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Abstract. We present a detailed analysis of recent flavour data in the framework of a simple
extension of the Standard Model, where a Q = 2/3 vector-like isosinglet quark is added to the
spectrum. Constraints from all the relevant quark flavour sectors are used. Important deviations
from Standard Model expectations in different observables such as the semileptonic asymmetry
in Bd decays, Ad

SL, the time-dependent CP asymmetry in Bs → J/ΨΦ, and rare decays such as
K+ → π+ν̄ν, can be obtained.

1. Introduction
We consider an extension of the Standard Model (SM) where one isosinglet vector-like quark T
with charge Q = 2/3 is added to the spectrum [1,2,3]. After diagonalization of the up and down
mass matrices, the 3 × 3 mixing matrix connecting standard quarks is no longer unitary, but
a submatrix of a larger 4 × 4 unitary matrix U . The charged and neutral current interactions
have the form

LW = − g√
2
ūL γµ V dLWµ + h.c. , (1)

LZ = − g

2 cos θW

[
ūL γµ

(
V V †

)
uL − d̄L γµ dL − 2 sin2 θW Jµem

]
Zµ , (2)

where d ≡ (d, s, b), u ≡ (u, c, t, T ) and V is a 4× 3 submatrix of the matrix U :

U =


Vud Vus Vub Uu4

Vcd Vcs Vcb Uc4
Vtd Vts Vtb Ut4
VTd VTs VTb UT4

 . (3)

The submatrix V(3×3), i.e. the upper left 3 × 3 block within U , is not a unitary matrix, since
V(3×3) V

†
(3×3) 6= 1(3×3). These deviations of unitarity of the “would-be standard” mixing matrix
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lead to flavour changing neutral currents (FCNC) which are present just in the up sector and
controlled by1 (

V V †
)
ij

= δij − Ui4U∗j4 . (4)

Summarizing, the addition of one isosinglet vector-like up quark provides:

• A new mass eigenstate in the up sector. It can give new contributions to amplitudes
involving virtual up quarks, as for example, in kaon or B meson mixings.
• A mixing matrix V which is not 3×3 unitary anymore, allowing for deviations of the mixing

elements Vij from SM values.
• Modified couplings to the Z boson in the up sector, including tree level flavour changing

and reduced flavour conserving couplings.

With these ingredients we can expect

• modifications in the bd sector that can alleviate the existing tensions,

• new contributions to the B0
s–B̄0

s (dispersive) mixing amplitude M (s)
12 that can significantly

modify its phase, and thus the Bs → J/ΨΦ time dependent CP asymmetry,
• that the deviations from 3 × 3 unitarity can change the Bd and Bs (absorptive) mixing

amplitudes Γ(q)
12 , and produce larger-than-standard values for the semileptonic asymmetries

AqSL,
• modifications in the rates of several rare decays.

2. Experimental constraints
To reflect the abundant experimental information that constrains modifications of the flavour
sector such as the ones introduced in the present scenario, we have considered the following
observables.

• Tree level observables, whose extraction from experiment is presumably unaffected by New
Physics (NP) effects. These observables include moduli of the CKM elements in the first
and second rows. For the third row the only relevant measurement is the one of the ratio of
branching fractions R = Br(t→Wb)/Br(t→Wq), R = |Vtb|2/(|Vtd|2 + |Vts|2 + |Vtb|2). The
physical phase γ, is also a tree level observable. The actual values are collected in table 1.
Finally, the decay B+ → τ+ντ is also a tree level process which participates in the so called
tensions in the bd sector2.

Table 1. Tree level observables [4, 6].

|Vud| 0.97425± 0.00022 |Vus| 0.2252± 0.0009
|Vcd| 0.230± 0.011 |Vcs| 1.023± 0.036
|Vub| 0.00389± 0.00044 |Vcb| 0.0406± 0.0013
γ (77± 14)◦ R 0.88± 0.07

Br(B+ → τ+ντ ) (1.13± 0.23)× 10−4

1 They are naturally suppressed by ratios m2/m2
T , where m denotes generically the standard quark masses [1].

This natural suppression of FCNC is crucial in order to make the model plausible.
2 Notice however that, as it is helicity suppressed and proportional to |Vub|2, sizeable NP contributions may
appear in different beyond SM scenarios, but not in our case.
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• Observables related to B0
d–B̄0

d and B0
s–B̄0

s mixings: we consider time-dependent CP
asymmetries AJ/ΨKS

and AJ/ΨΦ (the “golden” channel in each system), mass and width
differences ∆MBd

, ∆Γd, and ∆MBs , ∆Γs, additional CP asymmetries involving different
combinations of invariant phases, sin(2ᾱ), sin(2β̄+γ) (and cos(2β̄) which removes a discrete
ambigity in fixing 2β̄ = sin−1(AJ/ΨKS

)), and, finally, semileptonic asymmetries AdSL, AsSL
and AbSL. The actual values are collected in table 2.

Table 2. Bd and Bs mixing-related observables [4, 5, 7].

AJ/ΨKS
0.68± 0.02 ∆MBd

(0.508± 0.004) ps−1

AJ/ΨΦ 0.002± 0.0873 ∆MBs (17.725± 0.049) ps−1

sin(2ᾱ) 0.00± 0.15 sin(2β̄ + γ) 1.0± 0.16
cos(2β̄) 1.35± 0.34
AdSL −0.003± 0.0078 ∆Γd/Γd −0.017± 0.021
AsSL −0.0017± 0.0091 ∆Γs (0.116± 0.019) ps−1

AbSL −0.00787± 0.00196

• Representative rare decays of B mesons (table 3).

Table 3. Bd and Bs rare decays [4, 5, 8].

Br(B → Xsγ) (3.56± 0.25)× 10−4

Br(B → Xsµ
+µ−) (1.60± 0.51)× 10−6

Br(Bs → µ+µ−) (0 +2.25
−− )× 10−9

Br(Bd → µ+µ−) (0 +5.15
−− )× 10−10

• Observables from the kaon sector (table 4).

Table 4. Kaon mixing and rare decays [9, 10].

εK (2.228± 0.011)× 10−3

ε′/εK (1.67± 0.16)× 10−3

Br(K+ → π+νν̄) (1.73± 1.05)× 10−10

Br(KL → π0νν̄) < O(10−8)
Br(KL → µ+µ−) (6.84± 0.11)× 10−9

• Electroweak precision observables, in particular the oblique parameters S and T (U too,
but its role is negligible):

∆S = 0.02± 0.11 , ∆T = 0.05± 0.12 ,

with a correlation coefficient 0.879.
• D0–D̄0 mixing: we require that the Z-mediated, short distance, contribution to the D0–D̄0

mixing amplitude does not give a larger than observed mixing parameter xD. Notice that,
as long distance contributions to D0–D̄0 are also present, we are not requiring that the
short distance ones fully account for the observed xD = (0.8± 0.2) · 10−2.
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3. Results
We summarize the results of a complete numeric analysis of the model [3] in tables 5 to 8, where
experimental results (where available), SM expectations and the predictions of the model are
displayed together as colored bars corresponding to 1, 2 and 3σ ranges.
Table 5 illustrates how the mixing matrix can depart from the SM tight 3× 3 unitary structure:
invariant phases such as β and βs and mixing elements such as |Vtb| and |Vub|, span much wider
ranges than in the SM.

Table 5.

Quantity Experimental Exp. SM Model

γ 1.34 ± 0.24

β –
*

βs –
*

|Vub| (4.15 ± 0.49) × 10−3

Br(B+ → τ+ν) (1.13 ± 0.23) × 10−4

|Vtb| 0.88 ± 0.07

Table 6 illustrates how the model adequately reproduces constraints related to Bd and Bs
mixings, together with εK and ε′/εK . Notice in addition that the CP asymmetry in Bs → J/ΨΦ,
less constraining from the experimental point of view, can sizeable depart from SM expectations
(and it does so at a level that LHCb will be sensitive to).

Table 6.

Quantity Experimental Exp. SM Model

AJ/ΨKS
0.68 ± 0.02

∆MBd
(0.508 ± 0.004)ps−1

AJ/ΨΦ 0.002 ± 0.087

∆MBs (17.725 ± 0.049)ps−1

ǫK (2.228 ± 0.011) × 10−3

ε′/ǫK (1.67 ± 0.16) × 10−3

Table 7 addresses rare decays of kaons, Bd and Bs mesons. The model is in agreement with
the most constraining ones while departures from SM expectations can be produced, particularly
sizeable in the case of kaons.
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Table 7. N.B. Black vertical lines stand for Br( ) = 0.

Quantity Experimental Exp. SM Model

Br(K+ → π+νν̄) (1.73 ± 1.05) × 10−10

Br(KL → π0νν̄) –

Br(KL → µ+µ−) (6.84 ± 0.11) × 10−9

Br(B → Xsγ) (3.56 ± 0.24) × 10−4

Br(B → Xsµ
+µ−) (1.60 ± 0.51) × 10−6

Br(Bs → µ+µ−) (3.2 ± 1.4) × 10−9

Br(Bd → µ+µ−) < 0.95 × 10−9(95% CL)

Finally, table 8 displays the semileptonic asymmetries in Bd and Bs mesons. Current
experimental uncertainty on AdSL and AsSL is too large to be displayed. Departure from SM
expectations is clear possible within this model. Nevertheless, the value of AbSL measured at D0
cannot be reproduced, even though the “tension” that this measurement brings into the flavour
picture is softened. For completeness, the combination AsSL−AdSL, measurable at LHCb, is also
displayed.

Table 8.

Quantity Experimental Exp. SM Model

Ad
sl −0.003 ± 0.0078

*

As
sl −0.0024 ± 0.0063

*

Ab
sl −0.00787 ± 0.00196

As
sl − Ad

sl

*

Besides the information summarized in the previous tables, correlations among observables
provide a huge playground to put the model to the test.

• Figure 1(a) illustrates how deviations from SM expectations are correlated for AdSL and
Br(B → τν) (controlled by |Vub|); red ellipses correspond to SM 68%, 95% and 99% CL
regions.
• Figure 1(b) shows the strong correlation among AsSL and AJ/ΨΦ when non standard values

for both are present. The red cross indicates the SM prediction. Notice that within the SM
the allowed range of variation is too small to be resolved with the scales of the figure.
• Figure 1(c) shows how significant deviations from |Vtb| can only be achieved for relatively

light values of mT .
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• Figure 1(d) shows how both Br(KL → π0νν̄) and Br(K+ → π+νν̄) can deviate from SM
expectations (the red cross indicates the central value, the red bars over the axes stand for
the 68%, 95% and 99% CL ranges), and do following a well defined pattern.

b

(a) Ad
SL × 103 vs. Br(B → τν)× 104.

+

(b) As
SL × 104 vs. AJ/ΨΦ.

0.97 0.98 0.99 1
350
500

1000

1500

2000

2500

(c) mT (GeV) vs. |Vtb|.

+

(d) Br(KL → π0νν̄) × 1010 vs. Br(K+ →
π+νν̄)× 1010.

Figure 1. ∆χ2 profiles of different correlations; 68%, 95% and 99% CL regions are shown.

4. Conclusions
We have presented an overview of a detailed analysis of flavour data in the context of a simple
extension of the Standard Model, that includes an additional Q = 2/3 vector-like isosinglet
quark. Experimental constraints from all the relevant quark flavour sectors are imposed and
yet important deviations from Standard Model expectations can be present. This has been
illustrated with different individual observables and important correlations.
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