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Abstract The statement of the title is proved. It implies that under physically
reasonable conditions, spacetimes which are free from singularities are necessarily
stably causal and hence admit a time function. Read as a singularity theorem it
states that if there is some form of causality violation on spacetime then either
it is the worst possible, namely violation of chronology, or there is a singularity.
The analogous result: “Non-totally vicious spacetimes without lightlike rays are
globally hyperbolic” is also proved, and its physical consequences are explored.

1 Introduction

While the local structure of spacetime is fairly simple to describe, there are still a
number of open problems concerning the causal behavior of the spacetime man-
ifold in the large. About three decades ago Geroch and Horowitz in the conclu-
sions of their review “Global structure of spacetimes” (8) identified the problem of
giving good physical reasons for assuming stable causality as one of the most im-
portant questions concerning the global aspects of general relativity together with
the proof of the cosmic censorship conjecture. Indeed, if stable causality holds,
then the spacetime does not suffer any pathological behavior connected with the
presence of almost closed causal curves, and, more importantly, it admits a (non-
unique) time function (9), that is a function which is continuous and increases on
every causal curve.

In order to understand the role of stable causality it is useful to recall that most
conformally invariant properties can be ordered in the so-called causal ladder of
spacetimes (see Fig. 1). If the real Universe were represented by a globally hy-
perbolic manifold (the top of the ladder) then a number of mathematically and

Dipartimento di Matematica Applicata, Università degli Studi di Firenze, Via S. Marta 3, I-
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Fig. 1 The causal ladder displaying the new levels considered in Sect. 3. Penrose’s infinite ladder
between A-causality and A∞-causality is omitted (16), as well as the levels of weak distinction
and feeble distinction (19). For the placement of the non-imprisonment properties the reader is
referred to (18). The arrow C ⇒ D means that C implies D and there are examples which show
that C differs from D. Stable causality implies K-causality, but it is not known if they coincide.
The implications climbing the ladder express the geometrical content of the theorems proved in
this work

physically nice properties would hold. The problem is that, though there is evi-
dence that the spacetime manifold evolves according to the Einstein equations, it
is not clear whether the evolution from physically reasonable Cauchy data would
introduce naked singularities and would eventually produce a non-globally hyper-
bolic spacetime. If so, the Cauchy data would be insufficient for the determination
of the spacetime geometry and one would have to take into account the informa-
tion coming from infinity. However, Penrose gave arguments which support the
view that the so developed manifold would actually be globally hyperbolic (23)
(strong cosmic censorship).

Some other authors claim that one should only expect that the non-predictable
behavior due to singularities be confined behind horizons (weak cosmic censor-
ship). Other authors note that there is not even compelling reasons for excluding
chronologically violating regions, in fact in some cases they allow one to keep the
spacetime non-
singular even in the presence of trapped surfaces (21). From this point of view
chronology violating sets should not be discarded a priori, instead they should be
considered in the same footing as naked singularities, a physical possibility which
hopefully remains hidden behind an horizon. These considerations show that the
class of mathematically reasonable spacetimes is rather large, and therefore physi-
cists look for physical arguments which allow to get as close as possible to global
hyperbolicity. In short physicists look for results which allow to climb the causal
ladder.

The first step would be to justify the chronology property. Actually this as-
sumption is philosophically satisfactory because its violation would raise issues
related to the free will of the generic observer. However, the notion of free will
is not modeled in general relativity, therefore it becomes reasonable to search for
other physical mechanisms, perhaps based on quantum mechanics, which pre-
vent the formation or stability of chronology violating sets. The idea that such a
mechanism should indeed exist and that starting from well behaved initial condi-
tions closed timelike curves can not form has been referred to by Hawking as the
chronology protection conjecture (10). As I commented above there is no general
consensus on its validity and the evidence coming from classical general relativity
is under investigation (13; 28; 29; 32).

It is natural to separate the remainder of the causal ladder in two parts. That
going from chronology up to stable causality (causality, distinction, strong causal-
ity belong to it), and that going from stable causality up to global hyperbolicity
(passing through causal continuity and causal simplicity). While the former part
deals with each time more demanding conditions conceived to avoid almost closed
causal curves, the latter part presents each time more demanding conditions in or-
der to reduce the effects of points at infinity on spacetime.
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The problem of climbing the causal ladder from chronology up to stable causal-
ity will be considered and solved in this work. It has received less attention than
the latter problem, that is, that of going from stable causality up to global hy-
perbolicity which is indeed more closely related to the strong cosmic censorship
conjecture (23).

I am going to prove that chronology plus the absence of lightlike lines implies
stable causality (Theorem 6). The theorem is formulated so that every mentioned
property is conformally invariant. It is therefore a theorem on the causal structure
of spacetime. In this respect it is important to use the weaker assumption of ab-
sence of lightlike lines instead of the more common null convergence, null gener-
icity and null completeness conditions, though these have a more direct physical
meaning. If we regard the null convergence and the null genericity conditions as
physically reasonable we can say that under physically reasonable conditions null
completeness implies the absence of lightlike lines (see Sect. 2) and hence, under
chronology, it also implies stable causality. Thus the theorem physically can be
interpreted by saying that under chronology, the absence of singularities implies
stable causality and hence the existence of a time function. It is the first result
of this form which reduces the existence of a time function to considerably less
demanding properties. Moreover, note that in the previous statement the required
absence of singularities is more precisely only a null completeness requirement:
the spacetime manifold could still be timelike incomplete in a way compatible
with the singularity theorems (I shall say more on that in Sects. 4 and 6).

Recall that if stable causality holds then the spacetime is free from almost
closed causal curves or other more complex forms of causality violation. Stated in
a more precise way, stable causality implies K-causality (27), which assures that
it is impossible to obtain a closed chain of events pairwisely related by suitable
closures and compositions of the usual causal relation J+.

The theorem can then be regarded as a singularity theorem, indeed, rewritten
in the form non-stably causal spacetimes either are non-chronological or admit
lightlike lines receives the following physical interpretation if there is a form of
causality violation on spacetime then either it is the worst possible, namely viola-
tion of chronology, or the spacetime is singular. Regarded in this way the theorem
clarifies the influence of causality violations on singularities. In fact, if the viola-
tion of chronology is regarded as a sort of singularity then the theorem states that
if there is no time function then the spacetime is singular in this broader sense.

I refer the reader to (16; 20) for most of the conventions used in this work. In
particular, I denote with (M,g) a Cr spacetime (connected, time-oriented Lorentzian
manifold), r∈{3, . . . ,∞} of arbitrary dimension n≥ 2 and signature (−,+, . . . ,+).
On M×M the usual product topology is defined. For convenience and generality
I often use the causal relations on M×M in place of the more widespread point
based relations I+(x), J+(x), E+(x) (and past versions). All the causal curves that
we shall consider are future directed (thus also the past rays). The subset sym-
bol ⊂ is reflexive, X ⊂ X . The limit curve theorem will be repeatedly used. The
reader is referred to (15) for a sufficiently strong formulation which generalizes
that contained in (3).
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2 Absence of Lightlike Lines

In this section I consider the property of absence of lightlike lines and comment
on its physical meaning.

Two spacetimes belonging to the same conformal class (M,ggg) share the same
lightlike geodesics up to reparametrizations, and the condition of maximality for
the lightlike geodesic γ reads “there is no pair of events x,z∈ γ , (x,z)∈ I+”, which
makes no mention of the full metric structure and hence is independent of the
representative of the conformal class. Thus, it is convenient to give the following
conformally invariant definition,

Definition 1 A lightlike line is an achronal inextendible causal curve.

The definition implies, by achronality, that the causal curve is a lightlike geodesic
and that it maximizes the Lorentzian length between any of its points.

It is well known that (22, Chap. 10, Prop. 48)

Proposition 1 If an inextendible lightlike geodesic admits a pair of conjugate
events then it is not a lightlike line.

It can be proved that the notion of conjugate points along a lightlike geodesic is
conformally invariant (20), thus the previous proposition relates two conformally
invariant properties. In particular note that the requirement every lightlike geodesic
has a pair of conjugate points is stronger than absence of lightlike lines, e.g. 1+1
Minkowski spacetime with x = 0 and x = 1 identified. From the point of view
of Lorentzian geometry any statement should be formulated so as to make its
conformal invariance clear. For physical reasons some authors prefer to mention
physically motivated but non-conformally invariant conditions. The consequence,
however, is that several results have been formulated in an unnecessarily weak
form as the assumptions of the theorems are not really used.

Definition 2 An inextendible lightlike geodesic γ of the spacetime (M,g) satisfies
the generic condition if at some x∈ γ the tangent vector n to the curve is a generic
vector, that is, ncndn[aRb]cd[en f ] 6= 0. A spacetime satisfies the null generic con-
dition if every inextendible lightlike geodesic satisfies the generic condition.

A spacetime can be generic only if n ≥ 3 (see (3, Cor. 2.10)). The precise
sense in which the null generic condition is generic is clarified by (3, Prop. 2.15).
It is usually assumed on the physical ground that if a lightlike geodesic does not
satisfy it then arbitrarily small metric perturbation in the geodesic path would
make it true.

Definition 3 The spacetime (M,g) satisfies the timelike convergence condition if
R(v,v) ≥ 0 for all timelike, and hence also for all lightlike, vectors v. The space-
time (M,g) satisfies the null convergence condition if R(v,v) ≥ 0 for all lightlike
vectors v (cf. (11, p. 95) (3, Def. 12.8)).

The null convergence condition is a consequence of the positivity of the energy
density (11).

Definition 4 A spacetime (M,g) is null geodesically complete if every inextendible
lightlike geodesic is complete.
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Proposition 2 In a spacetime (M,g) of dimension dimM ≥ 3, which satisfies the
null convergence condition, the null generic condition and which is null geodesi-
cally complete, every inextendible lightlike geodesic admits a pair of conjugate
events. In particular (M,g) does not have lightlike lines.

Proof It follows from the existence of some pair of conjugate points in the light-
like geodesics according to (11, Prop. 4.4.5) (3, Prop. 12.17). ut

This proposition has been improved by Tipler (30; 31) and Chicone and Ehrlich
(6) (see also Borde (5)) by weakening the null convergence condition to the av-
eraged null convergence condition. This possibility is important because many
quantum fields on spacetime determine a stress-energy tensor and hence a Ricci
tensor which does not comply with the null convergence condition while it satis-
fies the averaged null convergence condition.

Proposition 2 implies that the condition of absence of lightlike lines is quite
reasonable from a physical point of view at least if the spacetime is assumed to be
non-singular (see also the discussion in (11, Sect. 4.4)) or just null geodesically
complete.

In the next sections I will prove that the assumption of absence of lightlike lines
has the effect of identifying the levels of the causal ladder between chronology and
stable causality. In this respect the hard part will come with the inclusion of stable
causality. A key role will be played by the property of K-causality introduced by
Sorkin and Woolgar (27), and for the last step by a new property which I study in
the next section.

3 Compact Stable Causality

Recall that a non-total imprisoning spacetime is a spacetime for which there is
no future-inextendible causal curve totally imprisoned in a compact set (future
non-total imprisonment is equivalent to past non-total imprisonment (2; 18)). It is
known that every relatively compact open set in a non-total imprisoning spacetime
(18) is stably causal when regarded as a spacetime with the induced metric (2).
Actually, this property characterizes non-total imprisonment, indeed we have

Theorem 1 A spacetime (M,g) is non-total imprisoning iff for every relatively
compact open set B, (B,g|B) is stably causal.

Proof The implication to the right was proved by Beem (2). To the left, assume
(M,g) has a compact subset C in which some curve γ is future imprisoned. In
(18) I proved that there is a lightlike line η contained in C such that η ⊂ Ω f (η),
where Ω f (η) is the set of accumulation points in the future of η (in analogy with
the set of ω-limit points of dynamical systems). Let B be a relatively compact
open set such that C ⊂ B. Take q ∈ η and, given a convex neighborhood U 3 q,
U ⊂ B, take p ∈ η ∩ J−(U,g|U )(q). Take g′ > g in B (g′ need not be defined on BC)
then p ∈ I−(U,g′|U )(q), but recall that p ∈ Ω f (η) is an accumulation point for the
future-inextendible g′-timelike curve given by the portion of η which starts from
q. Thus since I−(U,g′|U )(q) is open it is possible to construct a closed g′-timelike
curve contained in B. The argument holds for any choice of g′, thus it is not true
that for every relatively compact open set B, (B,g|B) is stably causal. ut
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Note that non-total imprisonment is a quite weak property (it is implied by
weak distinction (18)). A related problem is that of establishing if, given an arbi-
trary compact set on spacetime, the metric can be widened in it without introduc-
ing closed causal curves in the whole spacetime. If this is possible the spacetime
satisfies a condition which is stronger than non-total imprisonment. We can define
a new property

Definition 5 A spacetime (M,g) is compactly stably causal if for every relatively
compact open set B there is a metric gB ≥ g such that gB > g on B, gB = g on BC

and (M,gB) is causal.

Remark 1 There are some equivalent definitions, for instance: (M,g) is compactly
stably causal if for every compact set C there is gC ≥ g such that gC > g on C and
(M,gC) is causal. In order to prove the equivalence one has to take appropriate
convex combinations of metrics with smooth coefficients.

Some natural questions arise, among them the placement of compact stable
causality in the causal ladder of spacetimes. Before considering this question let
me recall some notation and terminology (16). Following Woodhouse (1; 33) I
denote with A+ the closure of the causal relation, that is A+ = J̄+, where, as usual
for a subset of M ×M, the closure is with respect to the topology of M ×M.
A spacetime is A∞-causal if there is no finite cyclic chain of distinct A+-related
events. This property is equivalent to the antisymmetry of the relation A+∞ =
∪+∞

i=1(A
+)i, which is the smallest transitive relation containing A+. Analogously,

a spacetime is A∞-causal if the relation A+∞ is antisymmetric. The relation K+

is the smallest closed and transitive relation containing J+, and the spacetime is
K-causal if the relation K+ is antisymmetric (27). It is known that stable causality
implies K-causality, although it is not known if these two conditions coincide (17).
We have

Theorem 2 K-causality implies A∞-causality.

Proof Since J+ ⊂ K+, any causal relation obtained from J+ by taking closures
or by making the relation transitive through the replacement R+ →∪+∞

i=1(R
+)i, is

still contained in K+. Since A+∞ has this form A+∞ ⊂K+, thus K-causality implies
A∞-causality. ut

Remark 2 Given a relation R+ the two involutive operations given by (a) closure:
R+ → R̄+, and (b) transitivization: R+ → R+∞ =∪+∞

i=1(R
+)i, once alternatively ap-

plied to J+ generate a chain of relations all contained in K+ whose first members
are J+, A+, A+∞, A+∞, . . .. By demanding the antisymmetry one obtains a ladder
of causal properties whose first members are causality, A-causality, A∞-causality
and A∞-causality, all necessarily weaker than K-causality. If at a certain point two
adjacent relations coincide then they coincide with K+ as they are both closed
and transitive and they are certainly the smallest relations with this property. In
this case the mentioned ladder of relations finishes there where this coincidence
occurs. As we shall see, the mentioned first levels are all different but it is not
known if from some point on the levels would start to coincide, that is, if after
a finite number of operations of closure and transitivization one would get K+

and K-causality. Examples support the view that this coincidence occurs at a level
which increases with the dimensionality of the spacetime.
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Lemma 1 Let ◦ denote the composition of relations, then J+ ◦A+⊂A+ and A+ ◦
J+⊂A+.

Proof Let us consider the latter case, the former being analogous. Let (x,y) ∈ J+

and (y,z) ∈ A+, and let γn be a sequence of causal curves of endpoints (yn,zn)→
(y,z). Take xk ∈ I−(x), xk → x, so that xk � y and for sufficiently large n, xk �
yn ≤ zn, thus (xk,zn(k)) ∈ I+ and in the limit (x,z) ∈ A+. ut
Remark 3 In the next proof and in the proof of Lemma 3 we shall consider a
sequence σn of gn-causal curves, where the metrics in the sequence gn may dif-
fer, g ≤ gn+1 ≤ gn, and gn → g pointwisely. In this circumstance it is possible to
apply the usual limit curve theorem (15, Theorem 3.1) originally formulated for
the case gn = g provided the following idea is taken into account (see also (15,
Corollary 2.9 and Remark 2.10)). Any such sequence σn is also, for any chosen
k, and for sufficiently large n, a sequence of gk-causal curves. Let the curve σn be
parametrized with respect to the arc-length of a complete Riemannian metric h on
M. Let us start with k = 1. Under the assumptions of the limit curve theorem (15,
Theorem 3.1) for the spacetime (M,g1) it is possible to infer the existence of a
subsequence σs which converges uniformly on compact subsets to a parametrized
g1-causal curve σ (whether it is inextendible or not depends on the case). Choos-
ing k > 1, this same subsequence σs is made of gk-causal curves provided s is
taken sufficiently large, thus by the same limit curve theorem there is a further
subsequence σr which converges uniformly on compact subsets to a gk-causal
curve σ ′. But clearly the parametrized curves σ and σ ′ are the same because the
sequence σr converges uniformly on compact subsets to both of them. Thus σ is
gk-causal for every k > 1 and hence it is g-causal, as gk → g. In conclusion, it is
possible to apply the limit curve theorem (15, Theorem 3.1) suitably generalized
to include the case in which the converging sequence is made of curves which are
causal with respect to different metrics.

Theorem 3 A∞-causality implies compact stable causality.

Proof In this proof, where some different metrics are introduced, the relations J+,
A+, A+∞, and A+∞ with no subscript are always understood with respect to the
metric g.

Suppose (M,g) is A∞-causal but non-compactly stably causal, then there is a
relatively compact open set B such that for every g′ ≥ g, g′ > g on B, g′ = g on BC,
(M,g′) is not causal. Let gn be a sequence of metrics gn ≥ g, gn > g on B, gn = g on
BC, gn+1 ≤ gn, and gn → g pointwisely on the appropriate tensor bundle. For every
choice of n, (M,gn) is not causal, and since (M,g) is causal there must be a closed
gn-causal curve γn intersecting B (see Fig. 2). Let p0

n ∈ γn∩B and parametrize the
curves with respect to a complete Riemannian metric h so that p0

n = γn(0) and the
domain of the curves is R (that is, following the parametrization the curve winds
over its own image).

Assume an infinite number of γn is entirely contained in B̄. Beem (2) has shown
that there would be an inextendible g-causal limit curve contained in B̄ in contra-
diction with the non-total imprisoning property of the spacetime (recall that A-
causality implies distinction which implies the non-total imprisoning property).
Thus without loss of generality we can assume that none of the γn is entirely con-
tained in B̄. We conclude that γn intersects Ḃ at least once to enter BC. Without
loss of generality we can also assume that p0

n → p0 ∈ B̄.
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Fig. 2 The argument of the proof that A∞-causality implies compact stable causality

Using the limit curve theorem (15, Theorem 3.1), through p0 there passes a
future inextendible (hence its h-length parameter has domain (−∞,+∞)) g-causal
curve γ0 which can’t pass through p0 twice as it would imply a violation of causal-
ity for (M,g). In particular since (M,g) is non-partial imprisoning it escapes B̄ at a
last point q0 ∈ Ḃ never to reenter B̄. Let γ0

n be a subsequence of γn which converges
to γ0 uniformly on compact subsets and let s0 be the value of the parameter such
that q0 = γ0(s0). Since γ0

n (s0 +2)→ γ0(s0 +2) /∈ B̄ pass to a subsequence denoted
in the same way so that γ0

n (s0 + 2) /∈ B̄. Let (s̄0
n, t

1
n ) 3 s0 + 2 be the largest open

connected interval so that γ0
n ((s̄0

n, t
1
n ))⊂ (B̄)C. Define q̄0

n, p1
n ∈ Ḃ as q̄0

n = γ0
n (s̄0

n) and
p1

n = γ0
n (t1

n ). Let p1 ∈ Ḃ be an accumulation point for p1
n; without loss of general-

ity we can assume p1
n → p1. Note that the segment γ0

n |[s̄0
n,tn

1 ] is entirely contained
in BC and hence it is g-causal. Since s̄0

n ∈ [0,s0 + 2], without loss of generality
we can assume s̄0

n → s̄0 for some s̄0. Now, s̄0 ≤ s0 indeed if s̄0 > s0 then q̄0
n ∈ B̄

converges to γ0(s̄0), a point that does not belong to B̄, which is impossible. In
particular, it is possible to find a sequence s0

n, s̄0
n < s0

n < s0 +2, such that s0
n → s0.

Then q0
n = γ0

n (s0
n) /∈ B̄ converges to q0 and the g-causal sequence of curves γ0

n |[s0
n,tn

1 ]

has endpoints (q0
n, p1

n) ∈ J+ such that (q0
n, p1

n)→ (q0, p1), i.e. (q0, p1) ∈ A+. Note
that (p0,q0) ∈ J+ as both points belong to γ0, hence (p0, p1) ∈ A+.

The limit curve theorem (15) states that t1
n → +∞, indeed otherwise we can

assume that t1
n converges to some finite t1 ≥ s0 + 2, so that p1 would belong to

the prolongation of γ0, p1 = γ0(t1), which is impossible since q0 = γ0(s0) is the
last point of γ0 in B̄. There is no compact set containing all the segments γ0

n |[s̄0
n,tn

1 ]

because γ0 escapes every compact set never to return and for every k > 0, γ0
n (s0

n +
k)→ γ0(s0 + k) because t1

n → +∞. As a consequence the pair (p0, p1) ∈ A+ can
be regarded as the limit of the pairs of endpoints of g-causal segments which
are not all contained in a compact set. (In order to construct these segments take
p̄0

k ∈ I−(p0), p̄0
k → p0 so that q0 ∈ I+(p̄0

k), and hence since I+ is open q0
n(k) ∈

I+(p̄0
k) for a sufficiently large n(k). Next follow the g-causal segment γ0

n |[s0
n,tn

1 ]
which is not all contained in a compact set, finally redefine the parametrization
of the sequence p̄0

k and pass if necessary to a subsequence so that (p̄0
n,q

0
n) ∈ I+

and hence (p̄0
n, p1

n) ∈ J+ with (p̄0
n, p1

n)→ (p0, p1).) In particular, p0 6= p1 since the
spacetime is strongly causal.

Now, translate all the parametrizations of γ0
n so that t1

n gets replaced by 0. Re-
peat the previous steps where now p1 plays the role of p0 and the found sequence
γ1

n is a reparametrized subsequence of γ0
n .

Continue in this way, defining at each step analogous subsequences and events
so that pk ∈ B̄, (pk, pk+1) ∈ A+, pk 6= pk+1, and for each k there is a sequence
of g-causal curves, not all contained in a compact set, so that the endpoints of
the sequence converge to (pk, pk+1). Note that for every pair of positive integers
a < b, pa 6= pb, otherwise there would be a closed chain of A+ related events in
contradiction with A∞-causality, and (pa, pb) ∈ A+∞.

Since B̄× B̄ is compact, there is a subsequence denoted (pks , pks+1) such that
(pks , pks+1) → (x,z) as s → +∞. Moreover, x 6= z because otherwise for every
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Fig. 3 A A∞-causal but non-compactly stably causal spacetime. In order to construct the space-
time start from R×S1×R of coordinates (t,θ ,z), θ ∈ [0,1], and metric g =−dt2 +dθ 2 +dz2,
remove two spacelike surfaces and identify, after a translation by an irrational number, two
spacelike surfaces as done in the figure . The coordinates (x,y) have been introduced on the
identified surfaces so as to make the identification clear. The spacetime is non-orientable but
this feature is not essential. The spacetime is non-compactly stably causal since any enlarge-
ment of the metric on K gives closed causal curves. Thanks to the translation by an irrational
number there cannot be closed chains of A+ related events

relatively compact causally convex neighborhood U 3 x, for sufficiently large s,
(pks , pks+1) ∈U , and the sequence of g-causal curves not all contained in a com-
pact set, whose endpoints converge to (pks , pks+1) would contradict the causal
convexity of U . Since A+ is closed, (x,z) ∈ A+ and x 6= z. Since pks is a subse-
quence of pk, for every s, ks +1≤ ks+1, thus (pks+1, pks+1) ∈ A+∞ and in the limit
s → +∞, (z,x) ∈ A+∞. As a consequence (M,g) is not A∞-causal which is the
desired contradiction. ut

Theorem 4 Compact stable causality implies A∞-causality.

Proof Assume the spacetime is compactly stably causal, and suppose it is not
A∞-causal then there is a finite closed chain of A+-related events (xi,xi+1) ∈ A+,
i = 1, . . . ,n, xn+1 = x1.

Consider a relatively compact open set B which contains all xi, i = 1, . . . ,n,
and let gB ≥ g, gB > g on B, gB = g on BC. We want to prove that A+∩ (B×B)⊂
J+
(M,gB), from which it follows that (M,gB) is not causal whatever the choice of

gB, and hence (M,g) is not compactly stably causal, the desired contradiction. Let
(y,z) ∈ A+, y,z ∈ B, then by the limit curve theorem either (y,z) ∈ J+ ⊂ J+

(M,gB)
or there are a future inextendible g-causal curve σ y starting from y, and a past
inextendible g-causal curve σ z ending at z such that for every y′ ∈ σ y\{y} and
z′ ∈ σ z\{z}, (y′,z′) ∈ A+. At least a segment of σ y near y is timelike for (M,gB)
and analogously for σ z, thus (y,y′) ∈ I+

(M,gB), and (z′,z) ∈ I+
(M,gB) finally, since

(y′,z′) ∈ A+ ⊂ J+
(M,gB), we have (y,z) ∈ I+

(M,gB). ut

Remark 4 All the properties of the previous theorems differ. In (16) I gave an ex-
ample of non-K-causal A∞-causal spacetime. A closer inspection proves that it is
actually non-A∞-causal but compactly stably causal. Moreover, it is possible to
construct an example, similar to that of (16) which is A∞-causal but non-K-causal
(simply repeat the figure of (16) three times vertically, and then identify the holes
cyclically). The properties A∞-causality and compact stable causality differ be-
cause of the spacetime example of Fig. 3. A consequence of these examples is the
perhaps surprising fact that compact stable causality differs from stable causality
(see again the example of (16)). This fact means that the behavior of the light
cones near infinity is important in order to determine if a spacetime is properly
compactly stably causal or not.
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4 The Proof and Some Physical Considerations

I start with a result due to Hawking (12) (11, Prop. 6.4.6) (he proved it with the
stronger but inessential assumption that every inextendible lightlike geodesic ad-
mits a pair of conjugate points)

Lemma 2 A chronological spacetime without lightlike lines is strongly causal.

Proof Recall that a spacetime is strongly causal if for every x ∈M, and for every
neighborhood U 3 x there exists a neighborhood V ⊂ U , x ∈ V , such that any
future-directed causal curve with endpoints at V is entirely contained in U (see for
instance (20, Lemma 3.22)). Thus if (M,g) were not strongly causal there would
be a point x, a neighborhood U 3 x, and a sequence of causal curves γn of starting
event xn, ending event zn such that xn → x, zn → x, and the curves γn are not entirely
contained in U . Hence there are the conditions required by the limit curve theorem
(15, Theorem 3.1, case (2)) which implies the existence of a lightlike line passing
through x, a contradiction. ut

A fundamental step in the proof is

Theorem 5 If a spacetime does not have lightlike lines then the relation A+ = J̄+

is transitive, that is K+ = A+. Moreover, if the spacetime is also chronological
then the spacetime is K-causal.

Proof Let us prove the transitivity of A+. Take two pairs (x,y) ∈ A+ and (y,z) ∈
A+ and two sequences of causal curves σn of endpoints (xn,yn)→ (x,y), and γn of
endpoints (y′n,zn)→ (y,z). Apply the limit curve theorem (15) to both sequences,
and consider first the case in which the limit curve in both cases does not connect
the limit points. By the limit curve theorem, σn has a limit curve σ which is a
past inextendible causal curve ending at y. Analogously γn has a limit curve γ

which is a future inextendible causal curve starting from y. The inextendible curve
γ ◦σ cannot be a lightlike line, thus there are points x′ ∈ σ\{y}, z′ ∈ γ\{y} such
that (x′,z′) ∈ I+ and (pass to a subsequence) points x′n ∈ σn, x′n → x′ and z′n ∈ γn,
z′n → z′. Since I+ is open, for sufficiently large n, (xn,zn) ∈ I+ and finally (x,z) ∈
Ī+ = A+.

If both limit curves join the limit points then clearly (x,z) ∈ J+ ⊂ A+. If, say,
σ joins x to y but γ does not join y to z, take x′n ∈ I−(x), x′n → x, so that x′n � y
and for large n, x′n � y′n ≤ zn, thus in the limit (x,z) ∈ A+. The remaining case is
analogous. Thus A+ is closed and transitive, hence A+ = K+.

Assume (M,g) is chronological, then by Lemma 2 (M,g) is strongly causal.
The relation A+ is antisymmetric indeed let (x,y) ∈ A+ and (y,x) ∈ A+, x 6= y,
and let σn of endpoints (xn,yn) and γn of endpoints (y′n,zn) be sequences of causal
curves whose endpoints converge to the initial pairs (xn,yn) → (x,y), (y′n,zn) →
(y,x). Then we repeat the argument used above, that is we apply the limit curve
theorem to the accumulation point y. Call σ the limit causal curve for σn and
analogously let γ be the limit causal curve for γn. If σ connects x to y and γ

connects y to x then there is a closed causal curve on spacetime, a contradiction.
Let U 3 x, V 3 y be two disjoint causally convex neighborhoods. If σ connects
x to y but γ does not connect y to x, then it is possible to argue as above, i.e.
take x′k ∈ I−(x), x′k → x, then for sufficiently large n, which we can choose so that
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n(k) > k, y′n(k) ∈ I+(x′k)∩V , from which it follows that there is a sequence of causal
curves of endpoints x′k, zn(k), intersecting V . But (x′k,zn(k)) → (x,x) thus strong
causality is violated at x. The case in which γ connects y to x is analogous. The
remaining case is that in which σ is past-inextendible and γ is future-inextendible.
Then γ ◦σ is an inextendible causal curve which by assumption is not a lightlike
line. Moreover, since strong causality holds, this curve is not partially imprisoned
in any compact set, thus using the same argument as above (i.e. taking advantage
of the chronality of γ ◦σ ) it follows that there is a sequence of causal curves of
endpoints xn, zn not all contained in a compact set. Again there is a contradiction
with the strong causality at x. ut

Clearly, if we could prove that K-causality is equivalent to stable causality
then the main theorem would follow. Seifert (24), even before the introduction of
K-causality, gave an argument which would have implied the equivalence. Un-
fortunately, he only sketched the proof and a recent more detailed study (17) has
shown that those arguments were inconclusive. Fortunately, however, it is possible
to circumvent this difficulty, and avoid a direct proof of the equivalence between
stable causality and K-causality, by working on compact stable causality. Indeed,
the previous result will be used in the following weaker form:

Corollary 1 A chronological spacetime without lightlike lines is compactly stably
causal.

Now, the idea is to consider the property “(M,g) is compactly stably causal
and does not admit lightlike lines” to show that it is invariant under enlargement
of the light cones over compact sets (see Lemma 4). Then it is possible to enlarge
the light cones in a sequence of compact sets that cover M so as to obtain a causal
spacetime with strictly larger light cones (Theorem 6).

Lemma 3 On (M,g) let B be a relatively compact open set, let gn be a sequence
of metrics gn ≥ g, gn > g on B, gn = g on BC, gn+1 ≤ gn, and gn → g pointwisely
on the appropriate tensor bundle. If (M,g) does not have lightlike lines then all
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but a finite number of (M,gn) do not have lightlike lines.

Proof If not we can, passing to a subsequence, assume that all (M,gn) have light-
like lines. Denote γn a respective sequence of lightlike lines and assume there is
one, say γn̄, which does not intersect B. Since gn̄ and g coincide outside B, γn̄ is
a g-causal curve. Also it is g-achronal because if there are two points p,q ∈ γn̄
such that (p,q) ∈ I+

g then as g≤ gn̄, (p,q) ∈ I+
gn̄ which is impossible because γn̄ is

a lightlike line on (M,gn̄). But γn̄ cannot be g-achronal as it would be a lightlike
line of (M,g), thus the overall contradiction proves that all γn intersect B. Without
loss of generality we can assume (pass to a subsequence if necessary) that there
are xn ∈ B∩ γn, and x ∈ B̄ such that xn → x. By the limit curve theorem (15) there
is an inextendible g-causal curve η passing through x. If η is not g-achronal there
are y,z∈ η such that (y,z)∈ I+

g ⊂ I+
gn for every n. But since y and z are limit points

of the sequence γn and I+
g (⊂ I+

gn) is open, some of the curves γn are not lightlike
lines. The contradiction proves that η is not only g-causal but also g-achronal, thus
it is a lightlike line. Again this is impossible, thus the assumption that an infinite
number of (M,gn) does admit lightlike lines has lead to a contradiction. ut

Lemma 4 If (M,g) is compactly stably causal and without lightlike lines then for
every relatively compact open set B it is possible to find a metric gB ≥ g such that
gB > g on B, gB = g outside B, and (M,gB) is compactly stably causal and without
lightlike lines.

Proof Since (M,g) is compactly stably causal we can find g̃B such that g̃B > g
on B, g̃B = g outside B and (M, g̃B) is causal. Define gn = (1− 1

n )g + 1
n g̃B so

that g ≤ gn ≤ g̃B satisfies the assumptions of the previous lemma. Thus there is
a certain element of the sequence, denote it gB, such that (M,gB) does not have
lightlike lines and since gB ≤ g̃B, (M,gB) is causal. But every causal spacetime
without lightlike lines is compactly stably causal, thus the thesis. ut

Theorem 6 If (M,g) is chronological and without lightlike lines then it is stably
causal.

Proof Let h be an auxiliary complete Riemannian metric, x0 ∈ M, and let Bk =
B(x0,k) be the open balls of radius k centered at x0. Define g1 = g. By the previous
lemma it is possible to find a metric g2 > g1 on B2, g2 = g1 outside B2, such
that (M,g2) is compactly stably causal and without lightlike lines. Next repeat
the argument for the relatively compact open set B3 with respect to the spacetime
(M,g2): there is a metric g3 > g2 on B3, g3 = g2(= g) outside B3, such that (M,g3)
is compactly stably causal and without lightlike lines. Continue in this way and
find a sequence of metrics gk+1 ≥ gk ≥ g, gk+1 > gk on Bk+1. The open sets A1 =
B2, Ak = Bk+1\B̄k−1 for k ≥ 2, cover M. Let {χk} be a partition of unity so that
the support of χk is contained in Ak, and define g̃ = ∑

+∞

k=1 χkgk+2 (the sum has
at most two non-vanishing terms at each point) then g̃ > g, moreover at x ∈ Bk,
g̃(x) ≤ gk+2(x), because for n > k, χn(x) = 0 (see Fig. 4). But (M, g̃) is causal
because otherwise there is a closed g̃-causal curve σ , which being a closed set, is
entirely contained in Bs for some s. Since g̃≤ gs+2 on Bs, this curve is gs+2-causal
which contradicts the (compact stable) causality of (M,gs+2). Thus since (M, g̃)
is causal and g̃ > g, (M,g) is stably causal. ut
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Fig. 4 The construction of the metric g̃ > g and of the causal spacetime (M, g̃) in the proof of
Theorem 6

Fig. 5 The figure displays 1+1 Minkowski spacetime with two spacelike slices identified and a
triangle removed. If the angle at the top of the triangle is small enough there are no past lightlike
rays

Remark 5 This result is sharp in the sense that causal continuity can not replace
stable causality in the statement of the theorem. Indeed, the 1+1 spacetime R×S1

of coordinates (t,θ), θ ∈ [0,2], metric ds2 =−dt2 +dθ 2 with the timelike segment
θ = 1, 0≤ t ≤ 1, removed does not have lightlike lines, is chronological, and thus
stably causal (t is a time function) but it is not reflective and hence it is not causally
continuous. Analogously, chronology can not be weakened to non-total vicious-
ness indeed, for instance, the spacetime of Fig. 5 is non-totally vicious, does not
have lightlike lines but is not even chronological. Nevertheless, it is possible to re-
lax slightly the chronology condition by asking, for instance, that the chronology
violating set be confined in a compact set or even more weakly to have a compact
boundary (see the next section).

Recall that a time function t : M →R is a continuous function which increases
on every causal curve, that is, if γ : B → M is a causal curve, b1 < b2 implies
t(γ(b1)) < t(γ(b2)). Hawking proved, improving previous results by Geroch (7),
that stable causality holds if and only if the spacetime admits a time function
(9; 11). Actually the time function can be chosen smooth with timelike gradient
(4) (see also (25)). Thus a corollary of Theorem 6 is

Theorem 7 If (M,g) is chronological and without lightlike lines then it admits a
time function (which can be chosen smooth with timelike gradient).

Recall also that if t is a time function then Fa = {p : t(p) > a} is an open
future set and Ḟa = {p : t(p) = a}. In particular, Sa = Ḟa is an acausal boundary
(hence edgeless), that is, Sa is a partial Cauchy hypersurface (11).

The great advantage of Theorem 7, is that it allows to considerably weaken the
causality and boundary conditions underlying most singularity theorems. These
theorems assume geodesic completeness along with other conditions (which often
imply the absence of lightlike lines) and derive from them some contradiction.
Among the additional conditions most singularity theorems assume some of the
following: (a) global hyperbolicity, (b) a partial Cauchy hypersurface, (c) a com-
pact achronal edgeless set, (d) a trapped set. Often these global assumptions are
made without any further justification, in fact Senovilla in his review (26, pp.
803-8) expressed the opinion that these boundary assumptions may represent the
main weak point of singularity theorems. Fortunately, Theorem 7 shows that in
some respect the additional conditions are often redundant, indeed if they include
chronology and they imply the absence of lightlike lines (as in Hawking and Pen-
rose’s singularity theorem) then they also justify the presence of a foliation of
partial Cauchy hypersurfaces. Thus Theorem 7 can be used to weaken the global
assumptions made in singularity theorems.
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4.1 Absence of lightlike rays

In this section I am going to consider the implications of the absence of light-
like rays. Recall that a future ray is a future-inextendible causal curve which is
achronal. Past rays are defined analogously. Choosing a point c ∈ (a,b) in a light-
like line γ : (a,b)→M, the portion γ|[c,b) is a lightlike future ray while γ|(a,c] is a
lightlike past ray, thus

Lemma 5 The absence of lightlike future (or past) rays implies the absence of
lightlike lines.

Thus, assuming the absence of lightlike future rays one expects to obtain a
stronger property than stable causality. Indeed, we have (see also the related result
(29, Prop. 4))

Theorem 8 If (M,g) is chronological and without future lightlike rays then it is
globally hyperbolic (and the only TIP is M). An analogous past version also holds.

Proof Since there are no future rays then there are no lightlike lines and the space-
time is stably causal and admits a time function t. Let p≤ q, we have to prove that
C = J−(q)∩ J+(p) is compact. Take r ∈ I+(q) so that a = t(r) > t(q), and con-
sider the partial Cauchy surface Sa. Since C⊂ I−(r), all the points in C stay in the
past set Pa = {x : t(x) < a}. The set H−(Sa) is generated by future lightlike rays
(as Sa is edgeless) and since by assumption there is no future lightlike ray, H−(Sa)
is empty. Thus C ⊂ Pa ⊂ D−(Sa) ⊂ D(Sa), the last set being globally hyperbolic.
Note that no causal curve from p can escape D(Sa) and hence Pa to return to q,
as t is a time function. Hence C = J−D(Sa)(q)∩J+

D(Sa)(p) is compact. Finally, (M,g)
has no TIP but M because the boundary of any TIP is generated by future lightlike
rays. ut

Note that in Theorem 8 chronology can not be weakened to non-total vicious-
ness, i.e. to the condition C 6= M, where C is the chronology violating set. In-
deed, Fig. 5 gives a counterexample (past case). Nevertheless, if one replaces the
absence of future lightlike rays with the absence of lightlike rays then the proof
of Theorem 12 will show that a non-totally vicious spacetime is chronological (by
showing that Ċ , if non-empty, contains a lightlike ray), and thus one has:

Theorem 9 If (M,g) is non-totally vicious and without lightlike rays then it is
globally hyperbolic (and there are no TIP or TIF but M).

4.2 Physical considerations

Theorem 8 can be used as a singularity theorem though the null convergence
condition is not enough to guarantee that a future-complete future-inextendible
(affinely parametrized) lightlike geodesic γ : [a,+∞)→M admits a pair of conju-
gate points. A sufficient condition is Tipler’s (29, Prop. 1)

lim
s→+∞

[(s−a)
∫ +∞

s
Rcdncnd ds′] > 1, (1)
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where nc is the tangent vector to γ at γ(s). Weaker conditions were also considered
by Borde (5). These conditions physically state that the energy density should
not drop off too sharply. The assumption is reasonable in those cases where the
universe is contracting (or taking the past version, expanding) as one would expect
the energy density to increase rather than decrease.

Thus we get the following singularity theorem (past version)

Theorem 10 The following conditions cannot all hold:

(i) (M,g) is past null geodesically complete,
(ii) (M,g) is chronological,

(iii) (M,g) is non-globally hyperbolic,
(iv) some energy condition which implies the presence of conjugate points in

past-complete past-inextendible lightlike geodesics (e.g.

lim
s→−∞

[(b− s)
∫ s

−∞

Rcdncnd ds′] > 1,

holds on any past-inextendible lightlike geodesic γ : (−∞,b)→M).

The nice feature of this theorem is that there is essentially no boundary as-
sumption and the causality conditions are quite weak. There is no assumption on
the existence of partial Cauchy surfaces or trapped sets. Of course, the strongest
assumption which must be physically justified is made in (iv) but the local ex-
pansion of the Universe together with the cosmic background radiation, seem to
support it. Then the theorem states that under the said energy conditions the space-
time is either globally hyperbolic or has singularities. Used in conjunction with
Penrose’s (1965), and Hawking and Penrose’s (1970) singularity theorems (11) it
allows to characterize quite precisely what a spacetime looks like if it contains
trapped surfaces and it is still null geodesically complete.

We have

Theorem 11 Let (M,g) be a spacetime of dimension greater than 2. If

(i) (M,g) is null geodesically complete,
(ii) (M,g) is chronological,

(iii) there is a closed future trapped surface,
(iv) the timelike convergence, the generic condition, together with some energy

condition which implies the presence of conjugate points in past-complete
past-
inextendible lightlike geodesics (e.g.

lim
s→−∞

[(b− s)
∫ s

−∞

Rcdncnd ds′] > 1,

holds on any past-inextendible lightlike geodesic γ : (−∞,b)→M),

then the spacetime is globally hyperbolic with compact space slices and has a
incomplete timelike line.
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Proof The conditions (i), (ii) and (iv) imply (v): the spacetime is globally hy-
perbolic (Theorem 10). The Cauchy hypersurfaces are either compact or non-
compact. In the latter case (iii) and (v) imply, by the Penrose singularity theorem,
that the spacetime is null geodesically incomplete. Thus (vi): the Cauchy hyper-
surfaces are compact. The proof of the Hawking-Penrose theorem implies that (i),
(ii), (iii) or (vi), and (iv) imply that there is an incomplete timelike line. ut

Since the existence of trapped surfaces is a quite natural consequence of gen-
eral relativity if matter is concentrated enough, Theorem 8 supports the global
hyperbolicity of the spacetime (and a closed space) provided it is null geodesi-
cally complete. Since the conditions are quite reasonable one concludes that the
spacetime is either null geodesically incomplete or timelike geodesically incom-
plete (or both).

Finally I would like to stress that the assumption of null geodesic complete-
ness does not lead to a spacetime picture which contradicts observations. Thus
Theorems 8 and 6 may have a “positive” role in proving the good causal property
of spacetime rather than being used only to prove its singularity. As a matter of
fact they can be used to do both (Theorem 11).

5 The Non-Chronological Case

So far we have studied the consequence of the absence of lightlike lines un-
der the assumption of chronology. Let us consider the other possibility, namely
non-chronological spacetimes. Denote with C the chronology violating set, with
Cα , C =

⋃
α Cα , its (open) components and with Bαk the (closed) components of

the respective boundaries
Ċα =

⋃
k Bαk.

The next result joins two theorems, one by Kriele (14, Theorem 4) who im-
proved previous results by Tipler (29) and the other by the author (15).

Theorem 12 A non-chronological spacetime without lightlike lines is either to-
tally vicious (i.e. C = M) or it has a non-empty chronology violating set C , the
boundaries Ċα of the components Cα , are disjoint and the components Bαk of
those boundaries are all non-compact. In particular non-totally vicious space-
times without lightlike lines are non-compact.

For the proof that the sets Ċα are disjoint I refer the reader to (15). Instead, I
elaborate on Kriele’s argument by giving a slightly different proof that the bound-
aries Bαk are non-compact. Indeed, I can give a shorter proof thanks to the limit
curve theorem contained in (15) and to the results on totally imprisoned curves
contained in (18).

Recall that in the chronology violating set C , Carter’s equivalence relation
p ∼ q iff p � q � p gives rise to open equivalence classes, moreover, since C
is open, if x ∈ Ċ it cannot be x ∈ C . We denote by Ω f (η) =

⋂
t∈R η[t,+∞) the set

of accumulation points in the future of the causal curve η , and analogously in
the past case. This set is always closed, moreover, it is non-empty iff the curve is
partially future imprisoned in a compact set (18).
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Fig. 6 If (M,g) has a non-empty chronology violating set and has no lightlike line, (N,g|N),
with N any component of the shaded region M\C̄ , may admit lightlike lines (e.g. the causal
curves γ1 or γ2)

Proof Assume that Bαk ⊂ Ċα is compact and let x∈ Bαk. Let xn ∈Cα be such that
xn → x, and let U 3 x be a convex set. There are closed timelike curves σn ⊂ Cα

of starting and ending point xn, which are necessarily not entirely contained in U
(every convex set is causal). Let z = x, then by the limit curve theorem (15) (point
2) there are two cases (corresponding to 0 < b < +∞, or b = +∞ in that reference).

In the first case there is a closed continuous causal curve γ ∈ C̄α passing
through x. It must be achronal since if p,q ∈ γ , p � q, then x ≤ p � q ≤ x and
hence x � x which implies x ∈ C a contradiction. Thus γ is a geodesic with no
discontinuity in the tangent vectors at x. It can be extended to a lightlike line γ by
making infinite rounds over γ (note that in this case Ω f (γ) = Ωp(γ) = γ).

In the second case there are a future inextendible continuous causal curve γx ⊂
C̄α starting at x and a past inextendible continuous causal curve γz ⊂ C̄α ending
at x. If γx ∩ I+(x) 6= /0 and γz ∩ I−(x) 6= /0 then for sufficiently large n, since I+

is open, it would be possible to complete a segment of γn to a closed timelike
curve passing through x, hence x ∈ C , a contradiction. Thus γx or γz, say γx, is a
lightlike ray. In particular γx being a lightlike ray is achronal and hence can not
enter Cα , thus γx ⊂ Bαk. Now, since Bαk is compact and Bαk∩C = /0, results on
totally imprisoned causal curves can be applied (18, Theorem 3.6). In particular
there is a minimal non-empty closed achronal set Ω ⊂ Ω f (γx) ⊂ Bαk such that
through each point of Ω there passes one and only one lightlike line; this line is
entirely contained in Ω and for every line α ⊂Ω , Ω f (α) = Ωp(α) = Ω . Just the
existence of a lightlike line suffices to conclude the proof that the boundaries Bαk
are non-compact.

The last statement in a slightly weaker form has been first obtained by Tipler
(29, Theorem 7). It follows from the observation that a compact spacetime has a
non-empty chronology violating set C (see (11, Prop. 6.4.2)) thus either C = M or
Ċ is non-empty and compact in contradiction with the absence of lightlike lines.
ut

These results restrict the possible chronology violation in spacetimes without
lightlike lines, for instance they state that the chronology violation must extend to
infinity. In principle this fact does not mean that a chronology violating region can
not develop from regular data. For this to be the case stronger global assumptions
than the only absence of lightlike lines should be assumed (13; 29).

Instead of trying to remove chronology violating sets altogether from the space-
time, it is natural to consider what Theorem 6 may say in the cases of chronology
violation. The idea is that if (M,g) has a non-empty chronology violating set but
M 6= C̄ , then the spacetime (N,g|N), where N is any connected components of
M\C̄ , has empty chronology violating set.

However, even if (M,g) does not have lightlike lines, (N,g|N) may have light-
like lines (see Fig. 6). This may happen because a lightlike line γ for (N,g|N) is not
inextendible in M, and thus once extended it may enter the chronology violating
set (the geodesic γ2 in the figure). Another possibility is that while γ is also inex-
tendible in M, the enlargement of the spacetime enlarges the set of timelike curves
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and hence the possibilities that γ is not a line (the geodesic γ1 in the figure). Thus
it is not possible to infer from the absence of lightlike lines for (M,g) the same
property for (N,g|N). Actually, neither the converse is true, the Misner spacetime
(with region I = N, see Fig. 32 of (11)) does not have lightlike lines but its ana-
lytic extension (I+II), where II is the chronology violating set for I+II, does admit
a lightlike line given by the Misner boundary.

There is therefore no immediate way to apply Theorem 6 to the non-chronological
case apart from that of motivating on physical grounds that some component N
does not have lightlike lines.

6 Conclusions

A proof has been given that chronological spacetimes without lightlike lines are
stably causal, and that non-totally vicious spacetimes without lightlike rays are
globally hyperbolic (together with some other variations). The properties: (i) chronol-
ogy, (ii) null convergence condition and (iii) null generic condition, are quite rea-
sonable from a physical point of view, moreover, for our purposes (ii) can be
weakened to the averaged null convergence condition. Assuming (i), (ii) and (iii),
the result of the title of this work translates into the physical statement that null
geodesically complete spacetimes are stably causal and therefore admit a time
function. Since the existence of some partial Cauchy surface is assumed in most
singularity theorems, this result can be used to weaken the assumptions of those
theorems. This result may also prove important when applied to the study of the
real Universe. Indeed, let us recall that Hawking’s and Hawking and Penrose’s
theorems (11) suggest the existence of an incomplete causal curve which however
could well be timelike. In other words our Universe may perhaps be geodesically
null complete but timelike incomplete, in which case the main theorem could be
applied in the “positive” way to infer the existence of a time function for the
Universe. In fact Theorem 11 shows that the assumption of null geodesic com-
pleteness leads to consequences that do not contradict physical observations.

Penrose’s singularity theorem seems to go against this conclusion as it predicts
null incompleteness in those cases in which closed trapped surfaces form. It must
be remarked, however, that Penrose’s theorem assumes the existence of a non-
compact
Cauchy hypersurface, thus (i) it assumes the existence of a time function and
hence it cannot be used to dismiss the conclusion that a time function exists and
(ii) for spacetimes with compact slices its conclusions do not hold. Moreover, if
the space slices are compact, one can extract further information from the proof
of Penrose’s theorem (22, Theorem 14.61). The result is that, roughly speaking, in
such spacetimes black holes do not exist. Closed trapped surfaces may form and
locally they may resemble black holes but the global behavior would be quite dif-
ferent. Indeed, their horizons would finally join and swallow the whole spacetime.
Thus, without an “exterior”, the “interior” could not be distinguished from a usual
spacetime.

In conclusion the theorems of this work can be used physically, either in the
“negative” way, to prove the existence of singularities or of chronology violating
regions, or in the “positive” way to argue for the existence of a time function or of
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global hyperbolicity. In either case they throw new light on the existence and role
of time at cosmological scales.
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