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Abstract

The problem of high-energy multi-turn injection into a constant 

gradient electron synchrotron from a linear accelerator has been studied. 

The injected beam is characterized by a constant current with a well 

defined duration, a uniform energy distribution, and unspecified distri­

butions in vertical and radial phase space. Calculations yielding the 

optimum synchrotron parameters and surfaces of capture efficiency over 

the radial phase space have been made assuming an idealized synchrotron 

with the design parameters of the Caltech machine. On the basis of these

calculations and the parameters of a commercially available linac, an 

upper limit of 1012 captured electrons for 10 Mev injection and half that 

at 5 Mev can be set.
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I Introduction

The number of particles ultimately accelerated to high energies in 
a synchrotron is determined by the characteristics of two complicated 
systems: the injector and its associated deflector, and the synchrotron 
itself. The injector and deflector characteristics determine the distri­
bution in phase space of the injected particles while the synchrotron 
characteristics define a region of phase space in which a particle's 
parameters must lie in order that it be accelerated. The basic problem 
of injection is then the maximizing of the overlap of these two regions. 
This report is devoted to the determination of the acceptance region of 
an idealized synchrotron, i.e., one described completely by the linearized 
synchrotron equations.

II General Statement of the Problem and Basic Assumptions

It will be assumed that all particles are injected into the machine 
at a certain azimuth and that they are highly relativistic. Then an in­
jected electron is characterized by the instant τ it passes through a 
vertical plane at the injection azimuth, its energy E, its horizontal and 
vertical coordinates x, y in the injection plane, and its angles x ', y' 
with respect to a tangent to the equilibrium orbit at this azimuth. Let 
the number of particles dn in a volume d(6)V of this six dimensional 
space be

dn = f(E, τ, x , y, x ', y')d(6)V

where

d(6)V = dE dτ dx dy dx' dy'

Let g(E, τ, x, y, x ', y') be a bivalued function with value one if a par­
ticle with these coordinates is ultimately accelerated to high energies 
and zero otherwise. Thus the total number of particles accelerated is

N = ∫ f g d(6)V (1)

where the integral is taken over the entire space. In an ideal machine,
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the function g is determined by the aperture geometry and the detailed 
manner in which the r.f. accelerating voltage is turned on. It will be 
assumed that the r.f. is turned on in a very short time to an amplitude 
V, so that g will be parametrically dependent upon t1, the r.f. turn-on 
time, and V, its amplitude (see Appendix I for discussion of this point).

For fixed values of E, x , y, x ', y', the function g changes from 
one to zero in each r.f. period. Thus, if f does not change appreciably 
on this time scale, the bivalued function g(Ƭ ) may be replaced with little 
error by its average over an r.f. period at time t. This new continuous 
function will be designated ρ(t) where the argument t is defined only to 
within one r.f. period. Thus, we have

N = ∫ f(E,t,x,y,x',y') ρ(E,t,x,y,x',y';V,t1)d(6)V (2)

In an ideal machine, there exists no coupling between the vertical 
motion of a particle and any of its other coordinates so that the condi­
tions on the vertical acceptance of the synchrotron are independent of 
the other coordinates. Thus we can write

ρ (E,t,x,y,x',y') = ρV(y,y') ρh(E,t,x,x') (3)

Also, although it is by no means necessary, we shall assume that the 
variables of the injected beam are also independent to some extent. In 
particular, we assume that

f(E,t,x,y,x',y') = I(t) fE(E) fx(x,x') fy (y,y') (4)

where ∫ fE(E)dE = 1

∫ fx(x,x') dxdx' = 1

∫ fy(y,y') dydy' = 1

and I(t) is the total injected current. Thus, one stringent condition 
implied by this assumption is an achromatic deflection system. Under 
these conditions, then, the multidimensional integral for N may be decom-
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posed into the product of two integrals, so that

N = αvNh

where

αv = ∫ ρv(y,y') fy (y,y') dy dy' (6)

Nh = ∫ I(t) fE(E) fx(x,x') ρ h(x,x',E,t) dx dx' dE dt

III The Conditions Which Determine ρ for an Ideal Machine

(a) The vertical acceptance ρν . If s is path length along an 
electron's equilibrium orbit in the synchrotron (s = 0 at the injection 
azimuth), and y is the vertical deviation from this orbit, then in an 
ideal machinel)

d2y/ds2 + hv(s)y 
= 0

(7)

where hv(s) is a periodic function determined by the magnetic field in 
the machine. The motion described by this equation is the vertical beta­
tron oscillation. If ymax(yo , yo ') is the largest value of y attained by
a particle with initial conditions yo, yo ' (y must be bounded), we 
clearly have

ρv(yo, yo') = {1 if ymax(yo, yo') 

< b             

                    {0 if ymax(yo, yo')≥ b

(8)

l) For the theory of the electron synchrotron, see, for example, R. R. 
Wilson, Handbuch der Physik, 44, 170 , (1959) .
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where b is the smallest distance from the equilibrium orbit to the ver­
tical defining aperture in the synchrotron. It can be shown that the 
condition

ymax(yo,yo')=b
defines an ellipse in the (yo, yo ') plane. Thus αv is that fraction of 
the beam which falls inside this ellipse. Fig. 1 gives this vertical 
acceptance ellipse for injection into the Caltech synchrotron at the 
beginning of a magnet section.

(b) The radial acceptance ρ h . The determination of the function 
ρ h(x,x',E,t; V,t1) is not so trivial. For, in addition to the radial 
betatron oscillations which particles execute about their instantaneous 
equilibrium orbits, the equilibrium orbits themselves execute radial 
oscillations after the r.f. is turned on.

To every energy E, there corresponds a closed instantaneous equili­
brium orbit in the synchrotron, defined by the condition that particles 
with energy E, launched on it, will remain on it. In general, however, 
particles of this energy will follow paths which deviate by an amount 
q(s) in radius from it, where

d2q/ds2 +hh(s)q 
= 0

(7')

and hh(s) is a periodic function determined by the magnetic field. The 
amplitude of these radial betatron oscillations is determined by qo and 
qo ', the initial radial displacement from and angle to the equilibrium 
orbit. Since the radius of the equilibrium orbit for a particle depends 
upon its energy, qo depends not only on xo (the position of the particle 
in the injected beam) but also upon E. Furthermore, before the r.f. is 
turned on, the equilibrium orbit associated with a given energy migrates 
toward the center of the machine due to the rise in the magnetic field 
with time. Thus, qo also depends upon t, the time at which the particle 
is injected.
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After the r.f. is turned on, the energy which particles have is no 
longer conserved so that their equilibrium orbits stop shrinking. Rather, 
the orbits oscillate about a synchronous orbit defined by the condition 
that a particle on it traverses the machine in an integral number of r.f. 
periods. The energy associated with the synchronous orbit will be called 
the synchronous energy, Es. Also, the radial distance from the lip of 
the deflector to the synchronous orbit will be taken as the radial half 
aperture, a. Fig. 2 illustrates these distances in the horizontal plane 
at the injection azimuth at the instant a particle is injected.

Since the magnetic field increases an amount ΔΒ during one turn, 
a relativistic particle will remain on the synchronous orbit only if, in 
one turn, it gains an amount of energy

u = eRs ΔΒ 

where Rs is the radius of the synchronous orbit in a magnetic field sec­
tion. Hence its phase with respect to the r.f. accelerating voltage must
be øs where 

u  =  V sin øs (10)

However, a particle whose equilibrium orbit does not coincide with 
the synchronous orbit or whose phase is not øs when the r.f. is turned on 
will execute phase oscillations and concomitant energy and equilibrium 
orbit oscillations. The equations governing these are

ø = M(1 - (V/u) sin ø)

X  =  N ø
(11)

where ø is phase with respect to the r.f., X is radial deviation of the 
equilibrium orbit from the synchronous orbit, and M and N are (adiabatic) 
constants depending upon the synchrotron parameters. A first integral 
yields
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X  =  C  √ ( ø  +  (cosø/sinøs) - K)
(12)

where C  = N √M and K is a constant of integration determined by initial 
conditions. From (12) we find that

x m a x  =  
C  √ ( ø s  +  (cosøs/sinøs) - K) (12')

is the maximum deviation from the synchronous orbit during the course of 
the acceleration. Thus, if qmax is the maximum amplitude of a particle's
radial betatron oscillations, its initial conditions must be such that 
the relation

x m a x  +  qmax < a (13)

be satisfied if it is to be accelerated to high energies.
However, even if this relation is satisfied, it will not be accel­

erated if it does not survive from the instant it is injected till the 
r.f. is turned on. If the magnetic field did not rise in this time 
interval, the particle would surely be lost since it would strike the 
deflector lip on a subsequent return to the injection azimuth. However, 
due to the shrinking of the equilibrium orbit, this does not necessarily 
happen. If we define Pn as the radial distance measured toward the 
machine center from the deflector lip to the particle's instantaneous 
position at the injection azimuth on its nth return to it, it is clearly 
necessary that

Pn >  0 , n = 1, 2, 3,......   

if the particle is to miss the deflector before the r.f. is turned on. 
This distance is made up of two parts: one due to the displacement of 
the particle from its equilibrium orbit and the other due to the migra­
tion of the equilibrium orbit itself. Since the betatron oscillation 
equation is linear, the radial deviation from the equilibrium orbit must
be a linear function of the initial deviations, qo and qo', but with 
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coefficients which are dependent upon turn number, n . In the linear 
approximation, the equilibrium orbit corresponding to any energy shrinks 
a constant amount σ on each turn. Thus we have

Pn = nσ  +(Αn qo + Bn qo') (14)

IV Calculation of the Radial Capture Efficiency in Various Approxima-
tions.

(a) Persico's approximation. If the injected particles are
assumed to be monoenergetic and launched tangent to the equilibrium orbit
from a point, we have the situation studied in detail by E. Persico2) 
It is assumed that the duration of injection is comparable to the time 
required for the equilibrium orbit to migrate across the half aperture. 
The small effects on the betatron oscillations due to the straight sec­
tions will be ignored. Thus, no particles injected after the equilibrium 
orbit has passed the injection point are lost due to striking the deflec­
tor lip. If the time origin be taken as the instant the equilibrium 
orbit coincides with the injection point, we have

qmax = |qo| = γ |t |

where γ is the rate of shrinkage of the equilibrium orbit.
Hence, all particles whose initial phase with respect to the r.f. 

is such that the conditions

xmax < (a - γt) ≡  p (15)

and
t > 0

2) E. Persico, A Theory of the Capture in a High Energy Injected Synchro- 
tron, Nuovo Cimento Suppl. (Ser. 10) 2, 459 (1955). This section follows 
closely Persico's treatment.
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( ø o  +  
(cosøo/sinøo))

where øo is a particle's initial phase. Thus, if øomax (α; øo) and 
øomin (α; øo) are the two solutions to the equation 

α =  P / C  =  √ ( ø s  +  ( c o s ø s / s i n ø s ) )  -  ( ø o  +  ( c o s ø o / s i n ø s ) ) ,
(16)

particles for which

ø o m i n  <   ø o  <  ø o m a x

will be accelerated. Thus, in keeping with the approximation which led 
from g(Ƭ) to ρ (t), we have

ρh(E=Es, t, x=0, x'=0; øs) = øomax - øomin / 2π (17)

This function is displayed versus α for several values of øs in Fig. 3.
To proceed further, it is necessary to know the time dependence 

of the current I(t). We shall assume that the current is turned on 
sharply at t = ti and held at a constant value I until it is turned off 
sharply at t = t f. Then

Nh (øs , ti, tf) = Iθeff (18)

where

Iθeff = tf ∫ ti ρ (t; øs) 
dt

3) It is, of course, assumed that the particle energy is Es .

are satisfied will he accelerated3); the quantity p will be called the 
maximum available aperture for synchrotron oscillations. Since x =  0 
when the r.f. is turned on, the constant K in equation (12) is
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and is the effective duration of injection.
By changing variables from time to α , the normalized aperture 

available for synchrotron oscillations, we can express θeff as

C/γ 
 αi ∫ αf ρ(α; øs) 

dα
(19)

This integral is independent of machine parameters except for øs; thus it 
is useful to define the universal function

G(α; øs) = α ∫ 0 ρ(α; øs) dα (20)

This function has been computed by Persico2) for α < 1.2 and øs from 30°
 

to 80°. Its extension4) to α = 4 and for angles down to 4° is shown in 
Fig. 4. It should be noted that the parameter α has a maximum value for 
a given machine. In particular

αmax = a/C

corresponding to those particles injected just when the equilibrium orbit 
passes the injection point. Furthermore, for relativistic particles, C 
is proportional to

1/√Es

so that αmax increases as the root of the injection energy in a given
synchrotron.

Since the characteristics of the injector will be fully specified 
by one more parameter, the duration of injection θ, this will be taken as 
an independent variable. We then wish to find the values of ti and øs.

4) This integral as well as all others given in this report were evalua­
ted numerically on a Burroughs 220 digital computer. A resume of calcu- 
lational procedures is given in Appendix III.
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which maximize θeff for constant θ. It is clear that ti. should be taken i
as the instant that the equilibrium orbit passes the injection point
since this leads to the smallest average betatron oscillation amplitude5). 
The optimum value of øs for a given Es, injection duration θ = (tf - t i), 
and machine can be determined by using the curves in Fig. 4 and the 
appropriate values of C and γ. The pertinent machine constants for the 
Caltech synchrotron are shown in Tables I and II. Figs. 5, 6 show θeff 
as a function of øs for various θ 's at different energies.

(b) Arbitrary energy distribution. In this section, the function

ρh(E, t, x = 0 x' = 0)

will be considered in detail. For convenience, we shall consider ρ as a 
function of qo, the initial displacement of the injected particle from 
its equilibrium orbit, rather than time.

In the linear approximation, the radial distance between two 
equilibrium orbits is proportional to the difference of their correspon­
ding energies and is independent of their radii. Thus, if Rs is the 
radius corresponding to energy Es and R to energy E, we can write

X = (R - Rs) = κη (21)

where κ is the proportionality constant and

η =  

(E-Es)/Es
(22)

5) Strictly speaking, θeff will be larger if t i. is taken earlier by one 
revolution period than the indicated instant. For particles injected at 
this time also miss the deflector and the average betatron amplitude will 
be in fact slightly smaller. This is a negligible effect, however, in 
the assumed multiturn injection.
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TABLE I.

Energy Independent Parameters for Caltech Synchrotron.

Synchronous orbit radius, Rs 376 cm

Energy gain per turn, u 720 ev

Rate of rise of magnetic field 64 kg/sec

Field index, n 0.6

R.F. harmonic number, k 4

Number of straight sections 4

Ratio of peripheral length of synchronous orbit to 
that of a circle of radius Rs, Λ 1.264

Radial half aperture, a 13 cm

Vertical half aperture, b 3 cm

TABLE II.

Energy Dependent Parameters.

Synchronous energy, Es 10 5 Mev

γ 0.64 1.16 cm/µsec

C 1.60 2.16 cm

Orbit shrinkage per turn, σ .064 .116 cm

αmax (corresponding to t i = 0) 4.00 2.95
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If once again we take the time origin as the instant that the equilibrium 
orbit corresponding to the synchronous energy coincides with the point of 
injection, we have

qo = γt - κη (23)

and since qmax = |qo| ,  we have for the aperture available for synchrotron 
oscillations

p = a - |γt - κη| (24)

If a particle is injected before its equilibrium orbit has migrated past 
the injection point, it will strike the deflector on its first traversal 
of the machine. Thus, we have

ρ = 0
when qo <  0. 

When the accelerating voltage is turned on, there will be particles
in the machine with equilibrium orbits differing from the synchronous
orbit. Thus, phase oscillations are excited by initial radial deviations,
X, from the synchronous orbit, as well as initial phases øo differing from
øs. Since Xmax (X,  øo) ≥ |x| in general, the capture efficiency will be  
zero if |x| > p . Also for a given equilibrium phase angle øs, there is 
a maximum amplitude of synchrotron radial oscillation for captured par­
ticles. If this maximum is X max then the capture efficiency is zero if 
|x| ≥ Xmax. Equality in this condition gives the maximum possible energy 
spread that the synchrotron can accept. Furthermore, since a particle 
can utilize only Xmax of its aperture available for synchrotron oscilla- 
tions, ρ is independent of p for p >  Xmax. These features of the capture 
efficiency are illustrated in Fig. 7.

The function ρ(p,η) may once again be computed using equation (12')
with

K  =  ø o  +  (cosøo/sinøs) - (X/C)2
(25)
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As before

ρ  (qo, η) = (øomax - øomin) / 2π (26)

and

  Nh = ∫ ∫ I(t) fE(E) ρ(qo,η) dE dt
t E 

(27)

Making the same assumptions about the current as before, we can perform 
the time integration and obtain the average capture efficiency as a 
function of energy, parametrically dependent upon t i, θ, and øs. With 
fE(E) given, the effective duration of injection can be determined.
Fig. 8 gives a typical capture efficiency as a function of η, but aver­
aged over time.

For a given energy distribution fE and duration of injection θ,
one can maximize θeff by appropriate choice of t i and øs. This has been  
done for a uniform energy distribution for the Caltech synchrotron at two 
injection energies, 5 and 10 Mev. In this case, we take

FE(E) =  1/ΔE
so that I is to be interpreted as the current contained in an energy 
interval ΔΕ. Thus, we can write

Nh = I (1/(ΔE/Es)) ∫t ∫η I(t)fE(E) ρ(qo, η) dη dt  

If we take

Δ E / E s  = 1 per cent

so that I1% is the current in a 1 per cent energy spread about Es, then

Nh = I1% θeff
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where θeff = ∫t ∫η ρ(qo,η) d(100η) d t

Fig. 9 shows the variation of θeff  with ti for a typical value of
øs; Fig. 10 gives its variation with øs for a constant t i. Finally, 
Figs. 11 and 12 give the maximum value of θeff and the corresponding 
optimum phase øs at the two energies as functions of injection duration. 
These curves also give the percentage energy range over which particles 
are accepted at the optimum values of ti and øs.

(c) Injection from a distributed source with an angular distri­
bution. The major modification to the preceding considerations is the 
fact that the consequences of the condition

Pn > 0 
are no longer trivial. Of much less importance is the fact that the 
amplitude of the radial betatron oscillation qmax is no longer simply 
|qo|; instead q2max is a quadratic in qo and q 'o. Also, it is necessary 
that on its first traversal of the machine a particle stay within the 
aperture. This condition has not been explicitly incorporated in the 
calculations; rather, it has been assumed that the good field aperture 
extends to a sufficiently large radius for it to be always satisfied. In 
practice, this implies that the deflector lie about 8σ within the good 
field region.

It is again convenient to take qo as an independent variable since 
the condition that particles not strike the deflector on any subsequent 
turn can be conveniently expressed using it and because the aperture 
available for synchrotron oscillations can be readily expressed in terms 
of it.

By using Eq. (14), we can write the condition for missing the de­
flector in the form

qo > qo (q'o; xo)
(28)

where qo (q'o; xo) is that value of qo such that P = 0 on some turn.  
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Fig. 13 gives the family of these functions for the Caltech synchrotron. 
Thus, for given values of xo and x 'o = q'o, the same considerations as in 
the previous section can be used to find ρh , its average over time, and 
the effective injection duration for a uniform energy distribution. It 
is only necessary to set

ρ=0

when qo > qo(q'o; x o) and change the expression for qmax to take the
initial angle into account. The results of such calculations for various
values of xo and x 'o yield a surface over the (xo, x'o) plane 

  

θ e f f  ( x o ,  x ' o ;  t i ,  θ ,  ø s ) .

Such surfaces have been computed for typical values of θ using the value 
of øs which maximizes

θ e f f  ( x o  =  0 ,  x ' o  =  0 )

and values of ti near its optimum. These surfaces are shown in Figs. 14 
to 18 for the Caltech synchrotron as contour maps. The four diagrams for 
10 Mev show the sensitivity of the shape of the capture efficiency sur­
faces to changes in the injection parameters.

V Application to the Caltech Synchrotron

(a) The present injection system. The principal components of
the present injector are a 1 Mev pulse transformer and a 90° electrostatic
deflector. A 60 ma. pulse of electrons at the exit from the deflector is
maintained for several revolution periods, corresponding to about 1011
electrons. Tne quality of the injected beam is about l/5 cm - milli-
radians6) at each energy, but, due to the chromatic nature of the deflec­
tor, the position of this "spot" in radial phase space is a function of

6) This assumes a cathode l/2 cm in diameter at a temperature of
1500°C.
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the particles' precise energy. However, at a given instant, the injected 
beam has an entirely negligible energy spread (thermal) and provisions 
are taken to maintain the energy constant to within terms cubic in time. 
With these injection characteristics, one would expect beam intensities 
in the synchrotron of a few times 1010 electrons. In fact, typical in- 
tensities of about 2 x 109 and, rarely, 4 x 109 electrons are observed.

This discrepancy of an order of magnitude is believed to be due to 
the low injection energy. Since no one has yet succeeded in calculating 
the observed intensities, it cannot be said that the reason for the dis­
crepancy is entirely understood. However, the injection energy is suspect 
for the following reasons:

1) The injection field is only 13 gauss, well below even the 
iron's remnant magnetization. This necessitates elaborate correc­
tive measures to properly shape the injection guide field. Mea­
surements made by R. Macek of the vertical betatron oscillation 
frequency near injection indicate that the effective vertical field 
index varies in time and dips down to very near 0 .5. Thus, the 
machine is near a dangerous half-integral resonance for some time 
near injection.

2) An upper limit on the number of electrons which can be accel­
erated is set by the space charge forces generated by the beam.
The defocussing force due to the electrons themselves tends to re­
duce the vertical and horizontal betatron oscillation frequencies 
while the focussing force due to positive ions created by the beam 
tends to increase these frequencies. For purposes of  estimating 
these perturbations, we ignore the effects of the conducting walls 
and assume the beam is long and uniformly distributed within a 
circular cross section. The increase in the vertical and hori­
zontal restoring forces is easily shown to be

 2π re mc2 [n+ - n- (m/E)2]ξ

where re = 2.82 x 10-13 cm, the classical electron radius  
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m = mass of electron
E = energy of electron in beam

n+ number of quasi-stationary positive charges minus the 
number of quasi-stationary negative charges per unit 
volum e

n- = number of high energy electrons per unit volume
ξ = q or y as the case may be.

Letting νξ be the ratio of the betatron frequency to the circula­
tion frequency ω  and δνξ its space charge perturbation, we have

δνξ  =  ( π  re c 2 /ω2)(1/νξ ) ( 1  
+  Λ / 2 ) 2  [ n + ( m / E )  -  n - ( m / e ) 3 ]

At operating pressures in the machine, the average time required for an 
electron to produce an ion is of the order 100 µsec. Since it is not 
expected that the beam will exhibit a net positive charge, we shall assume 
that the ratio of the number of positive ions to the number of electrons 
increases from zero to about one in the first hundred µsec after injec­
tion, and then remains about one.

The most serious resonances near the operating point are at 
νq =  2/3 and νq =  3/4 which are within about ± .05 of the ideal value ofνq 

= .71. The number of electrons in a beam 3" in diameter filling about 
half the machine perimeter which will produce this large a δνq at some

 time after injection is 8.5 x 1010. The limitation in this case is the
over-compensation of the positive charge density; in the other extreme 
of entirely neglecting the ions, one finds that the corresponding number 
is 2.5 x 1011.

However, it has been pointed out by H. Snyder that the
synchrotron phase oscillations produce a peripheral compaction of the 
beam. In particular, injected particles within an energy spread ΔΕ and 
initial phases near the equilibrium phase are compressed into a short 
bunch twice per phase oscillation. The ratio of minimum to maximum longi­
tudinal length of a given number of such electrons is
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√(Es/u)(tanøs/2πΛ (1 -n )k)   (ΔE/Es

where Es = synchronous energy
U = energy gain per turn

øs = equilibrium phase
Λ

=

ratio of peripheral length of machine to an equivalent 
circular machine

k = r.f. harmonic number
Near injection, this constant has a value of .007 per kev of energy 
spread.

Thus, for a 1 kev energy spread in the injected beam, the negative 
space charge density will take on values about 100 times larger than that
used above. For this large an n-, the positive ions can be neglected and
a few times 109 electrons will depress the operating point down to the 

νq = 2/3 resonance twice per synchrotron oscillation. A smaller energy 
spread in the injected beam will lead to a proportionally smaller number 
of electrons.

Clearly, an order of magnitude calculation of this nature can only 
indicate what physical effects are of importance. No one to our know­
ledge has as yet undertaken a detailed consideration of the coupling of 
synchrotron to betatron oscillations through space charge effects. How­
ever, the above crude calculation suggests that the Caltech synchrotron 
may be space charge limited.

(b) A 5 to 10 Mev linac injector. It is known that the errors in 
the synchrotron guide field tend to stay constant in time while the 
average field increases linearly; thus, at higher energies, the uncorrec­
ted field shape is more nearly ideal. Furthermore, any space charge 
effects are depressed at higher energies. However, the wide energy 
distribution in the output of the linac and the slow spiraling rate of 
high energy orbits in the synchrotron must be taken into account. It was
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for this purpose that the present study was undertaken. Since an ideal 
machine has been assumed throughout, which the Caltech synchrotron is 
decidedly not, the calculated beam intensities can only he taken as upper 
limits.

The pertinent parameters for the electron linac manufactured by 
the Applied Radiation Corporation are as follows:
A. Current and Energy Resolution -

In the output energy range of 5 to 10 Mev, 100 ma or more is avail­
able in a 1 per cent energy spread. The total current is about l/2 
amp.

B. Beam Quality -
Spot sizes of < 0.3 cm have been observed, but this is a function of 
beam tuning. A spot size of 0.6 cm can, however, he guaranteed. The 
angles are less than 1 milliradian.

From Figs. 11 and 12, a real time duration of injection beyond 
which it is not especially profitable to operate the linac can be set; 
these times are indicated as θopt in the figures. We shall assume that 
the linac can maintain a beam for at least this length of time. In 
Table III we give the calculated synchrotron parameters which result in 
optimum performance for injection from a point source with a uniform 
energy distribution. Figs. 14 through 18 indicate that so long as the 
beam does not have too large a radial size at its entrance into the 
synchrotron and a quality of .6 milliradian-cm, one can expect the dis­
tributed source to be about 70 per cent as efficient as a point source. 
Thus, taking θopt as the actual duration of injection, we find an effec­
tive duration of injection of 1.5 µsec at 10 Mev and half that at 5 Mev.
Since this number is normalized to the current in a 1 per cent energy

12interval, the number of accelerated electrons is about 10 for 10 Mev
injection and half that for 5 Mev injection. The parameters of Table III
may be used to make an estimate of the space charge limited number of
electrons as was done for the present injector. Making the same assump-
tion concerning the positive ions, one finds that 1.2 x 1012 is the 
limiting number of electrons for 10 Mev injection and 7.0 x 1011 for 5 Mev
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TABLE III.

SUMMARY OF RESULTS FOR TANGENTIAL INJECTION FROM
A POINT WITH A UNIFORM ENERGY DISTRIBUTION

Synchronous Energy, Es 5 10 Mev

Optimum Injection Duration, θopt 6.0 11.2 µsec

Effective Duration at θopt 1 . 1 2.2 µsec

Accepted Energy Spread at θopt 0.9 0.9 %

Optimum Synchronous Phase, øs 15° 10°
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injection. Thus, the actual intensities may very well be space charge 
limited. However, if the ions are ignored, the limiting intensities are 
about an order of magnitude larger. This suggests that an ion sweeping 
arrangement in the machine may be useful in attaining the calculated beam 
intensity with high energy linac injection.



24

Appendix I The Effect of Turning On the Accelerating Voltage in a
Finite Time7)

In practice, the voltage on the cavity is turned on according to 
some law

V = V(t)

characterized by a turn-on time T. Including this function in the analy-
sis complicates it in two ways. First, a particle's phase oscillation
initial conditions (øo, Xo) at time t when the turn-on is started will 
be transformed into different values (ø'o, X'o) at the time t1 = (to + T) 
when the voltage has essentially reached its final value Vf . From time 
t1 on, the phase oscillations are described as in the body of the report. 
Secondly, during the interval t0 to t1, equilibrium orbits no longer 
shrink linearly with time, but the precise mannrr in which they move de­
pends upon øo and Xo . Thus qo is no longer a simple linear function of 
time and energy. The importance of the first effect depends upon the 
relative sizes of T and the circular period of the synchrotron oscilla­
tions -

(Tsync. osc./2π) ;
 

that of the second, upon the relative sizes of T and the time required 
for an equilibrium orbit to migrate across the half-aperture a. These 
times are given in Table IV for the Caltech synchrotron at 5 and 10 Mev, 
where equilibrium phases øs indicated by the fast turn-on computations 
have been used.

7) In the approximation of monoenergetic injection tangent to the machine 
from a point for a time equal to that required for the equilibrium orbit 
to shrink from the injection point to the synchronous orbit, Persico and 
Bernardini have calculated the effect of power law voltage rises, i.e., 

V(t) = Vf(t/T)n for t < T and constant thereafter. See Teoria della Cattura 
Semirapida e Lenta, Rapporto n .12, I.N.F.N. - Sezione Acceleratore.
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TABLE IV.

Synchronous Energy 5 10 Mev

Time for equilibrium orbit to migrate 
13 cm 11.2 20.3 µsec

Circular period of synchrotron oscilla- 
tion for øs as in Table III .62 .70 µsec

Final peak voltage to obtain øs 2.8 4.1 kev
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Appendix II The Coupling of Horizontal to Vertical Betatron Oscillations

It has been a tacit assumption in all the calculations made that it 
is feasible to allow horizontal betatron oscillations with amplitudes of 
the order of the horizontal aperture. However, this will not be the case 
if there is any appreciable feeding of energy from horizontal oscillations 
to vertical since the vertical aperture is relatively small. Hence, it 
is pertinent to examine the coupling between these two oscillations. 

Coupling between the modes arises from several sources:
1) The effect of construction errors on the linear terms of the restor­

ing forces:
a) torsional misalignment of the guide field
b) azimuthal dependence of the guide field giving rise to an 

azimuthal component of the magnet field.
2) Non-linear terms in the restoring forces in a perfect machine.
3) The effect of constructional errors on the non-linear terms.

If the construction errors are taken to be of first order in smallness as 
are the deviations from the equilibrium orbit, then the indicated coup­
lings are of the following orders:

1) 1st and higher
2) 2nd and higher
3) 3rd and higher

We shall be interested here only in terms up to second order, so that (3) 
will be ignored. We shall first consider only the longitudinal field and 
the non-linear terms, deferring torsional misalignments till later. Let 
the vertical component of the magnetic field in the plane of symmetry 
(y = 0) be

By (q,o,z) = Bo [1 - n(q/R) + (1/2) (n2 - R (∂n/∂x)) (q2/R2) + . . . . . ]
  

where q is radial displacement from an equilibrium orbit of radius R and 
z is distance along it. In the ensuing discussion, we shall neglect the 
effects of the straight sections so that Bo and n depend upon z only 
because of constructional errors. Then it can be shown that up to terms
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bilinear in x , y and their derivatives8), that the equation describing 
the vertical deviations from the equilibrium orbit is

y" +  n y  =  (q /R)y " +  (q'/R)y' -  B ' o / B o  ( q ' / R ) y  
+ [n2 - n - R(∂n/∂x)] (q/R)y

where primes denote derivatives with respect to Ф = z/R. Since construc -
tional errors are considered to be of first order in smallness, the terms
in B'o and ∂n/∂x are of higher order than is here being considered. Thus 
we have

y" + k2y y = d (Ф)

where

d(Φ) = (q/r) y" + (q '/R) y' - k2y k2x (q/R) y

k2y = n

k2x = 1 - n 

If we take for y and q in the perturbation term their unperturbed 
values, we can obtain an approximate solution to this equation. Since 
the driving term is than a product of two sinusoids, a particular solu­
tion can be written by inspection. In fact, if

qunpert. =  R e i  a  e  i k x Φ  ,  a  =  A  e i α

y u n p e r t .  =  R e j  b  e  j k y Φ  ,  b  =  B  e j β

where A, B, α, β are real, then (suppressing the two real value signs) 
we have

8) See, for example, P. A. Sturrock, Nonlinear Effects in Alternating - 
Gradient Synchrotrons, Ann. Phys. 3, 113 (1958), page 119.
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d ( Φ ) ≅  ( a b / R )  [  - k 2 y  
( 1 + k 2 x )  +  i  j  k x  k y ]  e  ( i k _ x  +  j k _ y ) ^ Φ

and a particular solution to the equation is

Δ 1 y ( Φ )  =  ( a b / R )  ( ( - k 2 y  ( 1 + k 2 x )  +  i  j  k x  k y ) / ( - k 2 x  +  2  i  j  k x  k y ) )  e  
(ik_x + jk_y)^Φ 

Hence, if yo and y'o/R are the initial vertical displacement from and 
angle with respect to the equilibrium orbit, the non-linear coupling 
effectively modifies then by

Δ1yo  = -  Rei Rej ( ab/R)((-k2y 
( 1 + k 2 x )  +  i  j  k x  k y ) / ( - k 2 x  + 2 i j kx ky))

Δ 1  ( y ' o / R )  =  -  R e i  R e j  ( i  k x  
+  j  k y ) ( a b / R ) ( ( - k 2 y  
( 1 + k 2 x )  +  i  j  k x  k y ) / ( - k 2 x  + 2 i j kx ky))

Then we can write

y = (yo + Δ1yo) cos kyΦ + (y'o +  Δ1y'o) sin kyΦ + Δ1y

Using the parameters for the Caltech synchrotron, we can easily find 
upper limits for these perturbations to be

Δ1yo  and Δ1y < .06 inches

Δ1 (y'o/R) < .3 milliradians

We now consider the effect of torsional misalignments. If the 
guide field at each point along the orbit is ideal about a local plane 
of symmetry but this symmetry plane is rotated through an angle 
τ(Ф) << 1 about the equilibrium orbit, then with reference to coordinates
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taken in and perpendicular to the ideal symmetry plane, the magnetic 
field is

B = B ideal - Δ B 

where Δ Β  = -2 n Bo τ  (y/R) 1y -  Bo τ (1 - 2n (q/r)) 1q

and 1q and 1y are unit vectors in the radial and vertical directions.
This field increment gives an additional force on the electron so that 
the vertical oscillation equation becomes

y" + k2y y = 2 n q τ - R τ

Since τ is periodic in Ф with period 2π, we can write

τ = Σm αm e jm Φ 

Then the particular solution which yields the first order driving 
term -R τ is

Y(Φ) = R Σm (αm/m2-k2y) ejmΦ  

In the absence of any further perturbations, an electron starting on the 
orbit defined by the periodic function Υ(Φ) will stay on it. Thus, the 
first order perturbation arising from the torsional errors results in a 
shift of the equilibrium orbit from its ideal position. letting y now 
designate deviations from the orbit defined by Υ(Φ), we have

y" + k2y y = 2 n q τ

Exactly as before, we can write the particular solution to this equation 
using the unperturbed value for q

Δ2y = 2 n a e ik_xΦ Σm (αm ejmΦ)/(k2y = (i kx + j m)2)
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This results in an effective perturbation to the initial conditions

Δ 2 y o  =  - 2  n  a  Σ m  ( αm / ( k 2 y  +  (i kx j m)2)

Δ 2  ( y ' o / R )  =  - 2  n  
a / R  Σ m  ( ( i  k x  +  j  m) αm/(k2y + (i kx j m)2)

These expressions could be used to set limits on the coefficients 
αm to keep the coupling tolerable. Alternatively, the coefficients could 
be estimated and the perturbations calculated. We shall attempt the 
latter.

From the residue of carbonized vacuum pump oil on the outer vacuum 
chamber wall caused by radiation at high energies ("beam stain"), one can 
measure the vertical deviations of the equilibrium orbit from the ideal. 
In addition to torsional misalignments, these deviations are also caused 
by vertical displacements of the magnetic symmetry planes from the ideal 
geometric plane. Although we might obtain underestimates for αm due to 
possible destructive interference between these effects, we shall assume 
that all wanderings of the equilibrium orbit are caused by torsional 
misalignments.

Beam stain measurements9) were made in April, 1959, and they are 
fit very well by the function

Υ(Φ) = -.178 - .161 cos Ф - .241 sin Ф + .036 cos 2 Ф

-.006 sin 2 Ф (in.)

Using these coefficients, we obtain generous upper limits for the 
perturbation as follows

9) As a result of these measurements, measures to restore the equilibrium 
orbit to its optimum position were taken. Thus, the present calculations, 
using these measurements, will presumably yield over-estimates.
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Δ2yo < .02 inch

Δ2 (y'o/R) <  .1 milliradians

Δ 2 y  < .05 inch

Thus, with reservations concerning the torsional misalignments, it 
appears that couplings will not make the proposed large radial oscilla­
tions unfeasible.
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Appendix III Computational Procedures

The calculations leading to the capture efficiency diagrams have 
been performed on a Burroughs Datatron 220 digital computer. Two primary 
programs were written. We here give a resume of the formulas and numeri­
cal techniques used in these programs.

1) The first program computes the effective duration of injection for 
tangential injection from a point source with a uniform energy distribu­
tion.

θeff = 1/ϒ ∫η ∫α  ρ (p, n; øs) dp dη

where p is the aperture available for synchrotron oscillations and η is 
the fractional energy deviation from the synchronous energy.

øM > øm are the two roots of 

p/c = √ F(øs) - F(ø) + (X/C)2

F ø = (cosø/sinøs) + ø

X  =  -  (R/i-n)η

X m a x  =  C  √  2  c o t  ø s  +  2  ø s  -  π
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C = R/(1-n) √ uΛ(1-n) / π k Es 

The machine parameters have been defined previously. The integration 
limits on p are

pupper (η) = min (a - γΤi - X, a)

plower (η) = max (a - γΤf  - X, X)

while those on η are

ηupper = (l-n)/R min (Xmax,  a, γΤf)

ηlower = (1-n)/R) max (-Xmax,-a, 1/2(γΤi - a)

where Ti = injection starting time

Tf = injection stopping time

The function ρ is evaluated by an iterative procedure employing Newton's 
rule and the integrations are performed by segmenting the range and 
applying 3-point Gauss-Legendre quadrature to each segment.

This program has three options:
a) Compute and print the function

ε(η) = ∫p ρ(p,η; øs) dp
b) Compute and print θeff

c) Search values of øs and T i to maximize θeff for a given duration of
injection. After øs and Ti are found, θeff and ε(η) are printed.

2) The second program computes the effective duration of injection for 
particles at an arbitrary point in radial phase space. Let x and x ' be 
the point under consideration. Tne origin in this phase plane is taken 
tangent to the equilibrium orbit and at the inner edge of the septum.
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where η, ρ, and p are the same as before. However, we now take the ini­
tial distance from the injection point to the equilibrium orbit as the 
independent variable. The available aperture is

where λ' and β are machine constants given later.

Since the integration limits are moderately complicated, it is 
convenient to define several auxiliary variables. Let
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Then we have for integration limits on qo,

Similarly, let

Then the integration limits on η are

In the formulas for qmax and q min, the constants are

where the quantities λ ', β, and µ are machine constants arising in the 
solution of the radial betatron equation in a machine with straight 
sections. For radial oscillations in the Caltech synchrotron, they have
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the values
λ' = 643.2 cm 
β = 6.95° 
µ = 256.57°

The various critical values of qo and η given above have simple 
physical interpretations. Reference to Fig. 13 shows that for a given 
x ' (= q'o) and x, there will be in general a minimum and maximum value of 

qo consistent with the condition that the injected particles do not strike 
the deflector on a subsequent turn; these are qmin and qmax. In the pro­
gram, the first 100 turns are investigated. Also, for a given x ', there 
is a maximum (generally positive) and minimum (generally negative) value 
of qo which lead to betatron oscillations of amplitude a; these are q+ . 
These four critical values lead to absolute maximal values which qo can 
assume, i.e., qu1 and qℓ1. However, a particle is surely lost if its 
aperture available for synchrotron oscillations is smaller than X; equal­
ity in this condition leads to qu2 and qℓ2. Finally, the beginning and 
end of the injection pulse yield maximal values of qo . The formulas for 
the qo integration limits then follow immediately.

For a given value of x ', the smallest possible betatron oscilla­
tion amplitude is λ' x ': thus, the largest possible available aperture 
is (a - λ' x'). This fact leads to the maximal values of energy devia­
tion ηu1 and ηu2 The second pair of critical values occur when 

X = X max
and the final pair lead to the absolute maximal values of qo.

The function evaluation and integration in this program are carried 
out exactly as in the previous one.

This program has two options. It will either compute and print the 
effective injection duration for a specified value of x and x ', or it will 
produce a table of θeff (x, x') with specified steps in the two variables, 
halting when the effective duration drops below a specified value.



FIGURE 1 - Vertical acceptance 
diagram for injection at en­
trance to magnet section.
It has been assumed that the 
maximum allowable amplitude of 
vertical oscillation is 3 cm.

FIGURE 2 - Definition of Initial Conditions 
The dotted line represents the position of the instantaneous equilibrium 
orbit of a particle with energy deviation η when it is injected. The 
dot-dash line represents the position of the equilibrium orbit for a par­
ticle with synchronous energy, i.e., η =0. The solid line is the posi­
tion of the synchronous orbit; this is taken to be at the center of the 
aperture.

37



38

FIGURE 3
Capture efficiency as a function of normalized aperture 
available for synchrotron oscillations in Persico's approxi­
mation.

FIGURE 4
Extension of the universal function G(α; øs). For smaller
values of α  and larger values of øs, see E. Persico, loc.cit., 
p . 466.
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FIGURE 5
Effective duration of injection as a function of synchronous 
phase in Persico's approximation for the Caltech synchrotron. 
5 Mev injection energy.

FIGURE 6
Same as Fig. 5, but for 10 Me v  injection energy.



40

FIGURE 7
The region in ( qo, η) space in which the capture efficiency, 
ρ, is non-zero for tangential injection from a point. The 
capture efficiency is zero outside the indicated region.

FIGURE 8
A typical capture efficiency averaged over time as a function 
of energy deviation from synchronous energy for tangential 
injection from a point.
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FIGURE 9
Effective duration of injection as a function of injection 
starting time for a given equilibrium phase for tangential 
injection from a point. A uniform energy distribution is 
assumed.

FIGURE 10
Effective duration of injection as a function of synchronous 
phase for a given injection starting time for tangential in­
jection from a point. A uniform energy distribution is 
assumed.
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FIGURE 11
Maximum effective duration of injection and accepted energy 
spread as a function of θ for tangential injection from a 
point. A uniform energy distribution is assumed. The syn­
chronous energy is 10 Mev.

FIGURE 12
Same as Fig. 11, but for a synchronous energy of 5 Mev.
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FIGURE 13
Regions in (qo, q'o) space within which a particle must lie in 
order to miss the deflector during spiralling for various 
values of xo for the Caltech synchrotron. The acceptance re­
gions are contained within the lines. The orbit shrinkage per 
turn, σ, is a function of injection energy while the effective 
wavelength of radial betatron oscillations, λ', is a machine 
constant; for the Caltech machine, λ' = 643.2 cm.
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FIGURES 14 through 18
Contours of constant capture efficiency over radial phase space for a 
uniform energy distribution. The contour parameter is per cent of 
θeff(x = 0, x ' = 0). It has been assumed that a 1 mm thick septum is 
feasible so that the region within the dotted line is inaccessible.






