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Abstract: Tools and techniques for higher order corrections and their applica-
tion to LHC phenomenology are presented.
The process pp→ W+W−bb̄ with leptonic decays of the W -bosons is calculated
at NLO QCD. It is used for a phenomenological study of the effect of higher or-
der and non-factorizable contributions on top quark mass measurements based
on the mlb observable. The required one-loop amplitudes are calculated with
the publicly available program GoSam. New features of GoSam-2.0 are pre-
sented, which extend its range of applicability and make the code faster and
more stable.
A strategy to bring differential equations, which are used for the analytical
integration of multi-loop Feynman integrals, in a canonical form is introduced.
It is applied to the calculation of two-loop QED vertex integrals.
Sector decomposition is a method for the numerical calculation of multi-loop
and multi-scale integrals. A new sector decomposition algorithm based on con-
vex geometry is presented which is guaranteed to terminate, and leads to a
small number of sectors and fast runtimes. The geometric algorithm is imple-
mented in the public program SecDec-3.0.
NLO QCD corrections to the production of a Higgs boson pair in gluon fusion
are presented. The full top quark mass dependence is retained throughout the
calculation. For the generation of the two-loop virtual amplitude an extended
version of GoSam is used. The appearing two-loop integrals are calculated
with SecDec-3.0. Substantial differences with respect to various calculations
which contain only partial top quark mass corrections are found, emphasising
the importance of the full top quark mass dependence at NLO.





Zusammenfassung: Es werden Methoden für Korrekturen höherer Ordnung
und deren Anwendung auf LHC Phänomenologie präsentiert.
Der Prozess pp → W+W−bb̄ mit leptonischen Zerfällen der W -Bosonen wird
in NLO QCD berechnet. Er wird verwendet für eine phänomenologische Studie
der Effekte von NLO und nichtfaktorisierbaren Korrekturen auf Bestimmungen
der Top Quark Masse durch die mlb Observable. Die beitragenden Einschleifen-
amplituden werden mit dem öffentlichen Programm GoSam berechnet. Version
2.0 von GoSam wird präsentiert, in der die Anwendungsmöglichkeiten erwei-
tert und Schnelligkeit und Stabilität des Programms erhöht wurden.
Eine Strategie, um Differentialgleichungen, die fuer die analytische Berechnung
von Mehrschleifenintegralen verwendet werden, in eine kanonische Form zu
bringen, wird vorgestellt. Diese wird auf die Berechnung von Zweischleifen-
integralen angewendet, die zum QED Vertex beitragen.
Sector Decomposition ist eine Methode fuer die numerische Berechnung von
Mehrschleifenintegralen mit mehreren Skalen. Ein neuer Sector Decompositi-
onsalgorithmus, der auf konvexer Geometrie basiert, wird präsentiert. Es wird
gezeigt, dass dieser Algorithmus immer terminiert, er führt darüber hinaus zu
einer kleinen Zahl von Sektoren und hat eine geringe Laufzeit. Der geometrische
Algorithmus ist in dem öffentlichen Programm SecDec-3.0 implementiert.
Die NLO QCD Korrekturen zu der Produktion eines Paares von Higgs Bosonen
durch Gluon Fusion werden präsentiert. In der Rechnung wird die exakte Top
Quark Massenabhängigkeit berücksichtigt. Für die Erzeugung der Zweischlei-
fenamplitude wird eine erweitete Version des Programms GoSam verwendet.
Die auftretenden Zweischleifenintegrale werden mit SecDec-3.0 numerisch be-
rechnet. Es werden substanzielle Unterschiede zu verschiedenen Rechnungen ge-
funden, die nur genäherte Top Quark Massenkorrekturen enthalten. Dies hebt
die Wichtigkeit der exakten Behandlung von Top Quark Masseneffekten her-
vor.
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1 Introduction

Elementary particle physics is the study of nature at the highest energies, or
equivalently smallest distance scales. The best currently available tool for this
study is the Large Hadron Collider (LHC), where protons are accelerated and
brought to collision with a center of mass energy of 13 TeV. The collision events
are recorded by the four big detectors ATLAS [1], CMS [2], LHCb [3], ALICE
[4]. In 2012 the two LHC experiments ATLAS [5] and CMS [6] discovered
a scalar boson. Its measured properties have so far been consistent with the
Standard Model Higgs boson. Until then the Higgs boson which was predicted
already in the 1960s [7–12] had been the last unobserved particle of the Stan-
dard Model of particle physics.

The Standard Model of particle physics (SM) is a Quantum Field Theory which
currently provides our most complete description of the interactions between
elementary particles. It is a gauge theory based on a SU(3)C × SU(2)L ×
U(1)Y gauge symmetry which is broken by the Higgs mechanism to the group
SU(3)C × U(1)em. The SU(3)C subgroup is the gauge symmetry of quantum
chromodynamics (QCD), while SU(2)L × U(1)Y is the gauge symmetry of the
electroweak (EW) theory. While the SM is very successful for many observed
phenomena, it is clear that it is not a complete description of nature at a fun-
damental level. The most important experimental observations not described
by the SM are the matter-antimatter asymmetry, dark matter, the accelerated
expansion of the universe, and gravity. Neutrino masses are also not included in
the SM, however neutrino mass terms can be added. There are also theoretical
issues with the SM such as the hierarchy problem and the strong CP -problem.

The investigation of the mechanism of electroweak symmetry breaking and the
search for physics beyond the Standard Model (BSM) are among the main goals
of the LHC. To achieve these goals precise theoretical predictions for signal and
background processes are required. Theoretical uncertainties should be of the
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1 Introduction

same order as the experimental uncertainties achieved by the LHC experiments.
Predictions for the LHC are mainly obtained as a perturbative expansion in the
SM couplings. In this thesis we concentrate on higher order corrections in the
expansion of the QCD coupling, nevertheless EW corrections and an improved
understanding of nonperturbative effects are also necessary to achieve the re-
quired precision.
The Les-Houches wishlist is a list of processes whose calculation to a given pre-
cision is desired by experimentalists and is achievable with current technology.
After all processes on the first wishlist [13, 14], which consisted mainly of next
to leading order (NLO) QCD corrections, had been calculated, a new wishlist
containing NNLO QCD, NLO EW, and mixed QCD+EW corrections was re-
cently proposed [15].
The calculation of the processes on the first list was possible due to the high
level of automation achieved in the computation of NLO QCD corrections. To
calculate the list of processes on the new wishlist, a similar level of automation
as for NLO QCD corrections will be required beyond NLO.

In this thesis methods and tools for higher order theoretical predictions in the
SM, and their application to Higgs boson and top quark processes at the LHC
are presented.
In Chapter 2 a short introduction to the calculation of higher order calculations
in perturbative QCD at hadron colliders is given.
The first part of the thesis then gives details on a NLO QCD calculation of
production and decay of a pair of top quarks including non-resonant effects.
The top quark is the heaviest particle in the SM and was discovered in 1995 at
the Tevatron collider [16, 17]. Its mass is an important parameter in the SM,
and the uncertainty on its experimentally measured value limits the precision
of many theoretical predictions.
The calculation is performed using the one-loop program GoSam [18, 19] and
the Monte-Carlo generator Sherpa [20]. In Chapter 3 methods for the calcu-
lation of one-loop amplitudes are presented. The program GoSam, which is a
public tool for the automated calculation of one-loop amplitudes, is introduced
in Chapter 4, and details on its most recent version 2.0 are given [19]. Its
range of applicability is increased by the implementation of higher rank tensor
integrals and an improved interface to Monte-Carlo event generators [21]. Fur-
thermore the code generation is improved and a rescue system for numerically
unstable points is added.
In Chapter 5 the process pp → W+W−bb̄ at NLO in QCD is presented [21].
Similar calculations appeared previously in [22–24]. The effect of higher or-
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der corrections and non-factorizable contributions on theoretical uncertainties
of top quark mass measurements based on the mlb observable at the LHC is
studied. Sizeable corrections are found with respect to the calculation in the
narrow width approximation with LO top quark decays commonly used in ex-
perimental analyses.

The second part of the thesis is concerned with calculations beyond the one-
loop order.
In Chapter 6 details on the method of differential equations for the analytic
integration of multi-loop Feynman integrals [25–28] are given. A method to
bring the differential equations in a canonical form identified by Henn [28],
where the dependence on the dimensional regularization parameter factorizes,
is introduced. It is applied to the calculation of two-loop integrals contributing
to the QED vertex [29].
Sector decomposition is a method for the (numerical) calculation of multi-loop
Feynman integrals and more general parameter integrals in dimensional regu-
larization [30–33]. Chapter 7 contains a review of the method. A new sector
decomposition algorithm which uses convex geometry is presented. The geo-
metric decomposition method is guaranteed to terminate, and usually leads to
a smaller number of sectors and a lower runtime compared to other decompo-
sition algorithms. It is based on the original geometric decomposition method
developed by Kaneko and Ueda [34, 35].
The public program SecDec [36, 37] implements the sector decomposition al-
gorithm. Its most recent version SecDec-3.0 [38] contains the new geometric
decomposition algorithm (Chapter 8). In the new version phase-space points
can be evaluated in parallel on a computer cluster Furthermore the communi-
cation with integral reduction programs was simplified by including support for
inverse and pinched propagators and by improving the user interface.

In Chapter 9 SecDec-3.0 and an extension of the program GoSam to multi-
loop amplitudes are used to calculate the cross section for the production of a
Higgs boson pair in gluon fusion at NLO in QCD including the full top quark
mass dependence [39]. This process is of interest, since it can be used for a
direct measurement of the triple Higgs self-coupling at hadron colliders. It is
part of the updated Les-Houches wishlist, and was previously only known at
LO with full top quark mass dependence [40] and to higher order in various
approximations. A measurement of the coupling, which in the SM is fixed
by the Higgs mechanism, will give insight into the mechanism of electroweak
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1 Introduction

symmetry breaking.
Already at LO the process proceeds via a top quark loop, which means that
the NLO correction requires the calculation of a two-loop amplitude. Since
most of the contributing two-loop integrals are not known analytically, they
are calculated numerically using SecDec-3.0. It is found that the inclusion
of the full top quark mass dependence leads to important deviations from the
commonly used approximations in the heavy quark limit, which are known up
to NNLO QCD.
The methods and tools used for most parts of the calculation are automated and
process independent, representing a step towards the automation of multi-loop
corrections.
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2 Calculations for hadron colliders

2.1 Factorization and parton distribution functions

At hadron colliders such as the LHC and Tevatron high energy collisions of
hadrons are studied. The final state of these collisions generically contains
collimated jets of hadrons as well. Hadrons are states of quarks and gluons
bound together by long range QCD interactions.
The strength of the QCD coupling αs depends on the energy scale. At small
energies the coupling is strong, which leads to the confinement of of colored
particles in hadrons. At high energies on the other hand the coupling becomes
small, a property of QCD which is known as asymptotic freedom. Fig. 2.1 shows
measurements of the strong coupling constant αs at different energy scales Q.

In QCD it possible to calculate scattering processes of hadrons, because short
and long distance interactions factorize [42, 43]. The factorization of hadron
hadron collisions (Fig. 2.2) is given by

dσ (P1, P2) =
∑
a,b

∫
dx1 dx2 fa(x1, µ

2
F ) fb(x2, µ

2
F ) dσ̂ ab(x1P1, x2P2, µ

2
F )+O ((Λ/Q)p)

(2.1)
here fa,b are the parton distribution functions (PDFs) which encode the non-
perturbative structure of the incoming hadrons. The partonic scattering cross
section dσ̂ab describes the hard scattering of partons and can be calculated
with perturbative methods. The integration is over the fraction of the hadron
momentum carried by the partons involved in the hard scattering xi. The
summation is over all partons in the initial state hadrons. The factorization
procedure introduces the unphysical factorization scale µF , which divides the
process into perturbative and nonperturbative parts. It is usually set to a
characteristic scale of the process.
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2 Calculations for hadron colliders

QCD αs(Mz) = 0.1181 ± 0.0013
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Figure 2.1: Summary of measurements of αs as a function of the energy scale
Q [41].
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Figure 2.2: Factorization of parton distribution functions and partonic cross
section.
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2.2 Hard scattering and perturbation theory
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Figure 2.3: Parton distribution functions of the MSTW collaboration [49] at
two energy scales µ2

F = Q2.

(2.1) is strictly valid only in the limitQ2 →∞ whereQ2 is the energy exchanged
in the scattering. A rigorous proof exists only for specific processes like deep
inelastic scattering [44] and Drell-Yan [45]. Factorization is also not guaranteed
for more exclusive final states.

The nonperturbative PDFs fa(x, µ2
F ) describe the structure of the incoming

hadrons. They have to be fitted from experimental data. However it is possi-
ble to calculate their evolution between different energy scales perturbatively
using the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [46–
48]. These are obtained by the requirement that the the physical cross section
dσ has to be independent of the unphysical scale µF . Fig. 2.3 shows the MSTW
2008 NLO PDFs at two different scales.

2.2 Hard scattering and perturbation theory

The differential cross section dσ̂ ab in (2.1) is defined as the modulus square of
the scattering amplitude An in the following way:

dσ̂ ab = |An|2dφn . (2.2)

Here the n-particle phase-space measure is denoted dφn . The scattering am-
plitude An describes the scattering of initial state partons a and b into a final
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2 Calculations for hadron colliders

state of n particles. It is a complex-valued function on the domain of external
particle momenta, and depends on the type and quantum numbers of the exter-
nal particles. For sufficiently high momentum exchange it can be approximated
by the first terms in the expansion in the strong coupling constant αs = g2

S

4π

An =
(
gS√
4π

)k∑
i=0

αisA(i)
n , (2.3)

where k denotes the number of couplings gS appearing in the first term of the
expansion of the amplitude. Here an expansion in the strong coupling constant
is given. For precision predictions it is also necessary to include electroweak
corrections. The scattering amplitude can be calculated perturbatively as the
sum over all Feynman diagrams with given initial and final state and a speci-
fied order of the coupling constant. The calculation of higher order Feynman
diagrams is the main focus of this thesis.
Following from (2.3) the perturbative expansion of the differential cross section
is

dσ̂ ab = αks
∑
i=0

αis

 i∑
j=0
A(i−j)∗
n A(j)

n

 dφn . (2.4)

The first term in the series is called the leading order approximation (LO)
involving only A(0)

n . To make quantitative predictions for a process it is usually
necessary to go at least to the next to leading order (NLO).

2.3 Divergences

The calculation of the i-th term in the expansion of An involves an integra-
tion over at least i unconstrained four dimensional momenta. The integration
generically diverges due to the singular behaviour of the integrand at large and
small momentum.

The standard procedure of regularizing these divergences is to use dimensional
regularization [50]. Dimensional regularization is based on the observation that
the appearing integrals can become convergent in dimensions different from
four. One continues the dimension of the loop momentum away from four by
choosing D = 4− 2ε. The divergences in D = 4 dimensions are then regulated
by the parameter ε and show up as 1

εn
singularities when expanding the integrals

as a Laurent expansion in ε.
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2.3 Divergences

2.3.1 Ultraviolet divergences

The large momentum divergences are called ultraviolet divergences. They
can be understood by considering the Standard Model as an effective theory
parametrising our knowledge of particle physics at low energy.
The UV divergences can be removed order-by-order in perturbation theory
through a redefinition of fields and parameters of the theory. This process is
called renormalization.
There is some freedom in the redefinition which affects the renormalized pa-
rameters. Different choices are known as renormalization schemes, the most
common ones are the minimal subtraction (MS) scheme, the modified mini-
mal subtraction (MS) scheme, and the on-shell scheme. In the MS scheme
only the divergent part is subtracted, in the MS scheme an additional factor of
−γE + log(4π) where γE is the Euler-Mascheroni constant is included, which
simplifies appearing expressions. The on-shell scheme relates the renormalized
parameters to physical observables, for example a coupling at a certain energy
scale or the pole of the renormalized propagator for the on-shell mass.
In schemes other than the on-shell scheme, a dependence of the renormalized
theory parameters on the renormalization scale µR is introduced. The scale de-
pendence is constrained by renormalization group equations, differential equa-
tions obtainable by requiring µR independence of observable quantities. An
example is the energy scale dependence of the strong coupling constant αs as
shown in Fig. 2.1.
The terms A(i)

n in the expansion of the scattering amplitude also depend on
µR which leads to a renormalization scale dependence of the perturbative cross
section. This dependence can be used to estimate the uncertainty introduced
by truncating the expansion in (2.4) at a finite order since the full cross section
should be independent of the unphysical scale µR. It is customarily obtained
by varying the renormalization scale by a factor two up and down.

2.3.2 Infrared divergences

The second type of singularities due to small loop momentum behaviour are
called infrared divergences. Here infrared divergence is used as a general term
for soft and collinear divergences. They arise in theories with massless particles
and are connected to singularities of cross sections with additional massless
particles in the final state. Final states with extra massless partons become
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2 Calculations for hadron colliders

indistinguishable from the original final state when the additional partons be-
come soft or collinear.
Consequently one has to augment the perturbative expansion in (2.4) by cross
sections with additional massless particles in the final state up to a fixed order
in αs. The NLO cross sections for an observable F then corresponds to

dσ̂NLO

dF
= αks

∫ [(|A(0)
n |+αs2Re(A(0)∗

n A(1)
n )

)
Fndφn +αs|A(0)

n+1|Fn+1dφn+1
]
(2.5)

=
∫
n

(
dσ̂B + dσ̂V

)
+
∫
n+1 dσ̂R . (2.6)

The terms in the preceding equation correspond to leading order (LO) or Born,
virtual, and real correction respectively. While the Born and virtual term are
integrated over a n-particle phase-space, the real correction has to be integrated
over a n + 1-particle phase-space due to the extra massless particle in the
final state. The real correction diverges in phase-space regions where the extra
massless particle becomes soft or collinear. Starting from NNLO there are also
mixed real-virtual contributions.
Here an observable F was introduced which is a function of the final state
particle momenta. F has to behave in the following way when one massless
particle becomes soft or two massless particles become collinear:

Fn+1(p1, . . . , pi, . . . , pn+1) pi→0−−−→ Fn(p1, . . . , p̂i, . . . , pn+1) (2.7)

Fn+1(p1, . . . , pi, pi+1, . . . , pn+1) pi||pi+1−−−−→ Fn(p1, . . . , pi+pi+1, . . . , pn+1).(2.8)

This requirement is called soft and collinear safety or generally infrared safety.
As a result of the Kinoshita-Lee-Nauenberg (KLN) theorem [51, 52] the pertur-
bative cross section for infrared safe observables is finite. Infrared singularities
cancel between real and virtual corrections. In hadron collisions there is an
additional divergence due to real radiation becoming collinear to initial state
partons which is not cancelled by the virtual corrections. It is absorbed into a
redefinition of the parton distribution functions (Section 2.1) or in the case of
identified hadrons in the final state into the fragmentation function.

The cancellation only takes place after the phase-space integrations have been
performed. Real and virtual corrections can not be combined on the integrand
level since they live in phase-spaces of differing dimensions. The infrared singu-
larities of the virtual part are usually resolved using dimensional regularization
and show up as poles in ε. For the real part on the other hand it would be
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2.4 Parton shower and hadronization

necessary to perform the integration over the D-dimensional phase-space ana-
lytically to resolve the singularities which is possible in very simple cases only.
Usually Monte-Carlo methods are used for the phase-space integration which
is possible only for integrals finite in D = 4.
Subtraction and phase-space slicing are the two main methods solving this
problem. The slicing method [53, 54] relies on finding an observable that sepa-
rates the phase-space into a hard region in which the real radiation is resolved
and a soft region with the n-particle phase-space. One then introduces a cut-off
parameter in this observable to split up the two regions. In the hard region a
lower order real radiation calculation can be used, while factorization theorems
are used in the soft region. Finally the independence of the result on the slicing
parameter has to be checked. Slicing is mainly used at NNLO as qT -subtraction
[55] for color singlet final states and N -jettiness [56–58] for arbitrary colored
final states. Its advantage is that lower order (NLO) calculations can be reused
for the hard region, the drawback is that for small cut-off parameters large
cancellations are expected.
The subtraction method introduces counter-terms that reproduce the real and
collinear behaviour of the real correction:

dσ̂NLO

dF
=
∫
n

dσ̂ B +
∫
n

[
dσ̂ V +

∫
1

dσ̂ A
]

+
∫
n+1

[
dσ̂ R − dσ̂ A

]
. (2.9)

This makes the the n+1-particle phase-space integration finite such that it can
be integrated in D = 4 numerically. The subtraction terms dσ̂ A are chosen to
be process and observable independent, and should be analytically integrable
over the one-particle unresolved phase-space. At NLO there are several fully
automated subtraction strategies such as Catani-Seymour dipole subtraction
[59–61] and Frixione-Kunszt-Signer subtraction [62, 63]. Besides the slicing
schemes N -jettiness and qT -subtraction, the subtraction schemes Antenna sub-
traction [64, 65], sector decomposition [32, 66–68], sector improved residue sub-
traction [69, 70], and colorful NNLO [71, 72] subtraction are used at NNLO.
For specific processes like Higgs boson production in vector boson fusion the
projection to Born method can be used [73, 74].
There is no fully automated process independent scheme beyond NLO yet.

2.4 Parton shower and hadronization

The main missing steps towards a realistic description of hadron collider events
as observed in an experiment are parton shower and hadronization.
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2 Calculations for hadron colliders

The parton shower adds QCD radiation to colored external particles of a process
in an approximate way. It is perturbative and can be used down to scales of
∼ 1 GeV, at which point the final state contains a large number of quarks and
gluons.
Below this scale partons in the final state are clustered into hadrons, which is
a nonperturbative process. There are two main phenomenological models: the
string model [75, 76] implemented in the Monte-Carlo generator Pythia [77, 78]
and the cluster model [79] implemented in Herwig [80, 81] and Sherpa [20].
The produced hadrons are in general too short-lived to be measured directly
and have to be decayed into stable hadrons for which hadron decay data is
used.
After correcting for detector effects like finite resolution and acceptance one
obtains predictions that can be compared to experimental data.
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3 Calculation of one-loop
amplitudes

3.1 General amplitude structure

Here details on the one-loop amplitude A(1)
0 in (2.3) are given. The explicit

form of a N -point one-loop amplitude A(1)
0 (Fig. 3.1) is

A(1)
0 =

∫ dDk
iπD/2

N (k)∏N
i=1Di

(3.1)

where the propagators are defined as Di = q2
i −m2

i with qi = k+∑i
j=1 pj. The

integration over the loop momentum k is in general divergent (see Section 2.3).
The loop momentum is therefore continued away from four dimensions to D =
4− 2ε dimensions, where the parameter ε regulates the divergences.
The numerator N (k) is polynomial in the loop momentum k and can therefore
be written as

N (k) = C + Cµ1k
µ1 + Cµ1µ2k

µ1kµ2 + · · · (3.2)

For renormalizable theories the powers of the loop momentum that can appear
in (3.2) are bounded by the number of external particles N .

The integrals that have to be calculated are then tensor integrals of the form

ID,µ1...µr
N (S) =

∫ dDk
iπD/2

kµ1 . . . kµr∏
i∈S Di

(3.3)

with tensor rank r. Here S is a subset of the set of propagator labels {1, . . . , N}.
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3 Calculation of one-loop amplitudes

pN − 2

pN − 1 pN

p1

p2

p3
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Figure 3.1: One-loop Feynman diagram with N external legs.

3.2 Master integral basis

At the one-loop order it is possible to reduce all appearing integrals to a basis
of scalar master integrals. A general one-loop amplitude can be expressed in
the master integral basis as

A(1)
0 = d + c + b + a +R. (3.4)

The master integrals are scalar integrals with up to four propagators (tad-
poles, bubbles, triangles, and boxes). The coefficients d, c, b, and a depend
on kinematic invariants built from the external momenta and internal masses.
In dimensional regularization the rational part R is generated from D − 4-
dimensional components of the amplitude, but it also appears in other regular-
ization schemes [82]. (3.4) is simplified in that there are usually several master
integrals with a fixed number of propagators differing in offshell external mo-
mentum assignments and internal masses.

Integrals with five or more propagators can be reduced to a linear combination
of box integrals if terms of order ε are neglected. This is due to space-time
being four dimensional which makes the decomposition of any momentum into
a basis of four independent external momenta possible.
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3.3 Reduction methods

There are libraries implementing expressions for all scalar master integrals with
vanishing, real, and complex masses at one-loop [83–89].
In the next section two methods for the reduction of a one-loop amplitude to
master integrals are introduced.

3.3 Reduction methods

3.3.1 Passarino-Veltman reduction

The Passarino-Veltman tensor reduction introduced in [90] can be used to re-
duce rank r tensor integrals from (3.3) to integrals with tensor rank r − 1 and
integrals with a lower number of propagators. It relies on a form factor de-
composition of the tensor integrals which follows from Lorentz invariance. The
form factor decomposition of a rank one tensor integral for example would be

ID,µN (S) =
N−1∑
i=1

cip
µ
i (3.5)

since the external momenta are the only rank one tensors appearing in the
integral. More details on the form factor decomposition can be found in Sec-
tion 6.1.
In the next step the step both sides of the form factor decomposition are con-
tracted with the external momenta. The scalar products of the form k · pi
are rewritten as linear combinations of propagators and a constant factor. The
propagator factors can then be cancelled leading to integrals with pinched prop-
agators. After this one can solve the system of equations for the coefficients
ci which are expressed in terms of simpler integrals. Inverting the system in-
troduces the inverse of the Gram determinant det(pipj) in the solution which
becomes zero when external momenta are not linear independent. This leads
to spurious singularities.

The problem of vanishing Gram determinants can be avoided by stopping the
reduction before divergences are introduced. This leaves tensor integrals which
have to be calculated by other methods. They can for example be expressed
as finite scalar integrals in shifted dimensions, which can then be integrated
numerically. The approach is implemented in Golem95 [84, 91].
Furthermore it is possible to avoid Gram determinants in the reduction of
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3 Calculation of one-loop amplitudes

integrals with N > 5 external legs by basing the reduction on the Cayley
determinant [92].

3.3.2 OPP reduction

A different reduction method was introduced by Ossola, Papadopoulos, and
Pittau [93]. In this method the coefficients of the master integrals are obtained
by sampling the integrand of the loop amplitude at special values of the loop
momentum.
It requires knowledge of the integrand level form of the master integral basis
given by

N (k) =
N∑

i0<i1<i2<i3

[
d(i0i1i2i3) + d̃(i0i1i2i3; k)

] N∏
i 6=i0,i1,i2,i3

Di

+
N∑

i0<i1<i2

[c(i0i1i2) + c̃(i0i1i2; k)]
N∏

i 6=i0,i1,i2
Di

+
N∑

i0<i1

[
b(i0i1) + b̃(i0i1; k)

] N∏
i 6=i0,i1

Di

+
N∑
i0

[a(i0) + ã(i0; k)]
N∏
i 6=i0

Di.

(3.6)

The coefficients d̃, . . . , ã are spurious terms which evaluate to zero upon inte-
gration over the loop momentum. Their loop momentum dependence is given
in [93].
The coefficients can be determined analytically or numerically by sampling the
integrand on cuts of the amplitude. The box coefficients are obtained by eval-
uating the amplitude on the four particle cut given by

D1 = D2 = D3 = D4 = 0. (3.7)

These equations have two solutions k±0 . By evaluating the numerator at the
solutions one can determine the box coefficients d and d̃ as

N (k±0 ) =
[
d(1234) + d̃(1234; k±0 )

] ∏
i 6=1,2,3,4

Di(k±0 ). (3.8)

All other terms in (3.6) are set to zero for k±0 .
To obtain the lower point coefficients one subtracts the box terms from (3.6).
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3.3 Reduction methods

Then the triangle coefficients can be determined by three particle cuts. This
procedure is iterated until all coefficients in (3.6) are fixed.

The rational part has to be calculated using other methods. There is also a
generalization of the OPP method to D dimensions which gives the rational
part directly [94, 95].
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4 GoSam

It is observed that LO calculations in QCD are often not precise enough for
meaningful comparisons to experimental data. For this reason NLO predictions
are becoming the standard for phenomenology and experimental data analyses
at the LHC. This requires automated and fast tools for the calculation of NLO
cross sections.
GoSam is a public program for the automated calculation of one-loop ampli-
tudes [18, 19]. One-loop amplitudes A(1)

n are needed for the calculation of NLO
cross sections as given in (2.9) and constitute the most difficult part of their
computation. The Born and real radiation contributions in (2.9) involve only
tree-level diagrams and can be provided by Monte-Carlo event generators.
The program is available at http://gosam.hepforge.org.
Other programs that provide one-loop amplitudes in an automated way are
Blackhat [96], Helac-nlo [97], FeynArts/FormCalc [85], MadLoop
[98], NJET [99], OpenLoops [100] and Recola [101]. The programs MCFM
[102, 103], VBFNLO [104], and POWHEG-BOX [105] implement hardcoded
one-loop matrix elements.

GoSam can be called from a Monte-Carlo generator via the Binoth-Les-Houches-
interface [106, 107], which is a standardized interface for the communication
between one-loop amplitude providers like GoSam and Monte-Carlo genera-
tors. In Fig. 4.1 an overview over the interface is given. This would be the
typical way of using GoSam to obtain NLO results. Alternatively GoSam can
be called directly from an input card. A minimal example card for the process
e+e− → tt̄ is

process_path=eett
in=e-,e+
out=t, t˜
order=QCD, 0, 2
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4 GoSam

Monte Carlo OLP

write order file

read contract file

read order file

write contract file

 runtime  phase

call OLP_Start

 call OLP_Info

call OLP_PrintParameter

call OLP_SetParameter (static parameters)

give phase space point, scale

return result, accuracy

compute Born,  real 
radiation, IR subtraction full NLO result

  run initialisation  phase

call OLP_SetParameter (dynamic parameters)

pre-runtime  phase

call OLP_EvalSubProcess2 compute virtual part

Figure 4.1: Overview over the communication between Monte-Carlo event gen-
erators and one-loop amplitude providers via the Binoth-Les-Houches-interface.

Here the name of the process directory is given, the external particles are spec-
ified, and the αs order of the tree level and one-loop corrections for the process
is defined.

The structure of the program is shown in Fig. 4.2. A process is read in from
the input card and QGRAF [108] is used to list all contributing Feynman dia-
grams. Using python the diagrams are filtered and grouped. After substituting
the Feynman rules in the diagrams, the resulting expressions are processed us-
ing FORM [109, 110]. The program spinney [111] performs the Dirac algebra
calculations using the spinor helicity formalism. At this stage the algebraic
expression for the one-loop amplitude is turned into optimized FORTRAN90 code
with FORM.
It is possible to choose between the interfaced reduction libraries Golem95C
[84, 112], Ninja [113, 114], and Samurai [115] at runtime.
Golem95C is a tensor integral library based on an improved version of the
Passarino-Veltman reduction method. It avoids spurious divergences due to
vanishing Gram determinants and implements fast numerical expressions for
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GoSam

user input file process.in

GoSam
gosam.py process.in

diagram drawing and code generation:
QGraf | FORM | Spinney

reduction: Ninja | Golem95C | Samurai | . . .

integral libraries: OneLOop | Golem95C | QCDLoop | . . .

virtual one-loop amplitude

Figure 4.2: Flowchart showing the main steps GoSam performs to produce
the virtual amplitude.

form factors of tensor integrals.
The programs Samurai and Ninja are both based on the D-dimensional gen-
eralization of the OPP method. Ninja uses reduction via Laurent series ex-
pansion [116] which allows the determination of the coefficients in (3.6) with a
small number of integrand evaluations.

The reduction programs determine the coefficients of the master integral basis
and call master integral libraries for the evaluation of the scalar master inte-
grals. The libraries OneLOop [86], Golem95C [84, 112], QCDLoop [87, 88],
or Looptools [85] can be used.

At runtime GoSam takes a phase-space point and returns the coefficients of
the Laurent expansion of the interference 2Re(A(0)∗

n A(1)
n ) up to the finite part

in ε. In GoSam the renormalization of QCD corrections is automatized, and
therefore the returned expression is renormalized and only contains singularities
due to infrared divergences. For electroweak corrections and calculations in
BSM theories only the unrenormalized result can be returned. Nevertheless
GoSam has been used for the calculation of electroweak corrections in [117, 118]
and of SUSY-QCD corrections to neutralino pair production in association with
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4 GoSam

a jet in [119].

GoSam-2.0 [19] is the most recent version of the program. The code genera-
tion is improved by grouping and summing diagrams with similar propagator
structure and by using the new features provided by FORM version ≥ 4 [110].
Higher rank tensor integrals, with tensor rank r = N + 1 where N is the num-
ber of propagators are supported. The implementation of higher rank tensor
integrals in Golem95C was presented in [112]. These integrals are absent in
renormalizable theories, but appear in effective field theories and BSM theories.
A rescue system automatically identifies numerically unstable points and tries
to rescue them. By default Ninja is used for the reduction. If the stability test
fails for a phase-space point, it is reevaluated with Golem95C which usually
gives more stable results. GoSam-2.0 also fully supports the complex mass
scheme for unstable gauge bosons and fermions [120]. To include their width
the masses of the unstable particles are changed according to

m2 → µ2 = m2 − imΓ, (4.1)

where Γ is the decay width.
Several electroweak scheme choices are implemented. Different sets of elec-
troweak parameters can be taken as input, and the remaining ones are derived
from them. Finally the second version of the Binoth-Les-Houches-accord for
the communication between one-loop providers and Monte-Carlo programs is
fully implemented [107].
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5 NLO QCD corrections to
W +W−bb̄ production

5.1 Introduction

The top quark is the heaviest particle in the Standard Model. It was first
observed at the Tevatron in 1995 [16, 17]. The precise determination of the top
quark properties is an important goal of the LHC. Knowledge of the top quark
properties is required since top quarks constitute an important background
for new physics searches. The top quark mass mt is also needed as an input
parameter in many precision calculations, for example the determination of the
stability of the SM vacuum [121].
A recent combination of top quark mass measurements at Tevatron and LHC
finds [122]

mt = 173.34± 0.27 (stat)± 0.71 (syst) GeV.

To match this precision on the theoretical side, it is necessary to consider higher
order effects and to go beyond the approximation of factorizing top quark pro-
duction and decay. The NLO QCD corrections to top quark pair production
in hadronic collisions are known for a long time [123–127]. Electroweak cor-
rections were determined in [128], the QED corrections were given in [129], for
recent developments see [130]. More recently the NNLO QCD corrections be-
came available [131, 132].
In all of these calculations top quarks are treated as stable on-shell particles.
Top quarks decay predominantly into a b-quark and a W -boson:

t→ W+b. (5.1)

The decay can be attached to the top quarks in the narrow width approxi-
mation (NWA), where production and decay factorize. In most applications,
these decays are calculated only at the leading order. One however makes use
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5 NLO QCD corrections to W+W−bb̄ production

of spin density matrix or reweighting techniques to preserve the spin correla-
tions between particle production and decay. This, especially, is the standard
in multi-purpose Monte-Carlo event generators. At parton level, NLO calcula-
tions using the NWA were further improved by including the top quark decays
at NLO. Parton level here means that the calculation is performed at fixed
order and no parton shower or hadronization effects are added. The complete
evaluation of the NLO QCD corrections to tt̄ production and decay based on
the NWA including spin correlations and NLO decays is given in [133–135].

The process pp→ W+W−bb̄ describes top quark pair production and decay, and
also includes irreducible backgrounds due to singly resonant and non-resonant
contributions (see Fig. 5.1 for representative tree-level diagrams).
The first NLO QCD calculations were presented in [22, 23]. Non-resonant ef-
fects in the decay of the W -bosons were included and studied in [24]. The
previous calculations are in the 5-flavour scheme and treat b-quarks as massless
particles. In [136, 137] the same process was calculated with massive b-quarks
in the 4-flavour scheme. These calculations include single top production and
its irreducible background in a natural way. In the 5-flavour scheme potentially
large logarithms log(Q2/m2

b) due to gluons splitting into b-quark pairs in the
initial state are resummed into the b-quark PDF, where Q2 is the hard scale of
the process. This makes it necessary to include subprocesses with initial state
b-quarks and to treat b-quarks as massless particles in the matrix element. In
the 4-flavour scheme there is no b-quark PDF, which means that the logarithms
appear explicitly in the calculation and are not resummed. Its advantage is that
the b-quarks can be treated as massive particles in the matrix element.
The process was also matched with a parton shower at NLO in [138].
Recently NLO electroweak corrections to offshell top quark pair production
with leptonic decays became available [139].

In the following the NLO QCD corrections to the 2→ 4 process pp→ W+W−bb̄→
(e+νe) (µ−ν̄µ) bb̄ are presented [21, 140]. Resonant semi-leptonic decays of the
W -bosons are included and the b-quarks are treated as massless particles.
The calculation is used to study offshell and higher order effects on top quark
mass measurements.
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Figure 5.1: Representative tree-level Feynman diagrams for resonant (5.1a),
singly resonant (5.1b) and non-resonant (5.1c) contributions.

5.2 Calculational framework

The calculation is performed using the programs GoSam [18, 19] and Sherpa
[20]. Both programs communicate via the Binoth-Les-Houches-interface [106]
(see Chapter 4).
Sherpa is a multi-purpose Monte-Carlo event generator. In this calculation
it is used to generate tree-level matrix elements for the Born and real radia-
tion contributions via the included matrix element generators Amegic [141]
and Comix [142]. Real radiation and virtual contributions are combined with
the implementation of the Catani-Seymour dipole subtraction [59] included in
Sherpa [60] (see Subsection 2.3.2). Finally Sherpa is also used to perform
the numerical integration over the final state phase-space.
The only missing piece is the virtual contribution which is provided by the one-
loop provider GoSam, described in Chapter 4. Finally the program Rivet
[143] is used to define observables and to plot differential distributions.

The process pp → W+W−bb̄ provides a full description of top quark pair pro-
duction and decay including singly resonant and non-resonant contributions,
which constitute an irreducible background, see Fig. 5.1. Diagrams including
Higgs bosons are neglected, due to their small effect on the cross section. The
calculation is in the 5-flavour scheme with massless b-quarks. The complex
mass scheme [120] is used to take into account the width of the top quark by
replacing the top quark mass by

µ2
t = m2

t − imtΓt (5.2)

where Γt is the top quark width.
The renormalization is automatically performed by GoSam. It uses the MS
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5 NLO QCD corrections to W+W−bb̄ production

scheme for gluons and massless quarks, for the renormalization of the top quark
mass the on-shell scheme is used (see Subsection 2.3.1).
The virtual amplitude was compared with the result of [24] at a given phase-
space point and agreement was found. The validity of the dipole subtraction
was verified by varying the parameter αdip over a certain range. The parameter
αdip is used to limit the phase-space region in which the dipole subtraction
terms are applied [144].

5.3 Treatment of top quarks

As already mentioned above there are different ways of adding decays to top
quark pair production. The narrow width approximation relies on approximat-
ing the resonant top quark propagators as

lim
Γt/mt→0

1
(p2
t −m2

t )2 +m2
tΓ2

t

= π

mtΓt
δ(p2

t −m2
t ) +O

(
Γt
mt

)
. (5.3)

Due to the δ-function the full process factorizes into on-shell top quark pair
production and decays as pp→ tt̄→ W+W−bb̄.
Each top quark resonance introduces a factor of 1

Γt . Therefore singly resonant
and non-resonant diagrams can be neglected in the Γt → 0 limit.
Two examples of non-factorizable and non-resonant one-loop diagrams that
are neglected in the NWA but contribute to the full calculation are shown in
Fig. 5.2.

The contributions beyond the NWA are suppressed by powers of Γt
mt

. 1%.
Nevertheless in certain regions of the phase-space the effects can become impor-
tant as can be seen for example in the mlb distribution discussed in Section 5.6.

To investigate off shell effects we differentiate between three types of calcula-
tions for theW+W−bb̄ final state in the following. The calculations are schemat-
ically shown in Fig. 5.3.
The full or WWbb̄ calculation gives a complete description of the WWbb̄ final

state. Finite width effects and non-resonant contributions are fully taken into
account.
In the NWA approach (5.3) is used to factorize the process into top quark pair
production and subsequent decays. NLO corrections to production and decay
are included in a consistent way [133–135].
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Figure 5.2: Examples of one-loop Feynman diagrams contributing to the
full calculation: a non-resonant diagram (5.2a) and a non-factorizable virtual
contribution (5.2b).
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Figure 5.3: Form of the full (5.3a), NWA (5.3b), and factorized (5.3c) calcu-
lations at NLO.

The factorized approach is used in most Monte-Carlo generators and therefore
in experimental analyses. It also uses the NWA but in contrast to the strict
NWA approach one includes NLO corrections to the production only. The
decays are added at LO.

5.4 General input parameters

Here the input parameters of the calculation are listed. For the (N)LO calcula-
tions, the MSTW2008(N)LO parton distributions [49] are used, relying on the
strong coupling constant, αS, as provided by these PDF parametrizations. The
PDFs are interfaced using the LHAPDF library [145]. The evolution equation
for the strong coupling is taken from [146]. The electroweak parameters are
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given in the Gµ scheme where the weak coupling constant is derived from the
Fermi constant Gµ:

Gµ = 1.16637 · 10−5 GeV−2,

MW = 80.399 GeV , ΓW = 2.0997 GeV ,
MZ = 91.1876 GeV , ΓZ = 2.5097 GeV .

(5.4)

Measured values are used for the gauge boson masses and the Fermi constant
[147], for the gauge boson widths the NLO QCD values are taken from [24]. All
quarks other than the top quark are taken to be massless. For the top quark
mass, we use mt = 172.0 GeV. From the parameters given above, it is possible
to derive the value of the top quark decay width at LO and NLO using the
expressions given in [148]. The numerical values used are

ΓLO
t = 1.4426 GeV ,

ΓNLO
t = 1.3167 GeV .

(5.5)

5.5 Numerical results for the LHC at 7 TeV

Here results for the full WWbb̄ calculation with semi-leptonic decays at a center
of mass energy of 7 TeV are given. We require at least two jets containing one
or more b-quarks in the final state. The jets are clustered using the anti-kT
[149, 150] algorithm implemented in FastJet [151] with a jet separation

∆R =
√

∆φ2 + ∆η2 > 0.5 . (5.6)

They have to obey the conditions

pT,b > 30 GeV and |ηb| < 2.5 . (5.7)

The requirements on the leptons in the final state are

pT,l > 20 GeV , |ηl| < 2.5 and /pT > 20 GeV . (5.8)

The variable ĤT , defined as

ĤT =
∑
i

pT,i, (5.9)
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where the sum runs over all final state particles is used to define the dynamical
renormalization scale. The central scale is chosen as µR = µF = ĤT/2. This
choice leads to small differences between LO and NLO cross section, and to
small uncertainties due to scale variations. Recently a NNLO study of scale
choices for top quark pair production appeared, which suggests that this scale
might not be optimal [152]. A similar scale choice was also in [136].

With the given parameters and phase-space constraints the LO and NLO cross
sections are

σLO [fb] = 638.4 +38.5%
−24.8% (scale) ± 0.03% (stat) ,

σNLO [fb] = 758.5 −2.5%
−5.3% (scale) ± 0.2% (stat) ,

(5.10)

corresponding to a K-factor of about 1.2.
The statistical error is the usual Monte-Carlo error from the numerical integra-
tion over the final state phase-space. The scale variation error is obtained by
varying the renormalization and factorization scales by a factor of two around
the central scale ĤT/2. The scale dependence of the cross section is shown in
Fig. 5.4a.

Fig. 5.4b shows the transverse momentum of the leading b-jet pT,b1 . The blue
and red bands denote the scale variation by a factor x = 1

2 and x = 2 where
x = 2µ/ĤT and µ = µR = µF at LO and NLO respectively. The scale varia-
tion uncertainty is significantly reduced at NLO. In the ratio plot a rise in the
NLO distribution at high transverse momentum is visible. This is due to the
additional real radiation against which the b-jet can recoil.
Fig. 5.5 shows two observables built from the charged leptons in the final state.

They are the ∆R separation and the relative angle in the plane perpendicular
to the beam axis φ between e+ and µ−. For these observables the K-factor
varies at most by 20% and the NLO distribution stays inside the LO scale un-
certainty band.
The distributions in Fig. 5.6 are the transverse momenta of the (e+, µ−) sys-

tem pT,e+µ− and the (b, b̄) system pT,bb̄. The NLO corrections have a similar
behaviour for both observables. While the corrections are small for low trans-
verse momenta, they become large above pT & 150 GeV. In the tail the K-
factor becomes as large as ∼ 3 for the pT,bb̄ distribution, and lies far outside
the LO scale variation band. This is again due to the real radiation which in-
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Figure 5.4: Scale variation of the LO and NLO cross sections in the full
approach (5.4a) between x = 1/4 an x = 16 where x = 2µ/ĤT and µ = µR =
µF. (5.4b) shows the transverse momentum of the leading b-jet at LO (blue
lines) and NLO (red lines). The bands denote the uncertainty due to scale
variations by a factor of two around the central scale ĤT/2.
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Figure 5.5: ∆R separation (5.5a) and relative azimuthal angle (5.5b) between
the two charged leptons in the final state.
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Figure 5.6: Transverse momentum of the (e+, µ−) system (5.6a) and the
system of the two leading b-jets (5.6b).

duces a transverse momentum imbalance between the (b, b̄) and the (W+,W−)
system.

5.6 Study of theoretical uncertainties in top quark
mass measurements

5.6.1 Top quark mass definition

The top quark mass mt is a parameter in the SM Lagrangian. Therefore it
is not a physical observable and is dependent on the renormalization scheme,
see Subsection 2.3.1. Most commonly the pole mass and the modified minimal
subtraction (MS) mass are used. The relation between the two mass definitions
is known up to the four loop order [153].

The pole mass scheme is a long distance scheme. One defines the pole mass as
the real part of the pole of the top quark propagator, see (5.3). Since the top
quark is colored, it is subject to confinement, which means that nonperturba-
tively there is no pole in the top quark propagator and the pole mass can only
be defined perturbatively. There is an irreducible uncertainty of the order of
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70 MeV [154] on the pole mass due to the infinite sum of self-energy insertions,
which is known as the renormalon ambiguity [155, 156].
The MS mass scheme on the other hand is a short distance scheme. Only the
divergent parts of the self-energy insertions are absorbed into the renormalized
MS mass, see Subsection 2.3.1. In contrast to the pole mass, the MS mass is
not affected by the renormalon ambiguity.

Experimental measurements of the top quark mass are performed by compar-
ing kinematic observables of top quark decay products with predictions from
Monte-Carlo generators. The exact relation between the top quark mass mMC

t

used in Monte-Carlo generators and a well defined top quark mass definition is
not known [157–160]. In [157] the difference between mMC

t and the pole mass
is estimated to be about 1 GeV.
It is also possible to obtain the MS mass directly from measurements of the
total tt̄ cross section, when comparing with the calculated tt̄ cross section where
the top quark mass is renormalized in the MS scheme. The drawback of this
method is the comparably large experimental uncertainty. There is also a resid-
ual dependence of cross section measurements on the Monte-Carlo mass mMC

t

[161].

5.6.2 Mass measurement using the mlb observable

An observable that is commonly used for top quark measurements is the in-
variant mass of the charged lepton and b-jet system m2

lb = (pl + pb)2 from a
semi-leptonic top quark decay. The observable was recently used in ATLAS
analyses of 7 TeV [162] and 8 TeV [163] data, and also in a CMS analysis [164].
Using the mlb observable, the ATLAS analysis [162] finds a top quark mass of

mt = 173.09± 0.64 (stat)± 1.50 (syst) GeV . (5.11)

The main systematic uncertainty is due to the jet energy scale uncertainty.
Theoretical uncertainties contribute about 0.8 GeV.

Since we generate events in the dilepton decay channel, there is one mlb per top
quark. Because the charge information of the b-jet is lost, there is no obvious
way to find the combinations of leptons and b-jets which originate from the same
top quark. In [162] a combination criterion based on a Monte-Carlo study is

46



5.6 Study of theoretical uncertainties in top quark mass measurements

LHC 7 TeV
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Figure 5.7: Distribution of mlb at LO and NLO for the full WWbb̄ calculation
(5.7a) and the factorized calculation (5.7b). The central scale for the full cal-
culation is µ = ĤT/2, while for the factorized calculation µ = mt = 172.5 GeV
is used.

given, which will be used in the following. The pairing (l+b, l−b′) is chosen
which minimizes the sum of the two mlb values obtained from the combination.
Finally the mlb observable shown below is the average of the two mlb values.

Parton level mlb predictions at NLO

For the calculation of the mlb distribution, we follow the ATLAS procedure as
outlined above. We use mt = 172.5 GeV as the default top quark mass and
employ the ATLAS kinematic requirements for 7 TeV LHC pp collisions: we
require exactly two oppositely charged leptons (electrons with pT > 25 GeV,
and muons with pT > 20 GeV) in the pseudo-rapidity range |ηl| < 2.5, and
two b-jets with pT,b > 25 GeV, |ηb| < 2.5 and ∆R > 0.4, using the anti-kT
algorithm. The leptons have to be isolated from the jets with ∆Rl,j > 0.4.
Lastly, HT defined as the sum over the transverse momenta of charged leptons
and jets has to be larger than 130 GeV.

In Fig. 5.7 the mlb distribution at LO and NLO is shown for the full WWbb̄
calculation and the factorized calculation. The full calculation uses µ = ĤT/2
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Figure 5.8: Comparison of the normalized mlb distribution using the dynam-
ical scale µ = ĤT/2 and the fixed scale µ = mt in the full approach (5.8a).
Normalized mlb distribution comparing the full and the factorized calculation
using the fixed scale µ = mt (5.8b). In the ratio plot all distributions are
normalized to the factorized LO calculation.

as central scale, while for technical reasons in the factorized calculation µ = mt

is used.
The K-factor for the factorized calculation in Fig. 5.7b is flat over most of
the mlb region. At LO the distribution has a cut-off at mlb =

√
m2
t −m2

W '
150 GeV due to on-shell constraints. The NLO distribution on the other hand
develops a tail above the cut-off, because of real radiation contributions.
In the full calculation the K-factor varies more and a tail is already present at
LO. The NLO corrections in the tail region exceed the LO scale variation bands.

The top quark mass measurement in [162] is mostly affected by shape changes
close to the peak of the distribution. The shape changes due to NLO corrections
are more pronounced in the full calculation, while the corrections for the fac-
torized calculation are almost flat. To verify that this is not due to the different
scale choices used in the two calculations, a comparison of the full calculation
evaluated at the two scales is shown in Fig. 5.8a. This shows that the shape of
the mlb distribution is similar for the scales µ = ĤT/2 and µ = mt. Another
difference between the two calculation is the behaviour under scale variations.
The scale variation bands of both LO calculations and factorized NLO calcu-

48



5.6 Study of theoretical uncertainties in top quark mass measurements

lation are symmetric around the central scale, while the full NLO calculation
exhibits asymmetric uncertainty bands.
Fig. 5.8b shows a comparison of the shapes of the mlb distributions obtained in
the full and the factorized approach using a fixed scale µ = mt. The only dis-
tribution with a shape significantly different from the rest in the peak region is
the full WWbb̄ NLO distribution. The shape of the factorized NLO distribution
on the other hand is similar to the shape of the LO distributions.

Investigation of theoretical uncertainties in the mt measurement

In [162, 163] a template method is used to determine the top quark mass from
data. Details on the method can also be found in [165, 166]. Template dis-
tributions for different input top quark masses min

t are generated. The mlb

distributions are then fitted using a fit function. All parameters of the fit func-
tion depend linearly on min

t in the region around the expected top quark mass,
which is verified in [162]. After fixing the parameters in the linear relation using
the templates, the only free parameter is the top quark mass. In the experi-
ment a likelihood fit of the function to data is performed which fixes the free
parameter in the fit function, leading to the measured top quark mass mout

t .
In the experimental analysis templates are generated at detector level. The
following analysis on the other hand is performed at parton level. Effects of
parton shower, hadronization, and detector simulation can therefore not be ad-
dressed
In Fig. 5.9 normalized mlb distributions for three different top quark masses

are shown. Also shown is the LO distribution for mt = 172.5 GeV to illustrate
the shape change due to NLO corrections.

To assess theoretical uncertainties, NLO distributions are used to generate
pseudo-data corresponding to an integrated luminosity of 4.7/fb. Two sets
of templates are obtained from LO and NLO distributions respectively. The
impact of the NLO corrections is then assessed by comparing mout

t obtained
with the LO templates to the value obtained with NLO templates.
The scale uncertainty on mout

t is estimated by generating pseudo-data from
NLO distributions at a shifted scale while keeping the templates at the central
scale.
Since there are sizeable shape differences in the mlb distribution for the full
and the factorized prediction, the analysis is performed for both calculations
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MSTW2008(n)lo pdf

NLO, mt = 172.5 GeV
NLO, mt = 165.0 GeV
NLO, mt = 180.0 GeV
LO, mt = 172.5 GeV10−5

10−4

10−3

10−2

(1
/

σ
)

d
σ

/d
m

lb
[1

/G
eV

]

0 50 100 150 200

0.5
1

1.5
2

2.5
3

mlb [GeV]

R
at

io

Figure 5.9: Normalized mlb distributions at NLO in the full approach gener-
ated with three different top quark masses. The dashed line is the LO prediction
obtained with mt = 172.5 GeV.

separately.

In Fig. 5.10 the top quark mass analysis for the full calculation is presented.
Fig. 5.10a shows the NLO mlb distribution with min

t = 172.5 GeV as a black
histogram. A pseudo-data set corresponding to an integrated luminosity of
4.7/fb, generated from the distribution, is given by the data points. The red line
finally shows the result of the template fit using NLO templates to the pseudo-
data. From the fit one obtains a top quark mass of mout

t = 172.3 ± 0.52 GeV
consistent with the min

t used to generate the pseudo-data, demonstrating the
internal consistency of the method.

Fig. 5.10b shows the difference between the input top quark mass min
t used

for the generation of the pseudo-data and the output top quark mass mout
t

measured from the pseudo-data using the template method. Pseudo-data is
generated with three different input masses min

t . The red dots correspond to
NLO pseudo-data measured with a fit based on NLO templates. The statistical
error due to the assumed luminosity is given by the error bars of the points.
The error bands are obtained by using scale varied NLO distributions as input
for the pseudo-data while keeping the original templates. The scale variation
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Figure 5.10: In (5.10a) a NLO mlb distribution (black histogram) and the
pseudo-data set (black points) generated from it are shown. A fit of the pseudo-
data based on NLO templates is given by the red line.
In (5.10b) the difference mout

t − min
t based on NLO templates (red) and LO

templates (blue) is shown. The error bars denote the statistical uncertainty due
to a luminosity of 4.7/fb. The bands are obtained by varying renormalization
and factorization scale in the calculations used for the generation of the pseudo-
data, while keeping the templates at the central scale µ = ĤT/2. The horizontal
lines stem from a fit of the three points to a constant, displaying the average
offset.

error on mout
t is significantly larger than the statistical uncertainty and of sim-

ilar size as the theoretical systematic uncertainty assigned to the experimental
result in [162]. This is due to the asymmetric scale variation bands of the NLO
distribution in Fig. 5.7a.
The blue data points and error band are obtained by replacing the NLO tem-
plates with LO templates. Using LO templates introduces a difference between
min
t and mout

t of about −1.9 GeV since the pseudo-data is still generated with
NLO distributions. This shift is a measure of the effect of NLO corrections on
this top quark mass analysis.

The same analysis is repeated with templates and pseudo-data obtained from
the factorized calculation. Results are shown in Fig. 5.11. The scale variation
band in Fig. 5.11b is reduced compared to the full calculation. It shrinks from
+0.6
−1.0 GeV for the full calculation to ±0.2 GeV. This is a consequence of the dif-
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Figure 5.11: Same as Figure 5.10, but pseudo-data as well as templates for
the fit are based on the factorized calculation using µ = mt instead instead
of the full calculation. The range of the vertical axis in (5.11b) differs from
(5.10b).

ferent shapes of the NLO scale variation bands in Fig. 5.7a and Fig. 5.7b. The
shift between using NLO templates and LO templates is also reduced, since
the shapes of LO and NLO mlb distributions are very similar in the factorized
calculation (see Fig. 5.8b).

NLO factorized calculations matched to a parton shower are the standard tool
used in experimental top quark analyses such as [162]. This parton level study
shows that there can be sizeable differences between the factorized and full
calculation, in particular for the magnitude of the scale variation errors.

The large differences between the full and factorized calculation can come from
NLO corrections to the top quark decays and from non-resonant contributions.
To separate the two contributions it is necessary to repeat the analysis in the
strict NWA which includes NLO decays but no non-resonant contributions.
Fig. 5.12 shows a comparison between the strict NWA calculation [135, 167]
and the full W+W−bb̄ calculation at NLO. The good agreement in the peak
region suggests that the differences between full and factorized calculation are
mostly due to NLO corrections to the top quark decays. A more thorough
investigation of this issue is in progress.
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Figure 5.12: Comparison between the full W+W−bb̄ prediction and the strict
NWA approximation including NLO decays for the mlb observable. Renormal-
ization and factorization scale are set to the top quark mass mt = 172.5 GeV.
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Part II

Beyond the one-loop order
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6 Calculation of multi-loop
amplitudes

6.1 Form factor decomposition

The calculation of one-loop amplitudes was described in Chapter 3. Here am-
plitudes with L > 1 are discussed, which appear either in NNLO and higher
order calculations or already at lower orders for loop induced processes.
In the form factor approach one strips the polarization vectors of external vec-
tor bosons off the amplitude. For an amplitude, as defined in Section 2.2, with
m external particles out of which n are vector bosons this leads to

A(p1, ε1, . . . , pn, εn, pn+1 . . . , pm) = ε1,µ1 . . . εn,µnAµ1...µn(p1, . . . , pn, pn+1 . . . , pm),
(6.1)

where the dependence on the quantum numbers of the remaining m−n particles
is suppressed. The amplitude can then be rewritten as a linear combination of
tensor structures T µ1...µn

i with coefficients Fi which are called form factors:

Aµ1...µn =
∑
i

FiT
µ1...µn
i . (6.2)

As a consequence of the Lorentz covariance of the amplitude, the tensors T µ1...µn
i

are built from products of external momenta pµi and the metric tensor gµν .
For QCD processes with with external fermions, they also include generalized
Gamma matrices, i.e. structures like ūγµu [168]. The number of independent
form factors can be reduced by exploiting the symmetries of the process, for
example transversality conditions, Ward identities, and Bose symmetry [169].
In order to isolate the form factors from the amplitude, one builds projection
operators Pi,µ1...µn as linear combinations of the independent tensors structures:

Pi,µ1...µnAµ1...µn = Fi ({sij}, {mi}) . (6.3)
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The form factors are functions of the kinematic parameters sij and internal
masses mi. Offshell external momenta are included in the sij as sii = p2

i 6= 0.
The decomposition depends on the external particles of the process, but it is
independent of the loop order of the amplitude. An example for a form factor
decomposition is given in Chapter 9.
The numerator of the form factors depends on scalar products of loop and
external momenta. One introduces linearly independent sets of propagators
{Dj} to define integral families with

N = L(L+ 1)
2 + L(n− 1) (6.4)

elements for an n-point L-loop scattering amplitude. All scalar products in-
volving the loop momenta, i.e. ki · kj and ki · pj, can be expressed as linear
combinations of the propagators Dj in the integral family and a loop momen-
tum independent term. The integrals appearing in the form factors can then
be brought to the form

I ({sij}, {mi}) =
∫ (

L∏
i=1

dDki
iπD/2

)
1∏N

j D
νj
j

, (6.5)

where some of the νj can be zero or negative. In general several integral fami-
lies, corresponding to different topologies and massive propagators, are required
for the calculation of a multi-loop amplitude.

6.2 Integration by parts reduction

A multi-loop amplitude contains a large number of loop integrals of the kind
given in (6.5), which are in general difficult to calculate. It is therefore advan-
tageous to find relations between the appearing integrals, and to reduce them
to a basis of master integrals. The approaches for the reduction of one-loop
amplitudes described in Chapter 3 are not applicable at higher loop orders.
Integration by parts reduction [170–172] is the most commonly used integral
reduction method beyond one-loop. It is implemented in several public com-
puter codes [173–176].
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6.2 Integration by parts reduction

Feynman integrals in dimensional regularization are invariant under linear trans-
formations of the loop momenta or equivalently∫ (

L∏
i=1

dDki
iπD/2

)
∂

∂kµi

vµ∏N
j D

νj
j

= 0, (6.6)

where vµ(k, p) depends on loop and external momenta. After taking the deriva-
tive explicitly, relations between integrals with changed νj are obtained. The
coefficients in the relations are rational functions of kinematic invariants, in-
ternal masses and the space-time dimension D. The vectors vµ can be chosen
in such a way that no higher propagator powers are introduced in the reduc-
tion (νj ≤ 1) [177, 178], which is useful for unitarity based approaches. There
is also progress in understanding the geometric structures underlying the IBP
relations [179, 180], relying on the Baikov representation of Feynman integrals
[181].
It is possible to use finite field methods for solving the systems of equations
in the reduction, which avoids problems due to the large size of intermediate
expressions [182, 183]. For a different application of finite field methods in the
context of integral reduction see [184].

One obtains a large number of relations in this way, and a systematic algorithm
to employ these relations for a reduction to master integrals is needed. This
can be achieved by heuristic approaches [174, 185] and the Laporta algorithm
[172, 186] implemented in [173, 175, 176]. The Laporta algorithm operates on
relations between integrals with numeric νi and amounts to Gaussian elimina-
tion for the system of linear equations based on a lexicographic ordering of the
integrals. For an efficient reduction, it is also important to exploit symmetry
relations between Feynman integrals.

There is also progress in alternative multi-loop reduction methods, including
integrand level reduction methods using Groebner bases [187–190], and appli-
cations of generalized unitarity and on-shell methods beyond the one-loop order
[191–194].

6.2.1 Quasi-finite basis

While the number of master integrals for a specific process is fixed, there is
some freedom in which integrals to choose as masters. For certain methods of
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6 Calculation of multi-loop amplitudes

calculating Feynman integrals, specific basis choices are convenient or even nec-
essary, see for example the canonical basis choice for the differential equation
method in Section 6.3.
A different basis choice is motivated by integration methods based on linear
reducibility [195–199], which can only be applied to finite integrals. In [199] a
method was proposed to express divergent integrals in terms of finite integrals
with shifted dimension and propagator powers νi. The drawback of the method
was the large number of integrals, that it produced. In [200, 201] it was com-
bined with IBP reduction and dimension shift relations [202–204], leading to
the quasi-finite basis method. The master integrals are chosen to be quasi-finite
(an overall UV divergence from the prefactor is allowed), which can always be
achieved by dimension shifts and changing propagator powers. One can test
integrals for finiteness by rescaling subsets of Feynman parameters and calcu-
lating the degree of divergence [199]. Constraints on dimension and propagator
powers for finite integrals can also be derived from the geometric decomposition
algorithm (see Section 7.4).
Here the reduction of the two-loop massless nonplanar on-shell box to a quasi-
finite basis is shown:

4D
= c1

ε

8D

+ c2

ε

6D
+ c3

ε

6D
+ c4

ε2

6D

+c5

ε2

6D

t↔u
+ c6

ε2

6D
+ c7

ε2

6D

t↔u
+ c8

ε2

6D

s↔u

+c9

ε4

8D

+ c10

ε4

8D
+ c11

ε4

8D

s↔t
+ c12

ε4

8D

s↔u
.

(6.7)

Dots on propagators denote an increased exponent of the corresponding propa-
gator, i.e. k dots on propagator i stand for νi = 1+k in (6.5). The notation for
the dimension the integrals live in is nD, which means that the integral is to
be calculated in D = n− 2ε dimensions. The 4D integral on the left side con-
tains up to ε−4 poles, while the integrals on the right-hand side of the equation
are quasi-finite (integrals 6,7 and 8 contain an overall UV divergence). In the
limit D → 4 the ci coefficients are finite, all 1

ε
factors are explicit. Only simple

integrals contribute to the leading poles. The coefficient of the first integral is

c1 = 16(2ε− 3)(2ε− 1)(4ε− 3)(2x− 1)(2x− 2x2 − 3 + ε(9− 4x+ 4x2))
s2(x− 1)x(9− 6x+ ε(10x− 9)) ,

(6.8)
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6.3 Differential equations

where x = − t
s
. It contains the thresholds of the nonplanar box s = 0, x =

0 and x = 1. Some of the other coefficients also contain the thresholds of
their corresponding master integrals. It would be interesting to investigate this
apparent feature of the quasi-finite basis further.
In the limit D → 4 there is also an additional unphysical divergence at x = 3

2
which appears in all coefficients ci. Since it is not present in the 4D nonplanar
box, it has to cancel between the integrals. This could be a sign that there is
a better basis choice that avoids the unphysical threshold.
The fact that the quasi-finite integrals are free of dimensional regularization
divergences and seem to have an improved threshold behaviour, makes them
well suited for numerical integration approaches such as sector decomposition
(see Chapter 7).

6.3 Differential equations

In the following the differential equation method, developed by Kotikov, Remiddi
and Gehrmann is described [25–27]. The derivative of a Feynman integral with
respect to a kinematic invariant can be written as a linear combination of Feyn-
man integrals in the same integral family. Using IBP reduction the appearing
integrals are reduced to a basis of master integrals. This leads to a system of
linear differential equations for the master integrals

∂xif(x, ε) = Ai(x, ε)f(x, ε) (6.9)

in the kinematic variable xi, where f is a vector of master integrals.

In [28] it was observed that the system of differential equations can be brought
to the simpler form

∂xif(x, ε) = εAi(x)f(x, ε) (6.10)
or written as a total differential

df(x, ε) = ε dÃ f(x, ε) (6.11)

by choosing a suitable basis of master integrals. Here the dependence on the
dimensional regularization parameter ε is explicit. The kinematic dependence
can be made explicit as

Ai(x) = ∑
j

aij
αj(x) (6.12)

Ã = ∑
j ãj log(αj(x)) (6.13)
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6 Calculation of multi-loop amplitudes

where the function alphabet αj(x) is determined by the thresholds and pseu-
dothresholds of the integrals. The matrices aij or ãj are independent of the
kinematic variables and ε containing only rational numbers.

There is no general algorithm to find a basis of integrals that obeys the canoni-
cal form of the differential equation. For certain special cases however methods
were found [29, 205–209].
In [29] it was found that if the differential equation has a linear ε dependence
Ai(x, ε) = A0

i (x) + εA1
i (x), it can be brought into the canonical form by trans-

forming the A0
i part away. The transformation can be found by solving the

differential equation for the ε-independent part A0
i or by using the Magnus ex-

ponential [210, 211]. It is assumed that the differential equation can be brought
to a form linear in ε by some other method. The Magnus exponential can also
be used to solve the differential equation as an expansion in ε. Furthermore
in [29] the method was applied to recalculate the previously known two-loop
QED vertex [212, 213] and non-planar box integrals [214, 215] in the canonical
basis formalism. More advanced applications of this method can also be found
in [216, 217].

The solution of (6.11) can be expressed in terms of Chen iterated integrals [218]

f(x, ε) = P exp
[
ε
∫
γ

dÃ
]
f(x0, ε) (6.14)

where P denotes path ordering and the path γ starts at x0 and terminates at x.
In cases where the function alphabet αj(x) consists of rational functions in one
kinematic parameter, the ε-expansion of the integral can be written in terms of
hyperlogarithms [219] (also called Goncharov polylogarithms and generalized
harmonic polylogarithms) defined by

G(a1, . . . , an; z) =
∫ z

0

dt
t− a1

G(a2, . . . , an; t), (6.15)

G(an; z) =
∫ z

0

dt
t− an

. (6.16)

Integrals in the canonical basis have the property of uniform weight. With the
weight assignements w(G(a1, . . . , an; z)) = n and w(ε) = −1 all terms in the
ε-expansion of uniform weight integrals have the same weight [220].

Another important issue to address is the fixing of the boundary vector f(x0, ε)
in (6.14). Naively this requires the knowledge of all master integrals at some

62



6.3 Differential equations

p1

p2

p1 − k1

−p2 − k2

Figure 6.1: Feynman diagrams appearing in the two-loop corrections to the
QED vertex. The first diagram shows the momentum routing of the integral
family.

kinematic point x0. Using the canonical basis this can be avoided by requiring
that the solution is regular in the unphysical pseudo-thresholds of (6.13). This
gives additional constraints on the boundary vector. Often these constraints
are sufficient to fix the boundary up to a small set of simple integrals [28].
For integrals where no unphysical pseudo-thresholds are available one can fix
the boundary by an asymptotic expansion encoded in the differential equation
[220].

6.3.1 Two-loop QED vertex

The master integrals contributing to the two-loop QED form factor with mas-
sive electrons were first calculated in [212, 213]. Some appearing diagrams are
listed in Fig. 6.1. The first diagram also shows the momentum routing of the
integral family. Here the master integrals are given in the canonical form, a
result which was first presented in [29].
The process depends on the kinematic scales s = (p1 + p2)2 and p2

1 = p2
2 = m2.

From these scales one can build the variable x defined by

s = −m
2(1− x)2

x
. (6.17)

This change of variables maps the pseudo-thresholds of the integral family in
the following way:

s = 0 → x = 1
s = 4m2 → x = −1
s =∞ → x = 0.

(6.18)

We start with a set of master integrals Ti shown in Fig. 6.2. In a first step the
masters are rescaled with powers of the dimensional regularization parameter
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T1

p12

T2(s)

p12

T3(s)

p1

T4

p12

T5(s)

p12

T6(s)

p2

T7

p1

p2

T8(s)

p1

p2

T9(s)

p1

p2

T10(s)

p1

p2

T11(s)

p1

p2

T12(s)

p1

p2

T13(s)

p1

p2

T14(s)

p1

p2

T15(s)

[(k1 + k2)2]

p1

p2

T16(s)

p1

p2

T17(s)

Figure 6.2: Master integrals of the two-loop QED vertex.

ε in order to make them finite in the limit ε→ 0:

f1 = ε2T1 , f2 = ε2T2 , f3 = ε2T3 , f4 = ε2T4 , f5 = ε2T5 ,

f6 = ε2T6 , f7 = ε2T7 , f8 = ε3T8 , f9 = ε3T9 , f10 = ε2T10 ,

f11 = ε3T11 , f12 = ε3T12 , f13 = ε2T13 , f14 = ε3T14 , f15 = ε4T15 ,

f16 = ε4T16 , f17 = ε4T17 , (6.19)

The resulting differential equation in the kinematic variable x has the form

∂xf(ε, x) = [A0(x) + εA1(x)] f(ε, x). (6.20)

To bring the differential equation in the canonical form ε independent part
A0(x) has to be transformed away. This is done with the transformation

f(ε, x) = B(x)g(ε, x). (6.21)
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6.3 Differential equations

The matrix B(x) is determined by solving the differential equation ∂xB(x) =
A0(x)B(x). The explicit form of the transformation is given by

g1 = f1 , g2 = λ1f2 ,

g3 = (−s)λ2f3 , g4 = m2f4 ,

g5 = λ1

(
f5 + f6

2

)
− s

2f6 , g6 = (−s)f6 ,

g7 = m2f7 , g8 = λ1f8 ,

g9 = λ1f9 , g10 = λ3 (2f5 + f6) +m2λ2f10 ,

g11 = λ1f11 , g12 = λ1f12 ,

g13 = 3
(
m2 − s

2

)
f7 − sλ2f13 , g14 = (−s)λ2f14 ,

g15 = λ1f15 , g16 = λ1f16 ,

g17 = (−s)λ2f17 , (6.22)

with

λ1 =
√
−s
√

4m2 − s , λ2 = (4m2 − s) , λ3 = λ1 + λ2

4 . (6.23)

The master integral basis gi is in the canonical form obeying the differential
equation

∂xg(ε, x) = ε
[M1

x
+ M2

1 + x
+ M3

1− x
]
g(ε, x) (6.24)
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with

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 5 −6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −4 0 −2 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 2 0 0 0 0 0 0 0 0
− 1

2 0 0 0 1 −2 −3 0 0 3 3 0 0 0 0 0 0
0 0 0 0 1 −1 2 0 0 −2 −2 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0
0 −1 0 0 0 0 −3 0 0 0 0 3 3 0 0 0 0
0 −1 0 0 1 − 1

2 0 2 2 0 0 0 0 2 2 0 0
0 0 0 0 0 1

2 0 − 1
2 0 0 0 0 0 −1 −1 0 0

− 1
2 0 0 −2 −1 0 −2 1 0 2 0 −2 0 0 −2 −2 2

0 0 0 0 −1 1
2 0 3 −2 0 −6 −2 0 0 −4 −4 4



,

M2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −6 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0
0 0 0 0 −1 1

2 0 0 0 −4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 −6 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4



,

M3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −6 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −12 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 −4 0 0 −4 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4



. (6.25)

The x dependence of the differential equation exposes all pseudo-thresholds
given in (6.18). One can use the fact that x = 1 (or s = 0) is an unphysi-
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cal threshold to fix the boundary vector of the integration at this point. By
requiring the solution to be regular at x = 1, one obtains a constraint on
the boundary vector g(x0 = 1, ε). The constraints on the expansion terms of
g(1, ε) = ∑N

n=0 ε
ngn(1) turn out to be M3gn(1) = 0 up to the calculated order

N = 5. This suggests that M3g(1, ε) = 0 might be true to all orders in ε.
The condition M3gn(1) = 0 fixes the boundary vector up to three simple inte-
grals g1, g4, and g7 which do not depend on x. While g1 and g4 can be easily
computed, the results of [221] are used for the equal mass sunrise graph g7.
The solution can then obtained by integrating the differential equation order
by order in ε in terms of hyperlogarithms with ai ∈ {−1, 0, 1} (see (6.16)).
Agreement was found with the results of [212].
The results in terms of Harmonic Polylogarithms for which the program HPL
[222, 223] was used can be found in Appendix B of [29] and in a Mathematica
file attached to the Arxiv submission of the same publication.
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7 Sector decomposition

7.1 Feynman parameter integrals

In this section parametric representations for the momentum space loop integral
in (6.5) are derived. Using the Schwinger trick one can write the propagators
as

1
Dνi
i

= 1
Γ (νi)

∫ ∞
0

dαi
αi

ανii e
−αiDi Re(νi) > 0, (7.1)

which is valid for Re(Di) > 0 achievable by Wick rotating to Euclidean space.
Furthermore the condition Re(νi) > 0 has to be fulfilled For inverse propagators
with integer exponents νi ≤ 0 the relation

1
Dνi
i

= (−1)νi ∂
|νi|

∂α|νi|
e−αiDi

∣∣∣
αi=0

0 ≥ νi ∈ N (7.2)

can be used. With this transformation the integrand of (6.5) becomes

1∏N
i D

νi
i

=
N∏
i

(
1

Γ (νi)

∫ ∞
0

dαi
αi

ανii

)
exp(−

N∑
i

αiDi). (7.3)

After integrating out the loop momenta (D-dimensional Gauss integrals), one
obtains the Schwinger parameter representation (see for example [224]).
For our purpose the Feynman parameter representation is more useful. Feyn-
man parameters are obtained by introducing a new integration parameter t =
H(α) and transforming the Schwinger parameters as αi = txi, which leads to

N∏
i

(
1

Γ (νi)

∫ ∞
0

dxi
xi

xνii

)∫
dt tνδ(t−H(tx)) exp(−t

N∑
i

αiDi), (7.4)

with ν = ∑n
i νi. We require H(α) to be a homogeneous weight one function ful-

filling the relation H(tx) = tH(x), which makes the argument of the δ-function
homogeneous. Furthermore H(α) has to be positive definite for α ∈ RN

>0 in
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order to not change the boundaries of the xi integrations. These requirements
constrain the functional form of H to be H(α) = ∑N

i Hiαi with Hi ≥ 0 and
not all Hi zero [225].
Extracting the t variable from the δ-function, one obtains

N∏
i

(
1

Γ (νi)

∫ ∞
0

dxi
xi

xνii

)
δ(1−H(x))

∫ dt
t
tν exp(−t

N∑
i

xiDi). (7.5)

Using (7.1) the integration over t can be performed leading to the Feynman
parametrization

1∏N
i D

νi
i

= Γ (ν)
N∏
i

(
1

Γ (νi)

∫ ∞
0

dxi
xi

xνii

)
δ(1−H(x))[∑N

i xiDi

]ν . (7.6)

The function H is usually chosen to be H(x) = ∑N
i xi and the additional free-

dom in the choice of H(x) is called the Cheng-Wu theorem [226] and will be
important for the geometric decomposition algorithm presented in Section 7.4.

The inverse propagators Di are defined as Di = q2
i −m2

i + iδ, where the qi are
linear combinations of loop momenta ki and external momenta pi. With this
definition the square-bracket in (7.6) can be written as

N∑
i

xiDi = kᵀMk− 2kᵀQ + J + iδ, (7.7)

where boldface letters specify vectors and matrices in loop momentum space,
e.g. k is a L-dimensional column vector containing the loop momentum Lorentz
vectors as its elements. With the loop momentum transformation k = k′ +
M−1Q, one eliminates the linear term in (7.7) and obtains

k′ᵀMk′ −QᵀM−1Q + J + iδ, (7.8)

where M = Mᵀ was used. After Wick rotation the loop momentum integrations
can be performed in Euclidean space, and one ends up with the Feynman
parametrization of the multi-loop integral in (6.5):

I ({sij}, {mi}) = (−1)ν Γ (ν−LD2 )∏N

i
Γ (νi)

∏N
i

∫∞
0

dxi
xi
xνii δ(1−H)U

ν−(L+1)D2

Fν−L
D
2
, (7.9)

U(x) = det(M), (7.10)
F(x, {sij}, {mi}) = det(M) [QᵀM−1Q− J − iδ] . (7.11)
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7.2 Singularities of Feynman parameter integrals

The graph polynomials U and F are polynomials of homogeneous weight L and
L+1 respectively. They are also called first and second Symanzik polynomials,
and are sometimes denoted ψ and φ in the mathematical literature.

There is also a graph theoretical method to obtain the Symanzik polynomials
from the associated Feynman diagram [227]. The k-forest Tk is defined as the
partition of a subset of the edges of a graph into k sets with the property that
the subsets are connected and contain no loops. For the set of all 1-forests
|T1| this corresponds to the set of spanning trees of the graph, while the set of
2-forests |T2| is obtained by cutting one additional edge in all possible ways.
The graph polynomials are then constructed as

U =
∑
T∈|T1|

∏
e/∈T

xe, (7.12)

F0 =
∑
T∈|T2|

(−sT )
∏
e/∈T

xe, (7.13)

F = F0 + U
N∑
e

xem
2
e, (7.14)

where sT is defined as the squared momentum flowing through the cut of the
2-forest T . This representation shows that U and F0 are homogeneous polyno-
mials linear in the Feynman parameters, while F can also contain terms which
are quadratic in a Feynman parameter corresponding to a massive propaga-
tor.

7.2 Singularities of Feynman parameter integrals

The Euclidean region is defined as the kinematic region where all sT ≤ 0 and
all m2

i ≥ 0. In this region the graph polynomial F is a positive-semidefinite
function of the Feynman parameters.
In the Euclidean region the graph polynomials become zero only in regions
where subsets of the Feynman parameters go to zero. Zeroes of the U polyno-
mial can lead to UV divergences, while F = 0 corresponds to IR divergences (see
Section 2.3), all of these singularities are regulated by the dimensional regular-
ization parameter ε. An overall UV divergence can come from the Γ (ν−LD/2)
prefactor in (7.10).
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For general kinematics Feynman integrals develop additional kinematic depen-
dent singularities. The Landau equations constitute necessary conditions for
the appearance of divergences [228]. In Feynman parameter space they are
given by [229]

F = 0 and

either xi = 0
or ∂iF = 0

for each i. (7.15)

A singularity with all xi 6= 0 is called leading Landau singularity. Subleading
singularities with xi = 0 for some i correspond to singularities of subgraphs.

7.3 Sector decomposition

The sector decomposition algorithm applies to dimensionally regulated param-
eter integrals. These integrals can be Feynman integrals, as in (7.10), D-
dimensional phase-space integrals [32], or even more general classes of integrals.
In the following we will concentrate on its application to Feynman integrals.
Sector decomposition was used to disentangle overlapping UV [230, 231] and
IR singularities [232, 233], and applied to certain one-loop integrals in [234]. It
was generalized to an automatized algorithm for the computation of divergent
parameter integrals in dimensional regularization in [30–33].
The sector decomposition algorithm is implemented in the public programs
sector decomposition [235], Fiesta [236–239], and SecDec [36–38].

The goal of sector decomposition is to extract singularities in the dimensional
regularization parameter ε from an integral before the integration is performed,
resulting in an expanded form

I({sjk}, {mj}) =
nmax∑
i=−n

ci({sjk}, {mj})εi. (7.16)

The expansion starts from the leading pole order of the integral n. For an
L-loop integral the maximal pole order is n = 2L. It is possible to expand to
any order nmax. An expansion beyond the finite term nmax = 0 is required as
an input for the calculation of cross sections beyond NLO and already at NLO
for loop-induced processes, such as Higgs boson pair production in gluon fusion
presented in Chapter 9. There the one-loop amplitude had to be expanded
up to order ε2 to cancel UV and IR singularities in the NLO calculation. The
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7.3 Sector decomposition

coefficients ci({sjk}, {mj}) are integrals in the Feynman parameters, which are
finite in the ε → 0 limit. This makes it possible to use numerical integration
routines for their evaluation.

To obtain the expansion in ε, one considers integrals in the Euclidean region,
where all singularities are due to some subset of Feynman parameters going
to zero. Now the integration region is split up into sectors in which one can
locally transform the Feynman parameters to bring the graph polynomials in
the factorized form

U = xv0

(
1 +

∑
i

xvi

)
with vi ∈ NN−1

≥0 , (7.17)

F = xw0

(
s0 +

∑
i

sixwi

)
with wi ∈ NN−1

≥0 , (7.18)

where the integration region in each sector is mapped to an N − 1-dimensional
unit hypercube ([0, 1]N−1). Depending on the decomposition strategy v0 and
w0 can contain negative components. Here and in the following multi-index
notation is used, e.g. xv0 = ∏

j x
(v0)j
j . Different strategies for the decomposi-

tion are discussed in the next section.
Singularities in the Minkowski region are treated via a deformation of the in-
tegration contour described in Section 7.5. In the Euclidean region the expres-
sions in the brackets are nonzero and the only zeros come from the xv0 and
xw0 factors. Due to the simple singularity structure subtraction terms can be
introduced which locally cancel the singularities (see Section 7.6). Finally the
algebraic expressions for the terms in the ε expansion are integrated numerically
(see Section 7.7).

7.3.1 Iterated decomposition

Iterated sector decomposition strategies rely on choosing subsets of Feynman
parameters S = {xα1 , . . . , xαr} and partitioning the parameter space into r
sectors [30]. In sector i the parameter xαi is larger than the other r−1 Feynman
parameters (xαi ≥ xαj∀j 6= i). The transformation

xαj =

x′αi for j = i

x′αix
′
αj

for j 6= i
(7.19)
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7 Sector decomposition

is used to map the integration region of sector i back to the unit hypercube.
Starting from (7.10) one chooses S = {x1, . . . , xN} as the first step of the it-
eration. This step is called primary sector decomposition. It eliminates the
δ-distribution in (7.10) and maps the N − 1 remaining Feynman parameter in-
tegrations to the unit hypercube. After the primary decomposition one iterates
the decomposition with different sets S until the factorized form of (7.18) is
obtained.
There are several different strategies for choosing the subsets S. The heuris-
tic algorithm implemented in SecDec chooses the smallest set S which sets
the graph polynomials to zero [30, 36]. It usually produces a small number of
sectors with the drawback that it can sometimes run into infinite loops. Often
this problem can be circumvented by a reordering of the Feynman parameters.
The infinite recursion problem is illustrated in the following example. The
function to be decomposed is

f = x2
1 + x2

2x3. (7.20)

If one chooses the set S1 = {x1, x3} for the first decomposition step, one obtains
in the sector with x3 ≥ x1

f ′ = x3
(
x3x

2
1 + x2

2

)
. (7.21)

Since the expression is not yet in the decomposed form of (7.18), one chooses
a second set S2 = {x2, x3}, leading to

f ′′ = x2
3

(
x2

1 + x2
2x3

)
(7.22)

in the x3 ≥ x2 sector. The expression in brackets is identical to (7.20), leading
to an infinite recursion. In this example the recursion could be avoided by
choosing S2 = {x1, x2}.

An algorithm which avoids infinite recursion is the original strategy by Hepp
[230]. It consists in choosing the maximal set S = {x1, . . . , xN} in each decom-
position step. This avoids infinite recursion, but produces a very large number
of sectors.
Another algorithm solves the recursion issue by choosing decomposition sets
according to winning strategies of Hironaka’s polyhedra game [235]. The poly-
hedra game was used to prove resolution of singularities for algebraic varieties
in characteristic zero [240]. Sector decomposition can be viewed as a special
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7.4 Geometric decomposition

case of this more general problem. The algorithms based on different winning
strategies of the polyhedra game produce a large number of sectors compared
to the heuristic method of [30]. For a comparison see [235].
The strategy implemented in FIESTA is based on geometric information from
the exponent vectors of the polynomials, that are to be decomposed [236]. Since
the algorithm is not guaranteed to terminate, it is combined with an algorithm
based on the polyhedra game [235].
The Speer sector strategy is based on analyzing subgraphs of the Feynman
graph under consideration, which gives a graph theoretical interpretation of
sector decomposition [231–233]. In [241] it was found that the method imple-
mented in FIESTA produces the same number of sectors as the Speer sector
strategy.

7.4 Geometric decomposition

The approach to sector decomposition proposed by Kaneko and Ueda in [34, 35]
is based on convex geometry. Here an improved geometric strategy based on
their method is presented. The original and the improved geometric method
are implemented in SecDec-3.0 [38].

7.4.1 Convex geometry

In this section the relevant geometric objects are introduced. For more detailed
expositions, see [242–246].

A set X ⊂ RN is convex, if a line segment connecting any two points in X is
contained in X. The Minkowski sum of two convex sets X and Y , defined as

X + Y = {x + y | x ∈ X, y ∈ Y }, (7.23)

is again a convex set.

We are interested in the special case of convex rational polyhedral sets X, which
can be defined as intersections of a finite number of affine half-spaces indexed
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7 Sector decomposition

(a) Polyhedron (b) Cone (c) Polytope

Figure 7.1: Two dimensional examples for geometric sets considered in the
text.

by F :
X =

⋂
F

{
m ∈ RN | 〈m,nF 〉+ aF ≥ 0

}
, (7.24)

where 〈a,b〉 = ∑N
i=1 aibi is the standard inner product on RN . Here the half-

spaces are defined by the primitive normal vectors nF ∈ ZN and aF ∈ Z, since
we only consider rational polyhedral sets.
A set X as defined in (7.24) is called a polyhedron. There are two important
special cases: cones and polytopes. Every polyhedron can be expressed as the
Minkowski sum of a polytope and a cone.

A cone σ is obtained in the case where all half spaces are defined by homoge-
neous inequalities, i.e. aF = 0 for all F :

σ =
⋂
F

{
m ∈ RN | 〈m,nF 〉 ≥ 0

}
. (7.25)

The Minkowski-Weyl theorem states that a finite number of vectors v1, . . . ,vn ∈
ZN exists, such that

σ = {a1v1 + · · ·+ anvn | ai ∈ R≥0}. (7.26)

A cone is pointed if the cone and its negative overlap only in the origin, i.e.
the condition σ∩ (−σ) = {0} is fulfilled. For pointed cones (7.26) constitutes a
second representation of cones as the convex hull of a set of extreme rays vi. The
cone σ is simplicial if its extreme rays are linearly independent. Nonsimplicial
cones can be decomposed into simplicial cones of the same dimension. This
procedure is called triangulation. Triangulations of a three dimensional cone
defined by four rays are shown in Fig. 7.2.
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, , , . . .

Figure 7.2: Cross section of a three dimensional cone defined by four rays.
Several possibilities for the triangulation are shown.

A polytope can be defined by (7.24) with the additional requirement of bound-
edness. This is called the facet representation orH-representation of a polytope.
The vertex or V-representation is given by

P = ConvHull(v1, . . . ,vn) = {a1v1 + · · ·+anvn | ai ∈ R≥0,
n∑
i=1

ai = 1}, (7.27)

where the convex hull is defined as the minimal convex set containing all vi.
One can translate one representation into the other using Fourier-Motzkin elim-
ination [245].

The faces of a polyhedron X are defined as the intersection of supporting hy-
perplanes

HF = {m ∈ RN | 〈m,nF 〉 + aF = 0} (7.28)
with X, such that 〈m,nF 〉 + aF ≥ 0 for all m in X. Faces of a cone (poly-
tope) are again cones (polytopes). They are graded by their dimension: Zero
dimensional faces are called vertices, one dimensional faces are called edges,
and dim(X)− 1 dimensional faces are called facets.

A fan ∆ in RN is a set of cones σ obeying the following conditions [243]:

1. Each face of a cone σ in ∆ is again a cone in ∆.

2. The intersection of two cones is again a cone in ∆.

If ⋃σ∈∆ σ, the union of cones σ in a fan ∆, is RN , the fan ∆ is called complete.
The normal fan ∆P of a polytope P can be constructed by considering cones
σF for each face F of P , generated by the normal vectors nF of all facets F
containing the face F . With this one defines the normal fan of P as [246]

∆P = {σF | F is a face ofP}. (7.29)

Every normal fan is complete, the converse statement is generally not true. A
polytope and its normal fan are shown in Fig. 7.3.
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7.4.2 The geometric algorithm

The general class of integrals that can be treated with geometric sector decom-
position is of the form

I =
∫
RN≥0

(
N∏
i

dxi
xi

xsii

)M∏
j

fj(x)tj
 . (7.30)

The functions fj(x) are Laurent polynomials fj(x) = ∑m
i cjixvji with vji ∈ ZN .

We assume that the coefficients cji are non-negative, which corresponds to the
Euclidean region for Feynman integrals. The exponents si and tj can take
arbitrary complex values.
One can bring Feynman integrals as given in (7.10) into this form by integrating
out the δ(1−H(x)) distribution with H(x) = xN .
With the change of variables zi = log(xi) for all i, one obtains

I =
∫
RN

dz e〈s,z〉
M∏

j

fj(z)tj
 , (7.31)

with functions fj(z) = ∑m
i cjie

〈vji,z〉.

The information about singularities in the Euclidean region is completely en-
coded in the Newton polytopes of the functions fj(x), that are to be integrated.
In the following we specialize to the case of one polynomial f (M = 1). The
Newton polytope N (f) is defined as the convex hull of the exponent vectors of
the polynomial f = ∑m

i cixvi (see (7.27)):

N (f) = ConvHull(v1, . . . ,vm). (7.32)

The H-representation of N (f) as defined in (7.28) is

N (f) =
⋂
F

{
m ∈ RN | 〈m,nF 〉+ aF ≥ 0

}
. (7.33)

In the following we assume that the polytope N (f) has full dimension N , lower
dimensional polytopes can be treated by adding additional facets normal to the
hyperplane the polytope is contained in. The normal fan ∆N (f) of the Newton
polytope can now be built as in (7.29). For each each extreme vertex of N (f)
there is a N -dimensional cone in ∆N (f). Each facet normal vector represents
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7.4 Geometric decomposition

a one-dimensional cone. In general d-dimensional faces of the polytope N (f)
correspond to N − d-dimensional cones in ∆N (f).
The rays of a N -dimensional cone σ(vi) associated to the extreme vertex vi are
the normal vectors nF of the facets incident to vi:

rays(σ(vi)) = {nF | 〈nF ,vi〉+ aF = 0}. (7.34)

The cones in the fan ∆N (f) are in general not simplicial. One obtains the
simplicial normal fan ∆T

N (f) by splitting the nonsimplicial cones into simplicial
cones (see Fig. 7.2). The simplicial fan ∆T

N (f) provides a decomposition of RN

(the integration region of (7.31)) into N -dimensional simplicial cones:∫
RN
ω =

∑
σ∈∆TN (f)

dim(σ)=N

∫
σ
ω. (7.35)

Each N -dimensional simplicial cone is defined by N rays nF as

σ = {
∑
F∈σ

aF nF | aF ∈ R≥0}. (7.36)

The rays nF can be used to define local coordinates in the cone. The transfor-
mation of the Feynman parameters xi to the local facet coordinates yF maps
the integration over cones back to the unit hypercube. Its explicit form is

xi =
∏
F∈σ

y
〈nF ,ei〉
F (7.37)

for the cone σ.

By splitting the integration region of (7.30) according to the simplicial fan∆T
N (f)

(see (7.35)) and applying the change of variables for each full dimensional cone
σ, one obtains the decomposed form

I =
∑

σ∈∆TN (f)
dim(σ)=N

|σ|
∏
F∈σ

∫ 1

0

dyF
yF

y
〈nF ,s〉
F

(∑
i

ci
∏
F∈σ

y
〈nF ,vi〉
F

)t
, (7.38)

where |σ| denotes the absolute value of the determinant of the N -by-N matrix
built from the facet vectors nF of cone σ.
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The exponents 〈nF ,vi〉 can in general be negative. To obtain a polynomial,
one factors out a monomial ∏F∈σ y

−aF
F , which leads to

I =
∑

σ∈∆TN (f)
dim(σ)=N

|σ|
∏
F∈σ

∫ 1

0

dyF
yF

y
〈nF ,s〉−taF
F

(∑
i

ci
∏
F∈σ

y
〈nF ,vi〉+aF
F︸ ︷︷ ︸

=g(y)

)t
. (7.39)

The exponents of the monomials in g(y) are 〈nF ,vi〉+aF . They are guaranteed
to be nonnegative since the vi are points in the polytope N (f), given by (7.33).
For the integral to be in sector decomposed form as defined in (7.18), there has
to be a constant term in g(y) for each sector σ. Each maximal cone σ(vi) in
∆T
N (f) corresponds to an exponent vector vi of f(x). All facets normals nF with

F ∈ σ(vi) are incident to vi:

〈nF ,vi〉+ aF = 0 ∀F ∈ σ(vi). (7.40)

This corresponds to the exponent vector of a monomial in g(y) which has to be
the zero vector, showing that there is a constant term in each sector.

A convenient way of writing (7.39) is

I =
∏

F∈∆TN (f)

∫ 1

0

dyF
yF

y
〈nF ,s〉−taF
F

∑
i

ci
∏

F∈∆TN (f)

y
〈nF ,vi〉+aF
F


t ∑
σ∈∆TN (f)

dim(σ)=N

|σ|
∏
F /∈σ

δ(1−yF ).

(7.41)
Here the integration region is viewed as a N -dimensional subspace of the space
of facet variables, defined by the δ-distributions. It shows that the different
sectors are just projections of a single expression in terms of facet variables.

The case of one function f was discussed above. A generalization to an ar-
bitrary number of functions fj is possible. Instead of the Newton polytope
N (f), one considers the polytope N (∏M

j fj) or equivalently the Minkowski
sum ∑M

j N (fj). The algorithm works the same, only the step from (7.38) to
(7.39) where a monomial is factored out of f changes. Instead of factoring out
a monomial ∏F∈σ y

−aF
F , for each function fj a monomial ∏F∈σ y

−ajF
F is factored

out. The relation ∑M
j=1 ajF = aF is valid, where aF is associated to the polytope

N (∏M
j fj).
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(a) Newton polytope N (f)
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v2 v3

n1
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(b) Normal fan ∆N (f)

Figure 7.3: Newton polytope N (f) and normal fan ∆N (f) associated to the
two-loop vacuum integral of (7.42)

Two-loop vacuum integral

To illustrate the method, here a two-loop vacuum integral will be decomposed
using the geometric algorithm. The example was first presented in [247].
The integral under consideration is

I =

m

= (−1)νΓ (ν − LD/2)
(m2)ν−LD/2 Γ (ν1)Γ (ν2)

∫ ∞
0

dx1 dx2

x1x2
xν1

1 x
ν2
2

(
x1

1x
0
2 + x1

1x
1
2 + x0

1x
1
2

)−D2 ,
(7.42)

where the Feynman parameter x3 was integrated out using δ(1 − x3). The
exponent vectors of f(x) = x1

1x
0
2 + x1

1x
1
2 + x0

1x
1
2 are

v1 =
(

1
0

)
,v2 =

(
1
1

)
,v3 =

(
0
1

)
. (7.43)

They are used to define the Newton polytope N (f) as the convex hull of the
exponent vectors, see Fig. 7.3. The H-representation of the Newton polytope
is given by the facet normal vectors

n1 =
(
−1
0

)
n2 =

(
0
−1

)
n3 =

(
1
1

)
a1 = 1 a2 = 1 a3 = −1

. (7.44)
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The normal fan ∆N (f) is shown in Fig. 7.3. Here the fan is already simplicial,
i.e. ∆N (f) = ∆T

N (f), since all cones of dimension d are given by exactly d rays.
There are three cones of maximal dimension two, corresponding to the extreme
vertices v1, v2, and v3. The maximal cones can be defined as in (7.26) by sets
of incident facet normal vectors {n3,n1}, {n1,n2}, {n2,n3} respectively. The
change of variables to facet variables yF is given by

x1 = y−1
1 y3,

x2 = y−1
2 y3.

(7.45)

Using (7.41) one arrives at the decomposed form of the vacuum integral

I = (−1)νΓ (ν − LD/2)
(m2)ν−LD/2 Γ (ν1)Γ (ν2)

∫ 1

0

dy1 dy2 dy3

y1y2y3
y
−ν1+D

2
1 y

−ν2+D
2

2 y
ν1+ν2−D2
3

(y1 + y2 + y3)−
D
2 [δ(1− y2) + δ(1− y3) + δ(1− y1)] ,

(7.46)

where the sectors correspond to the maximal cones associated to v1, v2, and v3.
It is interesting to note that all primary sector decomposition based algorithms
(i.e. all other algorithms) produce at least six sectors for this integral.

Finite integrals

It is possible to derive constraints on the propagator powers νi and the dimen-
sion D for finite integrals as introduced in Subsection 6.2.1 from the decom-
posed form (7.41). The only divergences in (7.41) come from the monomial∏
F∈∆TN (f)

y
〈nF ,s〉−taF
F . The condition for a finite integral is (note the strict in-

equality)
〈nF , s〉 − taF > 0 ∀F. (7.47)

This defines a cone in (s, t)-space, or equivalently in (ννν,D)-space for scalar
Feynman integrals since s and t are linear homogeneous functions in νi and D.
All points (s, t) inside the cone correspond to to quasi-finite integrals integrals
in the sense of [199–201].

Toric varieties

Here a connection between geometric sector decomposition and the theory of
toric varieties is discussed. The following description of toric varieties is based
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on [246, 248].

A variety over the complex numbers V (f1, . . . , fm) is the subset of CN fulfilling
polynomial equations fj(x) = 0. General polynomials lead to affine varieties,
homogeneous polynomials to projective varieties.
An algebraic torus is defined as (C∗)n where C∗ = C \ {0} = {z ∈ C | z 6= 0},
the n-dimensional complex space with all coordinate hyperplanes removed. A
toric variety V is a (irreducible) variety containing the torus (C∗)n as a Zariski
open subset. Furthermore there is an action of (C∗)n on itself which extends
to an action on V . For a variety W ⊂ V , a Zariski open subset of V is defined
as V \W = {v ∈ V | v /∈ W}.

There is a correspondence between the geometric objects introduced in Subsec-
tion 7.4.1 and toric varieties. Affine varieties correspond to fans, and projective
varieties to polytopes. The facet variables are homogeneous coordinates in a
projective toric variety, the sectors are affine patches covering the projective
variety. The decomposition of a fan ∆P into a simplicial fan ∆T

P , is a resolution
of singularities for the underlying toric variety associated to the polytope P .
The toric variety associated to the two-loop vacuum integral given in (7.42) is
the projective space P2 = (C3 \ 0)/C∗. The facet variables yF in the sector
decomposed integral (7.46) correspond to the homogeneous coordinates in C3,
while the three sectors define subsets with yF = 1 for F = 1, 2, 3. Their union
covers all of P2.
Here we also want to mention related constructions used in the theory of gen-
eralized hypergeometric functions, which have integral representations similar
to Feynman parameter integrals, see for example [249–251].

7.5 Contour deformation

As described in Section 7.2, Feynman integrals can develop kinematic depen-
dent singularities in the physical region. These singularities are not regulated
by dimensional regularization. They appear as zeros of the F -polynomial for
some values of the Feynman parameters and kinematic variables, given by the
Landau equations (7.15).
To deal with this type of singularity, the real integrations over Feynman param-
eters are continued to complex integrations. Following from Cauchy’s theorem
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one has ∮
Γ

∏
i

dzi f(z) = 0 (7.48)

for a closed contour Γ which does not enclose any singularities of f(z). Here
f(z) denotes the integrand of a Feynman integral. The contour Γ is split up
into a integration from zero to one along the real axis and path γ closing the
integration contour: ∫ 1

0

∏
i

dxi f(x) +
∫
γ

∏
i

dzi f(z) = 0. (7.49)

The path γ is parametrized as z(x) with z(0) = 0 and z(1) = 1, starting at
x = 1 and ending at x = 0. Singularities on the real line are avoided by the
Feynman iδ-prescription F(x) → F(x) − iδ which specifies the direction in
which the singularities are moved away from the real line. The first term in
(7.49) is the original Feynman integral. The Feynman integral I can therefore
be expressed as an integral over the path γ

I =
∫ 1

0

∏
i

dxi f(x) =
∫ 1

0

∏
i

dxi
∣∣∣∣∣∂z∂x

∣∣∣∣∣ f(z(x)), (7.50)

where
∣∣∣ ∂z
∂x

∣∣∣ denotes the Jacobian of the function z(x).

The integration path γ is chosen as

zi(x) = xi − iλxi(1− xi)
∂F(x)
∂xi

(7.51)

for each integration variable as proposed in [92, 252, 253]. Here λ is a small
positive parameter. The imaginary part is zero at x = 0 and x = 1 guaranteeing
a closed path Γ . Expanding the F -polynomial around λ = 0 leads to

F(z(x)) = F(x)− iλ
∑
i

xi(1− xi)
(
∂F
∂xi

)2

+O(λ2). (7.52)

The O(λ) term produces a negative imaginary part in agreement with the
Feynman iδ-prescription. Higher order corrections to the imaginary part come
in at O(λ4) and are therefore suppressed for small λ. For large values of λ they
can change the sign of the imaginary part.
More details on the contour deformation and on strategies for choosing λ can
be found in [254]. The contour deformation has to be performed before the
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subtraction of dimensionally regulated divergences, which was shown in [255].
Otherwise it is also possible to change the integration path γ in (7.51) by raising
the power of xi in the imaginary part, which makes it possible to deform the
contour after the subtraction [252].

7.6 Subtraction

After the decomposition the singularities of the sector integrals are isolated
in an overall monomial (see (7.18)), and appear in the limit xi → 0. The
goal is to extract the ε-dependence from the integrals, singularities in partic-
ular have to be isolated. This is done by adding and subtracting terms that
behave like the integrand in the singular region, and are analytically integrable.

The form of the integral for one integration parameter is

I =
∫ 1

0
dx x−a+bεf(x) (7.53)

where f(x) implicitly depends on all other integration parameters and ε. As-
suming Euclidean kinematics the function f(x) is finite in the limit x→ 0. In
the case a < 1 the integral is finite and one can simply expand in ε. For a ≥ 1
one introduces a subtraction term∫ 1

0
dx

a−1∑
n=0

x−a+n+bε

n! f (n)(0), (7.54)

that reproduces the singularity structure of the integrand in the limit x → 0
[30]. Here f (n)(0) denotes the n-th derivative of the function f(x) evaluated at
x = 0.
The subtraction term can be integrated analytically leading to

a−1∑
n=0

1
1− a+ n+ bε

f (n)(0)
n! . (7.55)

After introducing the subtraction term the integral in (7.53) becomes

I =
a−1∑
n=0

1
1− a+ n+ bε

f (n)(0)
n! +

∫ 1

0
dx x−a+bε

(
f(x)−

a−1∑
n=0

xn

n! f
(n)(0)

)
. (7.56)
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The integrated terms contain the singularities in ε, while the remaining inte-
gration is finite and does not contribute further ε divergences.

Logarithmic divergences (a = 1) are the most common in Feynman integrals
and are subtracted in the following way:

I =
∫ 1

0
dx x−1+bεf(x) = f(0)

bε
+
∫ 1

0
dx x−1+bε (f(x)− f(0)) . (7.57)

This subtraction is equivalent to an expansion of the integrand using the plus
distribution

x−1+bε = δ(x)
bε

+
∞∑
n

[
logn(x)
x

]
+

(7.58)

with ∫ 1

0
dx

[
g(x)
x

]
+
f(x) =

∫ 1

0
dx g(x) [f(x)− f(0)] . (7.59)

The subtraction procedure which was shown for one Feynman parameter has
to be performed iteratively for all integration variables, in particular the terms
f (n)(0) in (7.56) in general still contain singularities in the remaining variables.
After subtracting in all Feynman parameters the appearing integrals are finite
and can be expanded in a Taylor series around ε = 0 to the desired order.

An alternative way of isolating the singularities is to use integration by parts.
Details can be found in Appendix A of [256].

7.7 Numerical integration

After subtraction and expansion the Feynman integral is in the form

I({sjk}, {mj}) =
nmax∑
i=−n

ci({sjk}, {mj})εi. (7.60)

The coefficients ci are finite integrals over a multi-dimensional unit hypercube.
They are in general difficult to integrate analytically, since the splitting of the
integration region introduces more complicated functions, than are present in
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the final result [200].
An example is the vacuum integral calculated in Subsection 7.4.2 which can be
expressed in terms of only Γ -functions. After sector decomposition the individ-
ual sectors evaluate to integrals over hypergeometric functions, and the result
only simplifies after summing up all sector integrals.

For this reason the coefficients ci are usually integrated numerically. The nu-
merical integration can also be automated to a higher degree, which constitutes
an additional advantage. Since the integrations are often of high dimension
Monte-Carlo (MC) methods are used. The following discussion of MC integra-
tion is based on [257].
The standard MC integration approximates integrals

Is(f) =
∫

[0,1]s
dx f(x) (7.61)

via the estimator

Qn,s(f) = 1
n

n−1∑
i=0

f(ti), (7.62)

where the ti are points randomly chosen from the s-dimensional hypercube
[0, 1]s. The error estimate for square-integrable functions f is

√
E[|Is(f)−Qn,s(f)|2] = σ(f)√

n
, (7.63)

where the standard deviation of f is σ(f) =
√
Is(f 2)− Is(f)2. The MC error is

independent of the dimension of the integration and scales with the square-root
of the number of evaluated points.

In [258] quasi Monte-Carlo (QMC) methods were applied to sector decomposed
integrals, and a large increase in efficiency compared to standard MC methods
was observed. In QMC methods an estimator as in (7.62) is used, but instead
of choosing the ti randomly one chooses them deterministically.
There are several ways of choosing the ti, here the shifted rank-1 lattice rule is
presented. The rank-1 lattice is determined by

ti =
{
iz
n

}
i = 0, . . . , n− 1 (7.64)
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where the curly braces denote the fractional part of the argument. The vec-
tor z is the generating vector of the lattice, which depends on the number of
lattice points n. Algorithms for its generation are given in [257]. An efficient
implementation for large lattices in high dimensions can be found in [259]. The
unbiased estimator for the rank-1 shifted lattice rule is

Q̄n,s,q(f) = 1
q

q−1∑
k=0

Q(k)
n,s(f) (7.65)

with
Q(k)
n,s(f) = 1

n

n−1∑
i=0

f(
{
iz
n

+∆k

}
). (7.66)

The rank-1 lattice generated by z is shifted by q vectors ∆k randomly chosen
from [0, 1]s. For certain classes of 1-periodic functions and generating vectors
a linear error scaling O(n−1) in the number of lattice points can be achieved
[257]. The scaling in the number of lattice shifts is O(q− 1

2 ). For this reason one
usually chooses a small number of shifts q and a high number of lattice points
n.
The integrands appearing in the coefficients ci are usually not periodic. They
can be periodized using a Korobov transformation xi = ψ(yi) with

ψ(yi) =
∫ yi

0
duω(u), ω(u) = uα(1− u)α∫ 1

0 duuα(1− u)α
. (7.67)

With this transformation and by choosing the parameter α high enough one
can map the integrand to zero on the boundary of the hypercube [0, 1]s.
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The sector decomposition algorithm described in Chapter 7 is implemented in
the program SecDec [36–38]. The program numerically evaluates dimension-
ally regulated, multi-scale, multi-loop Feynman integrals in general kinematics.
Furthermore it is possible to calculate more general parameter integrals of the
form given in (7.30). This can for example be used for the calculation of soft
functions in soft-collinear effective theory [260] or for phase-space integrals [32].
The program is publicly available at http://secdec.hepforge.org.

Version 3.0 of SecDec [38] features an improved user interface and two ge-
ometric decomposition strategies: the original method by Kaneko and Ueda
[34, 35], and the improved strategy introduced in Section 7.4. In contrast to
the original heuristic SecDec strategy, the new decomposition strategies are
guaranteed to terminate. They also lead to a faster and more compact decom-
position for integrals with a complicated singularity structure.
The algebraic and numerical parts of the program were decoupled. Due to this
improvement it is possible to run the numerical integration for a large number
of phase-space point in parallel on a computer cluster. Submission scripts for
the cluster submission systems Condor, pbs, and lsf are provided.
Feynman integrals with inverse and pinched propagators can be treated, i.e.
νi ≤ 0 in (6.5). This makes it easier to interface SecDec to multi-loop reduc-
tion programs like Reduze [175, 176] where integrals are represented in this
form.
Integrals with non-standard propagators which do not have a quadratic but only
a linear dependence on the loop momentum can be calculated in the physical
region. These propagators occur for example in heavy quark effective theory
or in non-covariant gauges. Masses in the propagators can be complex, for de-
tails see [247]. In addition to the CUBA library [261, 262], it is now possible
to use Mathematica NIntegrate [263] and CQUAD [264] for the numeri-
cal integration, CQUAD in particular speeds up one dimensional integrations
considerably.
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In the following an overview over the program structure and details on the
implementation of the geometric decomposition are given.

8.1 Program structure

The program consists of two main parts, the loop branch for loop integrals of the
form (6.5) and the general branch for more general parameter integrals similar
to (7.30), see Fig. 8.1. A loop integral can either be specified by its propagators
or by the adjacency list of the Feynman graph. With the userdefined option one
can directly specify the Feynman parametrized integral, which can be used to
modify the integrand before the decomposition. A contour deformation is only
possible in the loop branch, since the Feynman iδ-prescription is only valid for
Feynman integrals. For general parameter integrals the deformation can not be
chosen in an automated way, since there is no fixed prescription for the contin-
uation.

The algebraic steps of the sector decomposition method are implemented in
Mathematica scripts. The steering of the Mathematica scripts is done in Perl.
After the expansion in the dimensional regularization parameter ε, the alge-
braic expressions for the sector integrals are turned into optimized C++ func-
tions. These functions are then integrated using the integrators contained in the
CUBA library [261, 262], CQUAD [264], or Mathematica NIntegrate [263].

A version of SecDec written in python is in preparation [265]. It avoids the
use of the proprietary software Mathematica, and will be more modular than
previous SecDec versions.

8.2 New features of SecDec-3.0

8.2.1 Improved user interface

The required user input for SecDec-3.0 is split up into the three files math.m,
param.input, and kinem.input. The math.m file is in Mathematica syntax. It
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Feynman loop integral

(generated automatically)

any integral matching
loop integral structure

more general
parametric function

(inserted by user) (inserted by user)

primary sector
decomposition

loop directory general directory

factorization

contour
deformation

multiscale?multiscale? yes yes
nono

subtraction of poles

expansion in numerical integration result:

iterated sector
decomposition

iterated sector
decomposition

iterated sector
decomposition

Laurent series in

Figure 8.1: Flowchart showing the main steps the program performs to pro-
duce the numerical result as a Laurent series in ε.

contains the information about the Feynman integral that is to be calculated.
Here is the math.m input file for a one-loop box integral:

momlist={k};
proplist={kˆ2,(k+p1)ˆ2,(k+p1+p2)ˆ2,(k+p1+p2+p3)ˆ2};
powerlist={1,1,1,1};
Dim=4-2*eps;
prefactor=1;
ExternalMomenta = {p1,p2,p3};
externallegs=4;
KinematicInvariants = {s,t};
Masses={};
ScalarProductRules = {

SP[p1,p1]->0,
SP[p2,p2]->0,
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8 SecDec-3.0

SP[p3,p3]->0,
SP[p1,p2]->s/2,
SP[p3,p2]->t/2,
SP[p1,p3]->-t/2-s/2};

The integral is specified by the list of its propagators. The parameter powerlist
contains the exponents of the propagators. Its entries are usually positive, but
it is also possible to set entries to zero thereby pinching the corresponding prop-
agators. Furthermore one can set entries to negative values, which is used to
define integrals with inverse propagators. This simplifies communication with
reduction programs which often use a similar syntax for the specification of in-
tegrals. Tensor integrals can be specified by setting the numerator parameter
to a scalar product of loop and external momenta.
The on-shell conditions of the Feynman integral and its dimension are also set
in the math.m file.

The param.input contains general options for the sector decomposition:

graph=box1L
epsord=0
contourdef=True
integrator=3
epsrel=1.e-3,1.e-3,1.e-3
epsabs=1.e-5,1.e-5,1.e-5

In this minimal example the name of the integral and the order to which the
ε-expansion should be performed are given. One also has to specify if contour
deformation is required. The remaining options set Divonne as integrator and
set error goals for the numerical integration. For additional options that can
be set in the param.input file see [38].

The kinem.input file contains a list kinematic points that is to be calculated:

p1 4 -0.75
p2 1.2 0.2

Here two points points p1 and p2 are set. The first entry in each line gives the
point, the following entries set the numerical values of the kinematic invariants
and masses in the order specified in the math.m file. The algebraic part of the
sector decomposition is independent of the phase-space point. Only for the
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numerical integration are specific values for the kinematic invariants needed.
For different phase-space points only the numerical integration has to be rerun,
which simplifies scans over parameter ranges.

After the input files are prepared, SecDec can be launched by executing
the command secdec or secdec -p <myparam.input> -m <mygraph.m> -k
<mykinem.input> if non-standard names for the input files are used. Additional
command line options can be displayed using secdec -help. In particular they
can be used to only execute certain steps of the sector decomposition.

The output of SecDec is such that the entire output directory generated by the
algebraic part of SecDec can be transferred as a standalone archive to another
machine or cluster, where the numerical evaluation of all kinematic points can
be submitted in parallel. Optionally, the user can also evaluate selected pole
coefficients individually. The output directory structure which will be created
by SecDec when calculating a loop diagram is depicted in Fig. 8.2.

8.2.2 Implementation of geometric decomposition
algorithms

In addition to the iterative heuristic decomposition algorithm (X) described in
Section 7.3, there are two new algorithms implemented in SecDec-3.0. These
are the original geometric method (G1) by Kaneko and Ueda [34, 35] and the
geometric algorithm (G2) presented in Section 7.4. In contrast to strategy X
both geometric methods G1 and G2 are guaranteed to terminate (see Section 7.3
for an illustration of the problem). The geometric algorithms are only imple-
mented in the loop branch, but the upcoming python version contains an
implementation for general parameter integrals.

For the algorithm G1 only the iterated sector decomposition step in Fig. 8.1 is
replaced, for algorithm G2 the primary sector decomposition is also switched
off. Instead H = xN is used in (7.10) to integrate out the δ-function (Cheng-
Wu). Since the form of the integrals after the decomposition is identical to the
form obtained via iterated decomposition methods, all following steps do not
have to be changed.
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The geometric algorithms themselves are implemented as Mathematica pack-
ages interfaced to the program Normaliz [245, 266] for geometric calculations.
Normaliz is used to determine the inequalities defining the facets (nF , aF )
of the Newton polytope N from the exponent vectors vi. After calculating
the normal fan ∆N , nonsimplicial full dimensional cones are triangulated by
Normaliz, leading to the triangulated fan ∆T

N .
The programs cdd [267], lrs [268], and qhull [269] were also tested and used
for cross-checks of the geometric computations, but turned out to perform worse
than Normaliz for our applications.

Tab. 8.1 shows the number of produced sectors and the time taken for the
decomposition for some example diagrams by the decomposition algorithms
implemented in SecDec-3.0. In most cases algorithm G2 produces a smaller
number of sectors than X and G1. For complicated diagrams, where a significant
amount of time is spent on the decomposition, method G2 is also faster than
the other strategies.
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Diagram X G1 G2

282
1 s

266
8 s

166
4 s

368
1 s

360
9 s

235
5 s

infinite
recursion

72
5 s

76
1 s

1

2 3

4

5

6

7

548
3 s

506
15 s

304
4 s

27336
5510 s

32063
11856 s

27137
443 s

Table 8.1: Number of sectors produced by the implemented decomposition
strategies and timings obtained with our implementation of the algorithms.
Dashed lines denote massless propagators.
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graph Makefile kinematics.input

params

FU

decomposition

subexp

numerics

cluster

results

auxres

files to extract the parameters defining the integral from the user’s input

file FUN.m containing the graph polynomials F , U and the numerator

contains the results of the decomposition as lists for each pole structure

files to launch the subtractions and expansions in ε

produced functions and integration files for each poles structure and each order in ε

scripts for job submission to a cluster

result files, data files for gnuplot

auxiliary files for prefactor, result files for each order in ε

2l0h0

1l0h0

0l0h0

epstothe-2

epstothe-1

epstothe0

epstothe-1

epstothe0

epstothe0

Figure 8.2: Output directory structure generated by the algebraic part of
SecDec, and example of a pole structure in the numerics folder containing
maximally two logarithmic poles.
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9 Higgs boson pair production in
gluon fusion

Here the calculation of the NLO QCD corrections to the process gg → hh
including the full top quark mass dependence is presented [39, 270]. This is an
application of the multi-loop techniques that were introduced in the previous
chapters, since the process is loop-induced. Already at LO the production of a
pair of Higgs bosons in gluon fusion proceeds via a top quark loop, see Fig. 9.1.
Therefore the calculation of NLO corrections involves two-loop integrals. Since
most of them are not known analytically, sector decomposition is used for their
calculation.
The process is phenomenologically relevant, because it can be used for a direct
measurement of the triple Higgs coupling at hadron colliders.

9.1 The Higgs sector

The Higgs field in the Standard Model is a complex SU(2) doublet scalar field

Φ = 1√
2

(
Φ+

Φ0

)
. (9.1)

The Higgs field couples to the electroweak gauge bosons via the covariant deriva-
tive and to fermions via Yukawa interactions. The most general renormalizable
potential for the Higgs field is

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
. (9.2)

For negative values of µ2 the Higgs field acquires a nonzero vacuum expectation
value that can be chosen as

〈Φ〉 = 1√
2

(
0
v

)
(9.3)
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with v2 = −µ2

λ
. The vacuum expectation value breaks the SU(2)L × U(1)Y

electroweak symmetry group of the Standard Model leaving the U(1)em gauge
symmetry of electromagnetism unbroken. This is the mechanism of sponta-
neous symmetry breaking which generates mass terms for the electroweak gauge
bosons in the SM [7–12]. Additionally it leads to mass terms for the SM fermions
via the Yukawa couplings. The physical Higgs boson field h is introduced as
an scalar excitation around the vacuum expectation value

Φ = ei~σ·
~ξ/2v
√

2

(
0

v + h

)
, (9.4)

where the components of ~σ are the three Pauli matrices. The fields ~ξ correspond
to the longitudinal polarizations acquired by three of the electroweak gauge
bosons after symmetry breaking, leading to the massive W and Z bosons.
After symmetry breaking the Higgs potential in (9.2) gives rise to the mass and
self-couplings of the Higgs boson h

V (h) = V0 + m2
h

2 h2 + λ3h

3! h
3 + λ4h

4! h
4 (9.5)

= −m
2
hv

2

4 + m2
h

2 h2 + m2
h

2v h
3 + m2

h

8v2h
4 (9.6)

where m2
h = 2λv2.

Measuring the Higgs self-couplings is an important test of the mechanism of
electroweak symmetry breaking.

9.2 The process gg → hh

At hadron colliders the triple Higgs coupling can be directly probed by measur-
ing Higgs boson pair production in gluon fusion. The best experimental upper
limit on the process is ∼ 70× σSM [271, 272] obtained by measurements in the
bbττ , γγWW ∗, bbγγ, and bbbb decay channels. This is due to fact that the cross
section for Higgs pair production is small and the decay channels with large
branching fractions suffer from large backgrounds.
In [272] the limit on the cross section was used to constrain possible values of
the triple Higgs coupling to λ3h/λ

SM
3h ∈ [−17, 22.5] in a model where only λ3h is

allowed to change from its SM value.
It will be possible to better constrain the Higgs self-coupling via Higgs boson
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H(p4)

H(p3)g(p1)

g(p2) H(p4)

H(p3)

g(p2)

g(p1)

H

Figure 9.1: Diagrams contributing to the process gg → hh at leading order.

pair production at the high luminosity LHC, and at a proposed future hadron
collider with a center of mass energy of 100 TeV [273–275].
Other production channels for Higgs boson pairs at hadron colliders, for ex-
ample vector boson fusion, production in association with a top quark pair,
and Higgs strahlung V hh, have even smaller cross sections than gluon fusion
[273, 276].

The process gg → hh proceeds through a top quark loop already at LO, for
the contributing diagrams see Fig. 9.1. Results for the LO cross section were
presented in [40, 277]. The calculation of the NLO corrections requires the
evaluation of two-loop integrals with four independent mass scales ŝ, t̂, m2

h,
and m2

t . Only a small subset of these integrals is known analytically at present.
These are integrals that factorize into two one-loop integrals, integrals with
two zero mass legs and one off-shell leg contributing to single Higgs production
[278–280], and integrals with two off-shell legs known from the process h→ Zγ
[281, 282].

NLO corrections have been calculated in the heavy quark limit mt →∞ [283].
In this limit top quark loops can be integrated out, leading to effective Higgs
gluon couplings. NNLO corrections in the heavy top limit are given in [284–
287]. Resummed NNLO+NNLL results in the heavy top limit are presented in
[288].

There are several approximations which include finite top quark mass effects in
an approximate way:

• The Born-improved HEFT (Higgs Effective Field Theory) is used in the
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program HPAIR [277, 283]. It relies on the NLO result in the heavy
top limit which is reweighted differentially by a factor B/BHEFT. Here
B is the LO cross section in the full theory, while BHEFT is the LO cross
section in the HEFT.

• In the FTapprox [289, 290] the full top quark mass dependence is retained
in the real radiation. For the virtual corrections the same rescaling as in
the HEFT is used.

• The FT′approx corresponds to the FTapprox, but the virtual part is aug-
mented with available two-loop corrections with full top quark mass de-
pendence, in particular the contributions known from single Higgs pro-
duction [290].

• The HEFT result was improved by adding terms in the 1/m2
t expansion

of the cross section [286, 291–293]. In [292] the expansion is given up to
the sixth order at NLO, and up to the second order for the soft-virtual
part at NNLO.

The various approximations suggest ±10% for the size of the top quark mass
effects at NLO.
This expectation can be tested with the calculation of the full top quark mass
dependent NLO corrections presented in the following.

9.3 Form factor decomposition

Following the description in Section 6.1, the form factor decomposition for the
process g(p1) + g(p2) → h(p3) + h(p4) is given. First the gluon polarization
vectors and the color dependence are split off as

Aab = δabε
µ(p1)εν1(p2)Aµν . (9.7)

The possible tensor structures that can be built are

Aµν = f0g
µν +

3∑
i,j=1

fijp
µ
i p

ν
j (9.8)

Using Ward identities, the on-shell conditions for the gluons, and Bose sym-
metry, the number of independent tensor structures can be reduced to two:

Aµν = F1(ŝ, t̂, m2
h,m

2
t , D)T µν1 + F2(ŝ, t̂, m2

h,m
2
t , D)T µν2 . (9.9)
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Here the kinematic invariants are defined as

ŝ = (p1 + p2)2, t̂ = (p1 − p3)2, û = (p2 − p3)2 . (9.10)

Following [40] the two tensors can be chosen as

T µν1 = gµν − pν1 p
µ
2

p1 · p2
, (9.11)

T µν2 = gµν + m2
h p

ν
1 p

µ
2 − 2 (p1 · p3) pν3 p

µ
2 − 2 (p2 · p3) pµ3 pν1 + 2 (p1 · p2) pν3 p

µ
3

p2
T (p1 · p2) ,

(9.12)

with the transverse momentum defined as

p2
T = t̂û−m4

h

ŝ
. (9.13)

Using the relations

T1 · T2 = D − 4 and T1 · T1 = T2 · T2 = D − 2 (9.14)

one can construct projectors that project the amplitude on specific form fac-
tors:

P µν
1 Aµν = F1 (9.15)
P µν

2 Aµν = F2. (9.16)

The projectors are given by

P µν
1 = 1

4
D − 2
D − 3 T

µν
1 −

1
4
D − 4
D − 3 T

µν
2 , (9.17)

P µν
2 = −1

4
D − 4
D − 3 T

µν
1 + 1

4
D − 2
D − 3 T

µν
2 . (9.18)

The chosen tensor basis has the property that the form factors correspond to
helicity amplitudes [40]:

A++ = A−− = −F1, A+− = A−+ = −F2. (9.19)
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9.4 NLO cross section

The NLO cross section of the process pp→ hh is

σNLO(pp→ hh) = σLO + σvirt +
∑

i,j∈{g,q,q̄}
σreal
ij . (9.20)

The real radiation is separated into four initial states {gg, qg, q̄g, qq̄}.
Infrared divergences are cancelled between σvirt and σreal using the Catani-
Seymour dipole formalism [59] (see Subsection 2.3.2). The integrated dipole
term I which cancels the IR divergences of the virtual contribution as dσ̂virt −
dσLO ⊗ I is given by

I = αs
2π

(4π)ε
Γ (1− ε)

(
µ2

ŝ

)ε {2CA
ε2

+ β0

ε
+ finite

}
. (9.21)

The LO and virtual amplitudes are calculated in conventional dimensional reg-
ularization (CDR) where internal as well as external states are continued to
D = 4 − 2ε. The strong coupling αs is renormalized in the MS scheme, while
for the top quark mass and the gluon wave function the on-shell scheme is
used.

9.4.1 Parton distribution functions

The partonic cross section is combined with the parton distributions fi using
the luminosity function

dLij
dτ

=
∑
ij

∫ 1

τ

dx

x
fi(x, µF )fj

(
τ

x
, µF

)
. (9.22)

With this definition the total cross section is given as

σ(pp→ hh) =
∫ 1

τ0
dτ

dLgg
dτ

σ̂(ŝ = τs) , (9.23)

where τ0 = 4m2
h/s and s the hadronic center of mass energy.
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9.4.2 LO cross section

With the form factors defined in (9.9) the LO partonic cross section is given by

σ̂LO = 1
29 π ŝ2

∫ t̂+

t̂−
dt̂
{
|F1|2 + |F2|2

}
, (9.24)

where

t̂± = m2
h −

ŝ

2

1∓
√

1− 4m
2
h

ŝ

 , (9.25)

are the boundaries of the allowed kinematic region. Four dimensional expres-
sions for the LO form factors with full top quark mass dependence can be found
in [40, 277]. For the NLO corrections the expansion of the LO amplitude up to
order ε2 is needed. Therefore the LO contributions are calculated numerically
with the same setup as the two-loop corrections. For the finite part agreement
with the results of [40] was found.

9.4.3 Virtual two-loop contributions

The Feynman diagrams contributing to the two-loop amplitude are generated
with QGRAF [108], and further processed with FORM [109, 110]. After pro-
jectors and integral families are supplied the appearing integrals can be mapped
to the integral families. These steps are automated in an extension of the pro-
gram GoSam to higher loop orders.

At this point the amplitude is written in terms of ∼ 104 two-loop integrals with
up to seven propagators and four mass scales ŝ, t̂, m2

t , and m2
h. The numerators

of the integrals contain up to four inverse propagators, corresponding to a ten-
sor rank of 8. The amplitude was generated with a second independent setup
based on REDUZE [175, 176] and QGRAF, and agreement between the two
calculations was found.

To reduce the large number of appearing integrals to a master integral basis
the IBP method is used (see Section 6.2). We were not able to achieve a full
reduction with the programs FIRE [173], LITERED [174], and REDUZE.
After setting the scales m2

t and m2
h to their numerical values it was possible to

reduce the appearing planar integrals to a basis of 145 master integrals with
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Figure 9.2: Representative planar and nonplanar diagrams contributing to
the process gg → hh.

REDUZE. For the remaining 6- and 7-propagator nonplanar integrals the ten-
sor rank was reduced as far as possible by rewriting inverse propagators in terms
of scalar products. This leads to 70 nonplanar integrals with tensor rank ≤ 4.
Another 112 integrals are related to the previous integrals by crossing. Fig. 9.2
shows examples of contributing 7-propagator planar and nonplanar integrals.

For most of the integrals no analytic expressions are known. Therefore we use
the program SecDec-3.0 [38] to integrate all of the appearing integrals nu-
merically. The numerical stability could be improved by choosing a partially
quasi-finite master integral basis, described in Subsection 6.2.1 [200, 201].
The numerical integration of the SecDec functions is performed using the
quasi-Monte Carlo method based on a rank-one lattice rule, as described in Sec-
tion 7.7. The integrator is implemented in OPENCL1.1 and can be executed
on a General Purpose Graphics Processing Unit (GPGPU). For the numerical
results 913 phase-space points were calculated on ∼ 16 dual NVIDIA TESLA
K20X GPGPU nodes in ∼ 6400 GPGPU hours.

The numerical integration error of the individual integrals is dynamically ad-
justed according to the contribution of the integral to the error estimate of
the amplitude at a given phase-space point. To estimate the relative impor-
tance of the integrals a short integration run with a fixed number of points is
performed. Considering the required time per integration point and the con-
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tribution of the integral including its coefficient to the amplitude, the number
of sampling points for the integral is set. This is repeated until the desired
precision for the amplitude is reached. The method avoids calculating integrals
to a high precision whose contribution to the overall error estimate is small,
and automatically calculates important integrals more precisely.

Even with all of these improvements the numerical evaluation of the virtual am-
plitude at a single phase-space point is computationally expensive. For this rea-
son unweighted events generated according to the LO matrix element are used
for the phase-space integration of the virtual corrections. Using unweighted
events it is possible to obtain the total cross section with an uncertainty of
0.25% due to the number of phase-space points by evaluating the virtual con-
tribution only 913 times. More details on the numerical integration of the
virtual correction can be found in [294, 295].

Several checks on the virtual contribution were performed. For every phase-
space point the poles of the virtual corrections cancel against the integrated
subtraction term given in (9.21) within the numerical uncertainty. For a set of
randomly chosen phase-space points the pole coefficients were calculated with
higher precision and a cancellation with a median of five digits was observed.
The two-loop amplitude is invariant under exchange of the invariants ŝ and t̂.
This invariance was confirmed for 10 random phase-space points.
Parts of the gg → hh amplitude correspond to single Higgs production. For
these parts agreement was found with the results of [279].

9.4.4 Real radiation

The real radiation contribution σreal
ij consists of the four subprocesses gg →

hh+ g, gq → hh+ q, gq̄ → hh+ q̄, and qq̄ → hh+ g. The qq̄ channel is infrared
finite.
GoSam [18, 19] is used for the calculation of the required 2→ 3 one-loop matrix
elements. The most complicated appearing integrals are pentagons with inter-
nal top quark mass. After including Catani-Seymour dipole terms to subtract
infrared divergences the real radiation contribution is finite. It is integrated
with the VEGAS [296] integrator implemented in CUBA [261].
The total cross section is found to be independent of the phase-space restriction
parameter of the dipole terms αdip, which constitutes a check on the infrared
subtraction.
To avoid numerical instabilities a technical cut on the real radiation of pmin

T ≥
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9 Higgs boson pair production in gluon fusion

10−4
√
ŝ is introduced. It is varied in the range 10−2 ≤ pmin

T /
√
ŝ ≤ 10−6 and the

cross section is found to be independent within the numerical uncertainty.

9.5 Top quark mass expansion

To obtain approximate results in the mt → ∞ limit, the partonic differential
cross section can be expanded as

dσ̂exp,N =
N∑
ρ=0

dσ̂(ρ)
(
Λ

m2
t

)ρ
(9.26)

with Λ ∈ {ŝ, t̂, û,m2
h}. The terms up to N = 3 are calculated using the pro-

grams QGRAF, Q2E/EXP [297, 298], and MATAD [299] as well as RE-
DUZE and FORM.

The Higgs pair production cross section is peaked close to the top quark pair
threshold ŝ = 4m2

t . In this phase-space region the top quark mass mt is not
the highest scale in the problem, which means that the heavy top limit does
not provide a good description of the process gg → hh.
To improve the situation the calculation in the strict heavy top limit is rescaled
with the LO full calculation. Here this is done by rescaling the virtual correc-
tions differentially for each phase-space point via

dσ̂virt + dσ̂LO (ε)⊗ I ≈
(
dσ̂virt

exp,N + dσ̂LO
exp,N (ε)⊗ I

) dσ̂LO (ε)
dσ̂LO

exp,N (ε) . (9.27)

The expression in brackets is kept infrared finite and ε can be set to zero in
dσ̂LO (ε)/dσ̂LO

exp,N (ε).

9.6 Numerical results

Here numerical results for LHC collisions at a center of mass energy
√
s =

14 TeV are presented.
For LO as well as NLO predictions the PDF4LHC15 nlo 100 pdfas parton dis-
tribution functions together with their αs value are used [300–303]. As central
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9.6 Numerical results

σ(
√
s = 14 TeV)

LO 19.85+27.6%
−20.5% fb

NLO 32.91+13.6%
−12.6% fb

NLO HEFT 38.32+18.1%
−14.9% fb

NLO FTapprox 34.26+14.7%
−13.2% fb

Table 9.1: Total cross section for various calculations at a center of mass
energy of

√
s = 14 TeV. The uncertainty due to the scale variation is given.

The central scale is mhh/2. We used mt = 173 GeV, mh = 125 GeV. The PDF
set is PDF4LHC15 nlo 100 pdfas.

renormalization and factorization scale half of the invariant mass of the Higgs
boson pair is chosen:

µR = µF = mhh

2 . (9.28)

The numerical values of the Higgs boson and top quark masses are set to

mh = 125 GeV and mt = 173 GeV. (9.29)

Without additional kinematical requirements on the final state particles the
inclusive cross section is

σNLO = 32.91+13.6%
−12.6% fb± 0.25%(stat)± 0.05%(int). (9.30)

The first uncertainty is due to a variation of µR and µF by a factor two around
the central scale simultaneously. The second error estimate of ±0.25%(stat)
comes from the phase-space integration for which 913 unweighted events were
used. Since the calculation of the virtual contribution for each individual phase-
space point requires a numerical integration over the sector functions, there is
a third error ±0.05%(int) due to this integration.

Four phase-space points very close to the top quark threshold had to be ex-
cluded due to poor convergence of the numerical integration.
Tab. 9.1 shows the cross section obtained at LO and NLO, and additionally
results in the HEFT and FTapprox approximations. Comparing the LO cross
section to the NLO result one finds a K-factor of ∼ 1.66. The K-factor can
be reduced by 10% if LO PDF sets instead of NLO PDFs are used for the LO
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9 Higgs boson pair production in gluon fusion

cross section. The scale variation uncertainty is reduced by a factor of ∼ 2.
Effects of the exact treatment of finite top quark contributions can be quanti-
fied by comparing to the HEFT approximation. One finds that these reduce
the inclusive cross section by 16.5%. In the FTapprox where the real radiation
contributions are calculated with the full top quark mass dependence the dif-
ference is reduced.

The invariant mass distribution of the Higgs boson pairmhh is shown in Fig. 9.3a.
It is compared to the NLO Born-improved HEFT, i.e. the first term in (9.26)
rescaled by the full LO cross section. While there is reasonable agreement for
small invariant mass, the finite top quark mass corrections become important
above mhh & 600 GeV. In the tail of the distribution they become as large as
50%.
The inclusion of finite top quark mass effects in the real radiation in the FTapprox
calculation leads to a better agreement with the full result. The difference grows
for large invariant masses to 20− 30% due to finite top quark contributions in
the virtual correction.
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Figure 9.3: Comparison of the full calculation to various approximations for
Higgs transverse momentum (9.3a) and Higgs pair invariant mass distributions
(9.3b) at

√
s = 14 TeV. “NLO HEFT” denotes the Born-improved effective field

theory result, while in “FTapprox” the full top quark mass is taken into account
in the real radiation part. The band results from scale variations by a factor of
two around the central scale µ = mhh/2.
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For the Higgs boson transverse momentum a similar behaviour can be ob-
served. The FTapprox agrees well with the full result up to pT,h ∼ 160 GeV, at
large transverse momentum one finds differences of ∼ 40%. The HEFT leads
to an even bigger increase of the cross section at large pT,h. Compared to the
invariant mass distribution, the K-factor of the transverse momentum is nearly
flat for the full calculation.
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Figure 9.4: Comparison of the virtual amplitude with full top quark mass
dependence to various orders in a 1/m2

t expansion. V ′N denotes the Born-
improved HEFT result to order N in the 1/m2

t expansion, i.e. V ′N = VN B/BN .

In Fig. 9.4 the interference of the LO amplitude with the two-loop amplitude
including the integrated subtraction terms is shown. It is compared to the re-
sults of the heavy top expansion introduced in Section 9.5. The upper panel
shows the heavy top expansion up to the third order, while in the lower panel
the expansion terms are rescaled with the LO cross section with full top quark
mass dependence as described in (9.27). The expanded results agree with the
full cross section only close to the Higgs pair production threshold. Around the
top quark pair threshold and at high invariant mass large deviations are found.

To assess the sensitivity of the cross section to variations of the triple Higgs
coupling λ3h, a new parameter λ = λ3h/λ

SM
3h is introduced, where λ = 1 cor-
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9 Higgs boson pair production in gluon fusion

responds to the SM. The inclusive cross section is quadratically dependent on
λ with a minimum at λ & 2. In Fig. 9.5 the LO and NLO invariant mass dis-
tribution of the Higgs boson pair is shown for λ values in the range [−1, 5].
Besides the change in the total cross section with λ, there is also shift in the
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Figure 9.5: Invariant mass distribution of the Higgs boson pair at LO and
NLO for several values of the triple Higgs coupling λ = λ3h/λ

SM
3h .

peak position of the distribution. For small values of λ ≤ 1 the distribution
peaks at mhh ∼ 400 GeV, at larger λ values, a second peak close to the Higgs
pair production threshold develops and finally at λ = 5 only the second peak is
visible. This behaviour is due to destructive interference between self-coupling
dependent and independent parts of the cross-section at ŝ ∼ 4m2

h in the SM,
which is softened for λ 6= 1. A more detailed study of the process gg → hh and
its λ dependence for the high luminosity LHC and a future 100 TeV collider
can be found in [270].
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10 Conclusion and outlook

In the first part of the thesis the NLO QCD corrections to the process pp →
W+W−bb̄→ (e+νe) (µ−ν̄µ) bb̄ were presented. The process describes top quark
pair production and subsequent decays including non-resonant contributions.
For the calculation the automated one-loop amplitude provider GoSam was
used in combination with the Monte-Carlo generator Sherpa.
Significant differences to the calculation in the narrow width approximation
with LO decays were found for the shape of the mlb distribution.
A detailed study of effects of NLO and non-factorizable contributions on top
quark mass measurements based on the mlb observable was performed by re-
producing an ATLAS template analysis at the parton level. It was found that
the inclusion of NLO contributions leads to a larger shift in the measured top
quark mass for the full WWbb calculation than for the factorized calculation.
Furthermore the scale variation uncertainty on the mlb distribution leads to a
higher uncertainty on the measured top quark mass of about 1 GeV for the full
calculation than for the factorized calculation where it is only about 0.2 GeV.
Further investigations using fully simulated events are required to give a reliable
estimate of the theoretical uncertainties on the top quark mass measured with
this approach. Since the factorized approach is used in experimental analyses
it is possible that the theoretical uncertainty is underestimated.
It is also not clear if the observed differences between full and factorized calcula-
tion are due to NLO corrections to the top quark decays or due to non-resonant
contributions. To answer this question a comparison to a strict narrow width
calculation which includes NLO top quark decays is in progress, and a first
comparison is shown. This will make it possible to study the impact of genuine
non-resonant contributions.

While the first part of the thesis involves only one-loop calculations, in the
second part higher loop orders are considered. The method of differential equa-
tions, which is used for the calculation of multi-loop Feynman integrals is in-
troduced A technique to simplify their form is presented and applied to the
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calculation of two-loop QED vertex integrals.
Details on the sector decomposition method for the (numerical) integration of
multi-loop Feynman integrals, and in particular on a decomposition algorithm
based on convex geometry are given. The new algorithm provides a compact
form for decomposed integrals, and suggests a connection to the theory of toric
varieties. A better understanding of the appearing mathematical structures
would be desirable, and could lead to further improvements of the sector de-
composition method. Additionally the geometric algorithm is guaranteed to
terminate, usually generates a smaller number of sectors, and is faster than
other decomposition algorithms. Together with several other improvements
and new features, the geometric algorithm is implemented in the most recent
version of the program SecDec. This, together with improvements such as the
QMC integration method, makes it possible to use sector decomposition for the
calculation of phenomenologically relevant multi-loop amplitudes.

Such an application is the calculation of the NLO QCD corrections to the pro-
duction of a Higgs boson pair in gluon fusion including the full top quark mass
dependence. In the calculation sector decomposition is used for the computa-
tion of the appearing two-loop Feynman integrals with four independent mass
scales, and an extended version of GoSam provides the two-loop amplitude.
The program REDUZE is used for the partial integral reduction. For the total
cross section a difference of 16.5% is found with respect to the Born-improved
HEFT approximation. Differentially large deviations are also observed beyond
mhh & 600 GeV even with respect to the FTapprox calculation. This demon-
strates that the inclusion of full top quark mass effects is required to get reliable
predictions for the process gg → hh in all kinematic regions. The method used
for the calculation is partially automated and process independent. It can be
applied to the calculation of other multi-scale and multi-loop processes in the
future.
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[244] B. Grünbaum, Convex Polytopes. Graduate Texts in Mathematics.
Springer, 1967.
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