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Abstract

We discuss how the Penrose process, taking place in singular rotating Kerr black holes as well as in their 
smooth, horizonless fuzz-ball counterparts in string theory, may provide an efficient mechanism for the 
acceleration of Ultra High Energy Cosmic Rays, including strangelets, a form of Strange Quark Matter that 
is under active experimental investigation with Mini-EUSO. We focus on non-BPS solutions of the JMaRT 
kind that present an ergo-region. We study geodetic motion and the (non-collisional) Penrose process in this 
context. In particular we compute its efficiency that turns out not to be bounded unlike for Kerr BH’s and 
briefly comment on possible implications for near-future observations.
© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction and motivations

Cosmic rays (CR) and in particular Ultra High Energy CR (UHECR) have played and still play 
a vital role in the progress of high-energy physics. Although the flux is tremendously suppressed 
at very high energies [1–3] and practically ends at the ZeV scale set by the GZK cutoff [4,5], 
the question remains as for how UHECR can be accelerated up to such high energies. Among 
the components of UHECR one can include the so-called strangelets, a form of Strange Quark 
Matter (SQM) [24,31,25] that can be present in the dense core of a Neutron Star (NS) or in 
Quark Stars (QS’s) [26] and is under active experimental search with Mini-EUSO [88]. In turn, 
NS’s and QS’s and other compact magnetized objects, such as white dwarves (WD’s), have been 
proposed as cosmic slings for UHECR’s in [44–46].

In the present paper, we would like to discuss how the Penrose process [6], taking place 
in singular rotating Kerr black holes (BH’s) as well as in their smooth, horizonless fuzz-ball
counterparts in string theory, may provide both tidal tearing of captured astrophysical objects 
and an efficient mechanism for the acceleration of UHECR’s, including the elusive strangelets. 
The crucial feature of rotating (Kerr) BH’s and certain fuzz-balls is the presence of an ergo-
region, where a time-like Killing vector becomes space-like. However, unlike for Kerr BH’s, the 
efficiency of the non-collisional Penrose process for fuzz-balls will turn out to be practically 
unbounded from above. This may help solving a long-standing issue in astro-particle physics on 
the one hand and finding a testable prediction of the fuzz-ball proposal for BH’s on the other 
hand.

BH’s are the epitome of quantum gravity (QG), which is still poorly understood with quan-
tum field-theory means. Luckily there is a leading contender: string theory. Based on the idea 
that point-like particles be replaced by one-dimensional objects, string theory can accommodate 
gravity (mediated by closed strings) together with gauge interactions (mediated by open strings) 
in an fully consistent framework. General Relativity or higher dimensional extensions thereof, 
coupled to gauge fields and fermions, govern the dynamics at energies much lower than the string 
mass scale.

The realization that string theory in addition to fundamental strings admits stable, extended 
solitons with p spatial dimensions, called p-branes, allows to represent BH’s as bound states of 
strings and branes and to quantitatively address and partly solve some long-standing issues in the 
physics of BH’s [7], including BH production in high-energy collisions [8]. In particular there 
are classes of charged BPS1 BH’s for which one can precisely count the micro-states responsible 
for the macroscopic entropy, which according to Beckenstein and Hawking is proportional to 
the area of the event horizon [9]. In the emerging fuzz-ball proposal [10], BH’s are described 

1 A BPS state (after Bogomolny, Prasad and Sommerfield) is an extremal state that saturates a (supersymmetric) bound 
between mass M , charge Q and angular momentum J .
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as ensembles of smooth horizonless geometries with the same asymptotic behaviour at infinity, 
that have a non-trivial structure at the putative horizon. By replacing BH’s with fuzz-balls, dense, 
tangled balls of strings some of the subtle paradoxes can be avoided or clarified since they were 
generated by accepting the very presence of the singularity and of the horizon, that must be only 
a consequence of taking the classical limit.

Due to a no-go theorem, that prevents the existence of non-trivial smooth horizonless solutions 
in D = 4 [11], we have to rely on fuzz-balls in higher dimensions [12]. In particular, D = 5 and 
D = 6 will be our starting point and represent a toy model for the physically interesting case. 
We will mostly use JMaRT (after Jejjalla, Madden, Ross and Titchener [14]) solitonic solution 
that is smooth and horizonless, yet with an ergo-region. As we will see, the asymptotic geometry, 
though free from pathological Closed Time-like Curves (CTC’s), is over-rotating and cannot be 
as such strictly identified with the fuzz-ball of a BH, not even in D = 5 [15]. In fact JMaRT 
displays an instability that suggests that this kind of charged non-BPS solutions should decay 
into BPS ones with the same charges and lower angular momenta such as to satisfy the bound for 
BH’s. The instability of JMaRT has been addressed by various groups, including [16].2 To the 
best of our knowledge however the role of the Penrose process in JMaRT or in similar smooth, 
horizonless solitonic geometries has not been addressed previously.3

The paper is divided in two main parts. The first is devoted to UHECR and in particular to 
strangelets and strange quark matter and the mechanisms for their acceleration so far proposed, 
including the Penrose process. The second is devoted to non-singular horizonless gravitating so-
lutions of the JMaRT kind, wherein the collision-less Penrose process can take place that has 
an unbounded efficiency, contrary to Kerr/rotating BH’s. Lacking any concrete experimental evi-
dence for strangelets, that are actively searched for by Mini-EUSO, and for fuzz-balls, that should 
replace BH’s in string theory, the two parts are not tightly related. However, we believe it is worth 
investigating the link between the two, given the possibility that their combination may offer an 
explanation to the long-standing puzzle of the UHECR’s acceleration.

The plan of the paper is as follows.
In Section 2 we discuss how the Penrose process can play a role in accelerating UHECRs, 

including strangelets and SQM, whose properties are sketched together with alternative acceler-
ation mechanisms proposed so far.

In Section 3 we will recall the JMaRT solution and its properties. We set the stage for the 
analysis of the Penrose process with the study of geodesics motion in JMaRT geometry. Thanks 
to the large amount of isometry it proves convenient to work in the Hamiltonian formulation. We 
focus on the geodesics in the θ = 0 hyperplane and compute the efficiency of the non-collisional 
Penrose process for massive spin-less particles that in-fall in a counter-rotating way. We discuss 
the results in comparison with the analogous process for Kerr BH’s, reviewed in an Appendix.

Section 4 contains our conclusions and an outlook for future investigation in this subject. In 
particular we will comment on upper limits that Mini-EUSO can set on the flux of strangelets 
and on the Penrose mechanism for their acceleration derived in Section 3 for non-BPS fuzz-balls.

In the Appendix, for the sake of convenience and for comparison with our analysis for non-
BPS fuzz-balls, we briefly review the rotating BH solution, originally found by Kerr, and its 
properties and discuss the non-collisional Penrose process for massive particles decaying into a 
massless pair (photons).

2 For a similar analysis in the BPS context see [17].
3 We thank G. Bossard and D. Turton for confirming this.
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2. Strangelets and their acceleration via Penrose process

In this Section we discuss the Penrose process and how it can provide an efficient mecha-
nism for the acceleration of UHECR’s, including SQM and strangelets [25] that are under active 
investigation with Mini-EUSO [88], as we will briefly discuss in the conclusions. Strangelets 
may represent a fraction of UHECR as suggested by the first ‘evidence’ of such form of SQM 
provided by Price’s (balloon) event [18]. This was initially proposed as a magnetic monopole 
candidate and subsequently rebutted and interpreted instead as a strangelet, having penetrated 
the Earth’s atmosphere.

2.1. Strange quark matter and strangelets

The existence of SQM as a different state of hadronic matter other than ordinary nuclear matter 
was proposed for the first time in 1984 [24]. SQM may compose internal layers of Neutron Stars 
(NS), the most compact and dense form of ‘ordinary’ matter in the Universe [19,20]. Within 
a radius of a few km a NS can package masses of the order of the Sun’s. Assuming spherical 
symmetry Tolman, Oppenheimer and Volkoff set an upper limit on the mass of a NS to around 
two solar masses. Very recently, stimulated by the observation of candidate NS’s violating the 
bound through direct GW detection4 [22], more elaborate equations of states have been proposed 
that amount to slicing NS radially like an onion with different layers satisfying different EoS’s 
that are glued at the interface [19,20]. It has also been suggested that SQM, consisting of up u, 
down d and strange s quarks, may compose internal layers, whereby temperature can raise and 
deconfinement can take place thus giving rise to quark-gluon plasma. The concept of a Quark 
Star (QS) has also been put forward [26].

SQM would be composed by roughly an equal number of u, d and s quarks, with the presence 
of the third quark flavour lowering the nucleon Fermi level with respect to a system with only 
two quark flavours [25]. In this case SQM may constitute the true ground state of hadronic matter 
and be stable. Quarks would be lumped together and not separated in nucleons, resulting in quark 
matter being much denser than ordinary matter.

SQM could have been produced in the Big Bang [25], be present in the core of NS’s or in 
“Strange Quark Stars” (SQS) [26] and be a candidate for baryonic dark matter [27]. Portions 
of SQM could be ejected as a consequence of collisions of these stars in binary systems [28]. 
Such collisions can inject a small fraction of this matter (also called strangelets) in the galactic 
radiation where it could be identifiable with cosmic ray detectors or mass spectrometers. Various 
experiments have tried to produce or search for SQM in various environments, on the ground, on 
balloons and in satellites, both of active and passive nature. A review on strangelet search and 
models can be found in [29,30].

SQM should be neutral (uncharged), if an exactly equal number of u, d , and s quarks is dy-
namically favoured, however the neutrality condition may be approximate, allowing strangelets 
to have a small residual electrical charge. In the light mass range, these objects could be identi-
fied as having an anomalous A/Z >> 2 ratio. A search with the PAMELA space-borne magnetic 
spectrometer has yielded upper limits � 2 ·103p/(m2 sr yr) in the mass range 2 < A < 105 [87].

In [31] it has been suggested that heavier objects could interact with the atmosphere through 
an adiabatic compression mechanism similar to that of meteors. The higher density of SQM 

4 See also [23] for a recent update on NS radii from multi-messenger observations.
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would result in longer and more uniform tracks than in case of meteorites, which tend to break 
up and flash during atmospheric entry. Furthermore since SQM is expected to be of interstellar 
origin, the speed of the track would be around 220 km/s (galactic velocity), higher than that 
of meteors that have an average speed of 40 km/s (solar system velocity), although interstellar 
meteors have also been observed [32].

2.2. Penrose process

After gravitational collapse of an unstable (rotating) star a (rotating) BH can form that is the 
only astrophysical object that could carry out a tidal tearing of a Quark Star (QS) – thus providing 
a source of SQM to be scattered throughout the Universe.5

Rotating (Kerr) BH’s are special in that in addition to a horizon that hides the curvature sin-
gularity they are surrounded by an ergo-region external to the horizon where a time-like Killing 
vector becomes space-like [33]. Although curvature is finite in the ergo-region, tidal forces are 
much stronger than outside the ergo-sphere and a compact object captured by the rotating BH 
may be torn into pieces with different energies and angular momenta. As a result Penrose process 
can take place in Kerr BH’s. This will be reviewed in some details in the Appendix for the read-
er’s convenience and for comparison with the case of BPS fuzz-balls. Here we recall the salient 
feature in the non-collisional case.

According to Penrose [6] a particle with positive energy (w.r.t. to flat infinity) can enter the 
ergo-region and split into two (or more) particles one of which has negative energy (as seen from 
infinity) and crosses the horizon to finally fall into the singularity. The rest of the products/daugh-
ters can escape back to infinity carrying out more energy than their ‘mother’. The extra energy is 
provided by the BH that loses energy and angular momentum, since the initial particle should be 
counter-rotating, i.e. have opposite angular momentum w.r.t. to the BH, for the very process to 
take place. The efficiency of the process is defined as the energy gained w.r.t. to the initial energy

η = Ef − Ei

Ei

As we will see momentarily, the efficiency depends on the mass, energy and spin of the initial 
particle as well as of the products and of the BH and the place where the splitting takes place. 
In the simple case when the initial counter-rotating object with energy equal to its rest mass 
(E0 = μ0) decomposes into two massless products at the turning point of its geodesics in the 
equatorial plane (θ = π/2), it is simple to express η in terms of the ‘radial’ position r∗ where 
the process takes place. We have reproduced the text-book analysis in the Appendix for the 
interested reader and for comparison with the similar process in non-BPS fuzz balls. Though 
almost obvious η is positive – in fact with an upper bound η ≤ (1/2)(

√
2 − 1) – only when r∗

lies inside the ergo-region and the particle is massive and counter-rotating. The analogue process 
for massless particles or waves is called super-radiance [34].

Thanks to the non-collisional Penrose mechanism Kerr/rotating BH’s can be used as cosmic 
slings thus allowing one to reach the peak (GZK cutoff) of the UHECRs mountain. Sling-shot by 
other small magnetized objects such as WD’s, NS’s and QS’s and the collisional Penrose process 
has been proposed in [44–46]. Contrary to the non-collisional case for Kerr BH’s the efficiency 

5 One should however keep in mind the caveats in [25], since there is no impact with stellar protons and no disintegra-
tion of SQM in the process.
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η in the collisional case or in the case of compact stars is not bounded from above. As we will 
momentarily see, this will turn out to be the case for non-BPS ‘fuzz-balls’, too.

2.3. Acceleration mechanisms for UHECR

Before concluding this section, let us briefly recall the broad features of the two classes of 
acceleration mechanisms for CR’s proposed so far.

According to the first “one-shot” mechanism, CR are accelerated by an extended/intense elec-
tric field directly to the ZeV scale [35]. The original idea put forward by Swann [36] has been 
elaborated on and the necessary electric field is usually related to the fast rotation of small, 
highly magnetized objects such as white dwarfs [37,38], neutron stars (pulsars) [39–43], or black 
holes [44,47,48]. While electric field acceleration has the advantage of being fast, it suffers from 
the drawback of occurring in astrophysical sites with extremely high energy density, where many 
energy-loss phenomena can take place at the same time.

According to the second “stochastic” mechanism of acceleration, instead, particles gain en-
ergy gradually through multiple interactions with moving magnetized plasmas. The idea, pio-
neered by Fermi [49,50], can be realised in a variety of astrophysical environments, including 
the interplanetary medium [51,52], supernova remnants (SNRs) [53–58], the galactic disk and 
halo [59–62], AGN’s [63–65], large-scale jets and lobes of giant radio-galaxies (RG) [66–68], 
blazars [69–72], gamma-ray bursts (GRBs) [73,74], starburst superwinds [75,76], galactic micro-
quasar systems [77,78], and clusters of galaxies [79–81]. Contrary to the previous case, stochastic 
acceleration tends to be slow. Furthermore it poses the issue of how to keep relativistic particles 
confined within the Fermi ‘engine’.

3. Penrose mechanism for smooth non-BPS fuzz-balls

In this Section, we analyze the Penrose process for neutral massive scalar particles in smooth 
non-BPS geometries such as JMaRT. In order to set the stage for the computation we will first 
recall JMaRT soliton solution and its properties and then study the geodesics motion in this 
geometry. Thanks to the large amount of isometry the problem is integrable very much as for 
Kerr BH’s6 as well as for some BPS fuzz-balls [82]. To exploit this property it is convenient to 
work in the Hamiltonian formulation that requires the determination of the canonical momenta 
Pμ, conjugate to the generalised velocities ẋμ. We will restrict our attention on the case where the 
conserved KK momentum Py of the infalling particle is zero. Moreover, we focus on geodesics in 
the hyperplane θ = 0 whereby an effective dimensional reduction takes place since the radius of 
one of the angular directions (φ) shrinks to zero and one has to set the corresponding conserved 
(angular) momentum Pφ to zero. One ends up with only three variables t, r, ψ and the dynamics 
looks remarkably similar to the one in Kerr BH’s.7

Despite the relatively compact and elegant form of JMaRT, explicit formulae for the ‘effective 
potentials’ E↑↑/↑↓

± and for the efficiency η tend to become unwieldy. We will express the results 
in compact form in terms of the coefficient functions that appear as components of the inverse 
metric. We refrain from displaying cumbersome formulae that cannot illuminate the understand-

6 We thank P. Fré for stressing this property.
7 The same happens for θ = π/2 after replacing ψ with φ and the parameters a1 and a2 with one another.
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ing. To illustrate the results for various values of the parameters we present different plots of 
E↑↑/↑↓

± and η as well as for other relevant coefficient functions.

3.1. JMaRT solution and its properties

In string theory, the objects colloquially called black-holes (BH’s) are bound states of strings 
and p-branes, i.e. p-dimensional extended solitons. This description allows reproducing the 
micro-states necessary to explain the origin of BH entropy that scales with the area of the event 
horizon, at least for charged BPS black-holes [9]. In the fuzz-ball proposal [10] classical BH’s 
can be thought of as ensembles of smooth, horizon-less geometries with the same asymptotic 
behaviour as the would-be BH, i.e. same mass, charge and angular momenta. BPS systems with 
two charges give rise to small BH’s with string-size horizon. In order to have a large BH with a 
finite (possibly large) area of the event horizon, one has to consider systems with at least three 
charges in D = 5 or four charges in D = 4. One of the grand successes of string theory is the 
precise micro-state counting for charged BH’s, mostly in a BPS context. Extension to non-BPS 
and un-charged BH’s has proven much harder.

For our purposes, as a toy model of the Penrose mechanism for non-BPS fuzz-balls, we will 
consider a non-BPS 3-charge solution in D = 5 originally found by Jejjalla, Madden, Ross and 
Titchener (JMaRT). JMaRT solutions8 in Type IIB superstring theory depend on five parameters 
associated to charges: D1-brane Q1 and D5-brane Q5 charge, the asymptotic radius R of the 
Kaluza-Klein circle and two additional integer parameters m and n. For m = n+1 the solutions 
turn out to be BPS. Imposing appropriate conditions on the parameters, that determine the mass 
and angular momenta, JMaRT has neither singularity nor event horizon and is free from CTC’s.

The reason why we are interested in JMaRT is the presence of an ergo-region, whereby par-
ticles with negative energy can propagate. It has been argued that an ergo-region that does not 
enclose a horizon and a singularity should lead to an instability: JMaRT should decay to an ex-
tremal BPS solution with the same charges. This ergo region or similar instabilities has been 
studied by various groups [16,17]. We will assume that the decay process would take a long time 
so much so that JMaRT could behave as a cosmic sling thanks to Penrose process, that in turn can 
also play a role in the relaxation of JMaRT to a stable BPS configuration. Having in mind SQM 
and strangelets, we focus on massive neutral scalar particles rather than on waves. The analogous 
process for waves is called ‘super-radiance’ and has been studied for JMaRT in [34]. Hawking 
process has also been considered for JMaRT in [83].

In order to construct JMaRT one starts fromType IIB supergravity in D = 10 and consid-
ers 3-charge micro-state geometries of the D1-D5-P system [84]. The D1-branes wrap a circle 
S1

y , along which KK-momentum is added, while the D5-branes wrap a five-torus S1
y × T 4. The 

original solution depends on 8 parameters that determine the mass MADM (related to M), two 
independent angular momenta Jφ and Jψ (parameterised in terms of a1 and a2), the three charges 
Q1, Q5 and Qp (expressible in terms of the ‘boost’ parameters δ1, δ5 and δp), the radius R of 
the S1

y and the volume V4 of the four-torus T 4.

Safely neglecting T 4, whose volume can be taken to be very small, the six-dimensional ge-
ometry is parameterized in terms of t (time), r (radial coordinate), y (for S1

y ) and three angular 
coordinates θ , φ and ψ and reads

8 Henceforth we call it JMaRT for short.
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ds2 = M(spdy − cpdt)2

√
H1H5

− f
(
dt2 − dy2

)
√

H1H5

+√
H1H5

[
r2dr2(

r2 + a1
2
) (

r2 + a2
2
)− Mr2

+ dθ2

]

+ sθ
2dφ2

[√
H1H5 +

(
a2

2−a1
2
)
sθ

2(H1+H5−f )√
H1H5

]

+ cθ
2dψ2

[√
H1H5 +

(
a1

2−a2
2
)
cθ

2(H1+H5−f )√
H1H5

]

+ 2Msθ
2dφ[dt(a2c1c5cp − a1s1s5sp) + dy(a1cps1s5 − a2c1c5sp)]√

H1H5

+ M
(
a1cθ

2dψ + a2sθ
2dφ

)2
√

H1H5

+ 2Mcθ
2dψ[dt(a1c1c5cp − a2s1s5sp) + dy(a2cps1s5 − a1c1c5sp)]√

H1H5
(3.1)

where9

Hi = f + M sinh2 δi , f = r2 + a2
1 sin2 θ + a2

2 cos2 θ, (3.2)

with ci = cosh δi , si = sinh δi , for short henceforth, as well as cθ = cos θ , sθ = sin θ , cφ = cosφ, 
sφ = sinφ, cψ = cosψ , sψ = sinψ .

We have not displayed the profiles of the other Type IIB supergravity fields that are present in 
JMaRT since they play no role in our later analysis of the Penrose process.

The 6-dimensional metric can be written in the form

ds2 = −A dt2 + B dr2 + Cψdψ2 + Cφdφ2 + Udθ2 + F dy2

+ 2�ψ dtdψ + 2�φ dtdφ + 2K dtdy + 2	ψ dydψ + 2	φ dydφ + 2
 dψdφ (3.3)

with

− A = −f + cp
2M√

H1H5
, B = r2√H1H5(

a1
2 + r2

) (
a2

2 + r2
)− Mr2

,

U =√
H1H5 , F = f + Msp

2

√
H1H5

(3.4)

Cψ = a1
2cθ

4(−f + H1 + H5 + M) + a2
2cθ

4(f − H1 − H5) + cθ
2H1H5√

H1H5
(3.5)

Cφ = sθ
4
(
(a1 − a2)(a1 + a2)(f − H1 − H5) + a2

2M
)+ sθ

2H1H5√
H1H5

(3.6)

9 Our Hi are denoted by H̃i in JMaRT [14].
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 = a1a2cθ
2Msθ

2

√
H1H5

, �ψ = cθ
2M(a1c1c5cp − a2s1s5sp)√

H1H5
,

�φ = sθ
2M(a2c1c5cp − a1s1s5sp)√

H1H5
(3.7)

K = − cpspM√
H1H5

, 	ψ = cθ
2M(a2cps1s5 − a1c1c5sp)√

H1H5
,

	φ = sθ
2M(a1cps1s5 − a2c1c5sp)√

H1H5
(3.8)

The ADM mass and angular momenta are given by

MADM = M

2

∑
i

cosh 2δi , Jφ = M(a1s1s2sp − a2c1c5cp) ,

Jψ = M(a2s1s2sp − a1c1c5cp) (3.9)

where δi ≥ 0, without loss of generality, and ci = cosh δi and si = sinh δi , as before. Note that 
Jφ and Jψ get exchanged under the exchange of a1 and a2.

Potential singularities appear when H1 = 0 or H5 = 0 (curvature singularities) and when 
detg = 0, where

|detg| = r2H1H5 cos θ2 sin θ2 (3.10)

that is for r2 = 0 (coordinate singularity) or for θ = 0, π or θ = π/2 (degeneration of the po-
lar coordinates on the ‘poles’ of S3). The vanishing of G(r) = (r2 + a2

1)(r2 + a2
2) − Mr2, the 

denominator of grr , at

r2± = 1

2

[
(M − a2

1 − a2
2) ±

√
(M − a2

1 − a2
2)2 − 4a2

1a2
2

]
(3.11)

require a detailed analysis. In order shows that r = 0 is a removable coordinate singularity it 
proves convenient to introduce the adimensional variable

x = r2 − r2+
r2+ − r2−

so that dx = 2rdr

r2+ − r2−
(3.12)

Moreover, if one could smoothly shrink a circle to zero at the origin (x = 0), the space is capped 
at x = 0 i.e. at r2 = r2+ > r2− and the ‘true’ curvature singularity at x = −1 i.e. at r2 = r2− is 
excised.

Absence of singularities, horizons and closed-time-like curves imposes conditions on the pa-
rameters that can be satisfied in the low mass (parameter) regime

M ≤ (a1 − a2)
2 (3.13)

and fixes M and R to be given by

M = a2
1 + a2

2 − a1a2
c2

1c
2
5c

2
p + s2

1s2
5s2

p

c1c5cps1s5sp
, R = Mc1c5s1s5

√
c1c5cps1s5sp√

a1a2(c
2
1c

2
5c

2
p − s2

1s2
5s2

p)
(3.14)

As a result one gets

r2− < r2+ = −a1a2
s1s5sp

< 0 (3.15)

c1c5cp
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Two quantization conditions (needed to have closed orbits for φ̃ = φ + α(si, ci)y and ψ̃ = ψ +
β(si, ci)y as y → y + 2πR) constrain the remaining parameters in terms of two integers m and 
n

j + j−1

s + s−1 = m − n ,
j − j−1

s − s−1 = m + n (3.16)

where j = √
a2/a1 ≤ 1 and s =√

s1s5sp/c1c5cp ≤ 1, indeed one can take a1 ≥ a2 ≥ 0 without 
loss of generality, thus getting m ≥ n+1 ≥ 1. In terms of j, s and a1 the expression for M reads

M(j, s) = a1
2
(

j4 − j2s2 − j2

s2 + 1

)
(3.17)

replacing j, s in terms of the integers m, n one finds

M(m,n) = a1
2

2m2n2 [m2 − (n + 1)2][m2 − (n − 1)2]
{(m2 − n2)2 − (m2 − n2)

√
[m2 − (n + 1)2][m2 − (n − 1)2] − m2 − n2} (3.18)

that vanishes in the BPS case m = n + 1 whereby M → 0, δi → ∞ with Qi = Msici fixed.
The remaining five independent parameters correspond to Q1, Q5, R, m and n that determine 

the KK charge Qp and the angular momenta Jφ , Jψ

Qp = nm
Q1Q5

R2 , Jφ = −m
Q1Q5

R
, Jψ = n

Q1Q5

R
(3.19)

The Penrose process can take place in JMaRT thanks to the presence of an ergoregion, that 
can be identified as the region where the norm of the time-like Killing vector Vt = ∂t becomes 
positive. Using JMaRT one finds

||Vt ||2 = gμνV
μ
t V ν

t = gtt = Mc2
p − f√
H1H5

(3.20)

where f (r, θ) = r2 + a2
1 sin θ2 + a2

2 cos θ2 and Hi = f (r, θ) + Ms2
i . An ergo-sphere appears at 

f (r, θ) = Mc2
p

r2
e = Mc2

p − a2
1 sin θ2 − a2

2 cos θ2 (3.21)

where Vt becomes space-like. In the BPS limit the norm of Vt is always negative: ||Vt ||2 =
−f/

√
H1H5 and no ergo-region appears.

3.2. Geodetic motion in JMaRT

As a preliminary step to investigate the Penrose process in JMaRT, we study the geodesics 
for massive or massless neutral particles. Probes of this kind only feel the presence of the curved 
metric but are unaffected by the other Type IIB fields present in JMaRT.

The Lagrangian that governs geodetic motion is given by

L = 1
gμνẋ

μẋν (3.22)

2
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where gμν denotes the six-dimensional metric tensor.10 Recall that dr and dθ appear diagonally 
in ds2, while dt, dy, dφ, dψ form a four-dimensional block. As in Kerr BH or in BPS fuzz 
balls, in order to take advantage of all the symmetries, i.e. time translation, KK shifts U(1)y and 
rotations U(1)φ × U(1)ψ , it is better to switch to the Hamiltonian formalism. The generalized 
momenta are given by

Pμ = ∂L
∂ẋμ

= gμνẋ
ν (3.23)

where ẋν = dxμ/dτ and the Hamiltonian reads

H = Pμẋμ −L = 1

2
gμνPμPν (3.24)

where gμν is the inverse six-dimensional metric. For JMaRT the explicit expressions for the 
generalized momenta read

Pr = ṙr2√H1H5(
a1

2 + r2
) (

a2
2 + r2

)− Mr2
(3.25)

Pθ = θ̇
√

H1H5 (3.26)

Pt = − ṫ
(
f − cp

2M
)

√
H1H5

− ẏcpMsp√
H1H5

+ ψ̇cθ
2M(a1c1c5cp − a2s1s5sp)√

H1H5

+ φ̇Msθ
2(a2c1c5cp − a1s1s5sp)√

H1H5
(3.27)

Py = ẏ
(
f + Msp

2
)

√
H1H5

− ṫ cpMsp√
H1H5

+ ψ̇cθ
2M(a2cps1s5 − a1c1c5sp)√

H1H5

+ φ̇Msθ
2(a1cps1s5 − a2c1c5sp)√

H1H5
(3.28)

Pφ = φ̇sθ
2{sθ 2[(a2

1 − a2
2)(f − H1 − H5) + a2

2M] + H1H5}√
H1H5

+ ṫ sθ
2(a2c1c5cp − a1s1s5sp)M√

H1H5
+ ẏsθ

2(a1cps1s5 − a2c1c5sp)M√
H1H5

+ ψ̇sθ
2cθ

2a1a2M√
H1H5

(3.29)

Pψ = ψ̇cθ
2{cθ

2[(a2
2 − a2

1)(f − H1 − H5) + a2
1M] + H1H5}√

H1H5

+ ṫ cθ
2(a1c1c5cp − a2s1s5sp)M√

H1H5
+ ẏcθ

2(a2cps1s5 − a1c1c5sp)M√
H1H5

+ φ̇cθ
2sθ

2a1a2M√
H1H5

(3.30)

and the Hamiltonian for JMaRT can be written as

10 The extra four directions compactified on T 4 play no role in our analysis.
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H = 1

2

{
−ÃP 2

t + B̃P 2
r + ŨP 2

θ + C̃ψP 2
ψ + C̃φP 2

φ + F̃P 2
y

}
+ PtPyK̃ + PtPψ�̃ψ + PtPφ�̃φ + PyPψ	̃ψ + PyPφ	̃φ + PψPφ
̃ (3.31)

where the coefficient functions Ã, B̃ , Ũ , C̃φ , C̃ψ , F̃ , �̃φ , �̃ψ , 
̃, K̃ , 	̃φ , 	̃ψ are the non-zero 
components of the inverse metric gμν , whose explicit expressions are quite cumbersome and will 
not be displayed, except for the special case of θ = 0.

The generalized velocities can be expressed in terms of the momenta using the above functions

ṫ = −PtÃ + PyK̃ + Pψ�̃ψ + Pφ�̃φ (3.32)

ṙ = PrB̃ (3.33)

θ̇ = Pθ Ũ (3.34)

φ̇ = PφC̃φ + Pt�̃φ + Pψ
̃ + Py	̃φ (3.35)

ψ̇ = PψC̃ψ + Pt�̃ψ + Py	̃ψ + Pφ
̃ (3.36)

ẏ = PyF̃ + PtK̃ + Pψ	̃ψ + Pφ	̃φ (3.37)

Very much as for Kerr BH and for BPS fuzz-balls, the system is integrable in that the dynamics 
in the r and θ coordinates can be separated in principle. In practice the geodesics are non-planar 
and their explicit form is not very illuminating for our purposes.

Following similar analysis in BPS fuzz-balls [82] and without losing any significant feature 
of the result, one can focus on the hyper-planes θ = 0 and θ = π/2. Indeed it is consistent to set 
θ̇ = 0 and Pθ = 0 in these two cases since

dPθ

dτ
= −∂H

∂θ
= 0 for θ = 0 and θ = π/2 (3.38)

For both choices an effective dimensional reduction takes place. For θ = 0 all terms in dφ drop, 
being proportional to sin θ2, and one can safely set Pφ = 0; while for θ = π/2 all terms in dψ

drop, being proportional to cos θ2, and one can safely set Pψ = 0. The two cases are perfectly 
equivalent and one can get one from the other by simply exchanging a1 and a2 in any relevant 
formula. For definiteness we will focus on the θ = 0 hyperplane in the following.

Moreover, we are not interested in the motion along the compact y direction. In order to 
simplify the analysis, one can set Py = 0. This is consistent since Py = 0 is conserved: Ṗy = 0. 
As a consequence ẏ is completely determined by the other velocities and conserved momenta, 
so much so that we will not consider it later on.

If we fix θ = 0 and consequently Pθ = 0, all the terms in dφ drop and the metric becomes

ds2
θ=0 = dt2

(
cp

2M − f
)

√
H1H5

+ dr2r2√H1H5(
a1

2 + r2
) (

a2
2 + r2

)− Mr2

+ dψ2[(a1
2−a2

2)(H1+H5−f ) + a1
2M + H1H5]√

H1H5

+ dt

(
2dψM(a1c1c5cp − a2s1s5sp)√

H1H5
− 2cpdyMsp√

H1H5

)
+ 2dψdyM(a2cps1s5 − a1c1c5sp)√

H1H5
+ dy2

(
f + Msp

2
)

√
H1H5

(3.39)

which takes the form
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ds2
θ=0 = −Adt2 + Bdr2 + Cψdψ2 + 2�ψdtdψ + 2Kdtdy + Fdy2 + 2	ψdψdy

= ĝμνdxμdxν (3.40)

where

−A = cp
2M − f√
H1H5

(3.41)

B = r2√H1H5(
a1

2 + r2
) (

a2
2 + r2

)− Mr2
(3.42)

Cψ = a1
2(−f + H1 + H5 + M) + a2

2(f − H1 − H5) + H1H5√
H1H5

(3.43)

�ψ = M(a1c1c5cp − a2s1s5sp)√
H1H5

(3.44)

F = f + Msp
2

√
H1H5

(3.45)

K = − cpMsp√
H1H5

(3.46)

	ψ = M(a2cps1s5 − a1c1c5sp)√
H1H5

(3.47)

with

f = r2 + a2
2 , H1 = f + Ms1

2 , H5 = f + Ms5
2 (3.48)

Recall that a1 and a2 switch their role under a change of θ from 0 to π/2 and an exchange 
ψ ↔ φ.

The reduced Hamiltonian expressed in terms of the components of the reduced inverse metric 
reads

H = 1

2

(
−Pt

2Ã + P 2
r B̃ + Pψ

2C̃ψ + Py
2F̃
)

+ PtPyK̃ + PtPψ�̃ψ + PψPy	̃ψ = −μ2

2
(3.49)

where μ is the mass of the probe and the coefficient functions Ã, B̃ , C̃ψ , F̃ , �̃ψ , K̃ , 	̃ψ are the 
non-zero components of the reduced inverse metric and μ is the rest mass of the probe spin-less 
particle. At θ = 0 one has

B̃ = 1

B
=
(
a1

2 + r2
) (

a2
2 + r2

)− Mr2

r2
√

H1H5
(3.50)

and

Ã =
{√

H1H5

[
a1

2
(
MsP

2
(
−c1

2c5
2M + H1 + H5 + M

)
− f 2

+ f
(
H1 + H5 − MsP

2 + M
))

+ 2a1a2c1c5cP M2s1s5sP + a2
2
(
f 2 − f

(
H1 + H5 − MsP

2
)

− M
(
sP

2(H1 + H5) + Ms1
2s5

2
(
sP

2 + 1
)))

+ H1H5

(
f + MsP

2
)]}
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{
(f − M)

(
a2

2
(
f 2 − f (H1 + H5) − M2s1

2s5
2
)

+ f H1H5

)
− a1

2f
(
M
(
−c1

2c5
2M + H1 + H5 + M

)
+ f 2 − f (H1 + H5 + 2M)

)}−1
(3.51)

C̃ψ = f (f − M)
√

H1H5

{
(f − M)

(
a2

2
(
f 2 − f (H1 + H5) − M2s1

2s5
2
)

+ f H1H5

)
− a1

2f
(
M
(
−c1

2c5
2M + H1 + H5 + M

)
+ f 2 − f (H1 + H5 + 2M)

)}−1
(3.52)

F̃ =√
H1H5

{
a1

2
[
−
(
M
(
sP

2 + 1
)(

−c1
2c5

2M + H1 + H5 + M
)

+ f 2

− f
(
H1 + H5 + M

(
sP

2 + 2
) ))]

− 2a1a2c1c5cP M2s1s5sP + a2
2
[
f 2 − f

(
H1 + H5 + MsP

2 + M
)

+ M
(
H1sP

2 + H1 + H5sP
2 + H5 + Ms1

2s5
2sP

2
)]

+ H1H5

(
f − M

(
sP

2 + 1
))}

{
a1

2f
[
M
(
−c1

2c5
2M + H1 + H5 + M

)
+ f 2 − f (H1 + H5 + 2M)

]
− (f − M)

[
a2

2
(
f 2 − f (H1 + H5) − M2s1

2s5
2
)

+ f H1H5

]}−1
(3.53)

�̃ψ =
{
M
√

H1H5(a1c1c5cP f + a2s1s5sP (M − f ))
}

{
a1

2f
[
M
(
−c1

2c5
2M + H1 + H5 + M

)
+ f 2 − f (H1 + H5 + 2M)

]
− (f − M)

[
a2

2
(
f 2 − f (H1 + H5) − M2s1

2s5
2
)

+ f H1H5

]}−1
(3.54)

K̃ =
{
M
√

H1H5

[
a1

2cP sP

(
−c1

2c5
2M − f + H1 + H5 + M

)
+ a1a2c1c5Ms1s5

(
2sP

2 + 1
)

+ cP sP

(
a2

2
(
f − H1 − H5 − Ms1

2s5
2
)

+ H1H5

)]}
{
a1

2f
[
M
(
−c1

2c5
2M + H1 + H5 + M

)
+ f 2 − f (H1 + H5 + 2M)

]
− (f − M)

[
a2

2
(
f 2 − f (H1 + H5) − M2s1

2s5
2
)

+ f H1H5

]}−1
(3.55)

	̃ψ =
{
M
√

H1H5(a1c1c5f sP + a2cP s1s5(M − f ))
}

{
a1

2f
(
M
(
−c1

2c5
2M + H1 + H5 + M

)
+ f 2 − f (H1 + H5 + 2M)

)
− (f − M)

(
a2

2
(
f 2 − f (H1 + H5) − M2s1

2s5
2
)

+ f H1H5

)}−1
(3.56)

Since we are not interested in motion along the compact circle direction we can safely set

Py = 0 (3.57)

and, for convenience of the notation,

Pt = −E , Pψ = J (3.58)

so that we get

P 2
r = 1 (E2Ã −J 2C̃ψ − 2EJ �̃ψ − μ2

)
= Ã

(E − E+)(E − E−) ≥ 0 (3.59)

B̃ B̃
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where the ‘effective potentials’ read

E± =
J �̃ψ ±

√
J 2(�̃2

ψ + ÃC̃ψ) + μ2Ã

Ã
(3.60)

Since Ã/B̃ ≥ 0 always, one has either E > E+ > E− or E < E− < E+ where, depending on 
whether the particle is co-rotating (↑↑), i.e. J Jψ > 0, or counter-rotating (↑↓), i.e. J Jψ < 0, 
one has

E↑↑
+ ≥ μ , E↑↑

− ≤ −μ

or

E↑↓
+ ≤ 0 for r ≤ re , E↑↓

− ≤ −μ

As we will see momentarily, the Penrose process can only take place in the latter case.
In Figs. 1, 2, 3 we have plotted E↑↓

± as a function of r for some ‘reasonable’ choice of the 
parameters M, a1, a2 of JMaRT (determined by the choice of m, n, δ1, δ5 and a1 or, equivalently, 
R) and of the angular momentum J of the (massive μ �= 0 or mass-less μ = 0) probe particle. 
Despite their complexity, thanks to the existence of a frame-dragging term dtdψ in Eq. (A.7), 
these solutions expose the expected presence of regions with negative energy inside the ergo-
sphere that can be studied computationally and plotted. For comparison we also plot E↑↑

± in 
Fig. 4.

As evident from the plots of E± there are two kinds of geodesics in the θ = 0 plane: unbounded 
ones for E ≥ μ and trapped ones E ≤ −μ. In the former case the massive probe impinges from 
infinity, reaches a turning point r∗ where Pr = 0 and gets deflected back to infinity, possibly after 
making several turns around the ‘center’ (x = 0 i.e. r2 = r2+ < 0) of the fuzz-ball. In the latter 
case, the particle cannot escape to infinity and remains forever inside the fuzz-ball. The relevant 
equations can be integrated in terms of non-elementary functions and we will not attempt to 
present a detailed analysis here. Instead we turn our attention on the Penrose process in JMaRT.

3.3. Penrose process in JMaRT and its efficiency

The presence of an ergo-region in JMaRT allows the Penrose process to take place, whereby 
a counter-rotating particle acquires negative energy after crossing the ergo-sphere and if it splits 
into two or more fragments, one of the product may escape to infinity with an energy larger than 
the initial particle, while the other fragment(s) get trapped in the fuzz-ball for a ‘long’ time.

Following [21,13], mutatis mutandis we will derive the efficiency of Penrose process in 
JMaRT metric.

Let us consider a spin-less probe with rest mass μ0, energy E0 ≥ μ0 (positive branch) and 
orbital angular momentum J0 opposite to the angular momentum of JMaRT (counter-rotating 
↑↓). Very much as in Penrose original analysis, it seems reasonable and computationally conve-
nient to assume that the probe splits exactly at the turning point r = r∗ where Pr(r

∗) = 0. At this 
point the angular velocity reaches a maximum and the tidal tearing of the probe is more likely to 
take place. This has the additional advantage of simplifying the analysis since one gets a relation 
between r , E0 and J0 of the form

E2Ã −J 2C̃ψ − 2E0J0�̃ψ = μ2 (3.61)
0 0 0
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Fig. 1. E+, E− regions for JMaRT with “quantum numbers” shown on the left and a counter-rotating probe; x = (r2 −
r+2)/(r+2 −r−2). Ergosphere boundary is denoted by the dashed (grey online) vertical line on the right, end of geometry 
is in x = 0.

Fig. 2. A close-up of the negative energy region for the same quantum numbers in Fig. 1. Note the infinite wall exploding 
in the region close to x = 0.



M. Bianchi et al. / Nuclear Physics B 954 (2020) 115010 17
Fig. 3. Asymptotic behaviour for the same quantum numbers as in Figs. 1, 2, but with probe mass μ = 0.

Fig. 4. E+, E− regions for JMaRT with “quantum numbers” shown on the left and a co-rotating probe; x = (r2 −
r+2)/(r+2 −r−2). Ergosphere boundary is denoted by the dashed (grey online) vertical line on the right, end of geometry 
is in x = 0. There is no ergoregion.

which can be (implicitly) solved for r = r∗ as a function of E0 (positive counter-rotating branch) 
and J0.
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Denoting by E1, E2 and J1, J2 the energies and (orbital) angular momenta of the two (spin-
less) fragments with rest masses μ1 and μ2, conservation of energy and angular momentum 
yield ⎧⎪⎨⎪⎩

E1 + E2 = E0

J1 +J2 = J0

(3.62)

which has two solutions, symmetric under the exchange 1 ↔ 2. Assuming that particle 1 escapes 
to infinity (positive branch of the energy) while particle 2 gets trapped in the fuzz-ball (negative 
branch of the energy), one can first express J1 and J2 in terms of E1 = E+(μ1) and E2 = E−(μ2)

and get11

J1,2 =
−E1,2�̃ψ ±

√
E2

1,2(�̃
2
ψ + ÃC̃ψ) − μ2

1,2C̃ψ

C̃ψ

(3.63)

Plugging these in the second equation and solving the system for E1,2 yields

E1,2 = 1

2μ0
2

⎧⎨⎩E0(μ0
2 ± μ1

2 ∓ μ2
2) ±

√√√√F(μ0
2,μ1

2,μ2
2)

[
E2

0 − C̃ψ

�̃2
ψ + C̃ψÃ

μ0
2

]⎫⎬⎭
(3.64)

Note the role of the “fake square”

F(μ0
2,μ1

2,μ2
2) = μ0

4 + μ1
4 + μ2

4 − 2μ0
2μ1

2 − 2μ1
2μ2

2 − 2μ2
2μ0

2 (3.65)

that is ubiquitous in 3-body phase space. Note that F(μ0
2, μ1

2, μ2
2) ≥ 0 for μ0 ≥ μ1 + μ2 as 

required by standard kinematics considerations. In the symmetric case μ1 = μ2 = μ ≤ μ0/2 one 
finds F(μ0

2, μ2, μ2) = μ4
0 − 4μ2

0μ
2 = μ2

0(μ
2
0 − 4μ2) ≥ 0.

Note also that Ã > 0 and �̃ψ > 0 while C̃ψ > 0 for r > re and C̃ψ < 0 for r < re.
The efficiency η of Penrose process for JMaRT is given by the energy E1 − E0 gained by 

the ‘probe’ particle escaping to infinity with respect to energy of the incoming particle E0. As 
a function of the radial decay point, that we have identified with the radial turning point r∗, 
implicitly determined by the choice of E0 and J0, viz.

η(r∗) = E1 − E0

E0
= −E2

E0

= − 1

2μ0
2

⎧⎨⎩(μ0
2 − μ1

2 + μ2
2) +

√√√√F(μ0
2,μ1

2,μ2
2)

[
1 − C̃ψ

�̃2
ψ + C̃ψÃ

μ0
2

E2
0

]⎫⎬⎭
(3.66)

The efficiency is negative when r∗ > re as evident from the plot in Fig. 5.
For some choice of the parameters, η is larger than one (Figs. 6, 7). In general, contrary to 

what happens for rotating BH’s, reviewed in the Appendix, there is no upper bound on η. This 

11 We are implicitly assuming that the fragments are produced with zero radial momentum and continue to move in the 
θ = 0 plane with Py = 0 and Pφ = 0. This means that r∗ is a turning point for the fragments, too.
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Fig. 5. Efficiency for a choice of quantum numbers as in Figs. 1, 2.

looks particularly promising for the acceleration of UHECR, including strangelets, by non-BPS 
rotating fuzz-balls that should replace putative rotating BH’s of the kind found by Kerr.

The case of JMaRT should be taken as a toy model in many respects. First of all the relevant 
dynamics is at least five-dimensional. Second, though non-BPS, the charges play a crucial role 
in the very existence of the solution that should be thought of as some excited state of a BPS 
configuration. Last but not least, achieving phenomenologically reasonable values for the mass 
and angular momenta require extrapolation to very large charges that may look rather unnatural.

4. Conclusions and outlook

After summarising the results of our present analysis, we would like to draw our conclusions 
and identify directions for future investigation on the subject.

We have shown that the non-collisional Penrose process can take place not only in singular 
rotating (Kerr) BH’s but also in smooth horizonless geometries that are expected to represent the 
micro-states of (charged) rotating BH’s. The common and crucial feature being the presence of 
an ergo-region. We have considered the case of JMaRT, which is in a loose sense a non-BPS 
fuzz-ball in D = 5. Actually it is over-rotating w.r.t. to classical BH’s with the same mass and 
charges so it is only a gravitational soliton. Anyway, we took it as a toy model for our analysis 
and computed the efficiency η of a non-collisional Penrose process in rotating geometries of this 
kind. Contrary to the case of Kerr BH’s, reviewed in the Appendix, η is not bounded from above 
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Fig. 6. Efficiency for another choice of quantum numbers, shown on the right. It peaks at ηmax � 1.3.

Fig. 7. A close-up of the peak in ηmax as claimed in Fig. 6.
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and depends in a highly non-trivial fashion of the parameters of the fuzz-ball as well as on the 
masses of the probe and of the fragments and above all on the ‘radial’ position where the decay 
occurs. As expected the efficiency is positive only if the in-falling particle is counter-rotating and 
the splitting happens inside the ergo-region.

In order to make quantitative predictions on the relevance of such a mechanism for the accel-
eration of UHECR and in particular strangelets one should estimate the distribution of such or 
similar objects in our galaxy / universe as well as of rotating fuzz-balls with large enough mass 
and angular momentum to be useful as cosmic slings thus allowing one to reach the GZK cut-
off energy of the UHECRs. Acceleration via the collisional Penrose process or via sling-shot by 
other small magnetized objects such as white dwarves, neutron stars (and quark stars) has been 
proposed in [44–46]. We plan to address these and related issues in the near future [85].

For the time being, we would like to briefly comment on upper limits that Mini-EUSO can 
set on the flux of strangelets and on the non-collisional Penrose mechanism for their acceleration 
derived in Section 3 for non-BPS fuzz-balls and reviewed in the Appendix for Kerr BH’s.

Mini-EUSO is a telescope launched on board the International Space Station (ISS) in August 
2019 with an uncrewed Soyuz capsule. It began observations in October 2019, looking toward 
the Earth from a UV-transparent, nadir-facing window in the Russian Zvezda module [88]. The 
main telescope employs a 25 cm diameter Fresnel optics with a Multi-Anode-photomultiplier 
(MAPMT) focal surface (48×48 pixels), with ancillary cameras operating in the Near-Infrared 
and Visible regions. Mini-EUSO is observing the Earth in the UV range (300-400 nm) with a 
spatial resolution of 6.11 km and a temporal resolution of 2.5 μs, searching for UHECR’s with 
E > 5·1020eV and studying a variety of atmospheric events such as transient luminous events 
(TLE’s), bioluminescence and meteors. The spatial and temporal sampling of the detector allows 
searching for strange quark matter tracks in the atmosphere, discriminating them from meteors 
from the light curve (intensity and speed) [86].

To conclude, the connection between the acceleration of UHECR’s and in particular 
strangelets and the collision-less Penrose process that, as we have shown, can take place in 
non-singular horizonless gravitating solutions of the JMaRT kind with unbounded efficiency re-
mains somewhat loose. We will continue investigating and hopefully tighten the links between 
the two, thanks to the experimental bounds that Mini-EUSO will soon set, on the one hand, and 
the theoretical progress in the understanding of BH’s micro-states within the fuzz-ball proposal 
in string theory.
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Appendix A. Penrose process for rotating Kerr BH’s

For comparison with the more laborious case of non-BPS fuzz-balls, represented by JMaRT 
solutions, let us review how Penrose process can take place in the Kerr metric.

The Kerr black hole is axially symmetric and is characterized by two parameters: mass M and 
angular momentum J = Ma, with a ≤ M . Setting GN = 1, the line element in Boyer-Lindquist 
coordinates reads

ds2 = −� − a2 sin2 θ

ρ2 dt2 − 2a
2Mr sin2 θ

ρ2 dtdφ +
(
r2 + a2

)2 − a2� sin2 θ

ρ2 sin2 θdφ2

+ ρ2

�
dr2 + ρ2dθ2 (A.1)

where x = √
r2 + a2 sin θ cosφ, y = √

r2 + a2 sin θ sinφ, z = r cos θ and

� = r2 − 2Mr + a2 , ρ2 = r2 + a2 cos2 θ (A.2)

In this coordinate system, surfaces with constant t and r are deformed two-spheres. The metric 
for a = 0 coincides with Schwarzchild metric. In contrast to the latter, however, there is an off-
diagonal term

gtφ = −a
2Mr sin2 θ

ρ2 (A.3)

that is responsible for the ‘gravitational’ dragging of inertial frames caused by the rotation of the 
source. In practice a particle dropped ‘straight’ in from infinity, i.e. with J ≡ Pφ = 0 is ‘dragged’ 
just by the influence of gravity so that it acquires an angular velocity ω in the same sense as that 
of the source. For the Kerr metric, ω has the same sign as a = J/M . This effect weakens with 
the distance as 1/r3.

Kerr metric presents a singularity, a horizon and an ergo-sphere.
The singularity is a ring located in the equatorial plane θ = π/2, at r = 0 i.e. z = 0 and 

x2 + y2 = a2.
The singularity is cloaked by a horizon where grr = ∞, i.e. � = 0 that corresponds to the 

radius

r+ = M +
√

M2 − a2 (A.4)

The ‘ergo-sphere’ can be identified as the surface where the norm of the time-like Killing vector 
Vt = ∂t vanishes. It is also called the ‘static limit’, since inside it no particle can remain at fixed 
r, θ, φ. From (A.1) one finds

||Vt ||2 = gμνV
μ
t V ν

t = gtt = −� − a2 sin2 θ

ρ2 = 0 for � = a2 sin2 θ (A.5)

that means12

re(θ) = M +
√

M2 − a2 cos2 θ (A.6)

The ergo-sphere lies outside the horizon except at the poles, θ = 0, π , where they touch each 
other. In the ergo-region, inside the ergo-sphere, all particles, including photons, must rotate 

12 For later use, note that re = 2M for θ = π/2.
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with the hole since gtt > 0. The presence of the ergo-region allows Penrose process to take place 
as we will see momentarily.

Focussing for simplicity on geodesics in the equatorial plane θ = π/2 allows to write the 
restricted metric in the compact form

ds2 = −A dt2 + C dφ2 + 2� dtdφ + B dr2 (A.7)

where

A = 1 − 2M

r
, B =

(
1 − 2M

r
+ a2

r2

)−1

, C = r2 + a2 + 2M

r
a2 , � = −2Ma

r

(A.8)

Computing the conjugate momenta Pμ = gμνẋ
ν and setting13

Pt = −E , Pφ = J , Pr = P (A.9)

one finds

H = 1

2B
P2 + 1

2

1

AC + �2

[
−CE2 − 2�EJ + AJ 2

]
= −μ2

2
(A.10)

where μ is the mass of the probe particle. The geodesic is null for μ = 0. Resolving for the radial 
momentum P in terms of E and J one finds

P2 = B

AC + �2

[
CE2 + 2�EJ − AJ 2 + μ2

(
AC + �2

)]
= BC

AC + �2 (E − E+)(E − E−) ≥ 0 (A.11)

where the ‘effective potentials’ read

E± = −�J ±√
(�2 + AC)(J 2 − Cμ2)

C
(A.12)

Since BC/AC +�2 ≥ 0 outside the horizon either E ≥ E+ > E− or E ≤ E− < E+. E± determine 
allowed negative-energy regions. For co-rotating particles (J a ≥ 0) E↑↑

+ is always positive, while

for counter-rotating particles (J a ≤ 0) E↑↓
+ becomes negative inside the ergo-sphere (re = 2M).

As mentioned above, if a positive energy counter-rotating particle enters the ergo-sphere it 
acquires negative energy and ‘decays’ into two or more products, one of which has negative 
energy and falls into the horizon, then the particle that escapes may have more energy than the 
initial particle. In this way Kerr BH loses mass and angular momentum.

Following [21,13], we now review the efficiency of the Penrose process in Kerr BH.
For simplicity we will assume that the in-falling massive particle has E = μ (‘rest mass’), 

that the products are massless scalars (no spin) μ1 = μ2 = 0 and that the decay takes place at 
the turning point r = r∗ (with rH < r∗ < re = 2M) where Pr = 0. Since energy and angular 
momentum are conserved, we have

E1 + E2 = E , J1 +J2 = J (A.13)

13 We denote the angular momentum of the probe by J in order to avoid confusion with the angular momentum of the 
Kerr BH, denoted by J = Ma.
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For massless particles Ji = αEi , while J = βE for the massive one with α and β depending on 
the turning point r∗ where the decay/splitting takes place. The second equation then simplifies 
drastically to

α1E1 + α2E2 = βE (A.14)

Solving the ‘linear’ system one has

E1 = β − α2

α1 − α2
E , E2 = β − α1

α2 − α1
E (A.15)

Taking the positive branch for E = E+ and E1 = E1,+ and the negative branch for E2 = E2,− < 0, 
one gets E1 > E The efficiency of the process can be estimated in the following way. Since 
�E = E1 − E = −E2 is the gained energy, the efficiency of Penrose process as a function of r∗ is 
given by

η(r∗) = E1 − E
E = −E2

E = β − α1

α1 − α2
= 1

2

(√
2M

r∗ − 1

)
≤ 1

2
(
√

2 − 1) (A.16)

since rH ≤ r∗ ≤ 2M = re(θ = π/2) for the very process to take place. In fact the maximum is 
reached when r∗ = rH = M + √

M2 − a2 and a = M (extremal Kerr BH).
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Sabau, G. Sáez Cano, H. Sagawa, Z. Sahnoune, A. Saito, N. Sakaki, M. Sakata, H. Salazar, J.C. Sanchez, J.L. 
Sánchez, A. Santangelo, L. Santiago Crúz, A. Sanz-Andrés, M. Sanz Palomino, O. Saprykin, F. Sarazin, H. Sato, 
M. Sato, T. Schanz, H. Schieler, V. Scotti, A. Segreto, S. Selmane, D. Semikoz, M. Serra, S. Sharakin, T. Shibata, 
H.M. Shimizu, K. Shinozaki, T. Shirahama, G. Siemieniec-Oziȩbło, J. Sledd, K. Słomińska, A. Sobey, I. Stan, 
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