one encounters in transition amplitudes

that are traditionally referred to as weak, strong, and spurious phases. A

weak phase is defined to be one which changes signs when one moves from the

transition amplitude for a given process to the amplitude for the CP conjugate

process, relating it to the product of CKM matrix elements. A strong phase

is one which has the same sign in the two processes. Strong phases originate

from final-state interaction scatterings from on-shell states. Having no physical

relevance, spurious phases are global conventional relative phases between an

amplitude and its CP conjugate amplitude resulting from the assumed CP

transformation of the field operators as shown in Eq. 1.6.3.

We now assume that the amplitude A is the sum of amplitudes Aj corre-

sponding, for example, to different Feynman diagrams for the process. We also

assume that each amplitude contains a strong and weak phase eiδj and eiφj

respectively:

A =
∑
j

|aj |eiδjeiφj (1.6.7)

Then according to our previous discussion, we may write

A

A
=

∣∣∣∣∣
∑
j |aj |ei(δj−φj)∑
j |aj |ei(δj+φj)

∣∣∣∣∣ , (1.6.8)

which can alternatively be expressed as

|A|2 − |A|2 = 2
∑
i,j

|ai||aj| sin(φi − φj) sin(δi − δj). (1.6.9)

Thus, one sees that it is necessary to have interfering amplitudes with both

non-zero strong and weak relative phase differences in order to observe CP

violation in direct decay.

1.6.2 Mixing of neutral mesons

Before discussing CP violation in mixing, it is necessary to review the SM

formalism regarding the oscillations of neutral mesons. We continue to use the
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notation P 0 and P 0 to refer to a generic pseudo-scalar meson (possibly a K0,

D0, B0, or Bs) and its anti-particle. Neglecting the weak force, the P 0 and P 0

mesons would be stable and have the same mass. Decays to real and virtual

final states and mixing between the P 0 and P 0 are governed by the weak force.

Generally, we can represent any state in the system by

a(t)|P 0〉 + b(t)|P 0〉 +
∑
n

cn|n〉 (1.6.10)

However, we use an approximation first derived by Wigner and Weisskopf [33]

in which we write the time evolution of the wave function without explicitly

displaying the decays to the states |n〉 as

i
d

dt

⎛
⎝ ψ1

ψ2

⎞
⎠ =

⎛
⎝ T11 T12

T21 T22

⎞
⎠
⎛
⎝ ψ1

ψ2

⎞
⎠ (1.6.11)

In this approximation the Hamiltonian matrix T is not Hermitian. We repre-

sent this matrix as

T = M− i

2
Γ (1.6.12)

where M and Γ are hermitian matrices governing the mass and lifetime of the

P 0 and P 0 respectively. The elements of these matrices are determined using

second-order perturbation theory to be

Mij = m0δij + 〈i|Hw|j〉 +
∑
n

P 〈i|Hw|n〉〈n|Hw|j〉
m0 −En

(1.6.13)

Γij = 2π
∑
n

δ(m0 −En)〈i|Hw|n〉〈n|Hw|j〉 (1.6.14)

where Hw contains the weak interactions inducing mixing and decay and P
indicates that we are to take the principal value of the sum over intermediate

states to avoid the singularities where m0 = En. Note, from these definitions

and the matrix structure of 1.6.11, that indices i and j run over 1 and 2

where 1 ≡ P 0 and 2 ≡ P 0. The off-diagonal elements of M are determined

by transitions through off-shell virtual intermediate states (second-order weak

transitions in the SM) whereby P 0 ↔ P 0 and P 0 ↔ P 0. Note that the 〈i|Hw|j〉
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transition amplitudes are zero in the SM since there are no first order ∆Flavor =

2 processes (where an f quark is destroyed and an f quark is created). The off-

diagonal elements of Γ are given by on-shell transitions through real physical

states to which both P 0 and P 0 decay. CPT invariance requires M11 = M22 and

Γ11 = Γ22 [29] which agrees with our intuition that P 0 and P 0 have the same

mass and lifetime in the flavor basis. This enables us to write the Hamiltonian

as

T =

⎛
⎝ M M12

M∗
12 M

⎞
⎠− i

2

⎛
⎝ Γ Γ12

Γ∗
12 Γ

⎞
⎠ (1.6.15)

To determine the time evolution of the P 0 P 0 system we first solve for the

eigenvalues of the Hamiltonian and find

µ± = T11 ± (T12T21)
1/2

=
(
M ± Re(T12T21)

1/2
)
− i

2

(
Γ ∓ 2Im(T12T21)

1/2
)

= M± − i

2
Γ± (1.6.16)

where we have defined M± and Γ± by the bracketed expressions in the second

equation. We label the physical mass eigenstates with a subscript + and -

to refer to the heavy and light one respectively, which follows the standard

convention in the B system (in the K system it is customary to distinguish

between the states by their lifetimes). Choosing a relative phase convention,

we write the mass eigenstates as

|P+〉 = N
(
p|P 0〉 + q|P 0〉

)
|P−〉 = N

(
p|P 0〉 − q|P 0〉

)
(1.6.17)

where N = 1/
√
|p|2 + |q|2. At this point we drop the overall normalization

since it does not play any role in the following discussion. The mass and width

difference between our neutral mesons is given by

∆m ≡ M− −M+ = mH −mL

∆Γ ≡ Γ− − Γ+ = ΓH − ΓL
(1.6.18)
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where ∆m is positive by definition (the sign of ∆Γ needs to be determined

from experiment). Solving for the eigenvector components, we find

α ≡ q

p
=
(
T21

T12

)1/2

=

(
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

)1/2

(1.6.19)

1.6.3 CP violation in mixing

We shall shortly employ these results to describe the time evolution of the

P 0 P 0 system, but first we examine the condition necessary for the system to

violate CP conservation by mixing. We define normalized states of definite CP

by

|PCP=±〉 =
1√
2

(
|P 0〉 ± eiζ |P 0〉

)
(1.6.20)

where the kets |PCP=±〉 are eigenstates of the CP transformation given by 1.6.3

corresponding to ±1 eigenvalues. The CP operator commutes with the Hamil-

tonian only if CP is conserved. This implies that the mass eigenstates are also

eigenstates of CP . By inspection with the definition of the mass eigenstates

given in Eq. 1.6.17, we observe that the mass eigenstates will only be eigen-

states of CP if α is a pure phase. Thus, the condition that CP be violated in

mixing is equivalent to

|α| =

∣∣∣∣∣qp
∣∣∣∣∣ 
= 1 (1.6.21)

One can use Eq. 1.6.19 to show that this condition requires M12 and Γ12 to be

collinear in the complex plane in order for CP to be conserved, a surprisingly

simple condition given the potential number of real and virtual states available.

1.6.4 Time evolution of neutral mesons

We would now like to determine the time evolution of the P 0 P 0 system.

Recalling the form of the propagator in quantum mechanics, we write the evo-

lution of the mass eigenstates as

|P±(t)〉 = P±(0)e−iµ±t|P±〉 (1.6.22)
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where P±(0) are the amplitudes at time zero. We’d like to determine the

time evolution of the flavor eigenstates in terms of the flavor basis for reasons

which will become clear shortly. After some algebraic manipulation, inverting

Eq. 1.6.17 and eliminating the mass eigenstates, we find

|P 0(t)〉 = f+(t)|P 0〉 + αf−(t)|P 0〉
|P 0(t)〉 =

1

α
f−(t)|P 0〉 + f+(t)|P 0〉 (1.6.23)

where

f± = e−iM+te−Γ+t/2 ± e−iM−te−Γ−t/2 (1.6.24)

and we assumed that our initial state was either pure P 0 or P 0. From this

expression, we may calculate time dependent mixing probabilities. We find

that the oscillation probability, or the probability to have a P 0 at time t given

a P 0 at time zero is

Prob(P 0 → P 0) =
1

4
|α|2

[
e−Γ+t + e−Γ−t − 2e−Γt cos(∆mt)

]
(1.6.25)

where Γ = (1/2)(Γ+ + Γ−). The expression for the probability of a P 0 to

oscillate to a P 0 may be found by letting α → α−1 in the above expression.

The probability to have a P 0 at time t given a P 0 at time zero, or the probability

not to have mixed, is given by

Prob(P 0 → P 0) =
1

4
|α|2

[
e−Γ+t + e−Γ−t + 2e−Γt cos(∆mt)

]
(1.6.26)

This unmixed probability is the same for a P 0 and P 0 because of CPT sym-

metry.

1.6.5 Mixing phenomenology in the B0 system

Thus far we have been completely generic in our discussion of the P 0 meson.

However, for the purposes of this thesis we are interested in the simplifications

that arise when we take the P 0 to be a B0 meson, which is also referred to
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as the B0
d or Bd meson . In the Bd system, it is expected that the lifetime

difference is negligible relative to the meson lifetime,

∆Γ

Γ
∼ O(1%) (1.6.27)

Recall that the difference in width is generated by decays to real states that

both the B0 and B0 can reach. The branching fractions of these decays should

be dominated by SM tree diagrams [34] which are not larger than 10−3. Ad-

ditionally, the amplitudes for these processes will interfere causing some can-

cellation in the sum. Consequently, ∆Γ and Γ12 are expected to be very small

allowing us to simplify our previous results by setting Γ± = Γ and ∆Γ = 0.

Experimental measurements have found [11] that

∆m/Γ = 0.755 ± 0.015 (1.6.28)

indicating that model independently we may expect Γ12 � M12 [34]. To set

the scale for equations which will follow, we note that the B0 mixing frequency

has been measured to be

∆m = (0.489 ± 0.008)h̄ps−1 (1.6.29)

Furthermore, within the SM, we may calculate M12 and Γ12 as a cross-

check to verify these approximations. The off-shell mixing amplitudes given

by second order W -exchange box diagrams which contribute to M12, shown in

Fig. 1.4, are dominated in the SM by virtual top quarks running through the

loops [35]:

M12 =
G2
F

12π2
mBm

2
W ηBBBf

2
B(VtbV

∗
td)

2S0(xt) (1.6.30)

where xt = m2
t/m

2
W , ηB = 0.55 is a QCD correction, BBf

2
B parameterizes the

hadronic matrix element, and S0 is a kinematic factor given approximately

by [36]

S0 = 2.4
(

mt

170GeV

)1.52

(1.6.31)
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Figure 1.4: B0 B0 mixing diagrams.

Using a calculation of Γ12 [37], we find that∣∣∣∣ Γ12

M12

∣∣∣∣ = O(m2
b/m

2
t ) � 1 (1.6.32)

as expected.

These results have important implications for the observation of CP viola-

tion in mixing in the Bd system. We recall that the condition for this type of

CP violation is that |α| 
= 1. Using the condition in Eq 1.6.32 and our definition

of α from 1.6.19, we find

α =

(
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

)1/2

≈
(
M∗

12

M12

)1/2

(1.6.33)

which means that |α| = 1 holds to O(m2
c/m

2
t )[35]. Therefore, one does not

expect to observe CP violation in mixing in the Bd system. The world averaged

measurement of this quantity agrees, finding zero CP violating effects in mixing

in the Bd system with a precision of less than 0.5% [11]. We also find, using

the calculation of M12 given in 1.6.30,

α =
V ∗
tbVtd
VtbV

∗
td

= e−2iφM (1.6.34)

where we have defined 2φM as the CKM phase of the B0 B0 mixing diagram

shown in Fig. 1.4. Using the approximations derived in this section(|α| = 1 and

Γ± = Γ), we may write the time-dependent formula for the mixing probabilities

given by 1.6.25 and 1.6.26 in the Bd system as

Prob(mixed) =
1

2
e−Γt [1 − cos(∆mt)] (1.6.35)

Prob(unmixed) =
1

2
e−Γt [1 + cos(∆mt)] (1.6.36)
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1.6.6 CP violation in mixing and decay

We may now use results from the previous sections to describe CP viola-

tion in the interference between mixing and decay, the type most relevant for

this thesis. We shall focus on the time-evolution of the decays of B0 and B0

mesons into common final CP eigenstates. We begin by rewriting the time de-

pendence of our flavor states in the Bd system using the approximations found

in section 1.6.5:

|B0(t)〉 = e−iMte−iΓt/2
[
cos(∆mt/2)|B0〉 + iα sin(∆mt/2)|B0〉

]
(1.6.37)

|B0(t)〉 = e−iMte−iΓt/2
[
(i/α) sin(∆mt/2)|B0〉 + cos(∆mt/2)|B0〉

]
(1.6.38)

where we have used M = (1/2)(M+ +M−). We define the amplitudes for a B0

and B0 to a decay to the same final CP eigenstate fCP as

AfCP
≡ 〈fCP |B0〉, AfCP

≡ 〈fCP |B0〉 (1.6.39)

where the CP eigenvalue of fCP is given by ηfCP
= ±1. We also define the

phase invariant quantity λfCP
as

λfCP
≡ α

AfCP

AfCP

(1.6.40)

Under a rephasing of the quark fields α, AfCP
, and AfCP

will change phases.

However, it is straightforward to show that this rephasing cancels in the ratio.

With these definitions, we find that the amplitudes (Amp) of the B0 and

B0 decays to fCP are given by

Amp(B0(t) → fCP ) = e−iMte−Γt/2
[
AfCP

cos
(

∆mt

2

)
+ iαAfCP

sin
(

∆mt

2

)]

Amp(B0(t) → fCP ) = e−iMte−Γt/2
[
iαAfCP

sin
(

∆mt

2

)
+ AfCP

cos
(

∆mt

2

)]

After some trigonometric substitutions and simplification using our above def-

initions, the time-dependent probability for an initial B0 or B0 to decay to a
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CP eigenstate is found to be 8

Γ(B0(t) → fCP ) = |AfCP
|2e−Γt ×

[
1 + |λfCP

|2
2

+
1 − |λfCP

|2
2

cos(∆mt) −�λfCP
sin(∆mt)

]

Γ(B0(t) → fCP ) = |AfCP
|2e−Γt ×

[
1 + |λfCP

|2
2

− 1 − |λfCP
|2

2
cos(∆mt) + �λfCP

sin(∆mt)

]
(1.6.41)

where again we have used |α| = 1. A time-dependent CP asymmetry may be

defined as 9

ACP (t) ≡ Γ(B0(t) → fCP ) − Γ(B0(t) → fCP )

Γ(B0(t) → fCP ) + Γ(B0(t) → fCP )
(1.6.42)

Substituting our previous expressions for the decay probabilities, we find

ACP (t) = −1 − |λfCP
|2

1 + |λfCP
|2 cos(∆mt) +

2�λfCP

1 + |λfCP
|2 sin(∆mt) (1.6.43)

We see that CP violation in interference between mixing and decay can be

written as the sum of a cosine and sine term, where the coefficient of the cosine

term is a function of |λfCP
| and the coefficient of the sine term is a function of

�(λfCP
)/|λfCP

|. It is often written in the literature that a non-zero coefficient

of the cosine terms probes direct CP violating effects (note that the coefficient

vanishes when |λfCP
| = 1). Since we have already found in the Bd system that

|λfCP
| = |α| ·

∣∣∣∣∣AfCP

AfCP

∣∣∣∣∣ =
∣∣∣∣∣AfCP

AfCP

∣∣∣∣∣ (1.6.44)

one sees then that this statement merely reflects the condition that |AfCP
| 
=

|AfCP
| which was shown to be the condition for direct CP violation in sec-

tion 1.6.1.

8We follow the convention of using Γ to represent the amplitude for a decay process even
though we are also using it to represent the inverse lifetime of the B0. Context should make
the symbol meaning evident.

9Please note that the literature has not converged on a convention for the sign of this
asymmetry.
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Also, it was shown, if there is only one weak phase which contributes to the

B0 and B0 decay to the final state (either because there is only one amplitude

or because all the amplitudes carry the same phase), that |AfCP
| = |AfCP

| and

|λfCP
| = 1. In this case, the time-dependent asymmetry simplifies to

ACP (t) = �λfCP
sin(∆mt) (1.6.45)

In order to evaluate the phase of λfCP
, we recall from Eq 1.6.34 that α con-

tributes the weak mixing phase difference, e−2iφM . Then, for this special case

where only one weak phase (defined as eiφD) contributes to the decay to the

final CP eigenstate, it can be demonstrated [34] that

AfCP

AfCP

= ηfcpe
−2iφD (1.6.46)

We combine these results, finding

λfCP
= α

AfCP

AfCP

= ηfcpe
−2i(φD+φM ) (1.6.47)

Thus, λfCP
depends only on the sum of the weak mixing and decay phases which

are directly dependent on CKM matrix elements. Both of these phases rotate

under a rephasing of the quark fields but their sum still remains invariant. It is

rather fortuitous that all hadronic elements and strong phases have vanished,

allowing the time-dependent asymmetry to depend solely on the CKM param-

eters we had hoped to measure. Remember that the cancellation occurred

because of the non-intuitive constraint we imposed on direct CP violation in

Eq 1.6.9: namely that there must be both strong and weak relative phase differ-

ences in order for direct CP violation to be manifested in nature. The relative

weak phase difference when only one weak phase contributes is trivially zero

and even though strong decay phase differences may exist, the hadronic uncer-

tainties associated with these phases are not relevant to the CP asymmetry.

Combining these results, the time-dependent CP asymmetry becomes

ACP (t) = −ηfCP
sin(2(φM + φD)) sin(∆mt) (1.6.48)
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1.7 The golden decay B0 → J/ψK0
S

The decay B0 → J/ψK0
S

is often called “golden” because of its usefulness,

both theoretical and experimental, in measuring CP violation in the interfer-

ence between mixing and decay. The decay has a large branching fraction

(∼ 10−4), relative to other B0 decays to CP eigenstates, with a clear signature

and small backgrounds. We will quantify these statements in Chapter 4. Mean-

while, we will elucidate the value of this mode from a theoretical perspective.

1.7.1 Evaluating λJ/ψK0
S

We developed a rather succinct expression ( 1.6.48) for CP violation in in-

terference in the preceding sections which was predicated on the assumption

that only one amplitude contributed to the decay to the final state. We first

check the validity of this assumption for the golden mode B0 → J/ψK0
S
. The

Feynman diagrams for this decay are illustrated in Fig. 1.5. The color sup-

pressed tree decay is shown on the left and the gluonic penguin decays on the

right. The quark content of the tree decay is given by a b → ccs transition.

The term color suppression refers to the fact that the W− must decay to a cs

pair which carry the correct color for hadronizing into separate mesons (the s

with the spectator d quark and the c with the c quark from the b decay) with

zero net color. We are interested in understanding the amount each diagram

contributes to the final decay amplitude.

The CKM phase associated with the tree diagram is given by VcbV
∗
cs. There

are three terms which contribute to the penguin amplitude depending on whether

a u, c, or t quark is running through the loop. We write the sum of the ampli-

tudes (including the tree as)

A(ccs) = VcbV
∗
cs(Tccs + P c

s ) + VtbV
∗
tsP

t
s + VubV

∗
usP

u
s (1.7.1)

where Tccs denotes the tree amplitude and P q
s represent a penguin amplitude

with a q = u, c, t in the loop. We use the orthogonality constraint from the
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Figure 1.5: Feynman diagrams for the (left) color suppressed tree and (right)
gluonic penguin decays for B0 → J/ψK0

S . Appendix A explains why the J/ψ
couples to three gluons but not one or two.

second and third columns of the CKM matrix,

VcbV
∗
cs + VtbV

∗
ts + VubV

∗
us = 0 (1.7.2)

to eliminate VcbV
∗
ts from the last equation. Then Eq. 1.7.1 becomes

A(ccs) = VcbV
∗
cs(Tccs + P c

s − P t
s) + VubV

∗
us(P

u
s − P t

s) (1.7.3)

We see that there are two weak phases which contribute to the decay B0 →
J/ψK0

S . Using the Wolfenstein parameterization 10 given in 1.5.11, we find

that the magnitude of the ratio of the CKM factors associated with the pure

penguin to penguin plus tree amplitudes is

∣∣∣∣∣VubV
∗
us

VcbV ∗
cs

∣∣∣∣∣ =
∣∣∣∣∣Aλ

4(ρ− iη)

Aλ2

∣∣∣∣∣ = λ2
√
ρ2 + η2 ∼ λ2 (1.7.4)

where we have neglected terms O(λ4).

Further, while the calculation of penguin amplitudes is problematic, it has

been shown that the differences of penguin amplitudes are finite and well-

defined [30]. The ratio of the contribution from the difference between a top

and light quark penguin to the contribution from a tree diagram is of order

RPT =
P t − P light

T
∼ αS

12π
ln
m2
t

m2
b

∼ O(0.03) (1.7.5)

10Remember that here λ = sin θc. It has nothing to do with λfCP discussed previously.
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Consequently, we find that the second term of Eq. 1.7.3 is suppressed rela-

tive to the first by RPTλ
2. This implies then that the decay B0 → J/ψK0

S

has effectively one decay amplitude (VcbV
∗
cs), meaning that the time-dependent

asymmetry derived in 1.6.48 is free of hadronic uncertainties to O(10−3). As

will now be shown, this decay allows for the theoretically cleanest measurement

of a CKM parameter to date [30].

As we have justified the expression for λfCP
given by Eq. 1.6.47, we now cal-

culate λfCP
for the CP eigenstate J/ψK0

S . This means we need to determine the

CP eigenvalue of the final state, the mixing amplitude, and decay amplitude.

Most of this work has already been done.

We first determine the CP eigenvalue of the state. Since the B0 is a scalar

particle, the J/ψ is a vector particle (with spin = 1), and the K0
S

is a scalar,

there must exist one unit of orbital angular momentum between the J/ψ and

K0
S

to conserve angular momentum in the decay. This adds a multiplicative

factor of (−1) when determining the parity eigenvalue of the final state since

P = (−1)L, where L is the orbital angular momentum. Ignoring the small

amount CP violation of the kaon system, the K0
S

is an eigenstate of positive

CP as is the J/ψ . Thus the CP eigenvalue of the final state is found to be

ηJ/ψK0
S

= (−1) CP (K0
S
) CP (J/ψ ) = −1 (1.7.6)

We have already found that the mixing phase of the Bd system, is given by

e−2iφM =
M∗

12

M12
=
VtdV

∗
tb

V ∗
tdVtb

(1.7.7)

Further, we have just shown that the single dominant decay amplitude con-

tributes a phase factor

e−2iφD =
VcbV

∗
cs

V ∗
cbVcs

(1.7.8)

There exists a complication that has been overlooked so far in this calcu-

lation. We originally stated that we were concerned with decays to a final CP

eigenstate that were common to both the B0 and B0. However, the B0 decays

to J/ψK0 while the B0 decays to J/ψK
0
. The resolution comes from the fact
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that there is mixing in the neutral kaon system just as in the B system so

that decays through both a K0 and K0 can lead to a K0
S

in the final state.

Incorporating this fact will add the mixing phase from the kaon system to our

calculation of the weak decay phase. To be precise,

AJ/ψK0
S

AJ/ψK0
S

=
〈K0

S
|K0〉〈J/ψK0|T |B0〉

〈K0
S
|K0〉〈J/ψK0|T |B0〉 =

〈K0
S
|K0〉

〈K0
S
|K0〉

VcbV
∗
cs

V ∗
cbVcs

(1.7.9)

Writing the analog of Eq. 1.6.17 for the neutral kaon system as

〈K0
S
| = p∗〈K0| + q∗〈K0| (1.7.10)

our ratio of decay amplitudes becomes

AJ/ψK0
S

AJ/ψK0
S

=

(
q∗

p∗

)
K

VcbV
∗
cs

V ∗
cbVcs

(1.7.11)

The CKM elements which dominant K0 K0 mixing have been found to be

V ∗
csVcd [35]. This calculation is not trivial as there is competition from the

CKM suppressed term V ∗
tsVtd since it receives a kinematic enhancement. Recall

that in the calculation of the mixing phase in the B system that each loop

term carried a CKM phase of the same order so the top enhancement clearly

dominated.

We combine these results to find:

λJ/ψK0
S

= ηJ/ψK0
S
e−2iφM e−2iφD

(
q∗

p∗

)
K

(1.7.12)

= (−1)

(
VtdV

∗
tb

V ∗
tdVtb

)(
VcbV

∗
cs

V ∗
cbVcs

)(
VcsV

∗
cd

V ∗
csVcd

)
(1.7.13)

= −
(
VtdV

∗
tb

V ∗
tdVtb

VcbV
∗
cd

V ∗
cbVcd

)
(1.7.14)

λJ/ψK0
S

= −e−2iβ (1.7.15)

where we have used the definition of β from 1.5.16. In order to find the time-

dependent asymmetry we note �(λJ/ψK0
S
) = sin2β yielding

ACP (t) = sin2β sin(∆mt) (1.7.16)
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For completeness, we also show the time-dependence of the B0 and B0 decays

to J/ψK0
S
:

ΓB0→J/ψK0
S
(t) = |AJ/ψK0

S
|2e−Γt [1 − sin2β sin(∆mt)] (1.7.17)

ΓB0→J/ψK0
S
(t) = |AJ/ψK0

S
|2e−Γt [1 + sin2β sin(∆mt)] (1.7.18)

where t is measured in the rest frame of the B and the meson was in the state

|B0〉 or |B0〉 respectively at time zero.

1.8 Measuring CP violation at BABAR

The discussion thus far has avoided addressing the non-trivial experimental

issues concerning creating copious amounts of B mesons, detecting their decay

products, and measuring their proper decay times in order to measure CP

violation. These issues are addressed in the following sections leading to a

slight refinement of some results already obtained. More detailed accounts of

the experimental setup will follow in subsequent chapters.

1.8.1 Coherent B meson production at the Υ (4S)

The PEP-II asymmetric-energy B Factory [40] at SLAC operates by collid-

ing electrons and positrons at a center of mass energy near the Υ (4S) mass.

The Υ (4S) is a bound bb vector meson whose mass lies above the threshold for

decaying into B mesons. The Υ (4S) decays to B0 B0 pairs and B+ B− pairs

about 50% of the time each. Since the Υ (4S) is produced through coupling to

a virtual photon (C = −1), and since the electromagnetic interaction conserves

C, the wave function of the B0 B0 pair must also be an eigenstate of C with

eigenvalue −1. We write the total wave-function in the rest frame of the Υ (4S)

as,

|Ψ(t1, t2〉C=−1 =
1√
2

[
|B0(t1);�k〉 ⊗ |B0(t2);−�k〉 − |B0(t1);�k〉 ⊗ |B0(t2);−�k〉

]
(1.8.1)
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where �k (−�k) is the three-momentum of the right (left) moving meson. We

substitute previous expressions from 1.6.38 for the time-dependence of |B0(t)〉
and |B0(t)〉 and find [38]

|Ψ(t1, t2〉C=−1 =
1√
2
e−iM(t1+t2)e−Γ(t1+t2)/2

×
[
cos (∆m(t1 − t2)/2)

(
|B0;�k〉 ⊗ |B0;−�k〉 − |B0;�k〉 ⊗ |B0;−�k〉

)
−i sin (∆m(t1 − t2)/2)

(
1

α
|B0;�k〉 ⊗ |B0;−�k〉 − α|B0;�k〉 ⊗ |B0;−�k〉

)]

Up until the time one of the mesons decays, t1 = t2 and the previous equation

contains only a |B0;�k〉 |B0;−�k〉 or |B0;�k〉 |B0;−�k〉. The notation is somewhat

cumbersome but the point is that the Bs are evolving coherently. At any given

instant before either decay, if one B is known to be a B0 then the other B

must be a B0 at that instant. Consequently if at time ttag = t1 one B decays to

some final state which uniquely identifies its flavor as a B0, the other meson is

known to be a B0 and will evolve forward in time as |B0(t2−ttag)〉. We connect

this fact to our prior work by considering the probability of the B0 decaying

at time tCP to an eigenstate of CP while the B0 decays at time ttag to a state

which uniquely identifies its flavor (thus the amplitude for the B0 to decay to

this state is zero). This yields

P (tCP , ttag) = Ne−Γ(tCP +ttag)|ACP |2|Atag|2
{
1 + |λfCP

|2 (1.8.2)

+ (1 − |λfCP
|2) cos [∆m(tCP − ttag)] − 2�(λfCP

) sin [∆m(tCP − ttag)]
}

This is basically the same time-dependent behavior that was found in Eq. 1.6.41.

Choosing the B0 to decay to a CP eigenstate and the B0 to decay to a state

which tags its flavor flips the sign of both the cosine and sine coefficient in

the previous equation. Then, the generalization of the time-dependence for

an event where one meson’s flavor is tagged and the other decays to the CP

eigenstate J/ψK0
S is given by

f± =
Γ

4
e−Γ|∆t| {1 ± sin2β sin(∆m∆t)} (1.8.3)
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where ∆t = tCP − ttag and the + or − label indicates whether the tagging

meson was a B0 or B0 respectively. Fig. 1.6 shows the difference in time

distributions for B0 and B0 tags using a value of 0.75 for sin2β. The time-

dependent asymmetry becomes

ACP (∆t) = sin2β sin(∆m∆t) (1.8.4)

We notice that the asymmetry is now a function of the difference of the proper

time decays of the two mesons. If one was unable to measure the time of the

tag, ttag, relative to the time of the decay, tCP , the asymmetry would vanish

because the integral of 1.8.4 over the range [−∞,∞] is null. Thus, in order to

obtain information about the parameter sin2β we must be able to resolve the

time difference between the two B meson decays.
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Figure 1.6: Distribution of ∆t for B0 (solid) and B0 (dashed) tagged CP events
using an input value of 0.75 for sin2β with a) perfect tagging and ∆t resolution,
and b) typical mistag rates and ∆t resolution. Note that the asymmetry of the
B0 and B0 distributions with respect to ∆t = 0 results from CP violation in
the interference between decay and mixing.

1.8.2 Experimental challenges

In the preceding section, we mentioned three aspects necessary to observe

CP violating effects in an Υ (4S) detector environment: (1) the production of

large quantities of B0 B0 pairs; (2) the ability to tag the flavor of a neutral

meson (Btag) when it decays; and (3) the ability to measure the proper decay

time difference between the Btag and a meson which decays to a CP eigenstate
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(BCP ). To produce the large quantities of mesons needed, B-factory machines

make luminosity (number of colliding beam particles per cross-sectional area

per second) their highest priority. The specifics of how the PEP-II accelerator

optimizes its beam parameters to achieve this goal will be detailed in Chapter 2.

The second and third conditions have important experimental consequences

that we will expand upon.

Recall that a B0 meson has a bd quark content while a B0 has a bd quark

content. The different flavors of this initial heavy b quark lead to different

final states accessible to the B0 and B0. Semi-leptonic decays, for example,

proceed through the emission of aW− (W+) by the b(b) resulting in a negatively

(positively) charged high energy lepton in the final state. Detection of this

lepton allows one to determine the flavor of the decaying meson. The additional

handles one uses to tag, such as the charge of kaons and the charge of pions

from D∗ decays, will be discussed further in Chapter 5.

The tagging algorithm has a non-negligible probability of determining the

Btag flavor incorrectly which we term the mistag rate w. The ∆t probability

distribution function of CP events given by Eq. 1.8.3 changes as a result:

f± =
Γ

4
e−Γ|∆t| {1 ± (1 − w) sin2β sin(∆m∆t) ∓ w sin2β sin(∆m∆t)}

=
Γ

4
e−Γ|∆t| {1 ± (1 − 2w) sin2β sin(∆m∆t)} (1.8.5)

Defining the dilution 11 factor, D = (1 − 2w), the measured time-dependent

asymmetry becomes

ACP (t) = D sin2β sin(∆md∆t) (1.8.6)

The dilution also plays an important role in terms of the measurement’s preci-

sion as will also be explained in Chapter 5.

We have shown that one must measure the proper decay-time difference,

∆t, in order to measure CP violation. As the sum of masses of two B mesons

11The term dilution is somewhat counter-intuitive as the best tagging algorithm has a
dilution of one and the worst a dilution of zero.
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approximately equals the Υ (4S) mass, the Bs from the Υ (4S) decay have mo-

menta in the Υ (4S) frame which is only ∼ 350 MeV/c (implying γβ ∼ 0.07).

Therefore, if the Υ (4S) and detector rest frames are the same, the mean sepa-

ration between the two B meson vertices will be about 60µm, a distance too

small to be resolved with today’s detectors.

To circumvent this problem of the B mesons decaying too near each other

in the detector frame, one builds asymmetric e+e− colliders where one of the

beams carries significantly larger energy than the other. At PEP-II, the Υ (4S)

is produced moving along with the beam direction (z axis) with an average

Lorentz boost 〈γβ〉 = 0.55. Therefore, the proper decay-time difference ∆t is,

to an excellent approximation, proportional to the distance ∆z between the

two B0-decay vertices along the axis of the boost,

∆t ≈ ∆z

c〈γβ〉 (1.8.7)

The average separation of the two B decay vertices is then ∆z = ∆t〈γβ〉cτB0 ∼
260µm while the RMS ∆z resolution of the detector is about 180µm. Con-

sequently, we are able to resolve the difference in the z vertex separation of

the mesons which allows the CP asymmetry to be measured. Additionally,

the finite resolution of the detector plays an important role in measuring this

quantity. The methods by which this resolution is determined will be explained

in Chapter 6. Figure 1.6 shows the effects of typical mistags and ∆t detector

resolution on the ∆t distribution for tagged CP events.

1.9 Constraints on the unitarity triangle

Our main goal is to understand whether the KM mechanism can adequately

describe CP violation in the B system where it has not yet been tested. From

Fig. 1.3, we see that a measurement of sin2β constrains the apex of the unitarity

triangle whose area represents the size of the CP violating interference terms.

There are other constraints on the apex of this triangle which result from both
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CP conserving and CP violating processes. We detail those constraints now

so that we may subsequently evaluate how well they agree with the measured

value of sin2β that we report in this thesis. This then accomplishes our goal

of determining the consistency of the KM mechanism with CP violation in the

B system.

The Wolfenstein parameterization of the CKM matrix given in Eq. 1.5.11

labels the four free CKM parameters A, λ, ρ, and η. We first note that the

CKM elements of the upper left-hand 2×2 sector which govern first and second

generation flavor transitions have been measured using tree level semileptonic

decays to a precision of ≤ 7%. Specifically, measurements of semi-leptonic

neutral and charged kaon decays yield

λ = |Vus| = 0.2196 ± 0.0026. (1.9.1)

One sees by inspection of the parameterization that A = |Vcb|/|Vus|2. Heavy

quark effective theory [41] provides a mostly model-independent treatment of

semileptonic B decays to charmed mesons which has been used to calculate

|Vcb| = (41.2 ± 2.0) × 10−3, (1.9.2)

which in conjunction with Eq.1.9.1 determines A. Thus, semi-leptonic decays

of B mesons and kaons have provided measurements of both A and λ.

Further inspection of Eq. 1.5.11 reveals that a measurement of |Vub| con-

strains the apex of the triangle by(
V ∗
ub

VcdVcb

)
=
√
ρ2 + η2 (1.9.3)

Since |Vcd| ∼ λ by unitarity and |Vcb| is known (Eq. 1.9.2), we see that a

measurement of |Vub| determines a circle in the (ρ, η) plane centered at (0, 0).

Inclusive measurements of the lepton energy spectrum in b→ ulν decays above

the endpoint of the b→ clν lepton energy spectrum have been used along with

exclusive semi-leptonic decays to determine

|Vub| = (3.6 ± 0.7) × 10−3 (1.9.4)
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The large error on this parameter reflects its strong reliance on theoretical

models to predict the endpoint of the lepton energy spectrum. The B Factories

hope to reduce this error to the 10% level within the next few years.

The B0 B0 oscillation frequency (Eq. 1.6.30) provides a constraint on |VtbV ∗
td|

with the largest uncertainty coming from lattice QCD calculations of the con-

tribution from the B0 decay and bag constants, BBf
2
B = (1.30 ± 0.12)(198 ±

30 MeV)2. It is found that

|VtbV ∗
td| = 0.0079 ± 0.0015 (1.9.5)

Using the Wolfenstein parameterization, we find |VtbV ∗
td| = A2λ6 [(1 − ρ)2 + η2].

A measurement of ∆md then provides a constraint in the (ρ, η) plane in the

form of a circle centered at (1, 0) (the circle is really an annulus when the errors

are taken into account).

A measurement of the oscillation frequency in theBs system (∆ms) provides

a similar constraint. In fact, this will be one of the most anticipated measure-

ments to be made by the CDF collaboration in RunII [42] as the uncertainty

in |Vtd| is greatly reduced when one takes the ratio of mixing frequencies,

∆ms

∆md
=
MBs

MBd

BBsf
2
Bs

BBd
f 2
Bd

|V ∗
tbVts|

|V ∗
tbVtd|

(1.9.6)

because the lattice calculation of the ratio of bag and decay constants is much

more reliable than the absolute calculation of their individual values. Until

then, the current limit on Bs mixing of ∆ms > 13.1 ps−1 provides a circular

constraint in the (ρ, η) plane.

An additional constraint exists from the CP violating complex parameter

εK in the kaon system. One may show that Re(εK) is a manifestation of CP

violation in mixing while Im(εK) is a manifestation of CP violation in the

interference between decays with and without mixing [30]. A measurement of

εK along with the value of |Vcb|, constrain the vertex of the unitarity triangle

to lie on a hyperbola [43].
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The constraints discussed on the vertex of the unitarity triangle from ∆md,

∆ms, |Vub/Vcb|, and εK , are displayed in Fig. 1.7 which was created by the

CKMfitter package [44]. The figure depicts the constraints in the (ρ, η) plane

where the expansion in λ has been extended out to greater accuracy by

ρ = ρ(1 − λ2/2)

η = η(1 − λ2/2)

-1

0

1

-1 0 1 2

∆md

∆ms
 & ∆md

εK

εK

|Vub/Vcb|

ρ

η

CK M
f i t t e r

Figure 1.7: Constraints on the apex of the unitarity triangle from measurements
of εK , ∆md and ∆ms, and |Vub/Vcb|.

The combination of all constraints prefers a solution for the apex which lies

in the first quadrant. We note that a given measurement of sin2β determines β

up to a four-fold ambiguity. If one finds sin2β = Ω, then we define χ ≡ sin−1(Ω)

and the allowed solutions for β are given by

β =
χ

2
,
χ

2
+ π,

π − χ

2
,
3π − χ

2
(1.9.7)

Further, it is fairly straightforward to show [45] that a measurement of sin2β

constrains the coordinates of the apex of the unitarity triangle by the equation

sin2β =
2η̄(1 − ρ̄)

η̄2 + (1 − ρ̄)2
(1.9.8)
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1.10 Previous measurements of sin2β

Measurements of sin2β have been made previously by various collabora-

tions. The first measurement was done by the OPAL collaboration at LEP in

1998 using a sample of 4.4 million hadronic Z0 decays [46]. Reconstructing 24

signal B0 → J/ψK0
S decays with a purity of 60%, they measured

sin2βOPAL = 3.2+1.8
−2.0 ± 0.5 (1.10.1)

where the first error is statistical and the second is systematic. The large errors

limit the usefulness of their result in resolving the apex of the unitarity triangle.

A second measurement was made by the ALEPH collaboration at LEP1 in

2000 using 4 million hadronic Z0 decays [47]. Using 23 signal candidates with

an estimated purity of 71% they found

sin2βALEPH = 0.84+0.82
−1.04 ± 0.16 (1.10.2)

The CDF collaboration at Fermilab reported results of their measurement

also in 2000 which used 110 pb−1 of proton-antiproton collisions at a center of

mass energy of 1.8 TeV [48]. They reconstruct a sample of ∼ 400 B0 → J/ψK0
S

decays where J/ψ → µ+µ− and K0
S
→ π+π−. They divide their sample into

two groups based on whether the muon tracks from the J/ψ have information

from the silicon detector. They employ different tagging algorithms for these

two sets, measuring

sin2βCDF = 0.79 ± 0.39 ± 0.16 (1.10.3)

In 1999, the KEKB [49] and PEP-II B Factories began operation, each

with the foremost goal of making a more precise measurement of sin2β than

had previously been achieved. Since then, both collaborations have met that

goal nearly synchronously, updating their result every six months to a year

with each new measurement superseding the previous one. This thesis reports

on the latest result from BABAR [50] which used a data set of about 88 million

41



B decays to several CP eigenstates. A comparison with the most result from

Belle [51] (and with all previous results) will be presented in Chapter 8.
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Chapter 2

The BABAR detector

The data used in the analysis presented in this thesis consist of about 88

million Υ (4S) → BB decays collected between 1999-2002 with the BABAR de-

tector at the PEP-II asymmetric-energy B Factory at SLAC. In this chapter,

we present an overview of the PEP-II collider and BABAR detector. We at-

tempt to highlight the physics goals that motivated the construction and the

performance requirements of each subdetector. Emphasis will be given to the

elements of the subdetectors which are essential to the measurement of sin2β.

More in depth descriptions of PEP-II and the BABAR detector are given in

Refs. [40, 52].

2.1 PEP-II

PEP-II, an upgrade of an e+e− storage facility constructed at SLAC around

1980 called the Positron-Electron Project (PEP), was designed specifically to

meet the physics demands of measuring CP violation in the B system as out-

lined in Sec. 1.8. These demands, which require the production of approx-

imately 100 million BB mesons and the ability to measure the separation

between the decay vertices of the mesons, translate into constructing a high

luminosity asymmetric energy e+e− collider operating at the resonance of the
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Υ (4S) meson. Constraining the center of mass (c.m.) energy to the peak of

the Υ (4S) resonance (10.58 GeV) leads to the hadronization of bb pairs into an

Υ (4S). The bb pairs are created from the energy released by the annihilation

of the electron and positron. The Υ (4S), in turn, decays nearly exclusively to

pairs of B mesons. Fig. 2.1 shows a scan of the Υ resonances measured with the

CLEO detector at CESR [53]. Coupling this B meson production mechanism

with a luminosity of 3 × 1033 cm−2s−1 satisfies the large data sample require-

ment on a timescale of a few years. The e+ and e− beams have energies of

3.1 and 9.0 GeV respectively, causing the Υ (4S) to be boosted by γβ = 0.55 in

the lab frame. A boost of this value separates the average vertices of the two

B mesons by ∼ 260µm in the lab, a resolvable distance with current detector

technology.
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Figure 2.1: Scan of the hadronic cross section as a function of center of mass
energy near the Υ mass made by the CLEO detector. Note the broad peak
of the Υ (4S) which has the shortest lifetime since it sits above the kinematic
limit for BB production. There are discontinuities in the horizontal axis scale.

While the beam energies are usually tuned to yield a center of mass energy

equal to the peak of the Υ (4S) resonance, about 12% of the time they are

adjusted so that the c.m. energy is 40 MeV lower. This allow studies of back-

grounds where lighter quark anti-quark pairs (uu, dd, ss, or cc) are produced
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from the energy released in the e+e− annihilation. These are called continuum

events. Table 2.1 lists the qq production cross-sections from e+e− interactions

at a c.m. energy equal to the peak of the Υ (4S) resonance. Continuum back-

ground events may be distinguished from the signal BB events based on the

event shape as will be described in Chapter 4. Production of bb pairs accounts

for about 24% of the qq production.

e+e− → cross-section ( nb)

bb 1.05
cc 1.30
uu 0.35
ss 1.39
dd 0.35

τ+ τ− 0.94
µ+ µ− 1.16
e+e− ∼ 40

Table 2.1: Fermion anti-fermion production cross-sections at a c.m. energy
equal to the Υ (4S) mass.

PEP-II consists of two independent storage rings, a Low Energy Ring (LER)

of positrons which sits above a High Energy Ring (HER) circulating electrons,

in a 2.2 km circular tunnel. The rings receive the beams from a two mile

long linear accelerator (linac). A schematic representation of the linac and

the storage rings is shown in Fig. 2.2. Electrons are initially ejected from a

semiconductor by polarized laser light and are then accelerated down the linac

using microwave electromagnetic wave pulses produced by klystrons. After

reaching an energy of ∼ 1 GeV the electron beam is sent through a damping

ring for focusing before being reinserted in the linac. A portion of the electrons

are diverted from the linac and directed onto a tungsten target. This collision

produces e+e− pairs whose positrons are extracted with magnets and sent to the

beginning of the linac, to be accelerated in the same manner as the electrons,

before being stored in the LER. The storage rings achieve high luminosity
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by using large beam currents (1 − 2 Amperes) separated into many bunches.

Table 2.2 lists some of the design and typical beam parameters of the storage

rings. PEP-II has been able to exceed its design luminosity using fewer bunches

than had been anticipated. The integrated luminosity delivered by PEP-II and

recorded by the BABAR detector between 1999-2002 is shown in Fig. 2.3.

Figure 2.2: Schematic representation of SLAC linac which delivers electron and
positron beams to the HER and LER.

Parameters Design Typical
Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 0.7/1.3
# of bunches 1658 553-829
Bunch spacing (ns) 4.2 6.3-10.5
σLx (µm) 110 120
σLy (µm) 3.3 5.6
σLz (mm) 9 9
Luminosity (1033 cm−2s−1) 3 3
Luminosity ( pb−1/d) 135 150

Table 2.2: Design and typical operation beam parameters of the PEP-II storage
rings. HER and LER refer to the high energy electron and low energy positron
rings respectively as explained in the text. The RMS size of the horizontal,
vertical, and longitudinal luminous region are denoted σLx, σLy, and σLz.

After circulating in the storage rings, the beams collide head-on at the in-

teraction point (IP) before they are separated magnetically in the horizontal

plane by a pair of dipole magnets (B1) located at ±21 cm on either side of
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Figure 2.3: Integrated luminosity delivered by PEP-II (red curve) and recorded
by the BABAR detector (blue curve) between 1999-2002 for data taken on the
peak of the Υ (4S) resonance. The luminosity of data taken about 40 MeV
below the peak is also shown (green curve).

the IP, followed by a series of offset quadrupole magnets used for strong focus-

ing as shown in Fig. 2.4. The B1 dipoles are permanent magnets composed

of smarium-cobalt, while the Q2, Q4, and Q5 quadrupoles are standard iron

magnets. The interaction region is surrounded by a water-cooled beryllium

beam pipe with an outer radius of 2.8 cm, which contributes about 1.06% of

a radiation length at normal incidence (including the water layer). The beam

pipe is wrapped with 150µm of tantalum foil on either side of the IP, beyond

z = 10.1 cm and z = −7.9 cm 1. The pair of Q1 magnets, B1 magnets, and the

1z = 0 is the nominal interaction point along the beam direction.
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beam pipe are assembled into a rigid structure, along with the silicon vertex

detector that will be discussed shortly, called the support tube. It has a di-

ameter of roughly 43 cm, and contributes about 0.5% of a radiation length at

normal incidence.
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Figure 2.4: The interaction region plan view. Note the difference in the length
scale of the two axes. The beams collide head-on, and are separated magneti-
cally before the next collision by the B1 dipole magnets. The focusing of the
beams is achieved by using the quadrupole magnets, Q1, Q2, Q4, and Q5. The
dashed lines indicate the 300 mrad detector acceptance cutoff.

The large beam currents and number of closely-spaced bunches that make

it possible for PEP-II to achieve its high luminosity have important conse-

quences for the machine-induced backgrounds, as well as for the detector and

interaction region layout. The detector geometry will be presented in Sec. 2.2.

The primary accelerator backgrounds come from synchrotron radiation near

the IP, interactions between the beam particles and residual gas molecules in

the rings, and electromagnetic interactions generated by beam-beam collisions.

The B1 separation dipoles reduce parasitic crossings at the expense of pro-

ducing a large flux of synchrotron photons which must be absorbed by masks.
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Beam particles may leave the ring if they lose sufficient energy through beam-

gas bremsstrahlung or Coulomb scatter at a large angle from residual beam gas

molecules. As the separation dipoles will bend energy-degraded particles with a

larger curvature than the beam particles, most BABAR detector systems experi-

ence occupancy peaks and potential radiation damage from the LER and HER

in the horizontal plane. Bremsstrahlung photons also contribute to radiation

damage in the horizontal plane.

A trigger system is used to enhance the collection of interesting physics

events with respect to background or common processes which occur much

more frequently (Bhabha events). The trigger system operates as a conditioned

sequence of two independent stages. The first level trigger (L1), with an output

rate ≤ 2 kHz is implemented in hardware using data from the drift chamber,

electromagnetic calorimeter, and neutral hadron detector. The second level

trigger (L3) output rate is limited to 120Hz, using software algorithms to select

events of interest that have passed L1. The L1 and L3 terminology is historical

since the original trigger design included an intermediate decision processing

stage L2. The L1 and L3 systems have met their design goal of 99% triggering

efficiency for BB events at a luminosity of 3 × 1033 cm−2s−1.

In Chapter 4, we discuss the event selection of neutral B mesons. Two

important variables that will be used for this selection rely on a knowledge of the

center of mass beam energy. The mean energies of the two beams are calculated

from the total magnetic bending strength and the average deviations of the

accelerating frequencies from their central values. The systematic uncertainty

in the PEP-II calculation of the absolute beam energies is estimated to be

5− 10 MeV. The RMS energy spreads of the LER and HER beams are 2.3 and

5.5 MeV, respectively, resulting in a 2.6 MeV spread in the total beam energy

in the Υ (4S) frame.

Additionally, knowing the size and position of the luminous beam region

(beam spot) will play an important role in the determination of the B meson

vertex separation. As it is too small to be measured directly, the vertical size
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is inferred from the measured luminosity, horizontal size, and beam currents.

The vertical size varies by about 1−2µm. The transverse size and position are

determined by analyzing the distribution of the distance of closest approach

to the z-axis of the tracks in well measured two-track events as a function of

azimuthal angle. The uncertainties in the average beam position are of the

order of a few µm in the transverse plane and 100µm along the beam axis.

Variations between runs in the beam position are comparable to these uncer-

tainties, indicating stability over the period of a run. Further, the results of

an offline analysis which measures the primary vertices in multi-hadron events

agree with the beam spot sizes measured by PEP-II. The horizontal, vertical,

and longitudinal RMS size of the luminous region is typically 120 µm, 5 µm,

and 9 mm respectively.

2.2 BABAR detector overview

The BABAR detector was designed to achieve the physics goals stated at

the beginning of this chapter and to accommodate a high luminosity machine.

These goals dictate the following requirements:

• a large acceptance down to small polar angles relative to the boost direc-

tion, implying an asymmetric detector construction;

• charged particle transverse momentum (pt) reconstruction in the range

∼ 60 MeV < pt <∼ 4 GeV;

• excellent vertex resolution in directions parallel and transverse to the

beam axis;

• efficient electron and muon identification with low misidentification prob-

abilities for hadrons. This feature is essential for the reconstruction of

charmonium (cc) mesons and for flavor tagging;
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• the ability to accurately discriminate between hadrons, specifically K,π,

and p, over a wide momentum range for flavor tagging and for the recon-

struction of exclusive final states like B0 → K+π− and B0 → π+π−;

• good angular and energy resolution of photons from π0 and radiative

decays down to 20 MeV in energy;

• the capability to identify neutral hadrons.

The detector saw its first collisions in May of 1999. Figure 2.5 shows a

longitudinal section through the detector center. The detector center is offset

by 37 cm relative to the IP in the direction of the boost (the HER direction)

to maximize acceptance. The detector consists of five major components: a

silicon vertex tracker, a drift chamber, a particle identification detector, an

electromagnetic calorimeter, and a neutral hadron and muon detector. The

first three of these are surrounded by a superconducting coil designed to provide

a 1.5 T axial magnetic field. The z-axis coincides with the principal axis of

the drift chamber which is rotated by about 20 mrad relative to the beam axis.

Detector acceptance extends from −0.92 < cos θ < 0.94 in the lab where θ = 0

points along the boost direction.

The silicon vertex tracker (SVT) provides precise measurements of the an-

gles and positions of charged tracks just outside the beam pipe. Additionally,

the SVT functions as the lone tracker for low transverse momenta charged par-

ticles. The drift chamber (DCH) measures the momentum of charged particles

and their energy loss due to ionization, which is used for particle identification

purposes. The detector of internally reflected Cherenkov light (DIRC) identifies

pions and kaons with momenta between 0.5 and 4.5 MeV/c. The electromag-

netic calorimeter (EMC), composed of thallium doped cesium iodide (CsI(TL))

crystals, detects electromagnetic showers and provides good photon identifica-

tion and electron identification for electrons with energy greater than 0.5 GeV.

The instrumented flux return (IFR) is designed to identify muons and neutral
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Figure 2.5: BABAR detector longitudinal section

hadrons (K0
L

primarily). Some important design parameters of the detector are

displayed in Table 2.3.

Parameter Value
Tracking coverage(/4π) 0.92
σ(pT )(%)(1 GeV pions at 90◦) 0.36
σ(z0)(µm)(1 GeV pions at 90◦) 52
Calorimetry coverage(/4π) 0.90
X0 before calorimeter(at 90◦) 0.25
σ(E)/E(%)(1 GeV γ at all angles) 1.8
γ efficiency within acceptance (at 100 MeV) 0.92
Charged Hadron ID coverage(/4π) 0.84

Table 2.3: Parameters of the BABAR detector. Acceptance coverages are given
in the c.m. system.

We now present a more in-depth description of each subdetector. Since the

measurement of sin2β given in this thesis depends directly on the resolution of

the distance between the two B decay vertices, which is determined primarily
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by the SVT, we describe the SVT in more detail than the other subdetectors.

2.3 Silicon vertex tracker

The SVT was designed to provide precise reconstruction of charged par-

ticle trajectories and decay vertices near the interaction region. Since time-

dependent CP asymmetries depend on a measurement of the separation of the

B decay vertices when the mesons are produced coherently, the SVT is a crucial

component of the BABAR experiment. The mean spatial resolution on the decay

vertex along the z-axis of a fully reconstructed B0 meson must be better than

80µm to avoid significant impact on the asymmetry measurement [54]. Addi-

tionally, the SVT must be capable of providing standalone tracking for charged

particles with transverse momentum less than 120 MeV/c, the minimum that

can be measured efficiently in the DCH alone. As multiple scattering is the

dominant factor affecting tracking precision at momenta below about 1 GeV/c,

it is critical to minimize the amount of material tracks will traverse.

The constraints imposed by these physics requirements led to building the

SVT out of double-sided AC coupled silicon strip sensors in a five layer radial

geometry. The spatial resolution for tracks perpendicular to the plane of the

sensors is 10−15µm in the three inner layers and about 40µm in the two outer

layers, which achieves the B vertex resolution listed above. The inner three

layers measure track impact parameters while the outer two layers are required

for pattern recognition to accomplish low pt tracking.

2.3.1 SVT geometry

The double-sided silicon strip sensors are organized into modules. There

are 6 straight modules in each of the inner three layers. There are 16 and 18

modules in layers four and five respectively that are arch-shaped. Figs. 2.6

and 2.7 show a transverse and longitudinal schematic view of the SVT. The

53



arch design minimizes the amount of silicon needed to cover the solid angle

and avoids large angles between the incident tracks and the silicon wafers. The

strips on opposite sides of each sensor are oriented orthogonally with the strips

that measure the φ coordinate of a track (φ strips) running parallel to the beam

and the strips that measure a track’s z coordinate (z strips) running transverse

to the beam axis.

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

Figure 2.6: Schematic transverse view of SVT

A different sensor shape is required for the planar section of the modules

in each layer of the SVT. The modules are electrically separated into forward

and backward halves termed half-modules. The φ strips of sensors in the same

half-module are electrically connected with wire bonds to form a single readout

strip 140 mm (240 mm) long in the inner (outer) layers. There is a one-to-one

correspondence between z strips and readout channels for the inner three layers,

but in the outer two layers two z strips on different sensors are electrically con-
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Figure 2.7: Schematic longitudinal view of SVT. The roman numerals label the
different types of sensors.

nected (ganged) to one channel. The z strips are 50 or 100 mm long depending

on whether one or two sensors are ganged.

The inner modules are tilted by 5◦ in φ which is useful for determining

internal alignment since adjacent modules overlap. The arch geometry of the

outer modules prevents tilting but gaps are avoided by dividing layers 4 and

5 into two sub-layers (a and b) mounted at slightly different radii. The total

active silicon area is 0.96 m2 covering 92% of the c.m. system solid angle.

A block diagram of SVT components is shown in Fig. 2.8. The major de-

tector components are the silicon sensors, the fanout circuits, the Front End

Electronics (FEE), and the data transmission system. The signals from the sen-

sor strips arrive at the readout electronics by way of fanout circuits composed

of conducting traces on a 50µm Upilex (a Kapton-like material) substrate.

The readout electronics are mounted outside the active detector volume to re-

duce multiple scattering. The fanout circuit and sensor unit is referred to as

a Detector Fanout Assembly (DFA). The DFAs are wire bonded to thick film

double-sided hybrid circuits called High Density Interconnects (HDIs) which

hold the sensor ATOM (A Time-Over Threshold Machine) chips [55].
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Figure 2.8: Schematic block diagram showing the different components of the
SVT.

2.3.2 Silicon sensors

The silicon sensors are made of 300µm thick double-sided silicon strip de-

vices. Since a minimum ionizing particle (MIP) typically loses 3.8 MeV/ cm to

excitation of the surrounding medium, and the average energy required to cre-

ate an electron-hole pair in silicon is ∼ 3.6 eV, the wafers yield large signals of

∼ 24,000 electron-hole pairs per MIP. They are built on n-type substrates with

p+ strips and n+ strips on the two opposite sides (there are individual p-stops

to insulate the n+ strips). The operating bias voltage is typically 10V above

the depletion voltage which ranges from 25-55V. The strips are biased on both

sides with polysilicon resistors (4-20 MΩ). The strips are AC-coupled to elec-

tronics via integrated decoupling capacitors whose capacitance varies above a

minimum value of 14 pF/ cm. To achieve the necessary spatial resolution while

reducing the number of readout channels, most of the modules have a floating

strip (a strip which is not read-out) between two readout strips. The physical

strip pitch is 50µm in most layers while the readout pitch is 50 (100) µm on
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the φ (z) side in the inner layers, increasing to 100 (200) µm in layers four

and five. Leakage currents were measured to be 50 nA/ cm2 on average at 10V

above depletion. A simplified schematic representation of a wafer is shown in

Fig. 2.9.
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Figure 2.9: A simplified representation of an inner-layer SVT wafer. The im-
plants are capacitively coupled to the aluminum readout strips. The p+-stops
on the n(φ) side serve to isolate the n+ implants. Figure courtesy of Natalia
Kuznetzova.

2.3.3 Front end electronics

As previously described, the ATOM chips are mounted on the HDIs outside

of the active detector volume. This chip is depicted schematically in Fig. 2.10.

The chip contains 128 channels each of which consists of a charge-sensitive

preamplifier followed by a shaper. The output of the shaper signal is sent to a

programmable-threshold comparator which counts the width of the pulse (Time

over Threshold, ToT). The ToT is a quasi-logarithmic function of the collected

charge. This output is stored in a circular buffer at 30 MHz until requested
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by the Level 1 (L1) trigger at which point the ToT, time of the hit sensor,

and strip address are formatted, serialized, and delivered. Each channel also

contains a test charge injection circuit used for calibration. Since the average

noise behavior of the ATOM varies between ∼ 800− 1600 electrons depending

on the capacitance of the strips, the signal to noise ratio for a MIP is larger

than 15.
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Figure 2.10: Schematic diagram of the ATOM front end integrated circuit.
There are 128 channels on each chip. The ATOM chip is described in detail in
Ref. [55].

2.3.4 Alignment

There are two stages to the alignment of the SVT. In the first, the rela-

tive positions of the 340 silicon sensors are determined. This is called ”local”

alignment. Following this, the SVT is aligned as a whole within the global co-

ordinate system defined by the DCH. The separation of the process into these

stages results from the stability in time of the local positions compared to the

global one. Additionally, as the local alignment procedure is considerably more

complex, the global alignment can be updated on a run-by-run basis while the

local alignment constants can be changed as needed. Uncertainty in the local

alignment leads to a systematic error in the determination of sin2β that will
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be discussed in Chapter 9.

Primarily tracks from e+e− → µ+ µ− (dimuon) and cosmic rays events,

which may be collected in a few days of normal running conditions, are used

for the local alignment procedure. In the dimuon events, each track is fit with

a Kalman filtering technique [56] that utilizes the known beam momentum as

a constraint. The cosmic events are used to eliminate any systematic distor-

tion due to imprecision in the knowledge of the beam momenta. The track

parameters are determined without using any information from the DCH. An

optical survey with a measurement precision of 4µm was performed during the

assembly of the SVT. This survey is used only to constrain sensors relative to

each other within the same module. With the optical information and the hit

residuals from the muon tracks, a χ2 for each sensor is iteratively minimized

with respect to the sensor’s six local parameters. The procedure yields an in-

ternally consistent local alignment by employing the combination of constraints

from the overlapping region of the silicon sensors, the muon Kalman fits, the

cosmic rays, and the optical survey.

The second step in the alignment process determines the relative position

of the now rigid body SVT with respect to the DCH. Tracks with sufficient

SVT and DCH hits are fit once using the information from only one of the two

the detectors. Three translation and three rotation parameters are determined

by minimizing the difference between the track parameters obtained from both

fits. This alignment is performed every few hours and the constants obtained

are used to reconstruct the data in the subsequent run, a procedure known as

rolling calibrations.

Fig. 2.11 compares the optical alignment made during the SVT assembly in

February 1999 and a local alignment (made without the use of the optical con-

straints) using data taken during January 2000. The second set of plots shows

the difference in alignment sets for data taken in January 2000 as compared to

March 2000. In general, the stability of the inner three layers is very good.
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Figure 2.11: Comparison of a local alignment of the SVT sensors using data
from January 2000 with the optical survey made during assembly in 1999 in
the (a) r∆φ, (b) ∆z, and (c) ∆r coordinates. Plots (d), (e), and (f) show
the difference between two local alignments as explained in the text for the
r∆φ, ∆z, and ∆r coordinates, respectively. In all plots, the shaded regions
correspond to the sensors in the first three layers, which are seen to be relatively
stable over time.

2.3.5 Performance

The efficiency of the SVT in adding hits to tracks is calculated for each half-

module by comparing the number of associated hits to the number of tracks

crossing the module. Excluding defective readout sections (9 out of 208), a

combined hardware and software efficiency of 97% is measured. The spatial

resolution, with which we are most concerned, is determined using high mo-

mentum tracks in two prong events by measuring the distance in the plane of

the sensor between the track trajectory and the hit. Subtracting the uncer-

tainty in the track trajectory from the residuals allows one to obtain the hit

resolution. Fig. 2.12 shows the SVT hit resolution for z side hits as a function

of track incident angle for each SVT layer. The measured resolutions are in

agreement with those necessary to determine the vertex separation of B meson

decays as listed in Sec. 2.3.
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Figure 2.12: SVT hit resolution in the z coordinate in microns plotted against
the track incident angle in degrees for each layer of the SVT. Note that a
resolution of 10 − 15µm is achieved in the inner layers, a precision necessary
to measure B decay vertices to 80µm.

2.4 Drift chamber (DCH)

The main purpose of the DCH is to provide efficient detection of charged

particles and to measure their momenta and angles with high precision. At

lower momenta, these measurements dominate the errors on the extrapola-

tion of the tracks to the subdetectors lying outside the DCH. Track parameter

uncertainties at the DIRC add to the uncertainty in the measurement of the

Cherenkov angle. The DCH must supply information for the charged particle

trigger with a maximum time jitter of 0.5µs. Additionally, the DCH must

measure the ionization loss (dE/dx) of charged tracks in order to yield infor-
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mation on particle identification (PID). In the extreme forward and backward

regions (outside the DIRC’s acceptance), the DCH is the sole detector used for

determining particle identification. The DCH is described in detail in Ref. [57].

2.4.1 DCH design

A schematic longitudinal cross section of the DCH and its dimensions are

shown in Fig. 2.13. The DCH is a cylinder 280 cm in length with an inner radius

of 23.6 cm, an outer radius of 80.9 cm, and 2.4 cm thick aluminum endplates.

It extends beyond the backward endplate by 48.5 cm to house the readout

electronics, HV distribution, cables, and an RF shield. The DCH is shifted

forward relative to the IP in the direction of the boost so that particles emitted

at polar angles of 17.2◦ traverse at least half of the layers before encountering

the front endplate.

IP

236

BaBar Drift Chamber

17.2°551

1015

AMB 97-10-15

1358 Be  

1749

17461015

809

485

630 68

27.4°

Electronics

Figure 2.13: Side view of the BABAR drift chamber. The dimensions are in
mm.

The DCH has 40 layers of small hexagonal cells to provide up to 40 spatial

and ionization loss measurements for charged particles with transverse momen-

tum greater than 180 MeV/c. Longitudinal position information is obtained by

placing the wires in 24 of the 40 layers at small angles with respect to the
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z-axis. The DCH utilizes low-mass aluminum field wires and a 80:20 gas mix-

ture of helium:isobutane which together present 0.2% of a radiation length of

material. Properties of the gas mixture are shown in Table 2.4.

Parameter Values
Mixture He : C4H10 80:20
Radiation Length 807 m
Primary Ions 21.2/cm
Drift Velocity 22µm/ ns
Lorentz Angle 32◦

dE/dx Resolution 6.9%

Table 2.4: Properties of helium-isobutane gas mixture at atmospheric pressure
and 20◦C. The drift velocity is given for operation without magnetic field, while
the Lorentz angle is stated for a 1.5 T magnetic field.

The 40 cylindrical layers of cells are grouped into ten superlayers of four

each, with the same wire orientation and equal numbers of cells in each layer

within the superlayer. Sequential layers are displaced by half a cell length. The

stereo angles of the superlayers alternate between axial (A) and stereo (U,V)

pairs, in the order AUVAUVAUVA, as shown in Fig. 2.14. The stereo angles

vary between ±45 mrad and ±76 mrad. The drift cells are hexagonal in shape

which produces an approximate circular symmetry over a large portion of the

cell in terms of drift times. Each cell consists of one tungsten-rhenium sense

wire 20µm in diameter tensioned with a 30 gram weight surrounded by six

field wires. The field wires are held at ground potential and the sense wires

at a normal operating potential of 1960 V leading to an avalanche gain of

approximately 5 × 104.

The drift chamber electronics is designed to detect the leading edge of the

signal from charge arriving at a sense wire and digitize the drift time with 1 ns

resolution leading to a position resolution of 140µm averaged over the cells.

A measurement of dE/dx requires integrating the total charge in the pulse.

These goals are accomplished using a 4-bit TDC for time measurement, a slow
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shaper, and a 6-bit 15 MHz FADC to digitize the the total deposited charge.

BaBar Drift Cells
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     013         013    

     014         014    
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     016    
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Sense Field Guard Clearing

Figure 2.14: Schematic layout of drift cells for the four innermost superlayers.
Lines have been added between field wires to aid in visualization of the cell
boundaries. The numbers on the right side give the stereo angles (mrad) of
sense wires in each layer.

2.4.2 DCH performance

The absolute DCH track reconstruction efficiency is determined as the ratio

of the number of reconstructed DCH tracks to the number of tracks recon-

structed by the SVT, after requiring that the SVT tracks fall within the DCH

acceptance. Studies have been performed for different samples of multi-hadron

events. Fig. 2.15 shows the reconstruction efficiency as a function of trans-

verse momentum and polar angle for data taken at operating voltages of 1900

and 1960V for one such study. The measurement errors are dominated by the

uncertainty in the correction for fake tracks in the SVT.

As discussed, while the position and angle measurements near the IP are

dominated by the SVT measurements, the DCH contributes primarily to the
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Figure 2.15: The track reconstruction efficiency in the DCH as a function of
a) transverse momentum and b) polar angle for operating voltages of 1900 and
1960V. Both voltages were used for recording the data that is used in this
analysis.
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pT measurement. Fig. 2.16 shows the resolution in the transverse momentum

derived from cosmic ray muons. The data are well represented by a linear

function,

σ(pT )/pT = (0.13 ± 0.01)% × pT + (0.45 ± 0.03)% (2.4.1)

where the transverse momentum pT is measured in GeV/c.
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Figure 2.16: Resolution in the transverse momentum pT determined from cos-
mic ray muons.

2.5 Detector of internally reflected Cherenkov

light (DIRC)

The DIRC is a novel ring-imaging Cherenkov detector designed to efficiently

identify kaons used for tagging the flavor of B mesons (from the cascade decay

b → c → s) where kaon momenta extend up to about 2 GeV/c. Additionally,

the DIRC must help distinguish between the two-body decays B0 → π+π− and

B0 → K+π− which necessitates separating kaons from pions up to 4 GeV/c at

large polar angles in the laboratory frame. The DIRC is described in detail in

Ref. [58].
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2.5.1 DIRC geometry

Charged particles that traverse a radiator with a velocity greater than the

velocity of light in the radiator emit photon radiation at an angle characteristic

of their velocity, termed the Cherenkov angle. The DIRC relies on the preser-

vation of the Cherenkov angle of photon radiation by total internal reflection

from a flat surface. Fig. 2.17 shows a schematic of the DIRC geometry. The

DIRC radiator consists of 144 long straight bars of synthetic quartz with rect-

angular sections, arranged in a 12-sided barrel structure. The bars are 4.9 m

in length with a transverse area of 6 cm2. The Cherenkov angle θc of the ra-

diation is related to the velocity v of a charged particle by cos θc = 1/(nvc),

where c is the speed of light and n is the mean index of refraction of fused

silica (n = 1.473). To avoid instrumenting both ends of the bars with photon

detectors, a mirror is placed at the forward end to reflect incident photons to

the backward, instrumented end.

Once photons arrive at the backward end, most of them emerge into a

purified water-filled expansion region (whose volume is about six cubic me-

ters) called the standoff box (SOB). The refractive index of the water matches

reasonably well that of the bars which minimizes total internal reflection at

the water-quartz interface. Cherenkov photons are detected in the visible and

the near-UV range by a close-packed array of linear focused 2.82 cm diameter

photomultiplier tubes (PMTs). A fused silica wedge at the exit of the quartz

bar reflects photons at large angles relative to the bar axis which reduces the

area requiring instrumentation. There are about 11,000 PMTs at the rear of

the SOB that are nearly 1.2 m away from the end of the bars. The expected

Cherenkov light pattern at the PMT surface is a conic section, where the cone

opening angle is θc modified by refraction at the exit from the fused silica

wedge.
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Figure 2.17: Schematics of the DIRC fused silica radiator bar and imaging
region.

2.5.2 DIRC performance

The resolution on the track Cherenkov angle (σθc) scales like

σθc = σγ/
√
Nγ (2.5.1)

where σγ is the single photon Cherenkov angle resolution and Nγ is the number

of photons detected. The single photon angular resolution has been determined

to be 10.2 mrad using a sample of dimuon events where the mean number of

photons in these events at normal incidence is about 30. This leads to a 2.5

mrad track Cherenkov angle resolution for the dimuon events which can be

extrapolated, using the difference between the expected Cherenkov angles of

charged pions and kaons, to a pion-kaon separation power of 4.2σ at a momen-

tum of 3 GeV/c. The efficiency for correctly identifying a charged kaon that

traverses the DIRC and the probability to wrongly identify a pion as a kaon

are determined using D0 → K−π+ decays selected from inclusive D∗ produc-

tion and are shown in Fig. 2.18 for a particular choice of selection criteria. The
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Figure 2.18: Efficiency and misidentification probability for the selection of
charged kaons as a function of track momentum.

mean kaon selection efficiency and pion misidentification are 96.2±0.2%(stat.)

and 2.1 ± 0.1%(stat.) respectively.

2.6 Electromagnetic calorimeter (EMC)

To detect photons from π0 and η decays as well as those from other elec-

tromagnetic and radiative processes, the EMC must efficiently measure the

energy and position of electromagnetic showers over the range from 20 MeV to

9 GeV. The EMC also identifies electrons that are used for flavor tagging from

semi-leptonic B decays and electrons from J/ψ → e+e− decays. The EMC is

described in detail in Ref. [59].

2.6.1 EMC layout

The physics requirements listed above led to the construction of a calorime-

ter using a finely segmented array of thallium-iodide doped cesium iodide

(CsI(Tl)) crystals which are read out with silicon photodiodes matched to the
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spectrum of the scintillation light. The crystal properties are displayed in Ta-

ble 2.5. The minimum measurable energy of the crystals is around 20 MeV

limited mostly by beam and event-related background and the amount of ma-

terial in front of the calorimeter.

Parameter Values
Radiation Length 1.85 cm
Molière Radius 3.8 cm
Density 4.53 g/cm3

Light Yield 50,000 γ/MeV
Light Yield Temp. Coeff. 0.28%/◦C
Peak Emission λmax 565 nm
Refractive Index (λmax) 1.80
Signal Decay Time 680 ns (64%)

3.34 µs (36%)

Table 2.5: Properties of CsI(Tl)

The EMC consists of a cylindrical barrel section with inner and outer radii

91 and 136 cm respectively and a forward endcap as shown in Fig. 2.19. Its

laboratory coverage extends in polar angle from 15.8◦ to 141.8◦. The barrel is

composed of 5760 CsI(Tl)crystals arranged azimuthally in 48 rings with 120

crystals each while the endcap holds 820 crystals grouped in eight rings tilted

at an angle of 22.7◦ from vertical. The crystals are grouped into modules made

from thick carbon fiber composite, supported from the rear, and mounted in

an aluminum support cylinder fixed to the coil cryostat. The barrel and outer

five rings contribute less than 0.6 radiation length of material in front of the

crystals.

The trapezoidal crystals, which extend in length from 29.6 cm in the back-

ward to 32.4 cm in the forward direction, act both as a total-absorption scintil-

lating medium and as a light guide to collect light at the photodiodes that are

mounted on the rear surface. The diode output signal is amplified, digitized,

buffered and sent to the Level 1 trigger system. The average light yield per
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crystal is about 7300 photoelectrons/ MeV with a mean electronic noise of 900

electrons. This noise is negligible compared to that from the beam background

which is typically a factor of three higher. The energy scale of the individual

crystals is calibrated at low energies using a 6.13 MeV photon source and at

high energies using photons from radiative Bhabha events. Corrections for en-

ergy loss due to leakage and absorption are performed as a function of polar

angle and measured energy deposited.
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Figure 2.19: A longitudinal cross-section of the EMC (top half) indicating the
arrangement of the 56 crystal rings. All dimensions are in mm.

2.6.2 EMC performance

Using a variety of physics sources, a fit to the energy dependence of the

EMC results in the following form:

σE
E

=
(2.32 ± 0.30)%

E1/4
⊕ (1.85 ± 0.12)% (2.6.1)

where the energy is measured in GeV. The energy dependent term is mostly

due to fluctuations in photon statistics but is influenced by the electronic noise

of the photon detector and the number of real photons from beam-generated

backgrounds. The constant term dominates at higher energy and arises from

non-uniformity in light collection, from leakage or absorption, and from calibra-

tion uncertainties. The two-photon invariant mass from BB decays is shown
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in Fig. 2.20 where the energy of the photons and π0 are required to be greater

than 30 and 300 MeV respectively. The fit yields a resolution of 6.9 MeV/c2 for

the reconstruction of the π0 mass.
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Figure 2.20: Invariant mass of two photons in BB events. The energies of the
photons and π0 must be greater than 30 and 300 MeV respectively. The solid
line is a fit to the data.

The EMC is also primarily responsible for electron identification, which will

be discussed in further detail in Chapter 4 as it pertains to J/ψ reconstruction.

The separation between electrons and charged hadrons is primarily based on

the shower energy, lateral and azimuthal shape of the shower [60, 61], and track

momentum. The most important variable is the ratio of shower energy to track

momentum (E/p) which should be peaked at one for an electron and around

0.1− 0.3 for a hadron. Fig. 2.21 shows the efficiency for electron identification

and pion misidentification as a function of momentum for two sets of selec-
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tion criteria. The electron identification efficiency is measured using radiative

Bhabha and e+e− → e+e−e+e− events and the pion misidentification probabil-

ity is measured for selected charged pions from K0
S

decays and three prong τ

decays. A restrictive selection results in a mean efficiency of 94.8% in the mo-

mentum range 0.5 GeV/c < p < 2.0 GeV/c with a mean pion misidentification

probability of 0.3%.
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Figure 2.21: Electron efficiency (left vertical scale) and pion misidentification
probability (right vertical scale) as a function of laboratory a) particle momen-
tum and b) polar angle.
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2.7 Instrumented flux return (IFR)

The IFR is required to identify muons with high efficiency and purity, and

to detect neutral hadrons (primarily K0
L) over a wide range of momenta and

angles. Muon detection is important for tagging the flavor of semi-leptonic B

decays and for the reconstruction of J/ψ → µ+ µ− decays. The performance

of the IFR is described in detail in Ref. [62].

2.7.1 IFR overview

The steel flux return of the magnet serves as a muon filter and neutral

hadron absorber for the IFR. The steel is finely segmented and instrumented

with active detector resistive plate chambers (RPCs) [63] which readout two

coordinates. The IFR consists of a central barrel region and two end doors as

shown in Fig. 2.22. The steel is segmented into 18 plates, increasing from a

thickness of 2 cm at the inner nine plates to 10 cm at the outermost plate. The

steel plates are separated by a gap which is 3.5 cm in the inner layers of the

barrel and 3.2 cm elsewhere. There are 19 RPC layers in the barrel and 18 in

the endcaps. Additionally, there are two layers of cylindrical RPCs between

the EMC and the magnet cryostat to detect particles exiting the EMC. The

steel in the barrel region comprises about 4 interaction lengths of material for

a muon.

RPCs detect streamers induced by ionizing particles via capacitive readout

strips. They consist of two bakelite (phenolic polymer) sheets which are 2 mm

thick and are separated by a 2 mm gap filled with a non-flammable gas mixture

containing about 56.7% Argon, 38.8% Freon 134A (C2H2F4), and 4.5% isobu-

tane. A potential difference of ∼ 8 kV is maintained between the sheets so

that an ionizing particle crossing the gas gap produces a quenched discharge.

The signals are read out capacitively, on both sides of the gap, by external

electrodes made of aluminum strips on a mylar substrate.
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Figure 2.22: .

Barrel sectors and forward (FW) and backward (BW) end doors of the IFR.

The shape of the RPC modules and their dimensions in mm are indicated.

2.7.2 IFR performance

Muon identification relies primarily on the IFR though other detectors con-

tribute complementary information. Charged particle muon candidates recon-

structed by the SVT and DCH are required to meet the criteria for minimum

ionizing particles in the EMC. Reconstructed tracks are extrapolated to the

IFR detector volume taking into account the non-uniform magnetic field, mul-

tiple scattering, and average energy loss. IFR clusters are formed from nearby

hits in a given layer and hits in different layers using two algorithms. For each

cluster, we calculate the following in order to select muons: the total number

of interaction lengths from the IP to the last RPC layer; the difference be-

tween this measured number of traversed interaction lengths and the number

expected for a muon of the same momentum and angle; the average number

and the RMS of the distribution of RPC strips per layer; the χ2 for the geo-

metric match between the projected track and the cluster centroids in different

RPC layers; and the χ2 of a polynomial fit to the two-dimensional IFR clusters.

The muon detection performance has been measured on samples of muons
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from µµee and µµγ final states as well as pions from three-prong τ decays

and K0
S
→ π+ π− decays. These control samples are selected using kinematic

variables uncorrelated with those used for muon selection. Fig.2.23 shows the

muon efficiency and pion misidentification probability for these samples as a

function of momentum and polar angle for loose selection criteria. We find

an average muon detection efficiency of about 90% in the momentum range of

1.5 < p < 3.0 GeV/c with a pion fake rate of about 6 − 8%, where 2% comes

from muons which decay in flight.
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Figure 2.23: Muon efficiency (left scale) and pion misidentification probability
(right scale) as a function of laboratory a) track momentum and b) polar angle
(for 1.5 < p < 3.0 GeV/c), using loose selection criteria.
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Chapter 3

Analysis overview

Due to the complexity of this measurement, we present a brief overview

of the analysis technique that will be detailed in Chapters 4 through 8. This

chapter serves as a road map to guide the reader through the analysis. Some

of the details that have already been covered will be summarized again for

completeness.

In Sec. 1.6.5 it was shown that the probability for B0–B0 mixing is a func-

tion of ∆md and the proper time difference ∆t between the two B decays.

Neglecting any background contributions, the probability distribution func-

tions (PDFs) for the mixed (−) and unmixed (+) events, H±, can be expressed

as the convolution of the underlying oscillatory physics distribution

h± =
Γ

4
e−Γ|∆t| [1 ±D cos(∆md∆t)] , (3.0.1)

with a time-difference resolution function R(δt = ∆t− ∆ttrue; â) to give

H±(∆t; Γ,∆md,D, â) = h±(∆ttrue; Γ,∆md,D) ⊗R(δt; â), (3.0.2)

where ∆t and ∆ttrue are the measured and true time differences, â are pa-

rameters of the resolution function, and D is the dilution that was defined in

Sec. 1.8.2. Fig. 3.1 illustrates the impact of typical mistag and ∆t resolution

effects on the distribution of ∆t for mixed and unmixed events.
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Figure 3.1: Distribution of ∆t for mixed and unmixed events with a) perfect
flavor tagging and ∆t resolution and b) typical mistag rates and ∆t detector
resolution.

The mixing frequency, dilutions (there may be more than one depending on

the number of flavor tagging categories), and resolution function parameters

can be measured in events where one neutral B meson is fully reconstructed in

a flavor-eigenstate and the flavor of the other B is tagged by its decay products,

since this information is sufficient to classify the event as mixed or unmixed. In

this analysis, we reconstruct B mesons in the flavor-eigenstates B0 → D(∗)−π+,

D(∗)−ρ+, D(∗)−a+
1 , and J/ψK∗0(K+π−). If, for example, we reconstruct a B0

in the final state D(∗)−π+ and the flavor of the other meson in the event is

found to be a B0 (B0) when it decays, then the event is classified as unmixed

(mixed). The events with B mesons reconstructed in flavor-eigenstates will be

used to determine the dilution and resolution function parameters, which are

needed to measure sin2β.

This is accomplished by constructing a likelihood-function, by summing

H± over all mixed and unmixed events in a given uniquely assigned tagging

category i and summing over all tagging categories, given by

lnLmix =
tagging∑

i

[ ∑
unmixed

lnH+(∆t; Γ,∆md, wi, âi)+
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∑
mixed

lnH−(∆t; Γ,∆md, wi, âi)

]
(3.0.3)

The characteristics of likelihood-functions will be explained in detail in Chap-

ter 7. Maximizing Eqn. 3.0.3 allows us to determine the mistag rates wi and

the resolution function parameters âi of each flavor tagging category 1.

The probability distribution functions that were derived in Sec. 1.8 for the

∆t distributions of tagged events where a neutral B meson decays to a CP

eigenstate,

f± =
Γ

4
e−Γ|∆t| [1 ±D sin2β sin(∆m∆t)] (3.0.4)

where the +(-) label indicates that the tagging meson was a B0 (B0), must also

be convolved with a time resolution function R(∆t, â) to take into account the

detector resolution. This results in a new probability distribution function F±

given by

F±(∆t; Γ,∆md, w, sin2β, â) = f±(∆ttrue; Γ,∆md, w, sin2β) ⊗R(δt; â), (3.0.5)

where the resolution function R(δt; â) is the same as in 3.0.2.

We can use a similar method as that described for measuring the mistag

rates and resolution function parameters of the flavor-eigenstate sample in order

to determine sin2β. This is done using the tagged BCP sample by maximizing

the log-likelihood function

lnLCP =
tagging∑

i

⎡
⎣ ∑

B0tag

lnF+(∆t; Γ,∆md, wi, sin2β, âi)+

∑
B0tag

lnF−(∆t; Γ,∆md, wi, sin2β, âi)

⎤
⎦ (3.0.6)

where the outer summation is over tagging categories i and the inner summa-

tions are over the B0 and B0 tags within a given uniquely-assigned tagging

category. In practice, the fit for sin2β is performed on the combined flavor-

eigenstate and CP samples with a log-likelihood given by the sum of Eqn 3.0.3

1We could also determine ∆md with this procedure but that is not the goal of this analysis.
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and 3.0.6. In this way we can simultaneously determine the mistag rates, res-

olution function parameters, and sin2β. The likelihood contains additional

terms described in Chapter 7 to account for backgrounds.

3.1 Analysis outline

The components of the sin2β analysis are presented in the following chap-

ters. In Chapter 4, we describe the reconstruction of neutral B decays to CP

modes J/ψK0
S , ψ(2S)K0

S , χc1K
0
S , and ηcK

0
S , as well as the reconstruction of

neutral B decays to the flavor-eigenstates listed above, and the reconstruction

of charged B decays to J/ψK+, ψ(2S)K+, χc1K
+, and D̄(∗)0π+ final states

that are used as a control sample.

Chapter 5 discusses how the flavor of the tagging meson is determined. The

method used to measure the distance ∆z between the two neutral B meson

vertices along the Υ (4S) boost axis and its conversion to ∆t is described in

Chapter 6.

In Chapter 7 we construct a likelihood function that describes the time evo-

lution of signal and background events in the presence of mixing and CP asym-

metries. The results of the sin2β measurement and systematic uncertainties are

given in Chapters 8 and 9, respectively. Finally, we discuss the consequences

of the measurement and prospects for improvements in Chapter 10.

3.2 Additional CP modes

Reconstruction of B meson decays to the CP = +1 eigenstate J/ψK0
L

and

the mixed CP state J/ψK∗0 (K∗0 → K0
S
π0) are also used to measure sin2β.

The CP eigenstate of J/ψK0
L is opposite that of J/ψK0

S since the K0
L has a

CP eigenvalue of −1 while the K0
S has an eigenvalue of +1 (see Eqn. 1.4.2).

This means that the amplitude of the time-dependent CP -violating asymme-

try (Eqn. 1.6.48) for this mode is flipped relative to the ηCP = −1 decays.
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Thus, comparing the measured value of sin2β from J/ψK0
S

and J/ψK0
L

decays

is an excellent cross-check of the analysis procedure. Additionally, of course,

adding the fully reconstructed J/ψK0
L

decays allows us to make a more precise

measurement.

Conservation of angular momentum dictates that the final state of a B0

decay (in the B0 rest frame) must have zero total angular momentum. The

vector-vector final state J/ψK∗0 may have a total spin of 0,1, or 2 using the

known rules of quantum mechanics for adding two spin 1 particles. Conse-

quently, the orbital angular momentum L of the state must be 0,1, or 2 in

order that the state have zero total angular momentum. The presence of even

(L = 0, 2) and odd (L = 1) orbital angular momentum in the B0 → J/ψK∗0

final state means that there are CP -even and CP -odd contributions to the de-

cay rate (since the parity of the final state goes like (−1)L). When the angular

information in the decay is ignored, the measured CP asymmetry in J/ψK∗0 is

reduced by a factor 1− 2R⊥ where R⊥ is the fraction of the L = 1 component.

We measure sin2β using B0 decays to J/ψK0
L

and J/ψK∗0 (K∗0 → K0
S
π0).

Results of these measurements will be presented in Chapter 8 for complete-

ness, but they will not be discussed in detail in contrast to the ηCP = −1 final

states. Reconstruction and background complexities distinguish the J/ψK0
L

and J/ψK∗0 final states from the other CP eigenstates.
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Chapter 4

Reconstruction of B mesons

This chapter describes the reconstruction of events that contain a neutral

B meson decay to a charmonium 1 and K0
S

meson where the CP eigenvalue of

the final state is −1. The reconstructed charmonium states include J/ψ , χc1,

ψ(2S), and ηc mesons. Appendix A contains a description of the spectroscopy

of these cc states. The relevant branching fractions for the most abundant of

these modes, B0 → J/ψK0
S
, are shown in Table 4.1. With an ∼ 80 fb−1 data

set and a reconstruction efficiency of 45%, one expects the total yield (sum of

B0 and B0 decays) for this mode to be about 1300 events.

Decay Branching Fraction
Υ (4S) → B0 B0 ∼ 50%
B0 → J/ψK0

S
(4.5 ± 0.6) × 10−4

J/ψ → l+l− (11.81 ± 0.14)%
K0

S
→ π+ π− (68.61 ± 0.28)%

Total (3.6 ± 0.5) × 10−5

Table 4.1: Branching fractions for the decay B0 → J/ψK0
S

In addition to the CP sample, neutral B mesons that decay to flavor eigen-

states are reconstructed. The final hadronic states in this sample consist of B0

1The word charmonium denotes a bound state of cc quarks.
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→D(∗)−π+,D(∗)−ρ+,D(∗)−a+
1 , and J/ψK∗0(K+π−). The term flavor-eigenstate

implies that the final state tags the flavor of the B meson when it decays (i.e.,

only a B0 decays to D(∗)−π+ and only a B0 decays to D(∗)+π− 2). The flavor-

eigenstate sample (Bflav) is used to determine the mistag rates and resolution

function parameters as will be explained in Chapters 5 and 6. Additionally,

validation studies are performed with a control sample of B+ mesons which

decay to the final states J/ψK+, ψ(2S)K+, χc1K
+, ηcK

+, and D̄(∗)0π+.

In Sec. 4.1, the basic track and neutral reconstruction algorithms are de-

fined. The subdetector information used to identify electrons, muons, and kaons

is described in Sec. 4.2. This information provides the background for Sec. 4.3

where we detail the reconstruction of B meson decay daughters. In Sec. 4.4, we

discuss the techniques used to select signal B meson candidates while reducing

background contributions. This leads to a presentation of the yields for the

neutral B0 charmonium CP sample in Sec. 4.5, the neutral B0 flavor-eigenstate

sample in Sec. 4.6, and the charged B+ control sample in Sec. 4.7.

4.1 Track and neutral reconstruction

Charged particle track reconstruction begins in the DCH using the same

fast pattern recognition algorithm employed by the Level-3 trigger. This algo-

rithm identifies and links superlayer-based track segments from particles with

transverse momentum greater than about 500 MeV that originate near the

IP. Additional algorithms attempt to find tracks of lower momentum that do

not pass through the entire radius of the DCH or near the IP. At the end of

this process, the tracks are refit with a Kalman-filter fitter [56] that takes into

account the distribution of detector material and the non-uniformities in the

magnetic field. The resulting tracks are projected into the SVT where silicon-

strip hits consistent with the extrapolated track are added. Remaining SVT

2This statement is only true to first order. We discuss corrections from second order
effects in detail in Sec. 9.6.
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hits are passed to complementary standalone track finding algorithms. Finally,

an attempt is made to combine tracks that have been found by only one of

the two tracking systems due to a large angle scattering in the beam pipe.

Efficiencies of the tracking reconstruction were discussed in Sec. 2.3 and 2.4.

The efficiency for finding tracks in BB events with transverse momenta greater

than 200 MeV/c is about 95%.

Reconstruction of neutral particles begins in the EMC by identifying crys-

tals that have at least 10 MeV of deposited energy. Neighboring crystals with

energy greater than 1 MeV are added to form what is termed a cluster. Clusters

are divided into “bumps” based on the number of local maxima they contain,

where local maxima are defined as candidate crystals that have a fractional en-

ergy deposition greater than each of their neighbors. This division of clusters

is necessary to resolve overlapping photon candidates (e.g., from high-energy

π0 decays). If none of the charged tracks projected to the inner face of the

calorimeter intersect the crystals of a bump, the bump is assumed to have

been formed from the electromagnetic shower of a neutral photon. The energy

resolution and performance of the EMC was characterized in Sec. 2.6.

4.2 Particle identification

Some information concerning particle identification has already been cov-

ered in Sec. 2.5, 2.6, and 2.7. Particles are distinguished using measurements of

energy loss (dE/dx) in the SVT layers and DCH, momentum in the DCH, the

number of Cherenkov photons emitted and the Cherenkov angle in the DIRC,

electromagnetic energy deposited in the EMC, and penetration length in the

IFR. These quantities are used to define different selection categories as well as

likelihood ratios derived from them, and from neural network algorithms that

combine the likelihoods from different subdetectors.
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4.2.1 Charged lepton identification

Electrons are muons are primarily used to reconstruct J/ψ mesons and for

flavor tagging. Electron candidates are identified by the ratio of the energy

they deposit in the EMC to their momentum, E/p. The measured dE/dx

in the DCH must also be consistent with the electron hypothesis. Information

about the lateral energy moment (LAT) [60] and the Zernike moments Amn [61]

of the particle’s associated electromagnetic shower also distinguishes electrons.

LAT is a measure of the radial energy profile of the shower while the Zernike

moment A42 measures the asymmetry about the shower’s maximum. Fig. 4.1

shows plots of E/p, LAT, A42, and dE/dx measured in the DCH for electrons in

data from control samples. Additionally, the agreement between the observed

and expected Cherenkov angle in the IFR is used to select the highest purity

sample. Table 4.2 lists the selection criteria used to define four categories

(VeryLoose, Loose, Right, VeryTight) of electron candidates. Candidates

whose measured dE/dx satisfies the VeryTight requirement but that do not

have an associated EMC cluster are retained as noCal electrons. This last

category is intended to identify electrons that are outside the EMC acceptance,

especially those that travel in the direction opposite the boost where there is

no endcap.

Muons candidates are identified by the measured number of hadron interac-

tion lengths (nλ) traversed through the IFR, and the difference (∆nλ) between

nλ and the predicted penetration depth for a muon of the same momentum

and polar angle. Contamination from hadronic showers is rejected using the

average number of hits (n̄hits) and the variance (σn̄hits
) of hits in each RPC

layer, the χ2 for the geometric match between the track extrapolation to the

IFR and the RPC hits (χ2
trk), and the χ2 of a polynomial fit to the RPC hits

(χ2
fit). Muons within the EMC acceptance are also required to deposit energy

(EEMC) consistent with a MIP. Fig. 4.2 shows distributions of (nλ), ∆nλ, (χ2
trk),

and EEMC for muons from data control samples. Table 4.3 lists the selection
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Figure 4.1: Distributions of (a) E/p, (b) LAT, (c) A42, and (d) dE/dxmeasured
in the DCH for electrons in data from control samples. The empty bins in the
A42 distribution are an artifact of the chosen bin size. Note that the units of
dE/dx in (d) are arbitrary.

criteria used to define four categories of muon candidates.

Typical electron and muon efficiencies and pion misidentification probabil-

ities were given in Sec. 2.6.2 and 2.7.2. The Loose selection criteria yields

electrons (muons) with an efficiency of 97% (86%) and a pion fake rate of 5%

(7%) for candidates with momentum greater than 1 GeV/c.
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Category dE/dx E/p LAT A42 ∆θc
VeryLoose [-3σ,7σ ] > 0.50 - - -
Loose [-3σ,7σ ] > 0.65 - - -
Tight [-3σ,7σ ] [0.75, 1.3] [0.0, 0.6] - -
VeryTight [-2.2σ,4σ ] [0.89, 1.2] [0.1, 0.6] < 0.11 [-3σ,3σ ]

Table 4.2: Summary of electron identification criteria. The difference between
the mean dE/dx and the expectation for an electron is required to lie within
the interval specified in terms of the expected dE/dx resolution σ. LAT and
A42 refer to the longitudinal and azimuthal EMC shower shapes respectively
and ∆θc refers to the difference between the measured and expected Cherenkov
angle. Distributions of the selection variables are shown in Fig. 4.1. For refer-
ence, the mean of the dE/dx plot in Fig. 4.1d is 650 with a resolution of 50 in
arbitrary units.

Category nλ ∆nλ n̄hits σnhits
χ2
trk/nlyr χ2

fit/nlyr EEMC [ GeV]

VeryLoose > 2.0 < 2.5 < 10 < 6 - - < 0.5
Loose > 2.0 < 2.0 < 10 < 6 < 7 < 4 < 0.5
Tight > 2.2 < 1.0 < 8 < 4 < 5 < 3 [0.05, 0.4]
VeryTight > 2.2 < 0.8 < 8 < 4 < 5 < 3 [0.05, 0.4]

Table 4.3: Summary of muon identification criteria. The variable definitions
are provided in the text and distributions of selected variables are shown in
Fig. 4.2.

4.2.2 Kaon identification

Kaon candidates are distinguished from pions and protons using measure-

ments of dE/dx in the SVT and DCH, the number of Cherenkov photons

emitted in the DIRC, and the Cherenkov angle in the DIRC. Pion, kaon, and

proton likelihoods Lπ,LK , and Lp are computed using the difference between

the measured and expected truncated-mean dE/dx in the DCH assuming Gaus-

sian distributions for the given candidate hypothesis. A likelihood is computed

in the DIRC for each particle type using the expected number of Cherenkov

photons and the difference between the measured and expected Cherenkov an-

gle for the given mass hypothesis. Fig. 4.3 shows the Cherenkov angle as a
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Figure 4.2: Distributions of (a) nλ, (b) ∆nλ, (c) χ2
trk, and (d) EEMC for muons

from a data control sample of e+e− → e+e− µ+ µ− (dashed histogram) and
→ µ+ µ− γ (solid histogram).

function of momentum for tracks from a D∗+ → D0(→ K−π+)π+ data control

sample where the pions and kaons have been kinematically identified.

The exclusive reconstruction of B meson decays does not generally require

explicit kaon identification. For some modes, a VeryLoose kaon selection based

on likelihood ratios is used to reduce backgrounds. The likelihood is con-
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Figure 4.3: Distributions of DIRC Cherenkov angle as a function of momentum
for kinematically identified (a) kaons and (b) pions from a data control sample
of inclusive D∗+ → D0(→ K−π+)π+ decays.

structed from different subdetector likelihoods depending on the momentum of

the kaon candidate. Kaon candidates are rejected if the likelihood ratios satisfy

LK/Lπ < r, where r = 0.1 for p < 0.5 GeV/c and r = 1 for p ≥ 0.5 GeV/c.

Tracks without PID are assumed to be kaons. This VeryLoose requirement has

a roughly constant selection efficiency of 95% and a pion misidentification rate

of at most 15% for tracks in the transverse momentum range 1 to 2.5 GeV/c.

4.2.3 Event selection

Since many of the recorded events that pass the L3 trigger do not originate

from e+e− collisions (they may be from beam-gas or beam-wall interactions),

we impose loose selection criteria that nearly all BB events will pass. We

require at least three reconstructed tracks in the polar range 0.41 < θlab < 2.54

rad. The tracks must be within 1.5 cm in the plane transverse to the beam

direction (transverse plane) and 10 cm in z of the nominal beamspot and must

be reconstructed by the DCH. For each event, a primary vertex is formed from a

vertex fit to all charged tracks in the fiducial volume. Tracks which contribute
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a large χ2 to the fit are removed until the probability of the χ2 is greater

than 1% or until only two tracks remain. This method achieves a resolution

of about 70µm in x and y for hadronic events. The primary vertex must be

within 0.5 cm of the average beamspot positions in the transverse plane and

6 cm longitudinally.

Neutrals are defined to be electromagnetic bumps in the calorimeter in the

polar range 0.410 < θlab < 2.409 rad which are not associated to a charged

track, have an energy greater than 30 MeV, and a LAT < 1.1. The total energy

of the event in the fiducial region for charged tracks and neutrals must be

greater than 4.5 GeV.

Additionally, to reduce continuum background from qq events, the normal-

ized second Fox-Wolfram moment [64] R2 of the the event, calculated using

charged tracks and neutrals, must be less than 0.5. The lth Fox-Wolfram mo-

ment (FWl) is the momentum-weighted sum of Legendre polynomial of the lth

order computed from the cosine of the angle between all pairs of tracks as:

FWl =

∑
i,j |pi||pj|Pl(cos θij)

E2
tot

(4.2.1)

where i and j run over all tracks and neutrals, p is the momentum of the track

or neutral, Pl is the lth order Legendre polynomial, θ is the angle between the

two candidates, and Etot is the total energy of the tracks and neutrals in the

event. The ratio R2 is defined to be FW2/FW0. Since the momentum of the

B mesons is only ∼ 350 MeV/c in the Υ (4S) frame, the distribution of tracks

from the two B decays is isotropic. The tracks from continuum events, on the

other hand, tend to be collinear in this frame as the jets originate back to back

with significant momentum (compared to the B momentum in this frame). The

ratio R2 provides good separation power between the jet-like continuum and

spherical BB events as shown in Fig 4.4 for Monte Carlo.

The selection of multihadron events described in the preceding paragraphs

is 95±1% efficient for BB decays as estimated from a Monte Carlo simulation.
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area. The separation power of R2 is evident. BB events are selected requiring
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4.3 Reconstruction of decay daughters

Vertex and kinematic fitting is used to improve four-momenta and position

measurements of composite candidates, as well as to measure the time difference

between the decay of the neutral B mesons. For example, the determination

of the B0 decay vertex can be improved by constraining the line-of-flight of

the K0
S to intersect the charmonium vertex. Also, the energy resolution of

the B0 may be improved by constraining the charmonium and K0
S

mesons to

their known masses. Generalized procedures which use the Lagrange-multiplier

technique [65] have been implemented. Possible constraints include a common

decay vertex, mass, energy, momentum, beam energy, beam-spot position, and

line-of-flight. Since some of these constraints require non-linear fits, the itera-

tive procedure is defined to converge when successive steps yield a change in

the χ2 which is less than 0.01 within a maximum of six iterations.

We reconstruct neutral B mesons which decay to a charmonium meson and

a K0
S in order to measure sin2β. The K0

S is reconstructed in its decay K0
S →
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π+ π− for all charmonium mesons and also in its decay K0
S
→ π0 π0 for the

mode J/ψK0
S
. The following subsections describe the π0, K0

S
, and charmonium

reconstruction methods.

4.3.1 Selection of π0 mesons

Neutral pion candidates are formed from pairs of photon candidates with en-

ergy greater than 30 MeV which are assumed to originate from the primary ver-

tex. The photon pair must have an invariant mass within ±20 MeV/c2 (2.5σ, see

Fig. 2.20) of the nominal π0 mass and a summed energy greater than 200 MeV.

Candidates are fit with a kinematic and π0 mass constraint. Efficiencies for

this selection for photon pairs within the EMC acceptance range from 55 to

65% for π0 energies in the range 0.3 to 2.5 GeV, typical for B decays.

4.3.2 Selection of K0
S

mesons

We reconstruct K0
S

candidates as π+ π− and π0 π0 which have respective

branching fractions of 68.6±0.3% and 31.4±0.3%. For candidates reconstructed

as π+ π−, the invariant π+ π− mass determined at the vertex of the two tracks

must be between 489 and 507 MeV/c2 (∼ 3σ). Since the reconstruction of a B

meson when it decays to J/ψK0
S

is extremely clean (very low background), we

loosen this restriction 3 by requiring that the invariant π+ π− mass is between

473 and 523 MeV/c2. The three dimensional flight length of the K0
S

candidate

with respect to the vertex of the charmonium candidate must be greater than

1 mm. Fig. 4.5 shows a plot of the mass distribution forK0
S → π+ π− candidates

in a subset of the full data sample.

We form K0
S
→ π0π0 → 4γ candidates by combining pairs of π0 candidates,

requiring the mass of each candidate be within 100 to 155 MeV/c2 (−5σ,+3σ)

and the photons from each candidate not to overlap in the EMC. For a K0
S

3This allows the recovery of 7% of this signal which would otherwise be lost due to poorly
reconstructed low momentum charged pions.

95



candidate with an energy greater than 800 MeV and a mass between 300 and

700 MeV/c2 at the event’s primary vertex, we perform a mass constrained fit

to each photon pair constraining it to the nominal π0 mass. The fit is iterated

assuming different decays points along the K0
S

flight path, as defined by the

J/ψ decay vertex and the initial K0
S

momentum vector direction. The point

where the product of the fit χ2 probabilities for the two π0 pairs is maximized

is taken to be the K0
S decay vertex. The distance from the J/ψ vertex to the

K0
S decay vertex must be between -10 and +40 cm (the negative distance takes

into account the vertex resolution). The K0
S mass determined at the K0

S decay

vertex must be between 470 and 536 MeV/c2. Fig. 4.5 shows a plot of the mass

distribution for K0
S
→ π0 π0 candidates in a subset of the full data sample.

4.3.3 Selection of ρ, a+
1 , and K∗0 mesons

For ρ− → π−π0 decays, the π−π0 mass is required to be within ±150 MeV/c2

of the nominal ρ− mass. The π0 from the ρ− decay must have an energy greater

than 300 MeV. The invariant mass of the K+π− from K∗0 decays must be

within 100 MeV/c2 of the nominal K∗0 mass. The three charged pions used

to reconstruct the mode a+
1 → π+π−π+ must have a mass between 1.0 and

1.6 GeV/c2. Also, the χ2 probability of a vertex fit of the a+
1 candidate must be

greater than 0.1%. The widths of the ρ, a+
1 , and K∗0 are 149, 250–600, and 51

MeV/c2 respectively.

4.3.4 Charmonium meson selection

This section describes the selection criteria for charmonium mesons that

are used to reconstruct B meson candidates in the BCP and control samples.

The decay modes and branching fractions of the charmonium mesons used in

this analysis are given in Table 4.4. Candidate J/ψ and ψ(2S) mesons are

reconstructed in their decays to e+e− and µ+µ− pairs; ψ(2S) mesons are also

reconstructed as J/ψπ+π−. Candidate χc1 mesons are reconstructed as J/ψγ
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Figure 4.5: K0
S

mass distribution observed in B0 → J/ψK0
S

candidates passing
the selection cuts for (a) K0

S → π+ π− and (b) K0
S → π0 π0.

and ηc mesons are reconstructed in hadronic decays to KK̄π final states. The

particle identification and invariant mass requirements of the lepton pairs is

displayed in Table 4.5. The requirements vary by decay mode because of the

different amount of background in each mode.

In the e+e− decays of the J/ψ and ψ(2S), an attempt is made to recover

bremsstrahlung photons which may have originated in the detector material
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Meson Mass( MeV/c2) Decay Mode Branching fraction (%)
ηc 2979.7 ± 1.5 KK̄π 5.5 ± 1.7
J/ψ 3096.9 ± 0.04 e+e− 5.93 ± 0.10

µ+ µ− 5.88 ± 0.10
χc1 3510.51 ± 0.12 J/ψγ 31.6 ± 3.2
ψ(2S) 3685.96 ± 0.09 J/ψ π+ π− 30.5 ± 1.6

e+e− 0.73 ± 0.04
µ+ µ− 0.70 ± 0.09

Table 4.4: Branching fractions and decay modes of charmonium mesons used
in this analysis

e+e− candidates µ+µ− candidates
B channel Minimal Restrictive m(e+e−) Minimal Restrictive m(µ+µ−)
J/ψK0

S None Tight or NoCal [2.95,3.14] MIP Loose [3.06,3.14]
ψ(2S)K0

S(�+�−) VeryLoose Tight [3.436,3.736] VeryLoose Loose [3.06,3.14]
ψ(2S)K0

S(π+π−) VeryLoose Tight [2.95,3.14] VeryLoose Loose [3.06,3.14]
χc1K0

S Loose Tight [2.95,3.14] VeryLoose Loose [3.06,3.14]

Table 4.5: Particle identification and invariant mass requirements for J/ψ and
ψ(2S) → �+�− candidates. Both daughters must pass the minimal PID criteria
while only one must pass the restrictive criteria. Electron and muon identifi-
cation requirements are listed in Sec. 4.2. Mass ranges are listed in units of
GeV/c2 and MIP refers to a minimum-ionizing particle.

or as final state radiation (termed internal Bremsstrahlung) following the J/ψ

decay. The photon emission causes the magnitude of the measured momentum

of the e± track to be less than its actual value, reducing the reconstruction

efficiency of the charmonium meson. Photons are typically emitted along the

direction of the parent e± track: the mean separation angle is of the order

m2
e/Ee, which is less than 5 mrad for an electron energy greater than 1 GeV.

The EMC bump of the bremsstrahlung photon and parent e± are well separated

in the φ direction, however, because the charged track is bent by the 1.5 T

magnetic field. Monte Carlo studies have shown that ∼ 90% of the radiated

photon bumps in the EMC lie within 35 mrad in polar angle and 50 mrad

in azimuth of the initial e± track direction evaluated at the primary vertex.
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The photon bremsstrahlung candidates must have energy greater than 30 MeV,

LAT between 10−4 and 0.80, and A42 < 0.25. The four-momentum of an

identified bremsstrahlung photon candidate measured in the EMC is added to

the four-momentum of the associated electron or positron track. Recovering

the bremsstrahlung photons increases the efficiency for reconstructing J/ψ and

ψ(2S) decays to e+e− by about 30%. Fig. 4.6 shows the mass distribution in

data of J/ψ candidates.
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Figure 4.6: Invariant mass distribution for (a) J/ψ → e+e− and (b) J/ψ →
µ+µ− candidates in B0 → J/ψK0

S
and B+ → J/ψK+ events passing the se-

lection criteria. The arrows indicate the mass interval used to select the J/ψ
candidates. Note the asymmetric tail below the J/ψ mass for e+e− candidates
that results from energy loss due to bremsstrahlung.

To reconstruct the ψ(2S) in its J/ψπ+π− decay mode, J/ψ candidates

are constrained to their nominal mass and combined with pairs of oppositely

charged tracks whose invariant mass lies between 400 and 600 MeV/c2. The

candidate must also satisfy 574 < m(J/ψπ+π−) − m(J/ψ ) < 604 MeV/c2.

Fig. 4.7 show the mass distribution in data of ψ(2S) candidates.

χc1 candidates are reconstructed in the J/ψ γ decay mode, which accounts

for about 32% of χc1 decays. The photons must lie within the EMC fiducial vol-
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Figure 4.7: Invariant ψ(2S) mass distribution observed in data in B0 →
ψ(2S)K0

S
and B+ → ψ(2S)K+ candidates passing selection criteria, for (a)

ψ(2S) → e+e−, (b) ψ(2S) → µ+µ−, and (c) the ψ(2S) − J/ψ mass difference
for ψ(2S) → J/ψπ+π−. The intervals used to select ψ(2S) candidates are
indicated by the arrows.

ume and have an energy greater than 150 MeV. Photons that form an invariant

mass between 120 and 150 MeV/c2 with any other photon whose energy is at

least 70 MeV are rejected in order to remove those candidates that originated

in the decay of a π0. The χc1 invariant mass must be between 3.477 and 3.547

GeV/c2. Fig. 4.8 shows the mass distribution of χc1 − J/ψ candidates in data.

The ηc candidates are reconstructed in the K0
S
K+π− and K+K−π0 final

states. The charged kaon candidates must satisfy kaon identification criteria

based on the Cherenkov angle measured in the DIRC or dE/dx measured in the

DCH. TheK0
S
→ π+π− candidate and π0 candidate from the ηc decay must have

reconstructed masses within 12.5 and 15 MeV/c2 respectively of their nominal

masses. The ηc candidates which have 2.90 > m(KKπ) < 3.15 GeV/c2 are

combined with K0
S candidates that have an invariant mass within 10 MeV/c2 of

the nominal K0
S mass. The ηc invariant mass window contains events from the

hadronic decays of the J/ψ to the same final states. Since the underlying quark
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Figure 4.8: Invariant mass distribution in data for χc1−J/ψ observed in B0 →
χc1K

0
S

and B+ → χc1K
+ candidates passing the event selection. The mass

difference interval used to select χc1 candidates is indicated by the arrows.

process is the same and because the B0 → ηcK
0
S

and B0 → J/ψK0
S

decays have

the same CP = −1, the J/ψ events are included in the final sample, contributing

(15± 2)% to the total ηc yield. Fig. 4.9 shows a fit to the ηc mass distribution

in data.
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Figure 4.9: ηc mass distribution observed in B0 → ηcK
0
S candidates passing the

selection cuts with a fit superimposed. The selection includes the contribution
from hadronic decays of the J/ψ , shown as the peak at 3.097 GeV/c2.
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4.3.5 Charmed meson selection

We reconstruct D0 mesons in the decay channels K−π+, K−π+π0, and

K−π+π−π+ and D− candidates in the channels K+π−π− and K0
Sπ

−. The

branching fractions for these decays is shown in Table 4.6. Charged and neu-

tral kaons must have a momentum greater than 200 MeV/c2. We require D0 and

D− candidates to be within ±3σ of their nominal masses, where the resolution

σ is calculated for each event from the measured track parameters. The dis-

tributions of the difference between measured and nominal D0 and D− masses

normalized by the measured resolution, shown in Fig. 4.10, have an RMS of

1.1-1.2 when fit with a Gaussian, indicating that the resolution is slightly worse

than expected. For D0 → K−π+π0, we only reconstruct the dominant resonant

mode D0 → K−ρ+ followed by ρ+ → π+π0. The absolute value of the cosine of

the angle between the π+ and the D0 in the ρ+ rest frame must be greater than

0.4. Additionally, all D0 and D− candidates must have a momentum greater

than 1.3 GeV/c2 in the Υ (4S) rest frame and a χ2 probability for the geometric

vertex fit greater than 0.1%. After satisfying these requirements, the charmed

mesons are mass constrained to their nominal values.

Meson Mass( MeV/c2) Decay Mode Branching fraction (%)
D0 1864.5 ± 0.5 K−π+π0 10.2 ± 0.9

K−π+π+π− 7.5 ± 0.3
K−π+ 3.8 ± 0.1

D+ 1869.5 ± 0.5 K−π+π+ 9.1 ± 0.6
K0

S
π+ 1.4 ± 0.1

Table 4.6: Branching fractions and decay modes D0 and D+ charm mesons
used in this analysis

We form D∗+ candidates in the decay D∗+ → D0π+ by combining a D0

with a ”soft pion” whose momentum is greater than 70 MeV/c. The soft pion is

constrained to originate from the beamspot when the D∗+ vertex is computed.

Since the B mesons have a non-negligible transverse flight length, the effective
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(a) (b)

Figure 4.10: Distribution of (a) D0 and (b) D+ mass pulls for selected can-
didates. The mass pull is defined to be the difference between the measured
mass and its nominal value divided by the measured error on the mass. A fit
to a Gaussian distribution is overlaid on the data (points with error bars).

vertical size of the beam-spot is enlarged from its measured value to 40µm. D∗+

candidates must have |m(D0π+) − m(D0)| within 3.3 MeV/c2 of the nominal

value for the D0 → K−π+π0 mode and within 2.4 MeV/c2 for all other modes.

This corresponds to about ±2.5 times the resolution of this variable. Fig 4.11a

shows the distribution of m(D0π+) − m(D0) for data and simulated Monte

Carlo.

We form D∗0 candidates by combining a D0 with a π0 with momentum less

than 450 MeV/c in the Υ (4S) frame. D∗0 candidates must have |m(D0π0) −
m(D0)| within 4.2 MeV/c2 (±3σ) of the nominal value. Fig. 4.11b shows the

distribution of m(D0π0)−m(D0) for data overlaid with a fit that uses a Gaus-

sian distribution to model the signal component.
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Figure 4.11: Distribution of (a) m(D0π+)−m(D0) and (b) m(D0π0)−m(D0)
in data. The vertical lines in (a) indicate the selection criteria and the solid
histogram shows the distribution in simulated Monte Carlo not normalized to
the data sample. The data (points with error bars) in (b) are overlaid with a
fit that models the signal component with a Gaussian distribution.

4.4 B meson reconstruction

We reconstruct B candidates in all modes using a pair of nearly uncorrelated

kinematic variables, the difference ∆E between the energy of the B candidate

and the beam energy in the c.m. frame, and the beam-energy substituted mass

(mES). We define mES as

mES =

√√√√( 1
2
s+ �pB · �pi

Ei

)2

− p2
B (4.4.1)

where s is the square of the c.m. energy, Ei and �pi are the total energy and

the three momentum of the initial state in the laboratory frame, and �pB is the

three momentum of the B candidate in the same frame. In the c.m. frame,

this formula simplifies to

mES =
√
E2

beam − p∗2 (4.4.2)

104



where Ebeam is the energy of the beam and p∗ is the measured momentum of the

B meson in the c.m. frame. For signal events, we expect mES = mB, where mB

is the known B mass, and ∆E = 0. For the purpose of determining event yields

and purities, a signal region is defined in the (mES,∆E) plane as 5.27 < mES <

5.29 GeV/c2 and |∆E| < 3σ(∆E), where σ (∆E) is the resolution on ∆E.

Also, a so-called sideband region is defined as 5.20 < mES < 5.26 GeV/c2 and

|∆E| < 3σ(∆E). The resolution on ∆E is mode dependent and varies between

about 10 MeV and 40 MeV in data, with larger values typically from modes

with one or more π0, like J/ψK0
S (π0 π0). When more than one B candidate

is reconstructed in the same event with mES > 5.20 GeV/c2, we choose the one

with the smallest value of |∆E|.
Two types of background in the sample of B0 candidates are distinguished.

The first background, called combinatorial background, arises from random

combinations of charged tracks and neutral showers from both B mesons in BB

events or from continuum events. This background is distributed evenly in mES

and does not show any enhancement near the B mass. The second background,

called peaking background, consists of events where the B is reconstructed with

all of its correct decay products except for usually one lower momentum track

which came from the other B. Peaking backgrounds show a structure similar to

the signal shape in the mES distribution with a resolution typically 10% larger.

Signal yields and purities are obtained by fitting the mES distribution of

B candidates with a Gaussian distribution S(mES) for the signal and an em-

pirical phase space distribution [66] (henceforth referred to as the ARGUS

distribution) A(mES) for the combinatorial background. The functional form

of A(mES) is given by

A(mES;m0, ζ) = ABmES

√
1 − x2

ESe
ζ(1−x2

ES), (4.4.3)

with xES ≡ mES/m0 < 1, where m0 represents the kinematic upper limit which

is held fixed at the c.m. beam energy E∗
b = 5.291 GeV, and ζ and AB are free

parameters. The measured value of mES along with the Gaussian and ARGUS
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fit parameters will be used to assign per-event signal probabilities that will be

described in more detail in Chapter 7. The purity is defined to be the ratio of

the integral of the Gaussian signal component of the mES distribution above

5.27 GeV/c2 to the sum of this integral and the integral of events in the ARGUS

component in the same mES range. The signal probability, p, is defined to be

p(mES) =
S(mES)

S(mES) + A(mES)
(4.4.4)

4.4.1 Helicity definition

For J/ψ and ψ(2S) decays to �+�− pairs, we use the helicity angle θ� to

further reduce the contribution from continuum background. We define θ� as

the angle in the charmonium rest frame between the �− and the charmonium

direction in the B candidate rest frame. Fig. 4.12 gives a schematic represen-

tation of this angle for the decay B0 → J/ψK0
S . Since the B is a pseudoscalar,

the charmonium and K0
S meson cannot have a net spin projection along their

decay axis direction in the B rest frame in order to conserve angular momen-

tum. This means that the J/ψ or ψ(2S) has its spin transverse to its direction

of motion (referred to as longitudinal polarization) since there can be no can-

cellation with the spin zero K0
S

meson. It can be shown [38] that the amplitude

for the decay of a particle with spin J and projection M along an arbitrary z

axis to particles 1 and 2 of helicity λ1 and λ2 is proportional to the function

dJM,λ1−λ2
(θ), where θ is the polar angle between the momentum of particle 2

with respect to the spin quantization axis. The probability for longitudinally

polarized J/ψ or ψ(2S) vector meson to decay to two spin (1/2) leptons that

have opposite helicity is then proportional to the square of d1
0,1, or sin2 θ�. This

angle is very useful in rejecting background since the distribution of cos θ� is

peaked at ±1 for background and at zero for signal modes. Fig. 4.13 makes this

evident, displaying the distribution of cos θ� observed in data for B0 → J/ψK0
S

and B+ → J/ψK+ candidates in the signal and sideband region.
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Figure 4.12: Helicity angle definitions for the decay Υ (4S) → BB → J/ψ
(�+�−)K0

S
as explained in the text. For the J/ψ → �+�− decay shown, the

probability is proportional to sin2 θ�.
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Figure 4.13: .Distributions of cos θ� observed in data for B0 → J/ψK0
S

and
B+ → J/ψK+ candidates. The dashed histogram shows candidates in the
sideband region and the solid histogram shows candidates in the signal region,
after subtracting the appropriately scaled contribution from the sideband. Both
histograms have been normalized to unit area.
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4.4.2 Thrust definition

Suppression of continuum background for events containing ψ(2S) → J/ψπ+π−

and χc1 decays, where the helicity angle is not applicable, is also provided by

restricting the thrust angle θth, defined as the angle between the thrust axis

of the particles that form the reconstructed B candidate (Brec) and the thrust

axis of the remaining tracks and neutral clusters, computed in the c.m. frame.

The thrust axis of a collection of particles is the direction about which the

transverse momenta of the particles is a minimum. The distribution of cos(θth)

for BB events is flat, again due to the small momenta of the B mesons in the

Υ (4S) frame, while | cos(θth)| is peaked at 1 for continuum events which are

composed of roughly collinear jets of light quarks.

4.5 Reconstructing decays to CP eigenstates

The branching fractions for the B0 decays to CP eigenstates that are used in

this analysis are shown in Table 4.7. The BCP sample is formed by combining

charmonium meson candidates with K0
S candidates. Both the charmonium

and K0
S

candidate are mass constrained to their known masses (except for

the ηc candidates because of their natural finite width). For J/ψ candidates

reconstructed as e+e− (µ+µ−) in the B0 → J/ψK0
S

mode, we require | cos θ�| <
0.8 (0.9). For ψ(2S)K0

S
candidates, | cos θ�| of the ψ(2S) must be less than 0.9

for both leptonic modes. For the J/ψπ+π− decay of the ψ(2S) and for χc1K
0
S

candidates, we require | cos θth| < 0.9. The background rejection methods used

for ηcK
0
S

candidate selection are more complicated and are described in detail in

Ref. [67]. Fig. 4.14 shows themES distributions from the full data set for the CP

modes after a 3σ (∆E) cut has been applied. Signal event yields and purities,

determined from a fit to the mES distributions as explained in Sec. 4.4, are

shown in Table 4.8. The quoted yields and purity contain contributions from

peaking background.
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Decay Branching fraction (10−4)
B0 → J/ψK0

S 4.4 ± 0.3
B0 → ψ(2S)K0

S
2.8 ± 0.8

B0 → χc1K
0
S

2.0+0.6
−0.5

B0 → ηcK
0
S 5.5+3

−3

Table 4.7: Branching fractions for B0 decays to charmonium CP -eigenstates.

Final State Signal Purity (%) σ(mES)
J/ψK0

S
e+e− 683 ± 28 93 2.69 ± 0.10

(K0
S → π+ π−) µ+µ− 746 ± 28 98 2.62 ± 0.08

J/ψK0
S

e+e− 112 ± 12 83 2.87 ± 0.30
(K0

S → π0 π0) µ+µ− 142 ± 13 91 3.30 ± 0.26
ψ(2S)K0

S e+e− 106 ± 15 83 2.88 ± 0.43
µ+µ− 106 ± 11 93 2.55 ± 0.22

χc1K
0
S e+e− 56 ± 8 95 3.15 ± 0.39

µ+µ− 55 ± 8 94 2.61 ± 0.35
ηcK

0
S K+K−π0 174 ± 17 70 2.62 ± 0.27

Total 2153 ± 50 92 2.73 ± 0.06

Table 4.8: Event yields, purity, and resolution on mES for the CP sample before
any tagging or vertexing requirements. The yields and purity are obtained
from a fit to the mES distribution after selection on ∆E. Purities are quoted
for mES > 5.27 GeV/c2. We also fit for the mean of the Gaussian component
but we omit those results here since the mean is found to be consistent with
the B0 mass for all modes.

4.5.1 Peaking backgrounds for the CP sample

The fraction of peaking background has been estimated with a sample of

B0 → J/ψX Monte Carlo events for all final states except ηcK
0
S
. Since peaking

background looks like signal in the mES distribution, it is not accounted for

by the ARGUS background component of the mES fit. For each CP mode

(excluding ηcK
0
S), we perform two fits to the mES distribution of the Monte

Carlo events: first for all events, and second, removing the signal CP events.

In the second fit, the sigma and mean of the Gaussian signal component are
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Figure 4.14: Distribution of mES for neutral B0 CP eigenstates reconstructed
as (a) J/ψK0

S (π+π−), (b) B0 → J/ψK0
S (π0 π0), (c) ψ(2S)K0

S , (d) χc1K
0
S , (e)

ηcK
0
S
, and (f) all modes with a CP eigenvalue of −1. Overlaid on each plot

is the result of a fit to a Gaussian distribution for the signal and an ARGUS
distribution for the background.

fixed to the values determined from the first fit. The ratio of the Gaussian

areas from the fits determines the peaking background fraction. Table 4.9 and
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Figure 4.15: Fits to mES distribution of inclusive B0 → J/ψX Monte Carlo to
determine peaking background fractions for (a) J/ψK0

S (π+ π−), (b) J/ψK0
S (π0

π0), (c) ψ(2S)K0
S
, and (d) χc1K

0
S
.

Fig. 4.15 show the results of these fits. For ηcK
0
S
, the peaking background is

determined from a joint fit to the mES and ηc mass distribution as described

in [67]. The fraction is determined with the assumptions that the majority

of the background comes from B mesons which decay to the same final state

particles but not through an ηc resonance, and that the distribution of this

background is flat in the ηc mass distribution. These assumptions were verified

on a high statistics Monte Carlo sample. The peaking background fraction is

determined to be (13.9 ± 3.6)% for ηcK
0
S . The fraction of peaking background

is a direct input used to determine sin2β as will be explained in Chapter 7.
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Final State Fraction of peaking background (%)
J/ψK0

S
(K0

S
→ π+ π−) 0.28 ± 0.11

J/ψK0
S

(K0
S
→ π0 π0) 1.76 ± 0.57

ψ(2S)K0
S 1.17 ± 3.10

χc1K
0
S

3.54 ± 1.44
ηcK

0
S

13.1 ± 5.9

Table 4.9: Peaking background fractions for the CP sample. The errors are the
statistical errors from the mES fits.

Decay Branching fraction (10−3)
B0 → D−π+ 3.0 ± 0.4
B0 → D−ρ+ 7.8 ± 1.4
B0 → D−a+

1 6.0 ± 3.3
B0 → D∗−π+ 2.76 ± 0.21
B0 → D∗−ρ+ 7.3 ± 1.5
B0 → D∗−a+

1 1.30 ± 0.27
B0 → J/ψK∗0 1.31 ± 0.09

Table 4.10: Branching fractions for B0 decays to flavor-eigenstates used in this
analysis.

4.6 Reconstructing decays to flavor-eigenstates

Candidates in the Bflav sample of neutral flavor-eigenstate B mesons are

formed by combining a D∗− or D− with a π+,ρ+, or a+
1 , or by combining a J/ψ

candidate with a K∗0(→ K+π−). The branching fractions for these decays are

shown in Table 4.10. The charged pion in the decay B0 → D(∗)−π+ and B0

→ D(∗)−ρ+ must have a momentum greater than 200 MeV/c2. For the decay

mode B0 → D(∗)−a+
1 , the charged pions must have momentum larger than

150 MeV/c2. For most decay modes, it is possible to achieve signal purities of

at least 90% using VeryLoose (or no) kaon particle identification. However, for

the modes B− → D−a+
1 and B− → D−ρ+, the VeryTight kaon PID selection

is required to reduce large combinatorial backgrounds.

For final states with a D∗ and 2 (3) pions we require | cos θth| < 0.9(0.8)
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Figure 4.16: Distribution of mES for B0 flavor-eigenstate candidates to (a) open
charm and (b) charmonium final states. Overlaid in both cases is the result of
a fit with a Gaussian distribution for the signal and an Argus function for the
background.

for the D0 → K−π+ and K−π+π0 modes and 0.8 (0.7) for D0 → K−π+π+π−

and D0 → K0
S
π+π−. Modes which contain a D− and a π+,ρ+,or a+

1 in the final

state must have | cos θth| < 0.9, 0.8, or 0.7 respectively.

The distribution of mES for all the hadronic B0 flavor-eigenstates after a

3σ ∆E cut has been applied is shown in Fig. 4.16 The purities and yields are

given in Table 4.11.

4.6.1 Peaking backgrounds for the Bflav sample

The signal yields for the Bflav sample shown in Table 4.11 contain a small

fraction of peaking background from other charged and neutral B decay modes.

Typically, the peaking background results from the replacement of one low mo-

mentum pion which originated in the decay of the Bflav meson by another low

momentum pion which originated in the decay of the other B meson. The

decay ∆t distribution of the neutral peaking background events will have the

same structure as the signal since the vertex (and hence ∆t) will primarily

be determined by the higher momentum tracks in the decay which have been

correctly identified. For peaking background events with charged B mesons,
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Final State Signal Purity (%) σ(mES)
B0 → D∗−π+ 7333 ± 143 92 2.69 ± 0.06
B0 → D∗−ρ+ 4668 ± 199 85 3.11 ± 0.13
B0 → D∗−a+

1 3471 ± 150 79 2.69 ± 0.10
B0 → D−π+ 8222 ± 205 82 2.62 ± 0.06
B0 → D−ρ+ 4669 ± 201 77 3.00 ± 0.12
B0 → D−a+

1 2643 ± 156 66 2.58 ± 0.14
B0 → J/ψK∗0(K+π−) 2689 ± 54 95 2.65 ± 0.04

Total 34404 ± 215 82 2.67 ± 0.02

Table 4.11: Event yields, purity and resolution on mES for the flavor-eigenstate
sample before any tagging or vertexing requirements. The yields and purity are
obtained from a fit to the mES distribution after selection on ∆E. Purities are
quoted for mES > 5.27 GeV/c2. We also fit for the mean of the Gaussian com-
ponent but we omit those results here since the mean is found to be consistent
with the B0 mass for all modes

however, the time structure will no longer be the same as the signal because the

neutral and charged B mesons have different lifetimes. Further, charge con-

servation prohibits mixing in the charged B peaking background events which

is not true for the peaking background from neutral decays. Consequently,

the fraction of peaking background coming from charged B decays is estimated

with a sample of Υ (4S) → B+ B− Monte Carlo events where the B− are forced

to decay into the final states D(∗)0π−/ρ−/a−1 (since these modes are the domi-

nant contribution to the peaking background). We then reconstruct the events

in this sample the same way that the signal Bflav events are reconstructed.

Fitting the mES distribution with a Gaussian function whose mean and width

are fixed by the B0 signal parameters, we find a peaking background fraction

of (1.3± 0.3+0.2
−0.5)%. The ∆t structure of the peaking background in the Monte

Carlo is found to be consistent with the lifetime of the B− as expected.
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Figure 4.17: Distribution of mES for B− control sample candidates to (a) open
charm and (b) charmonium final states. Overlaid in both cases is the result of
a fit with a Gaussian distribution for the signal and an Argus function for the
background.

4.7 Reconstructing charged B decay control

samples

We reconstruct B− candidates as a control sample for the sin2β analysis

and to validate the flavor-tagging algorithms. The B− control sample is formed

by combining a D∗0, D0, J/ψ , ψ(2S), or χc1 candidate with a π+ or K+. We

require | cos θth| < 0.9 for D0 → K−π+, 0.7 for D0 → K0
Sπ

+π−, and 0.8 for

other D0 decay modes to reduce continuum background. There is no PID

requirement on the charged kaon or pion from the B− decay, but the pion must

have momentum greater than 150 MeV/c in the laboratory. The distributions

of mES for the charmonium and open charm B− decay modes after a 3σ ∆E

cut has been applied are shown in Fig. 4.17. The purities and yields are given

in Table 4.12.
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Final State Signal Purity (%) σ(mES)
B− → D0π− 15647 ± 282 83 2.69 ± 0.05
B− → D∗0π− 6198 ± 183 89 3.10 ± 0.09
J/ψK+ 5666 ± 78 95 2.52 ± 0.04
ψ(2S)K+ 865 ± 31 94 2.65 ± 0.16
χc1K

+ 553 ± 25 95 2.81 ± 0.21

Table 4.12: Event yields, purity and resolution on mES for the B− control
sample before any tagging or vertexing requirements. The yields and purity
are obtained from a fit to the mES distribution after selection on ∆E. Purities
are quoted for mES > 5.27 GeV/c2.
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Chapter 5

Flavor tagging

In order to measure the time-dependent asymmetry of neutral B decays to

CP eigenstates in Υ (4S) → BB events, it is necessary to determine the flavor

of the other B meson that we refer to as the Btag. This is accomplished by

examining the decay products of the Btag, which are obviously correlated with

its flavor. In an ideal world we would like to develop a tagging algorithm that is

capable of identifying the flavor of any B decay without making a mistake. We

quantify our algorithm, then, by its tagging efficiency ε, defined as the fraction

of events with a reconstructed B that are tagged, and by its mistag rate w,

which measures the probability that the algorithm gives the wrong answer for

the flavor of the Btag .

5.1 Importance of tagging

To understand the statistical impact of the efficiency and mistag rate of

the tagging algorithm on our ability to measure sin2β, let’s consider a general

asymmetry where we tag Na events of type a and N b of type b. The measured

(true) asymmetry Am(At) is defined as

Ai =
Na
i −N b

i

Na
i +N b

i

, (5.1.1)
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where i represents either measured (m) or true (t) quantities. We relate Am to

At by noting that the measured number of events of each type can be written

as

Na
m = ε[Na

t (1 − w) +N b
tw]

N b
m = ε[Na

t w +N b
t (1 − w)],

where ε is the efficiency to tag events, and w is the probability of incorrectly

tagging an event. We assume for simplicity that ε and w are the same for

events in both categories. We then find that

Na
m −N b

m

Na
m +N b

m

= (1 − 2w)
Na
t −N b

t

Na
t +N b

t

. (5.1.2)

Defining the dilution, D, to be 1 − 2w, we can relate the measured and true

asymmetry by

Am = DAt, (5.1.3)

Assuming that the error on Na
m (N b

m) goes like
√
Na
m (
√
N b
m), one finds from

Eqn. 5.1.1 that the error on the measured asymmetry is given by

σ(Am) =

√
1 −A2

m

Nm
, (5.1.4)

where Nm = Na
m +N b

m. Then the error on the true asymmetry is given by

σ(At) =
σ(Am)

D =

√
1 − A2

m

NtεD2
, (5.1.5)

where Nt = Na
t + N b

t = Nm/ε. In the experiment, Nt is just the number of

events collected before tagging has been applied (i.e., for our purposes this

corresponds to the number of fully reconstructed B decays to CP eigenstates).

We are accustomed to the error on a measured quantity scaling like 1/
√
N .

For an asymmetry measurement, however, we see that this scaling is modified

to 1/
√
NεD2. In other words, in order to measure sin2β with the smallest

error given some number of fully reconstructed B mesons which decay to CP

eigenstates, we need to maximize the product of the tagging efficiency and the

square of the dilution. This product, termed the Q factor, is the figure of merit

for the tagging algorithm to be discussed.
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5.2 Sources of B flavor information

All sources of flavor tagging information arise from correlations between the

charge of the initial bottom quark in the Btag and its decay products. Decays

of the Btag to leptons, kaons, and low momentum pions from D∗ decays (”soft

pions”) provide the most useful information in determining the flavor of the

parent B meson.

5.2.1 Lepton tags

Electrons and muons are produced in BB events from semileptonic B de-

cays, semileptonic D(∗) decays, decays of charmonium mesons, kaon and pion

decays, and photon conversions. Semileptonic decays of B mesons are the most

important for lepton tagging. A neutral B0 meson (composed of a b̄d quark

pair) decays semileptonically by the transition b̄ → c̄W+(→ �+ν�). The vir-

tual W+ turns into either a e+νe or µ+νµ pair about 21% of the time. The

positive charge of the lepton tags the flavor of the parent meson as being a B0

(negatively charged leptons tag B0 mesons). These primary leptons are called

direct or right-sign leptons. Leptons may also originate from cascade processes

where the c̄ quark decays to an s̄ by emitting a W− which gives a negatively

charged lepton, b̄ → c̄W+ → s̄W−(→ �−νµ). Fig. 5.1 illustrates the decays

which result in primary and secondary lepton production. The leptons from

cascade decays (secondary leptons) have a much softer momentum spectrum

than primary leptons. Another source of wrong flavor assignment results from

hadrons being misidentified as leptons which can be reduced by requiring well

identified leptons using particle identification information.

Three kinematic variables are used in our tagging algorithm to distinguish

primary and secondary leptons. The c.m. momentum (p∗) of the candidate

track is the most powerful discriminating variable. Fig 5.2 shows p∗ for elec-

trons and muons in data, after background subtraction based on the mES side-

band events, compared to simulation. The primary lepton spectrum extends to
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Figure 5.1: Illustration of B0 decay to primary (top) and secondary (bottom)
leptons used for flavor tagging. Positively charged primary leptons tag B0

mesons.

much higher momenta as expected. The second discriminating variable, EW
90 ,

is defined as the energy in the hemisphere defined by the direction of the vir-

tual W± in the assumed semileptonic B decay. This energy is calculated in the

Υ (4S) frame assuming the Btag is at rest. The W± direction is inferred from the

sum of the lepton candidate and the neutrino momentum, which we take to be

the missing momentum using all charged tracks in the Btag. This variable peaks

at zero for primary leptons from semileptonic B decays since the virtual W±

travels opposite the hadronic B decay products. Also, primary lepton selection

is based on the cosine of the angle between the lepton candidate’s momentum

and the missing momentum in the event (cos θmiss) due to the presence of a

neutrino. The distribution of cos θmiss depends on the probability distribution

for different kinematic configurations of the specific three-body semileptonic B

decay, but tends to peak at -1 for primary leptons whereas the background has

a flatter distribution.

120



0

100

200

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
p* (GeV/c)

E
nt

ri
es

/ 0
.2

 G
eV

/c

a)Electrons

0

50

100

150

200

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
p* (GeV/c)

E
nt

ri
es

/ 0
.2

 G
eV

/c

b)Muons

Figure 5.2: Distribution of c.m. momenta for (a) electrons and (b) muons
in data which are shown as points. The open histogram shows primary lep-
tons, the cross-hatched histogram cascade leptons, and the diagonally hatched
histogram fake leptons, all from Monte Carlo simulation.

5.2.2 Kaon tags

The principal sources of charged kaons from b-quark decays are [68]:

b→ cW−; c→W+s, s⇒ K− (a)

b→ XW−; W− → cs, s⇒ K− and/or c→ W+s, s⇒ K+ (b)

b→ cW−; W− → us, s⇒ K− and/or c→ XW+, W+ → us, s⇒ K+ (c)

b→ Xss; s⇒ K− and/or s⇒ K+ (d)

b→ sqq (penguin); s⇒ K− (e)

The kaon from the dominant process (a) is referred to as the right sign kaon

(a K− indicates a B0 tag). We see that processes (b), (c), and (d) yield both

right sign and wrong sign kaons, usually with a second strange particle in the
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event. Doubly Cabibbo-suppressed (see Sec. 9.6) and penguin process (e) give

small contributions. Fig. 5.3 illustrates a B decay to both right and wrong sign

kaons. Events containing more than one kaon with the same charge occur since

the processes listed are not mutually exclusive. Wrong-sign kaons contribute

to the mistag rate. The multiplicities for right and wrong sign kaons from B

decays have been measured by the ARGUS collaboration [69]:

n(B0 → K+X) = 0.58 ± 0.01 ± 0.08

n(B0 → K−X) = 0.13 ± 0.01 ± 0.05

b

W− W+

c s

d̄

K− K+

K−

d̄

Figure 5.3: Illustration of B0 decay to right and wrong sign kaons. Negatively
charged kaons tag B0 mesons.

Since most kaons produced in B0 decays are right sign kaons, the presence

of a single charged kaon provides a powerful tag. However, we were unable to

identify a kinematic variable that could distinguish between right and wrong

sign kaons. Consequently, a tagging algorithm based only on a single kaon

charge can only use pid information (to reduce the contamination from pions

faking kaons) and will be subject to an irreducible mistag rate from wrong sign

kaon production.

Since a significant fraction of B decays contain more than one charged

kaon, we use a tagging algorithm that relies on information from the charges
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of the three best identified kaon candidates in an event 1. In many events,

neutral kaons are produced as well, weakening the tagging information carried

by the charged kaons. The c.m. momentum spectrum for charged kaons and

the distribution of charged kaon multiplicity are shown in Fig. 5.4 for data

compared to simulation.
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Figure 5.4: Distribution of (a) c.m. momenta for charged kaons and (b) mul-
tiplicity of charged kaons per event in data which are shown as points. The
histograms are from simulation. In (a), the diagonally-hatched histogram is
from fake kaons, the cross-hatched histogram is from wrong sign kaons, and
the open histogram is from right sign kaons.

5.2.3 Soft pion tags

Charged slow pions originating from D∗± decays are another source of flavor

tagging information which, compared to lepton or kaon tags, have the opposite

1The term best is used to indicate the kaon with the largest SingleKaonTag value that
is described in Sec. 5.3.
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charge (a negatively charged soft pion tags a B0). The term soft refers to the

fact that the charged D∗ is barely massive enough to decay to a D0 and pion;

the momentum of the charged pion and D0 in the D∗± frame is only 39 MeV/c.

Because the slow pion and D0 are nearly at rest in the D∗± frame, the boost

of the D∗± in the B rest frame causes the opening angle between the slow pion

and D0 in this frame to be very small. Since the B is nearly at rest in the c.m.

frame, this production mechanism gives rise to an angular correlation between

the soft pion and thrust axis of the B decay products.

Consequently, the tagging algorithm uses three discriminating variables to

identify slow pions: the momentum of the slow pion in the c.m. frame, the

cosine between the soft pion and the thrust axis (computed using charged and

neutral particles) in the c.m frame, and kaon pid information. The kaon pid

information is used to reject the small contribution from low momentum kaons.

5.3 Tagging algorithm

Several flavor tagging algorithms have been developed at BABAR. They

are all based on exploiting the sources of tagging information described in the

previous section. A multivariate tagging algorithm [70] that uses categories

based on the physics of the Btag decay was used for this analysis.

In each event containing a fully reconstructed B meson (Brec), the charged

tracks and neutral clusters associated with the Brec are removed. The remaining

tracks which have been found to originate near the primary vertex and neutral

clusters with energy greater than 50 MeV are used for tagging. Electron (muon)

candidates are selected from tracks which pass the VeryTight (Tight) pid

selection criteria listed in Sec. 4.2. Kaon candidates must satisfy the VeryLoose

criteria. A list of tracks is also created from tracks that fail the electron and

muon selection, called the Nonlepton list.

There are two major stages in the tagging algorithm. The first stage con-

sists of seven neural networks which are each designed to distinguish B0 and B0
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Input Tagger Track List Discriminating Variables
ElectronTag Electron List p∗,EW

90 ,cos θmiss
MuonTag MuonList p∗,EW

90 ,cos θmiss
KinematicLeptonTag Nonlepton List p∗,EW

90 ,cos θmiss
SingleKaonTag Charged Tracks kaon pid variables
KaonTag (3 best kaons) Single Kaon Tag best three kaon tags
SlowP ionTag Charged tracks p∗, | cos θthrust|, kaon pid
KaonSlowP ionTag Kaon Tag, Pion Tag kaon tag, pion tag, cos θKπ
Maximum p∗ Tag Charged tracks p∗

Table 5.1: Input tagger names, lists, and discriminating variables used in the
first stage of the flavor tagging algorithm.

meson decays using different physical sources of tagging information. We refer

to each neural network in this stage as an ”input tagger”. The input taggers

are trained using extensive Monte Carlo simulations of BB events. Each input

tagger outputs a continuous tag value between ±1 with an output of +1(-1)

indicating a higher probability of the meson being a B0 (B0). The properties

of the input taggers are shown in Table 5.1. In the second stage of the tagging

algorithm, a final neural network combines the outputs of the input taggers

taking into account correlations between different sources of flavor informa-

tion. The final neural network also outputs a tag value (tagf) between ±1 and

provides an estimate of the mistag probability for each event. The structure of

the algorithm is illustrated schematically in Fig. 5.5.

Using both the tag value returned by each input tagger and the final neural

net tag value, the algorithm assigns events to hierarchical, mutually exclusive

tagging categories. Each event is placed in the most powerful tagging category

whose requirements it fulfills. The method ensures that the categories are

directly related to the physical processes involved in the Btag decay. This

is beneficial compared to an algorithm without categories or one that defines

categories based only the final output of a neural net tagger because correlations

may exist between one tagging category and some variable in the analysis
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Figure 5.5: Schematic representation of flavor tagging algorithm.

(the event-by-event measured error on ∆t, for example) that are both used to

determine sin2β. The use of categories, then, allows for these correlations to be

explicitly parameterized where they otherwise might not have been observed.

This will become clearer in Chapter 7 when we detail the method used to

determine sin2β.

Table 5.2 defines the tagging categories based on the value returned by the

input taggers and the final neural net tag. These categories may be merged for

simplification without significant loss in tagging power. The scheme used to

merge these detailed categories into 4 final categories named Lepton, Kaon-I,

Kaon-II, and Inclusive is shown in Table 5.3. We note that the Inclusive

category is the only one without a well defined physics content (it only makes

a requirement on the final neural tag).

5.4 Performance of the tagging algorithm

The performance of the tagging algorithm has been evaluated on a high

statistics sample of Monte Carlo simulated BB decays where one B meson

decays is forced to decay to π+ π− and the other B meson decays generically.

The results are shown in Table 5.4. The difference between the efficiency,

mistag rate, and Q factor for B0 and B0 mesons are called ∆ε, ∆w, and ∆Q
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Category Cuts on input tags Cut on |tagf |
Electron–kaon |ElectronTag| > 0.7 & |KaonTag| > 0.2 |tagf | > 0.8
Muon–kaon |MuonTag| > 0.7 & |KaonTag| > 0.2 |tagf | > 0.8
Electron |ElectronTag| > 0.7 |tagf | > 0.8
Muon |MuonTag| > 0.7 |tagf | > 0.8
Kaon–slow pion |KaonSlowP ionTag| > 0.1 |tagf | > 0.8
Kaon I |KaonTag| > 0.2 |tagf | > 0.7
Slow pion |SlowP ionTag| > 0.1 |tagf | > 0.5
Kaon II |KaonTag| > 0.2 |tagf | > 0.4
Other none |tagf | > 0.2

Table 5.2: Category definition used by tagging algorithm.

Merged category Categories merged together

Lepton Electron–Kaon, Muon–Kaon, Electron, Muon
Kaon-I Kaon-Slow Pion, Kaon I
Kaon-II Slow Pion, Kaon II
Inclusive Other

Table 5.3: Category merging scheme for tagging algorithm.

respectively.

Category ε(%) ∆ε(%) w(%) ∆w(%) Q(%) ∆Q(%)
Lepton 10.0 ± 0.1 0.5 ± 0.2 2.8 ± 0.1 −0.7 ± 0.3 9.0 ± 0.1 0.7 ± 0.2
Kaon-I 17.6 ± 0.1 −0.4 ± 0.2 9.2 ± 0.2 −0.9 ± 0.4 11.7 ± 0.1 0.2 ± 0.3
Kaon-II 19.9 ± 0.1 0.5 ± 0.2 21.2 ± 0.3 −3.0 ± 0.5 6.6 ± 0.1 1.5 ± 0.3
Inclusive 20.1 ± 0.1 −0.2 ± 0.2 30.9 ± 0.3 −2.3 ± 0.6 2.9 ± 0.1 0.7 ± 0.2

Total 67.7 ± 0.2 0.5 ± 0.5 30.2 ± 0.2 3.2 ± 0.5

Table 5.4: Performance of tagging algorithm on simulated BB events after
category merging. The differences between the efficiency, mistag rate, and Q
factor for B0 and B0 decays is written as ∆ε, ∆w, and ∆Q respectively.

We make the following observations concerning the tagging performance on

Monte Carlo:

• The total efficiency for tagging a B meson is roughly 2/3;
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• The Kaon-I category provides the most powerful flavor tag. This is not

unexpected due to the multiplicity of right sign kaons in B decays;

• The Lepton category has the lowest mistag rate;

• The mistag rate difference ∆w for the Kaon-II and Inclusive categories

are significantly different from zero. This may be related to the differences

in interaction cross sections for positively and negatively charged kaons

and pions with the detector material;

• The product of the tagging efficiency and the dilution squared is about

30%. This represents the effective tagging efficiency of the algorithm.

We note that the algorithm was trained using simulated events and we have

evaluated its performance using simulated events as well. One might worry that

differences between BB decays in data and Monte Carlo simulation could bias

the tagging performance in the data. However, the mistag rates and efficiencies

for each category will be measured on the data using the Bflav sample. This

procedure will be explained in detail in Chapter 7. For now, we point on that

while training the algorithm on Monte Carlo may make its performance sub-

optimal, it will not bias the results of the sin2β analysis since the relevant flavor

tagging parameters will be measured using data.

128



Chapter 6

Time difference measurement

In Sec. 1.8, we constructed a CP violating asymmetry proportional to sin2β

that is a function of the proper decay time difference ∆t between a neutral B

meson reconstructed as a CP eigenstate (Brec) and a neutral B meson whose

decay products tag its flavor (Btag). Further, since the asymmetry was shown

to vanish when integrated over ∆t ≡ trec − ttag from [−∞,+∞], we must be

able to resolve ∆t in order to measure sin2β. This chapter explains how ∆t is

determined from the measured separation between the vertex of the Brec and

the vertex of the Btag along the z axis. The resolution on the separation is

dominated by the resolution on the Btag vertex.

6.1 Reconstruction of Brec vertex

The Brec vertex is reconstructed using the charged tracks belonging to the

Brec candidate. Tracks from long lived Brec daughter candidates, like K0
S

and

D mesons that travel in the detector before decaying, are first fit to a separate

vertex. Then the resulting momentum and position of the composite candidate

are used in the fit to the Brec vertex. Though charmonium daughters are mass

constrained before creating the Brec candidate, this constraint is removed when

determining the Brec position to avoid potential bias. The RMS resolution on
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the z vertex position of the Brec in Monte Carlo simulation is about 65µm for

more than 99% of the B candidates.

6.2 Reconstruction of Btag vertex and ∆z

The Btag decay vertex is determined using the tracks in the event that

were not used to construct the Brec candidate. To avoid biasing the Btag

vertex position, tracks from the decay of long-lived K0
S and Λ candidates are

replaced by the composite candidate momentum and tracks consistent with

photon conversions (γ → e+e−) in the detector material are excluded.

An additional constraint is employed which increases the efficiency of the

Btag vertex algorithm. Momentum conservation of the Υ (4S) decay requires

that

�pBtag = �pΥ (4S) − �pBrec . (6.2.1)

Using the measured vertex position and momentum of the Brec along with

their associated errors, we can construct a vector from the Brec vertex which

intersects the beam spot where the Υ (4S) decayed. Then, since we know the

average momentum of the Υ (4S) (�pΥ (4S)), we can construct a vector represent-

ing the Btag that should intersect its decay vertex. This constraint, referred

to as the pseudo-track constraint, is illustrated schematically in Fig. 6.1. The

efficiency of the algorithm is improved using this constraint since it allows a

determination of the Btag vertex even when there is only one charged track

used to make the Btag candidate (determining the vertex of one track without

any additional constraints is not possible).

With the charged tracks described, and the estimated momentum provided

by this constraint, a geometrical fit to a single vertex is performed to deter-

mine the Btag vertex position. The fit proceeds iteratively, removing in each

attempt the track with the largest vertex χ2 contribution greater than 6, until

converging or failing. Removal of the bad χ2 tracks reduces contamination from
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Figure 6.1: Schematic view of the geometry in the yz plane for a Υ (4S) →
BB decay. The momentum direction of the Btag can be estimated using the
measured vertex and momentum of the Brec, the beam spot position in the xy
plane, and the Υ (4S) average boost. Note that the scale in the y direction has
been magnified significantly compared to that in the z direction.

charged and neutral D mesons that have a cτ of 315µm and 123µm respec-

tively. The significant flight length of these mesons pulls (i.e., biases) the Btag

vertex position in the direction of their decay products. This effect causes the

resolution on the Btag vertex to be significantly worse than the resolution on

the Brec vertex, where the tracks originating directly from the Brec decay are

known and are generally of higher momentum.

We fit the residual ∆z distribution (measured ∆z minus true ∆z) to the sum

of three Gaussian distributions as shown in Fig. 6.2 for simulated B0 → J/ψK0
S

decays. The width of the sum of the narrowest (core) and second-narrowest

(tail) Gaussian is about 190µm. The narrowest Gaussian is found to have

a width of 100µm and contain 70% of the total area. The Gaussian with

the largest width (outlier) contains only 1% of the area. Performances of the

algorithm on simulation are only provided here as a benchmark. Evaluations

using data will be presented shortly.

The assumed positions of the SVT silicon wafers determines the absolute
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Figure 6.2: Residual ∆z distribution (measured ∆z minus true ∆z) for B0 →
J/ψK0

S
Monte Carlo simulation. Overlaid is a fit to the sum of three Gaussian

distributions; the contribution of each Gaussian is indicated by the dashed
curves. The width of the narrowest Gaussian, which contains 70% of the total
area, is about 100µm.

scale of the ∆z measurement. As was discussed in Sec. 2.3, these positions

were measured using an optical survey before the SVT was installed. The

uncertainty in the measured value of sin2β resulting from our limited knowledge

of the internal alignment of the SVT is discussed in Sec. 9.4.2. We also check the

absolute z scale using interactions of charged particles at the known positions

of distinct mechanical features located about 18 cm apart at each end of the

beampipe. We measure the positions of track vertices originating at least 2 cm

from the primary vertex that contain an identified proton, which result from

e±-nucleon interactions in the material. The measured distance along the z axis
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between the mechanical features agrees with the known distances to a precision

of 0.2%.

6.3 Converting ∆z to ∆t

To measure the time-dependent asymmetry we must convert the measure-

ment of the vertex separation ∆z to the proper decay time difference ∆t. The

accuracy of this conversion is largely dominated by the experimental resolution

on the ∆z measurement. Neglecting the boost of the B mesons in the Υ (4S)

frame, we find

∆z = γβc∆t (6.3.1)

where γβ = 0.55 is the Υ (4S) boost factor and c is the speed of light. The

Υ (4S) boost, calculated directly from the beam energies and monitored every

5 seconds, has an uncertainty of 0.1%. While treating the mesons at rest in

the Υ (4S) system contributes much less uncertainty in the conversion than

the experimental resolution, it has been shown to introduce a 0.4% bias in

measurements of B lifetimes [71]. Additionally, this approximation ignores the

20 mrad rotation in the xz plane between the BABAR detector coordinate axes

and the boost direction.

The effects of the rotation and B meson boost in the Υ (4S) frame may be

partially corrected for by using the measured momentum direction of the fully

reconstructed Brec candidate. The proper time of the Brec decay as measured

in its rest frame (at position �x = 0) is denoted trec. From special relativity

we know that the time interval for this decay measured in the Υ (4S) frame

increases to γ∗rectrec where γ∗rec is the boost factor of the Brec in the Υ (4S) frame.

The position of the decay in the Υ (4S) frame is then given by �β∗
reccγ

∗
rectrec

where �β∗
rec is the velocity of the Brec in the Υ (4S) frame. The projection of the

distance along the boost axis is β∗
reccγ

∗
rectrec cos θ∗rec where cos θ∗rec is the polar

angle between the boost direction and the Brec direction in the Υ (4S) frame.
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Boosting this distance to the lab frame we find

zrec = γβc [γ∗rectrec] + γ [β∗
reccγ

∗
rectrec cos θ∗rec] (6.3.2)

Keeping track of an extra minus sign we pick up for one term of the Btag since

its momentum points opposite to the Brec in the Υ (4S) frame, we can now

write the conversion more accurately as

∆z = γβc [γ∗rec∆t] + γ [β∗
reccγ

∗
rec cos θ∗rec(trec + ttag)] . (6.3.3)

The difference between Eqn 6.3.1 and Eqn 6.3.3 is very small since β∗
rec = 0.064

and γ∗rec = 1.002. Unfortunately we still need an estimate for the sum of the

proper decay times trec + ttag in the second term of Eqn 6.3.3. The obvious

approach 〈trec+ttag〉 = 2τB is not sensitive to the variation of trec+ttag with ∆t.

We take this effect into account by averaging over the ∆t range [72], yielding

〈trec + ttag〉|∆t = τB + ∆t (6.3.4)

Consequently, we approximate the conversion between the measured z vertex

separation and the proper decay time difference as

∆z = γβc [γ∗rec∆t] + γ [β∗
reccγ

∗
rec cos θ∗rec(∆t+ τB)] . (6.3.5)

The event-by-event difference between ∆t calculated using Eqn 6.3.5 and Eqn 6.3.1

has an RMS of 0.20 ps (which is about 13% of τB0). Eqn 6.3.5 improves the

∆t resolution by about 5%.

Events which do not pass some loose requirements made on the measured

value of ∆t are rejected. These requirements are:

• The ∆z vertex fit must converge;

• The error on ∆t determined from the fit must be less than 2.5 ps;

• |∆t| must be less than 20 ps.

These requirements are about 97% efficient in data and Monte Carlo simulation

independent of the Brec decay mode. Also, no correlation between the efficiency

and the true value of ∆t is found in the simulation.
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6.4 Resolution function

As discussed in Chapter 3, due to the finite resolution of the SVT, the mea-

sured value of ∆tmust be convolved with a resolution function which accurately

reflects the detector’s measurement imprecision. The resolution function is rep-

resented in terms of δt = ∆t−∆ttrue by a sum of three Gaussian distributions

(referred to as the core, tail, and outlier components) with distinct means and

widths:

R(δt; â) =
1√
2π

[
f1

S1σ∆t
exp

(
−(δt − k1σ∆t)

2

2(S1σ∆t)2

)
+ (6.4.1)

1 − f1 − f3

S2σ∆t

exp

(
−(δt − k2σ∆t)

2

2(S2σ∆t)2

)
+
f3

σ3

exp

(
− δ2

t

2σ2
3

)]

where â is used to represent the parameters that the resolution function depends

on, f1 and f3 are the fractions of the core and outlier Gaussian respectively,

and the additional variables are described below. The widths of the core and

tail Gaussians are given by the product of the event-by-event measured error

σ∆t, derived from the ∆z vertex fit, with scale factors S1 and S2 respectively.

The scale factors accommodate an overall underestimate or overestimate of the

errors for all events. This model assumes then that the width of the residual

distribution (in other words the RMS of the δt distribution) is proportional to

σ∆t. This assumption is verified in Monte Carlo simulation as shown in Fig. 6.3a

where the RMS of the residual ∆t distribution is plotted as a function of σ∆t.

The mean of the core and tail Gaussian distributions may be different from

zero to account for a bias in the Btag vertex position due to tracks that originate

in the decay of long lived charm mesons. In the resolution function, these

mean offsets are scaled by the per-event error measurement σ∆t to account

for an observed correlation shown in Fig. 6.3b between the mean of the δt

distribution and σ∆t in Monte Carlo simulation. We see from this figure that

the mean offset is shifted to negative values of ∆t.

To understand the sign of this offset, we consider the distribution of the

measured and true value of ∆z (which are both signed quantities where ∆z =

135



 (ps)t∆σ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

t r
es

id
ua

l R
M

S 
(p

s)
  

∆

0.5

1

1.5

2

2.5
a)

 (ps)t∆σ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

t r
es

id
ua

l (
ps

) 
 

∆
M

ea
n 

of
  

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1 b)

Figure 6.3: Correlation between the event-by-event error on ∆t (σ∆t) and a)
the RMS and b) the mean of the ∆t = ∆t − ∆ttrue distribution from Monte
Carlo simulation

zrec−ztag). In most cases, the tracking resolution is not good enough to separate

primary tracks that originate directly in the Btag decay and secondary tracks

that originate from the decay of a long-lived charm meson. Since the B mesons

are boosted primarily in the +z direction, the position of the secondary decay

vertex is located at more positive values of z than the position of the primary

Btag vertex. This explains why the position of the Btag vertex is biased toward

positive z values. However, the Btag vertex can be located with roughly equal

probability on either side of the Brec vertex. Fig. 6.4 illustrates why the sign of

the residual distribution is biased to negative values regardless of whether the

Btag decays at a z position more or less positive than the Brec vertex position.

Vertex:
recB tagB tagB

true meas

+z axis

true z∆

meas z∆

 zδ

Vertex:
tagB tagB recB

true meas

+z axis

true z∆

meas z∆

 zδ

Figure 6.4: Illustration of the true Brec, true Btag , and measured Btag vertices.
The measured Btag vertex is normally biased to more positive value of z because
the charm mesons fly along the direction of the boost. Since the measured value
of ∆z (∆zmeas) and the true value (∆ztrue) are signed quantities, the mean of
the residual ∆z distribution δz = ∆zmeas −∆ztrue is biased to negative values.

136



We also understand the origin of the correlation between the mean offset

of the residual and the per-event error. This results from the fact that the

vertex error ellipse for the charm meson is oriented with its major axis along

the charm flight direction. This means that the charm flight direction and the

error on the measured Btag vertex are correlated. Charm mesons which fly at

polar angles near π/2 in the laboratory frame will have the best z resolution

and will introduce the least bias in measuring the Btag vertex position, while

charm mesons which fly along the z axis will introduce a larger bias in this

position measurement. The dependence on the offset in the mean of the ∆z

residual as a function of the charm meson polar angle is illustrated in Fig. 6.5.

z direction

D decay vertex

tracks from charm decay

primary tracks

tagB     decay vertex

θ

Figure 6.5: Illustration of the effect that leads to a correlation of σ∆z and
the offset in the mean of the ∆z residual. The figure show primary tracks
originating from the Btag decay and secondary tracks from a charm meson
distributed uniformly in a cone about the charm meson direction. There are
two flight directions shown for the charm meson which result in significantly
different projections of its z vertex position error along the z axis. These
projections correlate the offset in the ∆z residual distribution with the event-
by-event error measured on the B meson vertex separation σ∆z.

We expect differences in the resolution of the Btag vertex based on the
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flavor tagging category of the Btag. For example, B mesons tagged with a high

momentum primary lepton will be less subject to bias in the determination of

the vertex position from residual charm meson decays than B mesons tagged

using the charge of a well identified kaon (where there is high probability of

charm pulling the vertex). Monte Carlo simulation confirms this expectation.

Consequently, the mean of the core Gaussian is allowed to be different for each

tagging category. One common mean is used for the tail component. The third

Gaussian accounts for the less than 1% of events with incorrectly reconstructed

vertices. Its width (σ3) is fixed to 8 ps and it has no offset. The scale factor

of the tail (S2) is also fixed to 3 to reduce correlations between the Gaussian

parameters. Consequently, the resolution function has 8 free parameters: two

fractions (f1 and f3), a core scale factor S1, a core mean for each tagging

category (k1 × 4), and a tail mean (k2).

Since the modeling of the resolution function depends on σ∆t accurately

representing the error of the ∆t measurement, we hope that the distribution

of σ∆t looks similar in data and Monte Carlo simulation. Fig. 6.6 shows good

agreement for this distribution in data and simulation for a combination of

ηCP = −1 charmonium modes and for the flavor-eigenstate sample. Since the

resolution on ∆t is dominated by the measurement of the Btag vertex posi-

tion, no significant differences are expected between the ∆t resolution function

for the flavor-eigenstate and the CP -eigenstate sample. Therefore, identical

resolution functions are used for all modes.

The resolution function parameters will be obtained in data from the likeli-

hood fit to the ∆t distribution of the flavor-eigenstate and CP samples. Since

there are about 15 times more fully reconstructed B mesons in the flavor-

eigenstate sample (the yields for both samples were given in Sec. 4.5 and 4.6),

the resolution function parameters will mostly be determined by these events.
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Figure 6.6: Comparison of σ∆t between data and Monte Carlo simulation for
a) a sample of neutral B decays to flavor-eigenstates and b) a sample of neutral
B decays to CP -eigenstates. The histogram corresponds to the simulation and
the points with error bars to data. The Monte Carlo distribution has been
normalized to the same area as the data and the data has been background
subtracted using events from the mES sideband.

6.5 Vertexing checks

Two fundamental assumptions of the analysis, as explained in the last sec-

tion, are that the per-event vertex errors provide a good measure of the relative

uncertainty on the ∆z measurement for each event, and that resolution function

parameters should be the same for the flavor-eigenstate and CP samples. This

sections describe several methods which attempt to validate these assumptions.

6.5.1 Comparison of CP and flavor-eigenstate samples

In Fig. 6.7, we compare various properties of the flavor-eigenstate sample

with the combined ηCP = −1 and J/ψK∗0 samples. The J/ψK∗0 sample is

included with the ηCP = −1 sample here (as opposed to its normal inclusion

with the flavor-eigenstate sample) to improve the statistics of the CP sample

and because the topology of the reconstructed side of the event is clearly very

similar. The variables investigated include the χ2 probability for the vertex

fits, the number of tracks used in the Btag vertex, the momentum in the Υ (4S)

frame, and polar angle in the laboratory frame of tracks used in the Btag ver-
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tex. We find good agreement between the distributions for all the variables

considered.
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Figure 6.7: Comparison in data of (a) the probability of the χ2 of the Btag ver-
tex fit, (b) the number of tracks used in the determination of the Btag vertex
position, (c) the momentum in the Υ (4S) frame, and (d) polar angle in the
laboratory frame for tracks in the Btag vertex, for the ηCP and J/ψK∗0 (points
with error bars) and flavor-eigenstate (histogram) samples. All distributions
have been background subtracted using events from the mES sideband. The
flavor-eigenstate sample has been normalized to the same area as the distribu-
tions from the combined ηCP and J/ψK∗0 CP samples. There is good agreement
for all variables compared.

Comparisons between the different CP modes in data and simulation also

show no significant differences in variables which influence the ∆z resolution.

However, a small difference in the ∆z resolution is seen when comparing the

CP sample to the flavor-eigenstate sample in data and Monte Carlo simula-

tion. The CP sample has slightly better ∆z resolution which can be seen by

comparing the distributions in Fig 6.6a and 6.6b, or more directly in Fig. 6.8.

Simulation finds that the most probable value for σ∆t is about 0.017 ps (3%)
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worse for the Bflav sample. This results from the fact that the average momen-

tum of tracks used to determine the Brec vertex is larger in the BCP sample

than the Bflav sample because the average number of tracks in the BCP decay

is less. This effect does not introduce a systematic error into the likelihood fit

since the resolution function incorporates the event-by-event error σ∆t on the

vertex resolution explicitly. In fact, Monte Carlo simulation verifies that the

pull distributions for ∆t (residual ∆t divided by the measured error σ∆t) are

nearly Gaussian with unit width for both the BCP and Btag samples. A width

significantly greater (less) than 1 for either would indicate that the per-event

error was an underestimate (overestimate). Any remaining effects due to po-

tential differences in the scale factors for the BCP and Btag samples are included

as a systematic uncertainty (see Sec. 9.1.2).

6.5.2 Vertex resolution in the vertical direction

The small spread of the beamspot (about 10µm) in the vertical (y) direction

allows us to make meaningful comparisons of the resolution for the CP and

flavor-eigenstate samples by measuring the distance ∆y between the Brec or

Btag and the nominal beamspot position in the y direction. The larger size of

the beamspot in the x and z directions make comparisons in those dimensions

meaningless because the x and z resolutions are dominated by the spread in the

width of the beamspot. We can also determine the accuracy of the per-event

errors σ(∆y) with this procedure.

The average beam-spot position in y is determined with a precision of less

than a few microns using two-track events for each data run, where each run

consists of about one hour of recorded data. We note that ∆y has a non-

negligible contribution due to the lifetime of the B and its transverse momen-

tum. The RMS of the distribution of the B flight length in the y direction

is about 25µm. Fig. 6.9 illustrates the geometry of the Btag and Brec decays

in the xy plain relative to the beamspot. The RMS of the ∆y distribution,
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Figure 6.8: Comparison of σ∆z for ηCP = −1 (points with error bars)
and flavor-eigenstate (histogram) sample in data. The distributions have
been background-subtracted with events from the mES sideband. The flavor-
eigenstate has been normalized to the number of events in the CP sample. The
average per-event error is slightly less for the CP sample.

then, results from a convolution of the intrinsic beamspot resolution and the B

flight distance in the y direction. This distribution also allows us to check that

the pseudo-track constraint of the vertexing algorithm, which was described in

Sec. 6.2, yields sensible results.

The distance in y between the Btag vertex and beam spot is used to measure

the Btag vertex resolution and bias in y. Fig. 6.10 shows the distribution of ∆y

and ∆y/σ(∆y) for the Btag vertex for the flavor-eigenstate and CP samples, in

data and Monte Carlo simulation. The RMS of the ∆y distribution is about

35µm as expected. The RMS of the ∆y/σ(∆y) distribution is 1.3 and 1.4
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Figure 6.9: Schematic illustration of the Btag and Brec decay in the xy plain
relative to the beamspot. The small spread in the beamspot in the y direction
allows us to make useful vertexing checks by measuring the distance between
the nominal beamspot and the Btag decay vertex.

for Monte Carlo simulation and data, respectively. No statistically significant

biases are observed. Similar results are obtained for the Brec vertex. The

resolution on the y vertex positions of the Brec and Btag are found to be in

good agreement in the data for the CP and flavor-eigenstate samples. The

resolution is typically 5-10% worse in data than simulation.

6.6 Vertex resolution in continuum events

We use continuum events to cross-check the reliability of the ∆z vertexing

algorithm and quantify differences between results obtained with Monte Carlo

simulation and data. We randomly split charged tracks from off-resonance

data events into two lists requiring each list to have at least four tracks. We

vertex both lists separately using the same algorithm used to determine the

∆z vertex separation of the two B mesons described above, but we remove

the pseudo-track constraint. Since all tracks from both lists should originate

from a common vertex (ignoring the fact that some charm mesons will fly a few

hundred microns before decaying, an effect most pronounced in cc events), we

expect the separation between the vertex of each list to be zero. Additionally,
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Figure 6.10: Comparison of (a) ∆y and (b) ∆y/y for flavor-eigenstate data
(points with error bars) and Monte Carlo simulation (histogram). The distri-
bution of the simulation has been normalized to the number of events in the
data distribution. A comparison of (c) ∆y and (d) ∆y/y is also made for CP
eigenstate data (points with error bars) and flavor-eigenstate data (histograms).
The flavor-eigenstate distribution is normalized to the number of events in the
CP sample in (c) and (d). The RMS of the ∆y distribution is about 35µm in
both cases and the RMS of ∆y/y is about 1.4 (1.3) for data (simulation).

the resolution on each vertex should be similar to the resolution of the Btag

vertex. Consequently, this check allows us to measure the difference between

vertex resolution in data and simulation and a potential bias in the vertex

algorithm. Figure 6.11 shows that there is reasonably good agreement in data

and simulation for the distribution of the per-event error of the vertex of one

of the lists. Figure 6.11 also compares the vertex separation ∆z between the

vertex of each list and the separation divided by the quadrature error of the

vertices ∆z/σ(∆z) between data and Monte Carlo simulation. We find that the

RMS of the ∆z and ∆z/σ(∆z) are about 15% larger in data than in simulation

which agrees with the results for ∆y shown above.

A second control sample consists of reconstructed high momentum D∗+

candidates in the decay modes D∗+ → D0 π+; D0 → K−π+, K−π+π0, and
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Figure 6.11: Comparison of (a) the per-event error δz returned on the vertex
position of one of the charged track lists, (b) the separation ∆z between the
vertex of each list, and (c) the separation between each vertex divided by the
quadrature error ∆z/σ(∆z) of the two vertices in data (dashed histogram) and
Monte Carlo simulation (solid histogram) for continuum control sample.

K−π+π+π−. The remainder of the charged tracks (fragmentation particles and

recoil charm decay products) are also vertexed with the standard Btag vertex

algorithm. Monte Carlo simulation indicates that the resolution on the D∗+

vertex is about 90µm, very similar to the resolution on the Brec vertex. After

fitting the distance between the D∗+ vertex and the vertex formed from the rest

of the tracks in the event to the sum of three Gaussians, we find a resolution of

140µm for 97% of the events, compared to 150µm for 99% of the BB events.

The distribution of this distance divided by its error is also fit to the sum of

three Gaussians. These studies find that the bias in the resolution function

due to charm decay products that is observed in data is well reproduced by

the Monte Carlo simulation. We find that the resolution measured in data is

about 10% worse than that predicted by the simulation, which agrees with our

previous results.
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Chapter 7

Fit method

As was discussed in Chapter 3, sin2β is determined from the flavor tagged

BCP sample by maximizing lnLCP . The likelihood is constructed from probabil-

ity density functions f± (Eqn. 3.0.4) that describe the time evolution of tagged

BCP mesons. The coefficient of the time-dependent sine term of these functions

is proportional to D sin2β. In order to extract sin2β from a fit then, the value

of D must be fixed or come from a separate source which does not depend on

sin2β (since sin2β and D are completely anti-correlated in f±). Similarly, one

also needs to know the resolution function parameters â. If we assume that the

dilutions and resolution function parameters do not depend on the decay mode

of the fully reconstructed B meson, as we argued in the preceding two chapters,

then we can determine these parameters using the much larger flavor eigenstate

sample. This results from the fact that the dilutions and resolution function

parameters also appear in the mixing likelihood lnLmix (Eqn 3.0.3). We could

fit for sin2β with D and â fixed to the values we obtain by maximizing lnLmix.

However, this procedure ignores the (small) correlations introduced between

these parameters and sin2β in the BCP sample. Therefore, we fit the tagged

mixing and CP samples simultaneously, maximizing the sum lnLmix + lnLCP .
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7.1 Maximum-likelihood fit

We now digress in order to define what is meant by a maximum-likelihood

fit. This discussion follows one given in Ref. [73]. Consider a set of N measure-

ments t1, t2, ..., tN where one knows that the measured values are distributed

according to a probability density function f(t; a) that depends on an unknown

parameter a. The probability of obtaining the given measured set of data is the

product of the individual probabilities obtained for each event. This product

is termed the likelihood L(t1, t2, ..., tn; a) and is defined as

L(t1, t2, ..., tn; a) = f(t1; a)f(t2; a)...f(tN ; a) =
N∏
i

f(ti; a) (7.1.1)

An estimate for the value of the true parameter â is determined by maximizing

the likelihood of Eqn 7.1.1. Essentially, one finds the value of a that makes

the probability of the measured data set t1, t2, ..., tN as large as possible. In

practice, it is typically easier to maximize the natural logarithm of L (since the

natural log is a monotonically increasing function the maximum of a function

with dependent parameter a and the natural log of the function will occur at

the same value of a). Consequently, one tries to find the maximum 1 of

N∑
i

lnf(ti, a). (7.1.2)

The Maximum-Likelihood Theorem states that in the limit of large data sets,

N → ∞, the maximum value of lnL(ti; a) occurs at the true value â of the pa-

rameter one wants to estimate and that there is no other method of estimation

that is more accurate [74].

It can also be shown that for large N , L(ti; a) approaches a Gaussian dis-

tribution. Denoting the most probable value of a as a∗ (this is the value of a

where the likelihood is maximized), we can write

L(ti; a) ∝ exp

[
−(a− a∗)2

2σ2

]
(7.1.3)

1We actually find the minimum of -lnL but this is a trivial difference.
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where σ is the RMS spread of a about a∗. Therefore, by plotting lnL, the

nσ error of the estimator occurs at the value of a where the log-likelihood has

fallen by 0.5n2 from its maximum. This is illustrated schematically in Fig. 7.1.

This feature of the maximum likelihood method is extremely useful.

We have assumed for simplicity that there is only one unknown parameter

a, but the formalism naturally generalizes when one needs to estimate the

best values for a set of parameters a1, a2, . . . , an. In this case, we solve the n

simultaneous equations

∂lnL
∂aj

= 0 for all j = 1, . . . , n

In the large N limit, the likelihood is a multidimensional Gaussian.

max

2
1max-

max-2

σ+1σ-1 σ+2σ-2

ln L(a)

a∗ a

Figure 7.1: Schematic representation of a parabolic log-likelihood lnL(a) that
is a function of an unknown parameter a. The likelihood is maximized at
a = a∗ and the nσ estimates of a∗ can be read from the plot by finding where
the likelihood has fallen by 0.5n2 from its maximum value.

7.2 Signal description

It has been shown that the probability distribution function for the decay

time difference of the tagged BCP sample is given by

f± =
Γ

4
e−Γ|∆t| [1 ±D sin2β sin(∆m∆t)] (7.2.1)
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where the +(-) label indicates that the tagging meson was a B0 (B0). In this

formulation, we have assumed that the mistag rates (and hence dilutions) for

B0 and B0 mesons are the same. This may not be a valid assumption since

the detector has different responses to positive and negative pions and kaons

due to differences in total and charge-exchange cross sections. To account for

potential differences in mistag rates, we allow for separate mistag rates w for

B0 and w̄ for B0 mesons with the conventions

〈w〉 =
1

2
(w + w̄); ∆w = (w − w̄)

D = 1 − 2w; D̄ = 1 − 2w̄

〈D〉 =
1

2
(D + D̄); ∆D = (D − D̄)

This modifies Eqn 7.2.1 to

f ′
+ ∝ f+(1 − w) + f−w̄

f ′
− ∝ f−(1 − w̄) + f+w

f ′
± ∝ 1 ∓ w ± w̄ ± α(1 − w − w̄)

f ′
± ∝ 1 ± 1

2
∆D ± 〈D〉 sin2β sin(∆md∆t) (7.2.2)

where the ± in the index refers to events where Btag is a B0 (+) and B0

(−). The probability distribution functions for mixed and unmixed events

(Eqn 3.0.1) are modified in a similar manner

h±,tag=B0 ∝
[(

1 +
1

2
∆D
)
± 〈D〉 (cos ∆md∆t)

]

h±,tag=B0 ∝
[(

1 − 1

2
∆D
)
± 〈D〉 (cos ∆md∆t)

]
, (7.2.3)

where the ± in the index refers to mixed (−) and unmixed (+) events as before.

The signal distributions for CP events given by Eqn 7.2.2 and flavor-eigenstate

events given by Eqn 7.2.3 are convoluted with a resolution function R(δt; â)

(as explained in Chapter 3) to yield the respective functions

F± = f±(∆ttrue; Γ,∆md, sin2β, 〈w〉,∆w)⊗R(δt; â) (7.2.4)
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H±,tag=B0 = h±,tag=B0(∆ttrue; Γ,∆md, 〈w〉,∆w)⊗R(δt; â) (7.2.5)

H±,tag=B0 = h±,tag=B0(∆ttrue; Γ,∆md, 〈w〉,∆w)⊗R(δt; â) (7.2.6)

The probability distribution functions are normalized such that

∫ +∞

−∞
(F+ + F−) d∆t = 1 (7.2.7)

∫ +∞

−∞

[
H+(B0

tag) + H−(B0
tag) + H+(B0

tag) + H−(B0
tag)
]
d∆t = 1 (7.2.8)

7.3 Background modeling

The probability distributions F± and H± of Eqn 7.2.6 must be modified

by adding new terms that describe the time evolution of background sources.

We recall from Sec. 4.6 that the backgrounds for the CP sample are very small

and mostly combinatoric; the purity of the sample is 92%. The backgrounds

for the flavor-eigenstate sample are also mostly combinatoric but constitute a

larger fraction of the total; the purity of the flavor-eigenstate sample is 82%.

The properties of the background in the CP and flavor-eigenstate sample are

determined empirically from events in the mES sideband.

7.3.1 Likelihood function for CP eigenstates

Since each flavor tagging category has a physical source (i.e., a primary

lepton or right-sign kaon), the background sources tend to have different prop-

erties depending on the flavor tag. For example, light charm continuum events

rarely result in a candidate fulfilling the Lepton tag requirements. Analyses

which suffer from continuum backgrounds, then, typically have a higher recon-

structed signal purity in the Lepton category than in any other tag category.

Therefore, the background parameterizations of the CP sample are allowed to

be different based on the flavor tagging category of the Btag . The events are

then classified by their particular tagging category i, and by whether the Btag
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was a B0 (+) or a B0 (−). We label the different background parameterizations

for each (+/−, i) combination by an index j. The full likelihood for the CP

sample is then

F±,i = fCPi,sigF±(∆t; Γ,∆md, wi, sin2β, âi) +

fCPi,peakBCPi,peak(∆t; âi) +
∑
j=bkg

fCPi,j BCPi,j (∆t; b̂i) (7.3.1)

There are three separate parameterizations of the background: one that

describes peaking background (peak), one that describes combinatoric back-

ground assumed to have no lifetime (prmt), and one that describes a B meson

background assumed to have the lifetime of the B0 (life). Each background

time distribution may share the signal resolution function parameters âi or a

common set of background resolution function parameters b̂i. The parameter-

izations for each tagging category i and source are given by

BCPi,peak =
1

4
ΓB0 e−ΓB0 |∆t| ⊗R(∆t; âi)

BCPi,prmt =
1

2
δ(∆t) ⊗R(∆t; b̂i) (7.3.2)

BCPi,life =
1

4
ΓB0 e−ΓB0 |∆t| ⊗R(∆t; b̂i)

These parameterizations implicitly include assumptions that have been made

about the properties of the various backgrounds. The absence of a sin(∆md∆t)

term effectively sets any potential CP asymmetry in the peaking or lifetime

backgrounds to zero. Additionally, the decay constant is chosen to be that

of the B0 meson for each tagging category in the peaking and lifetime back-

grounds. In fact, the only tagging category dependence observed in the back-

ground sources comes from which set of resolution function parameters are

used in the convolution (âi or b̂i). The systematic uncertainties that result

from these assumptions are evaluated in Chapter 9. The background distribu-

tions are normalized for each tagging category i and source j such that

2
∫ +∞

−∞
BCPi,j d∆t = 1 (7.3.3)
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The factor of 2 comes from the fact that the background sources are indepen-

dent of whether the tagging meson is a B0 or B0 (in contrast to the signal

probability distribution function F±).

The full likelihood for the CP sample is constructed from a weighted sum

of the signal and background probability distribution functions. The weight-

ing factors are based on the probability that the B0 candidate is a signal or

background event. This probability is determined from a separate fit to the

mES spectrum as described in Sec. 4.4. For each decay mode of the CP sample,

We first fit the mES distribution of the entire sample (tagged and untagged CP

events passing the vertexing requirements) to the sum of a Gaussian (S(mES))

distribution for the signal and an ARGUS (A (mES)) distribution for the back-

ground. This fit determines the mean and width of the Gaussian and the ζ

(see Eqn 4.4.3) parameter of the ARGUS function. Fixing these parameters,

we then fit the events in each tagging category separately in order to determine

the relative normalizations of the Gaussian and ARGUS for each tagging cate-

gory. This determines the probability pi(mES) of the event for tagging category

i as

pi(mES) =
Si(mES)

Si(mES) + Ai(mES)
(7.3.4)

We now construct the full likelihood as

F±,i = pi(mES)
[
(1 − δpeak)F±(∆t; Γ,∆md, wi, sin2β, âi) + δpeakBCPi,peak(∆t; âi)

]
+ [1 − pi(mES)] ·

[
fCPlife BCPi,life(∆t; b̂i) + (1 − fCPlife )BCPi,prmt(∆t; b̂i)

]
(7.3.5)

where δpeak is the fraction of peaking background determined from Monte Carlo

simulation and fCPlife is the relative fraction of lifetime to prompt background.

The peaking background fraction is determined separately for each CP decay

mode (see Table 4.9). We will discuss the number of free parameters in the fit

after describing the likelihood for the flavor-eigenstate sample (which has some

parameters in common with the CP likelihood).
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7.3.2 Likelihood function for flavor-eigenstates

There are also three separate parameterizations of the backgrounds for the

flavor-eigenstate sample corresponding to a peaking (peak), prompt (prmt),

and lifetime (life) component. The parameterizations for each tagging category

i are given by

Bflav
±,i,peak =

1

4
ΓB+ (1 ±Dpeak

i )e−ΓB+ |∆t| ⊗R(∆t; âi)

Bflav
±,i,prmt =

1

2
(1 ±Dprmt

i )δ(∆t) ⊗R(∆t; b̂i) (7.3.6)

Bflav
±,i,life =

1

4
(1 ±Dlife

i )Γlife e
−Γlife|∆t| ⊗R(∆t; b̂i)

where ΓB+ refers to the decay constant of the B+ and Γlife refers to the decay

constant that the fit prefers for the lifetime background. While the average

dilutions 〈D〉 of each background source are allowed to be different, the dif-

ference in the dilutions ∆D for B0 and B0 mesons are assumed to be zero for

each source. Since the major component of the peaking background comes from

charged B decays, the average dilutions for the peaking background Dpeak
i are

measured with the sample of fully reconstructed B+ decays (see Sec. 4.7). The

background distributions are each normalized such that∫ ∞

−∞

(
Bflav

+,i + Bflav
−,i
)
d∆t = 1 (7.3.7)

The full likelihood for the flavor-eigenstate sample is constructed from a

weighted sum of the signal and background probability distribution functions

where the weighting is again done by fitting the mES distribution. Due to

the high statistics of the flavor-eigenstate sample, the mES fit is performed for

events in each tagging category that pass the vertexing requirements letting

both the shape and normalizations of the Gaussian and ARGUS distribution

float. The event-by-event tagging category dependent probability pi(mES) is

then used to weight each event. The full likelihood is constructed as

H±,i = pi(mES) ·
[
(1 − δpeak)H±(∆t; Γ,∆md, wi, âi) + δpeakBflav

±,i,peak(∆t; âi)
]

+ [1 − pi(mES)] ·
[
fflav
i,lifeBflav

±,i,life(∆t; b̂i) + (1 − fflav
i,life)Bflav

±,i,prmt(∆t; b̂i)
]
(7.3.8)
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where δpeak is the fraction of peaking background determined from Monte Carlo

simulation to be 1.3% (Sec. 4.6) and fflav
i,life is the relative fraction of lifetime to

prompt background in each tagging category.

7.4 Free parameters of the likelihood fit

Variable description Number of free parameters
sin2β 1
Signal dilutions 8
Signal resolution function 8
Background resolution function 3
Bflav background 13
BCP background 1
Total 34

Table 7.1: Breakdown of the number of free parameters in the sin2β maximum-
likelihood fit.

We use an unbinned maximum-likelihood fit to the ∆t distributions of the

CP and flavor-eigenstate samples to determine sin2β by maximizing

LCP + Lmix (7.4.1)

where the CP and mixing likelihoods are defined in Eqn 3.0.6 and 3.0.3 re-

spectively. The fit has a total of 34 free parameters which are summarized in

Table 7.1:

• Value of sin2β

• Signal resolution function: Eight parameters to describe the signal

resolution function âi that are common to the CP and flavor-eigenstate

signal and peaking background probability distribution functions. The

signal resolution function consists of a sum of three Gaussians (Eqn. 6.4.2).

The scale factor of the core Gaussian S1, the bias of the core Gaussian for
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each tagging category k1,i, the mean of the tail Gaussian k2, the fraction

of the core Gaussian f1, and the fraction of the outlier Gaussian f3 are the

eight free parameters of the signal resolution function. The scale factor

of the tail Gaussian S2 is fixed to 3, the width of the outlier Gaussian

σ3 is fixed to 8 ps, and the mean of the outlier Gaussian is fixed to 0

ps. These values were obtained from studies of simulated BCP decays

where the maximum-likelihood fit was found to be more robust when

the resolution function had less degrees of freedom. For example, the fit

occasionally had trouble determining the mean of the outlier Gaussian,

which contains only about 1% of the events.

• Signal dilutions: Eight parameters describe the measured average dilu-

tions 〈Di〉 and dilution differences ∆Di in each tagging category. These

dilutions are common to the signal CP and flavor-eigenstate probability

distribution functions.

• Background resolution function: Three parameters are used to de-

scribe a common resolution function for all non-peaking backgrounds.

This resolution function, modeled as the sum of a core and outlier Gaus-

sian distribution, is written as

R(δt, b̂i) =
1√
2π

[
f b1

Sb1σ∆t

exp

(
−(δt − kb1σ∆t)

2

2(Sb1σ∆t)2

)
+

(1 − f b1)

σb2
exp

(
− δ

2
t

σb2

)]

(7.4.2)

The free parameters are the scale factor of the core Sb1, the bias of the

core kb1, and the fraction f b1 of the core Gaussian. The width of the outlier

Gaussian σb2 is fixed to 8 ps per simulated Monte Carlo studies.

• Flavor-eigenstate background composition: Thirteen parameters

to describe the composition of the flavor-eigenstate background distribu-

tions. There are 4 average dilutions used to describe the lifetime Dlife
i

and 4 average dilutions used to describe the prompt Dprmt
i components

of the flavor-eigenstate background sources (see Eqn 7.3.7). The relative
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fractions of the lifetime to prompt component of the flavor-eigenstate

background for each tagging category fflav
i,life are also free parameters. The

average dilutions of the peaking background, fixed to values measured

using a maximum-likelihood fit to the fully reconstructed B+ control

sample, are listed in Table 7.2.

• CP background composition: One parameter to describe the CP back-

ground properties. The fraction of prompt relative to lifetime background

fCP
life (assumed to be the same for each tagging category) is free in the

maximum-likelihood fit.

Category Nsignal ε(%) w(%) Q(%)
Lepton 2060 ± 48 9.9 ± 0.2 1.1 ± 0.3 9.5 ± 0.2
Kaon I 3710 ± 68 17.9 ± 0.3 7.7 ± 0.5 12.8 ± 0.4
Kaon II 4083 ± 73 19.7 ± 0.3 17.4 ± 0.6 8.3 ± 0.4
Inclusive 3870 ± 70 18.6 ± 0.3 27.7 ± 0.8 3.7 ± 0.3
Total 20771 ± 164 66.1 ± 0.6 34.3 ± 0.6

Table 7.2: Average efficiency ε, mistag fractions w, and effective tagging effi-
ciency Q for each tagging category i in the control sample of fully reconstructed
B+ candidates.

7.5 External parameters of likelihood fit

The B0 lifetime τB0 and B0–B0 mixing frequency ∆md are held fixed to

their respective current world-average values in the maximum-likelihood fit for

sin2β:

τB0 = (1.542 ± 0.016) ps

∆md = (0.489 ± 0.008) ps−1

We have observed that the fitted value of sin2β depends linearly on the fixed

value of each of these parameters. The systematic error associated with this

dependence is quantified in Sec. 9.3.
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7.6 Validation studies

Studies have been performed using various high statistics samples of sim-

ulated B meson decays to validate the maximum-likelihood fitting procedure

and to determine whether the procedure is capable of producing an unbiased

estimate of sin2β. They are described below.

7.6.1 Study of simulated signal decays

The maximum-likelihood fit procedure has been validated using high statis-

tics sample of simulated Monte Carlo decays of B mesons to flavor-eigenstates

and CP eigenstates. The number of simulated decays to each CP final state

corresponds to about 120 times the signal yield in data for the given mode. The

number of simulated flavor-eigenstate decays used for this study corresponds

to about 2 times the signal yield of the Bflav data sample. Since the CPU

time required to perform the fits for such large samples is extensive, a fit to

the Bflav sample was done separately to extract the dilutions and resolution

function parameters. The results are shown in Table 7.3. On lower statistics

simulated samples, this procedure was shown to have no effect on the fitted

value of sin2β determined from the CP sample alone.

The resolution function parameters and dilutions were also determined us-

ing information about the true generated decays in the simulated CP sample.

The background terms in the likelihood function were set to zero explicitly since

we only simulate signal decays. The results of the fit for sin2β for various CP

decay modes are shown in Table 7.4. For each mode, the fitted value of sin2β

differed by less than 3σ from the generated value. However, there appears to

be a systematic shift of about +0.015 in the measured value of sin2β compared

to the generated value for each CP decay mode. This will be discussed further

in Sec. 7.6.3.

158



Parameter Result
Signal Resolution Function

Scale (core) 1.179 ± 0.026
Scale (tail) 3.0 (fixed)
δ(∆t) Lepton (core) −0.107 ± 0.032
δ(∆t) Kaon I (core) −0.257 ± 0.027
δ(∆t) Kaon II (core) −0.256 ± 0.024
δ(∆t) Inclusive (core) −0.209 ± 0.024
δ(∆t) (tail) −0.909 ± 0.176
f(tail) 0.095 ± 0.012
f(outlier) 0.002 ± 0.001

Signal dilutions
〈D〉, Lepton 0.930 ± 0.006
〈D〉, Kaon I 0.820 ± 0.006
〈D〉, Kaon II 0.577 ± 0.008
〈D〉, Inclusive 0.382 ± 0.008
∆D, Lepton 0.019 ± 0.011
∆D, Kaon I 0.003 ± 0.010
∆D, Kaon II 0.053 ± 0.012
∆D, Inclusive 0.064 ± 0.013

Table 7.3: Fit results for the high statistics Bflav simulated Monte Carlo
sample.

7.6.2 Study of simulated signal and background decays

Validation studies were also performed for each CP decay mode using a

simulated sample of inclusive B0 → J/ψX decays. Since this sample includes

sources of combinatoric and peaking background, the full CP likelihood fit

was used, fixing the dilutions and resolution function parameters to the values

measured in the Bflav simulated sample that are reported in Table 7.3. The

results of the fit for sin2β using the simulated sample of inclusive J/ψ decays are

shown in Table 7.5. For each decay mode, the difference between the generated

and fitted value of sin2β was less than 3σ.
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Mode Generated sin2β Fit sin2β
Bflav Truth

J/ψK0
S

(π+π−) 0.703 0.716 ± 0.007 0.719 ± 0.007
J/ψK0

S
(π0π0) 0.703 0.718 ± 0.014 0.722 ± 0.014

ψ(2S)K0
S (π+π−) 0.703 0.724 ± 0.015 0.727 ± 0.015

χc1K
0
S

(π+π−) 0.703 0.729 ± 0.021 0.734 ± 0.021
J/ψK0

L
0.703 0.706 ± 0.009 0.711 ± 0.009

Bflav 0.0 −0.009 ± 0.011 −

Table 7.4: Results of fits for sin2β in high statistics simulated Monte Carlo
samples of CP eigenstate decays. The two columns of sin2β fit values corre-
spond to fits using dilutions and resolutions either measured from the Bflav

Monte Carlo sample or from using information about the generated decays in
the simulated CP sample.

Mode Inclusive J/ψ simulation
Generated sin2β Fit sin2β δ(sin2β)/σ(sin2β)

J/ψK0
S (π+π−) 0.703 0.685 ± 0.034 -0.4

J/ψK0
S

(π0π0) 0.703 0.778 ± 0.074 +1.1
ψ(2S)K0

S
(π+π−) 0.703 0.406 ± 0.258 -1.1

χc1K
0
S

(π+π−) 0.703 0.320 ± 0.193 -2.0

Table 7.5: Results of sin2β fits for each CP decay mode using a high statistics
simulated sample of inclusive B0 → J/ψX decays. The difference between the
generated and fitted value δ(sin2β) = sin2βgen − sin2βfit divided by the error
on sin2β from the fit σ(sin2β) is less than ±3σ for all decay modes.

7.6.3 Determining the maximum-likelihood bias

The studies of Sec. 7.6.1 and 7.6.2 indicate a bias of about 0.015 and zero

respectively for the maximum-likelihood fitting procedure using high statistics

samples of simulated BCP decays. It is more relevant to determine whether a

bias exists for sample sizes corresponding to the size of the data sample that

is used in this analysis. Consequently, 130 toy experiments were constructed

where each toy consists of the same number of simulated tagged signal decays

passing the vertexing requirements as found in the data for each CP decay
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mode. Resolution function parameters were obtained from the simulated events

for all of the experiments by fitting the residual ∆t distribution ∆t = ∆ttrue−∆t

to the sum of three Gaussian functions. The “true” dilutions of the sample were

also obtained by comparing the measured flavor tag to the generated flavor of

the B mesons. Each experiment was fit setting the background probability

distribution functions of the CP likelihood to zero with sin2β the only free

parameter.

The residual sin2β distribution, where the residual is the difference between

the measured and generated values, was found to have a mean of 0.0124±0.005.

This distribution is shown in Fig. 7.2 where the residual is fit to a Gaussian

function. The pull of sin2β (residual divided by the error on sin2β returned

by the likelihood fit) was found to be 1.07 ± 0.07. This study was repeated

fixing the dilutions and resolution function parameters to those obtained from

a likelihood fit to a high statistics sample of simulated flavor-eigenstate decays

(see Table 7.3). In this case, the bias of the residual is found to be 0.0138 ±
0.005. Consequently, henceforth we correct the value of sin2β returned by the

maximum-likelihood fit by -0.014. The systematic error associated with this

correction will be discussed in Sec. 9.5.
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Figure 7.2: Residual distribution for sin2β (sin2β measured minus generated)
found using 130 toy experiments of simulated BCP decays where the number
of fully reconstructed B mesons in each decay mode corresponds to the same
number found in the BCP data sample for that mode. The residual is found to
have a bias of 0.0124 ± 0.005.
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Chapter 8

Fit results

As explained in Chapter 7, the value of sin2β, the dilution factors Di, signal

resolution function parameters ai, background fractions, and background time

distribution parameters are determined from an unbinned maximum-likelihood

fit to the ∆t distribution of the BCP and Bflav samples. The resolution function

parameters and dilution factors are primarily determined by the Bflav sample.

The value of sin2β and the free parameter describing the relative fraction of

prompt and lifetime background in the CP events are determined entirely by

the CP sample.

In Sec. 8.1, we describe the results of fits to the mES distributions of the BCP

and Bflav samples for events in each tagging category that pass the vertexing

requirements. Sec. 8.2 presents the results of the maximum-likelihood fit. We

detail several cross checks performed to increase our confidence in the fitting

procedure in Sec. 8.3. Additionally, we repeat the fit removing the assumption

motivated in Sec. 1.7 that |λfCP
| = 1. These results are given in Sec. 8.4.

8.1 Data sample

Events with a reconstructed B meson must have a valid flavor tag, and sat-

isfy the requirements |∆t| < 20 ps and σ∆t < 2.5 ps in order to be included in

163



the likelihood fit for sin2β. Untagged events in the CP sample for each decay

mode are used in the fits to the mES distributions to determine the parame-

ters of the signal Gaussian and background ARGUS functions as described in

Sec. 7.3.1. Table 8.1 lists the number of B0 tagged, B0 tagged, and untagged

signal (mES > 5.27 GeV/c2) events reconstructed in each CP decay mode after

passing the vertexing requirements. There are 1506 signal CP events which are

used to determine sin2β. The signal events of the Bflav after vertexing require-

ments for each tag category and flavor are listed for reference in Table 8.2.

J/ψK0
S(π+π−) J/ψK0

S(π0π0) ψ(2S)K0
S χc1K0

S ηcK0
S

Tag B0 B0 Tot B0 B0 Tot B0 B0 Tot B0 B0 Tot B0 B0 Tot
Lepton 70 71 141 10 14 24 17 14 31 5 4 9 9 6 15
Kaon I 124 135 259 27 19 46 13 20 33 6 15 21 17 24 41
Kaon II 133 150 283 26 28 54 28 20 48 12 10 22 13 24 37
Incl. 155 136 291 24 22 46 18 20 38 14 14 28 19 20 39

Tot tag 974 170 150 80 132
No tag 465 105 79 35 80
Total 1439 275 229 115 212

Table 8.1: Event yields by tagging category and tag flavor for signal
(mES > 5.27 GeV/c2) CP decay modes after vertexing requirements. Note
that we have used Incl. as an abbreviation for Inclusive.

Flavor-eigenstate sample
Tag B0 B0 Tot

Lepton 1492 1411 2903
Kaon I 2929 2957 5886
Kaon II 3810 3521 7331
Inclusive 3878 3620 7498

Tot tag 23618
No tag 13615
Total 37233

Table 8.2: Event yields by tagging category and tag flavor for signal
(mES > 5.27 GeV/c2) flavor-eigenstate decays after vertexing requirements.

The mES distribution of all the tagged and untagged events passing the

vertexing requirements in the CP decay modes, J/ψK0
S (π+π−), J/ψK0

S (π0π0),
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ψ(2S)K0
S
, χc1K

0
S
, and ηcK

0
S
, are fit together to a Gaussian plus an ARGUS

function as described in Sec. 7.3.1. This fit yielded a Gaussian mean (µmES) of

5280.2± 0.1 MeV/c2, a Gaussian width (σmES) of 2.73± 0.06 MeV/c2, and an

ARGUS shape parameter (ζ) of −29±6. The events in each tagging category of

each mode were then fit separately, with these parameters fixed, to determine

the relative normalization of the Gaussian and ARGUS components. Table 8.3

gives the signal yield and purity results from these fits for each decay mode.

Fig. 8.1 shows the mES distribution for the combined CP event sample for each

tagging category after vertexing requirements overlaid with the results of the

mES fit.

Mode Parameter Lepton Kaon I Kaon II Inclusive Total
µmES (MeV/c2) 5280.2 ± 0.1 (fixed)

All σmES (MeV/c2) 2.73 ± 0.06 (fixed)
ARGUS shape ζ −29 ± 6 (fixed)

J/ψK0
S (π+π−) Signal Yield 140 ± 12 251 ± 16 271 ± 17 275 ± 17 937 ± 31

Purity (%) 99.3 ± 0.3 96.4 ± 0.6 96.7 ± 0.5 95.3 ± 0.6 96.5
J/ψK0

S (π0π0) Signal Yield 23 ± 5 40 ± 7 47 ± 7 39 ± 7 150 ± 13
Purity (%) 98 ± 1 88 ± 3 87 ± 3 87 ± 3 88.5

ψ(2S)K0
S Signal Yield 30 ± 6 32 ± 6 46 ± 7 35 ± 6 143 ± 12

Purity (%) 99 ± 1 98 ± 1 97 ± 1 93 ± 2 96.9
χc1K0

S Signal Yield 9 ± 3 19 ± 5 20 ± 5 27 ± 5 75 ± 9
Purity (%) 98 ± 2 94 ± 3 94 ± 3 96 ± 2 94.5

ηcK0
S Signal Yield 14 ± 4 28 ± 6 23 ± 6 29 ± 6 95 ± 11

Purity (%) 92 ± 4 72 ± 6 64 ± 7 74 ± 5 73.3

Table 8.3: Signal yield and purity resulting from fit to the mES distribution of
each tagging category in the CP eigenstate sample after vertexing requirements.

The mES distributions of tagged events in the flavor-eigenstate sample that

have passed the vertexing requirements in each tagging category are fit with the

Gaussian mean, width, and ARGUS shape floating. There are enough events

in each tagging category of the flavor-eigenstate sample, as opposed to the CP

sample, for these fit parameters to be well determined. The results from this

fit are presented in Table 8.4 and displayed in Fig. 8.2.
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Figure 8.1: Distribution of mES for CP events passing vertexing requirements
for (a) Lepton, (b) Kaon I, (c) Kaon II, and (d) Inclusive tagging categories
overlaid with the fit result. The ARGUS component is shown as a dashed line.

Parameter Lepton Kaon I Kaon II Inclusive

µmES ( MeV/c2) 5280.30 ± 0.05 5280.20 ± 0.04 5280.20 ± 0.04 5280.20 ± 0.04
σmES ( MeV/c2) 2.60 ± 0.04 2.64 ± 0.04 2.62 ± 0.03 2.60 ± 0.04
ARGUS shape ζ −72 ± 7 −35 ± 2 −32 ± 2 −35 ± 2
Signal Yield 2979 ± 57 5450 ± 83 6489 ± 92 6535 ± 94
Purity(%) 0.956 ± 0.005 0.862 ± 0.005 0.826 ± 0.005 0.823 ± 0.005

Table 8.4: Signal yield, purity, Gaussian mean µmES , width σmES , and ARGUS
shape ζ resulting from fit to the mES distribution of each tagging category in
the flavor-eigenstate sample after vertexing requirements.

8.2 Maximum-likelihood fit results

The results of the maximum-likelihood fit are displayed in Table 8.5 along

with the correlation of each of the 34 free parameters with sin2β. The value

of sin2β obtained from the combined sample of B mesons reconstructed in
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Figure 8.2: Distribution of mES for flavor-eigenstate events passing vertexing
requirements for (a) Lepton, (b) Kaon I, (c) Kaon II, and (d) Inclusive

tagging categories overlaid with the fit result. The ARGUS component is shown
as a dashed line.

charmonium CP eigenstates with CP eigenvalue −1 is

sin2β = 0.755 ± 0.074, (8.2.1)

firmly establishing the existence of CP violation in the B system. This value

includes the -0.014 correction discussed in Sec. 7.6.3 The largest correlation

between sin2β and any linear combination of the other free fit parameters is

found to be 13%.
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Parameter Result Corr. with sin2β
sin2β 0.755 ± 0.074 1.000

Signal Resolution Function
Scale (core) 1.094 ± 0.048 0.020
Scale (tail) 3.0 (fixed)

δ(∆t) Lepton (core) 0.039 ± 0.061 0.010
δ(∆t) Kaon I (core) −0.234 ± 0.050 0.011
δ(∆t) Kaon II (core) −0.232 ± 0.044 0.012
δ(∆t) Inclusive (core) −0.219 ± 0.045 0.007

δ(∆t) (tail) −1.020 ± 0.293 -0.007
f(tail) 0.106 ± 0.020 0.017

f(outlier) 0.003 ± 0.001 -0.010
Signal dilutions

〈D〉, Lepton 0.934 ± 0.013 -0.046
〈D〉, Kaon I 0.801 ± 0.014 -0.066
〈D〉, Kaon II 0.582 ± 0.016 -0.056

〈D〉, Inclusive 0.367 ± 0.017 -0.048
∆D, Lepton 0.029 ± 0.022 0.003
∆D,Kaon I 0.021 ± 0.022 0.004

∆D, Kaon II 0.078 ± 0.023 -0.007
∆D, Inclusive 0.051 ± 0.025 0.006

Background properties
τ , mixing bgd [ps] 1.325 ± 0.062 -0.001
f(τ = 0), CP bgd 0.639 ± 0.050 -0.024

f(τ = 0), mixing bgd, Lepton 0.289 ± 0.163 0.000
f(τ = 0), mixing bgd, Kaon I 0.630 ± 0.026 0.000
f(τ = 0), mixing bgd, Kaon II 0.657 ± 0.024 0.000
f(τ = 0), mixing bgd, Inclusive 0.683 ± 0.022 0.000

Background resolution function
Scale (core) 1.398 ± 0.019 -0.003
δ(∆t) core −0.045 ± 0.013 0.000
f(outlier) 0.016 ± 0.002 -0.001

Background dilutions
〈D〉, Lepton , τ = 0 1.372 ± 0.630 0.002
〈D〉, Kaon I , τ = 0 0.649 ± 0.030 0.006
〈D〉, Kaon II , τ = 0 0.393 ± 0.024 0.006
〈D〉, Inclusive , τ = 0 0.158 ± 0.024 0.005
〈D〉, Lepton , τ > 0 0.170 ± 0.104 0.000
〈D〉, Kaon I , τ > 0 0.251 ± 0.048 0.000
〈D〉, Kaon II , τ > 0 0.279 ± 0.042 0.000
〈D〉, Inclusive , τ > 0 0.032 ± 0.046 0.000

Table 8.5: Maximum-likelihood fit results for the CP data sample. The global
correlation coefficient for sin2β is 13%.
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The distribution of events as a function of ∆t for the CP sample with

mES > 5.27 GeV/c2 for B0 and B0 tags is shown in Fig 8.3. Overlaid on the

data are projections of the signal and background ∆t distributions obtained

from the fit, where the latter is normalized to the projected background level.

The difference between the ∆t distributions of B0 and B0 tags is evident.

The raw asymmetry in the number of B0 and B0 tags normalized to the total

number of tagged events in bins of ∆t,

A(∆t) =
N(B0tag; ∆t) −N(B0tag; ∆t)

N(B0tag; ∆t) +N(B0tag; ∆t)
(8.2.2)

is shown in Fig. 8.4 for the CP sample.
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Figure 8.3: The distribution of events in the CP sample withmES > 5.27 GeV/c2

as a function of ∆t for B0 (top) and B0 (bottom) tags. The results of the
likelihood fit are overlaid on the data for signal (solid line) and background
(shaded histogram) contributions.

8.2.1 Goodness of fit

It is non-trivial to determine the goodness of the maximum-likelihood fit

in the traditional manner of reporting the χ2 of the fit to the data. It is not
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Figure 8.4: The raw asymmetry in the number of B0 and B0 tags in the CP
sample normalized to the total number of tagged events in bins of ∆t. The
data points are overlaid with the maximum-likelihood fit result.

obvious how to determine the number of degrees of freedom of the fits to all CP

events shown in Figs. 8.3 and 8.4. These fits are projected over four discrete

tagging categories and contain 34 free parameters but only two are primarily

determined by the CP sample.

Consequently, we use samples of toy Monte Carlo 1 (TMC) to evaluate the

likelihood of the fit and its error. We construct 1000 toy experiments that

contain exactly the same statistics as observed in our data set (same number

of events in each tagging category for B0 and B0 tags) and we use the same

1The terminology “toy” is used to indicate that we construct data sets by randomly
sampling from known probability distribution functions, not by simulating the reconstruction
of B meson decays.
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mES values for each event as found in the data. The free parameters of the

probability distribution functions used to construct the likelihood are fixed to

those obtained from the data for each tagging category. The value of sin2β is

determined by fitting the generated ∆t distribution of each toy experiment in

the same way that it is determined in data. Table 8.6 lists the mean expected

statistical error and log likelihood from the ensemble of toy experiments, the

values of the error and log-likelihood observed in data, and the fraction of

toy Monte Carlo fits that returned a log-likelihood value less likely than that

returned by the fit to data. Fig. 8.5 shows the statistical error on sin2β and

Fig. 8.6 shows the log likelihood distributions from the 1000 toy experiment

fits for each CP decay mode.

We conclude that the errors returned by the fit in data for each CP mode

are in good agreement with those predicted by the toy experiments. We also

don’t find any reason to be concerned with value of the maximum of the log-

likelihood for any of the CP modes. The log-likelihood values in the data fall

near the mean of the most probable regions found in the toy Monte Carlo

experiments.

Sample 〈σTMC〉 RMS σTMC σData 〈−lnLTMC〉 -lnLData Frac.
J/ψK0

S (π+π−) 0.0816 0.005 0.084 −1513.0 ± 1.7 −1494.9 0.623
J/ψK0

S (π0 π0) 0.2345 0.018 0.240 −495.1 ± 0.8 −511.5 0.263
ψ(2S)K0

S 0.2113 0.025 0.235 −227.6 ± 0.7 −222.9 0.576
χc1K

0
S 0.3138 0.060 0.396 −151.0 ± 0.6 −152.2 0.472

ηcK
0
S 0.3398 0.038 0.320 −579.4 ± 0.7 −601.5 0.151

Table 8.6: Comparison of the statistical error on sin2β in data (σData) with the
average error on sin2β in 1000 toy Monte Carlo (TMC) experiments (〈σTMC〉)
for each CP decay mode. The RMS of the σTMC distribution is shown as well.
The value of the negative log-likelihood in data ( -lnLData ) and its average
value in the toy experiments ( 〈−lnLTMC〉 ) is also compared. The last column
lists the fraction of TMC experiments that were less likely than the data fit
(the fraction with lnLTMC <lnLData).
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Figure 8.5: Distribution of σ(sin2β) from fits to 1000 toy Monte Carlo experi-
ments for each CP decay mode. The arrows indicate the value of the fit from
the data.

8.2.2 Flavor tagging results

We evaluate the performance of the flavor tagging algorithm in the Bflav

sample in Table 8.7. This Table summarizes results already shown in Table 8.2

(number of signal events) and 8.5 (average dilutions) for convenience. The

effective tagging efficiency Q is found to be 28.1± 0.7. We see that the Lepton
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Figure 8.6: Distribution of log-likelihood from fits to 1000 toy Monte Carlo
experiments for each CP decay mode. The arrows indicate the value of the fit
from the data.

tag provides the cleanest sample (lowest mistag rate) but the Kaon I tag has

the largest Q value of any category as expected because of the abundance of

right sign kaons in B meson decays discussed in Sec. 5.2.2.
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Category Nsignal ε(%) w(%) Q(%)
Lepton 2979 ± 57 9.1 ± 0.2 3.3 ± 0.6 7.9 ± 0.3
Kaon I 5450 ± 83 16.7 ± 0.2 9.9 ± 0.7 10.7 ± 0.4
Kaon II 6489 ± 92 19.8 ± 0.3 20.9 ± 0.8 6.7 ± 0.4
Inclusive 6535 ± 94 20.0 ± 0.3 31.6 ± 0.9 2.7 ± 0.3

Total 32700 ± 208 65.6 ± 0.5 28.1 ± 0.7

Table 8.7: Flavor tagging performance in data. The Kaon I tagging category
provides the largest effective tagging efficiency Q.

8.2.3 J/ψK0
L and J/ψK∗0 results

As discussed in Sec. 3.2, B0 decays to J/ψK0
L and J/ψK∗0 (K∗0 → K0

S π
0)

are also used to measure sin2β. The details of the reconstruction and likelihood

fit for these modes are outside the scope of this dissertation. However, we

mention the results for completeness. Using 988 tagged B0 decays to J/ψK0
L

with a purity of 55%, we find

sin2βJ/ψK0
L

= 0.72 ± 0.16 (8.2.3)

A separate analysis [75] has determined that the fraction of the parity-odd

orbital angular momentum component (L = 1) in the B0 → J/ψK∗0 final state

is 16.0±3.5%. After correcting for acceptance effects, this leads to an effective

CP eigenvalue of ηCP = 0.65 ± 0.07. Using 147 tagged B0 decays to J/ψK∗0

with a purity of 81%, we measure

sin2βJ/ψK∗0 = 0.22 ± 0.52 (8.2.4)

For the entire CP data sample that consists of 2641 tagged J/ψK0
S
, ψ(2S)K0

S
,

χc1K
0
S
, ηcK

0
S
, J/ψK0

L
, and J/ψK∗0 (K∗0 → K0

S
π0) decays with a combined

purity of 78%, we measure

sin2β = 0.741 ± 0.067 (8.2.5)
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8.3 Cross checks

A variety of additional cross checks are performed to increase our confidence

in the fit procedure. Some involve examining the consistency of the sin2β

values measured in various subsets of the data and some involve calibrating

the procedure by fitting for sin2β in control samples where sin2β is expected

to be zero a priori. These checks are described below.

8.3.1 CP decay mode

We fit for sin2β in each decay mode of the BCP sample independently to

determine whether the results are consistent. Clearly, the value obtained when

fitting the entire CP sample is dominated by the J/ψK0
S

(π+π−) decays. How-

ever, since the sum of the other decay modes contribute a weight of about

1/3 to the value of sin2β measured with the entire data sample, this check is

still meaningful. The values of sin2β found for each decay mode are listed in

Table 8.8. Plots of the number of signal events (mES > 5.27 GeV/c2) as a func-

tion of ∆t for B0 and B0 tags are shown for J/ψK0
S
, ψ(2S)K0

S
, and χc1K

0
S

in

Fig. 8.7. The raw asymmetry for each of these modes as defined in Eqn 8.2.2 is

displayed in Fig. 8.8. The ∆t distributions of B0 and B0 tagged events and the

raw asymmetry for ηcK
0
S are shown in Fig. 8.9. We determine the consistency

of the sin2β values for each mode by constructing a χ2 as

χ2
modes =

modes∑
i

(sin2βi − sin2βCP )2

σ(sin2βi)
(8.3.1)

where sin2βCP = 0.755 and i runs over each decay mode. With this definition,

we calculate a χ2 of 3.62 for 4 degrees of freedom which gives a probability

of about 46%. A comparison of the sin2β values measured for each CP decay

mode compared to the value found for all the modes combined is shown in

Fig. 8.10.
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Sample Yield(tag) Purity sin2β
CP sample 1399 ± 39 93.5 0.755±0.074
J/ψK0

S (π+π−) 937 ± 31 96.5 0.820 ± 0.084
J/ψK0

S
(π0 π0) 150 ± 13 88.5 0.394 ± 0.241

ψ(2S)K0
S

143 ± 12 96.9 0.691 ± 0.235
χc1K

0
S 75 ± 9 94.5 1.014 ± 0.397

ηcK
0
S

95 ± 11 73.3 0.586 ± 0.320

Table 8.8: Values of sin2β found for each CP decay mode. The quoted yield
corresponds to tagged events returned by the likelihood fit that are therefore
background subtracted.

8.3.2 Flavor tagging category

To determine whether any of the differences in the physical sources of the

flavor tag described in Sec. 5.2 bias the measurement, we check that the values

of sin2β obtained in each tag category for the CP sample agree. The results for

each tagging category are shown in Table 8.9. Fig. 8.11 and 8.12 display the ∆t

distribution of B0 and B0 tagged events and the raw ∆t asymmetry for each

tagging category respectively. The amplitude of the raw asymmetry is clearly

different for each category. However, we find consistent values of sin2β for each

category since the amplitude is the product of the dilution and sin2β and each

category has a different dilution. The asymmetry of the ∆t distributions of B0

and B0 tagged events is quite striking in the Lepton tagging category which

has the lowest mistag rate, purest sample of reconstructed mesons, and lowest

mean value of σ∆t. The improved resolution on σ∆t (or σ∆z) results from the

high momentum prompt lepton track which provides a less biased estimate of

the Btag vertex than the other categories as explained in Chapter 6.

8.3.3 B0 and B0 flavor tags

While the difference in the ∆t distributions of B0 and B0 tagged events

in the CP sample provides an elegant visual confirmation of a CP asymmetry,
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Figure 8.7: Distribution of events as a function of ∆t for B0 and B0 tagged
decays with mES > 5.27 GeV/c2 for (a) J/ψK0

S
(π+π−), (b) J/ψK0

S
(π0 π0), (c)

ψ(2S)K0
S , (d) χc1K

0
S , and (e) ηcK

0
S . Results from the likelihood fit are overlaid

for signal (solid line) and background (shaded histogram) for each mode.

Sample Yield(tag) Purity sin2β
Lepton 217 ± 15 98.0 0.789 ± 0.113
Kaon I 370 ± 20 93.2 0.778 ± 0.119
Kaon II 407 ± 21 92.7 0.732 ± 0.171
Inclusive 406 ± 21 92.4 0.452 ± 0.282

Table 8.9: Value of sin2β for each flavor tagging category for the CP sample. A
consistent value is measured in all categories. The yields are for tagged events
obtained with the likelihood fit and are therefore background subtracted.
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Figure 8.8: Raw ∆t asymmetry for (a)J/ψK0
S

(π+π−), (b) J/ψK0
S

(π0 π0), (c)
ψ(2S)K0

S , (d) χc1K
0
S , and (e) ηcK

0
S . The data points are overlaid with the

results from the maximum-likelihood fit in each case.

it was mentioned in Sec. 1.8 that can measure sin2β using only one type of

B meson flavor. This results from the fact that the ∆t distribution of CP

events (Eqn 3.0.4) for either tag is not symmetric with respect to ∆t = 0.
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Figure 8.9: Distribution of (a) events as a function of ∆t for B0 and B0 tagged
decays with mES > 5.27 GeV/c2, and (b) raw ∆t asymmetry for ηcK

0
S
. The

data points are overlaid with the results from the maximum-likelihood fit for
signal (solid line) and background (shaded histogram).

Consequently, we employ the same maximum-likelihood technique to measure

sin2β in the CP sample for B0 and B0 tagged events separately. The results

are shown in Table 8.10 and are found to be consistent for both flavor tags.

Sample Yield(tag) Purity sin2β
B0-Tag 688 ± 27 94.1 0.754 ± 0.105
B0-Tag 712 ± 28 93.3 0.739 ± 0.105

Table 8.10: Value of sin2β for B0 and B0 tagged events for the CP sample.
A consistent value is measured for both types of flavor tags. The yields are
obtained with the likelihood fit and are therefore background subtracted.

8.3.4 J/ψ reconstruction mode

All events in the CP sample (except for B mesons reconstructed as ηcK
0
S)

contain a J/ψ candidate reconstructed as e+e− or µ+ µ−. The invariant mass

distribution of the lepton pair looks substantially different for those recon-
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sin2β

All modes 0.755±0.074

ηc Ks  0.59± 0.32

χc1 Ks  1.01± 0.40

ψ(2S)Ks  0.69± 0.24

J/ψ Ks (π
0π0)  0.39± 0.24

J/ψ Ks (π
+π-)  0.82± 0.08

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 8.10: A comparison of the sin2β values found in each CP decay mode
with the one sigma band around the central value for all the modes combined.
The errors are do not include systematic effects. The probability of the consis-
tency of all the measured values is about 45% as explained in the text.

structed as e+e− due to energy loss from photon radiation as seen in Fig. 4.6.

Additionally, the bremsstrahlung recovery algorithm is only used to attach pho-

tons to electron and positron tracks. While one does not really expect these

differences to bias the sin2β measurement, we check for consistency in the two

J/ψ reconstruction modes. The results for sin2β measured in the sample with

J/ψ → e+e− and J/ψ → µ+ µ− are shown in Table 8.11 and found to be

consistent.
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Figure 8.11: Distribution of events as a function of ∆t for B0 and B0 tagged
decays in the CP sample with mES > 5.27 GeV/c2 for the (a) Lepton, (b)
Kaon I, (c) Kaon II, and (d) Inclusive tagging categories. Results from
the likelihood fit are overlaid for signal (solid line) and background (shaded
histogram) for each category.

Sample Yield(tag) Purity sin2β
J/ψ → e+e− 623 ± 26 93.7 0.799 ± 0.099
J/ψ → µ+ µ− 681 ± 26 97.1 0.696 ± 0.104

Table 8.11: Value of sin2β for J/ψ → e+e− and J/ψ → µ+ µ− in the CP sample.
A consistent value is measured for reconstruction of both modes. The yields
are obtained with the likelihood fit and are therefore background subtracted.

181



∆t (ps)

R
aw

 A
sy

m
m

et
ry

Lepton tag

-1

-0.5

0

0.5

1

-7.5 -5 -2.5 0 2.5 5 7.5

(a)

∆t (ps)

R
aw

 A
sy

m
m

et
ry

Kaon1 tag

-1

-0.5

0

0.5

1

-7.5 -5 -2.5 0 2.5 5 7.5

(b)

∆t (ps)

R
aw

 A
sy

m
m

et
ry

Kaon2 tag

-1

-0.5

0

0.5

1

-7.5 -5 -2.5 0 2.5 5 7.5

(c)

∆t (ps)

R
aw

 A
sy

m
m

et
ry

Other tag

-1

-0.5

0

0.5

1

-7.5 -5 -2.5 0 2.5 5 7.5

(d)

Figure 8.12: Raw ∆t asymmetry for the (a) Lepton, (b) Kaon I, (c) Kaon II,
and (d) Inclusive tagging categories. The data points are overlaid with the
results from the maximum-likelihood fit in each case.

8.3.5 Run period

The data sample consists of about 88 million Υ (4S) → BB decays that

were collected between 1999 and 2002. However, BABAR was not taking data

continuously during that time span. There were different periods of a few
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Time period
Run-block Begin End Luminosity ( fb−1)
Run1 October 1999 October 2000 20.1
Run2a January 2001 June 2001 9.1
Run2b July 2001 December 2001 26.4
Run2c January 2002 June 2002 24.7

Table 8.12: Definitions and luminosity of different data taking periods.

months at a time when the machine was shut down so that repairs and upgrades

could be made. Significant changes in the detector conditions (such as the

global alignment of the SVT) were observed to occur when data taking was

resumed after these periods. Corrections to the constants used in processing

the data were made to account for this effect. Consequently, we break our data

sample into four blocks (Run1, Run2a, Run2b, and Run2c) which correspond

to discrete periods of contiguous data taking. The luminosity and definition of

each run-block is given in Table 8.12. Table 8.13 displays the value of sin2β

that is measured for each run-block. We find that the probability of the χ2 of

a zeroth order polynomial fit to the sin2β values from each run-block is 73%.

Sample Yield Purity sin2β
Run 1 357 ± 19 93.3 0.628 ± 0.149
Run 2a 190 ± 14 94.4 0.866 ± 0.206
Run 2b 445 ± 22 94.2 0.761 ± 0.135
Run 2c 408 ± 21 93.9 0.824 ± 0.127

Table 8.13: Result of fitting for sin2β in the CP sample for different data
taking periods. The definitions of the run periods are displayed in Table 8.12.
The yields are for tagged events and are obtained with likelihood fits and are
therefore background subtracted.

Fig. 8.13 summarizes the results from the tagging category, flavor tag type,

J/ψ reconstruction, and run-block subset cross checks of the CP data sample.

None of the checks reveal inconsistencies with the value of sin2β measured with
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sin2β

All modes 0.755±0.074

 Run 2c  0.82± 0.13

 Run 2b  0.76± 0.14

 Run 2a  0.87± 0.21

  Run 1  0.63± 0.15

J/ψ→µ+µ−  0.70± 0.10

J/ψ→e+e−  0.80± 0.10

B
− 0 tag  0.74± 0.10

B0 tag  0.75± 0.10

Inclusive  0.45± 0.28

Kaon 2  0.73± 0.17

Kaon 1  0.78± 0.12

Lepton  0.79± 0.11
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Figure 8.13: Comparison of sin2β measured in various subsets of the full CP
data sample. The subsets are grouped by horizontal lines according to tagging
category, flavor tag type, J/ψ reconstruction, and run-block. Measurements
of sin2β from samples within a horizontal grouping are uncorrelated but those
from different groups are highly correlated.

the full data sample.

8.3.6 Control samples

Sec. 4.7 discussed control samples of charged B meson decays to charmo-

nium plus a charged kaon and to D(∗)0 mesons plus a charged pion. Since

charged final states are clearly not eigenstates of CP , we expect no CP asym-

metries in these samples proportional to sin(∆md∆t)
2. Consequently, we re-

2It is possible that there are direct CP violating asymmetries in these samples that are
proportional to cos(∆md∆t) but they are predicted to be quite small in the SM.
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peat the maximum-likelihood procedure to measure the effective value of sin2β,

by which we mean the coefficient of the 〈D〉 sin(∆md∆t) term, in these sam-

ples and compare how different this effective value is from zero. Additionally,

we recall from Eqn. 3.0.1 that the exponential behavior of the ∆t distribution

describing the decay of a neutral meson reconstructed in a flavor-eigenstate

is modified only by a cosine (no sine) term that does not depend on sin2β.

This allows us to check that the effective value of sin2β in the flavor-eigenstate

mixing sample is also consistent with zero. The effective values of sin2β found

in the various control samples are listed in Table 8.14. They are also displayed

in Fig. 8.14. For each sample, the effective value of sin2β is less than 1.5σ

different from zero except for ψ(2S)K+ where it is 2.1σ different from zero.

Control Sample Yield(tag) Purity sin2β

B0 → D(∗)−π+/ρ+/a+
1 19764 ± 160 84.2 0.021 ± 0.022

B− → D(∗)0π− 13781 ± 131 87.0 0.017 ± 0.025
B0 → J/ψ K∗0 1678 ± 43 95.8 −0.009 ± 0.073
B+ → Charmonium X 6736 ± 87 93.8 0.021 ± 0.037
B+ → J/ψK+ 5836 ± 81 93.8 0.047 ± 0.046
B+ → ψ(2S)K+ 555 ± 25 94.4 0.258 ± 0.121
B+ → χc1K

+ 345 ± 20 93.2 −0.194 ± 0.144
Bflav 21453 ± 166 85.0 0.017 ± 0.021

Table 8.14: Effective value of sin2β measured in various control samples where
no CP asymmetry is expected.

8.4 Fit for |λfCP |
Recall that the form for the time-dependent asymmetry was simplified by

making the assumption that |λfCP
| = 1 (see Eqn. 1.6.43). This assumption

was well motivated by theoretical and experimental considerations that imply

q/p = 1 in the B system and by the fact that the b → cc̄s quark transition is

dominated by a single weak phase (see Sec. 1.7). Nevertheless, we can measure
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sin2β

D(*)+ π−/ρ−/a−
1 0.021±0.022

D(*)0 π− 0.017±0.025

J/ψ K+ 0.047±0.046

J/ψ K*0 (K+π−) -0.01± 0.07

ψ(2S) K+  0.26± 0.12

χc1 K
+ -0.19± 0.14

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 8.14: Comparison of effective value of sin2β measured in various control
samples. A zeroth order polynomial fit to the effective values of sin2β measured
in each control sample yields a value that is 1.5σ above zero.

|λfCP
| from a fit to the ηCP = −1 sample, which has high purity and requires

minimal assumptions about direct CP violation in backgrounds. This param-

eter is sensitive to the difference in the number of B0- and B0-tagged events.

To account for potential differences in reconstruction efficiency and tagging ef-

ficiency (depending on the tag category) for B0 and B0 mesons, five additional

free parameters were added to the maximum-likelihood fit. We measure

|λfCP
| = 0.948 ± 0.051(stat) ± 0.017(syst), (8.4.1)

which is consistent with the SM expectation that |λfCP
| = 1. The coefficient

of the sin(∆md∆t) term in Eqn. 1.6.43, which is equivalent to sin2β when

|λfCP
| = 1, is measured to be 0.759 ± 0.074(stat). Thus the measured value of
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sin2β is independent of whether |λfCP
| is fixed or allowed to float. The sources

of the systematic error for |λfCP
| are the same as in the sin2β measurement.

These are described in detail in Chapter 9.
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Chapter 9

Systematic uncertainties

The systematic uncertainties of the sin2β measurement, whose results were

presented in Chapter 8, can essentially be grouped into five categories accord-

ing to their origin: the description and properties of the signal, the description

and properties of the background, assumptions on fixed external parameters,

detector reconstruction effects, and the limited statistics of Monte Carlo sim-

ulation used to validate the maximum-likelihood fitting procedure. Whenever

possible, the effects of the systematic uncertainties are evaluated using the data

sample. Otherwise, they are evaluated using Monte Carlo simulation.

By definition, a systematic uncertainty is independent of the size of the

data sample used to make a measurement 1. A large majority of the system-

atic uncertainties in this analysis arise from assumptions that have been made

in the parameterizations of the signal and background ∆t probability distribu-

tion functions (PDFs). These uncertainties are usually evaluated by making

“reasonable”alternative assumptions and studying how they alter the measured

value of sin2β. The difference between sin2β measured with the standard (nom-

inal) and new assumption is taken to be the systematic uncertainty.

1If the systematic uncertainty is determined using data, as many are in this analysis,
then its size will diminish with increased statistics until an asymptotic value is reached. This
scaling with statistics merely indicates the experimenter’s inability to precisely determine
the inherent size of the uncertainty.
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The following presentation does not list the systematic uncertainties in order

of importance but based on their category as defined above. All the uncertain-

ties are summarized in Table 9.6 at the end of this Chapter for reference.

9.1 Signal parameters

The parameterization of the signal ∆t probability distribution function for

the CP sample relies on various assumptions that give rise to systematic un-

certainties. The description assumes that the resolution and dilution of signal

BCP and Bflav events are the same since they are dominated (or determined)

by the tagging B meson in the event. Additionally, the form of the resolution

function assumed a specific model that was found to be adequate to describe

simulated data.

9.1.1 Shared average signal dilutions

The average signal dilutions are assumed to be the same for the Bflav and

BCP probability distribution functions since the mistag rate should be inde-

pendent of the reconstructed B meson. To evaluate the uncertainty associated

with this assumption we use large samples of simulated BCP and Bflav events.

Average signal dilutions are obtained for both sets using knowledge of the gen-

erated flavor of the Btag. The background probability distribution functions

are removed from the fit and signal events are required to have mES > 5.27

GeV/c2. The resolution function parameters are fixed to those obtained by

fitting the residual distribution of the CP sample. We fit the CP sample for

sin2β varying the fixed dilutions extracted from the simulated Bflav sample by

±1σ. We repeat this procedure using the dilutions extracted from the simu-

lated BCP sample. The difference between the means of the sin2β distributions

constructed from both sets of fits is (1.23± 0.12) · 10−2. The systematic uncer-

tainty is taken to be 1.23 · 10−2.
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The difference between the means of the sin2β distributions appears to be

caused by a 3.4σ difference between the average mistag rates in the Lepton

category for the simulated BCP and flavor-eigenstate samples. It is not clear

what causes this discrepancy. It is possible that the probability for swapping a

Brec and Btag candidate is higher in the flavor-eigenstate sample when the Btag

decays semileptonically. For example, the Brec might decay to D∗−π+ and the

Btag to D∗−e+νe. One could imagine that the mistag rate is slightly different

for these events compared to events in which the Btag decays to the same final

state but the Brec decays to J/ψK0
S since the probability for switching a Btag

and Brec track is much smaller for the latter. Recall that two of the three

variables used to determine the flavor-tag for the Lepton category, EW
90 and

cosθmiss (see Sec. 5.2.1), use all the Btag tracks (not just the lepton candidate)

to assign a tag probability. This explanation has not been confirmed, however.

9.1.2 Shared signal resolution function parameters

To evaluate the assumption that the BCP and Bflav events share the same

resolution function, resolution function parameters are first obtained from fits

to the ∆t residual (δt = ∆ttrue −∆tmeas) for BCP and Bflav simulated samples.

The dilutions are fixed to those obtained using information about the true

flavor of the Btag. We then measure sin2β in the simulated CP sample with a

fit in which the background probability distribution functions are removed and

signal events are required to have mES > 5.27 GeV/c2. The fits are performed

16 times by shifting the 8 resolution function parameters taken from the BCP

sample by ±1σ from their nominal value. They are also done 16 times shifting

the resolution function parameters taken from the Bflav sample. The difference

in the means of the sin2β distributions made from each set of parameters is

found to be (2± 0.5) · 10−3. The systematic uncertainty is taken to be 2 · 10−3.

The outlier Gaussian is parameterized as having a fixed with of 8 ps and

mean of 0 ps in the nominal fit. We vary the width of the outlier Gaussian
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between 4 and 12 ps and the bias between -2 and +2 ps around the nominal

fixed values respectively. The results of the variations in sin2β are shown in

Table 9.1 for these configurations. The systematic uncertainty is taken to be

5 · 10−3.

Outlier Gaussian δ sin2β
Width/Bias ( ps)
8.0/0.0 –
4.0/0.0 −0.004
12.0/0.0 −0.002
8.0/–2.0 −0.001
8.0/+2.0 −0.003
Syst. Error ±0.005

Table 9.1: Systematic uncertainty in sin2β due to fixed width and bias of the
∆t outlier Gaussian estimated from data by varying the width and bias of the
model. δsin2β is the difference of sin2β for the specified fit and the reference
fit with a Gaussian outlier with a width of 8 ps and zero bias.

A similar procedure was used to evaluate the systematic uncertainty due to

the fixed value of the tail Gaussian scale factor in the nominal fit. The scale

factor of the tail is varied between 2.0 and 5.0 around the nominal value of 3.0.

The systematic uncertainty is found to be 2 · 10−3.

9.1.3 Signal resolution function model

The resolution function is modeled as the sum of three Gaussian functions.

To evaluate our sensitivity to this particular model, we perform the fit with an

alternative description of the resolution function. Let N (t;µ, σ) be a Gaussian

distribution that is a function of an independent variable t with mean µ and

width σ. The new resolution function R′(δt = ∆t − ∆ttrue) is the sum of a

Gaussian of mean zero and the same Gaussian convoluted with an exponential
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function:

R′(δt; fi, σ,Γ) =
N∑
i

[
fiN (δt; 0, σ) + (1 − fi)

∫ 0

−∞
Γe−ΓuN (δt− u; 0, σ)du

]
(9.1.1)

where the sum is over the tagging categories and Γ is taken to be the decay

constant of the B0 meson. This particular function was well studied in a

separate BABAR measurement of the B0 and B+ lifetimes where it was found

to adequately describe the detector resolution [76]. The difference between the

value of sin2β obtained using this resolution function and the nominal one,

6 · 10−3, is taken to be the systematic.

9.1.4 Resolution function for right and wrong tagged

events

The likelihood fit implicitly assumes that the same resolution function pa-

rameters can be used for events that have been correctly flavor tagged (right

tag) and those that have been incorrectly flavor tagged (wrong tag). It is not

obvious that this should be true since the underlying physical processes that

lead to wrong tags may also lead to larger biases in reconstructing the tag

vertex, for example. The process for determining the impact of this effect on

the sin2β measurement described below is somewhat complicated. The idea is

to compare the measured value of sin2β in events that have been tagged cor-

rectly and incorrectly where common resolution function parameters are used

with the value found in the same events where separate resolution function

parameters are used for the correctly and incorrectly tagged events.

We use a high statistics sample of simulated Monte Carlo CP events to

determine the systematic uncertainty. We determine the resolution function

parameters of this sample (which we will refer to as the default parameters)

by fitting the residual ∆t distribution to the sum of three Gaussian functions.

The sample is then split, using information about the generated flavor of the

tagging meson, into a right tag and wrong tag subset. We measure sin2β in
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each subset fixing the resolution function parameters to their default values and

setting background probability distribution functions to zero. Additionally, the

average signal mistag rates of the right (wrong) tag sample are fixed to 0 (1).

We get one value of sin2β from this fit by taking the weighted average of

sin2β measured in the right and wrong tag subsets. The fit is repeated varying

the default resolution function parameters by ±1σ individually. We form a

“default” distribution of sin2β from these fits.

Then we determine the resolution function parameters of the right and

wrong tag subsets separately (which we will refer to as the right-tag and wrong-

tag parameters, respectively) by fitting the residual ∆t distribution of each sub-

set to the sum of three Gaussian functions. We measure sin2β in the right tag

subset fixing the resolution parameters to the right-tag values and we measure

sin2β in the wrong tag subset fixing the resolution parameters to the wrong-tag

values. We get one value of sin2β from this fit by taking the weighted average

of sin2β found in each subset. The fit is repeated varying the right and wrong-

tag resolution function parameters by ±1σ. We form a distribution of sin2β

from these fits.

The difference in the mean of this distribution and the “default” distribution

is found to be 2 · 10−4 with an error of 8 · 10−4. The systematic uncertainty is

taken to be 8 · 10−4.

9.2 Background parameters

The parameterization of the background probability distribution functions

in the BCP and Bflav sample rely on assumptions about the CP content of the

backgrounds, the resolution function of the backgrounds, and the way in which

signal and background probabilities are assigned. In the following sections, we

evaluate the systematic uncertainties that result from these assumptions.
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9.2.1 CP content of the background

The nominal fit assumes that there is no CP violation in the lifetime and

peaking backgrounds in the CP sample. Thus, the parameterization of the ∆t

distributions of these backgrounds does not include a term that depends on

sin(∆md∆t). To evaluate the systematic uncertainty, we modify the PDFs to

include a term sensitive to CP violation but not dependent on sin2β:

B′ = e−ΓB0 |∆t| [1 ± ηbackD sin(∆md∆t)] (9.2.1)

where ηback is the CP eigenvalue of the background, which is set to zero in the

nominal fit (see Eqn. 7.3.3), and the value of D used is described below.

For the lifetime background, we vary ηback between ±1 taking the average

dilutions in common with the CP signal PDF and find the systematic uncer-

tainty (difference between sin2β with these configurations and the nominal the

fit) to be 0.5 · 10−3.

For the peaking background, we fit for the effective asymmetry ηbackD in

each of the tagging categories. The difference between this fit and the nominal

one is 12 · 10−3, which we take to be the systematic uncertainty.

9.2.2 Lifetime of CP background

We assume that the ∆t distribution of the CP background has the same

lifetime as the B0 meson (∼ 1.5 ps). We vary the assumed lifetime from 0.7 to

2.0 ps and assign a systematic uncertainty of 2 · 10−3. The range of these vari-

ations are justified based on the lifetime of the background found in simulated

BCP decays and on the known lifetime of charm and B mesons.

9.2.3 Fraction of peaking background

The peaking background fractions for each CP mode, listed in Table 4.9,

were determined using large samples of Monte Carlo simulation of inclusive

B0 → J/ψX decays. We vary the fraction of each peaking background fraction
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by ±1σ for all the CP decay mode simultaneously to also account for any sys-

tematic bias in the procedure used to measure these fractions. The systematic

uncertainty is found to be 6.0 · 10−3.

We repeat this procedure varying the amount of peaking background in the

Bflav sample (see Sec 4.6.1) and find no change in the measured value of sin2β.

9.2.4 Signal probability determination

We evaluate the systematic effect of the measurement of the event-by-event

probability determined by fitting the mES distribution on the value of sin2β.

We measure a global probability for all events with mES > 5.27 GeV/c2. We

assign this probability to all events in the signal region while the probability

for all events with mES < 5.27 GeV/c2 is set to zero. We compare sin2β

measured using these probabilities (default fit) to sin2β measured with fits

where this signal probability is varied by one sigma. The signal probability

for the CP sample and for the flavor-eigenstate sample is varied independently.

The variation in sin2β is reported in Table 9.2. The systematic uncertainty for

the CP (Bflav) found to be 7 · 10−3 (1 · 10−3).

Variation δ sin2β
+∆ CP prob +0.007
−∆ CP prob +0.006
+∆ Bflav prob -0.001
−∆ Bflav prob +0.001

Table 9.2: Change in sin2β (δ sin2β) resulting from variations in the event-by-
event signal probability determination.

9.2.5 mES endpoint

The mES endpoint of the ARGUS component of the fit to the mES distri-

bution is fixed to 5.291 GeV/c2 in the nominal fit as described in Sec. 4.4.
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We vary this by ±0.002 GeV/c2 to determine the systematic uncertainty. The

magnitude of this variation is set by the ∼ 2 MeV resolution of the energy of

the beam in the c.m. frame as described in Sec. 2.1. The variation in the fitted

value of sin2β is shown in Table 9.3. We choose the largest variation (1 · 10−3)

as the systematic uncertainty.

Variation δ sin2β
Ebeam = 5.289 GeV/c2 +0.000
Ebeam = 5.281 GeV/c2 +0.001

Table 9.3: Systematic uncertainty due to the mES endpoint of the ARGUS fit.

9.2.6 Background resolution function

The nominal fit assumes that the background ∆t resolution function is

adequately described using the sum of two Gaussians. We measure sin2β using

a background resolution function for the BCP and Bflav likelihoods that is the

sum of three Gaussians and find the difference with the nominal fit to be 6·10−3.

9.2.7 Mixing component of background Bflav lifetime

The parameterization of the background Bflav lifetime does not include a

cos(∆md∆t) contribution from mixing (see Eqn 7.3.7). To determine the sys-

tematic uncertainty, we assume that this background contribution mixes max-

imally with frequency ∆md. The difference in sin2β compared to the nominal

fit is found to be 3 · 10−3.

9.3 External parameters

In the nominal fit for sin2β, we fix the B0 lifetime and the B0–B0 mix-

ing frequency ∆md to the world averages of τ(B0) = 1.542 ± 0.016 ps and
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∆md = 0.489 ± 0.008 ps−1. The dependency of sin2β on the values of these

fixed parameters is determined by varying them in the fit. The behavior is

linear in each case (see Fig. 9.1). The slope of sin2β versus τ(B0) (∆md) is

found to be −0.23 ps−1 (-0.40 ps) and the associated systematic uncertainty

is taken to be 4 · 10−3 (3 · 10−3). The systematic uncertainty on sin2β due

to uncertainties in τ(B0) and ∆md correspond to 1σ variations of the world

average values. Table 9.4 summarizes the results obtained when ∆md and (or)

τ(B0) are allowed to float in the fit.

Fit δ sin2β σsin2β ∆md ( ps−1) τ(B0) ( ps)
Nominal - 0.074 0.489 1.542
Float ∆md 0.017 0.072 0.530 ± 0.008 -
Float τ(B0) 0.004 0.073 - 1.561 ± 0.016
Float ∆md & τ(B0) 0.015 0.072 0.532 ± 0.008 1.534 ± 0.017

Table 9.4: Variation in sin2β and its error when ∆md and (or) τ(B0) are free
parameters in the likelihood fit.
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Figure 9.1: Dependence of sin2β on (a) τ(B0) and (b) ∆md. The results are
summarized in the text. Note that the errors are completely correlated for each
data point.
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9.4 Detector effects

Assumptions made about our knowledge of the location of the beam spot,

length scale of the detector along the boost direction, and SVT alignment give

rise to systematic uncertainties in the determination of sin2β.

9.4.1 Beam spot position

The vertexing algorithm uses the position of the beam spot as a constraint in

determining the z location of the of the Btag vertex. This constraint essentially

comes from the y (vertical) position of the beam spot since its vertical size is

only about 10 µm. We evaluate the systematic uncertainty by varying the y

position of the beam spot to ±20 and ±40 µm (the nominal position is usually

5 µm) and by independently varying the width of the y position to 30 and

60 µm. The systematic uncertainty is taken to be the maximal variation of

10 · 10−3 that corresponds to shifting the y beam position by +40 µm.

9.4.2 SVT alignment

The misalignment of the SVT may cause a systematic uncertainty in our

determination of sin2β. We have created different versions of the geometry

representing the alignment of the silicon wafers with respect to each other that

we use to reconstruct simulated decays. We evaluate how closely these geome-

tries reflect the misalignment by comparing impact parameter measurements

in the transverse and longitudinal plane as a function of azimuthal angle for

tracks from dimuon events in data and the misaligned simulation. We choose

a group of misalignments sets which accurately reproduce different azimuthal

effects observed in data. We measure sin2β in large samples of simulated BCP

decays that were generated with one alignment set and reconstructed with a

separate alignment. We find that the systematic uncertainty corresponding to

the average change in sin2β is 10 · 10−3.
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9.4.3 Uncertainty on z scale

In Sec. 6.2, we described a check of the absolute scale z scale using proton

tracks that has a precision of 0.2%. We evaluate the systematic uncertainty of

the z scale by conservatively scaling the measured ∆t and its error by 0.6% in

data and Monte Carlo simulation. The effect on the measured value of sin2β

is estimated to be 1 · 10−3.

9.5 Monte Carlo correction

In Sec. 7.6.3, the maximum-likelihood fit for sin2β was found to be biased

by 0.0138±0.005 using 130 samples of simulated Monte Carlo BCP decays with

the same number of events in each decay mode as found in the data sample. As

explained, we correct the measured value of sin2β found in the data by -0.014.

Studies have determined an effect which partially accounts for this bias.

A portion of the bias is due to a correlation between the mistag rate and

the ∆t resolution that is not modeled in the likelihood function. Figure 9.2

shows the dilution as a function of σ∆t for each tagging category using samples

of simulated BCP decays. These distributions were fit with a polynomial of the

form

D = D0 + Sσ∆t (9.5.1)

The results of the fit are given in Table 9.5. The correlation is most apparent

in the Kaon I and Kaon II tagging categories.

It is found that the mistag rate for kaon tags and the event-by-event error

σ∆t both depend inversely on
√∑

p2
t , where pt is the transverse momentum

with respect to the z axis of tracks from the Btag decay. The mistag rate

dependence originates from the kinematics of the physics sources for wrong-

sign kaons. These sources, listed in Sec. 5.2.2, produces a spectrum of charged

tracks that have smaller
√∑

p2
t than B decays that produce a correct tag. The

∆t resolution dependence originates from the 1/p2
t dependence of σz for the
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individual contributing tracks (i.e., the larger the transverse momentum of a

track the less the uncertainty in determining its z vertex).

We have studied the impact of ignoring the correlation on sin2β with toy

and simulated Monte Carlo. In both cases, we fit several data-size samples for

sin2β twice: once using average dilutions factors with no σ∆t dependence and

once with the linear model given in Eqn 9.5.1. The results of these studies are

shown in Fig. 9.3. The distribution of the difference of sin2β with and without

the linear model from the toy Monte Carlo has a mean value of 6 · 10−3 with

an RMS of 6 · 10−3, indicating that ignoring the correlation leads to a small

positive bias on sin2β. The same distribution using the simulated Monte Carlo

sample has a mean and RMS of 4 · 10−3. We assign a systematic uncertainty of

10 ·10−3 which is the difference between the observed bias in the full simulation

(14 · 10−3) and the portion of it that is understood (4 · 10−3).

As a cross-check, we have performed the fit on the BCP and Bflav data

samples incorporating the linear σ∆t dependence and floating both D0 and S.

The measured value of sin2β changed by 1 · 10−3 and its error was unchanged.

Category D0 S
Lepton 0.95 ± 0.01 −0.02 ± 0.02
Kaon I 0.92 ± 0.01 −0.20 ± 0.02
Kaon II 0.70 ± 0.01 −0.17 ± 0.02
Inclusive 0.45 ± 0.01 −0.10 ± 0.02

Table 9.5: Dilution as a function of σ∆t from the linear fits to simulated BCP

decays shown in Fig. 9.2.

9.6 Doubly-CKM-suppressed b→ u transitions

In Eqn 1.8.3, we wrote down the time-dependent amplitude for one B meson

to decay to a CP -eigenstate and one to decay to a state which uniquely tagged

its flavor. This equation was the basis for the subsequent time-dependent
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Figure 9.2: Dilution as a function of σ∆t from a large sample of simulated BCP

decays for the four tagging categories. The shape of the σ∆t distribution is
shown in Fig. 6.6.

distributions that were developed for tagged BCP and Bflav decays. However,

the assumption that the final state uniquely tags the flavor of a B meson is

not correct for all the final states that are used for tagging in this analysis.

For example, we assume that the decay D−π+ is completely dominated by the

favored B0 decay amplitude and that the doubly-CKM (DCKM) suppressed

decay amplitude for B0 → D−π+ is negligible. The Feynman diagrams for

these decays are displayed in Fig. 9.4. The CKM-favored B0 amplitude and

the DCKM-suppressed B0 amplitude interfere and alter the time-dependent
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Figure 9.3: The difference in the value of sin2β comparing fits with and without
the linear σ∆t dilution dependence. The solid (dashed) distribution is from
simulated (toy) Monte Carlo samples.
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Figure 9.4: The CKM favored and suppressed Feynman diagrams for the final
state D−π+

coherent evolution of the B0-B0 system. In addition, the reconstructed B

mesons in the flavor-eigenstate sample do not uniquely tag the Brec flavor when

we account for the DCKM decay amplitudes.

We need to determine how the neglected interference terms affect the mea-

sured value of sin2β. Following the work presented in Ref. [77], we denote the
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amplitudes for various B → Dπ decays

A(B0 → D−π+) = a

A(B0 → D−π+) = are−iγeiδ

A(B0 → D+π−) = are+iγeiδ

A(B0 → D+π−) = a

where a and r are real numbers and δ is the strong phase difference between

the CKM-favored and DCKM-suppressed amplitude. We can estimate r as

r =
VubV

∗
cd

VudV ∗
cb

= 0.020 ± 0.004 (9.6.1)

It can also be shown [77] that the probability distribution function for a tagged

event in which a B meson decays to a CP -eigenstate is given by

R± ∝ e− Γ|∆t|
{
(1 + r2) − 2r cos(2β + γ ± δ)

− cos ∆md∆t [2r sin(2β) sin(2β + γ ± δ)]

± sin ∆md∆t
[(

1 − r2
)

sin(2β)
]}

We recover the signal probability distribution given by Eqn 1.8.3 in the limit

that r → 0. We note that semileptonic B decays do not suffer from DCKM-

suppressed b→ u contributions so r = 0 for these events. Events in the lepton

category are almost all (95%) from semileptonic Btag decays. A fraction of

events in the other tag categories also contain semileptonic Btag decays that

are unaffected by DCKM decays (11% to 19%).

It can be shown [78] that the bias on sin2β when the interference terms

from the DCKM-suppressed tag-side decays are ignored can be written as

∆ sin2β ≈ −r sin(γ − 1.0) cos δ (9.6.2)

By studying toy Monte Carlo samples generated with different conservative

values of strong phase shifts and r = 0.02, we assign a systematic uncertainty

of 8 · 10−3.
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9.7 Total systematic uncertainty

Adding in quadrature the uncorrelated systematic uncertainties from uncer-

tainties in the signal parameters (Sec. 9.1), background parameters (Sec. 9.2),

external parameters (Sec. 9.3), detector effects (Sec. 9.4), simulated Monte

Carlo statistics (Sec. 9.5), and DCKM-suppressed decays (Sec. 9.6), we find

the total systematic uncertainty is 30 · 10−3. This is more than a factor of two

less than the statistical error of 74 · 10−3. A summary of all the systematic

uncertainty contributions is given in Table 9.6.

9.8 Additional validation studies

The sin2β measurement was repeated using alternative vertexing, tagging,

and reconstruction configurations. These alternative configurations do not rep-

resent additional systematic sources of uncertainty. They merely represent dif-

ferent methods we might have employed in the measurement that are useful in

comparison with the nominal fit to ensure robustness of the analysis procedure.

The different configurations are listed below:

• Determine the BCP vertex using a mass constrained charmonium candi-

date;

• Use the charmonium candidate vertex for the BCP vertex;

• Remove the K0
S

mass constraint;

• Remove bremsstrahlung photons from the charmonium candidate;

• Do not use constraints from the beam momentum in determining ∆z;

• Do not use constraints from the beam spot in determining ∆z;

• Do not veto tracks consistent with originating from photon conversions

in tracking material when determining the Btag vertex;
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Source CP sample

Signal parameters
Shared BCP/Bflav dilutions [9.1.1] ±0.012
Shared BCP/Bflav ∆t res fcn [9.1.2] ±0.002
∆t resolution fcn outliers [9.1.2] ±0.005
∆t resolution fcn tail scale factor [9.1.2] ±0.002
∆t resolution fcn model [9.1.3] ±0.006
∆t right/wrong sign res [9.1.4] ±0.0008

Background parameters
CP background CP content (lifetime) [9.2.1] ±0.012
CP background CP content (Peak) [9.2.1] ±0.005
CP background τ [9.2.2] ±0.002
Fraction of CP peaking background [9.2.3] ±0.006
Fraction of Bflav peaking background [9.2.3] 0
Signal probability: CP sample [9.2.4] ±0.007
Signal probability: Bflav sample [9.2.4] ±0.001
MES endpoint [9.2.5] ±0.001
Background resolution [9.2.6] ±0.006
Bflav background mixing contrib. [9.2.7] ±0.003

External parameters
B0 lifetime [9.3] ±0.004
∆md [9.3] ±0.003

Detector effects
Beam spot [9.4.1] ±0.010
SVT alignment [9.4.2] ±0.010
z scale + boost [9.4.3] ±0.001

Monte Carlo correction [9.5] −0.014 ± 0.010

DCKM-suppressed decays [9.6] ±0.008

Total systematic uncertainty ±0.030
Statistical error ±0.074

Table 9.6: Summary of contributions to the systematic uncertainty on sin2β.

• Compute ∆t as ∆z/〈γβ〉 (“boost approximation”);

• Use a different vertexing algorithm (“FvtClusterer”).

206



δsin2β

systematic error 0.000±0.013

FvtClusterer 0.027±0.021

Boost Approx -0.015±0.007

No Conversion Veto 0.001±0.005

No Beam Constr. 0.036±0.029

Beam Spot Only -0.005±0.018

No Brem. Recovery -0.015±0.036

Charmonium Only -0.002±0.019

No Ks Mass Constr. -0.003±0.003

J/Ψ Mass Constr. 0.004±0.005

-0.1 -0.05 0 0.05 0.1

Figure 9.5: Variation in sin2β (δ(sin2β)) compared to the nominal fit for various
alternative vertexing, tagging, and reconstruction configurations. The band
around zero corresponds to the quadrature systematic error of the ∆t resolution
function description and SVT misalignment.

For the first four configurations listed, the resolution function and dilution

parameters were fixed to their values determined in the nominal fit (listed in

Table 8.5) and noBflav sample was used. For the remaining five items, the Bflav

data sample was processed with the alternative configurations and was used in

the full maximum-likelihood fit for consistency. Only events that were common

to the nominal data sample and the sample processed with the alternative

configurations were used in the likelihood fit. The difference between the value

of sin2β measured with the new configuration compared to the nominal fit is

shown in Fig. 9.5. The statistical error on the difference was computed using

the kin method that is described in detail in Ref. [79].
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Chapter 10

Conclusion

Using a data sample of about 88 million Υ (4S) → BB decays collected at

the PEP-II asymmetric-energy B Factory at SLAC between 1999 and 2002,

we have observed a CP violating asymmetry in the proper time distribution

of neutral B meson decays. We fully reconstruct one neutral B meson in the

CP decay modes J/ψK0
S
, ψ(2S)K0

S
, χc1K

0
S
, and ηcK

0
S
, or in flavor-eigenstate

decay modes and determine the flavor of the other neutral B meson at the

time it decays mainly by using the charge of identified leptons and kaons. The

value of the CP violating asymmetry amplitude sin2β is determined from a

simultaneous maximum-likelihood fit to the time-difference distribution of the

flavor-eigenstate sample and a sample of about 1506 tagged neutral B meson

decays to CP -eigenstate modes. We find

sin2β = 0.755 ± 0.074(stat) ± 0.030(syst), (10.0.1)

demonstrating CP violation in the neutral B meson system. We also measure

sin2β in events with neutral B mesons that decay to J/ψK0
L and J/ψK∗0 (K∗0

→ K0
S π

0) final states with CP eigenvalue -1 and 0.65±0.07 respectively. Using

the entire CP sample, we measure

sin2β = 0.741 ± 0.067(stat) ± 0.034(syst), (10.0.2)
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The results of this measurement have been published in Physics Review Let-

ters [50].

The Belle collaboration in Japan has also recently updated their measure-

ment of sin2β with a similarly sized data sample of B0 mesons collected at

the Υ (4S) resonance. They find [51] sin2β = 0.719± 0.074(stat)± 0.035(syst),

which is in good agreement with the BABAR measurement. Fig. 10.1 displays

the various measurements of sin2β compared to the current world-average of

0.734 ± 0.055.

sin2β

World Average 0.734±0.055

Opal  3.20+1.8 ±0.5 3.20−2.0

Aleph  0.84+0.82 ±0.16 0.84−1.04

CDF  0.79+0.41 0.79−0.44

Belle 0.719±0.074±0.035

BaBar 0.741±0.067±0.033

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 10.1: Comparison of sin2β measurements with the current world-
average. The results from BABAR and Belle dominate the world-average and
are in good agreement.
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10.1 Interpretation

Important conclusions may be drawn from our (along with Belle’s) mea-

surement of sin2β concerning CP violation in the Standard Model. The result

firmly establishes the existence of CP violating effects in the neutral B0 meson

system. Further, the Kobayashi-Maskawa (KM) mechanism of CP violation

has successfully passed its first precision test [80]. This implies that the KM

mechanism is most likely the dominant source of CP violation in flavor changing

processes. In Sec. 1.9, we reviewed the constraints on the apex of the unitarity

triangle in the (ρ̄, η̄) plane from the CP conserving observables ∆md, |Vub/Vcb|,
and ∆ms, as well as from the CP violating parameter εK . It was also shown

how a measurement of sin2β constrains this vertex up to a four-fold ambiguity.

In Fig. 10.2a, the four solutions for β corresponding to our measured value of

sin2β are displayed in the (ρ̄, η̄) plane. We overlay these solutions with the

other constraints in Fig. 10.2b and find that one solution for β is in excellent

agreement with the other constraints.

A combined fit to the CP conserving and CP violating constraints shown

in Fig. 10.2b finds that all processes are consistent with one value of the single

CKM phase δCKM = 59◦ ± 13◦ [11]. Alternative models to the KM mechanism

have been proposed that assume εK is small because all CP violating effects

are small. These models are naturally motivated within a sypersymmetric

framework [81]. However, the observation that δCKM is of order one excludes

this idea unless one resorts to fine-tuning. Additionally, minimal left-right-

symmetric models with spontaneous CP violation [82] are excluded [80].

10.2 Future measurements

Since 1999, the BABAR collaboration has published the result of its sin2β

measurement in journals on five separate occasions using a larger data sam-

ple for each publication. This abnormally fast reporting rate indicates that
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Figure 10.2: A comparison of (a) the four solutions of β in the (ρ̄, η̄) using
our measured value of sin2β; and (b) the solutions overlaid with other CP -
conserving and CP -violating constraints on the apex of the unitarity triangle.
The inner-hatched (outer-hatched) band corresponds to the ±1σ (±2σ) uncer-
tainty in β. We see that one solution for β is in good agreement with the other
constraints. The constraints in the (ρ̄, η̄) plane from other measurements are
discussed in detail in Sec. 1.9.

relatively minor (∼ 20%) decreases in the uncertainty of sin2β still provided

enough new information to be considered relevant by the physics community at

large. It appears that this phase has ended since the precision (∼ 10%) of the

latest result provides a strong case for the consistency of the KM mechanism.

It is necessary to investigate at what data sample size the improved precision

in the result again makes it compelling to report. The next major milestone for

the detector is the accumulation of 500 fb−1 that is projected to occur around

the end of 2006.

Fig. 10.3 shows the statistical error for each BABAR measurement as a func-

tion of luminosity assuming the usual
√
N dependence, where N is the number

of signal events used to make the measurement. We see that successive mea-

surements have always beaten the
√
N scaling. This occurred primarily be-
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cause new CP final states were added, the reconstruction efficiency of J/ψK0
S

increased, the effective tagging efficiency increased, and the ∆t resolution in-

creased with improved understanding of the local SVT alignment. However,

as it becomes increasingly more difficult to significantly beat this scaling, we

assume that the only future improvement will be a 4% relative increase in Q.

We then find that the statistical error on sin2β using data sample of 500 fb−1

would be 0.026.
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Figure 10.3: Statistical error on sin2β from each BABAR measurement as a
function of integrated luminosity. Successive measurements improved on the
expected scaling of the statistical error due to improvements in the analysis
procedure.

More guesswork is required to estimate the size of the systematic error with

500 fb−1 of data. Many of the systematic uncertainties scale with the square

root of the data size until they reach an intrinsic asymptotic value. For example,

this analysis quoted an uncertainty of 0.012 due to the assumption that there

is no CP violation in the lifetime background of the CP sample. With 500

fb−1 of data, we could remove this assumption and include the CP eigenvalue

of this background as a free parameter in the likelihood fit. This would clearly

lessen the systematic error and shift some of it to the statistical error. Other
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systematic uncertainties that could be decreased are due to the finite statistics

of the Monte Carlo simulation, the assumption that the CP and Bflav samples

share the same resolution function parameters, and the dependence on ∆md

and τ(B0). It seems, however, that the asymptotic level of the systematic

uncertainty from the SVT alignment, knowledge of the beam spot, and dilutions

of the CP sample is about 0.02. At 500 fb−1 then, we estimate a systematic

error of 0.02 − 0.03.

We project that the statistical and systematic errors will be nearly the same

with a data sample of 500 fb−1 (assuming no major changes to the analysis

procedure). This implies that sin2β would be measured to a precision of about

5%. It seems then that the most logical next step is to repeat this measurement

with a 500 fb−1 data sample thereby improving the precision by a factor of two.

214



Appendix A

Spectroscopy of charmonium

This appendix is meant to serve as a reference for the ηc, J/ψ , ψ(2S), and

χc1 charmonium mesons that are used to fully reconstruct decays of B mesons

to CP eigenstates in this analysis.

The simultaneous discovery of a narrow vector meson, the J/ψ , in November

of 1974 by experimental groups at SLAC and Brookhaven National Laboratory

sparked tremendous excitement in the particle physics community [83, 84]. The

leaders of the groups were jointly awarded the Nobel Prize for their discovery.

At SLAC, the J/ψ was discovered as an enhancement in the e+e− cross section

at a center of mass energy of about 3.1 GeV as shown in Fig. A.1. The ex-

citement was generated primarily because the width of the J/ψ resonance was

observed to be ∼ 70 keV, about a factor of 1000 smaller than a typical hadronic

width. The J/ψ was immediately interpreted as the lowest bound state of a new

quark and antiquark, cc [85]. A second narrow resonance at 3.7 GeV, called

the ψ′ or ψ(2S), was discovered about 10 days later by the SLAC group [86].

The large cross section observed in the e+e− channel at SLAC implied that

the J/ψ and ψ(2S) should have the same JPC = 1−− quantum numbers as the

photon.

The J/ψ and ψ(2S) have a relatively long lifetime because they are not mas-

sive enough to decay to two open charm mesons. They must decay through
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Figure A.1: Energy dependence of the cross-sections for (top) e+e− → hadrons,
(middle) e+e− → µ+ µ−, and (bottom) e+e− → e+e− interactions near the J/ψ
resonance. The observed widths are dominated by the intrinsic energy spread
of the electron and positron beams, not by the true width of the J/ψ . (Fig.
from B. Richter’s 1976 Nobel Lecture [87])

annihilation of the cc pair which is suppressed due to a phenomenological se-
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lection rule invented independently by Okubo, Zweig, and Iizuka [88] (OZI).

The OZI rule postulates that disconnected quark diagrams are suppressed rel-

ative to connected ones. We note that the lowest gluonic intermediate state

that has the right quantum numbers to couple to a 1−− particle has three glu-

ons [89]. Since none of the gluons belong to the singlet representation of color

SU(3) (and the J/ψ is a color singlet) exchange of one gluon is excluded, and

two gluon exchange is forbidden by charge conjugation conservation in strong

decays. Consequently, the J/ψ and ψ(2S) are narrow because conservation

of energy and momentum force them to decay only through OZI suppressed

channels.

The present experimental status of the spectroscopy of charmonium (cc

bound states) is shown in Fig. A.2. This system can be described well using

perturbative QCD methods and it has been studied extensively. The states

are labeled by their spectroscopic classification n2S+1LJ where n is the radial

excitation level, S is spin, L is orbital angular momentum, and J is total

angular momentum. The ηc, J/ψ , and ψ(2S) have L = 0, while the χc1 has

L = 1. The spin of the cc state is 0 for ηc, and 1 for J/ψ ,ψ(2S), and χc1.

These charmonium mesons all have a CP -eigenvalue equal of 1 except for ηc

which has a CP -eigenvalue of -1. However, the CP eigenvalue of a B0 decay

to any of these mesons and a K0
S is the same (-1). This is because the orbital

angular momentum of the final state must be a P -wave (L = 1) for all the

decays except for B0 → ηcK
0
S (where L = 0) in order to conserve angular

momentum 1. Table A.1 summarizes the properties of these cc mesons.

1Recall that the parity of the final state goes like (−1)L

217



G
eV

3

3.2

3.4

3.6

3.8

4

1P11

0S12

cη 0S11

ψJ/
1S31

(2S)ψ 1S32

(3S)ψ 1S33

ππ

γ

γ

γ

1P31

2P31
3P31

cχ

-e+e
PCJ +-1 -+0 --1 ++2,1,0

Figure A.2: The observed spectroscopy of charmonium mesons. The yellow
band represents the meson which have the same quantum numbers as the pho-
ton and can therefore be directly produced by e+e− annihilation. The dot-dash
line shows the threshold for decay to two open charm mesons. The spectro-
scopic classification n2S+1LJ and JPC assignments are discussed in the text.
The lines connecting different states represent decay by γ or ππ emission as
indicated.

Particle JPC Mass( MeV/c2) Γ( MeV) Decay Mode Fraction(%)

ηc 0−+ 2979.7 ± 1.5 16.0 ± 3.6 KK̄π 5.5 ± 1.7
J/ψ 1−− 3096.9 ± 0.04 0.087 ± 0.005 e+e− 5.93 ± 0.10

µ+ µ− 5.88 ± 0.10
hadrons 87.7 ± 0.5

χc1 1++ 3510.51± 0.12 0.92 ± 0.13 J/ψγ 31.6 ± 3.2
hadrons < 3

ψ(2S) 1−− 3685.96± 0.09 0.300 ± 0.025 e+e− 0.73 ± 0.04
µ+ µ− 0.70 ± 0.09
J/ψ π+ π− 30.5 ± 1.6

Table A.1: Properties of the ηc,J/ψ ,χc1, and ψ(2S) charmonium mesons.
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Appendix B
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