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Abstract. Atmospheric monitoring is a field of special importance for astroparticle physics, especially for

Imaging Atmospheric Cherenkov Telescopes (IACTs) as clouds will absorb and scatter the Cherenkov photons

of air showers. Conventional tools used for atmospheric monitoring (e.g. LIDAR) are very expensive and

monitor only a small part of the sky at once. Therefore, they are not suitable to perform a wide scan of the sky

which is necessary to detect clouds in advance.

This article gives a short overview about a method that uses an all sky camera with a 180 ◦ field of view to

identify the cloud distribution by measuring the absorption of star light. It can be used to assign a sky quality

rating to single spots, arbitrary regions or the whole sky at once within a 1 min exposure time. A cloud map can

be created from the available data that can be used to determine shape and dimension of clouds and to predict

their movement. The resulting data can be used by a scheduling algorithm or the operating crew to point the

telescope to a different source before the current source gets covered by clouds. The all sky cameras used so far

are located on La Palma at the observatory Roque de los Muchachos close to the telescopes FACT and MAGIC

and the planned northern CTA site.

1 Introduction

A precise cloud forecast would be very valuable for the

operation of IACTs. If the time was known when a source

will cover up, the telescope could switch to another source

in advance and continue taking data. The detection of

clouds at night using a camera is difficult as they do not

emit light on their own and are as dark as the night sky un-

less they refract moon light and appear as white objects in

the camera image. The number of visible stars in the im-

age is therefore a good approximation of the cloud cover-

age as their appearance does not depend on ambient light

or wind conditions.

Regions with visible stars can be marked as not cloudy

but a cloud will not always cover stars completely. A

partial absorption of light will not be recognized if stars

have only two states: ‘visible’ or ‘not visible’. This effect

makes it very difficult to reconstruct the smooth shape of

a cloud or detect thin clouds in the first place.

2 Image Analysis

Initially, a star catalog is used to find the positions in the

image where a star is expected to show. The actual de-

tection of a star is done by convolving the image with a

Laplacian of Gaussian filter[3]. This filter is ideal for star

detection in long exposure images as it is rotational invari-

ant (anisotropic) and robust against image noise. Figure

1a shows a plot of the filter response R of stars and their

�e-mail: jan.adam@tu-dortmund.de

magnitude during a starry night. The filter response is cor-

related to the star magnitude. This allows to use an expo-

nential function:

f (x) = 10m·x+b (1)

to define an upper and a lower limit for the response of

a star (green and red line). The parameters of the green

curve were choses such that all stars lie above this curve

in a starry night (cf. Fig. 1a).

mu = −0.40 bu = 4.45 (2)

Stars above this threshold are unaffected by clouds while

stars below indicate that a cloud absorbed a portion of their

light.

A cloudy night is depicted in Figure 1b and defines the

lower threshold for the filter response. The parameter of

the red curve were chosen such that the majority of stars

lies below this curve in a cloudy night.

ml = 0.0 bl = 1.75 (3)

Stars below the red curve are not visible at all. Combin-

ing both thresholds defines the visibility v of a star as its

relative position between upper and lower threshold in log-

arithmic space. For example: in Figure 1a the star with

magnitude ≈ 0 lies above the green curve, thus its visi-

bility is 1. In Figure 1b its visibility is 0 because it lies

below the red curve. If it had a kernel response of 104

its position between red and green curve would be ≈90 %,

thus its visibility would be 0.9. Equation 4 describes this
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(a) Starry night (b) Cloudy night

Figure 1: Distribution of the kernel response of stars in a good and a cloudy night. Upper limit is defined such that the

majority of stars lie above this line in a starry night and in a cloudy night they should be below the lower limit. Stars with

mag > 6.7 are always colored red because once the upper limit crosses the lower limit, the visibility is no longer defined.

In the actual analysis, these stars were removed from the catalog and had no influence.

in a mathematical way. The visibility is

v =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, for R > 10mu·mag+bu

0, for R < 10ml·mag+bl

R− 10ml ·mag+bl

10mu ·mag+bu − 10ml ·mag+bl
, otherwise

, (4)

with the slope of the upper threshold mu and lower one ml

and their y-axis intersection bu and bl, respectively, and

the star magnitude mag.

Averaging the visibility of the stars i in a certain area,

makes the algorithm more robust (cf. eq. 5). This area can

be chosen arbitrary and may correspond to the telescope’s

field of view but choosing a wider area that contains more

stars yields more robust results. Bright stars are less likely

to be affected by a cloud than faint stars therefore a weight-

ing factor1 of 2.5mag was used to differentiate between thin

and thick clouds as faint stars will be covered completely

by both.

The averaged star visibility A is defined as:

A =

all stars∑
i
v · 2.5magi

all stars∑
i

2.5magi

(5)

3 High Zenith Angle Correction

At high zenith angles the star’s filter response decreases

and even drops below the upper threshold. Therefore, it

appears that the horizon is always covered by clouds. The

cause of this phenomenon is most likely either vignetting

of the fish-eye lens [4] or absorption and scattering by the

atmosphere’s natural aerosols. Although, the real cause

was not identified yet, the light loss has to be corrected for

the algorithm to work reliably.

At high zenith angles the light has to travel a longer

way through the atmosphere and thus more photons can be

1Brightness factor between consecutive magnitudes
5√

100 ≈ 2.5.

absorbed or scattered. If the absorption is very small, the

transmission can be described by the Beer-Lambert law:

I(X) = I0e−kX (6)

with I0 the initial intensity, I(X) the remaining intensity

after distance X and k the absorption coefficient. X is given

in units of air mass and by applying the law of cosine on a

spherical earth model, the airmass X can be calculated by:

X =

√(
RE + yobs

yatm

)2

cos2 θ +
2RE

y2
atm

(yatm − yobs) −
(
yobs

yatm

)2

+ 1

− RE + yobs

yatm

cos θ. (7)

with observer altitude yobs = 2.2 km, earth radius

RE = 6378 km and atmosphere height yatm = 9.5 km.

To estimate the atmospheric absorption coefficient k,

images of three consecutive nights with good weather

were used. The images were taken at an interval of 15 min.

These measurements of stars at different zenith angles al-

low to observe the decreasing filter response. A fit of equa-

tion 6 to a star’s data points yields a k for every single star.

The absorption coefficient should be equal for all stars but

is spread with k = 0.35 ± 0.27. No correlation to the star’s

magnitude was observed. The 75 % quantile of k was used

to correct the response of all stars. This leads to an over

correction of ≈ 3
4

of all stars but a cloud will still block

enough light for a notable effect. Under corrected stars,

however, induce fake clouds all the time. Therefore, an

over correction is the better choice if one corrects all stars

with a constant k. The correction of the kernel response

was performed before calculating the star visibility.

4 Cloud Map

The star visibility is only defined at the location of a star.

To visualize clouds, it is necessary to develop a parameter

that is homogeneous in space. One could achieve this by
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Figure 2: All sky camera image (left) and the corresponding cloud map (right) that results from the algorithm explained

in section 4 and Figure 3. Dark pixels show cloudy regions. The shape of the cloud was reconstructed very detailed and

even thin cloud areas can be identified. Clouds close to the horizon were not reconstructed correctly because the number

of available stars was too low. In the lower left, the MAGIC telescopes were removed from the image.

Figure 3: Explanation of the Cloud map algorithm. The

upper plot is a slice of the 2D histogram discussed in the

text. The bin size correlates to the star magnitude and

the level of the green color displays the fraction of their

visibility. The curves are the result of Gaussian smooth-

ing. The normalized difference between both curves is the

cloud map displayed in the lower plot. Here, two clouds

are visible as peaks with different intensities.

calculating the averaged star visibility for every pixel of

the image within some radius r but this is computationally

very expensive.

A less expensive algorithm that also uses a filter ker-

nel is visualized in Figure 3. Every star was filled into a

2D histogram based on its x and y position in the image.

Each entry then was weighted by the star’s visibility and

the magnitude factor 2.5mag (green bins). Then, the his-

togram was treated as a regular image and a Gaussian filter

was applied to smear the discrete bin values (green curve).

However, this ‘map’ is biased to the density of stars. To

normalize this curve, another 2D histogram was created

with v = 1 for all stars (red bins and curve). After ap-

plying the Gaussian kernel, the normalized difference be-

tween both curves can be calculated (black curve in lower

plot). This is the cloud map used in all further steps. It

visualizes the cloud coverage and differentiates between

thick and thin clouds but is not biased by changing light

conditions like the original camera image.

This implementation takes only seconds to compute a

cloud map for the whole sky whereas a LIDAR measure-

ment is in the order of minutes for a spot-measurement.

This map can then be made available for the telescope’s

operating crew once a minute each night. An example is

displayed in Figure 2. The cloud map visualizes the struc-

ture of clouds with a very good resolution and even very

thin clouds that only block a portion of the star light are

visible.

5 Cloud Tracking and Prediction

Identifying single clouds in the cloud map could be done

by using a clustering algorithm. Then their direction could

be reconstructed by tracking each cloud separately in con-

secutive images. Clouds, however, can not only change

their shape but also split and merge if they move at differ-

ent velocities.

As a proof of concept, the movement of all clouds

was estimated as a unified object instead of identifying

and tracking single clouds. The previous and the current
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Figure 4: Cloud tracking and prediction. The left column

shows cloud maps containing a cloud that moved within

approx. 40 min from the lower right of the image to the

upper left. The yellow arrow shows the translation that

yielded the smallest Euclidean distance between this map

and the previous one (wind speed and direction). The right

column shows how the previous cloud map was translated

to get the best matching position. The tracking fails in the

final row because the cloud left the image and no good

match was achieved.

cloud map were overlapped and interpreted as n dimen-

sional vectors. The Euclidean distance

d = ||u − v||2 (8)

was calculated between both maps u and v to rate their

similarity. By shifting the previous map in x and y di-

rection, the best translation was found by minimizing the

Euclidean distance. This translation vector should corre-

spond to the current wind speed and direction and can be

used to predict the next position of the clouds if the wind

is constant to some degree. Wind speed and direction can

also be obtained from wind profiles[5] and could be used

to verify the results. The process is displayed in Figure 4

for a cloud that passes through the image.

The algorithm manages to extract the direction of the

cloud in the first three rows (yellow arrow). The re-
construction fails if the cloud enters or leaves the image

(row four) because then no valid match can be achieved

between both maps.

6 Conclusion

Cloud tracking and prediction are promising but need

some improvements: Changes of the wind direction could

be limited to a few degree within a short period of time

such that rapid changes like in row four of Fig. 4 do not

occur anymore.

Projecting the cloud map onto the model of the spheri-

cal atmosphere will increase the accuracy of the prediction

because right now, clouds move faster in the image center

due to the fish eye lens.

The usage of wind profiles might be sufficient to calcu-

late wind speed and direction with a good precision such

that the cloud map will only be used for detecting clouds

and determining their shapes. This also increases the fore-

cast time because calculating the speed of a cloud from

the cloud map requires some time to accumulate enough

images. By that time the cloud already moved further into

the image center and by then it might be too late to switch

the telescope to a different source.

The cloud maps provide a detailed visualization of the

sky’s cloud coverage. In combination with a LIDAR for

altitude measurements they can be a valuable tool for fu-

ture IACTs.

The code used for this analysis was developed at:

https://github.com/tudo-astroparticlephysics/starry_night
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