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Chapter 1

Introduction

“There is a theory which states that if ever anyone discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be replaced
by something even more bizarre and inexplicable. There is another which states
that this has already happened.”

Douglas Adams, Hitchhiker’s Guide to the Galaxy

Having started as an attempt to describe the physics of strong interactions before the intro-

duction of QCD, string theory has become one of the best candidates for a quantum theory

of gravity. In this theory, the oscillations of the strings that can be interpreted as particles.

In a low energy limit, the oscillations of these strings will look like localized excitations -

different oscillation modes correspond to the different kinds of particles, including gauge

fields. From this perspective, gauge fields appear as non-fundamental objects which are ex-

citations of the fundamental strings. Gravity itself is derived from the interaction of these

fundamental objects (through splitting and joining). But such a perspective is too narrow.

In fact, a better understanding of non-perturbative string theory and D-branes has shed

light into another interpretation of gauge fields: it has been seen that string theory in certain

space-time backgrounds has a dual description as a gauge field theory, thus putting gauge

fields and strings as fundamental objects in the respective theories. This gauge/string dual-

ity, also known as Anti-de-Sitter/Conformal Field Theory (AdS/CFT) correspondence, was

first proposed by Maldacena [1], and identified string theory on an AdSd+1×X background

with a conformal field theory living on the boundary of this AdSd+1space (d-dimensional).

1
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String/Gauge Dualities

Gauge/string dualities relate two seemingly different quantum physical descriptions, one

being a gauge field theory in a number of space-time dimensions, and the other a string

theory on a two-dimensional conformal worldsheet. The most studied of these dualities is the

AdS5/CFT4 correspondence [1], which relates type IIB superstring theory on the AdS5×S5

background and N = 4 supersymmetric Yang-Mills (SYM) gauge theory in four dimensions.

Both theories in the duality have a coupling constant λ and a genus-counting parameter

gs (string theory) and gY M (on the gauge side). The latter gs appears naturally on the string

side, and related to the coupling of an U (Nc) gauge theory through g2
Y M = 4πgs. At Nc large,

there is a natural choice for the effective coupling λ in each theory, given by the ’t Hooft

coupling λ = g2
Y MNc for the gauge theory [2], and is related to the string tension λ = R4/α2

on the string side (R is the radius of the AdS5×S5 background, and α is the the inverse of

the string tension). In a path integral formulation of these theories, one can easily see that

only the combinations h̄g2
Y M and R2/h̄α appear in the gauge and string theories, respectively.

Then, obtaining an expansion in h̄� 1 (quantum corrections) is equivalent to expanding in

g2
Y M� 1 and α/R2� 1. A direct comparison between these two theories is then non-trivial

because of the strong/weak property of this duality. In the perturbative regime of gauge

theory (’t Hooft coupling small), string theory is strongly coupled (α large), and vice versa.

Thus, this property makes checking this conjectured duality a very hard problem to solve,

as one cannot access both perturbative regimes at the same time. On the other hand, if we

choose to believe in this correspondence, then it gives us access to previously inaccessible

regimes in both sides of the duality.

Even though a direct comparison of most quantities in both sides of the duality can not

be done, there are a few cases where such a comparison can be performed [3,4]. One example

consists in calculating quantities which are protected from receiving quantum corrections

(by supersymmetry). Other examples include certain limits which can be taken, such as the

plane-wave limit [5], where the existence of some large charge allows us to define an effective

coupling, and thus reach both sides of the duality.

Recently, a new example of an AdS/CFT duality has been conjectured [6], which re-
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lates the three dimensional N = 6 superconformal Chern-Simons theory (with a gauge

group SU (N)× SU (N)) and a theory of M2-branes in the background AdS4× S7/Zk (11-

dimensional). The parameter k in this AdS4/CFT3 duality is the Chern-Simons level. If we

consider the limit k,N→∞ keeping λ = 2πN/k fixed (scaling limit), then the eleven dimen-

sional M-theory becomes the type IIA superstring theory on the AdS4×CP3 background.

One of the main focuses of this dissertation is the study of the classical string and gauge

theories of these two examples of the AdS/CFT correspondence, and their semi-classical

behaviour. This will be done with using tools such as the symmetries underlying each of

these dualities, and their integrability properties.

Symmetries

The symmetries of a physical system are one of our best hopes of truly understanding it.

The algebra of symmetries psu(2,2|4) is central in AdS5/CFT4 correspondence, as both the

gauge theory and its string theory dual have the same underlying supersymmetry algebra

psu(2,2|4). The two dimensional sigma-model which gives us the perturbative string theory

in AdS5×S5 [7] has a manifest global symmetry under PSU(2,2|4) [8,9], the isometry group

of the target space. This is the same group of internal and space-time (superconformal) sym-

metries of the N = 4 SYM (see [10] and references therein). Through AdS/CFT correspon-

dence, the spectrum of energies of string states should coincide with the scaling dimensions

of conformal gauge operators. This can be seen at the algebra level as a correspondence

between the eigenvalues of the string light-cone Hamiltonian and the eigenvalues of the Di-

latation operator in gauge theory, and was checked in the so called thermodynamic [11,12]

and BMN [5] limits [13, 14, 15, 16, 17]. In the case of the AdS4/CFT3 correspondence the

same approach can be taken, but in this case the group of symmetries shared by string and

gauge theories is the OSp(2,2|6) [18].

The sigma-models for these dualities have been shown to be classically integrable [19,18],

thus having an infinite number of (non)local integrals of motion. It is of great interest to

study the algebra of symmetries of these dualities, which together with the integrability of

the theories can give a lot of information on several properties of the physical system, such

as scattering.
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Integrability

Because of the integrable structures found to exist in planar (and perturbative) N = 4

SYM and in classical IIB superstring theory on AdS5× S5, these theories are thought to

have a Yangian symmetry, that is, an infinite number of conserved charges. Together with

the symmetry algebra already known, these charges can provide a much more thorough map

between gauge and string theories. But we are far from having a full set of explicit solutions

with which to compare the two sides of the duality. Nevertheless, even if we don’t know

explicit form of the solutions, we can try to use the integrability properties of the theories to

construct and compare the respective Bethe ansatz equations, allowing us to explore the full

energy spectrum of classical strings and of eigenstates of the (planar) dilatation operator in

gauge theory.

The N = 4 SYM theory was first seen to have integrable structures by Minahan and

Zarembo in [20], where they found that in the invariant so(6) sector (sector containing

scalars) and at one-loop order in the ’t Hooft coupling λ , the dilatation operator is isomor-

phic to the Hamiltonian of a so(6) integrable quantum spin chain. There it was shown that

determining the anomalous dimensions of operators (eigenvalues of the dilatation operator)

in the so(6) sector of the gauge theory is equivalent to solving the corresponding Bethe

equations of this sector. This description of gauge theory operators as spin-chains can be

easily pictured in the large Nc limit. In this limit one can restrict local operators to be single-

trace operators, and we interpret the traces as cyclic spin-chains, and the fields inside the

traces as spin sites. A specific example is the su(2) sector, where the operators are traces of

products of two scalar fields, and corresponds to the spin-1/2 Heisenberg model (only near-

est neighbour interactions). The so(6) sector will correspond to a spin-chain where at each

site the spin can take six different values. This equivalence between conformal dimensions of

operators and integrable spin chains has been generalized to the full psu(2,2|4) algebra [21],

and the gauge theory was also seen to be integrable to higher loops [21,22,23,10,24].

On the string side, the BMN limit allowed one to study the string action in a near plane-

wave geometry, and compare results to near BPS gauge operators. On the other hand, the

thermodynamic limit of string theory was seen to correspond to a semi-classical expansion
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about solitonic string solutions in the AdS5× S5 background [11]. This led to the study of

multi-spin string configurations rotating on AdS5× S5 [12, 25] which were then compared

to the so(6) sector of the gauge theory. This work was later generalized to other classical

string solutions with very large angular momentum in some directions of S5, called giant

magnons [26, 27], or of AdS5 [28] in a limit which differs somewhat from the BMN limit,

allowing us to take the large spin and semi-classical limits separately.

One can also study the comparison of integrable structures of string and gauge theories

through the algebraic curve formalism. This was first studied in [29], where the su(2) con-

served currents of the classical string sigma-model were used to construct a Lax pair and

re-write the equations of motion as a Riemann-Hilbert problem in terms of hyperelliptic

curves. It was also shown that the same can be obtained from the gauge theory side up to

two loops. These results have been generalized to other sectors of the theory [30,31,32,33].

The full spectrum of AdS5×S5 superstrings has been studied in [34] (at the classical level)

and in [35] (quantum generalization). A Bethe ansatz for quantum strings was first pro-

posed in [36], and further studied in [37, 38, 39, 40, 41, 42], including comparisons to the

Bethe ansatz equations from the gauge side.

The integrable structures of the new gauge/string duality, the AdS4/CFT3, have also

been studied: the sigma model has been seen to be classically integrable [18], and semi-

classical expansions of rotating string configurations have also been studied [43,44,45]. These

results were compared to the ones obtained through the algebraic curve formalism [46,47].

Solitons

As with any physical system, it is of great interest to determine any solitonic solutions of

the theory, and consider them as the fundamental excitations which one can then use to

build the other states of the theory. In the limit of long spinning strings in AdS5×S5 such

solitonic solutions were seen to exist [26] and were called giant magnons. Related to these

by a generalized T-dual transformation another kind of solutions were also found [48], called

the giant single spikes. The solitonic properties of these solutions were discussed through a

reduction to the sine-Gordon field theory using the so called Pohlmeyer map [49]. Through

this, the giant magnons were mapped to the sine-Gordon kinks (and the single spikes to an
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unstable kink) and some of their classical and semiclassical properties were determined, such

as the time delay of scattering of magnons and their phase shift. This phase shift was found

to be different for scattering of giant magnons and of sine-Gordon kinks, a consequence of a

different symplectic structure associated to each of the problems [50]. Some attempts have

been made to reconcile this issue [51], where the conjectured existence of a bi-Hamiltonian

structure on the relativistic N-body model related to both sine-Gordon solitons and giant

magnons was seen to lead to such a difference on the phase shifts.

Overview

The main text of this dissertation is divided into six parts. The first three chapters focus

of the AdS5/CFT4 correspondence, introducing the algebra of symmetries and studying

dynamics of giant magnon soliton solutions and the related giant spikes at a semi-classical

level. The fourth chapter gives an introduction to the algebraic curve formalism from the

string sigma model in AdS5×S5. The last two chapters focus on the AdS4/CFT3 correspon-

dence, determining the spectrum of magnon solutions in the R×CP3 space in the algebraic

curve, and comparing it to several magnon solutions in this space.



Chapter 2

The Algebra of AdS5/CFT4

The gauge/string duality has been the object of study for more than a decade by means of

the AdS/CFT correspondence [1,52,53], between IIB superstrings on AdS5×S5 and N = 4

U (Nc) super Yang-Mills theory in four dimensions. But while the results calculated from

the gauge theory are perturbative in ’t Hooft coupling λ = g2
Y MNc, the calculations on the

string side are valid for strong coupling λ .

This strong/weak property of the duality limited its study to operators/states in sectors

protected by supersymmetry, as these would receive no quantum corrections. But a heuristic

comparison of the algebraic structures in the weak/strong coupling limits was possible by

taking the plane-wave limit, or BMN limit [5]. On the gauge theory side, the BMN limit is

taken by considering single trace operators, i.e. Nc very large, with large R-charge of so(6)

J ∼
√

Nc and conformal dimension ∆ , keeping ∆−J finite. These operators consist of a chiral

primary (trace of a large number of a complex field) with some impurities (other complex

fields, bosonic or fermionic). Even though the ’t Hooft coupling λ = g2
Y MNc is very large, one

can use perturbation theory provided some effective coupling λ ′ = g2
Y MNc/J2 ∼ g2

Y M is kept

fixed and small.

On the string side we start from the Green-Schwarz action on the AdS5× S5 [7], with

J ∼
√

Nc now being the angular momentum in one of the directions of S5. We also take

the energy E (generator of time translations in AdS5) to be large, obeying E − J finite,

thus originating point-like closed strings with large angular momentum in S5. In light-cone

gauge, the quantity E−J is just the light-cone Hamiltonian, and the light-cone momentum

7
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P+ = E + J is very large. In this case, there is an effective coupling just λ̃ = 4λ/P2
+, which

is equivalent to λ ′ in the limit J→ ∞ (P+/2→ J).This limit allowed a direct comparison of

the dilatation operator in SYM (anomalous dimensions of operators in the conformal field

theory) to the energies (E−J) of point like semiclassical string oscillations in the plane-wave

geometry.

The algebra of symmetries psu(2,2|4) is central in AdS5/CFT4 correspondence, as both

the gauge theory and its string theory dual have the same underlying supersymmetry al-

gebra. The two dimensional sigma-model, which gives us the perturbative string theory in

AdS5× S5 [7], has a manifest global symmetry under PSU(2,2|4) [8, 9], which is the same

group of internal and space-time symmetries of the N = 4 SYM (see [10] and references

therein).

In particular, one can use the algebra to compare the scattering of particles in the

duality. For large ’t Hooft coupling the scattering is best described by string theory, but

for small ’t Hooft coupling the spin-chain description is more adequate. It was shown by

Beisert that in this limit the non-perturbative S-matrix is almost completely determined by

the centrally extended su(2|2)⊕ su(2|2) algebra [54,55,56], up to an overall dressing phase

(determined by a crossing symmetry restriction [57,58,59,60]). In fact, the invariance of the

S-matrix under this algebra (that is, its trivial commutation relations with every generator

of the algebra) led to discovery that it satisfies the Yang-Baxter equation, requirement

for a factorized scattering, which is a property of integrability [55]. The related Yangian

symmetry was also found in [61].

Each of these centrally extended algebras su(2|2) has the following structure: bosonic

(kinematical) generators Ra
b,L

α

β
, corresponding to the rotation generators of the bosonic

subalgebra su(2)⊕ su(2); fermionic (dynamical) supersymmetry generators Qα
a , Q†b

β
; and

three central charges H, C, C† (Hamiltonian, generator of space translations and of boosts).1

1Note that (Qα
a )† = Q†a

α and the same relation holds to the central elements C and C†.
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Their commutation relations are:

[
Lα

β
,Jγ

]
= δ

γ

β
Jα − 1

2
δ

α

β
Jγ , [Ra

b,J
c] = δ

c
b Ja− 1

2
δ

a
b Jc ,[

Lα

β
,Jγ

]
= −δ

α
γ Jβ +

1
2

δ
α

β
Jγ , [Ra

b,Jc] =−δ
a
c Jb +

1
2

δ
a
b Jc ,{

Qα
a ,Q†b

β

}
= δ

b
a Lα

β
+ δ

α

β
Rb

a +
1
2

δ
b
a δ

α

β
H, (2.1){

Qα
a ,Qβ

b

}
= ε

αβ
εabC ,

{
Q†a

α ,Q†b
β

}
= ε

ab
εαβ C† .

In the above expressions, JM (where M ∈ {a,α}, a being bosonic indices and α being the

fermionic ones), is any element of the Lie algebra. From the elements of the algebra, the

dilatation operator (or central charge Hamiltonian) has been studied in detail (see [10] and

references therein).

Much has been done on the study of sectors of this superconformal algebra on the string

side [62,63,64,65,66]. On the gauge side, Beisert has perturbatively studied and determined

the action of the generators of the superalgebra su(2|2) up to two loops, by first restricting to

the subalgebra su(2|3) whose fundamental representation consists of three complex scalars

and two complex fermions [67], and finally considering an infinite chain of one of the scalar

operators [55]. Using Bethe Ansatz techniques it was later conjectured an all loop result in

this sector for the action of the algebra generators [56].

In this chapter, we present the SUSY algebra in terms of a matrix model reduction of

Yang-Mills Theory in the large N limit. The matrix model has played a very useful role

in large N theories. In fact, the 1
2 BPS sector of N = 4 SYM is completely described in

terms of a complex matrix model [68,69,70,71,72], and the 1
4 BPS generalization is also of

great interest (work in progress). Presently, the interest is in the detailed construction and

comparison of supercharges and their commutation relations both on the Yang-Mills and

on the string side. We will demonstrate that the algebra given by Beisert in [56] (at least

at one loop) is correctly reproduced from the reduced Matrix model point of view.

In [73] it was seen that the plane-wave matrix theory [5, 74] arises when compactifying

N = 4 SYM in R×S3 followed by a consistent truncation in order to keep only the lowest

Kaluza-Klein modes (see also [75,76]). These modes have masses proportional to a mass pa-
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rameter, given by
(m

3

)3 = 32π2

g2
Y M

. This theory was shown (in some sectors) to still be integrable

up to four-loops [77,78]. Study of this model is simpler than the full N = 4 SYM, and can

be found in Section 2.4. In this section we present a detailed study of the supercharges Q

and S, following the approach of [73]. In Section 2.5 we restrict the action of the generators

of the algebra to a subsector su(2|2). The results presented in this paper are one-loop, and

we compare our results with the non-local generators presented in [56], evaluating some of

the parameters defining these generators.

Some methods have been employed in the gauge theory side that allowed a comparison

of the Hamiltonian to string theory equivalent algebra generator. Such methods include the

use of coherent states [13, 17, 79], collective field theory and string field theory [80, 81]. In

this framework one can compare a discrete (first quantized) version of the supercharges on

the string side with the oscillator expansion of the charges in SYM, in the BMN limit.

2.1 The algebra of strings in a AdS5×S5 background

We start from the Green-Schwarz string theory on the AdS5× S5 background, following

[66,64]. The string sigma-model has a global symmetry given by the supergroup PSU(2,2|4).

Because it is a string theory, it also has local worldsheet diffeomorphism symmetries and the

fermionic κ-symmetry. So one is interested in fixing these symmetries and keeping only the

physical degrees of freedom. In order to do so, the uniform light-cone gauge will be used.2

Our main interest is in studying the generators of the superisometry algebra psu(2,2|4),

which can be divided into two groups, according to whether they (Poisson) commute with

the Hamiltonian or not. The first case corresponds to the subalgebra su(2|2)⊕su(2|2) which

is the algebra we will be focusing on. We can also separate the generators into dynamical and

kinematical generators, depending on whether they depend or not on some unphysical field

2One thing to remember is that the manifold space is given by the full group of isometries divided by the
little group (that is, the group of isometries, or rigid rotations, given one fixed point). In the case of S5 we

have S5 ≡ SO(6)
SO(5) , and also for AdS5 ≡

SO(2,4)
SO(1,4) . The full group of isometries of AdS5×S5 is PSU(2,2|4), and so

the space manifold is equivalent to
PSU(2,2|4)

SO(1,4)×SO(5)
.
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x− (one of the light-cone co-ordinates). The zero mode of this unphysical field x− will be seen

to be the conjugate variable to the total light-cone momentum P+, and consequently, the

dynamical variables change the light-cone momentum. The large J limit mentioned before

corresponds to the limit of infinite P+ in light-cone variables, and in this limit one can see

that the zero mode x0
− can be dropped.

The derivative x′− can also be seen to be a density of the world-sheet momentum (related

to rigid symmetries of the σ−direction of the string action, after gauge fixing), and for closed

strings the periodicity of the fields requires the total worldsheet momentum to vanish. This

imposes a constraint in x−, called the level-matching condition. It can be shown in the

string theory frame that relaxing this level-matching condition and considering the limit of

infinite light-cone momentum P+ leads to a central extended su(2|2)⊕su(2|2) algebra. This

extension consists of an extra common central element, proportional to the level-matching

condition, with the Hamiltonian remaining central (as in the on-shell algebra, where the

level-matching condition is obeyed).

The same thing should be obtainable from the gauge theory side. In N = 4 gauge theory,

the level-matching condition corresponds to working with traces of products of fields (gauge-

invariant operators), and the relaxing of such constraint corresponds to consider infinitely

long operators. From [55] one has that the opening of the traces and considering infinitely

long operators will add two central charges (to the one already existing, the Hamiltonian)

to the algebra su(2|2)⊕ su(2|2), functions of the momentum carried by the one-particle

excitations.

2.2 Superstrings on AdS5×S5: action and symmetry algebra genera-

tors

The full superstring action is a sum of the non-linear σ -model and a topological Wess-

Zumino term (uniquely fixed by requiring PSU(2,2|4) and κ-symmetry invariance). Its
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target space is given by the coset manifold [7]

PSU(2,2|4)
SO(4,1)×SO(5)

.

We want to study the algebra of isometries of this action, the psu(2,2|4) superalgebra. This

analysis follows closely [64]. To study this coset space, consider 8×8 matrices of the form

M =

 A X

Y D

 ,

where the 4× 4 matrices A and D are Grassmann even, while the matrices X and Y are

Grassmann odd. The superalgebra su(2,2|4) can be described by requiring that M has

vanishing supertrace, strM = trA− trD = 0, and satisfies H M +M†H = 0. In this last condition,

the matrix H is a hermitian matrix, chosen to be

H =

 Σ 0

0 I

 , with Σ =

 I2×2 0

0 −I2×2

 .

This choice of H allows us to easily see that A∈ u(2,2) and D∈ u(4), and also that Y =−X†Σ

(conjugated to each other). There is a u(1) generator from each of the u(2,2) and u(4),

but only the supertraceless combination of the two belongs to su(2,2|4). So, the bosonic

subalgebra of su(2,2|4) is

su(2,2)⊕ su(4)⊕u(1) .

Finally the superalgebra psu(2,2|4) corresponds to the quotient algebra of su(2,2|4) over

this last u(1), and cannot be represented in 8×8 matrices. Nevertheless, this last result will

be enough for the present discussion, and we now turn to building the superstring action.

To construct the superstring action, one uses a Z4 grading of the superalgebra su(2,2|4).
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This grading is defined by the automorphisms M→Ω(M), where

Ω(M) =

 KAtK −KY tK

KX tK KDtK

 , with K =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


.

Given this automorphism, any matrix M ∈ su(2,2|4) can be decomposed into 4 term

M = M(0) + M(2) + M(1) + M(3),

where each term will obey Ω
(
M(p)

)
= ipM(p). Note that M(0,2) are Grassmann even, while

M(1,3) are Grassmann odd. It can be seen that the matrices M(0) span the so(4,1)× so(5)

subalgebra, to be mod out in the coset space.

One now considers a group element g of PSU(2,2|4), and constructs a flat current (Z4

decomposition)

A =−g−1dg = A(0) + A(1) + A(2) + A(3),

from which the superstring action can be written as [7]:

S =−
√

λ

4π

ˆ
π

−π

dσdτ

(
γ

αβ str
(

A(2)
α A(2)

β

)
+ κε

αβ str
(

A(1)
α A(3)

β

))
.

In the above expression, λ is the string effective tension, and from κ-symmetry we have

κ =±1. Also γαβ =
√
−hhαβ where hαβ is the worldsheet metric.

Parametrization of coset group elements

Before we start, it is important to parametrize the bosonic part of the orthogonal comple-

ment of so(4,1)×so(5) (the latter spanned by the matrices M(0)), namely the even matrices

M(2). The total bosonic algebra corresponds to su(2,2)⊕su(4), and we will be treating the

algebras so(4,1) and so(5) and their orthogonal complements separately. The algebra su(4)

has 15 generators, out of which 10 span the algebra so(5), and the other 5 span its orthogonal

complement.
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From the eigenstates of the matrices M(p) under the map Ω, one can easily check that if

M(0,2) =

 A0,2 0

0 D0,2

 ,

then we have the relations KAt
0K = A0

KDt
0K = D0

and

 KAt
2K =−A2

KDt
2K =−D2

.

In these, D0,2 ∈ su(4)≡ so(6), while A0,2 ∈ su(2,2)≡ so(4,2). So we can conclude that the

D0 will span so(5) while D2 spans its orthogonal complement (and the analogous relation

can be found between A0 ∈ so(4,1), and A2 ∈ so(4,1)⊥).

In order to parametrize M(2), one introduces the 5 (hermitian) Dirac matrices for SO(5)

{γs, s = 1, ...,4, γ5 = Σ} , such that

Kγ
t
sK =−γs , KΣ

tK =−Σ.

These 5 generators span the orthogonal complement to the algebra so(5), understood as

a subalgebra of su(4), while the other 10 generators of su(4) will obey the same relations

with a plus sign on the r.h.s..

To parametrize the orthogonal algebra to so(4,1), one can take {γa,a = 1, ...,4, iΣ}, where

the γa are the Dirac matrices pointed above.

We can finally write a matrix M(2) as

M(2) = xMΣM +

 itΣ 0

0 iφΣ

+ im0I,
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where we have real parameters xM = {za,ys} , t, φ , m0, and the 8×8 generators:3

ΣM =


 γa 0

0 0

 ,

 0 0

0 iγs


 , Σ± =

 ±Σ 0

0 Σ

 . (2.2)

The real parameters are such that {t,za} parametrize AdS5 space, and {φ ,ys} parametrize S5.

We are now ready to parametrize a general element of the coset group. For that choose

g(χ,x, t,φ) = Λ(t,φ)g(χ)g(x). Matrices Λ(t,φ) , g(x) are even, and give us an embedding of

the target space into SU(2,2)×SU(4), and the matrix g(χ) is odd, and includes all the 32

fermionic degrees of freedom. We have

g(x) =

 ga (z) 0

0 gs (y)

 , Λ(t,φ) = exp
{

i
2

(x+Σ+ + x−Σ−)
}

, (2.3)

where x± are the light-cone co-ordinates, given in the next section, and

ga (z) =
(
4− z2

a
)− 1

2 (2 + zaγa) , gs (y) =
(
4 + y2)− 1

2 (2 + iysγs) .

Using this parametrization, the metric of the target space is:

ds2 =−Gtt (z)dt2 + Gφφ dφ
2 +

16

(4− z2)2 dzadzb +
16

(4 + y2)2 dysdyr, (2.4)

with Gtt =
(

4+z2

4−z2

)2
and Gφφ =

(
4−y2

4+y2

)2
.

Finally we need to parametrize the fermionic degrees of freedom. They are given by

g(χ) = χ +
√

1 + χ2 , χ =

 0 Θ

−Θ†Σ 0

 .

The next step is to fix κ-symmetry and use the uniform light-cone gauge.

3It includes I the identity 8×8 matrix, which is a U(1) generator, included in the algebra su(2,2|4), but
divided in the psu(2,2|4).
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The Uniform Light-Cone Gauge

To impose the light cone gauge on a string propagating on some target space, we will use

the time co-ordinate of the manifold, called t, and we assume there is an angle variable φ

with respect to which the manifold has a U (1) isometry under shifts of φ [62]. Also the

string σ -model action has to be invariant under shifts of both t and φ , as well as all of

the bosonic and fermionic fields (the string action does not depend explicitly on t or φ

and depends only on the derivatives of the fields). In particular we will be interested in

studying the Green-Schwarz superstring in AdS5×S5 [7]. For this case, t is just the global

time co-ordinate of AdS5 and φ is an angle of S5.

Invariance under shifts of t and φ result in two conserved currents Eα , Jα , and the

corresponding conserved charges

E =
ˆ 2π

0

dσ

2π
E0 ; J =

ˆ 2π

0

dσ

2π
J0.

In the above expression E0 = −pt and J0 = pφ are just the momenta conjugate to the co-

ordinates t,φ , and E and J are the target space energy and the total U (1) charge of the

string (or angular momentum), respectively.

We now need to define the light-cone co-ordinates x± t = x+− x−

φ = x+ + x−
⇔

 x+ = 1
2 (φ + t)

x− = 1
2 (φ − t)

,

and the respective momentum conjugates

 pt = 1
2 (p+ + p−)

pφ = 1
2 (p+− p−)

⇔

 p+ = pφ + pt

p− = pt − pφ

.

Note that p+ (p−) is the momentum conjugate to x− (x+).

The uniform light-cone gauge is obtained by fixing

x+ = τ +
m
2

σ , p+ = P+ = E + J = constant. (2.5)
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The integer m is just the winding number related to the angle variable φ . To fix this gauge

we also need to fix the local fermionic κ-symmetry, which will be done next.

In this gauge the worldsheet Hamiltonian corresponds to p−,

H =
ˆ 2π

0

dσ

2π
p− = E− J.

But the Hamiltonian can be also written as a function of P+, and so we get an equation

for the energy E = J + H (E + J) , which will give the energy E as a function just of J - the

dispersion relation.

One now proceeds to fixing the light-cone gauge, and κ-symmetry [64].4 If one only

considered the bosonic degrees of freedom, then it would be enough to have introduced

the momenta canonically conjugate to the light-cone co-ordinates x±, But if we keep the

fermionic degrees of freedom as well, the expressions for the momenta will be obtained by

introducing a auxiliary field π, in the algebra of the M(2):5

π =
i
4

π+Σ+ +
i
4

π−Σ−+
1
2

πMΣM + π0iI. (2.6)

Then we write the superstring action as:

S =− 1
2π

ˆ
π

−π

dσdτStr

(
πA(2)

0 + κ

√
λ

2
ε

αβ A(1)
α A(3)

β
− 1

2
√

λγ00

(
π

2 + λ (A(2)
1 )2

)
+

γ01

γ00 (πA(2)
1 )

)
.

(2.7)

We get the original action by solving the equations of motion for π:

π =
√

λγ
τβ A(2)

β
, (2.8)

and plugging them back into the action. Note that the momenta conjugate to the light-

cone co-ordinates will also be written as functions of the auxiliary field π. The last two

4 A simpler version of this gauge fixing, only considering the bosonic part of the theory, can be found
in [82].

5The field π is an even field that lives on the su(2,2|4) algebra. It lives on this algebra because it is
a momentum field (When the manifold is a group, the momenta, conjugate to the fields that live on the
manifold, live on the corresponding algebra). Consequently, we have a Z4 decomposition, π = π(0) +π(2) and
as we are dividing by the subspace of the M(0), we can consider π = π(2).
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terms in the action correspond to the Virasoro constraints, to be imposed after gauge and

κ-symmetry fixing.

C1 = Str
(

π
2 + λ

(
A(2)

1

)2
)

= 0, (2.9)

C2 = Str
(

πA(2)
1

)
= 0. (2.10)

κ-Symmetry

Recalling that the fermionic part of the group element of the coset space, g(χ), depends

solely on a complex 4×4 odd matrix Θ, we need only to restrict the entries of this matrix

to fix κ-symmetry. In fact, κ-symmetry can be fixed by choosing

Θ =

 0 Θ1

Θ2 0

 ,

where Θ1,2 are odd 2×2 complex matrices. Then the fixed χ obeys the relations:

Σ±χ =∓χΣ±.

These relations can be seen as defining the fixed κ-symmetry. Using these relations, together

with g−1 (χ) = g(−χ), we obtain the following properties for g(χ):

g−1 (χ)Σ+ = Σ+g(χ) and g−1 (χ)Σ− = Σ−g−1 (χ) .

Note that the bosonic g(x) has similar relations, namely Σ±g−1 (x) = g(x)Σ± and g−1 (x) =

g(−x).

One can write the current A = Aeven + Aodd fully parametrized:

Aeven = −g−1 (x)
i
2
{

dx+Σ+
(
1 + 2χ

2)+ dx−Σ−
}

g(x)−

−g−1 (x)
{√

1 + χ2d
√

1 + χ2−χdχ + dg(x)g−1 (x)
}

g(x)

Aodd = −g−1 (x)
{

idx+Σ+χ

√
1 + χ2 +

√
1 + χ2dχ−χd

√
1 + χ2

}
g(x) .
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Next, we want to separate the kinetic term as the product of the time derivative of

light cone co-ordinates x± with the corresponding momentum operators p∓ (the symplectic

term). The momentum p+ does not have a contribution from Aodd , as only Aeven depends

on x−. Once we substitute A into the action, we easily get that6

p+ =− i
2

Str
(

πΣ−g(x)2
)

= G+π+−G−π−, (2.11)

where G± = 1
2

(
G

1
2
tt ±G

1
2
φφ

)
.

Gauge Fixing

Now we have all the equations needed to write the gauge-fixed Lagrangian. As was done

in [64], we first solve equation (2.11) using (2.5), in order to get π+ (P+,π−). We then solve the

Virasoro constraint (2.10) to get the unphysical field x− as a function of the physical fields.

In fact one gets the worldsheet momentum density x′−. Finally, one solves the constraint

(2.9) in order to get π−. The kinematic term of the Lagrangian thus obtained is not in

the right form, as it will lead to a complicated Poisson structure. By performing a field

redefinition, such that the final fields satisfy the canonical commutation relations, we get:

S =− 1
2π

ˆ
π

−π

dσdτ (Lkin−H ) , (2.12)

where

Lkin = pM ẋM− iStr(Σ+χχ̇) = pM ẋM + iη†
a η̇a + iθ †

a θ̇a, (2.13)

and xM being the physical bosonic degrees of freedom (and pM their conjugate momenta),

and ηa,θa are the fermionic ones. Before writing down the expression for the Hamiltonian

density H , a few comments are in order. We will be interested in the limit P+→ ∞, with

the effective coupling λ̃ = 4λ

P2
+

fixed, called the near plane-wave limit. In this limit we can

6The only contribution to p+ will come from the term Str
(

πA(2)
0

)
, as it will be the only term with

ẋ− = ∂τ x−, apart from the Virasoro constraints.
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expand the Hamiltonian in powers of P−1
+ ,

H = H2 +
1

P+
H4 + ....+

1
Pn−1

+
H2n + ..., (2.14)

where the term H2n in the Hamiltonian contains a product of 2n fields. The first two terms,

the quadratic and quartic Hamiltonians, were deduced in [64], and are7

H2 =
1
2

P2
M +

1
2

x2
M +

λ̃

2
x′2M + κ

√
λ̃

2
Str
(
Σ+χΩ̃χ

′t
Ω
)

+
1
2

Strχ2,

H4 = λ̃
(
y′2z2− z′2y2 + z′2z2− y′2y2)−

− λ̃

2
Str
(

1
2

χχ
′
χχ
′+ χ

2
χ
′2 +

1
4
(
χχ
′−χ

′
χ
)

Ω
(
χχ
′−χ

′
χ
)t

Ω + χΩ̃χ
′t
ΩχΩ̃χ

′t
Ω

)
+

λ̃

2
Str
((

z2− y2)
χ
′
χ
′+

1
2

x′MxN [ΣM,ΣN ]
(
χχ
′−χ

′
χ
)
−2xMxNΣMχ

′
ΣN χ

′
)

+iκ

√
λ̃

8
(xN pM)′Str

(
[ΣN ,ΣM]

(
Ω̃χ

t
Ωχ−χΩ̃χ

t
Ω
))

.

One last important quantity is the worldsheet momentum density x′−, which integrated

over σ will give the total worldsheet momentum:

pws =
ˆ

π

−π

dσx′− =− 1
P+

ˆ
π

−π

dσ

(
pMx′M−

i
2

Str
(
Σ+χχ

′)) .

The level-matching condition mentioned before becomes pws = 0.

Conserved Charges

Because of the invariance of the action under the PSU(2,2|4), one can determine the fol-

lowing conserved currents (in terms of Aα):

Jα =
√

λg(x,χ)
(

γ
αβ A(2)

β
− κ

2
ε

αβ

(
A(1)

β
−A(3)

β

))
g(x,χ)−1 ,

7Note that Ω, Ω̃ are the following matrices

Ω =
(

K 0
0 K

)
and Ω̃ =

(
K 0
0 −K

)
.
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and the corresponding conserved charges

Q =
1

2π

ˆ
π

−π

dσJτ .

By using the equations of motion for π, and also using Fα =
√

1 + χ2∂α χ−χ∂α

√
1 + χ2 (the

odd component of g−1 (χ)∂αg(χ)), we obtain the charges in the form8

Q =
ˆ

π

−π

dσ

2π
ΛUΛ

−1, (2.15)

where Λ was given above (2.3), and

U = g(χ)g(x)
(

π + i
κ

2

√
λg(x)Ω̃F t

σ Ω

)
g(x)−1 g(χ)−1 .

Combining the components of Q will give the conserved charges corresponding to ro-

tations, dilatations, supersymmetries, etc. To obtain any particular one, we need only to

multiply Q by a particular matrix M ∈ su(2,2|4) and take the supertrace:

QM = Str(QM ) . (2.16)

The charges Q live on the algebra psu(2,2|4), and we know from the generators of this

algebra that the trace of the product of two generators will be either zero (if the generators

are different) or proportional to the identity (if it is the same generator). This happens

because the generators are either Dirac matrices or Σ±. So taking the product of Q with

a particular matrix M of the algebra followed by the trace acts as a projection on the

direction of that matrix.

8The definition of Fσ allows us to write

A(1)
σ −A(3)

σ =−ig(x)Ω̃Ft
σ Ωg(x)−1 .
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2.3 Superstring on AdS5×S5: Superalgebra generators

This section will be devoted to determining the action of the supercharges from the string

action in AdS5× S5 on a lattice string, starting from the definition obtained above for the

generators QM .

An important property of the generators QM is that if the generator of a symmetry QM

is independent of x+, it Poisson commutes with the Hamiltonian. That happens because for

a symmetry generator in the light-cone gauge x+ = τ we have:

dQM

dτ
=

∂QM

∂τ
+{H,QM }= 0.

This means that the generators independent of x+ form an algebra that contains the Hamil-

tonian H as a central element.

The dependence of the charge Q on x± comes from the matrix Λ = e
i
2 x+Σ++ i

2 x−Σ− , and

consequently we can check the dependence of a charge QM on the light-cone variables x±

b y checking whether M commutes with Σ±. Also, using the definitions of kinematical vs

dynamical charges (according to their dependence on x−, [Σ−,Mkin] = 0), and the property

of odd/even M , we can separate the matrices M into four categories:

Λ
−1M odd

dyn Λ = e−
i
2 x−Σ−M odd

dyn ,

Λ
−1M odd

kin Λ = eix+Σ+M odd
kin ,

Λ
−1M even

dyn Λ = Λ
2M even

dyn ,

Λ
−1M even

kin Λ = M even
kin . (2.17)

This information tells us that only M odd
dyn and M even

kin will give rise to charges QM independent
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of x+.9 The matrices of these categories are of the form

M odd
dyn =



0 0 d1 0

0 0 0 d2

d3 0 0 0

0 d4 0 0


, M even

kin =



k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4


, (2.18)

where the di, ki are 2×2 matrices. The space generated by these matrices is the subalgebra

J ∈ psu(2,2|4) that leaves the Hamiltonian invariant, i.e., the charge QM produced by a

matrix M ∈J will commute with the Hamiltonian.

Note that we can write both the Hamiltonian and the constant P+ as some of these

conserved charges:

H =− i
2

Str(QΣ+) , P+ =
i
2

Str(QΣ−) . (2.19)

From the commutation relations of the subalgebra J , one can determine the Poisson

bracket of the corresponding Noether charges QM :

{QM ,QN }= (−1)π(M )π(N ) Str(Q [M ,N ])+C (M ,N ) . (2.20)

In the above expression M , N ∈J , π is the parity of the supermatrices, and [M ,N ] is the

graded commutator (the anti-commutator if both matrices are odd, and the commutator if

one or both of them is even). The first term of (2.20) states that the Poisson bracket of two

charges QM and QN gives a charge corresponding to the commutator [M ,N ]. The element

C (M ,N ) Poisson-commutes with all Noether charges QM , M ∈J , and will correspond

to the central extension.

9That is because

QM =
ˆ

dσ

2π
Str
(

ΛUΛ
−1M

)
=
ˆ

dσ

2π
Str
(

UΛ
−1M Λ

)
,

and if Λ−1M Λ does not depend on x+ then the charge will not depend on it. One should keep in mind that
the dependence on x± is only in Λ−1 and Λ.
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The Central Extension

The relation of this central extension with the level-matching constraint will be discussed

at a later time. We will now focus on the properties of the algebra J , in order to get an

expression for C (M ,N ).

We have seen before that the bosonic sector of psu(2,2|4) is given by su(2,2)⊕ su(4).

So the bosonic algebra generated by the matrices given in (2.18) will be generated only by

M even
kin , and will correspond to

Jeven = su(2)⊕ su(2)⊕ su(2)⊕ su(2)⊕R2 (2.21)

. The su(2)4 comes directly from separating the su(2,2) into two su(2) and the same to

su(4). The R2 corresponds to the fact that we can have a nonzero trace on each of the su(2),

but require an overall traceless su(2,2) and su(4). This is accomplished by the use of the

generators Σ±.

Including the fermionic sector we have the decomposition:

J = psu(2|2)⊕psu(2|2)⊕Σ+⊕Σ−. (2.22)

In the limit P+ infinite, this means that we have one less conserved quantity (the P+), which

implies that the corresponding generator Σ− won’t belong to the invariant subalgebra, and

we will have J = psu(2|2)⊕ psu(2|2)nR. This R direction corresponds to the central

element Σ+ and the corresponding charge, the light-cone Hamiltonian.10 The central charge

C (M ,N ) will be part of a centrally extended algebra where we include two extra central

directions to J , Jext = psu(2|2)⊕psu(2|2)nR3.

Finally we can separate the generators of each of the two psu(2|2) subalgebras in (2.22).

They correspond to keeping k1,k3,d1,d3 (psu(2|2)L) or keeping k2,k4,d2,d4 (psu(2|2)R) from

(2.18).

Our goal is to find the expression for the central charge. To do so, some properties have

10Note that this subalgebra J can also be written as J = su(2|2)⊕ su(2|2), where the Hamiltonian is a
central element to both subalgebras.
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to be taken into consideration. An important property of C (M ,N ) is that it vanishes if

M or N are bosonic (even). Also it is a bilinear (graded), anti-symmetric form on the

algebra J that Poisson commutes with all other charges QM , M ∈J . Together with the

Jacobi identity for the Lie brackets, we conclude it is a 2-cocycle.11 One final property is

the invariance under the adjoint action of the group Geven corresponding to the algebra Jeven.

The charge QM is invariant under the transformation (note that the action of the group

preserves the Z2-grading of J )

Q→ gQg−1 , M → gM g−1,

where g ∈ Geven. So the Poisson brackets of two charges also remains unchanged, and con-

sequently

C
(
gM1g−1,gM2g−1)= C (M1,M2) .

The most general expression for this central element, with such properties, can be found

in [66] to be

C (M1,M2) = Str
((

ρM1ρM t
2 +(−1)π(M1)π(M2)

ρM2ρM t
1

)
∆

)
,

where

∆ =−1
2



c3I2×2 0 0 0

0 c1I2×2 0 0

0 0 c4I2×2 0

0 0 0 c2I2×2


, ρ =



σ 0 0 0

0 σ 0 0

0 0 σ 0

0 0 0 σ


,

with σ =

 0 1

−1 0

. The coefficients ci, i = 1, ...,4 can depend on the physical fields and

they commute with any charge QM , M ∈J . Remember that the algebra J has two

identical subalgebras psu(2|2), with the generators given above. Then looking at ∆ ∈J ,

11Simple Lie algebras possess no nontrivial central extension. This is not the case of super Lie algebras. In
fact, for finite super Lie algebras, the cocycle vanishes if one of the elements is bosonic. See [83], page 101 ff.
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we see that the matrix blocks proportional to c3,c4 correspond to one of these algebras,

while the matrix blocks with c1,c2 correspond to the other. As they are identical, we can set

c1 = c3 ≡ c and c2 = c4. Also because we are dealing with the algebra psu(2|2), the following

conjugation property holds:

c1 + c∗2 = 0 ⇒ c2 =−c∗.

Commutation Relations

The easiest way to determine the commutation relations of the Noether charges is to choose

an explicit basis for the space of the charges QM , M ∈J . As was mentioned J has two

identical psu(2|2) subalgebras (Left and Right), whose extended (off-shell) algebra shares

the same central elements corresponding to the worldsheet light-cone Hamiltonian (already

in the original algebra), plus two other central charges. We will be focusing on just the

psu(2|2)R, and a possible basis can be found in section 3 of [66].

So for the centrally extended su(2|2) algebra, we have the bosonic (kinematical) gen-

erators Ra
b,L

α

β
, corresponding to the rotation generators of the bosonic subalgebra su(2)⊕

su(2), the fermionic (dynamical) supersymmetry generators Qα
a , Q†b

β
and 3 central charges

H, C, C†.12 Their commutation relations can be found by writing the bracket (2.20) in this

basis, and are given by (2.1).

The next step is determining the value of the central charges.

The Level-Matching Condition & the Central Charges

The central charges C, C† have zero eigenvalues on physical states, and so the algebra

on physical states is effectively su(2|2). But how is this related with the level-matching

condition?

The level matching constraint comes from requiring that the unphysical field x− is peri-

odic in σ , or equivalently having the worldsheet momentum vanish, pws = 0. But this cannot

be solved in the classical level, in fact it is the worldsheet momentum operator Pws that van-

12Note that (Qα
a )† = Q†a

α and the same relation holds to the central elements C and C†.
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ishes on physical states. So we will treat the variable pws as a non-trivial (non-vanishing)

variable, in the off-shell theory. Note that such an operator commutes with the Hamilto-

nian, as pws depends on the non-physical field x− and the Hamiltonian H depends only on

physical fields. In the same way, the central charges C,C† exist as quantum operators which

vanish when acting on physical states.

In order to determine the central charges, we will need to simplify the problem by using

a perturbative expansion. For the time being we will consider the light-cone momentum P+

to be finite, and set λ to be large. This allows us to have a perturbative expansion in powers

of ζ = 2πλ−1/2.13 But the central charges are expected to have a non-trivial expansion on

ζ , so the results obtained are not exact, and to bypass this problem another expansion is

used, in which we only determine the part of the central charges that are independent of

the fermionic fields.

Starting with a dynamical generator, one can conclude from (2.16) and (2.17) that it

will have the following structure

QM =
ˆ r

−r
dσeiαx−Ω(x, p, χ;ζ ) . (2.23)

In the expression above Ω is a local function of the transverse bosonic fields and of fermionic

fields, and α can take two values ±1
2 (one for Q and the other for its conjugate Q† ≡ Q̄). See

the appendix of [66] for explicit formulas. We then expand the function Ω in powers of ζ :

Ω(x, p, χ;ζ ) = Ω2 (x, p, χ)+ ζ Ω4 (x, p, χ)+ · · · .

As with the Hamiltonian, the subscript in the above expansion denotes the number of fields

in the product. The field x− present in the expression for the generator won’t be expanded.

The form of the central charges is completely fixed by their bosonic part, which is the

one that has a dependence on the level matching constraint. So to determine the bosonic

13Such an expansion is equivalent to the expansion done to the Hamiltonian in (2.14), because in the

former case we had considered both P+ and λ going to infinity, but with λ̃ = 4λ

P2
+

finite. This means that we

can change the expansion from powers of P−1
+ to powers of λ−1/2. Also with a redefinition of σ → σ

P+
2 we

get a Hamiltonian that only depends on the variable P+ on the limits of the integral in σ , r = πP+
2 .
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charges, we only need to keep the terms linear in fermions in QM (and keep the bosonic

terms up to the desired order in ζ ). We then determine the anti-commutators (or Poisson

brackets) and keep only the terms independent of fermions. We write the charge as

QM =
ˆ

dσeiαx−χ (B1 (x, p)+ ζ B3 (x, p)+ · · ·)+O
(
χ

3) , (2.24)

where we only kept the term linear in fermion fields, and kept all the bosonic terms of the

expansion (Bn (x, p) is the term with a product of n bosonic fields).

The Poisson brackets of two charges with α1 = α2 can now be determined. For example

{
Qα

a ,Qβ

b

}
∼ ε

αβ
εab

ˆ r

−r
dσe−ix−

(
x′−+

d
dσ

f (x, p)
)

,

where f (x, p) is a local function of the transverse fields (see appendix of [66] for details).

The result for
{

Q̄a
α , Q̄b

β

}
can be obtained by conjugation. Integrating this expression, we

get {
Qα

a ,Qβ

b

}
∼ ε

αβ
εab

ˆ r

−r
dσ

d
dσ

e−ix− = ε
αβ

εabe−ix−(−r)
(

e−i[x−(r)−x−(−r)]−1
)

.

We know that pws = x− (r)− x− (−r). We also impose the boundary condition x− (−r) = x0
−,

which is the zero mode of x−, conjugate to P+. Then:

{
Qα

a ,Qβ

b

}
∼ 1

ζ
ε

αβ
εabe−ix0

−
(
e−ipws−1

)
,{

Q̄a
α , Q̄b

β

}
∼ 1

ζ
ε

ab
εαβ eix0

−
(
eipws−1

)
,

and consequently, the central charges are c,c∗ with:

c =
1
ζ

e−ix0
−
(
e−ipws−1

)
. (2.25)

Some Comments

In the case of P+ infinite, the zero mode x0
− vanishes, but the same is not true for finite

light-cone momentum. This brings some problems, as for P+ finite, the transverse fields

don’t have to vanish at the string points, and the symmetry algebra is thus changed. It can
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be seen that the Poisson bracket of the Hamiltonian H with a dynamical charge is then

non-zero, which means that the extension to P+ finite (which is effectively the length of the

string) does not allow us to keep the psu(2,2|4) symmetry algebra.

At the quantum level, both pws and x0
− are promoted to operators P,X0

−, and the central

charges are

C =
1
ζ

e−iX0
−
(
e−iP−1

)
, (2.26)

and its conjugate C†. X0
− is the conjugate quantum operator of P+. If we consider a state

P+ |p+〉= p+ |p+〉, then a state eiαX0
− |p+〉 obeys

P+eiαX0
− |p+〉= (α + p+)eiαX0

− |p+〉 . (2.27)

Because P+ acts as the length of the string, the operator eiαX0
− will be the length changing

operator. The Hilbert space of the theory will be a direct sum, H =
⊕

p+
Hp+ , of spaces of

each of the eigenvalues of P+.

su(2|2) subsector and mode expansion

The explicit form of the charges QM was determined in [66] . The algebra J includes two

psu(2|2) subalgebras. We will be focusing on the psu(2|2)R.

The leading quadratic order of (2.24) can be read from the results in [66]. The fermionic

charges are, at leading order:

Qα
a = −1

2

ˆ
dσe−

i
2 x−
[
iθ α

(
2PY + iY

)
a +
(
2PZ− iZ

)α
η

†
a −θ

†αY ′a− iZ′αηa+

+ε
αβ

εab

(
iθβ

(
2PY + iY

)b +
(
2PZ− iZ

)
β

η
†b−θ

†
β
Y ′b− iZ′

β
η

b
)]

, (2.28)

Q̄a
α =

1
2

ˆ
dσe

i
2 x−
[
iθ †

α

(
2PY − iY

)a−
(
2PZ + iZ

)
α

η
a + θαY ′a− iZ′αη

†a+

+εαβ ε
ab
(

iθ †β
(
2PY − iY

)
b−
(
2PZ + iZ

)β
ηb + θ

βY ′b− iZ′β η
†
b

)]
(2.29)

= (Qα
a )† .

We want to restrict ourselves to the su(2|2) subsector of [55]. This corresponds to keeping

only the 2 complex co-ordinates Y a and the respective conjugate momenta Py. These will be
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seen to correspond, in the SYM side, to some bosonic excitations φ a, with a = 1,2. In terms

of the fermions we will be interested in only keeping θ α ,θ †
α , which will correspond to two

fermionic fields ψα ,ψ†α from SYM. On the Super Yang-Mills side, the vacuum of this sector

of the theory corresponds to a long string of Z bosonic fields, in direct correspondence to

the vacuum of the string defined by [5]

1√
JNJ/2

Tr
(
ZJ)↔ ∣∣0, p+〉 .

With these restrictions, the fermionic supercharges (2.28) and (2.29) become:

Sα
a = −1

2

ˆ
dσe−

i
2 x−
(

iθ α
(
2PY + iY

)
a− ε

αβ
εabθ

†
β
Y ′b
)

,

Qa
α =

1
2

ˆ
dσe

i
2 x−
(

iθ †
α

(
2PY − iY

)a + εαβ ε
ab

θ
βY ′b
)

.

Before continuing, let us notice that the co-ordinate x− (σ) obeys:

x− (σ) =
ˆ

σ

−r
dσ
′x
′
−
(
σ
′)+ x− (−r) =

ˆ
σ

−r
dσ
′
πws
(
σ
′)+ x0

−,

where x′− = πws (σ) is the worldsheet momentum density. The total worldsheet momentum

is given by pws =
´ r
−r dσπws (σ).

We now want to perform a mode expansion. To do so we will follow the notation of [64].

For the bosonic fields we have:

Ya =
1√
ω

(
Aa + B†

a
)

; Pa =
√

ω

4i

(
A†a−Ba) ;

Y a = Y a =
1√
ω

(
A†a + Ba) ; Pa = Pa = i

√
ω

4
(
Aa−B†

a
)
, (2.30)

where ω =
√

1 + 1
2 λ̃ ∂ 2

σ , and λ̃ is the effective coupling constant (light-cone gauge) in the

pp-wave limit λ̃ ≡ 4λ

P2
+

, kept finite when P+,λ → ∞. For the fermionic fields we have:

θ
α =

√
1
2

(
1 +

1
ω

)
cα ; θ

†
α =

√
1
2

(
1 +

1
ω

)
c†

α . (2.31)
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With these expansions, we get the following results:

iθ α
(
2PY + iY

)
a = −

√
ω + 1

2ω
cα

{√
ω

2
(
Aa−B†

a
)

+
1√
ω

(
Aa + B†

a
)}

,

θ
†
β
Y ′b =

√
ω + 1

2ω
c†

α

√
λ̃ ∂σ√
2ω

(
A†b + Bb

)
.

We will be keeping Y ≈ B†, dropping the oscillators A,A†. Then up to order O
(√

λ̃

)
,14

Qa
α =

1
4

ˆ
dσe

i
2 x−
(

c†
αBa +

√
2εαβ ε

abcβ

√
λ̃ ∂σ B†

b

)
. (2.32)

The same can be done for the supercharge S, which then becomes:

Sα
a =

1
4

ˆ
dσe−

i
2 x−
(

cαB†
a +
√

2ε
αβ

εabc†
β

√
λ̃ ∂σ Bb

)
. (2.33)

For a comparison with the Super Yang-Mills supercharges, we need to discretize the

above results. To do so recall that r = P+/2, and
´ r
−r dσ = P+. Then the lattice version of Q

is:

Qa
α =

1
4

P+

∑
`=1

eix0
−/2

(
`

∏
k=0

e
i
2 π(k)

){
c†

α (`)Ba (`)+
√

2εαβ ε
abcβ (`)

√
λ̃

(
B†

b (`)−B†
b (`−1)

)}
=

1
4

P+

∑
`=1

e
i
2 x0
−e

i
2 p(`)

{
c†

α (`)Ba (`)+
√

2εαβ ε
ab
√

λ̃

(
B†

b (`)−B†
b (`−1)

)
cβ (`)

}
, (2.34)

where p(`) = ∑
`
k=1 π (k).

To continue, we need to write what p(`) does to an excitation:

e
i
2 p(`)

χ (`k)e−
i
2 p(`) =

 χ (`k) `k < `

χ (`k + 1) `k > `
.

14Considering ω =
√

1 + x, with x = λ̃ ∂ 2, then we have the following:√
ω + 1

2ω
= 1− x

8
+O

(
x2
)

,

1√
ω

= 1− x
4

+O
(

x2
)

,

2−ω

2
√

ω
=

1
2
− 3x

8
+O

(
x2
)

.
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By performing the following change of variables, c†
α (`)→ e−

i
2 x0
−e−

i
2 p(`)c†

α (`), the charge be-

comes:

Qa
α =

1
4

P+

∑
`=1

{
c†

α (`)Ba (`)+
√

2εαβ ε
ab
√

λ̃e
i
2 x0
−e

i
2 p(`)cβ (`)e

i
2 p(`)e

i
2 x0
−
(

B†
b (`)−B†

b (`−1)
)}

=
1
4

P+

∑
`=1

{
c†

α (`)Ba (`)+
√

2εαβ ε
ab
√

λ̃eix0
−
(

B†
b (`)−B†

b (`−1)
)

eip(`)cβ (`)
}

. (2.35)

The other supercharge Sα
a can also be determined to be:

Sα
a =

1
4

P+

∑
`=1

e−
i
2 x0
−e−

i
2 p(`)

(
cα (`)e

i
2 p(`)e

i
2 x0
−B†

a (`)

+
√

2ε
αβ

εabe−
i
2 x0
−e−

i
2 p(`)c†

β
(`)
√

λ̃

(
Bb (`)−Bb (`−1)

))
=

1
4

P+

∑
`=1

(
B†

a (`)cα (`)+
√

2ε
αβ

εab

√
λ̃e−ix0

−e−ip(`)c†
β

(`)
(

Bb (`)−Bb (`−1)
))

. (2.36)

Recall that in the above expressions x0
− plays the part of the length changing operator, as it

is the conjugate variable to P+, the total light-cone momentum, which is in its turn related

to the width of the worldsheet cylinder. For closed strings the level matching condition

states that the total worldsheet momentum pws has to vanish (on-shell). As was mentioned

before, if we relax this condition (off-shell) and take P+→ ∞, then we obtain the centrally

extended algebra with extra central charges C,C∗ added to the Hamiltonian H (the same as

the generators of translations P and boosts K).

One other way of comparing results with the SYM side is by writing the supercharges

in first quantized framework. Choosing again a state such that:

|χ1 · · ·χK ;P+〉=
P+

∑
{mi}=0

eip1m1+···+ipKmK χ1 (m1) · · ·χK (mK) |0;P+〉 ,

where χi (mi) = bmi
z χib−mi

z , with bz being the oscillators equivalent to the field Z. Then

Qa
α |χ1 · · ·χK ;P+〉 =

1
4

K

∑
k=1

(
k−1

∏
m=1

(−1)F(m)

){
δ

(
χk,B

†
b

)
δ

a
b

∣∣χ1 · · ·c†
α (k) · · ·χK ;P+

〉
+

+
√

2 λ̃ δ

(
χk,c

†
β

)
ε

ab
εαβ

(
K

∏
l=k+1

eipl −
K

∏
l=k

eipl

)∣∣∣χ1 · · ·B†
b (k) · · ·χK ;P+ + 1

〉}
. (2.37)
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Doing the same calculation for the S generator, one gets:

Sα
a |χ1 · · ·χK ;P+〉 =

1
4

K

∑
k=1

(
k−1

∏
m=1

(−1)F(m)

){
δ

(
χk,c

†
β

)
δ

α

β
χ1 (m1) · · ·

(
B†

a (k)
)
· · ·χK (mK) |0;P+〉+

+
√

2 λ̃ δ

(
χk,B

†
b

)
ε

αβ
εab

(
K

∏
l=k+1

e−ipl −
K

∏
l=k

e−ipl

)∣∣∣χ1 · · ·c†
β

(k) · · ·χK ;P+−1
〉}

. (2.38)

The structure of these supercharges will be compared to the results obtained on the SYM

side of the correspondence, present in Section 2.5, in particular expressions (2.49) and

(2.50). We will be able to see that the actions of the supercharges Q and S, have a similar

structure at one-loop, on both sides of the correspondence. But while the results presented

in this section are perturbative in λ̃ (BMN limit), the results presented in Section 2.5 are

perturbative in the ’t Hooft coupling λ , so one cannot perform a direct comparison.

In Section A.1 one can find a summary of the results of [65] on an oscillator formalism

for the superalgebra psu(2|2).

2.4 N = 4 SYM on R×S3: A review

In this first section, we summarize the method of finding the supercharges of su(2,2|4) up

to 1-loop, as can be found in [75,73].15

The action for N = 4 SYM in four dimensions can be obtained from dimensional reduc-

tion of the N = 1 10 dimensional SYM on a 6−torus. Using the notation where the D = 10

Dirac matrices split into SO(1,3)×SO(6), the action becomes:

S =
2

g2
Y M

ˆ
d4x
√
|g|Tr

{
−1

4
FµνFµν −

1
2

Dµ
φiDµφi−

R

12
φ

2
i +

1
4

[φi,φ j]
2−2iλ †

Aσ
µDµλ

A+

+(ρi)
AB

λ
†
A iσ2 [φi,λ

∗
B ]−

(
ρ

†
i

)
AB

(
λ

A)T
iσ2 [

φ
i,λ B]} .

We have a vector field Aµ , six real scalars φi and four Weyl spinors λαA (all in the adjoint

representation of the gauge group). The six scalars transform in a 6 of the R−symmetry

group SO(6)≡ SU (4)R, while the spinors transform in a 4. Co-ordinate indices are xµ = (t,xa),

15We will be following the notation of [73], in which a different basis for the γ−matrices is used. The same
procedure could be done by following [75] choice of basis.
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µ = 0, ...,3, with the spacial co-ordinates having (curved) indices a = 1,2,3. The metric is

given by

ds2 =−dt2 + R2 (dθ
2 + sin2

θdψ
2 + sin2

θ sin2
ψdχ

2) ,
where R is the radius of S3, and R = 6

R2 is the Ricci scalar.

Some Notation

From this point on we will be considering σ µ ≡ (1,σa) and σ
µ = (−1,σa), where the σa

are the usual Pauli matrices pulled back to S3. Also, ρAB
i ≡ σAB

i are the Clebsch-Gordan

coefficients of SU (4) that relate two 4 irreducible representations (irreps) with one 6. These

coefficients have several properties, in particular ρAB
i = 1

2 εABCD
(

ρ
†
i

)
CD

, and allow us to write

φi =
1
2

ρ
AB
i ΦAB =

1
2

(
ρ

†
i

)
AB

Φ
AB.

Finally, one comment about the Weyl spinors. We know that in D = 10 we start from

a 32-component complex spinor, and by imposing a Majorana-Weyl condition, obtain a 16-

component (after fixing the κ-symmetry) spinor L. This spinor can be written in terms of

Weyl spinors as

L =

 λ αA

i
(
σ2
)αβ

λ ∗
βA

 ,

with α = 1,2 and A = 1,2,3,4. The λ αA are four 2-component Weyl spinors.16

SUSY transformations and corresponding charges

The SUSY transformations are given by:

δηAµ = 2i
(

λ
†
Aσµη

A−η
†
Aσµλ

A
)

,

δηΦ
AB = 2i

(
−λ

†
E iσ2

ε
ABEF

η
∗
F −

(
λ

A)T
iσ2

η
B−
(
λ

B)T
iσ2

η
A
)

,

δηλ
A =

1
2

Fµνσ
µν

η
A + 2DµΦ

AB
σ

µ iσ2
η
∗
B + Φ

AB
σ

µ iσ2
∇µη

∗
B−2i

[
Φ

AC,ΦCB
]

η
B.

16 In the basis used in [75], the separation of L into L = (L+ L−)T becomes a separation into SU (2)L×SU (2)R,
for which one uses dotted/undotted indices α̇,α. In the basis used in [73] this separation is not obvious.
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Our objective is to build the Noether charge Qη . To do so we need to take into con-

sideration the pairs of canonical variables. From the action, we have the following (anti-

)commutation relations:

[
F0µ ,Aν

]
= δ

ν
µ ,

[D0φi,φ j] = δi j ⇒
[
D0ΦAB,ΦCD]=

1
2
(
δ

D
A δ

C
B −δ

C
A δ

D
B
)
,{

−i
(

λ
†
Aσ

0
)

α

,λ Bβ

}
= δ

β

α δ
B
A .

Also one has to take into consideration that ηαA are Killing spinors, which in R× S3

obey the equation ∇µη =± i
2R σµη , and so will give us two solutions η±. We will then obtain

two charges Q≡ QL and Q≡ QR, corresponding to η+ and η− respectively.

The fermionic Noether charges are thus17

Qη =
2

g2
Y M

ˆ
S3

dΩTr
{
−2iλ †

Aσ
0
δηλ

A−2i
(
λ

A)T
σ

0
δηλ

∗
A

}
.

For the purposes of this paper, we will simplify the calculations by setting the vector

field to zero (we will be looking only at the sector of scalars and spinors). This truncation

is consistent with the one-loop calculation we will be performing.

The non-vector sector of the charges Qη is given by:

Qη = − 2
g2

Y M

ˆ
S3

dΩTr
{

2iλ †
A

(
2∇aΦ

AB
σ

aiσ2
η
∗
B + Φ

AB
σ

µ iσ2
∇µ η

∗
B−2i

[
Φ

AC,ΦCB
]

η
B)+

+2iλ †
A

(
2Π

AB
σ

0iσ2
η
∗
B
)

+ 2i
(
λ

A)T
(
−2ΠAB

(
σ

0)T
iσ2

η
B
)

+

+2i
(
λ

A)T
(
−2∇aΦAB (σ

a)T iσ2
η

B−ΦAB (σ
µ)T iσ2

∇µ η
B−2i

[
ΦAC,ΦCB]

η
∗
B

)}
, (2.39)

where ΠAB is the momentum conjugate to the bosonic field ΦAB.

We now have the an expression for the supercharges. The next step is to evaluate it on

R×S3: we expand the four-dimensional fields in terms of the spherical harmonics of S3, and

then perform the integration of the sphere.

17For comparison purposes, one could also write this charge, in the SU (2)L×SU (2)R formalism, as

Qε =
2

g2
Y M

ˆ
s3

Tr
{

iλ
α̇

A σ
0
α̇α δε λ

αA + iλ
A
α

(
σ

0
)αα̇

δε λα̇A

}
.
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Harmonic Expansion on S3 and the Plane-Wave Limit

Each field, defined by its spin, will have a decomposition in spherical harmonics on S3. These

spherical harmonics can be labeled by the irreducible representations (irreps) (mL,mR) of

the isometry group SO(4)≡ SU (2)L⊗SU (2)R. As such, we have:

• Spin 0: We have scalar spherical harmonics Y k I
(0), in the irrep (k + 1,k + 1). Their mass

will be (k + 1)/R.

• Spin 1
2 : In this case we’ll use spinor spherical harmonics: Y k I +

(1/2), in the irrep (k + 2,k + 1);

Y k I−
(1/2), in the irrep (k + 1,k + 2). Both have mass (k + 3/2)/R.

As usual, k labels different irreducible representations, and I enumerates the elements of a

particular irrep (I = 1 · · ·d), where d is the dimension of the irreducible representation.

The expansions of the fields in the corresponding harmonics are:

φi (xµ) =
∞

∑
k=0

(k+1)2

∑
I=1

φ
k I
i (t)Y k I

(0) (xa) ,

λ
A
α (xµ) =

∞

∑
k=0

(k+1)(k+2)

∑
I=1

∑
±

λ
A,k I± (t)Y k I±

(1/2)α
(xa) .

Note that spinor spherical harmonics are 2−dimensional commuting Weyl spinors. The

Killing spinor ηA (parameter of the superconformal transformations) will have the same

expansion as λ A, with coefficients ηA,k I± (t).

Plane-Wave Limit [74, 73]

We want to truncate the infinite tower of Kaluza-Klein modes to the lowest supermultiplet.

One can then climb up the various states (with increasing masses) by acting with the two

supercharges QL =
(
2,1,4

)
and QR = (1,2,4), where the numbers correspond to representa-

tions of SU (2)L⊗SU (2)R⊗SU (4). Focusing on the zero modes of the Kaluza-Klein tower we

find 6 scalar spherical harmonics, constant on S3, and 4 lowest spinor spherical harmonics

Sα̂±
α , in irrep (2,1)⊕ (1,2) of SU (2)L⊗SU (2)R (the hatted index refers to the degeneracy of

the solution), solutions to the killing spinor equation for a Weyl spinor.
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The fields with only these zero modes become:

φi (xµ) = Xi (t) ,

λ
A
α (xµ) =

2

∑
α̂=1

(
θ

A+
α̂

(t)Sα̂ +
α (xa)+ θ

A−
α̂

(t)Sα̂−
α (xa)

)
.

If we restrict ourselves to half of the supercharges QL, then these together with the

bosonic symmetry generators will generate the subalgebra su(2|4). The restriction to the

QL charges leads us to consider only the zero modes that are SU (2)R singlets. Then we keep

all the lowest scalar harmonics, and only two spinor harmonics Sα̂ +
α (instead of the 4 if we

included Sα̂−
α ). The conjugate momenta πi will have the same expansion as its conjugate

field φi, that is πi (xµ) = Πi (t).

Now we can proceed to the actual integration on the supercharges. Going back to (2.39),

we find that:18

QL = Qη
+ = Tr

{(
1
R

XAB + 2iΠAB
)

θ
+†
A iσ2

η
+∗
B −

√
2
[
XAC,XCB]

θ
+A
α̂

ε
α̂β̂

η
+∗
Bβ̂

+
(

1
R

XAB−2iΠAB

)(
θ

+A)T
iσ2

η
+B−

√
2
[
XAC,XCB

]
θ

+†
Aα̂

ε
α̂β̂

η
+B
β̂

}
= Q+η + S+η

∗.

The final expression for the supercharges is 19

Qα̂
A = Tr

{
−θ

Bα̂

(
1
R

XBA−2iΠBA

)
−
√

2ε
β̂ α̂

θ
†
Bβ̂

[
XBC,XCA

]}
,

SAα̂ = Tr
{

θ
†
Bβ̂

(
1
R

XBA + 2iΠBA
)
−
√

2
[
XBC,XCA]

θ
B
β̂

}
ε

β̂ α̂ . (2.40)

18In order to obtain the supercharges integrated over S3, we used the properties of the spherical harmonics,
as well as other properties of the Pauli matrices. These properties can be found in [75, 74, 73], and include

σ
µ iσ2σT

µ = (σ
µ )T iσ2σµ = −2iσ2. In the same references one can find the expansion of spin 1 vector fields.

We also used an identification between the radius of the sphere R and the Yang-Mills coupling constant gY M

such that 4π2R3

g2
Y M
→ 1. This prefactor shows up when obtaining the action of the plane-wave matrix theory

action from N = 4 SYM action, and would also appear in the charges.

19Note that in our choice of basis the relation S = Q† is not manifest.
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2.5 The su(2|3) subsector and its restriction to the su(2|2)

We’ll continue by studying the sector su(2|3), as in [67]. For that we reduce our fields as

follows:

θ
α ≡ θ

4α̂ , φ
a ≡ Xa4, α = 1,2; a = 1,2,3.

By construction we have φ a ≡ φa, and πa = Π4a, as well as XBC = 1
2 εBCADXAD. The super-

charges restricted to this sector can then be written as:

Qα
a = Tr

{
−θ

4α̂

(
1
R

X4a−2iΠ4a

)
−
√

2θ
†
4β̂

ε
β̂ α̂
[
X4C,XCa

]}
= Tr

{
θ

α

(
1
R

φ a + 2iπa

)
−
√

2θ
†
β

ε
αβ

εabc

[
φ

c,φ b
]}

; (2.41)

Saα = Tr
{

θ
†
4β̂

(
1
R

X4a + 2iΠ4a
)
−
√

2
[
X4C,XCa]

θ
4
β̂

}
ε

β̂ α̂

= Tr
{

θ
†
β

(
1
R

φ
a−2iπa

)
−
√

2ε
abc [

φ c,φ b
]

θ
γ
εγβ

}
ε

βα . (2.42)

In order to continue, we will need to rewrite the fields in terms of creation/annihilation

operators. First identify 1
R = m

6 , i.e. exchange the parameter R by a mass parameter m. [73]

Then consider the expansion of the six scalars/momenta Xi, Πi: ai =
√

3
m

(
iΠi + m

6 Xi
)
,

a†
i =

√
3
m

(
−iΠi + m

6 Xi
)
,

⇒

 Xi =
√

3
m

(
ai + a†

i

)
,

Πi = 1
2i

√m
3

(
ai−a†

i

)
.

The bosons XAB are a combination of two real scalar fields such that Xa4 = 1
2 (Xa + iXa+3) , a =

1,2,3. If we now define the creation/annihilation operators as aa ≡ aa + iaa+3 and ba† =

aa† + iaa+3†, with a = 1,2,3, we then have the following expansions for our (complex) fields:

φ
a ≡ Xa4 =

√
3
m

(
aa + b†a) ; πa ≡Π4a ==

1
4i

√
m
3
(
a†

a−ba
)
, (2.43)

with equivalent expressions for fields φ a and π
a. Introducing also fermionic creation opera-
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tors, the fermions become

θ
†α = cα = ε

αβ cβ ; θ
α = c†α . (2.44)

We will be interested in action of the charges on the subspace of states that will only have

excitations of c† and b†, so we will drop the oscillators a,a† in the bosonic fields. We find:

Qα
a = Tr

{√
m
3

c†αba−
3
√

2
m

ε
αβ

εabc

[
b†c,b†b

]
cβ

}
,

Sa
α = Tr

{
−
√

m
3

b†acα −
3
√

2
m

εαβ ε
abcc†β [bc,bb]

}
. (2.45)

As expected, these results are similar with the ones in [74], up to a change of basis for the

gamma matrices.

The su(2|2) subsector: vacuum and excitations

We shall now focus on states that transform in the su(2|3) sector and are single trace (gauge

invariant) operators of the fields (3 bosons and 2 fermions). This spin-chain arises from the

large N−limit of the gauge theory. In this sector the action of the algebra generators can

be found in [67]. Consider now the vacuum as a long string of Z ≡ φ 3 fields. In oscillator

notation, we have Z = b3†, and the vacuum state can be written as:

|0,J〉 ≡
∣∣ZJ〉≡ 1√

JNJ/2
Tr
(
b3†J) |0〉 .

A generalization of this vacuum consists in an infinitely long string of Z fields (the asymptotic

regime, J→∞), as in [55]. The excitations are now the other fields of the su(2|3) algebra, χ ∈{
ψ1,ψ2|φ 1,φ 2

}
, which corresponds to the su(2|2) subsector of the algebra. The excitations

can move through the chain on Z′s with some momentum p. Thus, in momentum space we

can write

χ =
N

∑
nk=1

eipknk χ (nk) =
J

∑
nk=1

eipknk χk ≡ χ (pk) ,

where n denotes the position of the impurity/excitation χ on the vacuum string.
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A general state with K impurities can then be written as:

|χ1, ...χK ;J〉= ∑
n1,...,nK=1

eip1n1+···+ipKnK |Z · · ·Zχ1Z · · ·χ2 · · ·χK ...Z〉 .

For an asymptotic state ( J → ∞) we consider the dilute gas approximation, where the

positions n1, · · · ,nk of the impurities obey n1� n2� ·· · � nK .

We should note that on-shell the physical states are cyclic (property of the trace), and

so we must have ∑
K
k=1 pk = 0.

Now that we defined the states that the supercharges will be acting on, we can determine

their action. The first step will be to check what the charges do to just one excitation on

the vacuum. Then one can generalize to multi-excitation states of the su(2|2) subsector of

su(2|3). Once we have the action of the charges on a multi-excitation state, we can determine

the commutator of two supercharges, as a check of our results.

In this subsector the charges (2.45) become

Qα
a =

√
m
3

Tr

ψ
α ∂

∂φ a −

(√
3
m

)3√
2εabε

αβ

[
Z,φ b

]
∂

∂ψβ

 ,

Sa
α =

√
m
3

Tr

−φ
a ∂

∂ψα
−

(√
3
m

)3√
2ε

ab
εαβ ψ

β

[
∂

∂Z
,

∂

∂φ b

] , (2.46)

where we chose a coherent state basis, such that

c†α → ψ
α ; cα →

∂

∂ψα
;

b†a → φ
a ; ba→

∂

∂φ a .

For a = 3, we have the identification φ 3 ≡ Z. The factor
√m

3 will appear as an overall factor

in every charge calculated, and will be dropped, as we know that the quadratic terms come

from the free theory gY M = 0.

We now proceed to determine the action of the supercharge Q (and equivalently S) on

a single excitation state |χ;J〉= ∑n eipn
∣∣Zn−1χZJ−n+1

〉
. If the excitation is bosonic, χ` = φ `,
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then

Qα
a |χ;J〉= ∑

n
eipn

δ
`
a

∣∣Zn−1
ψ

α (n)ZJ−n+1;J
〉
,

while if the excitation is fermionic, χβ = ψβ , we have

Qβ
a |χ;J〉 = −

(√
3
m

)3√
2εabε

αβ

√
J + 1

J
N1/2

∣∣∣Zn−1
[
Z,φ b

]
ZJ−n+1;J + 1

〉

= −

(√
3
m

)3√
2εabε

αβ

√
J + 1

J
N1/2 ∣∣Zn

φ
b (n + 1)ZJ−n+1;J + 1

〉
+

+

(√
3
m

)3√
2εabε

αβ

√
J + 1

J
N1/2 ∣∣Zn−1

φ
b (n)ZJ−n+2;J + 1

〉

≈ −

(√
3
m

)3√
2εabε

αβ
∑
n

eipn (e−ip−1
)

N1/2 ∣∣Zn−1
φ

b (n)ZJ−n+2;J + 1
〉

.

It can be seen from the expression above that the insertion of a Z field before the exci-

tation changes its phase by e−ip, while the insertion after the excitation leaves that phase

untouched. This is a property of the asymptotic state, for which an infinite number of Z

fields exist after the (last) excitation. This was seen in [55] as being equivalent to “opening”

the trace. In the above expression we also kept only the first order in 1
J .

From the results shown above, we can easily determine the generalization to a multi-

excitation state. First, rewrite the state as

|χ;J〉 ≡ |χ1...χK ;J〉= ∑
{li}

eip1l1+...+ipK lK χ
†
1 χ

†
2 · · ·χ

†
K |0;J〉 . (2.47)

The action of one charge on such state is (zeroth order in 1
J ):

Qα
a |χ1...χK ;J〉 =

K

∑
k=1

∑
{li}

eip1l1+...+ipK lK

(
k−1

∏
m=1

(−1)F(m)

)
χ

†
1 χ

†
2 · · ·

(
Qα

a χ
†
k

)
· · ·χ†

K |0;J〉

=
K

∑
k=1

∑
{li}

eip1l1+...+ipK lK

(
k−1

∏
m=1

(−1)F(m)

){
δ

(
χ

†
k ,φ b

)
δ

b
a χ

†
1 χ

†
2 · · ·ψ

α (lk) · · ·χ†
K |0;J〉−

−
√

2N
M3 δ

(
χ

†
k ,ψβ

)( K

∏
m=k+1

e−ipm

)(
e−ipk −1

)
εabε

αβ
χ

†
1 χ

†
2 · · ·φ

b (lk) · · ·χ†
K |0;J + 1〉

}
.

(2.48)
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and similarly for the S charge (noticing that the action of S on a bosonic excitation returns

an extra factor of N). In here δ

(
χ

†
k ,φ b

)
means that the excitation χ (lk) is bosonic φ b, while

in δ

(
χ

†
k ,ψβ

)
the excitation χ (lk) is fermionic ψβ . The factor (−1)F(m) is equal to 1 if χm

is bosonic and −1 if χm is fermionic. Finally we defined M =
√m

3 . When χk is a fermionic

excitation, one gets the expected factor of
(
e−ipk −1

)
, which already showed up in the single

excitation case, but one also gets an extra factor of ∏
K
m=k+1 e−ipm . This last factor can also

be explained by the insertion of the Z field. In fact, we saw that in the single excitation case

Z changed the momentum when inserted before the excitation on the chain of fields. But

now the field Z gets inserted before all of the excitations χm with m > k, hence the change

of momenta of all these excitations.

The results of the action of Q and S on a multi-excitation state will be summarized next

using a non local notation (see also [56]).

Twisted vs. non-local notations

The supercharges Q and S acting on a general state |χ;J〉 can be written in a non-local

notation:

Qα
a |χ;J〉 =

K

∑
k=1

{
akδ

b
a δ

(
χ

†
k ,φ b

)
|χ1 · · ·ψα · · ·χK ;J〉+

+bkεabε
αβ

δ

(
χ

†
k ,ψβ

)∣∣χ1 · · ·φ b · · ·χK ;J + 1
〉}

, (2.49)

Sa
α |χ;J〉 =

K

∑
k=1

{
ckε

ab
εαβ δ

(
χ

†
k ,φ b

)∣∣∣χ1 · · ·ψβ · · ·χK ;J−1
〉

+

+dkδ
β

α δ

(
χ

†
k ,ψβ

)
|χ1 · · ·φ a · · ·χK ;J〉

}
, (2.50)

where the coefficients are given by

ak =
k−1

∏
m=1

(−1)F(m) ,

bk =
√

2N
M3

[
k−1

∏
m=1

(−1)F(m)

](
1− e−ipk

)[ K

∏
m=k+1

e−ipm

]
=
√

2N
M3 e−iP (eipk −1

)[k−1

∏
m=1

(−1)F(m) eipm

]
,

ck =
√

2N
M3

[
k−1

∏
m=1

(−1)F(m)

](
eipk −1

)[ K

∏
m=k+1

eipm

]
=
√

2N
M3 eiP (1− e−ipk

)[k−1

∏
m=1

(−1)F(m) e−ipm

]
,

dk = −
k−1

∏
m=1

(−1)F(m) . (2.51)
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There is one other notation, introduced by Beisert in [56], called the twisted notation.

In this local notation we have

Qα
a,k

∣∣· · ·φ b
k · · ·

〉
= a

′
kδ

b
a

∣∣· · ·Y +
ψ

α
k · · ·

〉
,

Qα
a,k

∣∣∣· · ·ψβ

k · · ·
〉

= b′kε
αβ

εab
∣∣· · ·Z +Y −

φ
b
k · · ·

〉
, (2.52)

Sa
α,k

∣∣· · ·φ b
k · · ·

〉
= c′kε

ab
εαβ

∣∣∣· · ·Z −Y +
ψ

β

k · · ·
〉

,

Sa
α,k

∣∣∣· · ·ψβ

k · · ·
〉

= d′kδ
β

α

∣∣· · ·Y −
φ

a
k · · ·

〉
.

We notice the presence of the markers Z ±,Y ±. These markers have a simple explanation,

up to one loop. The marker Y ± marks the position on the string of fields (the state) where a

fermion field was inserted (Y +) or removed (Y −). In the twisted notation we are only given

the action of the supercharge on the field k of the string. But in order for a supercharge to

act on such field it will have to pass by the previous ones. If these are bosonic fields nothing

happens, but if they are fermionic, a minus sign will appear (for each fermionic fields it

passes). Thus, it is important to know where the supercharge acted, which is done by the

marker. The marker is shifted around as follows:

∣∣· · ·χkY
± · · ·

〉
= (ξk)

±1 ∣∣· · ·Y ±
χk · · ·

〉
,

where

ξk = (−1)F(k) =

 1 if χk bosonic

−1 if χk fermionic
. (2.53)

The marker Z ± marks a position where an extra Z field was inserted in the string.

This changes the length of the vacuum spin chain, reflecting a change in the momenta of

the excitation fields. But this change in momenta only affects the excitation fields after the

position of the marker. The marker has the property

∣∣· · ·χkZ
± · · ·

〉
=

x±k
x∓k

∣∣· · ·Z ±
χk · · ·

〉
, where

x±k
x∓k

= e±ipk , (2.54)
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with pk being the momenta of the excitation χk, as before.

In summary, the twisted notation is a local notation, since it only provides the action of

the supercharge on the excitation field χk, plus a set of markers that allow us to rewrite it

in a non-local notation, as found in (2.49, 2.50). We can go from the twisted notation to the

non-local one by removing the markers from the first, i.e., shifting them so that they will

be at the right (or left) of all the excitation fields.

In the local twisted notation we have20

a′k = −d′k = 1 , b′k =
√

2N
M3

(
1− e−ipk

)
, c′k =−

√
2N

M3

(
1− eipk

)
.

Comparison with Beisert at 1-loop

One can find the all-loop version of these coefficients in [56], for both the non-local and the

twisted notation. In fact, we can expand the (non-local) coefficients given in that reference

to order O (g), and compare them to our results. These coefficients are:

ak = γk

k−1

∏
j=1

(−1)F( j) ,

bk = g
α

γk

(
1− eipk

) k−1

∏
j=1

(
eipk (−1)F( j)

)
,

ck = i
γk

αx+
k

k−1

∏
j=1

(
e−ipk (−1)F( j)

)
,

dk = g
x+

k
iγk

(
1− e−ipk

) k−1

∏
j=1

(−1)F( j) .

We used the identifications (2.53) and (2.54) into the transcribed coefficients, and also made

a rescaling of the parameter γk→
√

gγk. The expansion in g is hidden in the dependence of

20The coupling constant M6 =
(m

3
)3

is related to the Yang-Mills coupling constant gY M in the following
way

1
M6 =

g2
Y M

32π2 .

This relation comes from matching the prefactor of the reduced SYM action with the prefactor of the matrix
model action. In fact we had m = 6

R , where R was the radius of S3. Taking the radius small corresponds to
m� 1 and consequently gY M � 1.
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x+,x− on the coupling constant:

x+ +
1

x+ − x−− 1
x−

=
i
g
. (2.55)

This last equation, together with (2.54), allows us to solve for x+ (g):

x+ = i
1 +
√

1 + 16g2 sin2 (p/2)

2g(1− e−ip)
.

Then by expanding this expression up to order O (g), we obtain exact agreement with

(2.51), as long as we identify γk = (−1)F(k) and α = e−iP. Note that the relation between the

normalized ’t Hooft coupling g and the Yang-Mills coupling constant gY M is g = gY M
4π

√
Nc,

from the gauge group SU (Nc).

The other charges that we are interested in determining are the Hamiltonian H and the

central charges of the extended algebra P,K. These charges arise from commutation relations

between the supercharges, which will be determined next.

Commutation Relations

At this moment we have calculated only the supercharges of the full extended algebra

su(2|2), up to O (g). We are interested in having the complete set of charges at this order,

which comprises also the rotations generators L,R, the dilatation operator H, and also the

central charges of the extended algebra P,K (bosonic generators of momentum and boosts,

which have zero eigenvalues when applied to physical states). All of these generators can be

obtained to O (g) from the commutation relations of the supercharges.

The central charges of the extended algebra receive no loop corrections , and as such,

can be obtained exactly by the anti-commutation relations {Q,Q} ∼ P and {S,S} ∼ K, by

knowing the zeroth order of the supercharges. The other generators will be obtained from

the last anti-commutator {Q,S}∝ R+L+H, but while the zeroth order supercharges will be

enough to determine rotation generators L and R, the central charge H will only be known

correctly up to O (g), as we’ll see below.

In the anti-commutator of any two supercharges the only terms that will not vanish
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are the ones where the two supercharges are applied to the same excitation. The anti-

commutator of two Q charges is:

{
Qβ

b ,Qα
a

}
|χ1...χK ;J〉 =

K

∑
k=1

∣∣∣χ1 · · ·
({

Qβ

b ,Qα
a

}
χk

)
· · ·χK ;J

〉
=
√

2N
M3

K

∑
k=1

[(
1− e−ipk

) K

∏
l=k+1

e−ipl

]
|χ1...χK ;J + 1〉

=
√

2N
M3

(
1− e−i∑

K
k=1 pk

)
|χ1...χK ;J + 1〉 .

This is just the action of the central charge {Q,Q} ∝ P of the extended algebra on a multi-

excitation state. The action of the other central charge of the extended algebra is obtained

from {S,S} ∝ K:

{
Sb

β
,Sa

α

}
|χ1...χK ;J〉=

√
2N

M3

(
1− ei∑

K
k=1 pk

)
|χ1...χK ;J−1〉 .

We know from [56] that there is an outer automorphism relating H and the central

charges of the extended algebra P,K, which corresponds to an sl(2) algebra. Closure of this

algebra on the original commutation relations of the supercharges requires that

H2−PK =
1
4
. (2.56)

This relation should only hold when we consider the all loop H, and not only when we

consider the first two orders. Using non-local notation, we find that the product PK is given

by

PK =−2N
M6

(
e−i∑

K
k=1 pk −1

)(
e+i∑

K
k=1 pk −1

)
=

8N
M6 sin2

(
K

∑
k=1

pk

2

)
=

8N
M6 sin2

( p
2

)
,

and so H2 = 1
4 + PK = 1

4 + 8N
M6 sin2 ( p

2

)
, which implies

H =±1
2

√
1 +

32N
M6 sin2

( p
2

)
=±1

2

√
1 +

g2
Y MN
π2 sin2

( p
2

)
.

This is the result expected at one loop. The identification of the matrix model mass param-
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eter with the Yang-Mills coupling coupling holds at one loop but some mismatches were

seen to appear at higher loop calculations, implying some kind of BMN scaling breakdown,

and a substitution of the factor 32N
M6 for a function f

( N
M6

)
[78].

We now calculate the anti-commutator of Q and S, which will be proportional to to

Lα

β
, Ra

b and the Hamiltonian H:

{
Qβ

b ,Sa
α

}
|χ1...χK ;J〉 =

K

∑
k=1

{
ckbkε

aa′
εbb′δ

β

α δ

(
χ

†
k ,φ a′

)∣∣∣χ1 · · ·φ b′ · · ·χK ;J
〉

+

+ckbkε
ββ ′

εαα ′δ
a
b δ

(
χ

†
k ,ψβ ′

)∣∣∣χ1 · · ·ψα ′ · · ·χK ;J
〉

+

+akdkδ
β

α δ

(
χ

†
k ,φ b

)
|χ1 · · ·φ a · · ·χK ;J〉+

+akdkδ
a
b δ

(
χ

†
k ,ψα

)∣∣∣χ1 · · ·ψβ · · ·χK ;J
〉}

.

From equations (2.51) we have that:

akdk =−1 ; bkck =
4N
M6

(
1− e−ipk

)(
eipk −1

)
=−16N

M6 sin2
( pk

2

)
.

Also, we know from the algebra (2.1) that

L β

α |ψγ〉 = δ
γ

α

∣∣∣ψβ

〉
− 1

2
δ

β

α |ψγ〉 ,

Ra
b |φ c〉 = δ

c
b |φ a〉− 1

2
δ

a
b |φ c〉 .

For multi-particle states this generalizes to

L β

α |χ1...χK ;J〉=
K

∑
k=1

χ
†
1 · · ·L

β

α

(
χ

†
k

)
· · ·χ†

K |0;J〉 ,

with a similar result for the charge Ra
b.21

21The charges L and R are the generators of the algebra that correspond to rotations of the ψγ su(2)
algebra and of the φ a su(2) algebras, respectively. As such, L

β
α |φ c〉= 0, and Ra

b |ψ
γ 〉= 0.
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One can now easily see that

{
Qβ

b ,Sa
α

}
|χ1...χK ;J〉 = δ

β

α Ra
b |χ1...χK ;J〉+ δ

a
b L β

α |χ1...χK ;J〉

+δ
β

α δ
a
b

K

∑
k=1

(
1
2

akdk + bkck

)
|χ1...χK ;J〉

−δ
β

α

K

∑
k=1

bkckδ

(
χ

†
k ,φ b

)
|χ1 · · ·φ a · · ·χK ;J〉

−δ
a
b

K

∑
k=1

bkckδ

(
χ

†
k ,ψα

)∣∣∣χ1 · · ·ψβ · · ·χK ;J
〉

. (2.57)

If we compare (2.57) with the expected results from commutation relations given in (2.1),

the last two terms seem to be extra. But in fact this is the exact result! We (anti-)commuted

only the order g0 and order g1 of the supercharges. That is, we calculated the nonzero anti-

commutators {Q0,S0} ∝ R + L + H0 and {Q1,S1}. This last anti-commutator contributes to

order g2 of the Hamiltonian, H2, but there will be another contribution to H2: the two-loop

terms of the supercharges, Q2 and S2, will have nonzero commutation relations with S0 and

Q0, respectively, and contribute to O
(
g2
)
. So H2(the energy central charge of order g2) will

be fully determined by:

H2 ∝ {S1,Q1}+{S2,Q0}+{S0,Q2} . (2.58)

Only considering all the above anti-commutators we will get the correct result for the H2.

For calculations see Appendix A.2, and also [67].

Supercharges as operators in momentum space

We now present a description of the supercharges in terms of operators in momentum

space. Consider as before an infinite chain of fields Z. The vacuum state, written before as

|0;J〉 = Tr
(
ZJ
)
|0〉 , can be rewritten, in the “Hamiltonian formalism” introduced in [5] as

|0;J〉=
(
b†

z
)J |0〉, where b†

z creates an extra Z field in the string.22 Then we can write a state

22The subscript z is used in this section, to distinguish the creation operator b†
z for the boson Z from the

creation operator ba† for the two bosonic impurities.
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with K impurities as:

|Ψ〉= ∑
n1,...,nK

eip jn j b† (n1) · · ·b† (nK) |0;J〉= b† (p1) · · ·b† (pK) |0;J〉 .

We are imposing dilute gas approximation, in which we consider n1 � n2 � ··· � nK . We

will now assume p1 < p2 < · · ·< pK .

In the last expression for |Ψ〉 we used the creation operators b† (n) =
(
b†

z
)n b† (bz)

n, which

create a boson b at position n in the string of Z′s. One can also introduce c† (n) =
(
b†

z
)n c† (bz)

n

as a creation operator for a fermion at position n. The action of the Hamiltonian in this

framework can be found in [5], and a further comparison with lattice strings can be found

in [81].

To write the action of the supercharges in terms of these operators, we also need to

introduce a partial momentum operator

P̂ (p) =
ˆ p

0
d p′ p′

[
b† (p′

)
b
(

p′
)

+ c† (p′
)

c
(

p′
)]

,

or the discrete momentum version

P̂ (p) =
p−1

∑
k=0

k
[
b† (k)b(k)+ c† (k)c(k)

]
.

The total momentum operator is just P̂ = P̂ (pmax), where pmax is either ∞ in the continuum

case, or finite (but large) in the lattice. Also, define an operator Θ̂ conjugate to the “R-

charge operator” Ĵ . In the spin-chain formalism, Ĵ effectively measures the length of the

chain of Z fields, and Θ̂ changes that length:

Ĵ e±iΘ̂ |0,J〉= (J±1)e±iΘ̂ |0,J〉 .
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We can now proceed to the action of the supercharges. In momentum space, they become:

Qβ

b = −
√

2N
M3 εbb′ε

ββ ′eiΘ̂e−iP̂
∑
p

bb′† (p)
(
eip−1

)
eiP̂(p)cβ ′ (p)+∑

p
cβ† (p)bb (p) ;

Sa
α =

√
2N

M3 εαα ′ε
aa′e−iΘ̂eiP̂

∑
p

cα ′† (p)
(
1− e−ip)e−iP̂(p)ba′ (p)−∑

p
ba† (p)cα (p) . (2.59)

It is not hard to check that these definition give us the results obtained in the previous

section. In the above expression the sum over momenta has increments of 2π

J .23 If we wrote

the charges obtained from the string formalism (2.37) and (2.38) in momentum space, we

would obtain the exact structure for the supercharges as was seen in (2.59), as long as we

make the correspondence for the conjugate pair
(
x0
−,P+

)
↔
(

Θ̂,Ĵ
)

.

Commuting two central charges Q will give us the central charge P:

{Q,Q}= eiΘ̂e−iP̂
∑
p

b† (p)
(
eip−1

)
eiP̂(p)b(p)+ eiΘ̂e−iP̂

∑
p

c† (p)
(
eip−1

)
eiP̂(p)c(p) = P.

(2.60)

One can show that the central charge takes the much more common form:24

P = eiΘ̂e−iP̂
(

eiP̂−1
)

= eiΘ̂
(

1− e−iP̂
)

. (2.61)

To summarize, we found expressions for the supercharges as operators in momentum space,

as well as for their commutation relations, in the large J limit. These expressions once

applied to states with K impurities will result in the expressions obtained in the previous

section.

Looking at the value of the central charge here (from the spin-chain formalism) and the

one obtained from the string side (2.25), we can conclude that the results are correct up to

an overall phase e±ipws , as long as we match
{

Q,Q
}
↔ {S,Q} and

{
C,C†

}
↔ {K,P}. This

overall phase found on the string side is natural, as different boundary conditions for x− will

23 The operator e±iΘ̂ does not commute with the sum over the momenta, as it changes the increments in
the sum. But in the limit J very large, this change will be negligible.

24This can be proven by using the property (valid for any power n, proven by induction, and for χ fermionic
or bosonic)

P̂n (p) χ
† (p′

)
= χ

† (p′
)[

θ
(

p− p′
)

p′+P̂ (p)
]n

.
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differ from each other by such a phase. Also the algebra (2.1) allows a U (1) automorphism,

which means we can always multiply all supercharges by some phase that can depend on

all central charges.

.

2.6 Summary of the superalgebra results

In this chapter we studied in detail the Q, S generators of the extended algebra su(2|2) in

the plane-wave matrix theory formalism. By using a coherent basis we determined the su-

percharges in the non-local notation of Beisert [56] (as well as in the local twisted notation),

and determined some of the coefficients in this notation up to order O (gY M).

We also determined the anti-commutation relations of these supercharges, and obtained

the expected results for the central charges P,K and H. We saw that we needed to know the

Hamiltonian up to two-loops in order to have a closed (anti-)commutation relation between

Q and S.

Finally, we wrote a first quantized formulation of the supercharges obtained directly

from the sigma model action for the string. Having the supercharges written in that way

allowed us to compare their structure with the what we had previously calculated from

gauge side.

The evidence seems to point to N = 4 SYM and IIB superstring theory being integrable

models in the ’t Hooft limit. It has been seen that the scattering matrix is completely defined

by the underlying symmetry algebra psu(2,2|4). In this limit, the S-matrix can be found to

actually retain a symmetry algebra that is two copies of a central extension of the psu(2|2)

algebra, in particular: psu(2|2)nR3 = su(2|2)nR2. From the properties of this S-matrix,

one finds that it naturally satisfies the Yang-Baxter equation [55,56], which is more evidence

towards having factorized scattering and integrability. Thus, this symmetry of the S-matrix

is expected to be a Yangian symmetry, [61,84,85] and have an underlying Hopf algebra [86]

(see also [87,88]). Having these new developments in minds, it would be interesting to apply

the methods used in this paper to the study of the Hopf algebra related to the central

extension, and get some results on the corresponding Yangian generators.
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The sector of near 1/2 BPS operators in N = 4 super Yang-Mills has been well studied

by the use of collective methods [80, 81], and the same methods can be used to study the

elements of the algebra in 1/4 BPS sector.



Chapter 3

Solitons in R×S5: Giant Magnons

& Single Spikes

Much has been learned about the AdS5-CFT4 correspondence [1] by looking at limits in

which an SO(6) charge J also becomes large. At large λ the theory is a theory of classical

strings moving in AdS5×S5, with J an angular momentum on the sphere, while at small λ it

is perturbative Yang–Mills theory in 4 dimensions, with J an R-charge of this theory [11,89].

This is the large-J sector.

The first well-studied example in this sector is the BMN limit [5,90], as was mentioned

before, which on the string side, consists of nearly point-like solutions orbiting the sphere,

experiencing a pp-wave geometry. On the gauge theory side, the anomalous dimension ∆−J

can be computed as the energy of a ferromagnetic spin chain [26,67,55]. These spin chains

are integrable systems, allowing the use of Bethe ansatz techniques to compute the spectrum

from the S-matrix for two-particle scattering [20, 91, 92, 17, 93, 56] (in some cases one can

explicitly recover the string action from the spin-chain [13]).

The elementary excitations of spin chains are magnons, which to be scattered must have

some momentum p 6= 0. Extending the theory to allow lone magnons with momentum has

been seen to lead to the centrally extended algebras [55,66] on the gauge side. This subject

was discussed in depth in the previous chapter. These lone magnons are dual to strings

which do not close, called giant magnons [26]. Generalizations which have been explored

include magnons with more than one large angular momentum [27, 94, 95] and magnons

53
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with finite J [82,96,97,98].

Giant magnons are one type of rigidly rotating strings with cusps, moving on the sphere

and made as large as they can be. In general these are called spiky strings, and they also

exist in flat space [99,100] and in AdS [28,101]. In flat space T-duality leads to another class

of spiky strings, with cusps pointing inwards, and these ‘T-dual’ solutions can also exist on

the sphere. Starting with one of these and taking the same maximum-size limit used for the

magnon then leads to the single spike solution which we study here. [48] Recent papers on

the single spike include [102,103,104,105,106,107,108].

The giant magnon can be viewed as an excitation above a vacuum solution of a point

particle orbiting along the equator [109] (the label ‘giant’ is meant to indicate that they

explore much of the S5 geometry, as the earlier giant gravitons did [110, 68]). Fluctuations

of this vacuum have Hamiltonian ∆− J [12] (where J ≤ ∆ is the BPS bound). The single

spike is similarly an excitation above a string wound around the equator, which we call the

“hoop”. In the Hamiltonian for fluctuations, the angular momentum J is replaced with a

measure of the winding along the same direction, which we call Φ. This is almost T-duality,

except that the circle involved is part of sphere. It is not clear whether this duality can be

usefully related to the T-duality used in [111] and [112], in S5 and AdS.

The single spike, and indeed the hoop, are not supersymmetric. Exploring the corre-

spondence in sectors with less or no supersymmetry is of great interest, and it is our hope

that the close relationship to the magnon case can be used as a tool for this. The gauge

theory dual of the single spike is not known, but it is conjectured to be some excitation of

an anti-ferromagnetic state of the spin chain [113, 114] in what has been named the large-

winding sector of the correspondence [115]. In the absence of supersymmetry it is possible

that integrability will help to find the dual of the spike solution.

Solitons have long been studied in field theory, and a set of tools called semi-classical

quantization enables us to learn about the related objects in the quantum theory [116,

117, 118, 119, 120, 121, 122]. Many of these techniques have been revived to study solutions

of classical string theory in AdS5× S5 [12, 123, 124, 125] (which is known to be integrable

[19, 126]). The single spike case has the extra complication that it is an excitation of an

unstable vacuum state (as the string wrapped around an equator of S5 can slide off towards



55

the pole) so what we aim to calculate by these methods is not an energy correction but a

lifetime, as discussed in the text.

3.1 Semiclassical Giant Magnons and Giant Spikes in R×S2

In the AdS/CFT correspondence, there are two kinds of operators/states that can be com-

pared avoiding the problem of the strong/weak property of the duality. The first are just

sets of chiral primary operators (and their descendants) in which one can use nonrenormal-

ization theorems to make comparisons [1, 52, 53]. The second are sets of operators of SYM

with large global charges, which are dual to semi-classical states on the string side. One

example of the latter are the BMN operators mentioned before [5]. The exact string dual

of a chiral primary operator is a point-like string orbiting a geodesic of S5, with angular

momentum J, which has to be large enough for the classical approximation to be correct. We

will be studying excitations of this point-like “vacuum” solution, called the giant magnons,

as well as related classical solutions called giant spikes. These live on the subspace R× S2

of the full background.

String dynamics of bosonic degrees of freedom in the AdS5× S5 space-time can be de-

scribed by the bosonic σ−model action

S =

√
λ

2π

ˆ
dτ dx

η
ab

∂aY µ
∂bYµ + α1

(
Y 2 + 1

)︸ ︷︷ ︸
AdS5

+η
ab

∂aX i
∂bXi + α2

(
X2−1

)︸ ︷︷ ︸
S5

 ,

where one embeds both the sphere as the AdS space in R6 with the respective constraints.

This action has a symmetry under su(2,2)× so(6). To consider magnons moving on the

sphere one restricts the space-time to R×S5, with R being one of the time directions of the

AdS5 space, the respective charges are the generators of rotations in S5

Ji j =

√
λ

2π

ˆ 2π

0
dx
(
XiẊ j−X jẊi

)
,
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and the generator of time translations

∆ =

√
λ

2π

ˆ 2π

0
dxẎ 0.

One considers the limit when the angular momentum J = J12 in the direction ϕ ≡ (12) of S5

is very large, and look at states with ∆−J finite. The momentum of the excitation p is also

kept fixed. The relevant limit to be taken here is to have ∆,J→ ∞, while keeping ∆− J, p

and the ’t Hooft coupling λ = g2
Y MN fixed. Then by varying the coupling λ we can reach

both sides of the gauge/string correspondence. This limit differs from the previous BMN

limit [5] in that the latter considered the coupling λ large, keeping gY M fixed and small,

and considered the momentum p to be small, keeping the quantity n = pJ fixed instead.

One of the major properties of this limit is that quantum effects (expansions in λ ) become

decoupled from finite-J effects, and we will be using this fact when studying both effects

separately in the next chapters.

In this limit, we find that the string ground state has ∆−J = 0, which consists of a point-

particle with a light-like trajectory along the direction ϕ, time coordinate Y 0 ≡ τ obeying

ϕ− τ = constant, and sitting at the origin of the spatial directions of AdS5.

To find excitations above this ground state one looks at solutions rotating in the Z1 =

X1 + iX2 plane. The remaining four directions of the embedding space we call ~X , and Y 0 ≡ τ

is the time co-ordinate (ultimately from AdS). So the motion is all in the time direction of

AdS space, and on the subspace S2 ⊂ S5: R×S2.

Spiky strings in flat space

If instead of S5 we consider flat space, one can find a spiky string solution [28] [99,100]

Y 0 = τ,

X1 = Acos
(

τ + x
2A

)
+ ABcos

(
τ− x
2AB

)
, (3.1)

X2 = Asin
(

τ + x
2A

)
+ ABsin

(
τ− x
2AB

)
,
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X1

X2

X1

X2

Figure 3.1: The original and T-dual spiky string in flat space. Both are for B = 5, leading
to 6 and 4 spikes respectively.

with two parameters A,B. This solution is a rigidly rotating string with n = B + 1 cusps

(spikes) pointing outwards and moving at the speed of light (see figure 3.1). The parameter

A determines the overall size of the cusps.

We can perform a T-duality transformation to this solution, in particular in the X2

direction. But because the solution has neither center-of-mass momentum nor winding, this

T-duality only changes the sign of the left-movers in that direction, [48] giving

X0 and X1 unchanged, (3.2)

X2 = Asin
(

τ + x
2A

)
−ABsin

(
τ− x
2AB

)
.

This is again a rigidly rotating string, but now with B−1 spikes pointing inwards, and also

moving at the speed of light.

Note that this T-dual solution could also have been obtained by simply interchanging x

and t in the spatial co-ordinates X i. In fact this is a symmetry of the equations of motion

(
−∂

2
τ + ∂

2
x
)

X i = 0

and of the Virasoro constraints (for Y 0 = τ)

(
∂τX i)2 +

(
∂xX i)2 = 1, ∂τX i

∂xX i = 0,

as these equations are unchanged by interchanging x↔ τ.



58

On the sphere

Similar solutions exist on the sphere, and when they are small they will reduce to those in

flat space. In [48] it was shown that if the analogue of the original solution (3.1) becomes

large, so that the spikes touch the equator, then each segment (between spikes) of it becomes

a giant magnon. For the analogue of the T-dual solution (3.2), the limit in which the lobes

touch the equator is the single spike.

By choosing a time-like t = τ, conformal gauge (the induced metric is proportional to the

standard metric, ∂aX µ∂bXνηµν ∝ ηab) we are looking for solutions that solve the Virasoro

constraints (
∂τX i)2 +

(
∂xX i)2 = 1, ∂τX i

∂xX i = 0,

and obey the conformal equations of motion

(
−∂

2
τ + ∂

2
x
)

X i + X i (−(∂τX j)2 +(∂xX j)2)= 0.

Solving these equations, Hofman and Maldacena [26] found the Giant Magnon solution:

Y 0 = τ,

Z1 = eiτ
(

c + i
√

1− c2 tanhu
)

, (3.3)

~X =~n
√

1− c2 sechu,

where c = cos(p/2) is the worldsheet velocity, and (u,v) are boosted worldsheet co-ordinates

u = γ(x− cτ), (3.4)

v = γ(τ− cx), with γ =
1√

1− c2
=

1
sin(p/2)

.

This is a rigidly rotating string along the equator of S2, with cusps touching this equator

and moving at the speed of light. Note that −∞ < x < ∞ covers only one of the curves

between cusps. It is understood that the physical closed-string solution consists of several
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Figure 3.2: The giant magnon (left, c = cos(p/2) = 0.7) and the single spike (right, c = 0.8).
These are both are rigidly rotating along the equator shown, with their cusps moving at the
speed of light.

giant magnons connected together. The case c = 0 (zero worldsheet velocity, p = π) is one of

GKP’s folded strings. [11] In the limit p→ 0 the magnon becomes a point particle moving

along the equator.

As in flat space, the Virasoro constraints and the conformal equations of motion are un-

changed by the interchange of x and τ. So there is another solution X i
spike(τ,x) = X i

magnon(x,τ),

which has been dubbed the single spike: [48]

Y 0 = τ,

Z1 = eix
(

c + i
√

1− c2 tanhv
)

, (3.5)

~X =~n
√

1− c2 sechv .

This solution is drawn in figure 3.2. We keep the same parameter 0 < c < 1, although the

worldsheet velocity is now 1/c in the x,τ co-ordinates.1

Both solutions are localized on the worldsheet. As x→ ∞, the magnon solution ap-

proaches the point particle Z1 = eiτ and ~X = 0 while the single spike solution becomes instead

the infinitely wound hoop Z1 = eix. The point particle and the hoop are clearly related by the

same x↔ τ swop, and they are also the vacuum solutions needed to obtain the magnon or

the single spike by the dressing method, which survives this interchange. [127,128] [109,104]

In the conformal, time-light gauge we started from, the relevant charges can be written

1This is related to the parameter θ0 used in [48], which is the angle from the north pole to the spike, by
sinθ0 = c = cos(p/2). Also note that θ̄ = π

2 −θ0 = p/2.
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as

∆ =

√
λ

2π

ˆ
dx 1 time-translations,

J =

√
λ

2π

ˆ
dx Im

(
Z1∂τZ1

)
angular momentum in Z1 plane,

p =
1
i

ˆ
dx

d
dx

lnZ1 worldsheet momentum.

For the case of the Giant Magnon, ∆ and J are infinite, with Φ =
√

λ

2π
p and

Emag = ∆− J =

√
λ

π
sin(p/2). (3.6)

For the single spike we have one further charge of interest, the winding charge:

Φ =

√
λ

2π

ˆ
dx Im(∂x logZ1) =

√
λ

2π
∆φ . (3.7)

This Φ is a conveniently scaled version of the the opening angle ∆φ , where φ = argZ1 is the

azimuthal angle.

For the single spike, it is Φ instead of J that is infinite, and we have

∆−Φ =

√
λ

2π
p, (3.8)

J =

√
λ

π
sin(p/2) .

3.2 Other Classical String Solutions: Finite-J solutions

Other classical solutions of the σ -model action in AdS5×S5 have been studied, in particular

rigidly rotating solutions, such as spinning strings and pulsating strings [12,129,130,131,25,

123,132,133,134,135], and strings rigidly rotating in some direction of AdS5 [28,101]. These

string solutions are solitons of the worldsheet σ -model which correspond to semiclassical

states that are high in the energy spectrum of the string, as well as very large angular

momenta J.
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But a lot remains to be done with respect to the solutions with finite charges. On the

gauge side of the correspondence, some wrapping-interactions were seen to require correc-

tions to the Bethe ansatz. On the string side, the finite J was seen to correspond on the

light cone gauge to correspond to a finite size worldsheet: the theory is defined on a cylin-

der with radius proportional to the light-cone momentum, and taking the limit of infinite

angular momentum corresponds to decompactifying the cylinder. Explicit calculations in

a finite-size world-sheet effects to the energies of rigidly rotating strings and were seen to

require an improved Bethe ansatz for the string [38,136].

Finite-J corrections have been studied for the giant magnon solutions. The first treat-

ment of giant magnons AdS5×S5 at finite J was by [82], who worked in uniform light-cone

gauge (in which the worldsheet density of J is constant instead the one of ∆). They used a

gauge parameter a ∈ [0,1], and at a = 0 (and in conformal gauge) they found the following

correction to the dispersion relation:

ε ≡ ∆− J =

√
λ

π
sin
( p

2

)[
1− 4

e2 sin2
( p

2

)
e−2J/ε + o(e−4J/ε)

]
=

√
λ

π
sin
( p

2

)[
1−4sin2

( p
2

)
e−2∆/ε + . . .

]
. (3.9)

The gauge-dependence that seemed to exist in [82] was resolved by [97], making use of the

fact that the solutions are periodic both on the worldsheet and in the azimuthal angle on the

sphere to see these solutions as wound strings moving on an orbifold of S5, in particular on

S2/Zn [97,137]. The scattering of finite-J magnons was studied in [98], through the relation

to sine-Gordon theory in finite volume.

One can generalize the giant magnon solutions living on S2 to dyonic bound states [27],

and their exact solutions at any J (both in S2 and in S3) were studied by [96], where it was

shown that they are connected by the Pohlmeyer map (to be described in the next chapter)

to periodic soliton solutions of (complex) sine-Gordon theory. In [138] finite-size corrections

to the dispersion relation of dyonic giant magnons were given. Other methods of determining

these finite-size corrections for the dispersion relation can be used. One can use the field-

theoretic Lüsher formulas [139], which depend on the world-sheet S-matrix [140]. One can
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also start directly from the algebraic curve description for the giant magnon [140,141] and

determine these corrections.

We will discuss the finite-J corrections to giant magnon solutions in the formalism of

the algebraic curve in more detail in Chapters 5 and 7.

3.3 Zero and Non-zero modes for the Single Spike

In order to better understand the classical string theory, we have to develop further the

semi-classical properties of the solitons of the theory: the giant magnons and the related

giant spike. To do so we first characterize its zero and non-zero modes, focusing on the case

of the single spike solution.

Zero modes

We first concentrate on the bosonic zero modes of the giant magnons and spikes, which are

the variations due to changing collective co-ordinates

δvX i =−∂X i

∂v0

∣∣∣
v0=0

,

where v0 is some modulus. The single spike solution (3.5) can be written with explicit

parameters x0 and v0 and orientation ~n

Z1 = ei(x−x0)
(

c + i
√

1− c2 tanh(v− v0)
)

,

~X =~n
√

1− c2 sech(v− v0).

We can then obtain the following modes:

• a rigid rotation of Z1, δx:

δxZ1 = iZ1 ,

δx~X = 0;
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• a reparametrization along v, δv:

δvZ1 = eit i
√

1− c2 sech2 v , (3.10)

δv~X =−~n
√

1− c2 sechv tanhv ;

• three possible rotations of the orientation vector ~n, δm:

δmZ1 = 0 ,

δm~X = ~m
√

1− c2 sechv ,

where ~m ·~n = 0.

The reason for determining the reparametrization mode δv holding x fixed (and δx holding

v fixed) instead of using one pair x,τ or u,v is that in this case we obtain a convenient linear

combination of the modes, in which one is normalizable and the other is not. We can also

determine δτ holding x fixed (and vice versa):

δτ|xX i = γδvX i
δx|τX i = δxX i− cγδvX i ,

δτ|xX0 = 1 δx|τX0 = 0 ,

where we wrote both time and spacial components. The meaning of these two modes (δτ|x

and δx|τ) in spacetime is that at any point they are the two tangent vectors to the string:

they correspond to the x,τ co-ordinate basis vectors, and will not generate physical modes,

just reparametrizations. But in fact we are not studying the complete string solution, and to

make a physical state we need to glue two solutions (in the same way as for giant magnons),2

i.e., there has to be other solitons in the worldsheet, and the relative motion between them

is physical. This is the reason why we keep one of these reparametrization modes. This

mode together with the three modes δm makes a total of four zero modes.3

2We return to this question in section 3.4 below.

3The mode δv (3.10) is the analogue of (3.11) from [142] and (2.16) from [124]. In [142] this is derived
from a translation of the sine-Gordon soliton.
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Note that the other physical zero modes, the perpendicular rotations δm, are independent

of u. Comparing to the giant magnon, the same modes can be found in (2.15) of [124]. These

modes are independent of v, which is time boosted by c. This leads us to consider u as being

the time co-ordinate for the purpose of identifying zero and non-zero modes.4

Non-zero modes

To determine non-zero modes, we allow fluctuations X i +δX i and plug them into the equa-

tions of motion. The equations for the fluctuations then become

∂a∂
a
δX i +

(
1−2sech2 v

)
δX i−

(
X j

∂a∂
a
δX j)X i = 0.

The zero modes discussed above are solutions of this equations. To find non-zero modes, we

look for solutions of the kind

δX j = eikv−iωu f j(v).

For the giant magnon, this problem of finding bosonic non-zero modes was solved in [124],

through finding a scattering solution and analytically continuing it. Just like the background

solution, the non-zero modes for the giant spike are related to the ones of the giant magnon

by simply interchanging x and t. They are:

• one massless solution (i.e. ω2 = k2):

δr~X = eikv−i|k|u~n
(

k + |k|cos
p
2

)
sechv tanhv , (3.12)

δrX1 + iδrX2 =−i eikv−i|k|ueix
(

k−|k|sinhvsinh(v + i
p
2

)
)

sech2 v ,

δrX1− iδrX2 = i eikv−i|k|ue−ix
(

k−|k|sinhvsinh(v− i
p
2

)
)

sech2 v .

We drop this solution as it is pure gauge: at any given point (x, t), it is just a linear

4We could consider u as being the product of a boost by velocity 1
c > 1

u = γ(x− cτ) =−
τ− 1

c x√
( 1

c )2−1
. (3.11)

See also (4.6).
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combination of the reparametrization zero modes δv and δx:5

δrX i = eikv−i|k|u
(
−(k + k cos

p
2

)δvX i + |k|δxX i
)

.

• three orthogonal fluctuations, in directions ~m with ~m ·~n = 0:

δ⊥~X = eikv−iωu ~m(k + i tanhv) , (3.13)

δ⊥X1 = δX2
⊥ = 0,

and one parallel fluctuation, along the spike’s orientation ~n:

δ||~X = eikv−iωu~n
(

k + i tanhv−
(

k + ω cos
p
2

)
sech2 v

)
, (3.14)

δ||X
1 + iδ||X

2 =−i eikv−iωueix
(

k sinhv + ω sinh(v + i
p
2

)+ icoshv
)

sech2 v ,

δ||X
1− iδ||X

2 = i eikv−iωue−ix
(

k sinhv + ω sinh(v− i
p
2

)+ icoshv
)

sech2 v .

These all have the dispersion relation for a particle of mass m2 = 1: ω2 = k2 + 1.

These modes appear massive in u,v, but they still represent an instability with respect to

physical time. To see this, we write the modes in the original co-ordinates x, t, and define

new variables K,W by:

δX j = eikv−iωu f j(v) = eiKx−iWτ f j(γ(t− cx)). (3.15)

We can see that the dispersion relation now is given by W 2 = K2−1, that is, these modes

are tachyonic (with m2 =−1) with respect to co-ordinates x,τ. In our gauge, τ = X0 is the

target-space’s time co-ordinate. Since there is no reason to exclude modes with |K|< 1, we

will have modes with imaginary W : they will not oscillate, instead they will exponentially

grow or die in time.

5Note that the breaking of translational symmetry on the worldsheet (discussed in section 3.3) affects
only the zero modes.
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Modes in AdS directions

The magnon and spike solutions live in the R×S5 subspace of AdS5×S5. Because they stay

on the center of the AdS space, there are no zero modes in the AdS directions but there will

be non-zero ones. These will be identical in both the giant magnon and single spike cases,

and will correspond to the modes of a point particle about the center of Anti-de Sitter space.

If we write the AdS5 part of the metric as

ds2
AdS =−

(
1 + η2/4
1−η2/4

)2

dτ
2 +

1

(1−η2/4)2 dηkdηk ,

where k = 1,2,3,4, the modes are given by

ηk(x, t) = eiKx−iWτ fk(K)

with W 2 = K2 +1. The infinitely wound hoop also has identical AdS modes to the ones shown

above.

A calculation of the single spike’s fermionic fluctuations and zero modes can be found

in appendix Chapter B. We will now use the results of bosonic and fermionic fluctuations

(these last ones will be seen to drop out of the calculations) to determine the semiclassical

corrections to the energy of the single spike.

3.4 Quantum Corrections

Corrections to what?

Having found the modes, it would be natural to use them to compute a first quantum

correction, i.e. to perform ‘semi-classical quantization’. For the giant magnon, this means

finding quantum corrections to ∆− J. The origin of this is as follows:

Frolov and Tseytlin [12] consider the ‘vacuum’ of the large-J sector, the point particle

orbiting the sphere, which has ∆ = J. They add small perturbations to this, and show that

∆− J is (at leading order in 1/
√

λ ) the Hamiltonian of a 1+1-dimensional theory. The
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perpendicular fluctuations in both the sphere and AdS are non-interacting massive fields of

this theory. So far this is classical. The semi-classical correction is to treat each mode of

these fields as a harmonic oscillator, and their zero-point energies ‘1
2 h̄ω’ are corrections to

∆− J. The magnon is interpreted as a ‘giant perturbation’ of this vacuum, tall enough to

see the curvature of spacetime (and, it turns out, of high enough momentum to see that the

1+1-dimensional theory is a spin chain, with periodic dispersion relation).

Here we repeat their calculation, for the ‘vacuum of the large-winding sector’: the in-

finitely wound hoop. We find as Hamiltonian ∆−Φ, with the winding charge Φ replacing

the angular momentum J. The single spike is similarly a ‘giant perturbation’ of this vacuum.

Recall from Section 3.1 that the flat-space versions of these two classes of spiky strings are

related by T-duality, which famously exchanges winding and momentum around a compact

direction. Clearly this change in the Hamiltonian is somehow a consequence of this duality.

But notice that the compact direction here is part of a sphere, and that the radius of this

sphere is unchanged.

Finding the Hamiltonian

Write the metric in the form6

ds2
AdS =−

(
1 + η2/4
1−η2/4

)2

dτ
2 +

1

(1−η2/4)2 dηkdηk k = 1,2,3,4

ds2
S = dθ

2
1 + cos2

θ1
(
dθ

2
2 + cos2

θ2
(
dθ

2
2 + cos2

θ2
(
dθ

2
3 + cos2

θ3
(
dθ

2
4 + cos2

θ4dφ
2)))) .

The action (in conformal gauge) is

S =−
√

λ

2π

ˆ
dxdτ LB, LB =

1
2

∂
aX µ

∂aXνGµν . (3.16)

6The azimuthal angle φ here is the same as used before, in (B.1), but θ4 = π/2− θ is the elevation
above the equator. The expansions of the metric components which we need are Gττ = −1−η2 + · · · and
Gθθ = 1−θ 2 + · · · .



68

We write the perturbed the solution as X µ = X µ

hoop + X̃ µ/λ 1/4:

t = τ +
1

λ 1/4 t̃ φ = x +
1

λ 1/4 φ̃ (3.17)

ηk =
1

λ 1/4 η̃k θs =
1

λ 1/4 θ̃s, s = 1,2,3,4.

Expanding at large λ , the Lagrangian becomes

LB = 1 +
1

λ 1/4

(
∂0t̃ + ∂1φ̃

)
+

1

2
√

λ

(
−∂

at̃∂at̃ + ∂
a
η̃k∂aη̃k + ∂

a
φ̃∂aφ̃ + ∂

a
θ̃s∂aθ̃s + η̃kη̃k− θ̃sθ̃s

)
+

1
λ 3/4

(
(∂0t̃)η̃kη̃k− (∂1φ̃)θ̃sθ̃s

)
+O(

1
λ

). (3.18)

In the quadratic piece, η̃k appears massive and θ̃s tachyonic, matching what we found for

the single spike’s modes.

The Virasoro constraints are first γ00 + γ11 = 2T00 = 0:

0 =
1

λ 1/4

(
−∂0t̃ + ∂1φ̃

)
+

1

2
√

λ

(
−∂at̃∂at̃ + ∂aη̃k∂aη̃k + ∂aφ̃∂aφ̃ + ∂aθ̃s∂aθ̃s− η̃kη̃k− θ̃sθ̃s

)
+O(

1
λ 3/4 ), (3.19)

(writing ∂a∂a = ∂0∂0 + ∂1∂1 in a temporary abuse of notation) and second γ01 = T01 = 0:

0=
1

λ 1/4

(
−∂1t̃ + ∂0φ̃

)
+

1

2
√

λ

(
−∂0t̃∂1t̃ + ∂0φ̃∂1φ̃ + ∂0η̃k∂1η̃k + ∂0θ̃s∂1θ̃s

)
+O(

1
λ 3/4 ).

Now we expand the spacetime charges: the energy is the integral of the momentum

density Π0
τ :

∆ =
1

2π

ˆ
dx

∂LB

∂ ∂0t

=
1

2π

ˆ
dx
(√

λ + λ
1/4

∂0t̃ + η̃kη̃k +O(
1

λ 1/4 )
)

,
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and the winding charge defined in (3.7) is

Φ =

√
λ

2π

ˆ
dx ∂1φ

=
1

2π

ˆ
dx
(√

λ + λ
1/4

∂1φ̃

)
.

Subtracting these two charges, the two
√

λ terms will cancel, leaving a finite result. The

linear terms can then be replaced with quadratic terms using the first Virasoro constraint

(3.19). To leading order in 1/λ , we obtain:

∆−Φ =
1

4π

ˆ
dx
[
− (∂0t̃∂0t̃ + ∂1τ̃∂1τ̃)+

(
∂0φ̃∂0φ̃ + ∂1φ̃∂1φ̃

)
+(∂0η̃k∂0η̃k + ∂1η̃k∂1η̃k)+

(
∂0θ̃s∂0θ̃s + ∂1θ̃s∂1θ̃s

)
+ η̃kη̃k− θ̃sθ̃s

]
. (3.20)

This is the analogue of the result in [12]. The fields t̃ and φ̃ correspond to transformations

that are pure gauge, so we drop them. We can write ∆−Φ in terms of the Hamiltonian

one would obtain from only the quadratic part of the Lagrangian LB, which contains the

transverse (physical) modes η̃k and θ̃s and their conjugate momenta Π̃η̃k ,Π̃θ̃s
.

Quadratic 2-dimensional Hamiltonian

Starting from the Lagrangian for the fluctuations (3.18), we find its quadratic part to be

(up to factors of λ ):

L̃ 2 =
1
2
(
−∂

at̃∂at̃ + ∂
a
η̃k∂aη̃k + ∂

a
φ̃∂aφ̃ + ∂

a
θ̃s∂aθ̃s + η̃kη̃k− θ̃sθ̃s

)
.

By determining the conjugate momenta for each of the fluctuation fields, Π̃µ = ∂L̃
∂(∂0X̃ µ) , we

find

Π̃τ̃ = ∂0t̃

Π̃X̃ µ =−∂0X̃ µ for X̃ µ = η̃k, θ̃s, φ̃ .
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From these we can construct the corresponding Hamiltonian density in the usual way, ob-

taining

H̃ 2 =
1
2

(
−Π̃

2
t̃ + Π̃

2
φ̃

+ Π̃
2
η̃k

+ Π̃
2
θ̃s

+ η̃kη̃k− θ̃sθ̃s

)
.

We want to check that the quantity ∆−Φ is just this Hamiltonian. To do so we start by

determining the Hamiltonian corresponding to the original bosonic Lagrangian (3.16), and

expand it in fluctuations. The conjugate momenta for the fields are given by Πµ = ∂L
∂ (∂0X µ )

where X µ = t,φ ,ηk,θs. To find the Hamiltonian for the fluctuations, we expand the fields as

in (3.17), as well as the momenta:

Πµ = Π
cl
µ + λ

− 1
4 Π̃µ ; X µ = X µ

cl + λ
− 1

4 X̃ µ ,

where the classical values of the fields are Πcl
τ = 1, Πcl

X µ 6=τ
= 0, tcl = τ, φcl = x and all other

fields are zero. The expansion of the Hamiltonian then gives:

Hb =
1

2
√

λ

(
−Π̃

2
t̃ + Π̃

2
φ̃

+ Π̃
2
η̃k

+ Π̃
2
θ̃s
− (∂1t̃)2 +

(
∂1φ̃
)2 +(∂1η̃k)

2 +
(
∂1θ̃s

)2
)

+

+
1

2
√

λ

(
η̃kη̃k− θ̃sθ̃s

)
− 1

λ
1
4

(
Π̃t̃ −

(
∂1φ̃
))

+O

(
1
λ

)
.

The Virasoro constraint (3.19) is equivalent to setting Hb = 0.

It is easy to check that ∆−Φ can be written in terms of the fields and conjugate momenta

as

∆−Φ =

√
λ

2π

ˆ
dx
(

1

λ
1
4

(
Π̃t̃ −

(
∂1φ̃
)))

.

By using the Virasoro constraint in the form Hb = 0, we finally find

∆−Φ =
ˆ

dx
2π

(
− Π̃

2
t̃ + Π̃

2
φ̃

+ Π̃
2
η̃k

+ Π̃
2
θ̃s
− (∂1t̃)2 +

(
∂1φ̃
)2 +(∂1η̃k)

2 +
(
∂1θ̃s

)2

+η̃kη̃k− θ̃sθ̃s

)
,

which returns the expected expression, when we drop the gauge fluctuations. We obtain at

last:
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∆−Φ =
ˆ

dx
2π

H2d
(
t̃, φ̃ , η̃k, θ̃s

)
=
√

λ

ˆ
dx
4π

[
Π̃

2
η̃k

+ Π̃
2
θ̃s

+ ∂1η̃k∂1η̃k + ∂1θ̃s∂1θ̃s + η̃kη̃k− θ̃sθ̃s

]
.

We are left with four massive fields from vibrations in the AdS directions and four tachy-

onic fields from the sphere directions. Then ∆−Φ is the expected quadratic Hamiltonian for

these 8 fields. One could perform a similar construction for the fermionic modes obtaining

16 massless fermionic fields [143,144] [12].

First quantum correction

For each of the eight bosonic modes η̃k and θ̃s, we have a quadratic Hamiltonian of the kind

H2 =
ˆ

dx
[

1
2

Π̂
2 + φ̂

(
−∂

2
x +V

)
φ̂

]
.

Note that V =±1 in our case, depending on whether the mode is massive or tachyonic. We

can expand both Π̂ and φ̂ eigenfunctions ψn of the differential operator
(
−∂ 2

x +V
)

ψn = ω2
n ψn,

which we write φ̂ = ∑ φ̂nψn and Π̂ = ∑Π̂nψn. The Hamiltonian becomes a sum of decoupled

harmonic oscillators

H2 = ∑
1
2
(
Π̂

2
n + ω

2
n φ̂

2
n
)
.

By introducing creation and annihilation operators in the usual way, for each oscillator, we

find that each of these contributes with 1
2 ∑ h̄ωn, with7 ωn =

√
k2

n + m2, for some mass m2

and allowed momenta kn.

For our solution the bosonic modes in 3.3 have W (K) =
√

K2±1. Each of the fermionic

modes will contribute −1
2 ∑ h̄Wfermi, where the fermionic modes found in appendix B.1 have

W (K) = K.

There are two important issues here:

• First, to obtain a finite first quantum correction for any solution, one must always

7In the literature, νn = T ωn (where T is some large time) is called a stability angle.
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subtract the quantum correction for the corresponding vacuum solution. Both of these

are normally UV divergent (and this subtraction is not the only renormalization usu-

ally needed). For the single spike, the relevant vacuum is the hoop solution. Note that

the hoop has ∆−Φ = 0 classically, so this subtraction is only needed for the quantum

corrections.

• Second, we are interested in studying those modes of the spike which result in its

instability. To determine the decay time of this unstable solution, we are only inter-

ested in the imaginary part of the energy correction. None of the fermionic modes will

contribute to this, as they are massless, nor will the 4 bosonic modes in AdS5, as they

are massive. The only contribution is from the 4 tachyonic modes on the sphere, which

have W (K) =±
√

K2−1, and here only from those modes with |K|< 1. This excludes

the UV modes, and in fact no other renormalization will be needed.

Modes for the hoop (vacuum) solution

It is simple to solve the equations of motion from the bosonic Lagrangian LB (3.18) in order

to determine the modes for the hoop solution. The transverse modes are

η̃k(x,τ) = eiKx−iWτ fk(K), W 2 = K2 + 1 ,

θ̃s(x,τ) = eiKx−iWτgs(K), W 2 = K2−1 ,

i.e m2 = 1 in the AdS directions, and m2 = −1 on the sphere, the same masses as for the

single spike’s modes. The longitudinal modes are massless:

τ̃(x,τ) = eiKx−i|K|τ f (K),

φ̃(x,τ) = eiKx−i|K|τg(K).

The same modes can also be obtained from those for the single spike, by going far away

from the spike itself. The sphere modes δ⊥ (3.13) and δ|| (3.14) of section 3.3 become these

simple ones θ̃s in the limit v→∞, and the AdS modes are identical. The φ̃ mode is the v→∞

limit of δr (3.12), now more obviously pure gauge. We did not write down the analogue of
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the τ̃ mode (among the spike’s non-zero modes) as we were focusing on the spatial part,

but this too is pure gauge.

Performing the same limit v→ ∞ for the fermionic modes (B.13) and (B.15) leaves the

following modes for the hoop:

Ψ
1 =

i√
1− c

[
Γ0
(
cos χ + Γφθ sin χ

)
−Γφ

(
cos χ−Γφθ sin χ

)]
×
(
cosβ Ũ0 + sinβ ΓφθŨ1

)
,

Ψ
2 =

−1√
1 + c

Γ∗Γθ

[
Γ0
(
cos χ̃ + Γφθ sin χ̃

)
−Γφ

(
cos χ̃−Γφθ sin χ̃

)]
× 1

1 + 4ω2

(
cos β̃ U0 + sin β̃ ΓφθU1

)
.

Vacuum

The bosonic and fermionic modes for the hoop found above have the same masses as their

counterparts for the single spike, in particular the sphere modes have W (K) =±
√

K2−1. To

discretize the momentum K, we put the solution in a box −L
2 < x < L

2 and impose periodic

boundary conditions δX
(
−L

2

)
= δX

(L
2

)
. Then Kn = 2πn

L , with n ∈ Z, and the contribution of

these modes to the vacuum energy is given by

∆Ehoop = 4
1
2 ∑

n

√
K2

n −1

≈ 2
L

2π

ˆ 1

−1
dK
√

K2−1 as L→ ∞

=
i
2

L . (3.21)

The integration is over |K| < 1 because we are looking for just the imaginary part. We do

not encounter a UV divergence here.

Spike solution

Again we study only the bosonic modes on the sphere with |K|< 1. But the discrete momenta

K allowed for the spike are not the same as those for the hoop Kn, as the modes have a

phase shift at large x compared to the hoop. Looking at the bosonic sphere modes given in
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(3.13) and (3.14), far away from the spike (|v| � 1) we have

δ⊥~X (x) = eiKx−i
√

K2−1τ ~m [γ (cK−W )+ i tanh(γ (τ− cx))] , (3.22)

δ||~X (x) = eiKx−i
√

K2−1τ~n [γ (cK−W )+ i tanh(γ (τ− cx))] ,

and δX1 = δX2 = 0 for both.8 Fixing t = 0 and evaluating at large distance x = ±L
2 , they

both become

δ~X
(
±L

2

)
= e±iK L

2±iδ±A±,

where the phase shifts and amplitudes at the two ends are given by

tan(δ±) =
−1∓ γ

√
1−K2

γcK
, (3.23)

A± =

√
(γcK)2 +

(
γ

√
1−K2±1

)2
.

The next step would be to impose periodic boundary conditions on δX at x =±L
2 . But

here we encounter a problem, as the modes have different amplitudes at the two ends.9

Instead we will demand only that the phases match at x =±L
2 , and allow the amplitudes to

be different. (We will discuss this further in the next section.) Then K has to obey

KL + δ+ (K)+ δ− (K) = KnL,

where Kn = 2πn
L is still the discretized momentum of the vacuum solution. Taking L very

8To obtain this, note that K,W and k,ω are related by K =−γ

(
ck +
√

k2−1
)

and W =−γ

(
k + c
√

k2−1
)

,

from (3.15) and (3.4).

9Recall that the worldsheet velocity of the single spike is 1/c > 1. Thus (x,τ) = (±L/2 ,0) might be better
thought of as points before and after the spike, rather than left and right of it. Consider instead points (x,τ)
with large |τ|, for which both of the modes δ⊥ and δ|| in (3.22) become

δX = eiKx−iWτ (γ (cK−W )+ isign(τ))

= eiKx+
√

1−K2τ
(

γcK− iγ
√

1−K2 + isign(τ)
)

.

In the second line we’ve chosen to focus on the growing mode W = +i
√

1−K2. Averaging over x by taking
the modulus, we get

|δX |= e
√

1−K2τ

√
(γcK)2 +

(
sign(τ)− γ

√
1−K2

)2
.

This is an exponentially growing mode, but with a step in it where the spike happens.
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large we can approximate K by

K = Kn−
1
L

δ (Kn)+O(
1
L2 )

where δ (K) ≡ δ+(K) + δ−(K). Finally we can determine the imaginary correction to the

energy of the spike from the four tachyonic modes, by putting L→ ∞:

∆Espike = 4∑
K

1
2

W (K)

≈ 4
L

2π

ˆ 1

−1
dK

1
2

W
(

K− 1
L

δ (K)
)

as L→ ∞

= ∆Ehoop− i2

√
1− c
1 + c

. (3.24)

In the expression above, ∆Ehoop = iL/2 is the correction (3.21) to the vacuum solution. Thus

in the difference ∆Espike−∆Ehoop the IR divergence from L→ ∞ is canceled.

About these boundary conditions

We found that the amplitude of the mode (3.22) (for |K| < 1) is different at large positive

and negative x. This is the obstruction to imposing periodic boundary conditions, which we

avoided by matching only the phases. One should not be surprised that we cannot impose

these boundary conditions. They amount to gluing the string to itself after some large

number of windings, or rather, gluing the vibrations on it to themselves, and this might not

be allowed.

For the giant magnon, one has to glue a series of magnons together with ∑i pi = 0 to

obtain a valid closed string solution. But is not clear that this is a condition on the allowed

series of single spikes. It would tell you about periodicity of the spatial X i(x,τ) under t, but

say nothing about their behaviour at large |x|.

Here we consider a solution of two widely separated spikes with opposite velocities 1
c

and −1
c , because for this choice we can impose honest boundary conditions. In this case

we recover the twice the energy correction (3.24) obtained above, one for each spike. This

justifies our use of these unusual boundary conditions.
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Two spikes

As x→±L
2 , the amplitude of the mode (3.22) becomes A±, given in (3.23). This formula is

valid for c > 0; for c < 0 the sign ± is reversed, and we have instead
∣∣δXc<0(±L

2 ,0)
∣∣= A∓.

This immediately suggests the following way to impose consistent boundary conditions:

take two spikes, far apart, with parameters c and −c. Each is in a box of length L, and we

connect these together. That is, consider

X µ(x,τ) =


Xspike(c)

(
x− L

2 ,τ
)

for 0 < x < L ,

Xspike(−c)
(
x− 3L

2 ,τ
)

L < x < 2L

which is an approximate solution near t = 0. In fact it is a part of a scattering solution,

since the two spikes have velocities 1/c and −1/c. It can be viewed as an excitation above

a hoop of length 2L.

Vibrations of this solution will be described by the same modes we have been using, and

we again focus on the |K| < 1 sphere modes, which give the imaginary energy correction.

For the boundary condition at x = L , both modes δX have amplitude A+, so matching them

sets their phases equal there. And at x = 0,2L we can impose periodic boundary conditions,

since both modes have amplitude A− there. The resulting condition on the allowed K is

simply

K = Kn−
1

2L
δ(c) (Kn)− 1

2L
δ(−c) (Kn)+O(

1
L2 ) ,

where Kn = 2πn
2L are now the allowed wave numbers for the vacuum in length 2L. This leads

to energy correction

∆E = ∆Espike(c) + ∆Espike(−c) ,

i.e. we obtain the sum of the corrections we calculated in (3.24) by imposing our phase-only

boundary condition at x = ±L
2 . The finite piece (after subtracting the vacuum’s ∆Ehoop) is

twice the finite piece for one spike.
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3.5 Properties and semi-classical results for the single spike solution

We now present a summary of all of the properties and results found in this chapter for the

single spike solution, and compare them to the known results of the giant magnon.

After determining the bosonic and fermionic modes of the single spike solution, we found

a mismatch between the modes in these two sectors, both in number and in their masses.

This is evidence that the spike solution is not supersymmetric. Some of the bosonic modes

found were seen to be tachyonic, showing that the single spike is unstable, just like the

relevant ‘vacuum’ solution which we referred to as the hoop.

In order to perform a semi-classical analysis of the spike, we started by determining the

Hamiltonian for small fluctuations of the corresponding vacuum (the hoop), which was seen

to be just ∆−Φ. In this case, the winding Φ has replaced the angular momentum J found in

the Hamiltonian for the magnon case. This was expected because we saw that in flat space

T-duality related similar solutions. We then used this result to calculate a semi-classical

estimate of the lifetime of the single spike solution.

Another subject of interest is the comparison of the single spike solution to some operator

on the Super Yang-Mills side. It had been conjectured that the single spike is dual to an

excitation of an anti-ferromagnetic spin chain. [48, 113] There have been various attempts

to find a full N-body description of the giant magnon, such as the Hubbard [145] and

Ruijsenaars-Schneider models [51]. It is possible that the single spike solution will be another

test case for such a description.

The periodicity in the parameter p of the dispersion relation for giant magnons (3.6) is

the signature of discrete space. On the SYM side, this can be understood to be the position

along a spin chain. Even though on the case of the single spike it seems that such periodicity

is nonexistent (3.8), that shouldn’t count as evidence against such discreteness. In [104], one

allows p outside our range 0 < p < 2π, and finds that ∆−Φ becomes periodic (their figure

1). However the meaning of this parameter p is not well understood for the spike.

The single spike is an excitation of an unstable vacuum state, the hoop, which consists

of a string wrapped around an equator of S5. One can stabilize such loops of strings by
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making them rotate in other planes [25,133]. Such solutions carry large angular momentum

by being wound many times around one equator. It is possible that adding these extra

angular momenta may stabilize the spike solution as well, and it may be this object which

has a more natural gauge theory dual.



Chapter 4

Scattering of N Magnons

Recent progress in understanding the Gauge/String duality in N = 4 Super Yang-Mills the-

ory resulted in complete specification of the worldsheet S-matrix and the associated spec-

trum [20, 92, 36, 93, 22, 17, 146, 55, 65, 39, 61, 147, 148]. The conjectured exact result received

impressive confirmation in both weak coupling Yang-Mills theory calculations and also semi-

classical string theory calculations at strong coupling [12,25,123,91,149,89,41,124,125,35].

These successes were accomplished due to the integrability property characterizing the

string dynamics and present in Yang-Mills theory through its spin-chain representation

[20, 10, 31, 34, 29, 150]. At the spectrum level there is a complete classification of states in

terms of magnon excitations. Their dispersion formula is again known from both weak and

strong coupling studies [56,26].

Even though all orders results have been accomplished, further study of the models and

of their integrability structures is still desirable. For instance the spin chain Hamiltonian

is reliably known only from weak coupling calculations, its comparison (and agreement)

with the string theory Hamiltonian is to some degree purely accidental. In this chapter we

will pursue the question of multi-magnon dynamics. Magnons scatter from each other with

known computable phase shifts [36, 41, 151, 57, 152, 59, 153, 104] and it is of relevance to

determine their interactions. We will do that in the simplest case of magnons moving on

R× S2 working at the the semiclassical level. The equations of motion in this case (in a

timelike-conformal gauge) coincide with those of the O(3) nonlinear sigma model. Multi-

magnon solutions have been constructed in these case using several different techniques,

79
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involving the dressing and the inverse scattering methods [151,127,154,109,155].

One particular approach (Pohlmeyer reduction method) reduces the problem at the

equation of motion level to a well known integrable field theory, the sine-Gordon model [49].

In this reduction the role of magnons is played by sine-Gordon solitons. Much is known

about inter-soliton dynamics in the sine-Gordon theory [119]. In particular it can be exactly

described through an N-body model generalizing the Calogero-Moser model [156,157]. The

relativistic Ruijsenaars-Schneider model [158] is completely integrable, it summarizes the

N-soliton (and anti-soliton) dynamics for a given coupling and can be directly deduced from

sine-Gordon theory itself [159]. In turn it can be used as a full dynamical theory, even at

the quantum level [160]. It is our goal to establish a related dynamical description for string

theory magnons.

The connection between string dynamics and sine-Gordon theory, is known to be highly

nontrivial. The two theories coincide at the level of equations of motion, but that is where

the comparison stops [26]. Physical quantities like the energies (of magnons and solitons)

and the associated phase shifts are different and it is our intention to clarify somewhat this

nontrivial relationship. The nontrivial dynamical connection between the two systems can

be traced back to a (nonabelian) dual description of sigma models and the fact that it is

in the dual formulation that the connection can be described in canonical terms. This was

established in several works by Mikhailov [161, 50, 128] and remains to be pursued at the

quantum level.

For the question of formulating the dynamical system describing multi-magnon dynamics

we start from the fact that at the level of equations of motion it coincides with the soliton or

rather the N-body RS model. We then require a further fact, namely that the string theory

model ought to reproduce the correct magnon energies and the phase shifts, both of which

differ from the soliton case. From the comparison of energies we suggest a Hamiltonian,

as the n = −1 member of the infinite Hamiltonian sequence [162, 163, 164]. Requiring the

correct phase shift we are led to a nontrivial Poisson structure representing the N- magnon

dynamics.

In this chapter we will start by giving a brief summary of the relation between magnon

solutions in R× S2 and sine-Gordon solitons. In Section 4.2 we review the integrable dy-
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namics of solitons in terms of the N-particle R-S description. In Section 4.3 we consider the

analogous representation for magnons. From comparison of energy eigenvalues we are led to

an N-body Hamiltonian given by the inverse of the lax matrix of the RS model. Elaborating

on the phase shift we are led to suggest a need for an alternative symplectic form. This

symplectic form is explicitly given in the limit of well separated magnons in Section 4.4.

4.1 From Classical Strings to sine-Gordon: Pohlmeyer Map

It is well-known that the theory of classical strings moving on R×S2 is related to the sine-

Gordon model at the level of the equations of motion. In fact, the original Pohlmeyer map

[49] related the O(3) σ -model co-ordinates to the sine-Gordon theory through a projection

map. Let us summarize this map: start from the O(3) σ -model Lagrangian density

L (σ ,τ) =
1
2

3

∑
i=1

(∂σ Xi ∂σ Xi−∂τXi ∂τXi)+
λ

2

(
3

∑
i=1

XiXi−1

)
,

where Xi are the embedding co-ordinates on R3 and λ is a Lagrange multiplier that fixes the

motion to be on an S2 sphere. This Lagrangian is invariant under the action of the internal

symmetry group O(3). To simplify notation, define for a vector of R3 the following

p = (p1, p2, p3) , (p,q) =
3

∑
i=1

piqi , p2 = |p|2 =
3

∑
i=1

p2
i .

Also we will work with light-cone co-ordinates

x± =
1
2

(σ ± τ) , ∂± = ∂σ ±∂τ .

In these co-ordinates we have the identity ∂+∂− = ∂ 2
σ − ∂ 2

τ (where we defined ∂σ ≡ ∂/∂σ ,

etc), and the equations of motion can be written as

∂+∂−Xi +(∂+X ·∂−X)Xi = 0 , (4.1)
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with the constraints

X ·X = 1 , λ =−∂+X ·∂−X .

The sum and the difference of the energy and momentum densities are just given by

1
2 (∂−X)2 and 1

2 (∂+X)2, respectively. Recalling that we have the constraint X ·X = 1, then

we find

X ·∂±X = 0,

so ∂±X are vectors orthogonal to X . From the equations of motion (4.1), we can also see

that ∂+∂−X is parallel to X , and consequently orthogonal to ∂±X . From these results we can

derive the equations of conservation of energy-momentum, which are

∂+

[
1
2

(∂−X)2
]

= ∂−

[
1
2

(∂+X)2
]

= 0.

These equations imply that

(∂+X)2 = h2 (x+) , (∂−X)2 = k2 (x−) ,

where the functions h, k are determined completely by initial conditions. Looking back at

the equations of motion (4.1), one can easily see that they are invariant under local scale

transformations (x+,x−)→ (x
′
+,x

′
−) such that

dx
′
+ = |H(x+)|dx+ , dx

′
− = |K(x−)|dx−,

where H, K are non-vanishing functions. Choosing, without loss of generality, |H|= |h| and

|K|= |k|, it is easy to see that
(

∂X
∂x′+

)2
= 1 =

(
∂X
∂x′−

)2

, and so the energy density is constant

(1/2) while the momentum density vanishes in these new co-ordinates. We can then start

from these “normalized” co-ordinates, and drop the primes. Re-writing the results we have

so far, in the “normalized” co-ordinates the equations of motion (4.1) are still valid, and we

have the following constraints

X2 = 1 , (∂+X)2 = (∂−X)2 = 1 , (∂±X ·X) = 0 . (4.2)
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Only one of the O(3)-invariant quantities formed by the X i’s (and their derivatives) is

undetermined: ∂+X · ∂−X . This quantity obeys −1 ≤ ∂+X · ∂−X ≤ 11, so we define a field

α(x+,x−) such that

cosα = (∂+X ·∂−X) . (4.3)

Summarizing, in the O(3) model the vectors X , ∂+X , ∂−X span the whole R3 space, and any

solutions of the equations of motion (4.1) obey the constraints (4.2). The converse is also

true, that is, if we have a vector X ∈ R3 such that it obeys these constraints, it also obeys

the equations of motion.

Because the 3 vectors X , ∂+X , ∂−X span the whole R3 space, we can write any other

vector as a linear combination of these, in particular2

∂
2
+X = −X +(∂+α)cotα ∂+X− (∂+α)

sinα
∂−X ,

∂
2
−X = −X− (∂−α)

sinα
∂+X +(∂−α)cotα ∂−X .

These results allow us to write, from the definition of α and using the constraints (4.2),

∂+∂−α = −∂−

[
∂ 2

+X ·∂−X
sinα

]
= − 1

sinα

[
∂

2
+X ·∂ 2

−X + ∂−∂
2
+X ·∂−X− (∂−α)cotα ∂

2
+X ·∂−X

]
= −sinα .

1This happens because if we define ~a = ∂+X and ~b = ∂−X , we have |~a|=
∣∣∣~b∣∣∣= 1, and

0≤
(
~a +~b

)2
= |~a|2 +

∣∣∣~b∣∣∣2 + 2~a ·~b≤
(
|~a|+

∣∣∣~b∣∣∣)2
⇒−1≤~a ·~b≤ 1 .

2To determine the coefficients of the linear combinations we write a general expansion

∂
2
+X = φX + β∂+X + γ∂−X ,

and then determine the projections of ∂ 2
+X on each of the basis vectors

∂
2
+X ·X = φ =−1 , ∂

2
+X ·∂+X = β + γ cosα = 0 , ∂

2
+X ·∂−X = β cosα + γ = ∂+(cosα).

These equations allow us to solve for the coefficients φ ,β ,γ. The same can be done for ∂ 2
−X .
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To obtain the last line, we used the following identities (using (4.1) and (4.2))

∂
2
+X ·∂ 2

−X = 1− (∂+α)(∂−α)cosα ;

cotα ∂
2
+X ·∂−X = −(∂+α)cosα ;

∂−∂
2
+X ·∂−X = ∂+ (∂+∂−X) ·∂−X =−cos2

α .

So the field α = arccos(∂+X ·∂−X) obeys the sine-Gordon equation ∂−∂+α =−sinα, which

can be derived from the Lagrangian density

L =−1
2

(∂τα)2 +
1
2

(∂xα)2−U(α) =
1
2

(∂+α)(∂−α)−U(α),

(and thus the Hamiltonian is H = 1
2(∂τα)2 + 1

2(∂xα)2 +U(α), in our sign convention), with

the potential

U(α) = 1− cosα = 2sin2
(

α

2

)
.

Starting from any solution of the sine-Gordon theory, there is always a corresponding

solution of the equations of motion (4.1), with constraints (4.2) and which obeys the map

∂+X ·∂−X = cosα. But because this is a projective map, if we have different solutions of the

O(3) σ -model that have the same projection ∂+X ·∂−X , these solutions will be mapped to

the same sine-Gordon field.

Giant magnons and giant spike as sine-Gordon solitons

Our interest is the study of classical rigidly rotating string solution of R× S2 such as the

giant magnon and the giant spike. For a classical solution in conformal gauge with Y 0 = t,

one has the Pohlmeyer [49] identification of a scalar field φ(x, t)as

cos2φ = ∂τX i
∂τX i−∂xX i

∂xX i (4.4)

obeying the sine-Gordon equation

−∂τ∂τφ + ∂x∂xφ =
1
2

sin2φ .
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Figure 4.1: Under the Pohlmeyer map, the magnon is sent to the ordinary kink (in red)
while the single spike is mapped to an unstable solution connecting the hilltops (in blue).
The sine-Gordon field α is plotted left-to-right, x into the page, and U(α) vertically.

Comparing to the notation above we have the identification α =−2φ .

Under this map, the point particle is mapped to the vacuum α = 0, with zero energy,

while the giant magnon is mapped to the simple kink [26]

α = 4arctan
(

eγ(x−cτ)
)

,

connecting α = 0 and α = 2π at x =±∞ (note that α is defined up to mod(2π)). Its energy

is (θ̂ is the asymptotic rapidity of the sine-Gordon soliton)

εs.g = γ =
1

sin(p/2)
= cosh θ̂ . (4.5)

The velocity c can be changed by boosting the kink, and the energy Es.g. changes as one

would expect for a relativistic object.3

The comparison between sine-Gordon model and the classical string theory solutions was

seen also for another type of “dual” solutions called single spike solutions (see for example

3However, giant magnons of different c are not related by worldsheet boosts (which are just reparametriza-
tions) since X0 = t is held fixed.
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the last Chapter and [104,48,165]). The single spike (3.5) is mapped instead to an unstable

kink. From the map (4.4) it is clear that the effect of the x↔ t interchange is to shift the

field by π:

α(x, t) = αmagnon(τ,x)−π = 4arctan
(

eγ(τ−cx)
)
−π .

This solution connects two adjacent maxima of U(α), rather than two minima: α =±π at

x =±∞, and is drawn in figure 4.1. If we choose the constant in U(α) to place these maxima

at zero

U(α) =−1− cosα =−2sin2
(

α + π

2

)
,

then this unstable kink solution has energy

ε
spike
s.g. = cγ =

cos(p/2)
sin(p/2)

=
1√

(1
c )2−1

. (4.6)

This direct connection between the two theories, sine-Gordon model and classical strings,

holds only at the level of equations of motion [50], and it is non-trivial at the canonical level.

Several physical properties are different, in particular the energies and the semiclassical

phase shifts [26]. In fact the energies shown above in (3.6) (introduced in the previous

Chapter) and (4.5) exhibit an inverse relationship

Emagnon =

√
λ

π

1
γ

=

√
λ

π

1
εs.g

.

That is, the energy coming from the sine-Gordon model’s Hamiltonian is inverse to the

spin-chain energy for magnons constructed out of target space charges ∆− J =
√

λ

2 sin(p/2).

This relation can be generalized further for the scattering solution of two magnons. The

two-magnon scattering state, obtained via dressing method [109] (see figure 4.2), can can

be mapped through Pohlmeyer’s reduction to the scattering solutions of two solitons, whose

scattering solution can found in [119]. It can be seen that the energy of the two-magnon

scattering solution is related to the energy of each of the solitons in the following way
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Figure 4.2: Scattering of two magnons. At earlier time the two magnons are separated in
the worldsheet direction x. They cross each other, and retain the same shape while moving
in opposite directions in the worldsheet, but with a time delay. In this figure X3 = cosθ is
the height above the equator.

E2−mag =
1

εs.g,1
+

1
εs.g,2

.

The scattering phase for two magnons is calculated in a very similar way to the scatter-

ing of two sine-Gordon solitons [166, 118]. See also [119] for a review on the classical and

semiclassical behavior of sine-Gordon solitons. This is not surprising due to the equiva-

lence of the two classical models through Pohlmeyer’s map [49] (see also [161, 128]). The

time-delay and phase shift of scattering of magnons was also studied through Bethe Ansatz

techniques [41,36,151,152,153].

Since the string and the sine-Gordon equations share a common time t, it obviously

follows that the time-delay of scattering of giant magnons (on the string worldsheet) and

the time delay for the analogous scattering problem of solitons (in sine-Gordon theory) is

the same

∆tsg = ∆tmag =
2

msinhθ
ln tanhθ = ∆τ,

It does not mean however that the scattering phase shifts of the two problems are the same.

In fact they differ, due to the difference in energies stated above. One has the well known

relation, where the derivative of the phase shift with respect to energy equals the time delay,
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in the present case :
∂δs.g

∂εs.g
= ∆τ =

∂δmag

∂Emag
⇒ δsg 6= δmag.

This will imply that a different interaction is responsible for the behaviour in the two cases.

4.2 Review of sine-Gordon Dynamics

The dynamics of sine-Gordon solitons can be summarized by a relativistic N−body model

due to Ruijsenaars and Schneider. These class of models [158, 160] represent a relativis-

tic generalization of the Calogero-Moser models [157, 156]. The relation between the field

theoretic system of sine-Gordon solitons and the Lax matrix formulation of the Ruijsenaars-

Schneider model was also thoroughly discussed in [159]. In this section we will review some

of the aspects of this relation and give a summary of the needed notation. For more details

and derivations the reader is directed to the original references.

For establishing the N-body description of soliton dynamics one starts with the N-soliton

solution, written as:

e−iφ =
det(1 + A)
det(1−A)

.

where A is a N×N matrix with components

Ai j = 2
√

µiµ j

µi + µ j

√
XiX j.

The µi are the rapidities, and the Xi = aie2(µiz++µ
−1
i z−) are related to the positions of the

soliton through the ai. Here we use light-cone co-ordinates z± = x± t, and ∂± = 1
2 (∂x±∂t).

Note that for a soliton or anti-soliton, µ is real and a pure imaginary. The breather solution

corresponds to a pair of complex conjugated rapidities (µ,µ) and positions (a,−a).

The sine-Gordon equation can be described by a Hamiltonian system with the canonical

symplectic form (π is the conjugate momentum to the s.G field φ)

Ωsg =
ˆ

π ∧dφ .



89

This, by direct substitution can be used to deduce the symplectic form of the soliton variables

(ai,µi), which can be seen to reduce to the usual symplectic form after a change of variables.

Considering the evolution of the system in terms of the null plane time z+ = τ one has

A(σ ,τ) = eσ µ−1
Ã(τ)eσ µ−1

,

where [µ]i j = µi j = µiδi j is the matrix of rapidities, X̃i = aieµiτ are the soliton co-ordinates.

The matrix (co-ordinate)

Ã(τ) = 2
√

µiµ j

µi + µ j

√
X̃iX̃ j.

is then used to reconstruct the Lax matrix of the N-body system. Through diagonaliza-

tion one has:

Q = U−1ÃU,

L = U−1
µU.

where Q = diag(Q1, · · · ,QN) are the eigenvalues of Ã. The N-soliton solution is then written

as e−iφ = ∏
N
i=1

1+Qi
1−Qi

, and the matrix L is the Lax operator, as its time evolution is given by

a (Lax) equation

L̇≡ dL
dτ

= [M,L] , M = U̇U−1.

Consequently, the quantities Hn = Tr(Ln) = ∑
N
i=1 µn

i are conserved through the evolution of

solitons.

Finally, if we define ρi = Q̇i/Qi, and perform the change of variables (µi,ai)→ (Qi,ρi),

which is a symplectic transformation, we find the Lax matrix to have the same form as the

original Ã:

L = 2

√
QiQ j

Qi + Q j

√
ρiρ j. (4.7)

The Poisson brackets of these two variables Qi,ρi are not canonical, so it is convenient

to introduce a new set of variables θi conjugated to the variables qi, given by

ρi = eθi ∏
k 6=i

Qi + Qk

Qk−Qi
, Q j = ieiq j .
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In these new variables, the original symplectic form
´

π ∧ dφ is simply given by the usual
´

θidqi, which corresponds to the canonical Poisson brackets. From the sequence of conserved

quantities, or Hamiltonians, Hn = Tr(Ln) we are interested in particular in the H±1, which

are the generators of the evolution in the light cone co-ordinates τ = z+ and σ = z−. These

are given by

H±1 = Tr
(
L±1)= ∑

j
e±θ j ∏

k 6= j

∣∣∣∣coth
(

q j−qk

2

)∣∣∣∣ .
The full Hamiltonian is given by H = 1

2 (H+1 + H−1) = TrLrs, where we define

Lrs =
1
2
(
L + L−1) . (4.8)

This system corresponds to a particular case of the N−particle relativistic Ruijsenaars-

Schneider model [158]. The Lax matrix for the general case of RS model was constructed

in [158]. This Lax matrix is defined by

L j = ViCi jVj, (4.9)

where

Vi ≡ e
1
2 θi

(
∏
k 6=i

f (qi−qk)

)1/2

,

and Ci j (q) is directly related to the choice of f (q). For a family of interaction potentials of

the type given below

f (q) =
[
1 + α/sinh2

(
µq
2

)]1/2
, µ,α ∈ (0,∞) , (4.10)

the components Ci j are just given by Ci j (q) =
[
cosh

(
µq
2

)
+ iasinh

(
µq
2

)]−1
, with

(
1 + a2

)−1 =

α2.

The model has an infinite set of commuting conserved charges

Hn = Tr(Ln) , n ∈ N,

with the Hamiltonian (generator of time translations) and momentum (generator of
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space translations) given as [158]

H =
1
2

(H1 + H−1) = mc2
N

∑
j=1

coshθ j ∏
k 6= j

f (qk−q j) , (4.11)

P =
1
2

(H1−H−1) = mc
N

∑
j=1

sinhθ j ∏
k 6= j

f (qk−q j) , (4.12)

where qi are the positions of the solitons and θi the conjugate rapidities. The interaction

between solitons is given by the even function f (qk−q j), reducing to f ≡ 1 in the free theory.

The RS model is relativistic, as the generators (B is the generator for Boosts)

Hk =
1
2

(Hk + H−k) , Pk =
1
2

(Hk−H−k) , B =−1
c ∑q j,

obey the two-dimensional Poincaré algebra:

{Hk,Pk}= 0 , {Hk,B}= Pk , {Pk,B}= Hk . (4.13)

Next let us discuss the question of the time delay (and phase shift) in the particle picture.

Considering the two particle case, one goes to the center-of-mass frame, as in [158]:

s≡ q1 + q2 , ϕ ≡ 1
2

(θ1 + θ2) ,

q≡ q1−q2 , θ ≡ 1
2

(θ1−θ2) , (4.14)

The Lax matrix (4.9) and its inverse are then given by

L = eϕ f (q)

 eθ C12

C̄12 e−θ

 ; L−1 = e−ϕ f (q)

 e−θ −C12

−C̄12 eθ

 ,

where Ci j is a 2×2 matrix with entries C11 = C22 = 1, and

C12 = C̄21 =
[
cosh

(
µ

2
q
)

+ iasinh
(

µ

2
q
)]−1

.
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Now it is simple to check that the Hamiltonian (4.11) becomes

H = 2coshϕ coshθ f (q) = (coshθ1 + coshθ2) f (q) . (4.15)

The momentum given by (4.12) also becomes:

P = 2sinhϕ coshθ f (q) = (sinhθ1 + sinhθ2) f (q) . (4.16)

One comment should be made with respect to the interaction potential

f (q) =
[
1 + α/sinh2

(
µq
2

)]1/2
.

Going back to (4.10) one can see that for α = 1 it reduces to the particular case of a repulsive

soliton-soliton interaction in the sine-Gordon model, fr (q) =
∣∣coth

(q
2

)∣∣. An extension of the

interaction potential to α =−1 leads to the attractive case of soliton-anti-soliton interaction

of sine-Gordon, where fa (q) =
∣∣tanh

(q
2

)∣∣.
With the Hamiltonian (4.15) and choosing certain interacting potentials f one can fully

recover the properties of the sine-Gordon soliton- (anti)soliton scattering, such as time delay

and phase shift. From (4.16) it is easy to see that the center of mass P = 0 corresponds to

ϕ = 0. Then the center-of-mass Hamiltonian for two particles is:

Hcm = coshθ f (q) .

Now we have the relation:

q̇2 + f 2 (q) = H2
cm.

Because Hcm is a constant of motion, so is the quantity ε ≡H2−1. Evaluating ε asymptoti-

cally, when x→∞, we obtain ε = sinh2
θ̂ , where θ̂ is the asymptotic center-of-mass rapidity.

The time delay is then determined by the time taken along a trajectory from −q to q, as
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|q| → ∞. For the repulsive soliton-soliton case fr, we get

ˆ q

−q

dq√
ε− csch2 (q

2

) =
4√
ε

cosh−1
(√

ε

ε + 1
cosh

(q
2

))∣∣∣∣q
2cosh−1

√
1+ε

ε

→
q→∞

2q
sinh θ̂

+
1

sinh θ̂
ln
(
tanh θ̂

)
.

The first term is the time for each of the solitons to go from −q to q if if it was free (no

interaction). The second term is in fact the time delay due to having a repulsive interaction,

and correctly reproduces the time delay for a soliton-soliton scattering in sine-Gordon theory,

obtained through field theoretic methods.

4.3 An ansatz for the dynamics of a two-magnon system

Our aim is to describes the N-magnon dynamics in Hamiltonian terms. The appropriate

dynamical system ought to be such that it reproduces the classical equations of motions, its

energy, momentum and finally phase shift in agreement with the known magnon results [26].

We will begin by focusing on the two-magnon interactions.

We know that the sine-Gordon and the magnons have the same classical equations of

motion, and as such the time delay for both systems agrees

∆tm (Em) = ∆tsg (εsg)|
εsG= 1

Em

but with different energies. This implies different Hamiltonians for the two systems. With

the semiclassical phase shift obeying ∂δ (E)
∂E = ∆t one can try to deduce the (Hamiltonian)

dynamics directly from the phase shift itself.

For the sine-Gordon system the center-of-mass Hamiltonian is Hsg = coshθ f (q) = εsg,

the equation of motion for the relative position q gives q̇ =
√

ε2
sg− f (q)2, and the time delay

in terms of the energy is simply given by

∆tsg =
ˆ

dq
q̇

=
ˆ

dq√
ε2− f (q)2

.
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and the scattering phase shift of two sine-Gordon solitons is just given by δsg (ε) =
´

dε ∆tsg,

while for the two-magnons

δm (Em) =
ˆ

dEm ∆tsg (εsg)|
εsg= 1

Em
=
ˆ

dEm Em

ˆ
dq

f (q)
√

f−2 (q)−E2
m

. (4.17)

In order to determine which Hamiltonian Hcm ≡ Em produces this phase shift we first

perform a change of variables, introducing a new co-ordinate Q through dQ = dq
f (q) . Also

define F (Q) = 1
f (q(Q)) . The interaction then follows (soliton-soliton interaction): for f(q) =

cothq we find q = cosh−1 (eQ
)

and F (Q) =
√

1− e−2Q.

This means that the limit of relative position q→ ∞ corresponds to the new relative

position doing the same Q→∞. Also in this limit, we have f (q) ,F (Q)→ 1 (the free theory

limit).

After this change of variables, we rewrite the phase shift as

δ (Em) =
ˆ

dEm

ˆ
dQ

√
E2

m

F2−E2
m

=
ˆ

dEm

ˆ
dQ
Q̇

,

and want to find the center-of-mass Hamiltonian Hcm ≡ Em such that

Q̇ =
∂Hcm

∂α
=

√
F2−H2

cm

H2
cm

, (4.18)

where α is the new relative rapidity, i.e. the conjugate variable to Q. The differential equation

above can be solved to give √
1−
(

Hcm

F

)2

=−α

F
.

This result is only valid for α < 0. Squaring this result, we can solve for Hcm, and find

Hcm =
√

1−α2− e−2Q. (4.19)

This two-body magnon Hamiltonian appears to be of relativistic (Toda) type. It faith-

fully reproduces the magnon scattering phase shift. But it is not directly recognizable as

a known integrable system. Furthermore it is not obvious how to extend it to the N-body
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case. First one would need to find a two-body Hamiltonian that reduces to Hcm in the

center-of-mass. In the limit Q→ ∞ we have that

H = ε1 + ε2 = sin
p1

2
+ sin

p2

2
,

where ε1,2 = sin p1,2
2 are the energies of each magnon in the free theory. For only one magnon

the Hamiltonian would be given by H =
√

1−α2 = sin p
2 , which means that the relation

between the rapidity α < 0 and the momentum p is α =−cos p
2 = cos(π + p

2 ). These results

will hold in the free theory limit for each magnon. Then a good ansatz for the two-body

Hamiltonian, which reproduces the correct result for the free limit, would be

H2 =
√

1−α2
1 − e−2Q +

√
1−α2

2 − e−2Q, (4.20)

with Q = Q1−Q2, and the momentum of each magnon is given by pi
2 = arccos(αi)−π.

This construction is non-unique because we do not have the expression of the total

momentum. As mentioned we also have no information on the integrability properties of this

system, which is crucial to generalize our results to the dynamics of N-magnon solutions. For

these reasons we now pursue a different strategy, based on employing the known integrable

structure of the RS model, in particular its Lax matrix L. Together with the classical

equivalence between sine-Gordon solitons and giant magnons there was evidence that the

poles of the S-matrix of scattering magnons were related to a Calogero type system in

the non-relativistic limit [147], thus making us believe that the dynamics of magnons are

intimately related to the dynamics of solitons in the RS model. In fact one would hope to

describe the dynamics of magnons through a Lax pair formulation whose Lax matrix would

be directly related to the Lax matrix of the relativistic RS model.

The N-magnon Hamiltonian

With the motivation for using the RS integrable structure described above we now proceed to

the construction of the associated magnon dynamical system. This will involve specifying

both the Hamiltonian and the symplectic structure. As we have emphasized before, the
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energies of the sine-Gordon solitons and the magnons are inverse of each other. This result

leads us to the following ansatz for the N-magnon Hamiltonian:

Hm = Tr
[
L −1

rs
]
, (4.21)

where Lrs is related to the Lax matrix of the RS model through (4.8). We will now study

this Hamiltonian and consider the two-magnon interaction.

Recall that from (4.8)

Lrs =
L + L−1

2
=

f (q)
2

eϕ

 eθ C12

C̄12 e−θ

+ e−ϕ

 e−θ −C12

−C̄12 eθ


 .

The RS Hamiltonian (4.11) is just the trace of the matrix above. This matrix has the

following eigenvalues:4

h± =
f (q)

2
(cosh(ϕ + θ)+ cosh(ϕ−θ)

±
√

(cosh(ϕ + θ)− cosh(ϕ−θ))2 + 4sinh2
ϕ

(
1− f (q)−2

))
.

Then the Hamiltonian for the 2-magnon problem (4.21) will be just

Hm = h−1
+ + h−1

− =
1

f (q)
2coshθ coshϕ

cosh2
θ + f (q)−2 sinh2

ϕ
.

Recall that if M is a diagonalizable matrix with Λ = diag(λ1, · · · ,λN) the diagonal matrix

of eigenvalues, then for a smooth function g(M) the trace of g(M), it will be given by

Tr[g(M)] = Tr[g(Λ)] =
N

∑
i=1

g(λi) . (4.22)

It is easy to check that in the free theory ( f (q)≡ 1) we have:

H f ree
m =

1
coshθ1

+
1

coshθ2
= Emag,1 + Emag,2,

4For a 2×2 matrix M =
(

a b
c d

)
, its eigenvalues are simply given by λ± = a+d

2 ±
1
2

√
(a−d)2 + 4bc.
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which corresponds to the sum of the energy of the two magnons, as expected.

To have an ansatz for the momentum of the N-body magnon problem, we first look at

the momentum for the magnons. In [26] we have that for one magnon the relation between

the momenta pm and the rapidity θ is given by coshθ =
[
sin pm

2

]−1
. But we know that for the

sine-Gordon model the total momentum is P = ∑i pi = ∑i sinhθi. Then a simple comparison

allows us to conclude that the momenta for each magnon pm,i is related to the momenta of

each soliton pi by:

sin
( pm,i

2

)
=

1√
1 + p2

i

. (4.23)

Thus, a good ansatz for the momenta of the magnon Pm = ∑i pm,i will be

Pm = 2Tr
[
arcsin

(
1 +P2

rs
)−1/2

]
, (4.24)

where we defined the momentum matrix for the RS model (whose trace gives the RS mo-

menta given by (4.12)) to be Prs = L−L−1

2 . By knowing the eigenvalues of this last matrix,

we can determine Pm by using the result (4.22):

Pm = 2 ∑
i=±

arcsin

 1√
1 + p2

i

 . (4.25)

The eigenvalues of Prs are

p± =
f (q)

2

{
sinhθ1 + sinhθ2±

√
(sinhθ1− sinhθ2)2 + 4cosh2

ϕ

(
1− f (q)−2

)}
.

The magnon momentum will then be given by

sin
Pm

2
=

p+ + p−√
1 + p2

+

√
1 + p2

−

.

In the limit of the free theory f (q)→ 1, we find the expected relation P f ree
m = pm

1 + pm
2 ,

i.e. the magnon momentum is the sum of the momenta for each magnon.

Note that because all integrals of motion Hk Poisson commute with each other, so will
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Hm and Pm:

{Hm,Pm}= 0.

The center of mass condition is given by

Pm = 0 ⇒ sin
Pm

2
= 0 ⇒ θ1 + θ2 = 0.

In the center of mass, the Hamiltonian is simply

Hm =
1

f (q)
(sechθ1 + sechθ2) =

2
f (q)

sechθ ,

with f (q) the same as before.

A method for checking our ansatz is to determine the classical and semiclassical behaviors

of our system, such as the time delay and phase shift for this two-body problem of scattering

magnons, and compare them to the known results [26].

We start from the center-of-mass Hamiltonian determined above, and determine the

classical equations of motion and time delay. But to do so, we need to choose a Poisson

structure. Let us assume that the Poisson structure is the symplectic one. Then the equation

of motion for q is just

q̇≡ ∂H
∂θ

=−Hm tanhθ = Hm

√
1− 1

4
f (q)2 H2

m.

The Hamiltonian is a conserved quantity, Hm ≡ E and can be evaluated when q→∞, giving

E = sech θ̂ , where θ̂ is the asymptotic rapidity. We find the time delay in this case to be

∆Tm =
ˆ

dq
q̇

= cosh2
θ̂∆TRS.

But this time delay is not correct, nor does it reproduce the right phase shift.

The phase shift is determined by WKB semiclassical methods to be given by the sym-

plectic structure ω (the inverse of the Poisson structure). In phase space variables (xi, pi)

we have:

δ (E)≡
ˆ

pi ωi jdx j. (4.26)
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For the results in this section we have used a canonical Poisson brackets (the standard

symplectic structure
{

pi,x j
}

= δi j), so the phase shift is simply δ (E) =
´

θ dq. By solving

Hm ≡ 2
f (q) sechθ = E, with respect to the rapidity, θ = cosh−1

(
2

f (q)E

)
, we can determine the

semiclassical phase shift to be

δ (E) =
ˆ

cosh−1
(

2
f (q)E

)
dq. =

ˆ
dE ∆Tm.

We find that even though our ansatz correctly reproduces the energies and momenta

of the magnon system, it does not give the expected classical behaviour (time delay or

equations of motion) nor the semiclassical phase shift. But in these calculations we have

assumed the usual canonical Poisson brackets, which is equivalent to having a canonical

symplectic form for q and p and which resulted in the usual form of the Hamilton-Jacobi

equations, namely q̇ = ∂H
∂ p and ṗ =− ∂H

∂ p . One can trace the difference in phase shifts to the

different Poisson structures in the two cases. The semiclassical phase shift can be related to

the symplectic form ω (the inverse of the Poisson structure) as follows :

δ =
ˆ

piωi jdq j =
ˆ

piωi jq̇ jdt .

For the trivial symplectic structure, ω ≡ Id, and the phase shift has the usual form. But

a non-trivial symplectic form is required for reproducing the correct phase shifts and for

defining the full magnon N-body dynamics. This we will identify in the next section.

4.4 Poisson Structure for the N-Magnon Dynamics

We have identified above the N-body Hamiltonian for magnons as one member of the RS

hierarchy. We have also understood that a new modified Poisson (and symplectic) structure

is needed in order to obtain both the correct equations of motion and the correct magnon

phase shift. In the present section we will be able to specify the modified symplectic structure

in an approximation of well separated magnons. This approximation which we take just for

the purpose of simplifying the problem involves a limit of the RS model when the solitons are
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far away from each other, called the Toda lattice. The relativistic Toda lattice was introduced

in [163] as a relativistic version of the regular Toda lattice [167, 168, 169]. In these models

the study of master symmetries [170,171,172] and of recursion relations [173,174,164] led to

the discovery of a sequence of Hamiltonian/Poisson structures that return the same classical

equations of motion, result of the existence of a bi-Hamiltonian system [162].

As seen in [163] we obtain the simpler model of relativistic Toda Lattice from the

original Ruijsenaars-Schneider model (4.11) by considering that the particles are very far

from each other qi−1� qi.5 This allows us to keep only the nearest neighbour interactions

and these interactions become exponential f (q) =
√

1 + g2eq. Note that we are studying the

nonperiodic Toda lattice, for which q0 =−∞ and qN+1 = ∞.

The Hamiltonian for the relativistic Toda lattice is given by

H =
N

∑
i=1

eθiVi (q1, ...,qN) . (4.27)

But now the interaction potential is given by nearest neighbour interactions only

Vi (q1, ...,qN) = f (qi−1−qi) f (qi−qi+1) , i = 1, ...N. (4.28)

Also, the symplectic form remains

ω =
N

∑
i=1

dqi∧dθi.

This system is integrable and has a Lax matrix formulation, inherited from the RS model

(up to some similarity transformation) [163,174,164,175,176]. To write the Lax matrix we

introduce the following change of variables

a j = g2eq j−q j+1+θ j
f (q j−1−q j)
f (q j−q j+1)

; b j = eθ j
f (q j−1−q j)
f (q j−q j+1)

, j = 1, ...,N.

5In fact Ruijsenaars introduced the limit ε → 0 of the variables

qε
j → q j−2 j lnε , j = 1, · · · ,N.
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Note that a0 = aN = 0. The Lax matrix is then given by

L =



a1 + b1 a1

a2 + b2 a2 + b2 a2 0
...

...
. . . . . .

aN−1 + bN−1 aN−1 + bN−1 · · · aN−1 + bN−1 aN−1

bN bN · · · bN bN


.

The Hamiltonian H1 (q, p) given in (4.27) can be written in the new variables:

h1 = TrL =
N−1

∑
i=1

ai +
N

∑
i=1

bi, (4.29)

The equations of motion in the (q,θ) co-ordinates are given by

q̇ j = eθ jVj ; θ̇ j =−∑
k

eθk
∂Vk

∂q j
,

which can be obtained from the Hamiltonian (4.27) by using the symplectic Poisson bracket

J0, defined by
{

qi, p j
}

= δi j. In the (a,b) variables, the symplectic Poisson bracket J0 becomes

a quadratic Poisson bracket π2:

{ai,ai+1}=−aiai+1 , {ai,bi}= aibi , {ai,bi+1}=−aibi+1. (4.30)

From this Poisson bracket and the Hamiltonian (4.29) one obtains the equations of motion

in the (a,b) co-ordinates

ȧ j = a j (b j−b j+1 + a j−1−a j+1) ; ḃ j = b j (a j−1−a j) . (4.31)

The Toda lattice is an integrable model. It also has a bi-Hamiltonian structure. Before

continuing, let us summarize the properties of this structure..
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Bi-Hamiltonian structure of Relativistic Toda Lattice

We now quickly summarize the properties of the bi-Hamiltonian structure of the relativistic

Toda lattice, based on [174,164,175,176]. The relativistic Toda lattice is an integrable model,

and has a sequence of conserved quantities

hn =
1
n

Tr(Ln) .

To this sequence we have a corresponding set of Hamiltonian vector fields χ1, ...,χn, with χi =

[π,hi], where π is some Poisson structure and [, ] is the Schouten bracket (Lie bracket). Also,

we have a hierarchy of Poisson 2-tensors π1, ...,πn (which are polynomial homogeneous of

degree n), and a sequence of master symmetries X1, ...,Xn, which obey the following properties

(more information on the properties of these entities can be found in [176] and references

therein):

1. the πn tensors are all Poisson structures. The corresponding Poisson brackets are given

by

{ f ,g}= ∑
i, j

π
i j ∂ f

∂xi ∧
∂g
∂x j , f ,g ∈C∞.

Note that π i j are the matrix elements of the matrix πn corresponding to this 2-

tensor, and x =
(
x1, ...,xM

)
are the co-ordinates of the Hilbert space, in our case

(a1, ...,aN−1,b1, ...,bN);

2. functions hn are in involution with all πm;

3. Xn (hm) = (n + m)hm+n;

4. LXn (πm)≡ [Xn,πm] = (m−n−2)πn+m, where LX in the Lie derivative in the direction

of the vector X ;

5. [Xn,Xm] = (m−n)Xn+m;

6.

πn∇hm = πn−1∇hm+1, (4.32)



103

where πn now denotes the Poisson matrix of the tensor πn, and ∇ =
(

∂

∂x1 , ...,
∂

xM

)
.

It is known that once our system is bi-Hamiltonian [162], which means that we can identify

two Hamiltonian functions h1,h2 and two compatible Poisson tensors π1,π2 satisfying

π1∇h2 = π2∇h1,

then we can find the whole hierarchy stated above, and the equations of motion are just

given by
dx
dt

= π1∇h2 = π2∇h1 = π0∇h3 = · · · . (4.33)

All of these properties are valid for m,n > 0 but can be seen to generalize to negative values

as well.

In the case one of the Poisson brackets is symplectic, one can find a recursion operator

which can then be applied to the initial symplectic bracket to determine the hierarchy

[173, 164]. In our case, we will see that in the (a,b) co-ordinates the Poisson brackets are

not symplectic (not even non-degenerate, as we don’t have the same number of a′s and

b′s) and it is non-trivial to find an extra Poisson bracket in the (p,q) co-ordinates apart

from the symplectic one, in order to form a bi-Hamiltonian system [175]. The construction

of another Poisson bracket in the (p,q) variables, compatible with the symplectic one was

done in [177], and has a structure highly non-trivial (not a polynomial dependence on the

(p,q) variables).

Construction of the hierarchy of Poisson brackets

In order to construct this bi-Hamiltonian structure one needs to identify two Hamiltonian

functions h1,h2 and two compatible Poisson tensors π1,π2 satisfying the same equations of

motion, i.e. if ∇ =
(

∂

∂x1 , ...,
∂

xM

)
where xi are our phase space co-ordinates, then

dx
dt

= π1∇h2 = π2∇h1 . (4.34)

We already have the Hamiltonian function h1 = TrL (4.29), and the corresponding

quadratic Poisson bracket π2 (4.30) such that π2∇h1 gives the equations of motion (4.31)
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[174,164]. A compatible linear Poisson bracket π1 was found in [178] such that

{ai,bi}= ai ; {ai,bi+1}=−ai ; {bi,bi+1}= ai ,

which together with the Hamiltonian h2 = 1
2Tr

(
L2
)

also gives the equations of motion (4.31).

These two pairs make a bi-Hamiltonian system with equations of motion given by (4.34).

If we now construct the master symmetries that obey the properties shown in Section

4.4 [164, 176], it becomes possible to construct the hierarchy of Poisson brackets with the

same equations of motion:6

· · ·= π0∇h3 = π1∇h2 = π2∇h1 = π?∇h−1 = · · · .

Our final objective is to make an analogy with the system of N magnons. Recalling the

RS Lax matrix Lrs, the sine-Gordon model corresponds to the Hamiltonian H ∝ TrLrs with

the canonical Poisson brackets, while the system of magnons was conjectured to correspond

its “inverse” Hm ∝ TrL −1
rs , with some other Poisson structure. In the limit we are considering

(relativistic Toda), we have

Hsg ∝ TrLrs→ h1 ; Hmag ∝ TrL −1
rs → h−1.

So, having started from the Hamiltonian h1 = TrL, with a quadratic Poisson bracket π2, we

want to find the Poisson bracket corresponding to h−1 =−Tr
(
L−1
)

that gives origin to the

equations of motion (4.31), i.e.

π2∇h1 = πm∇h−1.

To do so, we will restrict ourselves to N = 2.

6The Hamiltonian function h0 is singular, reason why that point is skipped from the sequence. h0 can
only be defined as a limit

h0 = lim
ε→0

1
ε

Tr
(
Lε
)
∼Tr(lnL) .

But to continue the sequence after this point, one can just do power counting, followed by a direct verification
of the equations of motion.
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For the N = 2 case, the Lax matrix reduces to

L =

 a1 + b1 a1

b2 b2

 ,

the Hamiltonian functions are given by

h1 = TrL = a1 + b1 + b2;

h2 = 1
2 TrL2 =

1
2
(
a2

1 + 2a1b1 + 2a1b2 + b2
1 + b2

2
)
,

and the corresponding Poisson bracket matrices are

π1 =


0 a1 −a1

−a1 0 a1

a1 −a1 0

 ; π2 =


0 a1b1 −a1b2

−a1b1 0 0

a1b2 0 0

 .

The equations of motion obtained from this bi-Hamiltonian system is


ȧ1

ḃ1

ḃ2

= π1∇h2 = π2∇h1 =


a1 (b1−b2)

−a1b1

a1b2

 .

The objective is to determine which πm gives origin to the previous equations of motion

with Hamiltonian function

h−1 =−TrL−1 =− 1
b1b2

(a1 + b1 + b2) .

We want to construct the next Poisson brackets given the master symmetries. The master

symmetries X1 and X2 were determined in [176], such that: X1 (hn) = (n + 1)hn+1 and X2 (hn) =
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(n + 2)hn+2. These are given by

X1,2 = r1
1,2

∂

∂a1
+ s1

1,2
∂

∂b1
+ s2

1,2
∂

∂b2
,

with r1
1 = a2

1 + 3a1b2 ; r1
2 = a1

(
a2

1 + 5a1b1 + 4b2
1 + 2b1b2−b2

2
)

;

s1
1 = b2

1 + 2a1b1 ; s1
2 = b1

(
−2a2

1−a1b1−2a1b2 + b2
1
)

;

s2
1 = b2

2−a1b2 ; s2
2 = b2

(
2a2

1 + 3a1b1 + 4a1b2 + b2
2
)
.

Then the next Poisson Brackets are given by property 4 (recall that the Poisson matrices

are anti-symmetric):7

π3 =−LX1π2 =


0 a1b1(a1 + b1) −a1b2(a1 + b2)

0 −a1b1b2

0

 ;

π4 = −1
2
LX2π2 =


0 a1b1((a1 + b1)2 + a1b2) −a1b2(a1(a1 + b1)+ 2a1b2 + b2

2)

0 −a1b1b2(a1 + b1 + b2)

0

 .

With these results we can easily see that π3∇h−1 does not give the right equations of motion,

but π4∇h−1 does. So the Hamiltonian h−1 with Poisson bracket π4 will give the same classical

behavior than the Hamiltonian h1 with Poisson bracket π2. The hierarchy is given by (the

point π3,h0 is not defined)

· · ·= π0∇h3 = π1∇h2 = π2∇h1 = π4∇h−1 = · · · .

All of these pairs generate the same equations of motion and time delay. In particular,

the Hamiltonian h−1 with (quartic) Poisson bracket π4 will give the same classical behavior

7To determine the Lie derivative of the 2-tensor π i j, we use the rule for a general tensor

LX T a1...ar
b1...bs

= Xc
∇cT a1...ar

b1...bs
−∇cXa1 T c...ar

b1...bs
−·· ·−∇cXar T a1...c

b1...bs
+

+∇b1 XcT a1...ar
c...bs

+ · · ·+ ∇bs X
cT a1...ar

b1...c
.
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than the Hamiltonian h1 with Poisson bracket π2. Since we have found that (in the limit of

well separated magnons) the Hamiltonian reduces to

Hmag = TrL −1
rs → h−1,

it will reproduce the correct equations of motion (the same as the limiting case of sine-

Gordon solitons) as long as we use the quartic Poisson structure π4 defined above.

For a non degenerate Poisson structure, the phase shift is given by the corresponding

symplectic form (the inverse of the Poisson tensor). The usual symplectic form is replaced

with the following ˆ
piq̇i→

ˆ
pi
(
π
−1)

i j q̇ j

(for a degenerate Poisson structure one has to check this more carefully). Consequently, if

two different systems have the same equations of motion, the different Poisson Structures

give origin to different phase shift.

4.5 Summary of results

In this chapter, we considered the question of an N-particle dynamics that would fully

describe interacting magnons at the semiclassical level. For this we have specified the inter-

acting Hamiltonian as a member of the RS hierarchy. This Hamiltonian had the property

that it reproduces energies of magnons. We argued that an alternative symplectic form is

needed in order to obtain the correct magnon phase shifts. We have considered the question

of the modified symplectic form explicitly for the case of well separated magnons. In this

limit one had the results of relativistic Toda theory where a sequence of symplectic forms

was already established in the literature.

Altogether the new Hamiltonian and the modified symplectic form are defined so to

reproduce correctly the original classical equations of motion and therefore the time de-

lay. Regarding future interesting problems we mention the following. We have succeeded

in establishing the necessary symplectic form in the limit of well separated magnons. For
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establishing an exact result one will have to give the multi-Poisson structure for the RS

model itself. It is likely that this is definitely possible, although technically (and possibly

conceptually) challenging. But one can definitely expect that a sequence of symplectic struc-

tures always follows for an integrable system. Generalization of the present construction to

magnons moving on higher spheres [94] is also a challenging task. One would also want to

define the dynamics in the periodic case appropriate for string motions with finite J [98].



Chapter 5

Algebraic curve formalism for

strings in AdS5×S5

In the previous chapters we discussed some classical string solutions and comparison to their

counterparts in the gauge theory, but we are far from having a full spectrum of solutions.

Nevertheless, even if we don’t know explicit form of the solutions, we can use the (classical)

integrability of the string σ -model in AdS5×S5 to find a classification of the energy spectrum

of classical strings. The first step towards this classification was done in [29] for bosonic string

in R×S3, where a correspondence was seen to exist between classical string solutions and

hyperelliptic curves. From this algebraic formalism one could determine all of the conserved

charges corresponding to each solution. So the problem of determining the set of classical

string solutions becomes a problem of finding the moduli space of admissible curves.

The algebraic curve formalism is constructed from the classical string σ -model using the

Lax connection, composed by a family of flat connections on the two-dimensional worldsheet,

thus highlighting the importance of integrability in this formalism. In fact, for σ -models on

group manifolds and coset spaces such a connection is known, and an infinite set of con-

served charges [127,49,179,180,181] can be constructed, characteristic of integrable models.

The search for the moduli space of curves that correspond to classical string solutions then

becomes the issue of finding solutions to a spectral problem in terms of algebraic curves,

which can in its turn be formulated as Riemann-Hilbert problem. This is done by represent-

ing the algebraic curves as Riemann sheets connected by branch cuts. These branch cuts

109
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correspond to fundamental particles, and are represented by contour integrals and densi-

ties on the complex plane. The quest of finding admissible curves is then summarized by

some integral equations. These integral equations seem to describe a factorizable scattering

problem, again pointing out the importance of integrability.

Solutions to the problem of finding curves corresponding to classical strings have been

found in several (bosonic) subsectors of AdS5× S5 [30, 31, 32, 33], and the full spectrum of

AdS5×S5 superstrings has been studied in [34] (at the classical level) and in [35] (quantum

generalization).

In the gauge theory dual to strings in AdS5× S5, the N = 4 super Yang-Mills theory,

integrability allowed to determine a Bethe ansatz and to show an equivalence to quantum

spin chains [20]. This Bethe ansatz gives a set of algebraic equations, whose solutions have

a one-to-one correspondence with the eigenstates of the dilatation operator of the gauge

theory [21, 23, 22]. These algebraic equations become integral in a particular limit [25, 91]

and very similar to the integral equation obtained from the string side. A Bethe ansatz

for quantum strings was first proposed in [36], and further studied in [37, 38, 39, 40, 41, 42],

including comparisons to the Bethe ansatz equations from the gauge side.

Knowing the structure of the string algebraic curve and corresponding Bethe ansatz is

an essential step in the effort of better understanding the correspondence between gauge

and string theories. This chapter will be mainly a summary on the string Bethe ansatz

and algebraic curve formalism for the string σ -model on AdS5×S5, and most of the results

included in here can be found in [29, 31, 34]. A brief application of this formalism for the

case of giant magnons is also discussed.

5.1 The sigma model of R×Sm−1

We start from the 2-dimensional σ -model on R× Sm−1 in conformal gauge (with Virasoro

constraints) - classically equivalent to the truncation of the type IIB superstring in AdS5×S5

for m = 6. Consider, as before, the embedding co-ordinates ~X = (Xi) , i = 1, · · · ,m of Sm−1,

such that ~X2 = 1 , plus the time co-ordinate X0. If Gµν is the metric in R×Sm−1, and defining
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X µ =
(
X0,Xi

)
, then the classical action of the bosonic string is given by

S =−
√

λ

4π

ˆ
dσdτ

(
Gµν∂aX µ

∂
aXν + Λ(~X2−1)

)
.

Recall that in conformal gauge, the string obeys the following equations of motion and

Virasoro constraints

∂+∂−~X +
(

∂+~X ·∂−~X
)

~X = 0; (5.1)

∂+∂−X0 = 0;(
∂±~X

)2
= (∂±X0)2 ,

where now σ± = 1
2 (τ±σ) and ∂± = ∂τ ±∂σ .1 We further fix the residual gauge freedom to

be “time-like”, that is

X0 (τ,σ) = κτ.

This system of equations can be equivalently represented by a system of orthogo-

nal/chiral fields. Define the matrices hv (vector representation of so(m)) and hs (spinor

representation), such as

hv = 1−2~X~XT , hs =~γ ·~X ,

where γi is a basis of the Clifford algebra of SO(m) ∼ Sm−1. The matrix hv describes a

reflection along the direction of ~X , being an orthogonal, symmetric matrix, which obeys

dethv =−1 and h−1
v = hT

v = hv. On the other hand hs can be seen as the spinor equivalent of

hv.

In the vector representation, we can construct two currents, left jv and right `v, which

are elements of so(m) in the vector representation. They are given by

jv ≡ h−1
v dhv , `v ≡−dhvh−1

v .

1We will keep this choice of conventions throughout this chapter, in order to limit the use of ± in
later expressions. Also in this chapter x will be the spectral parameter. It is simple to go from this to the
conventions used in other chapters, where we chose σ± = 1

2 (σ ± τ), it is enough in most places to change the
sign of the (· · ·)− terms.
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Because of the properties of the matrix hv these two currents coincide and obey

jv = `v = 2
(
~Xd~XT −d~X~XT

)
, (5.2)

or in components ( jv)a,i j = (`v)a,i j = 2(Xi∂aX j−X j∂aXi). These currents are flat:

d jv + jv∧ jv = 0.

The Lagrangian of the sphere part of the σ -model can be re-written in terms of these

currents as

S =−
√

λ

4π

ˆ
dσdτ Tr( jv∧∗ jv) .

Invariance of this Lagrangian under right shifts hv is associated with the current jv being

conserved

d(∗ jv) = 0 ⇔ ∂a ja
v = 0.

This conservation equation together with the flatness condition is equivalent to the equa-

tions of motion of the σ -model (5.1). One can also find equivalent currents in the spinor

representation, js = `s, starting from shifts produced by hs.

From the flat, conserved current j ( j can be either jv or js), we can construct a family

of flat currents parametrized by a spectral parameter x, called the Lax connection:

a(x) =
1

1− x2 j +
x

1− x2 ∗ j,

and a Lax pair from the operator d + a(x):2

L (x) = ∂σ + aσ (x) = ∂σ +
1
2

(
j+

1− x
− j−

1 + x

)
,

M (x) = ∂τ + aτ (x) = ∂τ +
1
2

(
j+

1− x
+

j−
1 + x

)
.

Current conservation and flatness conditions are now given by da+a∧a = 0 in terms of a(x)

(that is, a(x) is flat for all values of x), and [L ,M ] = 0 in terms of the Lax pair operators.

2Note that j (and a(x)) is a 1-form in the worldsheet, so ∗( jτ , jσ ) = ( jσ , jτ ), and j± = jτ ± jσ .
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We continue next by calculating the monodromy matrix of the operator d + a around

the closed string, which corresponds to the Wilson line along a (closed) curve γ that winds

once around the string (starts and ends at point (τ,σ)):3

Ω(x,τ,σ) = Pexp
ˆ

γ

(−a(x)).

Because a(x) is flat, Ω is independent of the path γ. Then choosing the path τ = 0,σ ∈ [0,2π],

the monodromy Ω only depends on the point γ (0) = γ (2π), where the path is cut open. A

shift on γ (0) leads to a similarity transformation (dΩ+[a,Ω] = 0). A change in the points of

the path cannot be physical, so only the conjugacy class of the monodromy matrix will be

physical. In particular, only its eigenvalues are invariant under this similarity transformation

and thus physical. The monodromy with this particular path can be written as

Ω(x) = Pexp
ˆ 2π

0
dσ

1
2

(
j+

x−1
+

j−
x + 1

)
.

Vector representation If j = jv, and noticing that jT
v =− jv, then Ωv is complex (because

x is complex) orthogonal Ω ∈ SO(m,C) and can be diagonalized as

Ωv (x) =


diag

(
eiq1(x),e−iq1(x), · · · ,eiq[m/2](x),e−iq[m/2](x)

)
m even

diag
(

eiq1(x),e−iq1(x), · · · ,eiq[m/2](x),e−iq[m/2](x) ,1
)

m odd
.

These qi (x), i = 1, ...[m/2] are the quasi-momenta, which are the physical quantities (apart

from possible permutations).

Spinor representation In the spinor representation j = js, the monodromy matrix has

a diagonalized form such as

Ωs = diag
(

exp
(
± i

2
q1±

i
2

q2±·· ·±
i
2

q[m/2]

))
,

3P in the monodromy matrix is the path ordering operator.
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with all possible combinations of signs included (2[m/2] possibilities). In the case m is even,

SO(m) has a chiral representation, and Ωs can be decomposed in its chiral/anti-chiral parts

Ω±s :

Ωs =

 Ω+
s 0

0 Ω−s

 ,

where in Ω+
s we only allow an even number of plus signs, and in Ω−s we have odd numbers

of plus signs in front of the eigenvalues. We then redefine Ω+
s = diag

(
eip1 , · · · ,eip

2m/2−1
)

.

Properties of the monodromy matrix

The monodromy matrix is analytic on x except at x =±1, but its eigenvalues qi (x) present

some more singularities. Assume that there is a point x∗a at which two eigenvalues eiqk and

eiql degenerate. The restriction of Ω(x) to the subspace of these two eigenvalues then has

the form

Γ =

 a b

c d

 .

One can calculate the eigenvalues of this sub-matrix to be

γ± =
1
2

(
a + d±

√
(a−d)2 + 4bc

)
.

The parameters a,b,c,d depend analytically on x. We define

f (x) = (γ+− γ−)2 = (a−d)2 + 4bc = (TrΓ)2−2TrΓ
2 ,

which vanishes at x = x∗a, that is f (x∗) = 0. But its derivative need not be zero, f ’ (x∗a) 6= 0.

This implies that we can expand the square root above close to x∗a and obtain f (x) =

f ′ (x∗a)(x− x∗a)+O
(
(x− x∗a)2

)
, and the corresponding expansion for the quasi-momenta

eiqk,l(x) = eiqk(x∗a)
(

1±αa
√

x− x∗a +O (x− x∗a)
)

,
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for some coefficient αa, or

iqk,l (x) = iqk,l (x∗a)±αa
√

x− x∗a +O (x− x∗a) .

A full circle around one of these square root singularities will result in an interchange

of the two eigenvalues associated with the singularity: we introduce branch cuts Ca which

connect the square root singularities. The function qk (x) is therefore analytic except at

{±1,Ca}. 4 Recalling that the qk’s are only defined modulo 2π, that is, at the cuts the q′ks

can be permuted and shifted by multiples of 2π. Defining the principal part of qk (x) to be

/qk (x) =
1
2

qk (x + iε)+
1
2

qk (x− iε) ,

then at the cuts Ca where the eigenvalues qk and ql are permuted, we have:

/qk (x)∓/ql (x) = 2πna, forx ∈ Ca.

na is the mode number of Ca. Without loss of generality, one can restrict the possible

permutations to the permutations between qkand qk+1 such that5

/qk (x)−/qk+1 (x) = 2πnk,a , x ∈ Ck,a. (5.3)

The next step is to study the asymptotic behaviour of the monodromy matrix at x→∞,

as well as its behaviour at the singularities x =±1.

4Note that for the bosonic superstring [34], one uses another parameter z2 = x−1
x+1 , which has singularities

at {0,∞} when x→±1. Other relations include x 7→ 1/x equivalent to z 7→ iz and dx
1−1/x2 = dz

z .

5This condition is complemented with, for m even /q[m/2]−1 (x) + /q[m/2] (x) = 2πn[m/2],a and for m odd,
2/q[m/2] (x) = 2πn[m/2],a.
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Asymptotic behaviour at x→ ∞

Expanding the connection a(x) at infinity gives a(x) = −1
x ∗ j +O

(
1/x2

)
. The monodromy

matrix then becomes

Ω(x) = Pexp{1
x

ˆ 2π

0
dσ jτ +O

(
1/x2)}= 1 +

1
x

ˆ 2π

0
dσ jτ +O

(
1/x2) .

We can see from the result above that the asymptotic behaviour of the monodromy

matrix is directly related to a conserved charge of the σ -model

J =

√
λ

4π

ˆ 2π

0
dσ jτ ,

being its first order in the expansion in 1/x:

Ω(x) = 1 +
1
x

4πJ√
λ

+O
(
1/x2) .

In the vector representation J = Jv has eigenvalues

Jv '


diag

(
iJ1,−iJ1, · · · , iJ[m/2],−iJ[m/2]

)
m even

diag
(
iJ1,−iJ1, · · · , iJ[m/2],−iJ[m/2],0

)
m odd

.

These eigenvalues are directly related to the Dynkin labels of SO(m), [s1,s2, · · · ] by

Jk =
[m/2]

∑
j=k

s j−
1
2
(
s[m/2]−1 + s[m/2]

)
for m even, and

Jk =
[m/2]

∑
j=k

s j−
1
2

s[m/2]

for m odd. Finally we can also write the asymptotic behaviour of the eigenvalues of the

monodromy matrix, qk’s. The diagonalization matrix of Ω should also diagonalize J for
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large x, and consequently

qk (x) =
1
i

ln
(

1 +
i
x

4πJk√
λ

+O
(
1/x2))≈ 1

x
4πJk√

λ
+O

(
1/x2) . (5.4)

To obtain this last result, we fixed the branch of the logarithms so that all qk’s vanished at

x = ∞.

Asymptotic behaviour at singularities x =±1

In [31] there is an argument for why it is enough to integrate the eigenvalues of jv,± for

determining the leading singular behaviour of the eigenvalues of Ωv. The argument goes as

follows. Suppose that have matrices u± (σ) which diagonalize the currents j± for all σ at

points x =±1. That is

jdiag
± (σ) = u± j±u−1

± .

Also one considers an analytic continuation of u± (σ) to u± (σ ,x) = u± (σ)+O (x∓1). We can

expand u± (x,σ) = ∑
∞
r=0 (x∓1)r u±,r (σ), as well as L (x) = ∂σ +aσ (x,σ) at the points x =±1.

Let us focus on the case x = 1. Then we want that each term in u+ = ∑
∞
r=0 (x−1)r u+,r (σ)

diagonalizes the corresponding term in L (x).

The expansion of aσ (x) at x = 1 is given by

aσ (x) =−1
2

j+
x−1

− 1
2

∞

∑
r=0

(x−1)r j−,r.

Thus we can assume the same behaviour of ã(x), defined at the singularity x = 1 by

∂σ + ã(x) = u+ (∂σ + aσ )u−1
+

= u+∂σ u−1
+ −

1
2

1
x−1

u+ j+u−1
+ −

1
2

∞

∑
r=0

(x−1)r u+ j−,ru−1
+ .

We first note that u+∂σ u−1
+ = ∂σ − (∂σ u+)u−1

+ , and consequently

ã(x) =−(∂σ u+)u−1
+ −

1
2

1
x−1

u+ j+u−1
+ −

1
2

∞

∑
r=0

(x−1)r u+ j−,ru−1
+ =

∞

∑
r=−1

(x−1)r ãr (x) .
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Now we determine u+,0 such that it diagonalizes the first order ã−1. The first term in the

expression above is of order O
(
(x−1)0

)
, as well as all of the last terms: the only term

surviving at this order is the second one. So u+,0 diagonalizes j+ (as expected). One can

construct the rest of the matrix u+ (x,σ), and perform the same analysis for x = −1, thus

obtaining u± (x) that completely diagonalizes L (x) for all σ . To first order we find:

u± (x)L (x)u−1
± (x) = ∂σ −

1
2

jdiag
±

x∓1
+O

(
(x∓1)0) ,

and the diagonalized leading order of the connection is ã± (x) =−1
2

j
diag
±
x∓1 at the singularities

x =±1, for all σ . The monodromy matrix can then be written as

u± (x,2π)Ω(x)u−1
± (x,0) = exp

1
2

ˆ 2π

0
dσ

jdiag
±

x∓1
+O

(
(x∓1)0) .

Looking back at the vector representation of jv (5.2), we can see that it is an antisym-

metric matrix of the form M = X[iYj] where ~X and ~Y are independent vectors. Because of

being antisymmetric real, its eigenvalues are pure imaginary and come in pairs ±iλk. In

particular one can show that M has maximum rank 2 (maximum two non-zero eigenvalues).

Assume that u is an eigenvector of M with eigenvalue iλ . Then

Mi ju j = Xi

(
~Y ·~u

)
−Yi

(
~X ·~u

)
= iλui.

This is equivalent to

~u ∝ ~X
(
~Y ·~u

)
−~Y

(
~X ·~u

)
,

that is, for any eigenvector ~u related to a non-zero eigenvalue, it has components only in the

directions of ~X and ~Y . In other words, the eigenvectors associated with non-zero eigenvalues

span a vector space of dimension 2 at most. Because all of the non-zero eigenvalues come

in pairs, this matrix M has either rank zero or rank 2.6

6In the particular case of ~X and ~Y being orthogonal then one can use them as a basis of eigenvectors, and
a diagonalized form of M would have the form M = diag(iλ ,−iλ ,0, ...,0). This is the case of jv as ~X = ~X and
~Y = d~X .
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By determining the trace of ( jv,a)2 we learn that the matrix jv has in fact rank 2:

Tr( jv,±)2 = 4(Xi∂±X j−X j∂±Xi)(X j∂±Xi−Xi∂±X j)

= −8
(

(∂±XiXi)
2 + ∂±X j∂±X j

)
= −8

(
∂±~X

)2
.

where we used the fact that we have Xi∂aXi = 0 (~X2 = 1). Now using the Virasoro constraint

(5.1) we find

Tr( jv,±)2 =−8(∂±X0)2 =−8κ
2.

Thus the diagonalized current becomes (independent of σ)

jdiag
v,± = 2iκdiag(1,−1,0, · · ·) .

We can now relate these eigenvalues with the quasi-momenta qk:

iqk =
2πiκ
x∓1

δk1 +O
(
(x∓1)0) if x→±1. (5.5)

Note that κ is directly related to the energy of the classical string.

Inversion symmetry

In our σ -model analysis we found both left and right currents, j = h−1dh and ` = −dhh−1

respectively. We also found a family of flat currents ar (x)≡ a(x) related to the right current.

There is also a family of left flat currents a` (x) which is related to ar (x) by an inversion of

the spectral parameter. The corresponding flat connections d + a obey the following:

h(d + ar (x))h−1 = hdh−1 +
1

1− x2 h jh−1 +
x

1− x2 h∗ jh−1

= d−dhh−1− 1
1− x2 `− x

1− x2 ∗ `

= d +
1

1−1/x2 `+
1/x

1−1/x2 ∗ `

= d + a` (1/x) .
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But for Sm−1 the currents obey j = ` and consequently this relation becomes a symme-

try: hvLv (x)h−1
v = Lv (1/x) and the same for Ls. In terms of the monodromy matrix we

have h(2π)Ω(x)h−1 (0) = Ω(1/x) for both Ωv and Ωs. If m is even, then the reduction into

chiral/anti-chiral components means that hs inverts chirality (it has one gamma matrix

~γ) while js = h−1
s dhs preserves it (has the square of the gamma matrix). Consequently,

hs (2π)Ω± (x)h−1
s (0) = Ω∓ (1/x). For a closed string we have h(0) = h(2π) and the last ex-

pression is just a similarity transformation. Thus Ω(x) and Ω(1/x) have the same eigenval-

ues: the set of eigenvalues qk transforms into one other eigenvalue under the transformation

x→ 1/x.

Recalling how q1 behaves at x→±1. It is easy to see that q1 (1/x)→−q1 (x). In fact this

is not the whole story, and the right expression is

q1 (1/x) = 4πn0−q1 (x) .

The fact that there is such an integer n0 is because when we determine the relation between

eigenvalues of the monodromy matrix, these are of the form eiqk(x), and to find a relation

such as the one above requires the use of the complex logarithm function: there is an

ambiguity in the choice of branch of the logarithm when x → 0 and when x → ∞, and

choosing different branches will give rise to the term with n0. But the monodromy matrix

in the spinor representation has eigenvalues of the shape e±
i
2 qk(x), which show this same

ambiguity. Consequently the integer n0 has to come with a factor of 4π.

What happens to the other qk for k 6= 1? In the case m odd there are no restrictions, but

for m even one finds that the interchange of chiral/anti-chiral representations on Ω gives

rise to extra restrictions: one has to flip an odd number of signs of the qk. As q1 already

flips sign, the rest must show an even number of flips. We will make a possible choice of all

of the other qk staying invariant:7

qk (1/x) = (1−2δk1)qk (x)+ 4πn0δk1. (5.6)

7There might be other consistent choices, but one assumes this is the correct one. [31]
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Restriction to R×S5: Bethe ansatz

The isometry group of S5 is SO(4)∼= SU (4), which has a chiral spinor representation related

to the quasi-momenta pi as defined above. The chiral representation 4 of SO(6) is equivalent

to the fundamental of SU (4): Ω+
s ∼ diag

(
eip1 , · · · ,eip4

)
can be seen as the monodromy matrix

of SU (4), with quasi-momenta defined by:

p1 =
1
2

(q1 + q2−q3) ,

p2 =
1
2

(q1−q2 + q3) ,

p3 =
1
2

(−q1 + q2 + q3) , (5.7)

p4 = −1
2

(q1 + q2 + q3) ,

and ∑i pi = 0. The inversion symmetry found in terms of the qk (5.6) becomes in terms of

pk:

p1,2 (1/x) = 2πn0− p2,1 (x) , p3,4 (1/x) =−2πn0− p4,3 (x) .

This inversion symmetry gives rise to the structure of cuts and mirror cuts shown in figure

5.1.8

The asymptotic behaviour of the pk at the poles x =±1 can be seen to be

p1,2 (x) =−p3,4 (x) =
πκ

x∓1
+O

(
(x∓1)0) ifx→±1.

Finally the asymptotic behaviour at x = ∞ is

p1 (x) =
1
x

2π√
λ

(J1 + J2− J3)+ · · ·= 1
x

4π√
λ

(
3
4

r1 +
1
2

r2 +
1
4

r3

)
+ · · · ,

p2 (x) =
1
x

2π√
λ

(J1− J2 + J3)+ · · ·= 1
x

4π√
λ

(
−1

4
r1 +

1
2

r2 +
1
4

r3

)
+ · · · ,

p3 (x) =
1
x

2π√
λ

(−J1 + J2 + J3)+ · · ·= 1
x

4π√
λ

(
−1

4
r1−

1
2

r2 +
1
4

r3

)
+ · · · , (5.8)

p4 (x) =
1
x

2π√
λ

(−J1− J2− J3)+ · · ·= 1
x

4π√
λ

(
−1

4
r1−

1
2

r2−
3
4

r3

)
+ · · · ,

8 In figure 5.1 both cuts and mirror cuts are shown outside the circle |x|2 = 1 for easier visualization, even
though to be exact one of the cuts should be placed inside this circle (due to inversion symmetry x→ 1/x).
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Figure 5.1: Algebraic curve of R× S5 in the spinor representation of SO(6). Bosonic exci-
tations are shown: cut C1 between sheets 1,2 (and its mirror cut), cut C2 between sheets
2,3 (mirror cut between 1,4), and cut C3 between 3,4 (and mirror cut). The dots in red are
singularities of the quasi-momenta, including x =±1.

In the above expression [r1,r2,r3] are the Dynkin labels of SU (4), related to the Dynkin

labels of SO(6) [s1,s2,s3]9 through:

r1 = s2 = J2− J3 , r2 = s1 = J1− J2 , r3 = s3 = J2 + J3 .

Branch cuts

From the above results, plus the known relation connecting sheets k and k + 1:

/pk (x)−/pk+1 (x) = 2πna , x ∈ Ca,

we find that eip is a single valued holomorphic function of a Riemann surface with four

sheets, except at the points x = ±1,∞. But it is not an algebraic curve, because it has an

essential singularity at x =±1 of the type exp
( i

x∓1

)
. On the other hand p(x) only has pole

singularities, but it is only defined up to multiples of 2π. So we work with its derivative

p′ (x), which has double poles at x =±1, and no other poles, and will indeed be an algebraic

9And consequently to the Jk by inverting the the result of the Jk in terms of the s j:

J1 = s1 +
1
2

s2 +
1
2

s3 , J2 =
1
2

s2 +
1
2

s3 , J3 =−1
2

s2 +
1
2

s3.
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curve of degree four.

Define a function y(x) that will be analytic at x =±1:

yk (x) = (x−1/x)2 x p
′
k (x) .

The extra factor not only removes the poles but also simplifies the the symmetry x→ 1/x.

This function y satisfies a quartic algebraic equation

F (y,x) = P4 (x)y4 + P2 (x)y2 + P1 (x)y + P0 (x) = P4 (x)
4

∏
k=1

(y− yk (x)) = 0. (5.9)

For a solution that shows a finite number of cuts, one can assume that Pk (x) is a polynomial

in x. There is no term y3 because we have p1 + p2 + p3 + p4 = 0.

Noting that if p(x) ∼
√

x− x∗ at a branch point x∗, then y ∼ 1/
√

x− x∗. Then at this

point, solving F (y,x) = 0 at y→ ∞ implies (x− x∗) = −P4 (x)/P2 (x), that is we look for the

roots of P4/P2. Considering a general P2, and assuming P4 to be of order 2A, we look for

roots of P4 (x)

P4 (x)∼
A

∏
a=1

(x−aa)(x−ba) ,

and we can see that A is just the number of cuts and aa,ba are the branch points.10

Asymptotics at x→ ∞

At x = ∞ we had p(x)∼ 1/x, so we now have y(x)∼ x. From (5.9) we can see that the highest

order of each Pk will be related to the order of P0 by Pk (x) ∼ x−kP0 (x). Assuming P4 is of

order x2A, then P2 ∼ x2A+2, P1 ∼ x2A+1 and P0 ∼ x2A+4. Through the x→ 1/x symmetry we

have that at x = 0 y(x) ∼ 1
x (the inversion symmetry requires that pk ∼ x at x = 0). Then

the lowest order term in Pk is related to the lowest order term of P0 by Pk (x) = xkP0 (x), that

is, if P0’s lowest order is x0, then Pk (x)∼ xk at x ∼ 0. In general Pk (x) will be a polynomial

10The algebraic equation can have further cuts of the kind y∼
√

x− x∗, which would lead to the unwanted
behaviour p(x) ∼ (x− x∗)3/2. Their positions can be found as the roots of the discriminant R of the quartic
equation [31]

R =−4P2
1 P3

2 + 16P0P4
2 −27P4

1 P4 + 144P0P2
1 P2P4−128P2

0 P2
2 P4 + 256P3

0 P2
4 .

All solutions of R = 0 with odd multiplicity originate the unwanted branch cuts, so we have to require that
the discriminant be a perfect square R(x) = Q(x)2 for some polynomial Q(x).
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of the type

Pk (x) = ak1xk + · · ·+ ak,2A+4−2kx2A+4−k.

But for this expression to make sense, one would have to have 2A + 4− k > k for all k =

0,1,2,4, requirement for the highest order to be not smaller that the lowest order, and we

find that A≥ 2. We can redefine A→ A−2 (to have A≥ 0), and we then find11

Pk (x) = ak1xk + · · ·+ ak,2A+8−2kx2A+8−k.

Inversion symmetry

We have seen how the inversion symmetry determines the behaviour of y(x) at x∼ 0. For a

finite x the function y(x) obeys:

y1,2,3,4 (1/x) =
(

x− 1
x

)2 1
x

d
dy

p1,2,3,4 (y)
∣∣∣∣
y= 1

x

=
(

x− 1
x

)2 1
x

d
dy

(−p2,1,4,3 (1/y))
∣∣∣∣
y= 1

x

=
(

x− 1
x

)2

xp
′
2,1,4,3 (x) = y2,1,4,3 (x) . (5.10)

But for y(x) to behave in this form, then the polynomials have to obey Pk (1/x) = x−2A−8Pk (x) ,

that is, the coefficients of these polynomials are the same when read backwards and for-

wards.12 For the particular case of P4 and its expansion in branch points, the inversion

symmetry requires that aa = 1/ab and ba = 1/bb for a pair of cuts Ca,b that are interchanged

through this symmetry.

The symmetry found in the coefficients of Pk only states that yk (1/x) = yπ(k) (x) for some

permutation π (k). In fact the permutation chosen above in (5.10) is only allowed if we

11The discriminant becomes:

R(x) =
10A+24

∑
`=1

r`x8+`.

12The discriminant obeys R(1/x) = x−10A−40R(x).
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consider the four extra constraints

y1,3 (x) = y2,4 (x) forx =±1.

This can be seen from the inversion symmetry at the points x =±1.13

Asymptotic behaviour at the singularities x =±1

Because of the behaviour of the quasi-momenta at the singularities, one can assume that

the most general expansion allowed for its derivative is

p
′
k (x) =

α
±
k

(x∓1)2 +
β
±
k

x∓1
+O

(
(x∓1)0) .

From requiring that y1,3 (±1) = y2,4 (±1), we find that α
±
1,3 = α

±
2,4. Now requiring y1,3 (1/x) =

y2,4 (x) gives us a condition for the β ’s. One can easily see that we have β
±
1,3 = −β

±
2,4. But

other constraints can be found. The sum of all sheets has to be zero p1 + p2 + p3 + p4 = 0,

and the p
′
k have to obey the same equation. Around the singularities, the condition ∑ p

′
k = 0

requires that α
±
1or 2 = −α

±
3or 4, with no extra requirements for the β

±
k . Consequently, there

are three independent parameters that define the behaviour of all p
′
k at each point x =±1,

for example α
±
1 = α

±
2 =−α

±
3 =−α

±
4 , β

±
1 =−β

±
2 and β

±
3 =−β

±
4 . One other information we

have is that the residues of p at x =±1 are equal (proportional to κ, related to the energy),

giving us one more constraint on the α’s, and finally, if p does not have a logarithmic

behaviour, then all β ’s to be zero (total of five extra constraints).

Cycles, periods and fillings

As was said before the eigenvalues eipk of the monodromy matrix Ω+
s are holomorphic in

x, but the pk can present at particular cuts jumps of multiples of 2π (and are smooth

apart from that). These cuts can in general be originated from logarithmic or branch cut

13This seems to require that the discriminant has a quadruple pole at x =±1 , see [31]

R(x) = x8
(

x2−1
)4
(

10A+16

∑
`=1

r`x`

)
.
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singularities, but we will assume for now that pk does not have the former. Such cuts show

up when a closed integral around a singularity does not vanish. Considering Aa-cycles to

be closed paths around a cut Ca, see figure 5.2, we have that

˛
Aa

d p = 2πma,

where one can rearrange the cuts between (square root) branch points in order to set ma = 0,

except for the case when the cycle Aa crosses a condensate of poles. These condensates

happen when there is constant density of poles (of p) in a certain area, and can be viewed

as extra logarithmic cuts which connect pairs of original cuts Cl.

In the same way as the quasi-momenta, the branch cuts and poles have to obey the

inversion symmetry. So for each cut Ca there is an image or mirror cut CA+a = 1/Ca, the

independent cuts are then given by Ca, a = 1, · · · ,A. The same is true for the Aa cycles.

Assuming that there is a cut Ca connecting sheets 1,2 (or sheets 3,4, see figure 5.1), the

cycle Aa circles the cut Ca in either of the sheets. Through inversion symmetry, the cycle

Ab ≡AA+a = 1/Aa circles the cut C−1
a on both of the sheets 1,2 once more. Then

˛
Aa

d p1 =−
˛

Ab

d p2 =
˛

AA+a

d p1.

One obtains this result by first applying inversion symmetry, through which Aa→Ab and

d p1→−d p2, so while the first integral is in sheet 1, the second is in sheet 2. Also one can

switch sheets 1,2 by using an involution property of solutions of the equation F (x,y) = 0.14

Considering another type of cut, between sheets 2,3, its mirror cut is between sheets

1,4, and we have ˛
Aa

d p2 =−
˛

Ab

d p1.

We find then that for each pair of (mirror) cuts we have only one constraint
¸
Aa

d p = 0.

Considering that there are A branch cuts, the A -cycles would give us 1
2 A constraints. Indeed

the number of constraints is 1
2 A−2 because the cycles around all poles will be trivially zero

14An involution y→−y of the Riemann surface can be used to move the contour between the two sheets,
by interchanging the two sheets and flipping the sign of y(x). If y(x) changes sign (for the same values of x),
so will the differential d p. This corresponds to going from Ω+ to Ω−, or from q1,2,3 to q4,5,6 =−q3,2,1.
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Figure 5.2: One can define an A -cycle around a cut which connects sheets k, l, as well as a
B-period contour connecting points x = ∞ on both sheets k, l.

(there are no more single poles on any sheet). There are two independent such cycles (the

ones from sheets 1 and 2 are related, so are the ones from 3 and 4).

We now concentrate on the fact that through a cut Ca the eigenvalues pk (x) can permute

and be shifted by a multiple of 2π. This can be summarized by the integral of d p along

a curve Ba connecting the points x = ∞ on the two sheets connected by the cut Ca, see

figure 5.2. p(x) is analytic along the Ba-period except at the point where Ba intersects Ca.

Recalling that we set the logarithm branch such that p(∞) = 0, we have that the shift of

p(x) at the cut Ca is ˆ
Ba

d p = 2πna.

What happens with respect to the inversion symmetry? Because we have chosen the quasi-

momenta to be zero at infinity pk (∞) = 0, we automatically have
´

∞

0 d pk = −pk (0) . Then

the inversion symmetry tells us that

p1,2 (0) =−p3,4 (0) = 2πn0,

called the momentum constraint (reduces the degrees of freedom by one). Note that n0 is

an overall winding number. The Ba-period between sheets 1,2 (or 3,4) crossing the cut Ca
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at the point xa gives us, by inversion symmetry,

ˆ
Ba

d p =
ˆ xa

∞

d p1 +
ˆ

∞

xa

d p2 =−
ˆ 1/xa

0
d p2−

ˆ 0

1/xa

d p1

= −
ˆ

∞

0
d p2−

ˆ xb

∞

d p2−
ˆ 0

∞

d p1−
ˆ

∞

xb

d p1

= p2 (0)− p1 (0)+
ˆ xb

∞

d p1 +
ˆ

∞

xb

d p2 =
ˆ

Bb

d p,

where we have used the same arguments as for the A -cycles, plus the fact that
´ x

0 =
´

∞

0 −
´

∞

x .

For a B-period between sheets 2,3 (mirror cut between 1,4) we get similarly:

ˆ
Ba

d p =
ˆ xa

∞

d p2 +
ˆ

∞

xa

d p3 =−
ˆ 1/xa

0
d p1−

ˆ 0

1/xa

d p4

= p1 (0)− p4 (0)−
ˆ xb

∞

d p1−
ˆ

∞

xb

d p4 = 4πn0−
ˆ

Bb

d p .

We find that the B-periods through a pair of (mirror) cuts are related, and together with

the momentum constraint, the number of constraints from the B-periods is 1
2 A + 1.

Degrees of freedom: The algebraic curve is a solution y(x) of the equation F (x,y) = 0. This

equation has a total of 8A + 22 coefficients, from all possible coefficients of the polynomials

Pk (x) (each has a total of 2A + 8− 2k coefficients). Using the inversion symmetry on the

polynomials Pk (x), one finds that A + 4− k of the coefficients of Pk are determined by the

others, giving a total of 4A+9 constraints. Because we are determining solutions of F (x,y) =

0, the overall normalization of F doesn’t matter, removing one more degree of freedom (total

degrees of freedom up to now are 4A+12). We have seen that branch points appear as roots of

the discriminant R(x) = 0 (defined in footnote 10on page 123) which have even multiplicity.

The number of non-trivial (other than zero and ±1) roots of R(x) after inversion symmetry

is 5A +8, and the even multiplicity cuts this number by 2: R(x) = 0 fixes 5
2 A +4 coefficients

of the Pk’s. As was seen above, at the singularities x = ±1, the values of the residues are

related by inversion symmetry, and the absence of logarithmic singularities gives 5 more

constraints added to another 4 from constraining the yk to non-trivial permutations. The

A -cycles and B-periods give A− 1 more constraints. The total of degrees of freedom in
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solving the equation F (x,y) = 0 is 1
2 A, which will correspond to one filling number for each

pair of cuts.

The filling of a cut Ca is given by (using integration by parts)

Ka =−
√

λ

8π2i

˛
Aa

dx
(

1− 1
x2

)
p(x) =

√
λ

8π2i

˛
Aa

(
x +

1
x

)
d p. (5.11)

We should introduce a further quantity L such that

L =

√
λ

16π2i

˛
+1

4

∑
k=1

εk pk +

√
λ

16π2i

˛
−1

4

∑
k=1

εk pk +
A/2

∑
a=1

√
λ

8π2i

˛
Aa

dx
x2

4

∑
k=1

εk pk, (5.12)

where εk = (1,1,−1,−1) is defined by the inversion symmetry pk (1/x) = −pk′ (x) + 2πεkn0,

with k
′
= (2,1,4,3) when k = (1,2,3,4).We know the behaviour of pk at the singularities:

pk ∼
πκ

x∓1
+O

(
(x∓1)0) .

Then ∑
4
k=1 εk pk = 4p1 (x) at these singularities, and the sum of the first two integrals of (5.12)

just gives
√

λκ. Among {L,Ka} there are only A/2 independent continuous parameters,

A/2−1 independent fillings Ka and the quantity L. This is true because L is related to the

fillings by the constraint

n0L =
A/2

∑
a=1

naKa.

The proof of this constraint can be found in page 685 of [34] and page 641 of [31].

The filling numbers have been shown to be the action angle variables of the theory [182],

and in comparison to the gauge side, these filling numbers correspond to an integer number

of Bethe roots.

Global charges

Now we want to determine the global charges, or equivalently the Dynkin labels, at x = ∞,

as functions of the fillings. From the relation (5.8) between the quasi-momenta pk and the
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Dynkin labels r1,2,3 at infinity, we easily see that:

r j =

√
λ

8π2i

˛
∞

dx(p j (x)− p j+1 (x)) .

From this expression, and using inversion symmetry, we find15

r1 = −
√

λ

8π2i

˛
∞

dxx
(

p
′
1 (x)− p

′
2 (x)

)
=−

√
λ

8π2i

˛
∞

dxx
1
x2

(
p
′
2 (1/x)− p

′
1 (1/x)

)
= −

√
λ

8π2i

˛
0

dy
(
− 1

y2

)
y
(

p
′
2 (y)− p

′
1 (y)

)
=

√
λ

8π2i

˛
0

dy
1
y

(
p
′
2 (y)− p

′
1 (y)

)
=

√
λ

4π

(
p
′
2 (0)− p

′
1 (0)

)
,

and a similar result for r3 and r2:

r3 = −
√

λ

8π2i

˛
∞

dxx
(

p
′
3 (x)− p

′
4 (x)

)
=−
√

λ

4π

(
p
′
3 (0)− p

′
4 (0)

)
,

r2 = −
√

λ

8π2i

˛
∞

dxx
(

p
′
2 (x)− p

′
3 (x)

)
=−
√

λ

4π

(
p
′
4 (0)− p

′
1 (0)

)
.

We want to re-write the Dynkin labels as functions of the fillings. Using the results of

Appendix C.1 we can finally write:

r1 = −
√

λ

8π2i

˛
∞

dxx
(

p
′
1 (x)− p

′
2 (x)

)
=

A2/2

∑
a=1

K2,a−2
A1/2

∑
a=1

K1,a ,

r3 = −
√

λ

8π2i

˛
∞

dxx
(

p
′
3 (x)− p

′
4 (x)

)
=

A2/2

∑
a=1

K2,a−2
A3/2

∑
a=1

K3,a ,

r2 = −
√

λ

8π2i

˛
∞

dxx
(

p
′
2 (x)− p

′
3 (x)

)
= L +

A1/2

∑
a=1

K1,a−2
A2/2

∑
a=1

K2,a +
A3/2

∑
a=1

K3,a .

One final useful relation, also obtained from these relations, is

1
2

r1 + r2 +
1
2

r3 =

√
λ

8π2i

˛
∞

dx(p1 + p2) = L−
A2/2

∑
a=1

K2,a .

15Recall that p
′

1 (x) = 1
x2 p

′

2 (x) .
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5.2 General Bethe Ansatz for a string in R×Sm−1

We want to be able to recover the group theory information into our Bethe Ansatz equations.

To do so we introduce singular resolvents H̃k, related to the simple roots of so(m):

H̃k =
k

∑
j=1

q j, (5.13)

where for m even we also have

H̃[m/2]−1 =
[m/2]−1

∑
j=1

1
2

q j−
1
2

q[m/2] , H̃[m/2] =
[m/2]−1

∑
j=1

1
2

q j +
1
2

q[m/2],

and for m odd

H̃[m/2] =
[m/2]

∑
j=1

1
2

q j.

These singular resolvents are directly related to the roots of so(m). At x = ∞ one can expand

the resolvents and find a relation to the Dynkin labels [s1,s2, · · · ]. Considering the Cartan

matrix Mk j of so(m), one finds

H̃k (x) =
1
x

[m/2]

∑
j=1

M−1
k j

4πs j√
λ

+O(1/x2). (5.14)

This can easily be seen to be true for the SO(6) case by using the expansion of the quasi-

momenta q j and the explicit form of the Cartan matrix M. At the singularities one finds

H̃k =
k

∑
j=1

2πκ

x∓1
δ j1 +O

(
(x∓1)0)=

2πκ

x∓1

[m/2]

∑
j=1

M−1
k j Vv, j +O

(
(x∓1)0) ,

where Vv, j = (1,0,0, · · ·) are the Dynkin labels in the vector representation [31]. The H̃k also

have a inversion symmetry transformation:

H̃k (1/x) = H̃k (x)−2M−1
k1 H̃1 (x)+ 4πn0M−1

k1

= H̃k (x)−2
[m/2]

∑
j,`=1

M−1
k j Vv, jVv,`H̃` (x)+ 4πn0

[m/2]

∑
j=1

M−1
k j Vv, j .
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Assume that we have a function Hk such that Hk (x)incorporates the A/2 cuts, while Hk (1/x)

incorporates the mirror image cuts. Then H̃k will be a linear combination of these, but will

also have components at the singularities x =±1, as well as an arbitrary constant ck to be

able to fix H̃k = 0 at infinity. Finally H̃k will have a constant corresponding to its value at

x = 0. Then we can consider an ansatz such as16

H̃k (x) = Hk (x)+ Hk (1/x)−2M−1
k1 H1 (1/x)+

4πκ

x−1/x
M−1

k1 + ck− c1M−1
k1 + 2πn0M−1

k1 . (5.15)

One introduces a density function ρk (x) describing the discontinuities across the cuts

Ck =
⋃

Ck,a (Ck,a are the connected components of the curves Ck) as

ρk (x) =
1−1/x2

2πi
(Hk (x− iε)−Hk (x + iε)) x ∈ Ck,

where the weight 1−1/x2 will be essential for ρk to be a density. With this definition, the

resolvent becomes

Hk (x) =
ˆ

Ck

dy
ρk (y)

1−1/y2
1

y− x
. (5.16)

In fact substituting ρk into this last expression, we find that the resulting integral can be

represented by a contour integral, with the contours surrounding all the cuts. The integrand

has only one singularity on the outside of the contour: it is a pole at y = x, with residue

Hk (x). Shrinking the contour around the cuts we find the that the above expression is true.

We can now use the asymptotic behaviour of the resolvents Hk at x = ∞ and x = 0 to

determine some of the unknown constants. At x = ∞, the behaviour of Hk is given by

Hk (x) =−1
x

ˆ
Ck

dy
ρk (y)

1−1/y2 +O
(
1/x2)=−1

x

(ˆ
Ck

dyρk (y)+
ˆ

Ck

dy
ρk (y)
y2−1

)
+O

(
1/x2) .

Differentiating Hk, we easily see that the derivative of Hk at x = 0 is just H
′
k (0) =

´
Ck

dy ρk(y)
y2−1 .

16This ansatz is defined up to an anti-symmetric function

Hk (x)→ Hk (x)+ fk (x)− fk (1/x)+ 2M−1
k1 f1 (1/x) .
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Also one can define the fillings (normalizations) of the densities as

Kk =

√
λ

4π

ˆ
Ck

dyρk (y) .

As a consequence we can rewrite Hk (x) at x = ∞ in the following form

Hk (x) =−1
x

(
4π√

λ
Kk + H

′
k (0)

)
+O(1/x2).

At x = 0, a simple Taylor expansion of Hk (x) produces

Hk (x) = Hk (0)+ xH
′
k (0)+O(x2).

Now we can relate these expansions with the analogue expansions for H̃k (x), in order to

determine the constants in its expression (5.15). For x = ∞ (5.15) becomes:

H̃k (x) = ck− c1M−1
k1 + 2πn0M−1

k1 + Hk (0)−2M−1
k1 H1 (0)+

+
1
x

(
4πκM−1

k1 −
4π√

λ
Kk−2M−1

k1 H
′
1 (0)

)
+O

(
1/x2) .

We also know the asymptotic behaviour of H̃k (x) as a function of the Dynkin labels (5.14).

Comparing these two, we find a relation between fillings and Dynkin labels

Kk =
√

λM−1
k1

(
κ− 1

2π
H
′
1 (0)

)
−

[m/2]

∑
j=1

M−1
k j s j , (5.17)

and also a relation for the constants in H̃k:17

ck = c1M−1
k1 −2πn0M−1

k1 −Hk (0)+ 2M−1
k1 H1 (0) .

For the particular case of k = 1 one finds the momentum constraint written as:

H1 (0) = 2πn0. (5.18)

17The constant c1 cannot be fixed from these equations.
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Finally substituting these results back into (5.15) we get

H̃k (x) = Hk (x)+ Hk (1/x)−Hk (0)+ M−1
k1

{
−2H1 (1/x)+ 2H1 (0)+

4πκ

x−1/x

}
. (5.19)

We found an expansion of the singular resolvents H̃k which respects the asymptotic

behaviour of the quasi-momenta, and has branch cuts along the Ck. These branch cuts

don’t exist at the level of the monodromy matrix, as the latter are analytic everywhere

except special points. To make sure of this analyticity condition, one has to enforce that

across a cut, only the labeling of the sheets and the branch of the logarithms can change.

This condition is reflected in the following expression for the singular resolvents:

[m/2]

∑
j=1

Mk j /̃H j (x) = 2πnk,a , x ∈ Ck,a , (5.20)

with /Hk (x) = 1
2 Hk (x + iε)+ 1

2 Hk (x− iε). The above equations (5.20) are the Bethe equations.

Substituting the expression for H̃k (x) in the Bethe equations, these become18

2πnk,a =
[m/2]

∑
j=1

Mk j (/H j (x)+ H j (1/x)−H j (0))+ δk1

(
−2H1 (1/x)+ 2H1 (0)+

4πκ

x−1/x

)
,

when x ∈ Ck,a.

For a given set of mode numbers nk,a and of fillings Kk,a =
√

λ

4π

´
Ck,a

dyρk (y), the Bethe

equations only have a solution if κ has particular values. That is the same as saying that

the energy has particular values, because in classical string solutions, κ is related to the

spacetime energy through (a less trivial relation exists for infinite length strings)

∆ =

√
λ

2π

ˆ 2π

0
dσ∂τX0 =

√
λκ.

One can rewrite some equations to get κ, or ∆, as a function of the fillings and the length

18For the cut x ∈ Ck,a the resolvent H (x) notices the cut, but H (1/x) does not: we are considering one cut
at a time and H (1/x) notices the mirror cut.
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L. In fact using the definition of L (5.12) we find

√
λκ = L−

√
λ

2π

A/2

∑
a=1

1
2πi

˛
Aa

dx
x2 q1 (x) = L +

√
λ

2π

A/2

∑
a=1

ˆ
C1,a

dyρ1 (y)
1−1/y2

1
y2 .

The u-plane

A final useful result is to determine the Bethe equations in the so called u-plane, related to

the spectral parameter x by

x(u) =
1
2

u +
1
2

√
u2−4 ⇔ u = x + 1/x.

In this new variable, one defines the singular resolvent to be

H̃k (u) =
ˆ

dy
ρk (y)

y + 1/y−u
=
ˆ

dv
ρk (v)
v−u

,

where we have that dxρk (x) = duρk (u), as expected for a density. H̃k (u) is related to the

resolvents in the x-space by

H̃k (x + 1/x) = Hk (x)+ Hk (1/x)−Hk (0) ,

and the resulting Bethe equations are written as

[m/2]

∑
j=1

Mk j /̃H j (u)+ δk1Fstring (u) = 2πnk,a , u ∈ Ck,a,

where the function Fstring is given by

Fstring (u) =
4πκ√
u2−4

+ 2H1 (0)−2H1 (1/x(u)) .

The quasi-momenta for R×S5

One can now write the quasi-momenta in terms of the resolvents Hk (x). We will restrict

ourselves to the case of S5 (m = 6). From the relation of the singular resolvents H̃k and the
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quasi-momenta q j (5.13), we can easily see that

q1 (x) = H̃1 (x) ,

q2 (x) = −H̃1 (x)+ H̃2 (x)+ H̃3 (x) ,

q3 (x) = −H̃2 (x)+ H̃3 (x) .

The Cartan matrix of so(6) is given by

M = Mso(6) =


2 −1 −1

−1 2 0

−1 0 2

 ⇒ M−1 =


1 1/2 1/2

1/2 3/4 1/4

1/2 1/4 3/4

 ,

and we can write

q1 (x) =
4πκx
x2−1

+ H1 (x)−H1 (1/x)+ H1 (0) ,

q2 (x) =−H1 (x)−H1 (1/x)+ H1 (0)+ H2 (x)+ H2 (1/x)−H2 (0)+ H3 (x)+ H3 (1/x)−H3 (0) ,

q3 (x) = −H2 (x)+ H2 (1/x)−H2 (0)+ H3 (x)+ H3 (1/x)−H3 (0) .

These once more obey the inversion symmetry

qk (1/x) = (1−2δk1)qk (x)+ 4πn0δk1,

and recalling that Hk are analytic at x = ±1, the qk have the right asymptotics at these

singularities. The behaviour at x→ ∞ is (in terms of the SO(6) charges and Dynkin labels

[s1,s2,s3])

q1 (x) ∼ 1
x

(
4πκ− 4πK1√

λ
−2H

′
1 (0)

)
=

1
x

4πJ1√
λ

=
1
x

4π
(
s1 + 1

2 s2 + 1
2 s3
)

√
λ

,

q2 (x) ∼ 1
x

(
4πK1√

λ
− 4πK2√

λ
− 4πK3√

λ

)
=

1
x

4πJ2√
λ

=
1
x

4π (s2 + s3)
2
√

λ
,

q3 (x) ∼ 1
x

(
4πK2√

λ
− 4πK3√

λ

)
=

1
x

4πJ3√
λ

=
1
x

4π (−s2 + s3)
2
√

λ
.



137

Finally the analyticity condition states that

/qk (x)−/qk+1 (x) = 2πnk,a , x ∈ Ck,a, (5.21)

together with the extra condition

/q2 (x)+/q3 (x) = 2πn3,a , x ∈ C3,a. (5.22)

One can re-do these equations in terms of the SU (4) quasi-momenta pk. We know that

the resolvents are related to the so(6) Dynkin labels at x = ∞, H̃k ∼M−1
k j s j. The resolvents re-

lated to the SU (4) quasi-momenta pk (representation 4) will have the corresponding relation

G̃k ∼
(

M−1
su(4)

)
k j

r j, and recalling that r1,2,3 = s2,1,3, we have that

G̃1,2,3 = H̃2,1,3.

Also from the definition of the pk we find that the SO(6) quasi-momenta in the 6 represen-

tation are given by:

q1 = p1 + p2 ,

q2 = p1 + p3 ,

q3 = p2 + p3 ,

q4 = p1 + p4 =−q3 ,

q5 = p2 + p4 =−q2 ,

q6 = p3 + p4 =−q1 .

This means that a cut between sheets 1,2 in the qk’s corresponds to a cut between sheets

2,3 of the pk’s, or the earlier C2 cuts. Its mirror cut, between 2,6 of the qk is the mirror cut

between the sheets 1,4 in the pk’s. A cut between q2 and q3 will have a mirror cut between

q4, q5, and will correspond to the cuts between sheets p1 and p2 (mirror is p1, p2), the C1

cuts. Finally a cut between q sheets 2,4 (which corresponds to the Bethe equation (5.22))
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and its mirror cut between sheets 3,5 (or 2,4 again) will correspond to the cuts between p3

and p4, called previously C3, see figure 5.1. With these results one can simply re-write the

Bethe equations as:

2πn1,a = /p1−/p2 = 2 /̃G1 (x)− G̃2 (x) , x ∈ C1,a ,

2πn2,a = /p2−/p3 = 2 /̃G2 (x)− G̃1 (x)− G̃3 (x) , x ∈ C2,a ,

2πn3,a = /p3−/p4 = 2 /̃G3 (x)− G̃2 (x) , x ∈ C3,a .

In the above result we find that the singular resolvent G̃k (x) only feels the cuts of the kind

Ck.

Branch cuts and condensates

As was mentioned above, the quasi-momenta can have two kinds of singularities in the x

complex plane: branch cuts along some contour Ck,a and condensate cuts Bk, j. The first

corresponds to cuts at which two of the quasi-momenta are interchanged on the two sides

of the cut up to a multiple of 2π. The second case happens when we have (pairs of) singular

points where the quasi-momenta changes by a factor of 2π when it goes around each of

these singular point. If we consider a contour Bk, j connecting each pair of singular points,

then the quasi-momentum qk (x) will change by a multiple of 2π when crossing this contour.

These pairs of singular points, which are the the endpoints of the contour, are single poles

of the differential of the quasi momenta (or p
′
(x)). So the A -cycle around each will pick

up a multiple of 2π. From the point of view of the quasi-momenta themselves (and the

resolvents), this contour is in fact a condensate of poles with constant density, equivalent

to a logarithmic cut.19

Generalizing the density function ρk (x) to describe the discontinuities across both the

cuts Ck =
⋃

Ck,a and the condensates Bk =
⋃

Bk, j, we find that the resolvent Hk in (5.16)

19Each of this singular points is an end point of a branch cut, and the condensate cut connects them. If
the A -cycle encircles the branch cut that the singular point belongs to, then it will cross the condensate cut
and so jump by 2π. Because this point is a single pole of d p, the A -cycle is just a contour integral around
a single pole, resulting in the residue at that pole, which is proportional to the constant density.
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can be generalized to be20

Hk = ∑
a

ˆ
Ck,a

dy
ρk (y)
y− x

+∑
j

ˆ
Bk, j

dy
ρk (y)
y− x

.

This density ρk characterizes the distribution of Bethe roots in the complex plane, and the

term condensate comes from the fact that it can be interpreted as a condensate of Bethe

roots, and as such, the density becomes constant: it is just ρk (y) = ink, j when y∈Bk, j. Then

one can readily see that the terms coming from the condensate cuts give a logarithmic

behaviour to Hk: they are logarithmic cuts, in general connecting pairs of original contours

Ck.

The Bethe equations found above still have to be obeyed for solutions that admit branch

cuts, but if we also allow condensates, in addition to the Bethe equations derived above we

will have extra conditions on the solutions of these equations when they cross a logarithmic

cut.

Different string solutions have been addressed in the literature, from circular and pul-

sating strings [29, 91] where the resolvent is given just by branch cuts, to giant magnon

bound states [89] where one only considers condensate cuts. In the latter case (no branch

cuts, only logarithmic cuts), the ending points X±k, j of the condensate contour have to be

complex conjugate of each other, in order to have real energy and angular momenta.

5.3 The full AdS5×S5 string Bethe ansatz

In this section we will present a brief summary of major results for the full AdS5×S5 algebraic

curve formalism, which can be found in [34]. In this case we have eight sheets defined by

the quasi-momenta

p(x) = { p̃1, p̃2, p̃3, p̃4| p̂5, p̂6, p̂7, p̂8} ,

where eip̃k and eip̂l are eigenvalues of the monodromy matrix, but corresponding to two

different gradings, so while we can interchange each set of four quasi-momenta, we cannot

20We have dropped the weight factor 1−1/x2 on the definition of the density for convenience.
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Figure 5.3: The algebraic curve, with p̂k corresponding to AdS5 and p̃l corresponding to
S5. Three physical modes are shown: the cut Ĉ14 (and its mirror cut, in blue) corresponds
to a bosonic AdS5 excitation; the cut C̃13 (in red) corresponds to a bosonic S5 excitation;
the pole x∗13 corresponds to a fermionic excitation. The dots in red are singularities of the
quasi-momenta, including x =±1.

interchange between them by a simple bosonic similarity transformation. The p̃k are related

to the S5 part, and the p̂k to the AdS5 part. The momentum condition is in this case

4

∑
k=1

p̃k−
4

∑
l=1

p̂l = 2πn0.

All quasi-momenta are analytic. They have single poles at x = ±1, where all sheets have

equal residues. One has bosonic degrees of freedom at a collection of branch cuts C̃a, Ĉb

with a = 1, · · · ,2Ã, and b = 1, · · · ,2Â, where the branch cuts C̃a connect sheets k̃a and l̃a of

quasi-momenta p̃(x), while branch cuts Ĉb connect sheets k̂b and l̂b of quasi-momenta p̂(x).

At the ends of all these cuts, x̃±a and x̂±b , we have square-root singularities. The fermionic

degrees of freedom are poles x∗a, with a = 1, · · · ,2A∗, which “connect” one sheet k∗a of p̃(x)

and one sheet l∗a of p̂(x) with the same residue on both sheets.21 This structure of cuts and

poles is shown in Figure 5.3.

21To see that in the case of fermionic modes, we have poles instead of the square root singularities that
give rise to the bosonic branch cuts, we use an argument similar to the one on page 114. This argument can
be found in [34] and is summarized in appendix Section C.2.
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At x → ∞ the quasi-momenta approaches zero, and its expansion will be related to

the conserved charges, or Dynkin labels, as before. The inversion symmetry for the quasi-

momenta can be written as follows

p̃k (1/x) = 2πmεk− p̃k′ (x) , p̂l (1/x) = p̂l′ (x) ,

where we defined for each sheet k = (1,2,3,4), a permutation k′ = (2,1,4,3), and a sign

change εk = (1,1,−1,−1). Note that the shift by 2πm is related to the winding allowed in

S5, but not allowed in AdS5 (there aren’t any windings in the time direction). The cuts and

poles also obey this inversion symmetry in the same way as before: C̃Ã+a = 1/C̃a, ĈÂ+a = 1/Ĉa

and x∗A∗+a = 1/x∗a.

Defining cycles ˜Aa,Âb surrounding respective cuts C̃a, Ĉb is done as before, but we have

another cycle to define, the A ∗
a , which surrounds a fermionic pole x∗a. Assuming no loga-

rithmic singularities at any poles (including x =±1) we have

˛
˜Aa

d p̃ =
˛

ˆAb

d p̂ =
˛

A ∗
a

d p̃ =
˛

A ∗
a

d p̂ = 0.

We again define the periods B̃a (B̂b) connecting x = ∞ on sheets k̃a and l̃a (k̂b and l̂b) through

the cuts C̃a (Ĉb), and also define an extra period B∗a that connects x = ∞ to x = x∗a on sheet

k∗a of p̃(x), and then goes through the fermionic singularity to connect x = x∗a to x = ∞ on

sheet l∗a of p̂(x). On these periods we have

ˆ
B̃a

d p̃ = 2π ña ,

ˆ
B̂b

d p̂ = 2π n̂b , −
ˆ

B∗a

d p = 2πn∗a .

Another way of writing this is

/̃pl̃a (x)− /̃pk̃a
(x) = 2π ña , x ∈ C̃a ,

/̂pl̂b
(x)− /̂pk̂b

(x) = 2π n̂b , x ∈ Ĉb , (5.23)

/pl̂a (x∗a)−/pk̃a
(x∗a) = 2πn∗a .

One final thing to note is that for a period connecting x = 0 and x = ∞, we once again obtain
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the winding of S5 and a vanishing contributions from AdS5: p̃1,2 (0) = −p̃3,4 (0) = 2πm and

p̂l (0) = 0.

Having summarized the properties of the 8 sheets quasi-momenta, we will now present

the AdS5×S5 Bethe ansatz.

AdS5×S5 string Bethe ansatz

Consider a general cycle Aa and a period Ba, where a = 1, · · · ,2A, which includes all cuts

and poles, with A = Ã + Â + A∗. We also introduce an integral form of bosonic resolvents in

terms of densities as22

G̃kl (x) =
ˆ

C̃kl

dy
ρ̃kl (y)

1−1/y2
1

y− x
, Ĝkl (x) =

ˆ
Ĉkl

dy
ρ̂kl (y)

1−1/y2
1

y− x
,

and a fermionic resolvent as a sum of (discrete) poles

G∗kl (x) =
A∗kl

∑
a=1

α∗kl
1−1/x∗kl,a

1
x∗kl,a− x

.

In the above expression the subscript kl states that the two sheet being connected are sheets

k and l of the corresponding cut or pole. The fillings are defined now in terms of the densities

as

K̃kl,a =

√
λ

4π

ˆ
C̃kl,a

dy ρ̃kl (y) , K̂kl,a =

√
λ

4π

ˆ
Ĉkl,a

dy ρ̂kl (y) , K∗kl,a =

√
λ

4π
α
∗
kl,a .

Together with these fillings we had previously seen that in the R×S5 case there were two

other quantities: the length L and the winding m. In the full theory we will have yet another

quantity, called the energy shift δE:

δE =

√
λ

8π2i

A

∑
a=1

˛
Aa

dx
x2 ∑

k
εk (p̂k− p̃k) .

From the fillings written above, one can define some global fillings (both in S5 and in

AdS5) by

K j =

√
λ

8π2i

A

∑
a=1

˛
Ca

dx
(

1− 1
x2

)
∑
k

ak, j pk (x) ,

22These resolvents have to be antisymmetric in exchange of sheets k, l.
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for some linear combination of the quasi-momenta (this definition will become helpful later).

There are 6 of these global filling, with 3 related to Dynkin labels [r̃1, r̃2, r̃3] for the S5, and

other 3 related to the [r̂1, r̂2, r̂3] of the AdS5 part:

r̃1 = K̃2−2K̃1 , r̃2 = L−2K̃2 + K̃1 + K̃3 , r̃3 = K̃2−2K̃3 ,

r̂1 = K̂2−2K̂1 , r̂2 =−L−δE−2K̂2 + K̂1 + K̂3 , r̂3 = K̂2−2K̂3 ,

where the Dynkin labels are just the residue of the quasi-momenta at infinity

r̃ j =

√
λ

8π2i

˛
∞

dx(p̃ j− p̃ j+1) , r̂ j =

√
λ

8π2i

˛
∞

dx(p̂ j+1− p̂ j) .

In the full theory there is also one global fermionic filling K∗, related to the hypercharge

eigenvalue r∗ by

r∗ ≡−
√

λ

8π2i

A

∑
a=1

˛
Aa

dx
4

∑
k=1

1
2

(p̃k + p̂k) = 2B−K∗,

where B a constant (hypercharge of the vacuum).

The full expression for the quasi-momenta in terms of the resolvents G̃, Ĝ, G∗ is just

given by

p̃k (x) =
4

∑
l=1

(
H̃kl (x)+ H∗kl (x)

)
+ εkF̃ (x)+ F∗ (x) ,

p̂k (x) =
4

∑
l=1

(
Ĥlk (x)+ H∗lk (x)

)
+ εkF̂ (x)+ F∗ (x) , (5.24)

where as before we define an inversion symmetric function

Hkl (x)≡ Gkl (x)+ Gkl (1/x)−Gkl (0) ,
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and have some auxiliary potentials

F̃ (x) =
(

2πL√
λ

+ G̃′+ (0)
)

x
x2−1

+
Ĝ+ (0)

1−1/x2 − G̃+ (1/x)+ Gmom (0) ,

F̂ (x) =
(

2πL√
λ

+ G̃′+ (0)
)

x
x2−1

+
Ĝ+ (0)

1−1/x2 − G̃+ (1/x) ,

F∗ (x) =
(

2πB√
λ

+ G∗
′

+ (0)
)

x
x2−1

+
G∗
′

+ (0)
1−1/x2 −G∗

′
+ (1/x) .

The resolvents G+ and Gmom are simply given by

G̃+ (x) =
1
2

4

∑
k,l=1

εk
(
G̃kl + G∗kl

)
(x) ,

Ĝ+ (x) =
1
2

4

∑
k,l=1

εl
(
Ĝkl + G∗kl

)
(x) ,

G∗+ (x) =
1
2

4

∑
k,l=1

G∗kl (x) ,

Gmom (x) = G̃+ (x)− Ĝ+ (x) .

These resolvent are defined to take into account that only the cuts/poles with εk 6= εl are

physical and these are the only ones to contribute for Gmom.23

The behaviour of the quasi-momenta at x = ∞ gives us the conserved charges of the

system, which can be described through the Dynkin labels or through the fillings K, the

length L and the energy shift δE. Expanding the symmetric H at infinity we obtain

H (x) =−1
x

A

∑
a=1

4πKa√
λ

+O(1/x2),

while the expansions of the auxiliary potentials are given by

F̃ (x) =
1
x

2πL√
λ

+O(1/x2) , F̂ (x) =
1
x

2π(L + δE)√
λ

+O(1/x2) ,

where the energy shift is just δE =
√

λ

2π
G′mom (0) .

The integral Bethe equations (5.23) still have the same form, but with the additional

23The physical cuts connect sheets 1,2 or sheets 3,4 of of both p̃ and p̂.
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momentum constraint Gmom (0) = 2πm.

Moduli of string solutions

Performing a similar counting of degrees of freedom to the one done above for the R×S5 case,

we can determine the number of moduli of allowed curves. For each pair of cuts connecting

sheets ka, la we have one continuous modulus, the filling Ka and one discrete parameter na.

The full theory still has the (continuous) length L and the (discrete) winding m parameters

(and one constraint connecting all of these). Most of these have a direct analogous in the

classification of physical excitation modes of classical strings in flat space (or a plane-wave

geometry): in light-cone gauge each excitation mode has a mode number na, an amplitude

Ka, and an orientation ka, la (for the superstring we will have 8 physical bosonic modes plus

8 fermionic ones). The quantities corresponding the length L and winding do not exist in

flat space, as they are related to the effective curvature of the space and the winding around

S5, respectively. As one expects the number of moduli to remain the same for closed strings

in different backgrounds, then each string solution of the σ -model in AdS5×S5 will have a

corresponding curve in this formalism.

5.4 Restriction to R×S3: The dyonic Giant Magnon solution

The restriction of the full σ -model to R×S3 was extensively studied in [29]. In this case we

are interested in the isometry group SO(4)∼ SU (2)L×SU (2)R. In the spinor representation

(2L.2R) we have the monodromy matrix decomposed in two matrices, diagonalized as

Ω
+
S = diag

(
eipL ,e−ipL

)
, Ω

−
S = diag

(
eipR ,e−ipR

)
.

We then have two independent quasi-momenta pL, pR, related to the quasi-momenta of the

vector representation by

pL =
1
2

(q1 + q2) , pR =
1
2

(q1−q2) .
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By inversion symmetry one can easily see that pR (x) =−pL (1/x)+2πn0. This means that we

can either choose two independent quasi-momenta with inversion symmetry relating them,

or one quasi-momentum p(x) = pR (x) with no inversion symmetry. The behaviour of this

p(x) at the singularities x =±1 is just

p(x) =
πκ

x∓1
+O

(
(x∓1)0) .

The asymptotic behaviour when x→ ∞ is

p(x) =
2π (J1− J2)√

λ

1
x

+O
(
1/x2) ,

while for x→ 0 (through inversion symmetry) we have

p(x) = 2πn0−
2π (J1 + J2)√

λ
x +O

(
x2) .

Note that the Dynkin labels [rL,rR] of SU (2)L×SU (2)R are related to the charges of S3 by

rL = J1 + J2 and rR = J1− J2. Finally the analyticity conditions are just

2/p(x) = 2πna , x ∈ Ca .

We can re-write these results in terms of the resolvent H (x). The SO(4) Cartan Matrix

is just

MSO(4) =

 2 0

0 2

 ,

and so, from (5.13) we find

H̃1 =
1
2

(q1−q2)≡ pR , H̃2 =
1
2

(q1 + q2)≡ pL.

We keep H̃1, related to p(x), and define the resolvent H (x) in a similar way to (5.15):

H (x) = H̃1 (x)− 2πκ

x−1/x
= ∑

a

ˆ
Ca

dy
ρ (y)
y− x

+∑
j

ˆ
B j

dy
ρ (y)
y− x

. (5.25)
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In the above expression, the first sum is over all branch cuts, while the second is over

condensates.

The asymptotics of H (x) is just (note that ∆ =
√

λκ, and that p = 2πn0)

H (x) =
2π√

λ
(−∆ + J1− J2)

1
x

+O
(
1/x2) , x→ ∞,

H (x) = p− 2π (J1 + J2)√
λ

x +O
(
x2) , x→ 0 . (5.26)

The Bethe integral equation for the resolvent H (x) crossing a branch cut is just given by

H (x + iε)+ H (x− iε) = 2−
ˆ

dy
ρ (y)
y− x

=− 2πκ x
x2−1

+ 2πna , x ∈ Ca.

Giant magnons were first studied using the algebraic curve by [89], where it was shown

that they correspond to logarithmic cuts (see also [183]). In fact, giant magnon solutions

and their bound states are solutions made up of only condensates. The condition that

we have a closed string requires that the total string momentum is p = 2πn0. But the

contribution of each condensate for the charges is additive, and as such we can consider

each condensate separately with a momentum p that does not satisfy such condition, as

long as the momentum of all the condensates satisfies it. For one condensate, we can go

back to (5.25) and set the density to be constant, ρ (x) = −in, and the end points of the

condensate to be complex conjugate X±. Then we find an ansatz for the giant magnon

solution

H (x) =−in
ˆ X+

X−

dy
y− x

=−in log
(

x−X+

x−X−

)
. (5.27)

The factor n will give us a bound state of n magnons. We are interested at the moment to

work with one magnon, so we set n = 1:

Gmag(x)≡−i log
(

x−X+

x−X−

)
(5.28)

From the asymptotics of the resolvent (5.26), and the expansion of the expression for
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Gmag (x) (5.28), we find

p = −i log
(

X+

X−

)
,

∆− J + Q = −2ig
(
X+−X−

)
, (5.29)

∆− J−Q = 2ig
(

1
X+ −

1
X−

)
.

In the above expression we redefined J1 ≡ J, J2 ≡Q to better compare to the known results

for the dispersion relation of the giant magnon. Also, we redefined the coupling as λ = 8g2.

Solving these equations for X± in terms of p,Q, we have

X± = e±i p
2 csc

( p
2

) Q +
√

Q2 + 16g2 sin2 ( p
2

)
4g

,

and we find the dispersion relation for a dyonic giant magnon as expected

E ≡ ∆− J =
√

Q2 + 16g2 sin2 p
2

.

Finite size corrections

In the particular case of the giant magnon solutions, we consider an new ansatz for the

resolvent to determine finite-J corrections to the S2 magnon [184], that is, we replace Gmag(x)

with the resolvent

Gfinite(x) =−2i log
(√

x−X+ +
√

x−Y +
√

x−X−+
√

x−Y−

)
(5.30)

where Y± are points shifted from the end points of the cut X± by a small amount δ � 1 :24

Y± = X±
(
1± iδe±iφ) (5.31)

The giant magnon can be described as singular limit of a solution with two branch cuts

CX and CY , with endpoints X± and Y± respectively, when one takes Y±→ X±. The finite-size

correction to the giant magnon will then appear when we consider Y± very close to X± but

24This is a different choice of φ to that used in [141,184,185]. It was chosen to separate φ from the phase
of X±, which is p/2. The phase φ will be seen to give the orientation factor cos(2φ) in δE .
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Figure 5.4: Structure of cuts and condensates for finite-J magnons

still apart. In [184] one finds that a SL(2,Z) takes us from this picture to the one shown

in figure 5.4, where we have one condensate cut between points X± and two square root

branch cuts, one connecting X+,Y + and the other connecting X−,Y−. It is this picture that

leads to the ansatz for the finite resolvent (7.9).

When δ = 0 this new Gfinite(x) clearly reduces to the infinite-size magnon resolvent (5.28).

The square root cuts of G f inite are such that the relative sign between square roots in the

numerator (or denominator, depending on which cut we are crossing) changes when the

contour crosses the respective cut C (X+,Y +) (or C (X−,Y−)), see figure 5.4. We will be

using the superscript G− to indicate that this term is being evaluated on the other side of

the cut from what G is being evaluated (and thus has the opposite sign between the terms

of the numerator inside G).

To determine the leading finite-J correction to the giant magnon dispersion relation, we

again calculate the asymptotic behaviour at x→ ∞ of the quasi-momenta using the ansatz

(7.9) to determine the charges of the solution as functions of the end points X±,Y±, and

then solve the equations for these charges to second order in δ .

In Chapter 7 we will apply this method to some giant magnon solutions in the context of

bosonic string in another background. We will then give a full description on how to obtain

these finite-J leading corrections to the dispersion relation.



Chapter 6

Giant Magnons in AdS4×CP3

Classical string solutions in AdS5× S5 have played an important role in the study of the

duality to N = 4 SYM [11, 12, 26]. It seems that this pattern is being repeated in the new

N = 6 duality [6], in which planar superconformal Chern–Simons theory is dual to string

theory on AdS4×CP3. Some of the most interesting recent papers study strings moving in

an AdS2× S1 subspace, where although the classical solutions are identical to those used

in the N = 4 case, the quantum properties are different. The results from semiclassical

quantization [43, 45, 186,18, 187,188] can be compared to those from the asymptotic Bethe

ansatz, and there appeared to be some difficulties [47,189,190,44,191].

In this chapter, we study string solutions exploring primarily the CP3 factor. One would

expect to find analogues of the giant magnons [26] here, which in the N = 4 case live

in an S2 ⊂ S5. And indeed, it turns out that the same solutions exist in CP3 [192, 193].

There are two inequivalent ways to embed the basic S2 magnon, into either CP1 = S2 or

RP2 = S2/Z2 [192], both two-dimensional subspaces of CP3.

In either theory, the anomalous dimension can be calculated as the Hamiltonian of some

spin chain [20, 194, 195, 192]. The giant magnons are dual to the elementary excitations of

this spin chain, and have a periodic dispersion relation ∆− J =
√

1 + f 2(λ )sin2(p/2) which

on the gauge side is an symptom of the discrete spatial dimension of the spin chain, and

on the string side arises from p being an angle along an equator. The conformal dimension

∆ and the R-charge J are mapped by AdS/CFT to energy and angular momentum of the

string state. For the state dual to the (ferromagnetic) vacuum of the spin chain, which is

150
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a point particle, ∆− J becomes the Hamiltonian for small fluctuations. We confirm that in

the N = 6 case, the difference ∆− (J1− J4)/2 has the same property.

An important difference between the old N = 4 case and the new N = 6 case is the

behaviour of the function f (λ ), the only part of the dispersion relation not fixed by su-

persymmetry [55, 26]. In the old case, calculations of f (λ ) at both large and small λ give

f (λ ) =
√

λ/π, and this is conjectured to be true for all λ . In the new case, however, the

function (often called h instead) is h(λ ) = λ at small λ but h(λ ) ∼ λ 1/2 at large λ . Our

knowledge of this function at large λ comes (in both cases) from studying classical string

theory, and so depends on the correct identification of the relevant string solutions.

Dyonic giant magnons are those with more than one large angular momentum, dual to

a large condensate of impurities on the spin chain. These are string solutions in S3, and

they can at least sometimes be embedded into CP3 in much the same way as the basic

magnon, generalizing the RP2 magnons and living in an RP3 subspace [196, 197]. There is

room for dyonic solutions with other angular momenta, truly exploring CP3, including those

generalizing the CP1 magnon.

Solutions of the string sigma-model should be in exact correspondence to algebraic

curves [46]. Here too several giant magnon solutions were known (compared to one in the S5

case [89]) named ‘small’ and ‘big’ [198]. However these could not be the same two solutions

as those previously known in the sigma-model. In the S5 case, and for the small magnon,

one naturally obtains a dyonic (two-parameter, two-spin) solution. But the big magnon is

something not seen in the S5 case, a two-parameter solution with only one non-zero angular

momentum, and thus cannot be the RP3 magnon. There are also two distinct small giant

magnons, and it has been observed that a pair of small magnons has all the properties we

expect the RP3 magnon to have [185].

The situation has improved with the recent publication of two new string solutions. The

first was found using the dressing method, and, like the big giant magnon, is a two-parameter

one-angular-momentum solution [199, 200, 201]. They have exactly the same dispersion re-

lation, and in both cases we can take a non-dyonic limit and recover the RP2/pair of small

magnons. The second one is a dyonic generalization of the CP1 magnon [202]. This is a

solution which does not exist in S5, exploring the four-dimensional subspace CP2, and it has
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a dispersion relation matching that of the small giant magnon. It exists in two orientations,

and like the small magnon has a third angular momentum which is J3 = ±Q in these two

cases. We have as yet only been able to find the p = π case of this solution, but this is

sufficient to see these properties.1

In this chapter we will introduce the CP3 geometry, and discuss potentially interest-

ing subspaces where one could find non-trivial solutions. Noteworthy is the fact that the

subspace frequently called S2× S2 in the literature is in fact just RP2, and while there is

a genuine S2×S2 subspace, one cannot place arbitrary S2 string solutions into each factor,

because the equations of motion couple the two factors. This discussion will be followed by a

description of the giant magnon solutions known in particular subspaces, and corresponding

charges. In particular, their dispersion relations will allow us to set up the correspondence

with the algebraic curve results, which will be given in the next chapter.

6.1 Groups in ABJM theory

The ABJM [6] N = 6 superconformal Chern–Simons-matter theory2 has a U(N)×U(N)

gauge symmetry. We want to focus on its scalar sector Ai,Bi. The fields A1,A2 are matrices

which transform under the (N, N̄) representation of this group (one fundamental index, one

anti-fundamental), while the fields B1,B2 transform under the (N̄,N). The R-symmetry can

be decomposed in a manifest SU(2)A, in which the A fields form a doublet, and SU(2)B,

which acts on the B fields. The theory is also invariant under the conformal group SO(2,3),

since we are in 2+1 dimensions. We consider spacetime to be R× S2, we consequently

restrict ourselves to fields in the lowest Kaluza–Klein mode on this S2, i.e. in the singlet

representation of SO(3)r - the spatial part of the conformal group.

It was seen in [212] that the R-symmetry group can be extended to the full SU(4), with

1Note that we use the term dyonic to mean a two-parameter two-charge solution, but sometimes write
‘dyonic’ to mean a two-parameter, one-charge solution, like the big giant magnon. This last use of the term
dyonic is to specify that we mean the r 6= 1 case, and when we talk about the non-dyonic limit, that means
taking the second parameter r→ 1. This limit always takes us into some embedding of the HM magnon.

2These theories were discovered after the explorations of 3-dimensional superconformal theories with non-
Lie-algebra gauge symmetry by BLG, [203, 204, 205, 206, 207] and built on earlier work on Chern–Simons-
matter theories by [208,209,210,211].



153

the following combination of scalars transforming in its fundamental representation:

Y A = (A1,A2,B
†
1,B

†
2) , (6.1)

while Y †
A transforms in the anti-fundamental. Keeping only the scalars (Y 1,Y 4) = (A1,B

†
2),

only a subgroup called SU(2)G′ remains from the full symmetry group. If we kept only

(Y 2,Y 3) = (A2,B
†
1) then the subgroup would be SU(2)G.3

This theory was found to be dual to membranes on AdS4×S7/Zk, where (k,−k) are the

level numbers of the two Chern–Simons terms. In the ’t Hooft limit N → ∞ with λ = N/k

fixed we need to take k→ ∞, and in this limit the theory of membranes on AdS4× S7/Zk

reduces to type IIA strings on AdS4×CP3.

A spin-chain description of ABJM theory can be obtained [194, 192, 195], through the

study of gauge invariant operators of length 2L of the form

O = χ
B1B2···BL
A1A2···AL

tr Y A1Y †
B1

Y A2Y †
B2

. . . Y ALY †
BL

.

When χ is fully symmetric (in the As, and in the Bs) and traceless, O is a chiral primary with

protected scaling dimension ∆ = L, that is, the anomalous dimension defined by D = ∆−L

will be zero.

The SU(2)×SU(2) sector of the theory corresponds to operators O in which only Y 1, Y 2

and Y †
3 , Y †

4 appear.4 The relevant vacuum is given by

Ovac = tr
(

Y 1Y †
4

)L
. (6.2)

This has ∆ = L, and J = L, where J is the Cartan generator in SU(2)G′ : J(Y 1) = 1
2 and

J(Y 4) =−1
2 , thus J(Y †

4 ) = +1
2 .

The SU(3) sector allows operators with Y 1, Y 2, Y 3 and Y †
4 , and has the same vacuum

(6.2) as the previous sector.

3These subscripts are the notation of [192], except that they have B1 and B2 the swapped: their spin chain

vacuum is tr(A1B†
1)L rather than the tr(Y 1Y †

4 )L of [194] used here, (6.2).

4This equivalent to saying that only fields A1, A2, B1 and B2 appear The two factors of SU (2) in the sector
are just SU(2)A and SU(2)B.
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The two-loop anomalous scaling dimension of operators in the SU(2)×SU(2) sector can

be determined by the sum of the Hamiltonians of two independent Heisenberg XXX spin

chains, for the even and odd sites. The momentum constraint (from the U(N) trace tr) is

that the sum of both their momenta be zero (the condition in the N = 4 case was slightly

stronger [20], as in that case there was one total momentum which had to be zero).

6.2 The geometry of CP3

The string dual of ABJM theory in the ’t Hooft limit is type IIA superstrings in AdS4×CP3,

with sizes specified by the metric

ds2 =
R2

4
ds2

AdS4
+ R2ds2

CP3 (6.3)

where R2 = 25/2π
√

λ . The large-λ limit gives strongly coupled gauge theory, dual to classical

strings. In addition to this (string-frame) metric, there is a dilaton and RR forms, given

by [6], which do not influence the motion of classical strings.

The metric for CP3 is given in [6] as

ds2
CP3 =

dzidz̄i

ρ2 − |zidz̄i|2

ρ4 , where ρ
2 = ziz̄i (6.4)

in terms of the homogeneous co-ordinates~z∈C4, where~z∼ λ~z for any complex λ . The SU(4)

isometry symmetry is manifest here, with ~z in the fundamental representation. AdS/CFT

identifies this isometry group with the SU(4) R-symmetry group, so it is natural to take ~z

to be in the same basis as the fields Y A in (6.1) above.

Instead of using four complex numbers as co-ordinates for CP3, we can use six real angles.
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One set of these is defined by

~z =



sinξ cos(ϑ2/2) e−iη/2 eiϕ2/2

cosξ cos(ϑ1/2) eiη/2 eiϕ1/2

cosξ sin(ϑ1/2) eiη/2 e−iϕ1/2

sinξ sin(ϑ2/2) e−iη/2 e−iϕ2/2


, (6.5)

and in terms of these angles, the metric is [213,214]:

ds2
CP3 = dξ

2 +
1
4

sin2 2ξ

(
dη +

1
2

cosϑ1 dϕ1−
1
2

cosϑ2 dϕ2

)2

+
1
4

cos2
ξ
(
dϑ

2
1 + sin2

ϑ1 dϕ
2
1
)

+
1
4

sin2
ξ
(
dϑ

2
2 + sin2

ϑ2 dϕ
2
2
)

(6.6)

where ξ ∈ [0, π

2 ], ϑ1,ϑ2 ∈ [0,π], ϕ1,ϕ2 ∈ [0,2π] and η ∈ [0,4π] (this can be obtained by

building S7 from S3×S3 with the seventh co-ordinate ξ controlling their relative sizes).

This parametrization in terms of angles is one of two angular parametrizations commonly

used. The other one is given by [215]:

ds2
CP3 = dµ

2 +
1
4

sin2
µ cos2

µ
[
dχ + sin2

α (dψ + cosθ dφ)
]2

+ sin2
µ

[
dα

2 +
1
4

sin2
α

(
dθ

2 + sin2
θ dφ

2 + cos2
α (dψ + cosθ dφ)2

)]
(6.7)

with ranges α,µ ∈ [0, π

2 ], θ ∈ [0,π], φ ∈ [0,2π] and ψ,χ ∈ [0,4π].

In Appendix D.1 we give the maps between these angles and the homogeneous co-

ordinates.
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6.3 The string sigma-model for AdS4×CP3

The full metric of AdS4×CP3 is then

ds2 =
R2

4
ds2

AdS + R2ds2
CP = R2

(
dyµdyµ

−4~y2 +
dzidz̄i

|~z|2
− |zidz̄i|2

|~z|4

)

where we have embedded AdS4⊂R2,4 and CP3⊂C4 , parametrized by~y and~z respectively. To

study strings in this space, we constrain the lengths of these embedding co-ordinate vectors:

~y2 = yµyµ =−(y−1)2− (y0)2 + (y1)2 + (y2)2 + (y3)2 =−1 and |~z|2 = z1z̄1 + z2z̄2 + z3z̄3 = +1. In

addition to these constraints, points in C4 differing by an overall phase are identified in CP3.

This can be dealt with by introducing a gauge field: write the conformal gauge Lagrangian

as

2L =
1
4

∂a~y ·∂ a~y−Λ(~y2 + 1)+ Da~z ·Da~z−Λ
′(~̄z ·~z−1)

where the covariant derivative is Da = ∂a−Aa. The equation of motion for the gauge field

fixes Aa =~̄z ·∂a~z. We can write the equations of motion for ~y and ~z as5

∂a∂
a~y +(∂a~y ·∂ a~y)~y = 0, DaDa~z +

(
Da~z ·Da~z

)
~z = 0.

The AdS and CP components are coupled by the Virasoro constraints, which read:

1
4

∂τ~y ·∂τ~y + Dτ~z ·Dτ~z +
1
4

∂x~y ·∂x~y + Dx~z ·Dx~z = 0

1
4

∂τ~y ·∂x~y + Re
(
Dτ~z ·Dx~z

)
= 0.

We now restrict to solutions in R×CP3, with y−1 + iy0 = e2iτ and y1 = y2 = y3 = 0. We

will always work in a gauge in which this τ is worldsheet time (timelike, or static, conformal

5Note that the CP3 equation here reduces to that derived in Appendix D.2, where instead of treating the
total phase as a gauge symmetry it was fixed to a constant using another Lagrange multiplier.
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gauge).6 The metric then reduces to

ds2
R×CP3 =−dτ

2 + |d~z|2−
∣∣~̄z ·d~z∣∣2 .

In writing the Lagrangian, and this metric, we have pulled out the large radius factor

R2 = 25/2π
√

λ to give a prefactor to the action:

S =
ˆ

dxdτ

2π
R2L = 2

√
2λ

ˆ
dxdτ L .

This same factor appears when calculating conserved charges. The one from time-translation

(which we define with respect to AdS time, tan tAdS = y0/y−1) is simply

∆ = 2
√

2λ

ˆ
dx

∂L

∂ ∂τtAdS
=
√

2λ

ˆ
dx 1 (6.8)

where we used the fact that t = 2τ for the the solutions we’re studying. The charges from

rotations of CP3’s embedding co-ordinate planes are:

Ji ≡ J(zi) = 2
√

2λ

ˆ
dx

∂L

∂ ∂τ(argZi)
= 2
√

2λ

ˆ
dx

[
Im(z̄i∂τzi)−|zi|2 ∑

j
Im(z̄ j∂τz j)

]
(6.9)

= 2
√

2λ

ˆ
dx Im(z̄iDτzi) (Σ

/
i)

Only three of the four J(zi) are independent, since ∑
4
i=1 J(zi) = 0. These three are the charges

from the Cartan generators of su(4), and the charges from all of the generators can be

obtained using their Lie-algebra matrices T a = (T a)i j:

J[T a] = 2
√

2λ

ˆ
dx Im

(
~̄z ·T aDτ~z

)
The matrices T a are Hermitian and traceless, and the charges J(zi) are those generated by

6This implies the the length of the worldsheet cannot be held fixed to 2π. Instead it is proportional to
the energy ∆, and thus infinite for the giant magnon. Taking this to be finite makes ∆ and J finite too, thus
we use ‘finite-J’ and ‘finite-size’ interchangeably.
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diagonal T a. The charges we will need for the giant magnons are

J = J(z1)− J(z4) = J [diag(1,0,0,−1)]

Q = J(z2)− J(z3) = J [diag(0,1,−1,0)] (6.10)

J3 = J
[
diag(−1

2 , 1
2 , 1

2 ,−1
2)
]

The charges of interest can also be written using the angles defined in (6.5): writing

Jϕ2 = 2
√

2λ
´

dx ∂L
∂ ∂τ ϕ2

etc., we have J = 2Jϕ2 , Q = 2Jϕ1 and J3 = Jη

The Penrose limit describes the geometry very near to a null geodesic [216] and has

been very important in AdS/CFT [5]. This has been studied in AdS4×CP3 by [192], where

the particle travels along χ = 4τ with α = 0, µ = π/4 in terms of the angles in (6.7), and

by [217,193], who use co-ordinates (6.6), expanding near ϑ1 = ϑ2 = 0, ξ = π/4 with distance

along the line ψ̃ = η + (ϕ1−ϕ2)/2 = −2τ. In all cases, the test particle moves along the

path7

~z = 1√
2

(
eiτ , 0, 0, e−iτ) . (6.11)

This has large angular momentum in opposite directions on the z1 and z4 planes, as one

would expect for the state dual to the operator (6.2). This led to write this state down as

the string state dual to the vacuum Ovac [194].

In the AdS5× S5 case, the spin chain vacuum tr(Φ1 + iΦ2)L is dual to a point particle

defined by X = (cosτ,sinτ, 0,0, 0,0). This string state has large angular momentum J = ∆ in

the 1-2 plane. The study of small fluctuations around this string state, one can show that

∆−J is a Hamiltonian for the physical modes [12]. In fact, semiclassical quantization views

these modes as quantum fields with energy ∆− J. As giant magnons are excitations above

this vacuum, their semiclassical quantization is directly related to calculating quantum

corrections to this energy [142,124].

For the present case of AdS4×CP3, given the point particle state (6.11) and the dual

vacuum (6.2), one would guess that ∆− (J1− J4)/2 will play the same role. In Appendix

7We stress that there are not different Penrose limits for the different giant magnon sectors. To get
precisely this path ~z, using our conventions given in (D.2) and (D.3), we fix in addition θ = π (in the first
case) and ϕ1 = ϕ2 (in the second), and also swop z2↔ z4 in the second case.
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D.3 we explicitly derive the fluctuation Hamiltonian for this case, and confirm that ∆−

(J1− J4)/2 is indeed a Hamiltonian for the physical states.

6.4 Placing giant magnons into CP3

Recall that the Hofman–Maldacena giant magnon [26] is a rigidly rotating classical string

solution in R×S2, given in timelike conformal gauge by

cosθmag = sin
p
2

sechu (6.12)

tan
(
φmag− τ

)
= tan

p
2

tanhu

where u = (x−τ cos p
2 )/sin p

2 is the boosted spatial co-ordinate for a soliton with worldsheet

velocity cos(p/2) (we will be using worldsheet space and time to be x,τ). The spacetime is

ds2 = −dτ2 + dθ 2 + sin2
θ dφ 2 — by timelike gauge we mean that the target-space time is

also worldsheet time.8

We define conserved charges here as follows:

∆ =
√

2λ

ˆ
dx 1 (6.13)

Jsphere =
√

2λ

ˆ
dx Im(W̄1∂τW1) . (6.14)

This ∆ matches (6.8) used in Appendix D.3 when the AdS fluctuations t̃ and ~̃r are turned

off. Note that we keep the same prefactor
√

2λ here, which is not the one we would use in

the AdS5× S5 case. Finally, we write the complex embedding co-ordinates S2 ⊂ C2 and we

find9

~w≡

 W1

W2

=

 eiτ
[
cos p

2 + isin p
2 tanhu

]
sin p

2 sechu

=

 eiφmag(x,τ) sinθmag(x,τ)

cosθmag(x,τ)

 (6.15)

8What we call timelike conformal gauge is sometimes called static conformal gauge. In our conventions,
AdS time t is given by t = 2τ. However, because of the factor 1

4 in the metric (D.8), it is τ rather than t which
is physical time.

9Our notation is that (w1,w2) are complex embedding co-ordinates for the sphere, while zi are for CP3.
Capital letters indicate a string solution in this space.
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Both ∆ and Jsphere are infinite for the solution (6.12), but their difference is finite:

∆− Jsphere = 2
√

2λ sin
( p

2

)
.

The parameter p is the (absolute value of the) momentum of the spin chain excitation in

the dual gauge theory, which is why this is called a dispersion relation. It is also equal to

the opening angle ∆φmag of the string solution on the equator θmag = π

2 .

We now turn to solutions in R×CP3, with metric ds2 =−dτ2 + ds2
CP3 . All solutions will

be in conformal gauge, and with worldsheet time τ related to AdS time t by t = 2τ, so we

will continue to use the definition of ∆ from (6.13), although for J we must now use (6.9)

and (6.10). We will also continue to use the parameter p ∈ [0,2π] in all the cases below, and

while this should still be a momentum in the dual theory, we make no comment here on the

precise factors involved.

The subspace CP1

If we set z2 = z3 = 0, or in terms of angles (6.7) α = 0, then we obtain the space CP1 = S2

with metric

ds2 =
1
4

[
d(2µ)2 + sin2(2µ)d

(
χ

2

)2
]
. (6.16)

This is a sphere of radius 1
2 , so to place the magnon solution (6.12) here (as was done

by [192]) maintaining conformal gauge we need to set

2µ = θmag(2x,2τ) (6.17)

χ

2
= φmag(2x,2τ) .

Using the map (D.3), given in appendix D.1, and choosing θ = π, we obtain

~Z(x,τ) =



e
i
2 φmag(2x,2τ) sin

(1
2 θmag(2x,2τ)

)
0

0

e−
i
2 φmag(2x,2τ) cos

(1
2 θmag(2x,2τ)

)


. (6.18)
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Calculating charges for this solution, using definitions (6.10) for J and (6.13) for ∆, we

recover the dispersion relation10

E (p) = ∆− J
2

=
√

2λ sin
( p

2

)
. (6.19)

One should check that this subspace is a legal one, meaning that solutions found here

are guaranteed to be solutions in the full space. This can be done by finding the conformal

gauge equations of motion coming from the Polyakov action with the metric (6.7), and

confirming that α’s equation is solved by α = 0.11 But in this case it is easier to note that

z2 = z3 = 0 trivially solves their equations of motion, (D.5), which we derive in appendix

D.2.

The subspace RP2

A second embedding of the S2 solution was first used by [193]12

~Z(x,τ) =
1√
2



eiφmag(x,τ) sinθmag(x,τ)

cosθmag(x,τ)

cosθmag(x,τ)

e−iφmag(x,τ) sinθmag(x,τ)


=

1√
2



W1

W2

W̄2

W̄1


. (6.20)

This solution lives in an RP2 subspace, as can be seen by simply rotating some of the

planes in C4 = R8 by π

4 : in terms of new co-ordinates ~w defined by

w1 = 1√
2

(z1 + z̄4) w4 = 1√
2

(z1− z̄4) (6.21)

w2 = 1√
2

(z2 + z̄3) w3 = 1√
2

(z2− z̄3) ,

10Note that if you were to omit the second term in (6.9) when calculating J, thus effectively using (6.14)
appropriate for the sphere, you would get instead ∆− J/2 =

√
2λ pcos

( p
2
)
. In the RP2 and RP3 subspaces

discussed below, this second term vanishes.

11In addition to solving the conformal gauge equations of motion, a string solution must be in conformal
gauge, i.e. must solve the Virasoro constraints. If the solution on the subspace is in conformal gauge, then it
follows trivially that the solution in the full space is too: the induced metric γab = ∂aX µ ∂bXν Gµν is influenced
only by those directions the solution explores, and in these directions the metric Gµν is the same in both
the full space and the subspace.

12We discuss the equations of motion used by [193] for strings in CP3 in Appendix D.2.
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this solution has w3 = w4 = 0 and is precisely the original giant magnon in the other two

co-ordinates:

(w1,w2) =
(
eiφmag sinθmag , cosθmag

)
.

The reason this is RP2 rather than S2 is that sending (w1,w2)→−(w1,w2) gives an overall

sign change on ~z, and these two points are identified in CP3.13

The subspace which this magnon explores can also be obtained from the metric (6.6),

by fixing ϑ1 = π

2 , ϑ2 = π

2 , ϕ1 = 0 and η = 0. The metric then becomes

ds2 = dξ
2 + sin2

ξ d
(

ϕ2

2

)2

and the magnon (6.20) is simply ξ = θmag(x,τ), ϕ2 = 2φmag(x,τ). This can be checked to be

a legal restriction from the equations of motion for the four angles fixed.

This subspace is sometimes, rather misleadingly, referred to as S2× S2. It is true that

|z1|2 + |z2|2 = 1
2 and |z3|2 + |z4|2 = 1

2 , and Imz2 = 0 = Imz3. These restrictions alone would

describe a subspace of C4, namely S2× S2 ⊂ C2×C2. But we are in CP3, not C4, and the

space described by θ ,φ (or by ξ ,ϕ2) has only two dimensions — these two S2 factors are not

independent. In Section 6.5 below we discuss a genuine four-dimensional S2×S2 subspace.

The charges of this solution are very simply related to those of the magnon on the

sphere, since the extra term in the CP3 angular momentum (6.9) compared to the that for

the sphere vanishes: Jsphere = 1
2(J1− J4) = J

2 , and we get simply

E = ∆− J
2

= 2
√

2λ sin
(

p′

2

)
. (6.22)

One difference from the magnon on S2 is that when p′ = π the magnon becomes a single

closed string. Its cusps, at opposite points on the equator of S2, are in fact at the same point

in RP2. In general the magnon connects two points a distance ∆ϕ2 = 2∆φmag = 2p′ apart on

13In S2, the standard co-ordinates have ranges θ ∈ [0,π] and φ ∈ [0,2π], and changing θ → π − θ and
φ→ φ +π simultaneously moves you to the antipodal point on S2. But performing this change in the subspace
of CP3 parametrized by (6.20) changes ~z→−~z, and these two points are identified by the definition of CP3.
This is what makes the subspace RP2 = S2/Z2 instead of S2. To obtain co-ordinates which cover this subspace
only once, we can shorten the range of either θ or φ , and in figure 6.1 we choose to restrict to φ ∈ [0,π] while
keeping θ ∈ [0,π].
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solves their equations of motion, (35), which we derive in appendix B.

5.2 The subspace RP 2

A second embedding of the S2 solution was first used by [11]12

Z(x, t) =
1√
2

(
eiφmag(x,t) sin θmag(x, t) , cos θmag , cos θmag , e−iφmag sin θmag

)
. (21)

This solution lives in an RP 2 subspace, as can be seen by simply rotating some of the planes
in C4 = R8 by π

4 : in terms of new co-ordinates w defined

w1 = 1√
2

(z1 + z̄4) w4 = 1√
2

(z1 − z̄4) (22)

w2 = 1√
2

(z2 + z̄3) w3 = 1√
2

(z2 − z̄3) ,

this solution has w3 = w4 = 0 and is precisely the original giant magnon in the other two
co-ordinates:

(W1, W2) =
(
eiφmag sin θmag , cos θmag

)
.

The reason this is RP 2 rather than S2 is that sending (w1, w2) → −(w1, w2) gives an overall
sign change on z, and these two points are identified in CP 3.13

The subspace which this magnon explores can also be obtained from the metric (6), by fixing
ϑ1 = π

2 , ϑ2 = π
2 , ϕ1 = 0 and η = 0. The metric then becomes

ds2 = dξ2 + sin2 ξ d
(ϕ2

2

)2

and the embedding (21) is simply ξ = θmag(x, t), ϕ2 = 2φmag(x, t). This can be checked to be a
legal restriction from the equations of motion for the four angles fixed.

This subspace is sometimes, rather misleadingly, referred to as S2 × S2. It is true that
|z1|2 + |z2|2 = 1

2 and |z3|2 + |z4|2 = 1
2 , and Im z2 = 0 = Im z3. These restrictions alone would

describe a subspace of C4, namely S2 × S2 ⊂ C2 × C2. But we are in CP 3, not C4, and the
space described by θ,φ (or by ξ, ϕ2) has only two dimensions — these two S2 factors are not
independent. In section 6.2 below we discuss a genuine four-dimensional S2 × S2 subspace.

The charges of this solution are very simply related to those of the magnon on the sphere,
since the extra term in the CP 3 angular momentum (12) compared to the that for the sphere
vanishes: Jsphere = J1 = 1

2 (J1 − J4), and we get simply

∆− J1 − J4

2
= 2
√

2λ sin
(p

2

)
. (23)

One difference from the magnon on S2 is that when p = π, the magnon becomes a single
closed string. Its cusps, at opposite points on the equator of S2, are in fact at the same point
in RP 2. In general the magnon connects two points a distance ∆ϕ2 = 2∆φmag = 2p apart on
the equator, but ϕ ∼ ϕ + 2π so p = δ and p = π + δ both connect the same two points. As was

12We discuss the equations of motion used by [11] for strings in CP 3 in appendix B.2.
13In S2, the standard two co-ordinates have ranges θ ∈ [0, π] and φ ∈ [0, 2π]. Changing θ → π − θ and

φ→ π + φ simultaneously moves you to the antipodal point on S2. But performing this change in the subspace
of CP 3 parameterised by (21) changes z → −z, and these two points are identified by the definition of CP 3,
making the subspace RP 2 = S2/Z2. To obtain co-ordinates which cover this subspace only once, we can shorten
the range of either θ or φ, and in figure 1 we choose to restrict to φ ∈ [0, π] while keeping θ ∈ [0, π].

9

Finally, we write the complex embedding co-ordinates W1 = eiφmag sin θmag and W2 = cos θmag.9

Both ∆ and Jsphere are infinite for the solution (14), but their difference is finite:

∆− Jsphere = 2
√

2λ sin
(p

2

)
.

The parameter p is the (absolute value of the) momentum of the spin chain excitation in the
dual gauge theory, which is why this is called a dispersion relation. It is also equal to the opening
angle ∆φmag of the string solution on the equator θmag = π

2 .
We now turn to solutions in R × CP 3, with metric ds2 = −dt2 + ds2

CP 3 . All solutions will
be in conformal gauge, and with worldsheet time t related to AdS time τ by τ = 2t, so we will
continue to use the definition of ∆ from (15), although for J we must now use (12). We will also
continue to use the parameter p ∈ [0, 2π] in all the cases below, and while this should still be a
momentum in the dual theory, we make no comment here on the precise factors involved.

5.1 The subspace CP 1 = S 2

If we set z2 = z3 = 0, or in terms of angles (5), α = 0, then we obtain the space CP 1 = S2 with
metric

ds2 =
1
4

[
d(2µ)2 + sin2(2µ)d

(χ

2

)2
]

. (17)

This is a sphere of radius 1
2 , so to place the magnon solution (14) here (as was done by [10])

maintaining conformal gauge we need to set

2µ = θmag(2x, 2t) (18)
χ

2
= φmag(2x, 2t) .

Using the map (33), given in appendix A, and choosing θ = π, we obtain

Z(x, t) =
1√
2

(
e

i
2 φmag(2x,2t)

√
1− cos θmag(2x, 2t) , 0, 0, e−

i
2 φmag

√
1 + cos θmag

)
(19)

=
(

eit+f(2u) sin
θmag(2x, 2t)

2
, 0, 0, e−it−f(2u) cos

θmag(2x, 2t)
2

)
.

Calculating charges for this solution, using definitions (12) for J and (15) for ∆, we recover
the dispersion relation10

∆− J1 − J4

2
=
√

2λ sin
(p

2

)
. (20)

We should check that this subspace is a legal one, meaning that solutions found here are
guaranteed to be solutions in the full space. This can be done by finding the conformal gauge
equations of motion coming from the Polyakov action with the metric (5), and confirming that
α’s equation is solved by α = 0.11 But in this case it is easier to note that z2 = z3 = 0 trivially

9Our notation is that (w1, w2) are complex embedding co-ordinates for the sphere, while zi are for CP 3.
Capital letters indicate a string solution in this space.

10Note that if you were to omit the second term in (12) when calculating J , thus effectivly using (16) appro-
priate for the sphere, you would get instead ∆ − (J1 − J4)/2 =

√
2λ p cos

` p
2

´
. In the RP 2 and RP 3 subspaces

discussed below, this second term vanishes.
11In addition to solving the conformal gauge equations of motion, a string solution must be in conformal

gauge, i.e. must solve the Virasoro constraints. If the solution on the subspace is in conformal gauge, then it
follows trivially that the solution in the full space is too: the induced metric γab = ∂aXµ∂bXνGµν is influenced
only by those directions the solution explores, and in these directions the metric Gµν is the same in both the full
space and the subspace.
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Figure 6.1: Two giant magnons are shown (in red) on the unit sphere S2 (left), on RP2

(center, drawn here as half a sphere) and on CP1, a sphere of radius 1
2 (right). In all cases

they have p1 = 1
2 and p2 = π− 1

2 , which leads to a closed string in the RP2 case, but not in
the S2 or CP1 cases.

In both the RP2 and CP1 cases, the equator is of length π, and we parametrize it by β ∈ [0,π].
The magnon with p1 = 1

2 spans ∆β = 1
2 in the RP2 case, but only ∆β = 1

4 in the CP1 case.
On CP1 we have also drawn a third magnon (in blue) with p3 = 1, which spans the same
length of equator ∆β = 1

2 as does the p1 magnon on RP2.

the equator, but ϕ ∼ ϕ +2π so p′ = δ and p′ = π +δ both connect the same two points. As

was noted by [192], this can be viewed as giving rise to a second class of magnons, with

∆− J
2

= 2
√

2λ sin
(

π + δ

2

)
= 2
√

2λ cos
(

δ

2

)
.

Figure 6.1 shows two magnons on S2 and then on RP2, one with p = 1
2 and another with

p = π − 1
2 . In the RP2 case they have opposite opening angles δ = ±1

2 , thus form a single

closed string, while in the S2 case the total opening angle is π. Note that between the

parameter p in the CP1 case and the parameter p′ here we have the relation p = 2p′.

The subspace RP3

In the AdS5×S5 case, Dorey’s giant magnons with a second large angular momentum J′∼
√

λ

allow one to see that the dispersion relation is ∆−Jsphere =
√

J′2 + λ

π2 sin2(p/2) [27,94]. These

necessarily live in S3 rather than S2. They are called dyonic magnons, and (embedding
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S3 ⊂ C2) can be written as

W1 = eiτ
(

cos
p
2

+ isin
p
2

tanhU
)

W2 = eiV sin
p
2

sechU

where

U = (xcoshβ − τ sinhβ )cosα, cotα =
2r

1− r2 sin
p
2

,

V = (τ coshβ − xsinhβ )sinα, tanhβ =
2r

1 + r2 cos
p
2
.

The parameter p is still the opening angle along the equator in the W1 plane, although

cos(p/2) is clearly no longer the worldsheet velocity. Sending the new parameter r → 1

reproduces the original giant magnon.

The second method of embedding S2 solutions into CP3, given by (6.20), points out a

way to embed S3 solutions:

~Z = 1√
2

(W1,W 2,W̄2,W̄1) . (6.23)

As before, this is in fact a subspace RP3 rather than S3, thanks to the identification of

(w1,w2)∼−(w1,w2) implied.14

Embedding a dyonic giant magnon in this way gives a CP3 solution with charges15

∆− J
2

= 2
√

2λ
1 + r2

2r
sin
(

p′

2

)
,

Q
2

= 2
√

2λ
1− r2

2r
sin
(

p′

2

)
,

where the angular momenta J and Q were defined in (6.10). The third angular momenta

14Note that the rotation from ~z to ~w given by (6.21) is not an isometry, and in particular that the
identification ~z∼ λ~z which defines CP3 does not apply afterwards: ~w� λ~w for complex λ . If w3 = w4 = 0, as
is implied by (6.23), then the phases of w1 and w2 are both physical. (Which is good if we’re claiming that
the dyonic magnon has momentum along both of them.)

However, the relation ~w ∼ λ~w is true for real λ , and since we have fixed w2
1 + w2

2 = 1 by starting with a
string solution on S2, the identification (w1,w2)∼−(w1,w2) is all that survives.

15In calculating these charges from (6.9), the same cancellation of the second term happens here as hap-
pened in the previous section. Thus using the charges one would expect for S7 ⊂ C4 gives the right answer
here. This does not work in the CP1 case, see footnote 10.
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from (6.10) is still zero. These charges satisfy the relation16

E = ∆− J
2

=

√(
Q
2

)2

+ 8λ sin2
(

p′

2

)
. (6.24)

Notice that the second angular momentum here, Q ≡ J2− J3, is that carried by Y 2 and

Y †
3 , which are the impurities we insert into the vacuum (6.2) to make magnons in the

SU(2)×SU(2) sector.

This subspace can also be obtained from (6.6), by fixing ϑ1 = π

2 , ϑ2 = π

2 and η = 0. The

metric becomes

ds2 = dξ
2 + sin2

ξ d
(

ϕ2

2

)2
+ cos2

ξ d
(

ϕ1

2

)2
.

This restriction can be checked to be a legal one from the equations of motion for the angles

ϑ1, ϑ2 and η . The dyonic giant magnon in this space was re-derived by [197], using exactly

these angles. It was also re-derived by [196] using co-ordinates ~z.

Like the RP2 magnons above, at p′ = π these form single closed strings, and beyond this

(π < p′ < 2π) give a second class of magnons connecting the same two points on the equator

as the magnon with p̃ = p′−π.

Comparison of CP1 and RP2 magnons

In Section 6.4 we looked at two different ways to embed the basic single-charge giant magnon

(6.15), into either CP1 or RP2 [192, 193]. This CP1 is a two-sphere of radius 1
2 , while RP2 is

half a two-sphere, so both have an equator of length π. We lined up the embeddings into

C4 such that, in both cases, the equator is the line

~z = 1√
2

(
eiβ ,0,0,e−iβ

)

where we name the angle β ∈ [0,π], as in (D.7), to avoid confusion.

16We again used the prime p′ to distinguish from the parameter p = 2p′ in CP1.
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Since the basic magnon (6.15) has opening angle ∆φmag = p, these two solutions have

CP1 : β = χ/4 = φmag/2 =⇒ ∆β = p/2

RP2 : β = ϕ2/2 = φmag =⇒ ∆β = p′

(where we write p′ for the parameter of the RP2 magnon, to distinguish it from the CP1

case’s p). A single giant magnon is not a closed string solution, one must join a set of them

together at their endpoints on the equator. The condition for a set pi of CP1 magnons or p′j

of RP2 magnons to close is that the total opening angle ∆β should be a multiple of π, that

is,

CP1 : ∑
i

pi = 2πn (6.25)

RP2 : ∑
j

2p′j = 2πn , n ∈ Z.

Another way of putting this last result is that for the CP1 magnon, like the original S2

solution, the condition for the set of giant magnons to close is ∑i pi = 0 mod 2π, since p is the

opening angle along the equator. However, for the RP2 magnon, the p′ = π magnon is also

a closed string, due to the Z2 identification in this space, and thus we have ∑i p′i = 0 mod π

instead.

The point particle (6.11) moves along the same equator too, and by calculating fluctu-

ations of this solution, we checked in Appendix D.3 that ∆− J1−J4
2 is indeed a Hamiltonian

for them, just as ∆− J is in the S5 case. Calculating the same difference of charges for the

two magnon embeddings, we obtained dispersion relations (6.19) and (6.22), which we now

write also in terms of the opening angle ∆β :

CP1 : ∆− J1− J4

2
=
√

2λ sin
( p

2

)
=
√

2λ sin(∆β )

RP2 : ∆− J1− J4

2
= 2
√

2λ sin
(

p′

2

)
= 2
√

2λ sin
(

∆β

2

)
.

Notice that these agree at small ∆β . The limit p→ 0 takes you from giant magnons to the

Penrose limit (via the interpolating case of [218], studied here by [219]). Finite-J effects in
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the Penrose limit were studied by [220].

As noted in Section 6.4, there is also a second magnon on RP2 for any given opening

angle ∆β , which has charges [192]

RP2′ : ∆− J1− J4

2
= 2
√

2λ cos
(

∆β

2

)
.

For small ∆β this is almost a circular string, with its ends slightly offset along the equator

— see figure 6.1 on page 163.

6.5 Some larger subspaces

All of the string solutions we have discussed so far are known from the AdS5×S5 case, and

explore known subspaces S2 or S3⊂ S5. In this section we look into CP2 and S2×S2 subspaces

of CP3, in search of possible string solutions which explore the full geometry. In the first of

these subspaces, the CP2 subspace, such solutions have been found, and are discussed in the

next Section 6.6.

We also study restrictions of this S2×S2 subspace (in Section 6.5), since these restrictions

have been used in the literature.

The subspace CP2

The simplest nontrivial subspace one can find is CP2, obtained by setting z3 = 0. This is

certainly a legal subspace, for the same reason as given for CP1: setting z3 = 0 solves the z3

equation of motion. The corresponding metric can be obtained as a restriction of (6.6) to

ϑ2 = 0 (and ϕ2 = 0, since now ϕ2 is redundant):

ds2 = dξ
2 + 1

4 cos2
ξ
(
dϑ

2
1 + sin2

ϑ1 dϕ
2
1
)

+ 1
4 sin2 2ξ

(
dη + 1

2 cosϑ1 dϕ1
)2

.

We have two manifest isometries, along ϕ1 and η . For ξ = 0 we recover an S2 equivalent to

(6.16) (once z2↔ z4 are exchanged). Allowing ξ 6= 0 will allow us to determine a new dyonic

solution (in section 6.6), generalizing the CP1 solution (6.18) in the same way the dyonic
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RP3 solution generalizes the RP2 one.

The subspace S2×S2

Setting ϕ1 = ϕ2 and ϑ1 = ϑ2 in the metric (6.6) leads us to the four-dimensional space

ds2 = 1
4

[
d(2ξ )2 + sin2(2ξ ) dη

2]+ 1
4

[
dϑ

2 + sin2
ϑ dϕ

2] (6.26)

which is a S2×S2 (possibly up to co-ordinate ranges). The new angles are defined by ϑ ≡

(ϑ1 + ϑ2)/2 and ϕ ≡ (ϕ1 + ϕ2)/2.

To obtain this space, the restrictions on the angles are that ϑ− ≡ ϑ1−ϑ2 = 0 and ϕ− ≡

ϕ1−ϕ2 = 0. Unfortunately, the equations of motion for ϑ− and ϕ− are not automatically

solved by this choice: they have complicated relations between the other co-ordinates. For

ϑ− we have

0 =−∂τ (cos2ξ ∂τϑ)+ ∂x (cos2ξ ∂xϑ)+ 1
2 cos2ξ sin2ϑ

(
∂

2
τ ϕ−∂

2
x ϕ
)

− sin2 2ξ sinϑ (∂τη ∂τϕ−∂xη ∂xϕ)

and for ϕ− the equation is

0 =−∂τ

(
sin2 2ξ cosϑ ∂τη + cos2ξ sin2

ϑ ∂τϕ
)

+ ∂x
(
sin2 2ξ cosϑ ∂xη + cos2ξ sin2

ϑ ∂xϕ
)
.

These equations do not rule out the existence of solutions on this subspace, but because

these equations couple the variables ξ ,η of one of the factors to the variables ϑ ,ϕ of the

other factor, just placing an arbitrary S2 solution into each of the factors is not likely to

give a solution.

The subspace S2×S1

We can further restrict the above subspace by holding one of the angles fixed, giving origin

to a S2× S1 subspace (again up to identifications). This space, studied by [197], can be



169

obtained by putting ϑ = π

2 :

ds2 = 1
4

[
d(2ξ )2 + sin2(2ξ )dη

2 + dϕ
2] .

The equation of motion for ϑ is solved simply by ϑ = π

2 , which simplifies the constraints

imposed by ϑ− = 0 and ϕ− = 0 to

0 =−∂τη ∂τϕ + ∂xη ∂xϕ (6.27)

0 =−∂τ (cos2ξ ∂τϕ)+ ∂x (cos2ξ ∂xϕ) . (6.28)

These constraints were not taken into account by [197], who sets ϑ− = 0 before calculat-

ing the equation of motion for ϑ (which is indeed solved) but never checks if the constraint

coming from ϑ− = 0 is obeyed.17 In that paper, the magnon ansatz used sets η = ωτ + f (u),

ϕ = ντ and ξ = g(u), in terms of boosted worldsheet co-ordinates u = βτ +αx. The first con-

straint (6.27) then implies β f ′(u) =−ω, while one would expect f (u) ∝ tanhu for a magnon

solution. The second constraint (6.28) then gives β = 0, and together they imply ω = 0.

In the other case studied by [197] one doesn’t find the same problem, because the ϑ−

equation is solved by η = 0, and there is no ϕ− constraint because ϕ1 6= ϕ2. The subspace

consequently found is the RP3 subspace of Section 6.4.

The subspace CP1 , again

If we restrict the subspace S2×S2 of (6.26) even further, by setting ξ and η to be constants,

it reduces to the space

ds2 = 1
4

[
dϑ

2 + sin2
ϑ dϕ

2]
which is a sphere of radius 1

2 , equivalent to the CP1 of Section 6.4. This is a legal subspace:

the equations of motion for ξ and η are trivially solved (a stationary particle anywhere on

the sphere is a solution) and the constraints arising from ϑ− = 0 and from ϕ− = 0 become

the equations of motion for ϑ and ϕ.

17The constraint (6.27) can be derived without using ϑ−, if we set ϑ1 = π

2 and ϑ2 = π

2 in their respective
equations of motion.
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Setting ξ = π

2 , this space can be embedded in homogeneous co-ordinates by (see Ap-

pendix D.1 for more details)

~z =
(

eiϕ/2 cos
ϑ

2
, 0, 0, e−iϕ/2 sin

ϑ

2

)
,

which is just the same subspace CP1 as in (6.16), even though we had started from the other

set of angles (6.7) and fixed α = 0. Setting ξ to any other value will just rotate the 1-2 and

3-4 planes, still giving the subspace S2 = CP1.

These co-ordinates of the CP1 space were used in [221] to study finite-J effects on the

CP1 giant magnon. These results can be found in (6.33).

6.6 New solutions in CP3

Until now, we have focused on giant magnon solutions which are “trivial” embeddings of

already known string solutions moving R× S2 and R× S3. But there is great interest in

finding solutions that truly explore the geometry of CP3. In this section we present two such

solutions, the first being a dyonic generalization of the CP1 magnon, and the second being

some kind of “bound state” of two magnons (we will have a better interpretation for it when

comparing to the results in the algebraic curve formalism) – that is, a two-parameter, one

angular momentum string solution. Both of these solutions explore the full CP2 space.

Dyonic generalization of the CP1 magnon

Consider the subspace CP2 obtained by fixing z3 = 0, or in terms of the angles, θ1 = 0 and

η = 0, leaving

~z =



sinξ cos(ϑ2/2) eiϕ2/2

cosξ eiϕ1/2

0

sinξ sin(ϑ2/2) e−iϕ2/2


. (6.29)
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The metric for this subspace can be written as

ds2 =
1
4

sin2
ξ

[
dϑ

2
2 + sin2

ϑ2 dϕ
2
2 + cos2

ξ (dϕ1− cosϑ2 dϕ2)2
]

+ dξ
2.

At ξ = π

2 the space is CP1, described by ϑ2 and ϕ2 only, but away from this value there is a

second isometry direction dϕ1. It was proposed in [222] that the dyonic generalization of the

CP1 magnon might have momentum along this direction, but to do so, it must in addition

have ξ 6= π

2 except at the endpoints of the string, at x =±∞, where it must touch the same

equator as the CP1 solution.

We have not yet been able to find the full solution, but can find a GKP-like dyonic

solution (i.e. a p = π magnon18) using the ansatz:

ϕ2 = 2τ, ϕ1 =−2ωτ,

cosϑ2 = sech
(√

1−ω22x
)

, ξ =
π

2
− e(x).

This amounts to assuming that the back-reaction on the original solution in ϑ2,ϕ2 created

by giving it new momentum along ϕ1 is exactly as for the S3 dyonic solution, but unlike the

S3 case, there is one extra function e(x).

With this ansatz the equations of motion for ϕ1 and ϕ2, and the second Virasoro con-

straint, are already solved. The equation of motion for ϑ2 can be written

∂x
(
cos2 e(x) sechX

)
=−2

cos2 e(x)√
1−ω2

tanhX
{

sechX cos2 e(x)+ ω sin2 e(x)
}

,

where X =
√

1−ω22x. Using a change of variables y(x) = ln
(
cos2 e(x)

)
, this equation can be

written as

y′(x) = ey(x) f (x)+ g(x) , (6.30)

18GKP [11] studied rotating folded strings, which at J = ∞ are the p = π case of the HM magnon [26].
Two-spin folded string solutions were studied by F&T [25], and are the p = π case of Dorey’s dyonic giant
magnon [27,94].
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Figure 6.2: Profiles of the CP2 solution. cosϑ2 is the same as for Dorey’s S3 dyonic giant
magnon, but the solution also spreads away from ξ = π

2 as we increase ω. This is shown for
ω = 0.2 and 0.8.

where

f (x) =
2√

1−ω2

(
ω− sechX

)
sinhX ,

g(x) =− f (x)− 2ω2
√

1−ω2
tanhX .

The equation (6.30) has solutions of the form y(x) =− ln(−F(x))+G(x), where G′(x) = g(x)

and F ′(x) = f (x)eG(x). After some algebra, we find the following form for the solution:

cos2 (e(x)) = sin2
ξ =

1
1 + ω cosϑ2

=
1

1 + ω sech
(√

1−ω22x
) (6.31)

where ω ≥ 0.

Calculating charges J and Q for this solution, we find

∆− J
2

=
√

2λ
1√

1−ω2
,

Q
2

=−
√

2λ
ω√

1−ω2

and therefore the dispersion relation is

∆− J
2

=

√
Q2

4
+ 2λ .
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E = ∆− J
2 δE (finite J) Q J3

Vacuum 0

CP1 giant magnon
√

2λ sin( p
2 ) −4E sin2( p

2 )e−2∆/E 0 0

Dyonic version in CP2
√

Q2

4 + 2λ when p = π (Use ‘small’ curve, (7.12)) Q ±Q

RP2 giant magnon 2
√

2λ sin( p′
2 ) −4E sin2( p′

2 )e−2∆/E 0 0

Dyonic version in RP3
√

Q2

4 + 8λ sin2( p′
2 ) Like S5 result, (6.34) Q 0

HM/KSV/S dressed solution
√

Q2
f + 8λ sin2( p′

2 ) (Use ‘big’ curve, (7.15)) 0 0

Table 6.1: Summary of giant magnons in the string sigma-model. The dressed solution
of [199, 200, 201] also lives in CP2 (the RP2 solution has often been called SU(2)× SU(2),
‘big’ and S2×S2 in the literature). To match the curves we want p′ = p/2.

We conjecture that for the general case (allowing p 6= π) the dispersion relation is

E = ∆− J
2

=

√
Q2

4
+ 2λ sin

( p
2

)

matching the one for the ‘small giant magon’ in the algebraic curve.

Unlike the RP3 dyonic magnon, this one is charged not only under Q but also under J3,

with J3 = Q. There is a second CP2 solution, in the subspace with z2 = 0 instead of z3 = 0,

which has J3 =−Q but is otherwise similar. In the limit ω→ 0 both kinds become the same

CP1 solution. All of these properties match those of the two kinds of small giant magnons

in the algebraic curve perfectly.

Dressing method solution in CP2

One other solution which does not exist in S5 was recently constructed by several groups

using the dressing method [199,200,201].

The dressing method is used to generate multi-soliton solutions above a given vacuum in

the principal chiral model, and is closely related to the Bäcklund transformation [154,223].

We start from the ‘bare’ vacuum solution Ψ0, and construct the so called ‘dressed’ solution Ψ

by setting Ψ = χ(0)Ψ0, where χ(λ ) is the dressing matrix and λ is a spectral parameter. Each
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independent pole λ1 of the dressing matrix χ(λ )19 leads to one soliton, whose characterizing

parameters are given by λ1’s position in the complex plane.

This method was first used to generate giant magnons in S3 by [109]. In there, the string

sigma-model was mapped to an SU(2) principal chiral model and an SO(3) vector model.

For the former case, it was seen that a pole at λ1 = reip/2 gave rise to a dyonic giant magnon

with charges

∆− J1 =

√
λ

π

1 + r2

2r
sin
( p

2

)
, J2 =

√
λ

π

1− r2

2r
sin
( p

2

)

which combine to give the usual dispersion relation ( J2 can be viewed as the second pa-

rameter of the solution, instead of r). In the SO(3) case, only the non-dyonic giant magnon,

r = 1 case, can be obtained.

The solution that was constructed in CP3 makes use of the map to an SU(4)/U(3) model.

The position of the dressing pole λ1 = reip′/2 provides two parameters, but unlike the S3 case,

there is only one nonzero angular momentum20

J = 2∆−4
√

2λ
1 + r2

2r
sin
(

p′

2

)

Nevertheless, if we replace the parameter r with a new parameter defined by

Q f = 2
√

2λ
1− r2

2r
sin(

p′

2
) ,

then the dispersion relation can be re-written as

∆− J
2

=

√
Q2

f + 8λ sin2
(

p′

2

)
.

The factor in front of Q f has been chosen to make the above expression for the dispersion

relation match the dispersion relation for the big giant magnon in the algebraic curve (after

setting p = 2p′). In fact, the big giant magnon is also a two-parameter single-momentum

19And sometimes also an image pole at 1/λ1.

20As in RP2, we will call the “opening angle” parameter p′.
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solution, as will be seen in Section 7.1 below.

Choosing the same basis as [199, 200],21 the solution in the GKP22 case p′ = π is given

by:23

~z′ = N



(1 + r2)cos(τ)+ cos
(

1−3r2

1+r2 τ

)
+ r2 cos

(
3−r2

1+r2 τ

)
+ i(1− r2)sin(τ)sinh

(
4r

1+r2 x
)

−(1 + r2)sin(τ)+ sin
(

1−3r2

1+r2 τ

)
− r2 sin

(
3−r2

1+r2 τ

)
− i(1− r2)cos(τ)sinh

(
4r

1+r2 x
)

2(1− r2)
[
sin
(

1−r2

1+r2 τ

)
sinh

(
2r

1+r2 x
)
− icos

(
1−r2

1+r2 τ

)
cosh

(
2r

1+r2 x
)]

0


where N is a normalization factor ensuring |~z|2 = 1. The vacuum related to this solution,

~z′vac = (cos(t),sin(t),0,0), has a large charge under J′ = J[σ2⊕1], and all other charges J[T a]

zero. In the presence of this magnon solution, the value of the non-zero charge J′ changes,

but all the other charges remain zero. If we perform a rotation in the vacuum ~z′vac so that

it matches our ~zvac = 1√
2

(
eit ,0,0,e−it

)
, the same transformation will also rotate J′ into the

charge J used for the other magnons.

Taking the limit r→ 1, or Q f → 0 in this solution, we recover the dispersion relation of

the RP2 giant magnon. The same limit will naturally take the solution (in this basis) to the

embedding of the ordinary magnon (6.12) given by ~z′ = (Rew1, Imw1,Rew2,0) ∈ R4.

Finite-J corrections to this solution have not been done in the string sigma-model (except

trivially at Q f = 0, where it coincides with the RP2 magnon) but we compute them through

the algebraic curve formalism in the next Chapter, Section 7.2.

We summarize all the properties of the various string solutions in table 6.1.

6.7 Finite-J corrections

All of the giant magnons solutions we have been discussing so far have both infinite energy

and infinite angular momentum. One can easily see from (6.13) that in the timelike conformal

21In [201] the basis used to get the solution was the same as ours.

22See footnote 18 about this name.

23At p′ = π this solution is a closed string, just as it happened for the RP2 and RP3 magnons.
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gauge we are using, this corresponds to having infinite worldsheet length.

The finite-J generalizations of the basic giant magnon are still solutions moving on S2,

and so one can embed them into CP3 using either of the maps given in sections 6.4 and 6.4

above. For the RP2 giant magnon, the corrections to the dispersion relation were derived

in [224] to be

∆− J
2

= 2
√

2λ sin
( p

2

)[
1−4sin2

(
p′

2

)
e−2∆

/
2
√

2λ sin( p′
2 ) + . . .

]
(6.32)

The CP1 giant magnon case was studied in [221] where they found the corrected dispersion

relation to be24

∆− J
2

=
√

2λ sin
( p

2

)[
1−4sin2

( p
2

)
e−2∆

/√
2λ sin( p

2 ) + . . .

]
. (6.33)

We observe that, even at finite J, two CP1 magnons have the same dispersion relation as

one RP2 magnon, provided all three have the same value of the parameter p.25

For the RP3 dyonic giant magnon, we can similarly embed the results from S3. The

corrections to the dispersion relation of the dyonic giant magnon in S3 were originally

computed by [138] , from the all-J solutions of [96]. The embedded solutions in CP3 were

then studied by [196,225], and the result is:

∆− J
2

=

√
Q2

4
+ 8λ sin2

(
p′

2

)
−32λ cos(2φ)

1
E

sin4
(

p′

2

)
e−∆E

/
2S (6.34)

24Here is a brief note about deriving these two results from the original S2 case. The integrals defining the
charges are now over a finite length −L < x < L, so write J(L) and ∆(L). Note that ∆(2L) = 2∆(L). To get the
charges for one magnon, we must integrate from one cusp to the next: choose L such that θmag(x =±L,τ = 0)
are at the first cusps.

For the RP2 case, the relationship we used before Jsphere(L) = J1(L) = (J1(L)− J4(L))/2 still holds, leading

to (6.32). We wrote the S2 result (3.9) on page 61 using the prefactor appropriate for AdS5× S5, so to get
this result for the AdS4×CP3 theory one has to replace

√
λ/π → 2

√
2λ .

For the CP1 case, the cusp at θmag(L,0) is at ~ZCP1 ( L
2 ,0), thanks to the scaling (6.17). The relationship

between charges is that
J1( L

2 )− J4( L
2 )

2
=

1
2

Jsphere(L).

Thus ∆( L
2 )− (J1( L

2 )−J4( L
2 ))/2 = ∆( L

2 )− 1
2 Jsphere(L) = 1

2
(
∆(L)− Jsphere(L)

)
. In the result (6.33), it is the energy

for one magnon ∆( L
2 ) which appears both on the left hand side and in the exponent.

25One can see that all the properties of the two CP1 magnons seem to add up to give those of the single
RP2 magnon: energy ∆, angular momentum J/2, the worldsheet length L and the opening angle along the
equator (which we have called ∆β previously).
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Type (i): δE < 0
Type (ii): δE > 0

Type (ii): 2φ = π, δE > 0Type (i): 2φ = 0, δE < 0

Figure 6.3: The two classes of finite-J magnons found by [96].

where E was given in (6.24) and we also define 2627

S =
Q2

16sin2( p′
2 )

+ 2λ sin2
(

p′

2

)
. (6.35)

We should clarify the meaning of the factor cos(2φ). In [138], this factor is set to be +1

for ‘type (i) helical strings’, and −1 for ‘type (ii)’ strings. These are two kinds of finite-J

solutions, which in the non-dyonic case in S2 have the property that adjacent magnons either

have the same or opposite orientations. Type (i) strings will then have a cusp not touching

the equator, while type (ii) strings cross the equator at less than a right angle – see figure

6.3. Everything points to the interpretation of 2φ being the same in the CP3 solutions: 2φ

should be the angle between the two magnons’ orientation vectors (the same factor could

be included in the non-dyonic cases (6.32) and (6.33)).

As was mentioned before, in the AdS5 × S5 case the finite-J corrections can also be

calculated using algebraic curves [29,31,32,34,89,183,35,141,226,184] or using the Lüscher

formula [139,227,140,228,229]. The corrections obtained through these methods agree with

the string σ -model result, which can be found in (3.9) on page 61. For calculations on the

gauge theory side of the correspondence see [23,230,231,136,232,233,234,235].

In AdS4×CP3 one can also use any of the methods mentioned above. In Chapter 7,

26Note that S( p′
2 )→ 1

4 E 2 as Q→ 0. Comparing to [138], we should mention that cosh(θ/2) = E
/

2
√

2λ sin( p′
2 ).

In terms of our notation for the next chapter, this θ is defined r = eθ/2.

27E ≡ ∆− J/2 is defined at infinite J.
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we will discuss the application of the algebraic curve formalism to determine these finite-J

corrections for the giant magnon solutions presented in this chapter.



Chapter 7

Algebraic curves in CP3 and

finite-J corrections

Classical and semi-classical strings allow us to explore some sectors of the N = 6 ABJM /

AdS4×CP3 duality [6], and these are much richer than their well-known counterparts in the

N = 4 SYM / AdS5×S5 duality [1]. It was known very early on that there are at least two

kinds of giant magnons, created by placing the HM giant magnon [26] into various S2-like

subspaces, namely CP1 and RP2 [192, 193]. It is equally easy to place Dorey’s S3 dyonic

giant magnon [27, 94] into RP3, giving a two-spin generalization of the RP2 magnon [196].

Other solutions truly living in CP3 have also been studied, one being a two-parameter one-

angular-momentum solution [199,200,201] generalizing the RP2 magnon, and the other being

a dyonic generalization of the CP1 magnon [202], living in CP2.

As was mentioned in the last Chapter, the solutions of the classical string sigma-model

should be in exact correspondence to algebraic curves [46]. After having descibed the known

giant magnon solutions on the string side, we can now review the solutions known from

the algebraic curve formalism, and write the dictionary of solutions on both sides of this

correspondence.

Finite-J corrections are of increasing importance in the study of gauge and string inte-

grability. They can sometimes be computed directly on the string side by finding solutions

with J < ∞, and all existing finite-J giant magnon solutions are embeddings of well-known S5

results of this type [82,96,97,138]. Other methods that have been used to calculate finite size

179
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corrections includes the construction of corresponding algebraic curves [141, 226, 184, 185]

and the Lüscher formulae [227,185,138,236].

In this Chapter we will start by setting up the algebraic curve formalism for AdS4×CP3.

We then extend the algebraic curve calculations of [185], by calculating finite-J corrections

not only for a pair of small giant magnons, but also for a single small magnon and the big

magnon. In the non-dyonic case, all of these give the result AFZ [82] found for a magnon

in S2. Likewise the dyonic pair of giant magnons matches the S3 result: this too is a simple

embedding of that string solution. But for the dyonic small and big magnons, which corre-

spond to string solutions not found in S5, we find new formulae for these energy corrections.

We will finally conclude with the dictionary between strings and curves, summarized in two

tables, on pages 173 and 187.

7.1 The algebraic curve for AdS4×CP3

In Chapter 5 we studied classical strings in AdS5× S5 from the point of view of algebraic

curves, following the works of [29, 30, 31, 32, 34, 146]. One can take the same approach for

the AdS4×CP3 case, starting from the σ -model given by [187, 18]. This was first studied

by Gromov and Vieira [46]. We will start by summarizing the bosonic algebraic curve on

AdS4×CP3 and some of its properties, which can be found in [46].1

The eigenvalues of the monodromy matrix in this background are eip̃1 ,eip̃2 ,eip̃3 ,eip̃4 for

the CP3 part, and eip̂1 ,eip̂2 ,eip̂3 ,eip̂4 for the AdS part, where the functions p̃i and p̂i as are the

quasi-momenta, as before. The continuity in the complex plane of the function eig(Ω(x))

demands that when a branch cut Ci j connects sheets i and j, we must have

p+
i − p−j = 2πn , forx ∈Ci j .

The superscript ± indicates that the function is being evaluated immediately above/below

1In this section we use x to be the spectral parameter of the curves, and σ ,τ to be the worldsheet
co-ordinates which we called x,τ before.
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the cut. These quasi-momenta also obey the traceless condition of the monodromy matrix

4

∑
k=1

p̃k (x) = 0 , p̂1 (x)+ p̂4 (x) = p̂2 (x)+ p̂3 (x) = 0.

With respect to these quasi-momenta, one can then define fillings, and relate them to the

relevant Dynkin labels or conserved charges, by performing an expansion at x→ ∞:

(p̂1, p̂2, p̂3, p̂4) ∼ 1
gx

(L + ∆,S,−S,−L−∆) ,

(p̃1, p̃2, p̃3, p̃4) ∼ 1
2gx

(L−Mu,Mu−Mr,Mr−Mv,−L + Mr) ,

where L is the length operator charge, ∆ is the energy (time-translations) charge, S is an

angular momentum in the AdS factor, and the excitation numbers Mu,v,r are related to the

SU (4) Dynkin labels by


p1

q

p2

=


L−2Mu + Mr

Mu + Mv−2Mr

L−2Mv + Mr

 ∈ Z3
≥0 . (7.1)

In the singularities x =±1 the quasi-momenta can be expanded as

(p̂1, p̂2, p̂3, p̂4) ∼ 1
x∓1

(α±,0,0,−α±) ,

(p̃1, p̃2, p̃3, p̃4) ∼ 1
2

1
x∓1

(α±,0,0,−α±) .

Finally, under the inversion symmetry x→ 1/x, these quasi-momenta behave as

p̂k (1/x) = εk p̂k (x) , p̃k (1/x) = p̃k′ (x)+ εk2πm ,

where εk = (−1,1,1,−1) and k′ = (4,2,3,1) when k = (1,2,3,4).

The quasi-momenta p̃i and p̂i describe the bosonic sector of type IIA string theory on

AdS4×CP3, and are the analogous quantities to the ones used in Chapter 5. Nevertheless, to

perform calculations it is more convenient to work in a formalism with explicit OSp(2,2|6)
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symmetry. To do this we define ten new quasi-momenta qi as [46]

{q1,q2,q3,q4,q5}=
1
2
{p̂1 + p̂2, p̂1− p̂2, p̃1 + p̃2,−p̃2− p̃4, p̃1 + p̃4}

and

{q6,q7,q8,q9,q10}= {−q5,−q4,−q3,−q2,−q1} .

The functions qi now define a ten-sheeted Riemann surface.

Algebraic curve with manifest OSp(2,2|6) symmetry

In this ten-sheeted Riemann surface, the quasi-momenta qi have to obey the following

relations [46]:

1. Only five of the quasi-momenta are independent:

{q6,q7,q8,q9,q10}= {−q5,−q4,−q3,−q2,−q1}.

2. If we have a square-root branch cut Ci j between sheets i, j then:

q+
i (x)−q−j (x) = 2πni j, x ∈Ci j.

3. Synchronized poles: the residues at poles x =±1 are the same (α±/2) for q1,q2,q3,q4,

while q5 does not have a pole at x =±1.

4. Inversion symmetry:



q1 (1/x)

q2 (1/x)

q3 (1/x)

q4 (1/x)

q5 (1/x)


=



−q2 (x)

−q1 (x)

−q4 (x)+ 2πm

−q3 (x)+ 2πm

+q5 (x)


.

This m ∈ Z gives the momentum condition: p = 2πm.
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5. Asymptotic behaviour as x→ ∞:



q1

q2

q3

q4

q5


=

1
2gx



∆ + S

∆−S

L−Mr

L + Mr−Mu−Mv

Mv−Mu


+ o(

1
x2 ) =

1
2gx



∆ + S

∆−S

J1

J2

J3


+ . . . (7.2)

where, as before, λ = 8g2 (i.e. 4g =
√

2λ ).

In [185] they used the following ansatz for solutions mostly in CP3:

q1(x) =
αx

x2−1

q2(x) =
αx

x2−1

q3(x) =
αx

x2−1
+Gu(0)−Gu(1

x ) +Gv(0)−Gv(1
x ) +Gr(x)−Gr(0)+ Gr(1

x )

q4(x) =
αx

x2−1
+Gu(x) +Gv(x) −Gr(x)+ Gr(0)−Gr(1

x )

q5(x) = Gu(x)−Gu(0)+ Gu(1
x ) −Gv(x)+ Gv(0)−Gv(1

x )
(7.3)

From q1 and q2 we can conclude that S = 0 (that is, we have zero AdS angular momentum)

and that α = ∆/2g.

The resolvents Gu,Gv,Gr control the CP3 part of the curve, q3,q4,q5. Consequently, their

asymptotic expansion will be related to the SU(4) excitation numbers Mu,Mv,Mr. The values

of these resolvents at x = 0 will in turn control the momentum2

p = 2πm = q3

(
1
x

)
+ q4(x). (7.4)

2For a closed string m ∈ Z, however, we want to consider a single giant magnon which in general is
not a closed string. Hence we will relax this condition and consider general p. To get a physical state this
momentum condition should be imposed. This can be done by considering multi-magnon states [141,185].
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The Dynkin labels of SU(4) are directly related to the excitation numbers Mu,v,r through

(7.1), and thus can be combined into the SO(6) charges:


J1

J2

J3

=


q +(p1 + p2)/2

(p1 + p2)/2

(p2− p1)/2

=


L−Mr

L + Mr−Mu−Mv

Mu−Mv

 ,

which are in turn combined into the magnons’ major and minor charges:

J = J1 + J2 = 2L−Mu−Mv = p1 + q + p2 ,

Q = J1− J2 = Mu + Mv−2Mr = q .

Giant magnons in the curve

This discussion now follows the introduction of giant magnon solutions in the algebraic curve

formalism, in Section 5.4 on page 145, where we saw that a condensate of poles gave rise

to giant magnon solutions in R×S3. For the CP3 case, two different kinds of giant magnons

were seen to exist in [198], who named them ‘small’ and ‘big’. These can be constructed by

setting some of the resolvents in the above ansatz to the giant magnon resolvent (5.28):

Gmag(x) =−i log
(

x−X+

x−X−

)
. (7.5)

Recall that for solutions only with logarithmic cuts, X± are complex conjugates.

‘Small giant magnon’

The first curve in [198] is the ‘small giant magnon’ with

Gv(x) = Gmag(x), Gu = Gr = 0.
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Reading off the charges from this curve we find:

p =−i log
X+

X−
, Q =−i2g

(
X+−X−+

1
X+ −

1
X−

)
,

J = 2∆ + i2g
(

X+−X−− 1
X+ +

1
X−

)
, J3 = Q. (7.6)

We can use the above relations to solve for X± and obtain the dispersion relation

∆− J
2

=

√
Q2

4
+ 16g2 sin2

( p
2

)
.

Another kind of small magnon can be obtained from Gu instead of Gv. The only change

is in the sign of J3 =−Q.

‘Big giant magnon’

There is also the ‘big giant magnon’, which has

Gu(x) = Gv(x) = Gr(x) = Gmag(x)

We then obtain the charges

p =−2i log
X+

X−
, Q = 0,

J = 2∆ + i4g
(

X+−X−− 1
X+ +

1
X−

)
, J3 = 0. (7.7)

This is the second curve used by [198]. In the dispersion relation, it is not the total Q but

rather Qu, the contribution from just the u part (which is canceled by the v part in the full

solution), that appears. This is the same function of X± as for the small giant magnon (7.6)

above. The result is

∆− J
2

=
√

Q2
u + 64g2 sin2

( p
4

)
.

For this solution, E = ∆− J/2 is a function of two parameters, Qu and p, but Qu is not

an asymptotic charge of the full solution. Here we have only one angular momentum, plus

another parameter Qu, unlike the case of the ordinary dyonic giant magnons, which are



186

two-parameter two-momentum solutions.

Pair of small magnons

We can also put one small magnon into each sector, Gv(x) = Gu(x) = Gmag(x) keeping Gr = 0.

All of the charges (including both ∆ and p) are just the sum of those of each of the constituent

small giant magnons, and we write Q = Qu + Qv etc. Thus we get the dispersion relation

∆− J
2

=

√
Q2

u

4
+ 16g2 sin2

( pu

2

)
+

√
Q2

v

4
+ 16g2 sin2

( pv

2

)
=

√
Q2

4
+ 64g2 sin2

( p
4

)

If we were to use the momentum pu of one constituent magnon, rather than the total p,

then we would have sin2(pu/2), as was found in [185]. Note that this solution has total J3 = 0

(like the big magnon).

We summarize all of these properties, and more, in table 7.1.

Coalescence of non-dyonic solutions

In the non-dyonic limit Q� g, and Qu � g, the dispersion relations for the pair of small

magnons and the big magnon agree. This result is not limited to just the dispersion relation,

in fact, X± = e±ip/4 in this limit (in both cases), and we have

Gmag(x)−Gmag(0)+ Gmag

(
1
x

)
= 0. (7.8)

Looking at the ansatz (7.3), we can see that (7.8) is equivalent to setting Gr = 0. Conse-

quentely, in this limit, the big giant magnon becomes the same algebraic curve as the pair

of small magnons.

For the small giant magnon, the same identity in the non-dyonic limit implies that q5 = 0.

This removes the difference between curves for the u and v small giant magnons in (7.3).



187

Mu, Mv, Mr [p1,q, p2] E = ∆− J
2 δE (finite J) Q J3

Vacuum

0, 0, 0 [L,0,L] 0 — 0 0

Small giant magnon

1, 0, 0 [L−2,1,L]
√

2λ sin( p
2 ) −4E sin2 ( p

2

)
e−2∆/E 1 1

Q, 0, 0 [L−2Q,Q,L]
√

Q2

4 + 2λ sin2( p
2 ) ∝ Q/E

√
S, see (7.12) Q Q

... and similar with u↔ v:

0, Q, 0 [L,Q,L−2Q] (same) (same) Q −Q

Big giant magnon

1, 1, 1 [L−1,0,L−1] 2
√

2λ sin( p
4 ) −4E sin2 ( p

4

)
e−2∆/E 0 0

Qu,Qu,Qu [L−Qu,0,L−Qu]
√

Q2
u + 8λ sin2( p

4 ) ∝ S/E Q2
u, see (7.15) 0 0

Pair of small giant magnons

1, 1, 0 [L−2,2,L−2] 2
√

2λ sin( p
4 ) −4E sin2( p

4 )e−2∆/E 2 0

Q
2 , Q

2 , 0 [L−Q,Q,L−Q]
√

Q2

4 + 8λ sin2( p
4 ) Like S5 case, see (7.14) Q 0

Table 7.1: Summary of giant magnons in the algebraic curve. In each case we list dyonic
solutions, meaning Q∼

√
λ , below the non-dyonic case. We write these using λ rather than

g for comparison with the string sigma-model results on page 173; the relation is
√

2λ = 4g.
(Note that the AFZ-like result for the pair of small magnons is not new to this paper, it
was found by [185].)
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7.2 Finite-size corrections in the curve

Once more, we continue the discussion started in Section 5.4, on page 148. The finite-size

corrections to algebraic curves in the CP3 case were studied by [185], where one replaced

the basic magnon’s resolvent by the ansatz (7.9):

Gfinite(x) =−2i log
(√

x−X+ +
√

x−Y +
√

x−X−+
√

x−Y−

)
. (7.9)

As was explained in that Section, to determine the leading finite-J correction to the giant

magnon dispersion relation, we calculate the asymptotic behaviour at x→ ∞ of the quasi-

momenta using the above ansatz (7.9) to determine the charges of the solution as functions

of the end points X±,Y±, and then solve the equations for these charges to second order in

δ . Recall that Y± = X±
(
1± iδe±iφ

)
are points shifted from the end points of the cut X± by

a small amount δ � 1, as in (5.31). We will now present the explicit calculations for the

finite-J corrections of dispersion relations for the giant magnon solutions presented above

(small, big and pair cases).

Finite-size small giant magnon

We want to study the magnon created by setting Gu(x) = Gfinite(x) in the general ansatz (7.3),

keeping Gv = Gr = 0. We will discuss this case in the most detail, as subsequent examples

are similar. We write the end points of the logarithmic cut as

X± = r eip0/2

in terms of which p = p0 + δ p(1) + δ 2 p(2) + o(δ 3) and

E = ∆− J
2

= 4g
r2 + 1

2r
sin
( p

2

)
− δ

2
J(1)−

δ 2

2
J(2) + o(δ

3)

Q = 8g
r2−1

2r
sin
( p

2

)
+ δ Q(1) + δ

2Q(2) + o(δ
3) (7.10)
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X+

X−

1/X−

Y +

Y −

|x|
=

1
1/Y −x+

x−

Figure 7.1: Branch cuts & evaluation points. On the left, the situation for the pair of small
magnons, where only the cuts for Gfinite(x) appear. The evaluation points x± straddle the
cut from X+ to Y +, which is at radius |x|= r. On the right, the cuts in Gfinite(1/x) are drawn
too, which is the situation encountered in the ‘small’ and ‘big’ magnons. The evaluation
points are on the same side of the cut from 1/X+ to 1/Y +, and remain so even when we
take the non-dyonic limit r→ 1. (These are drawn for φ = 0.)

We give formulae for these expansions in Appendix D.4 on page 234. From the full asymp-

totic charges, we can determine the energy correction in terms of δ . The first nonzero

contribution is at order δ 2:

δE =
(

∆− J
2

)
−
√

Q2

4
+ 16g2 sin2

( p
2

)
=−δ

2 g
4

cos(2φ)
2r

1 + r2 sin
( p

2

)
+ o(δ

3) (7.11)

The resolvent Gfinite(x) has a square-root branch cut from X+ to Y +, which in the curve

(7.3) we can choose to connect sheets q4 and q6 =−q5. We can then fix δ using the branch

cut condition:

2πn = q4(x+)−q6(x−)

=
2αx

x2−1
+ G+

finite(X+)+ G−finite(X+)−Gfinite(0)+ Gfinite

(
1

X+

)

As explained in Section 5.4, the superscript G− indicates that this term is evaluated on

the other side of the cut from the others (thus having the opposite sign between the terms

of the numerator inside G). Once we take this into account, we may take both evaluation

points x± to be at x = X+. Figure 7.1 shows the cuts and the evaluation points used. We
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finally obtain

δ =
8i e−ip/4eiπne−iφ

√
r2−1 sin( p

2 )√
e−ip/2− r2eip/2

exp
(

i∆r/4g
e−ip/2− r2eip/2

)
= eiψ |δ |

In order to have a real energy correction, we require a real δ . We then find the correction

to be

δE =−32gcos(2φ)
r2−1
r2 + 1

sin3 ( p
2

)√
r2 + 1

r2 −2cos(p)
e−∆E

/
S( p

2 ) + o(δ
3)

=−32g2 cos(2φ)
Q

E
√

S( p
2 )

sin3
( p

2

)
e−∆E

/
S( p

2 ) + o(δ
3) (7.12)

where we define

S( p
2 ) = 4g2 (r2−1)2

r2 + 16g2 sin2
( p

2

)
.

Note that for the case of the ‘small’ magnon, S( p
2 ) = Q2

4sin2( p
2 ) +16g2 sin2 ( p

2

)
→ E 2 when r→ 1.

Three comments

• The result (7.12) is valid for the dyonic case Q/g ∼ 1. As written it appears that

δE → 0 in the non-dyonic limit r→ 1. In fact, this is not correct, as we’ve implicitly

assumed, when expanding in δ , that δ � r−1∼
√

Q/g, and this forbids taking r→ 1.

Nevertheless, we can derive the correction for the non-dyonic case by writing r = 1+kδ

before assuming that δ is small. We then expand in δ , fix δ using the branch cut, and

only after we take the limit k→ 0. The result is the AFZ form:

δEr=1 =−16gcos(2φ)sin3
( p

2

)
e−2∆/E + o(δ

3). (7.13)

• The reality condition of δ is equivalent to its phase ψ being 0 or π:

ψ = nπ− p
4
−φ −

∆ Qcot( p
2 )

4S( p
2 )

− 1
2

arctan
(

2E

Q
tan( p

2 )
)

= 0 or π.
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Like the energy correction (7.12), this expression is valid for the dyonic case; the phase

of δ in the non-dyonic limit r→ 1 is instead

ψr=1 = 2πn− p
2

= 0 or π

where we have assumed cos(2φ) = ±1. This implies that the momentum obeys p =

0 mod 2π, exactly the usual condition for a closed string.

• Finally, notice that the the same factor cos(2φ) appears in both these results and

the sigma-model results (6.34). We interpreted this factor there as a geometric angle

between adjacent magnons. Here we can observe that for the identity (7.8) to hold

at the evaluation point x = X+ (in the limit δ → 0, as well as r→ 1) , we must set

cos(2φ) =±1.

Finite-size pair of small magnons

The non-dyonic (r = 1) pair of small magnons was studied in [185], who obtained

δEr=1 =−32gcos(2φ)sin3
( p

4

)
e−2∆/E + . . . .

The same result can be obtained by adding together all the charges of two small magnons,

giving twice the correction (7.13). The dyonic case, however, is not as trivially obtained by

adding together two dyonic finite-J small magnons, because they interact with each other.

We must then perform a similar analysis to the one presented above for the small giant

magnon.

The curve of interest is now Gu = Gv = Gfinite and Gr = 0. We now set

X± = re±ip0/4,

giving p = p0 + . . . and E = 8g r2+1
2r sin

( p
4

)
+ . . ., Q = 16g r2−1

2r sin
( p

4

)
+ . . . .3 The energy cor-

3As before, we give these expansions in δ in appendix D.4 on page 234.
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rection in terms of δ is

δE =−δ
2 g

2
cos(2φ)

2r
r2 + 1

sin
( p

4

)
+ . . . .

We continue by using the branch cut condition connecting sheets4 q4 and q7 = −q4 to

fix δ :

2πn = q4(x+)−q7(x−)

=
2αx

x2−1
+ 2G+

finite(X+)+ 2G−finite(X+).

The final energy correction is then:

δE =−256g2 cos(2φ)
1
E

sin4
( p

4

)
e−∆E

/
2S( p

4 ) + . . . . (7.14)

This correction has the same form as the S5 string result, and exactly matches the RP3

magnon’s correction (6.34).

In this case there is no issues about taking the r→ 1 limit, where it reduces to the RP2

correction (6.32) (note that in this limit S( p
4 )→ 1

4E 2, instead of E 2 as in the small case).

The phase of δ is, in this case,

ψ =
nπ

2
− p

4
−φ −

∆ Qcot( p
4 )

8S( p
4 )

= 0 or π.

When Q = 0 and φ = 0, we have p/2 = p′ = n′π, n′ ∈ Z, exactly matching the condition for

the RP2 magnon to be a closed string.

Finite-size big magnon

In this case, the curve of interest is Gu = Gv = Gr = Gfinite. We write X±= r eip0/4, and consider

the ‘dyonic’ case in the sense that r > 1 (even though Q = 0). We also define Qu to be the

4In [185] a condition for the Gv component to connect sheets q4 and q5 is used instead. This involves
separating the two cuts slightly, so that q5 6= 0. The Gu component has instead a cut connecting q4 and q6,
which gives the same equation. The resulting condition is the same as that given here except n is replaced
by 2n.
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Q from the small magnon. Due to this choice of p0, Qu = 8g r2−1
2r sin

( p
4

)
+ . . ., and we have

E = 8g 1+r2

2r sin
( p

4

)
+ . . .. With the expansions in δ of the asymptotic charges, we get

δE =−δ
2 g

2
cos(2φ)

2r
r2 + 1

sin
( p

4

)
+ . . . .

We continue to set the branch cut condition. We will connect sheets q3 and q7 =−q4, at

evaluation points x± on either side of the cut from X+to Y +, but both x±on the same side

of the cut from 1/X+ to 1/Y +, thus obtaining the matching condition

2πn = q3(x+)−q7(x−)

= 2
αx

x2−1
+ G+

finite(x)+ G−finite(x)+ 2Gfinite(0)−2Gfinite

(
1
x

)

As before, this equation fixes δ , and after demanding that it be real, we obtain the energy

correction:

δE =−64gcos(2φ)
r2 + 1

r2 −2cos(p/2)
(r2 + 1)(r2−1)2 r3 sin3

( p
4

)
e−∆E

/
S( p

4 ) + . . .

=−1024g2 cos(2φ)
S( p

4 )
E Q2

u
sin6

( p
4

)
e−∆E

/
S( p

4 ) + . . . . (7.15)

This expression is valid only in the dyonic case. The non-dyonic limit r → 1 can be

approached in the same way as for small magnon case, by setting r = 1+kδ before expanding

in δ . The limit k→ 0 then gives the result

δEr=1 =−32gcos(2φ)sin3
( p

4

)
e−2∆/E + . . .

matching the r = 1 limit of the pair of small magnons (7.14), and thus the RP2 string result

(6.32).

The phase of δ in this case is

ψ = nπ− p
2
−φ −

∆ Qu cot( p
4 )

2S( p
4 )

+ arctan
(

E

Qu
tan( p

4 )
)

.

This expression is once more not valid in the non-dyonic case. In this limit (r→ 1) we have
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instead (in the case cos(2φ) =±1)

ψr=1 =
nπ

2
− p

4
= 0 or π.

i.e. p = 0 mod 2π. Consequently, the momentum condition is p′ = 0 mod π, which is the

condition for a closed string in RP2, and matches the ‘pair’ case above.

7.3 Dictionary between strings and curves: summary of results

Let us summarize the dictionary of string and curve solutions which we have found:

• The small giant magnon in the curve matches the CP1 giant magnon, and its dyonic

generalization in CP2.

• The RP2 magnon is to be identified with the pair of small magnons. In the dyonic case

this becomes the RP3 magnon solution.

• The dressed solution is identified with the big giant magnon. Both are two-parameter

one-charge solutions, and when the additional parameter (Q f or Qu) is sent to zero,

they become the RP2 solution / pair of small magnons, respectively.

The non-dyonic RP2 and CP1 string solutions seem to have multiple descriptions in the alge-

braic curves: the big and pair of small magnons differ in their excitation numbers Mu,Mv,Mr,

as do the two kinds of small magnons. However these numbers are all of order 1� 4g =
√

2λ

and so, just like Q, they are invisible in the sigma-model. In the limit Q→ 0 the curves forget

these distinctions too.

Finite-size corrections to these magnons are summarized as follows:

• In the non-dyonic cases, the corrections are always of the AFZ form. These can be

calculated in both the string and curve pictures.

• For the RP3 / ‘pair’ magnon, the corrections are the same as those for S3 dyonic giant

magnons, and can again be calculated in both pictures.
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• For the dressed / big magnon, and also for the CP2 / small magnon, we have calculated

corrections in the algebraic curve. These do not have the same form as in S5.

The above result for the finite-J corrections to the small giant magnon differs from that of

the algebraic curve calculation in [185]. This difference can be seen to arise from an order-

of-limits problem. As noted in section 7.2, we need to be careful in the non-dyonic case with

how we take limits Q→ 0 (r→ 1) and δ → 0. However, the result of [185] is confirmed by

the Lüscher-calculations in [185, 236]. It would be instructive to see if these results can be

explained in a similar manner.

While the overall picture is now clear, there are various details which one would like to

analyze explicitly in the string sigma-model. First, our CP2 solution should certainly exist at

p 6= π, but so far we have not been able to find such solutions. Second, it would be interesting

to understand exactly how the two different CP2 solutions join (and interact) to form one

RP3 magnon. Finally, finite-J versions of both this CP2 solution and the dressed solution

should exist as string solutions, and would provide confirmation of the energy corrections

calculated here.

We conclude by noting that our results fit well into the context of the integrable al-

ternating spin-chain for operators in the ABJM gauge theory [192, 194, 195, 237, 238, 47].

The two small giant magnons correspond to simple magnons in either the fundamental or

anti-fundamental part of the spin-chain. The big magnon, on the other hand, carry the

same charges as the heavy scalar excitation first discussed in [192].5 In a recent paper

Zarembo [239] showed that in the BMN limit these heavy modes disappear from the spec-

trum as soon as quantum corrections are taken into account. It would be very interesting

to understand to what extent these arguments carries over to the giant magnon regime.

5In [200] the authors write the big giant magnon solution, and also a second solution, equation (4.14).
This solution has the same angular momentum as the big giant magnons, but lives just in CP1 and is a trivial
embedding of the bound state solution (5.14) of [155], by setting r = e−q/2. This bound state is an analytic
continuation of two CP1 magnons. Comparing to the results of the curve, it is possible that this is a bound
state of two CP1 magnons of the same kind (u of v kind), while the big giant magnon is some kind of bound
state of two CP1 magnons of different polarizations (one u and one v).



Chapter 8

Conclusions and Future

Directions

The main focus of this dissertation is the study of the symmetries and integrability properties

of two major examples of the AdS/CFT correspondence.

Symmetry algebra and semi-classical string solutions

In Chapter 2 we started by introducing the algebra of symmetries psu(2,2|4) of the AdS5/

CFT4 duality from the classical string sigma-model in AdS5×S5, and restricted our attention

to the action of the fermionic generators on the su(2|2) sector for both the sigma-model

and the N = 4 super Yang-Mills gauge theory at one-loop. This study was done through

the use of a matrix model formalism. The bosonic part of this sector, su(2) was then taken

into account on the string side, and on Chapter 6 we studied giant magnon solutions and

the related giant spikes, and presented a semi-classical analysis of the giant spike solution.

The symmetry algebra of AdS5/CFT4 is very well understood in the 1
2 BPS sector of

the correspondence, but developments on the 1
4 BPS sector have been harder to achieve

[240, 241]. The set of 1
4 BPS operators in SYM can be described by a two-matrix quantum

mechanics, but the large N limit has both single trace and double trace operators, unlike the

1
2 BPS sector which had only the former. It would be interesting to obtain a collective field

theory description of the 1
4 BPS correlator functions from SYM, in order to derive an effective

string field theory Hamiltonian for the interactions of these correlators, thus connecting to

196



197

the known results derived by A. Donos in supergravity [241]. Such a collective description

comes as an application of the results found in Chapter 2.

In the framework of the AdS4/CFT3 correspondence [6], there is a new superconformal

group of symmetries, the OSp(6|4), shared by the gauge and string sides of the duality.

Another generalization of the work found in Chapter 2 is the study of the common algebra

of these dual theories using matrix model techniques. In particular, the study of the fermionic

generators is of great interest, as it can lead to a better understanding of this algebra and

to the observation of a Yangian structure, typical of integrable systems.

Giant magnon solutions living in the space R×CP3 have been extensively studied. Most

of these are trivial embeddings of the known giant magnon solutions from R×S3, in partic-

ular the RP2, the RP3 and the CP1 magnons. But two other solutions which truly explore

the CP3 space have been found. In Chapter 6 we review the embeddings of giant magnons

into CP3 and a two parameter, one angular momentum giant magnon solution that lives in

CP2, found through dressing method. We also present the derivation a new dyonic magnon

solution living in CP2, which is a dyonic generalization of the CP1 magnon.

Integrability and dynamics of string solutions

Integrability was intensely studied on both sides of the AdS5/CFT4 duality. On the gauge

theory side the study of integrability through Bethe Ansatz techniques led to the discov-

ery of an equivalent description in terms of Heisenberg spin chains and a relation to the

Hubbard model (integrable short-range model of strongly correlated electrons) [20,145]. On

the string theory side, the classical equivalence of (dyonic) giant magnons and (complex)

sine-Gordon solitons through Pohlmeyer reduction, gave a very promising hint towards find-

ing an integrable N-body description of string solutions. The N-body descriptions of gauge

operators and of string solutions is important to the complete understanding of dynamics of

these objects, and a discussion of the dynamics of giant magnon solutions from an N-body

perspective can be found in Chapter 4. In this Chapter, we find a relation between the

scattering of magnons and the Ruijsenaars-Schneider (RS) N-body model, motivated by the

Poisson hierarchy of a limiting case of this N-body model.

With respect to the relation between giant magnons and the RS model, the next step
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in checking this relation is finding the Poisson hierarchy in the RS model and calculate the

Poisson bracket related to the magnon Hamiltonian. It is also of great interest to generalize

the work done in Chapter 4 for string solutions with more than one angular momentum (on

R×S3), called dyonic giant magnons. To do so one needs to find a Lax formulation for the

interacting complex sine-Gordon solitons, a challenge still to be overcome.

The giant magnon solutions, defined in an infinite worldsheet volume σ ∈ (−∞,∞), were

seen to have finite-size corrections by considering the range of the worldsheet to be finite.

These finite-size giant magnons are classically equivalent to the kink train solution of the

sine-Gordon theory [98], and it would be interesting to find a similar N-body description of

the dynamics of these finite-size giant magnons.

Another important aspect to analyze is the relation between string solutions in the CP3

subspace and generalized sine-Gordon models. The RP2, RP3 and CP1 magnons are trivially

related to the sine-Gordon solitons, but the small and big magnons, both living in CP2, are

mapped to a non-trivial generalization of the sine-Gordon model [242].

The integrability of the gauge theories and string sigma models can be approached with

the algebraic curve formalism. Chapter 5 is a review of this approach for the string sigma-

model in AdS5× S5 and the derivation of the classical string Bethe ansatz for the so(6)

sector. While this formalism cannot be used directly to obtain the explicit form of string

solutions, it still gives us a complete classification of the spectrum of those solutions, as the

solutions of the classical string sigma-model should be in exact correspondence to algebraic

curves [46]. This can be restricted to giant magnon solutions, by restricting the type of

singularities in the algebraic curve, as in Chapter 5, on page 145. In Chapter 7 we review

the algebraic curve formalism for R×CP3, and the expected giant magnon solutions in this

space. With these results, we can then write a dictionary between these and the string

solutions in Chapter 6:

• The small giant magnon in the curve corresponds to the CP1 magnon, and its dyonic

generalization is the CP2 magnon;

• The RP2 giant magnon is identified with the pair of small magnons, and the RP3 giant

magnon is its dyonic generalization;
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• The two parameter, one charge dressed solution is the so called big magnon in the

curve, which becomes the RP2 magnon in the taking a limit on the second parameter;

In this last chapter we also use the curve formalism to determine finite-J corrections to the

energy of these solutions, which on the non-trivial cases of the small and big magnons were

not known from string calculations.

There is still a lot to understand about the solutions living in the CP3 space. For example,

the CP2 dyonic solution found in Chapter 6 was only determined for the GKP-like case of

p = π, and one would have great interest in generalizing this case. Also, the solution called

big magnon is still not very well understood. The fact that it has a second parameter but

just one angular momentum points to it being some kind of bound state but it is not obvious

how to construct it as such.



Appendix A

Expansions of the Supercharges

of su(2|2)

In this appendix we present two different expansions of the fermionic charges of su(2|2).

The first uses an oscillator representations of the string degrees of freedom. The second one

uses a regular expansion up to two loops in the coupling on the gauge side, and is followed

by a discussion of the commutation relations of these supercharges.

A.1 The Oscillator Representation

This summary follows [65] closely. We start by redefining the degrees of freedom that are

left after fixing light-cone gauge. Again we have the same choice of metric on the target

space, and the fields are t,za from AdS5 and φ ,ys from S5. The transverse bosonic fields ys,za

transform under a representation of SU (2)2 out of the possible four bosonic factors SU (2)4.

These fields can then be represented as bi-spinors of the relevant SU2. For that we introduce

Pauli matrices σa = (I, i~σ) and σs = (I, i~σ) for each of the two copies of SO(4), and write:

Yaȧ = (σs)aȧ ys , Zαα̇ = (σa)
αα̇

za.
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Spin Index of each su(2) J, a J̇, ȧ Ṡ, α̇ S, α

Yaȧ 2 2 1 1
Zαα̇ 1 1 2 2
Ψaα̇ 2 1 2 1
ϒα ȧ 1 2 1 2

Table A.2: Physical degrees of freedom of su(2)4 and their quantum numbers.The first two
su(2) are from S5 while the two last ones are from AdS5. Also a, ȧ, α̇,α = 1,2.

After fixing κ-symmetry we have the fermionic fields:

Ψaα̇ , ϒα ȧ

which are also bi-spinors of some SU (2)2 (they are charged under different SU (2) factors

than the bosonic fields).

We lower/raise indices in the following way

xa = ε
abxb ; xa = xb

εba,

where ε12 = ε12 = 1. The same rule applies to all other indices. Complex conjugation changes

the position of the indices (Yaȧ)∗ ≡Y ∗aȧ, which is different from Y ∗aȧ ≡Y ∗bḃεbaεḃȧ. Finally, the

bosonic fields satisfy the reality condition Y ∗aȧ = Yaȧ and Z∗
αα̇

= Zαα̇ .

The quantum numbers of these fields with respect to SU (2)4 can be found in [65] and are

summarized in table A.2. We have seen before that bosons and fermions together form the

bi-fundamental representation of psu(2|2)L×psu(2|2)R, where the bosonic subgroup of each

psu(2|2) factor consists of two su(2). If we define the super-indices A = (a|α) and Ȧ = (ȧ|α̇)

(where lower-case Latin indices are Grassmann even and greek indices are Grassmann odd)

then the fields combine into a single bi-fundamental supermultiplet of psu(2|2)L×psu(2|2)R,

denoted by ΦAȦ.

We can write the gauge fixed Lagrangian in terms of the fields Y,Z,Ψ,ϒ, and determine

the corresponding equations of motion, as shown in [65]. These were solved by introducing
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mode expansions in momentum space:

Yaȧ (~x) =
ˆ

d p
2π

1√
2ε

(
aaȧ (p)e−i~p·~x + a†

aȧ (p)e+i~p·~x
)

,

Zαα̇ (~x) =
ˆ

d p
2π

1√
2ε

(
aαα̇ (p)e−i~p·~x + a†

αα̇
(p)e+i~p·~x

)
,

Ψaα̇ (~x) =
ˆ

d p
2π

1√
ε

(
baα̇ (p)u(p)e−i~p·~x + b†

aα̇
(p)v(p)e+i~p·~x

)
,

ϒα ȧ (~x) =
ˆ

d p
2π

1√
ε

(
bα ȧ (p)u(p)e−i~p·~x + b†

α ȧ (p)v(p)e+i~p·~x
)

,

where ε =
√

1 + p2 is the energy, and u(p) = cosh θ

2 and v(p) = sinh θ

2 are the wave functions.

The rapidity θ is related to momentum by p = sinhθ , and to energy by ε = coshθ . Also

note that ~p ·~x≡ ετ + pσ .

The mode operators have canonical commutation relations:

[
aaȧ (p) ,a†

bḃ

(
p′
)]

= 2πδ
a
b δ

ȧ
ḃ δ
(

p− p′
)
,
{

baα̇ (p) ,b†
bβ̇

(
p′
)}

= 2πδ
a
b δ

α̇

β̇
δ
(

p− p′
)

,[
aαα̇ (p) ,a†

ββ̇

(
p′
)]

= 2πδ
α

β
δ

α̇

β̇
δ
(

p− p′
)
,
{

bα ȧ (p) ,b†
β ḃ

(
p′
)}

= 2πδ
α

β
δ

ȧ
ḃ δ
(

p− p′
)

.

Note that the oscillators a,a† are conjugate to each other, which comes from the reality

condition for the bosonic fields. But also for the fermionic oscillators b,b† are conjugate

to each other, even though fermionic fields Ψ,Ψ† are independent. This comes from the

equations of motion.

Algebra Generators

We have found the generators for the off-shell symmetry algebra in the light-cone gauge-

fixed theory, psu(2|2)L×psu(2|2)RnR2 in Chapter 7. These generators were found in terms

of the worldsheet fields. The total momentum is measured by one of the central generators

C of the extended algebra, while the total energy is measured by the other central charge

H.

We are now interested in knowing the generators in terms of the oscillator representation.

We will leave the nonlocal nature of the generators for discussion elsewhere and focus on
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the local part,1 which corresponds to determining the currents J̃. Considering integration

over fixed time slices, the oscillator representation for the generators of psu(2|2)L is (up to

quadratic order)

`b
a =

ˆ
d p
2π

1
2

[
c†

aĊ
cbĊ− c†bĊcaĊ

]
,

rβ

α =
ˆ

d p
2π

1
2

[
c†

αĊ
cβĊ− c†βĊc

αĊ

]
,

Qb
α =

ˆ
d p
2π

(−1)[Ċ]
[
uc†

αĊ
cbĊ− vc†bĊc

αĊ

]
,

Sβ
a =

ˆ
d p
2π

(−1)[Ċ]
[
uc†

aĊ
cβĊ− vc†βĊcaĊ

]
,

and the generators of psu(2|2)R are similarly:

˙̀ḃ
ȧ =

ˆ
d p
2π

1
2

[
c†

CȧcCḃ− c†CḃcCȧ

]
,

ṙ β̇

α̇
=
ˆ

d p
2π

1
2

[
c†

Cα̇
cCβ̇ − c†Cβ̇ cCα̇

]
,

Q̇ ḃ
α̇ =

ˆ
d p
2π

[
uc†

Cα̇
cCḃ− vc†CḃcCα̇

]
,

Ṡ β̇

ȧ =
ˆ

d p
2π

[
uc†

CȧcCβ̇ − vc†Cβ̇ cCȧ

]
.

The two central charge generators are given by

C =
ˆ

d p
2π

pc†
AȦ

cAȦ , H =
ˆ

d p
2π

ε c†
AȦ

cAȦ .

Note that in the above notation, the oscillator c can be either a or b, depending on the

value of the super-index Ċ,C.

From the (anti) commutation relations for the oscillators, it is easy to see that these gen-

erators obey the centrally extended psu(2|2)2 algebra. The supercharges Q and S transform

as components of a Lorentz spinor, from which one can conclude that this representation of

1The nonlocal behaviour of the symmetry generators in light-cone gauge comes from the presence of the
light-cone field x−. The psu(2,2|4) super-currents whose supercharges generate psu(2|2)2 depend on x−. We
can then write

JQA
B

= eiσABx−/2J̃QA
B
, QA

B =
ˆ

dσJQA
B

(σ) ,

where σAB = [A]− [B], with [A] being the grade of the index A, i.e. [a] = 0 and [α] = 1. J̃ is a local combination
of the transverse fields, and these local generators are the ones will will be working with.
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generators will be related to a representation of the non-centrally extended algebra (C = 0)

by a Lorentz boost.

The algebra psu(2|2)L

The rotation generators r, ` act on a generic generator J canonically as was seen before:

[
`b

a ,Jc
]

= δ b
c Ja− 1

2 δ b
a Jc ,[

rβ

α ,Jγ

]
= δ

β

γ Jα − 1
2 δ

β

α Jγ ,

[
`b

a ,Jc
]

= −δ c
a Jb + 1

2 δ b
a Jc ,[

rβ

α ,Jγ

]
= −δ

γ

αJβ + 1
2 δ

β

α Jγ .

The fermionic charges obey

{
Qa

α ,Qb
β

}
= −1

2
εαβ ε

abC ,{
Sα

a ,Sβ

b

}
= −1

2
εabε

αβ C∗ ,{
Qa

α ,Sβ

b

}
= δ

β

α `a
b + δ

a
b rβ

α +
1
2

δ
β

α δ
a
b H .

Actually in the quadratic approximation, one finds that the central charge appearing in the

anti-commutators of the Qs and the Ss is the same, and only including higher orders we

would find that they are actually conjugate to each other. The algebra psu(2|2)R would be

identical.

A.2 Commuting the su(2|2) supercharges up to two-loops

The expressions found here are restrictions to the su(2|2) subsector of the full sector su(2|3)

found in [67]. The supercharges at order g0, Q0,S0, at order g1, Q1,S1 and at order g2, Q2,S2

in the dilute gas approximation can be written as follows:

(Q0)b
β

=

 b

β

 ,

(S0)α

a =

 α

a

 ;
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(Q1)b
β

=
A√
2

εββ ′ε
bb′

 β ′

b′3

−
 β ′

3b′


 ,

(S1)α

a =
A√
2

εaa′ε
αα ′

 a′3

α ′

−
 3a′

α ′


 ;

(Q2)b
β

=
(

A2

4
− i

2
γ3 +

i
2

γ4

) b3

β3

+

 3b

3β


+

(
−A2

4
− iγ1

) b3

3β

+

 3b

β3


 ,

(S2)α

a =
(

A2

4
+

i
2

γ3−
i
2

γ4

) α3

a3

+

 3α

3a


+

(
−A2

4
+ iγ1

) α3

3a

+

 3α

a3


 .

We will be using the notation used in [67]. The index 3 above means an insertion of a field Z.

The action of

 αbc

cαb

 on a state looks for a sequence of a fermion followed by two bosons,

and permutes them in the order 2nd boson-fermion-1st boson. As an example in su(2|3),

where indices 1,2,3 correspond to bosons and indices 4,5 correspond to fermions, we have

 αbc

cαb

 |142334452〉= |134234452〉+ |242334415〉 .

Determining the anti-commutation relations, we have:

2
A2

{
(S1)α

a ,(Q1)b
β

}
= δ

b
a δ

α

β

1
A2 H2−δ

b
a

2

 α

β

−
 3α

β3

−
 α3

3β




−δ
α

β

2

 b

a

−
 3b

a3

−
 b3

3a


 ;

2
A2

{
(S2)α

a ,(Q0)b
β

}
+

2
A2

{
(S0)α

a ,(Q2)b
β

}
= 2

δ
α

β

 b

a

+ δ
b
a

 α

β


−δ

α

β

 3b

a3

+

 b3

3a




−δ
b
a

 3α

β3

+

 α3

3β


 .
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Then the sum of these anti-commutators gives:

{
(S1)α

a ,(Q1)b
β

}
+
{

(S2)α

a ,(Q0)b
β

}
+
{

(S0)α

a ,(Q2)b
β

}
=

1
2

δ
b
a δ

α

β
H2,

where the two loop contribution for the Hamiltonian (dilute gas approx) is:

1
A2 H2 = 2

 a

a

+ 2

 α

α

−
 a3

3a

−
 3a

a3

−
 α3

3α

−
 3α

α3

 .

From the results presented above, we can see that we can only get the complete order g2

of the Hamiltonian from the commutation of the supercharges if we consider their two-loops

contributions.



Appendix B

Fermionic Sector of the Single

Spike

The calculation of the fermionic fluctuations is important to determine whether the solution

has any supersymmetry. We proceed to calculate these fermionic fluctuations for the single

spike, and we will find that they are all massless, while to have 2D supersymmetry these

fluctuations would have to have the same masses as the bosonic modes previously calculated.

Another argument for the lack of supersymmetry is that we will find twice as many fermionic

modes as there are bosonic ones, while supersymmetry requires equally many.

B.1 Fermionic Sector

This calculations follow closely the procedure done for the giant magnon in [142] (zero

modes) and in [124] (non-zero modes).

Setup and definitions

We will use the notation from [142] as much as possible, except for the worldsheet co-

ordinates: we use non-boosted co-ordinates(x,τ), and boosted co-ordinates (u,v), boosted

by c (instead of (σ , t) and boost by v to (x,ξ )). Indices a,b = 0,1 are worldsheet directions,

µ,ν curved spacetime, A,B,C flat spacetime, and I,J = 1,2 number fields.
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We will work on the subspace R×S2, where the unperturbed single spike solution (3.5)

lives. The metric for this subspace, in terms of co-ordinates t and angles θ and φ , is given

by

gµν = EA
µ EB

ν ηAB =


−1

1

sin2
θ

 for ν =

t

θ

φ

, (B.1)

where the vielbein’s components are Et
t = Eθ

θ
= 1 and Eφ

φ
= sinθ (we are using labels t,θ ,φ

for both curved and flat indices). Writing the single spike (3.5) in these co-ordinates gives

X0 = τ ,

Xθ = θ = arccos
(

1
γ coshv

)
, i.e. cosθ =

√
1− c2 sechv ,

Xφ = φ = x + arctan
(

tanhv
cγ

)
,

where u,v,γ are still given by (3.4).

The fermionic fluctuations are two Majorana–Weyl fields ΘI, which obey the action given

by Metsaev and Tseytlin [7]1

S = 2

√
λ

4π

ˆ
dτdx LF where LF = i(η

ab
δ

IJ + ε
ab

η
IJ) Θ

I
ρaDbθ

J .

The covariant derivative introduced above is defined by

DaΘ
I =
(

∂a +
1
4

ω
AB
a ΓAB

)
δ

IJ
Θ

J− i
2

Γ?ρaε
IJ

Θ
J

where Γ? = iΓ01234 = iΓ[0Γ1Γ2Γ3Γ4] (these are the AdS directions) obeys Γ2
? = 1. From this

action we obtain the equations of motion:

(ρ0−ρ1)(D0 + D1)Θ
1 = 0 ,

(ρ0 + ρ1)(D0−D1)Θ
2 = 0 .

1We use ε and η with two kinds of indices: εab=01 = 1 = εAB=12, and ηab=00 =−1 = η IJ=11. The gamma-
matrices are in the all imaginary basis: ΓA6=0 are Hermitian and Γ0 is anti-Hermitian. ΓAB = Γ[AΓB], so
Γφθ = Γφ Γθ .
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The projections of the gamma matrices ρa = ΓAEA
µ ∂aX µ and the spin connection ωAB

a =

ωAB
µ ∂aX µ are:2

ρ0 = Γ0 + cγ
2 cos2 θ

sinθ
Γφ + γ

2 cosθ

sinθ

√
sin2

θ − c2Γθ = Γ0 + r(θ)Γφ + s(θ)Γθ ,

ρ1 = γ
2 sin2

θ − c2

sinθ
Γφ − cγ

2 cosθ

sinθ

√
sin2

θ − c2Γθ = p(θ)Γφ + q(θ)Γθ ,

ω0 =−ω
φθ

0 =−cγ
2 cos3 θ

sin2
θ

,

ω1 =−ω
φθ

1 =−γ
2 cosθ

sin2
θ

(sin2
θ − c2) .

To simplify the equations of motion, start by replacing ∂0 = ∂τ and ∂1 = ∂x with the

boosted derivatives ∂u = γ(∂1 + c∂0) and ∂v = γ(∂0 + c∂1), such that

∂0±∂1 = (1∓ c)γ {∂u±∂v} .

Also, define G and G̃ as follows:

ω
φθ

0 + ω
φθ

1 = (1− c)γ
1
2

G, where G = γ
cosθ

sin2
θ

(c + sin2
θ),

ω
φθ

0 −ω
φθ

1 = (1 + c)γ
1
2

G̃, G̃ = γ
cosθ

sin2
θ

(c− sin2
θ).

The equations of motion can then be written as

(ρ0−ρ1)
[
(1− c)γ

{
∂v + ∂u +

1
2

GΓφθ

}
Θ

1− i
2

Γ?(ρ0 + ρ1)Θ
2
]

= 0, (B.2)

(ρ0 + ρ1)
[
(1 + c)γ

{
∂v−∂u +

1
2

G̃Γφθ

}
Θ

2 +
i
2

Γ?(ρ0−ρ1)Θ
1
]

= 0.

If we define the operators

Dv = ∂v +
1
2

GΓφθ , D̃v = ∂v +
1
2

G̃Γφθ ,

then the curly brackets in the equations of motion (B.2) become these operators plus or

2These projections, as functions of θ , are intimately related to the ones from the giant magnon case:
ρ0 = ρ

magnon
1 +Γ0, ρ1 = ρ

magnon
0 −Γ0, ω0 = ω

magnon
1 and ω1 = ω

magnon
0 . Our conventions for the spin connection

can be found in [243]. Functions p,q,r,s introduced here will be useful in what follows.
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minus the time derivative ∂u.

The next step is to use kappa-symmetry fixed fields in the equations of motion [244]

[142,124], which we define by

Ψ
1 =−i(ρ0−ρ1)Θ

1 , (B.3)

Ψ
2 = i(ρ0 + ρ1)Θ

2 .

Note that Γ11 anti-commutes with i(ρ0±ρ1), and that these operators are real. Consequently,

the field ΘI is Majorana–Weyl if and only if the field ΨI also is, so we can impose the

Majorana–Weyl conditions on ΨI directly.

To re–write the equations of motion in terms of these symmetry-fixed fields, we will need

several identities, identical in form to the ones found for the giant magnon case [142].3 We

have two nilpotent operators:

(ρ0±ρ1)2 = 0

(thus (ρ0−ρ1)Ψ1 = 0 and (ρ0 + ρ1)Ψ2 = 0) which commute with the curly derivatives

[Dv,(ρ0−ρ1)] = 0 ,
[
D̃v,(ρ0 + ρ1)

]
= 0

(they trivially commute with ∂u as well). The dagger of ρ0 is given by:

ρ0 ≡ Γ?ρ0Γ? =−ρ
†
0 = Γ0− rΓφ − sΓθ ,

with which we can write two more nilpotent operators

(ρ0±ρ1)2 = 0

as well as a non-singular operator (ρ0−ρ0) = −2rΓφ − 2sΓθ , whose square is proportional

3Relations such as (ρ0±ρ1)2 =−1+(r± p)2 +(s±q)2 and (ρ0±ρ1)2 =−1+(−r± p)2 +(−s±q)2 are needed
to derive the identities.
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to the unit matrix:

(ρ0−ρ0)2 = 4γ
2 cos2

θ .

We can now re–write the equations of motion (B.2), by pulling the operators (ρ0±ρ1)

to the right, using the identities above, until they are acting directly on ΘI to give ΨI. The

equations of motion become:

(1− c)γ {Dv + ∂u}Ψ
1 +

i
2

Γ?(ρ0 + ρ0)Ψ
2 = 0 , (B.4)

(1 + c)γ
{
D̃v−∂u

}
Ψ

2− i
2

Γ?(ρ0−ρ0)Ψ
1 = 0 .

Non-zero modes

From (B.4), we start by solving the equation for Ψ2:

Ψ
2 =

(ρ0−ρ0)
4γ2 cos2 θ

Γ?
2
i
(1− c)γ {Dv + ∂u}Ψ

1. (B.5)

We can then eliminate Ψ2 from the other equation, thus obtaining a second-order equation

for Ψ1 alone: {
D̃v−∂u

} (ρ0−ρ0)
γ2 cos2 θ

{Dv + ∂u}Ψ
1 +(ρ0−ρ0)Ψ

1 = 0.

Using the identity {
D̃v−∂u

} (ρ0−ρ0)
cosθ

=
(ρ0−ρ0)

cosθ
{Dv−∂u}

and pulling the (ρ0−ρ1) from Ψ1’s definition to the left of the equation, we obtain

(ρ0−ρ1)
(

1
γ cosθ

{Dv−∂u}
1

γ cosθ
{Dv + ∂u}+ 1

)
Θ

1 = 0 . (B.6)

This equation is analogous to equation (3.7) of [124]. Using a similar method to the one

found in [124] we can solve this equation. We start by temporarily dropping the kappa-

symmetry projection (ρ0−ρ1), and solve the remainder of the equation for Θ1. Once we

have a solution for Θ1, we then apply the projection once more to recover Ψ1, and find Ψ2
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using (B.5).

Now we proceed to determine Θ1. To do so, we decompose the second-order equation

(B.6) into a system of two coupled first-order equations, defining an intermediate field Θ̃:

 Dv + ∂u −isechv

−isechv Dv−∂u


 Θ1

Θ̃

= 0 .

We then expand the spinor in a Fourier series for u:

 Θ1 (u,v)

Θ̃(u,v)

= e−iωu~Θ(v,ω) , (B.7)

and into a sum of eigenspinors of Γφθ : ~Θ = ~Θ+ +~Θ− with

(
12×2⊗Γφθ

)
~Θ± =±i~Θ±.

The system of coupled linear equations can then be written as

(∂v−V±)~Θ± = 0, with V± =

 i
(
ω∓ G

2

)
isechv

isechv −i
(
ω± G

2

)
 .

To solve this system of equations, we need to diagonalize it by a change of basis.

Diagonalization

We define ~Θ′± = S~Θ±, such that

∂v~Θ
′
± = (∂vS + SV±)S−1~Θ′± = H±~Θ′± (B.8)

(thus defining H±). We want to determine S that makes H± diagonal. Writing

S =

 a(v) b(v)

c(v) d(v)

 ,
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and then setting the off-diagonal elements of H± to zero gives

0 = i(a2−b2)sechv−2iωab−ba′+ ab′,

0 = i(d2− c2)sechv + 2iωcd− cd′+ dc′.

The above equations were obtained for both H+ and H−, which means that S diagonalizes

both simultaneously. Because we have only two equations and four parameters, we choose

two additional constraints4

a′ =−ibsech(v) , (B.9)

c′ =−id sech(v) ,

thus obtaining a second-order equation for a (c obeys the same equation):

−a′′− tanhva′+ 2iωa′− sech2 va = 0. (B.10)

There are two independent solutions to (B.10):

a1 (v) =
2iω

1 + 4ω2 +
tanhv

1 + 4ω2 ,

a2 (v) = e2iωv sechv ,

where a(v) and c(v) will be (different) linear combinations of these. The other functions b(v)

and d(v) are then fixed by (B.9). The general solution for S is then given by

S = S0

 a1(v) b1(v)

a2(v) b2(v)


4These extra relations can be imposed by multiplying S by a non-singular diagonal matrix, which is always

allowed as it does not change the equations of motion (B.8).
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where S0 is a non-singular constant matrix, and

b1 (v) = i
sechv

1 + 4ω2 ,

b2 (v) = i(2iω− tanhv)e2iωv .

The determinant of this change of basis is

detS =−ie2iωv detS0 ,

different from zero, as expected.

This change of basis gives a simple (diagonal) form for H±:

H± = i
(

ω∓ G
2

) 1 0

0 1

 . (B.11)

Solving the diagonalized system

Using H± just obtained (B.11), the diagonalized system (B.8) can now be solved. The

equations simplify to (
∂v− i

(
ω∓ G

2

))
f (v) = 0 .

In the magnon case [142] (and also for the zero modes in appendix B.2) we found a very

similar equation. It has solution f (v) = e±iχeiωv, where

eiχ =
(

sinhv + ic
sinhv− ic

)1/4√
tanhv + isechv.

The field ~Θ′± will then be given by the product of this phase and a spinor:

~Θ′± = e±iχeiωv~U± ,
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where ~U± is any eigenspinor of
(
1⊗Γφθ

)
with eigenvalues ±i. Finally we need to undo the

change of basis to obtain ~Θ±:

~Θ± = S−1~Θ± = e±iχeiωvS−1~U±.

Absorbing the constant matrix S−1
0 into the arbitrary spinor ~U±, we define new spinors U±

and Ũ±

S−1
0

~U± =
1√

1− c

 U±

Ũ±

 ,

where the
√

1− c factor is introduced for later convenience.

Recalling from (B.7) that our original spinor Θ1 is the first component of e−iωu(~Θ+ +~Θ−),

we can now write5

Θ
1 (u,v) =

1√
1− c

e−iωu
∑
±

eiωv±iχ

−ie2iωv

[
b2 (v)U±−b1 (v)Ũ±

]
=
−1√
1− c

e−iωu
∑
±

e±iχ
[

e−iωv sechv
1 + 4ω2U±+(tanhv−2iω)eiωvŨ±

]
.

To determine the symmetry-fixed field Ψ1 =−i(ρ0−ρ1)Θ1 we use the identity e±2iχ = (p−

r)∓ i(q− s), and find the positive-frequency solution to be:

Ψ
1
p =

i e−iωu
√

1− c ∑
±

(
e±iχ

Γ0− e∓iχ
Γφ

)[
e−iωv sechv

1 + 4ω2U±+(tanhv−2iω)eiωvŨ±

]
=

i√
1− c ∑

±

(
e±iχ

Γ0− e∓iχ
Γφ

)[
eiα sechv

1 + 4ω2U±+
√

tanh2 v + 4ω2eiβŨ±

]
(B.12)

where the phases α and β are defined by

eiα = e−iω(u+v),

eiβ = e−iω(u−v)e−iarctan(2ω cothv).

5The second entry of e−iωu
(
~Θ+ +~Θ−

)
will be given by

Θ̃ (u,v) =−ie−iωue±iχ
[

eiωv sechvU±−
(tanhv + 2iω)

1 + 4ω2 e−iωvŨ±

]
.

This will be useful in determining Ψ2.
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Majorana condition

We now want to impose the Majorana condition on the spinors: ΨI should be real ΨI∗ = ΨI.

To do so, consider a superposition of positive and negative frequencies ω:

Ψ
1 = 2ReΨ

1
p = Ψ

1
p + Ψ

1∗
p

=
i√

1− c ∑
±

(
e±iχ

Γ0− e∓iχ
Γφ

)[ sechv
1 + 4ω2

(
eiαU±+ e−iαU∗∓

)
+
√

tanh2 v + 4ω2
(

eiβŨ±+ e−iβŨ∗∓
)]

.

Note that U∗∓ is an eigenspinor of Γφθ of eigenvalue ±i (the Γ matrices are imaginary, thus

Γφθ is real).

If we combine the four ± eigenspinors into two spinors U = U+ +U− and Ũ = Ũ+ +Ũ−

(we can reverse this with projection operators U± = i±Γφθ

2i U , and similarly for the others),

we can then write

Ψ
1 =

i√
1− c

[
Γ0
(
cos χ + Γφθ sin χ

)
−Γφ

(
cos χ−Γφθ sin χ

)]
×
{

sechv
1 + 4ω2 Re(eiαU)+

√
tanh2 v + 4ω2 Re(eiβŨ)

}
=

i√
1− c

[
Γ0
(
cos χ + Γφθ sin χ

)
−Γφ

(
cos χ−Γφθ sin χ

)]
×
{ sechv

1 + 4ω2

(
cosα U0 + sinα ΓφθU1

)
+
√

tanh2 v + 4ω2
(
cosβ Ũ0 + sinβ ΓφθŨ1

)}
, (B.13)

where the new spinors are

U0 = 2Re(U+ +U−) , Ũ0 = 2Re
(
Ũ+ +Ũ−

)
, (B.14)

U1 = 2Re(U+−U−) , Ũ1 = 2Re
(
Ũ+−Ũ−

)
,

where U0 = 2ReU , and U1 = 2Γφθ ImU (and similarly with tildes).
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Having found Ψ1, Ψ2 can be determined from (B.5). The final, Majorana, field Ψ2 is

Ψ
2 =

1√
1 + c

Γ∗Γθ

[
Γ0
(
cos χ̃ + Γφθ sin χ̃

)
−Γφ

(
cos χ̃−Γφθ sin χ̃

)]
×
{

sechv
(
cos α̃ Ũ0 + sin α̃ ΓφθŨ1

)
−
√

tanh2 v + 4ω2

1 + 4ω2

(
cos β̃ U0 + sin β̃ ΓφθU1

)}
, (B.15)

where the new phases are

eiχ̃ =

√
sinhv− ic
sinhv + ic

eiχ =
(

sinhv− ic
sinhv + ic

)1/4√
tanhv + isechv,

eiα̃ = e−iω(u−v),

eiβ̃ = e−iω(u+v)eiarctan(2ω cothv).

Mass and Counting

If we analyze the solution Ψ1 far from the spike (|v| � 1), we observe that the phases

obey iα = −iωu− iωv and iβ = −iωu + iωv, which means that the fermionic modes are

massless, ω2 = k2. Consequently there is no supersymmetry, as we found in Section 3.3 the

corresponding bosonic modes to be massive.

It is also interesting to determine the number of fermionic modes. There are four spinors

U± and Ũ±, which are Γφθ eigenspinors, and thus have 16 complex components each. These

must also be Γ11 eigenspinors, so that Ψ is Weyl, which cuts the number by half. Finally,

from (B.14) we saw that the Majorana spinor depends only on the real part of each of

the original spinors, cutting it in half again. The final counting is 16 complex degrees of

freedom, twice the number for the ones found for the giant magnon [124].

The bosonic modes for the spike were determined by simply by interchanging x↔ t in

the magnon modes. This means that the number of bosonic modes is the same as for the

magnon case: there are 8 non-zero modes (4 on the sphere and 4 in AdS). Once more, the

fact that there are two fermionic modes for each bosonic mode is more evidence against

supersymmetry.

As we will see below, there are also twice as many fermionic zero modes (8 complex)
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as bosonic ones (4, same as the magnon). Because the non-zero modes are massless, ω = 0

is part of the continuum of frequencies, and one can obtain expressions for the zero modes

just by setting ω = 0 in (B.13) and (B.15) (which sets α = β = 0). But the counting of

fermionic zero modes has to be done more carefully: the zero modes appear to have the

same dependence on ReU± and ReŨ± as the non-zero modes, suggesting that there are also

16 of them. However, the same argument that happens in the magnon case [142] kills half

of these modes, leaving 8 fermionic zero modes. Below we give the analogous calculation for

the single spike that can be found in [142] for the magnon zero modes.

B.2 Fermionic Zero modes

In this appendix we determine the zero modes for the single spike, following [142]. It will be

shown that from this calculation it is much easier to see why the single spike has twice as

many fermionic modes as the magnon, even though the result is identical to simply setting

ω = 0 in the section above.

The zero modes obey ∂uΨI = 0, which simplifies the second-order equation (B.6) to

(
1

γ cosθ
Dv

1
γ cosθ

Dv + 1
)

Ψ
1 = 0.

This equation factorizes, making the calculations much easier than the previous case.

The above equation implies that (Dv−η iγ cosθ)Ψ1 = 0 with η =±1. Pulling the factor

(ρ0−ρ1) to the left we find:

(ρ0−ρ1)
{

∂v +
1
2

GΓφθ + η iγ cosθ

}
Θ

1 = 0.

As for the non-zero modes, we only fix the κ-symmetry projection in the end, solving first

for Θ1 alone. The matrix part of this equation involves only 1 and Γφθ , which can be

simultaneously diagonalized. The solution is of the form

Θ
1 = Θ+ + Θ− = f+(v)U+ + f−(v)U− ,



219

where the spinors U± (and so Θ±) are Γφθ eigenvectors, with eigenvalues ±i respectively.

All that is left to solve is

{
∂v±

i
2

G + η iγ cosθ

}
f±(v) = 0.

The solutions of this equation are pure phase,

f±(v) = e±iχeiηχ2 where eiχ =
(

sinhv + ic
sinhv− ic

)1/4√
tanhv + isechv,

e±iχ2 = sechv± i tanhv.

Comparing these solutions to the giant magnon ones [142], we find that instead of a modu-

lating factor sechu, we get an extra phase eiηχ2 . In the magnon case, it was this modulating

factor that made one of the solutions normalizable, and allowed Minahan to reject the other

sign of η for producing a solution which diverges at large u. In our case both signs lead

to non-normalizable solutions, and the most general solution is a linear combination of the

η = +1 and η =−1 cases:

Ψ
1 =−i(ρ0−ρ1)

1√
1− c ∑

±
e±iχ

∑
η

eiηχ2Uη

±

(we’ve introduced a factor of
√

1− c for later convenience). Using the identity e±2iχ = (p−

r)∓ i(q− s), we obtain for Ψ1:

Ψ
1 =

i√
1− c

[
Γ0
(
cos χ + Γφθ sin χ

)
−Γφ

(
cos χ−Γφθ sin χ

)](
sechvU0 + tanhvŨ0

)
where we defined new linear combinations of the arbitrary spinors Uη

± as

U0 =−
(

Uη=1
+ +Uη=1

−

)
−
(

Uη=−1
+ +Uη=−1

−

)
,

Ũ0 =−i
(

Uη=1
+ +Uη=1

−

)
+ i
(

Uη=−1
+ +Uη=−1

−

)
.

The reason for this choice of linear combinations is that the Majorana condition Ψ∗ = Ψ

now simply requires that U0 and Ũ0 be themselves Majorana spinors (the Γ-matrices are all
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imaginary, thus Γφθ is real).

We can now completely determine Ψ2 from (B.5), as an operator acting on Ψ1. We then

write:

Ψ
2 =

Γ?Γθ√
1 + c

[
Γ0
(
cos χ̃ + Γφθ sin χ̃

)
−Γφ

(
cos χ̃−Γφθ sin χ̃

)](
sechvŨ0− tanhvU0

)
where as before eiχ̃ = e−iχ+iχ2 , and we used the identity (r± i s) =±iγ cosθe±i(χ̃−χ).

Comparing these zero modes with the non-zero modes (B.13) and (B.15), we can easily

see that they are just the ω = 0 case of the non-zero modes (i.e. α = β = 0). This differs

from the case of the supersymmetric giant magnon, where the zero modes of [142] are

disconnected from the massive non-zero modes of [124].

The counting of modes is now much easier: the four spinors Uη

± are Γφθ -eigenspinors,

having 16 complex components each. As they are also Weyl spinors, i.e. Γ11-eigenspinors,

the number of components is cut in half. Requiring U0 and Ũ0 to be Majorana cuts it in

half again, to 16 components in total. This is the number of components we got from the

non-zero modes, by setting ω = 0, as was expected. But at this stage the giant magnon had

only 8 complex components [142], half of what we found for the single spike. The argument

given below cuts the number of components by another factor of 2 in both cases, leaving

the giant spike with just 8 zero modes, and the giant magnon with 4.

Slow-motion

In [142], we can find the following argument: we regard the spinors U0 and Ũ0 as a moduli

of the solution, and allow them to become time-dependent, ∂uU 6= 0. If we plug a zero mode

back into the action we will get zero, but plugging this ‘slowly-moving’ mode needn’t do so.

The zero modes whose related slowly-moving modes give a non-zero action are ‘real’ zero

modes, while the others are pure gauge [245].

When substituting the slowly-moving mode Θ = ∑F(v)U(u) into the Lagrangian, the

equations of motion force everything except the ∂u terms to vanish, leaving

LF =−iγ(1− c) Θ
1(ρ0−ρ1)∂uΘ

1 + iγ(1 + c) Θ
2(ρ0 + ρ1)∂uΘ

2 ,
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where Θ = Θ†Γ0, as before. Using the identities 2Γ0(ρ0± ρ1) = −(ρ0± ρ1)†(ρ0± ρ1) the

Lagrangian becomes

LF = iγ
1− c

2
Ψ

1†
∂uΨ

1− iγ
1 + c

2
Ψ

2†
∂uΨ

2.

Plugging in ΨI from above, we obtain

LF =
iγ
2
[
(Γ0−Γφ )

(
sechvU0 + tanhvŨ0

)]†
∂u
[
(Γ0−Γφ )

(
sechvU0 + tanhvŨ0

)]
− iγ

2
[
(Γ0−Γφ )

(
sechvŨ0− tanhvU0

)]†
∂u
[
(Γ0−Γφ )

(
sechvŨ0− tanhvU0

)]
.

Both U0 and Ũ0 always appear acted on by (Γ0−Γφ ). Using Minahan’s words, below (2.32)

of [142], only those modes satisfying (Γ0 + Γφ )U0 and (Γ0 + Γφ )Ũ0 contribute. The situation

is identical to the giant magnon in that only half of the modes appearing in ΨI contribute

(they ‘are real,’ meaning true, zero modes). But since there are two constant Majorana–

Weyl spinors U0 and Ũ0 for the single spike, instead of only one for the giant magnon, there

are twice as many modes: 8 instead of 4 complex degrees of freedom. Summarizing, in the

fermionic sector, for both the non-zero modes and the zero modes we find twice as many

modes as in the giant magnon case.
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Fillings and Fermionic Poles

We will now review some properties of the algebraic curve quasi-momenta for AdS5× S5.

These include some explicit calculations of the filling fractions in the bosonic subsector

R×S5, as well as a brief discussion of the fermionic poles in the full superstring theory.

C.1 Properties of fillings of branch cuts

In this appendix we present some properties of the filling functions for R×S5, which can be

used to relate them to the relevant Dynkin labels. Using the fact that

√
λ

8π2i

A1/2

∑
a=1

˛
Aa

1
x

d p1 =

√
λ

8π2i

A1/2

∑
a=1

˛
Aa

1
x3 p

′
2 (1/x)dx =−

√
λ

8π2i

A1/2

∑
b=1

˛
Ab=1/Aa

yp
′
2 (y)dy

=

√
λ

8π2i

A1/2

∑
b=1

˛
Ab=1/Aa

yp
′
1 (y)dy ;

√
λ

8π2i

A1/2

∑
a=1

˛
Aa

xd p1 =

√
λ

8π2i

A1/2

∑
a=1

˛
Aa

1
x

p
′
2 (1/x)dx =−

√
λ

8π2i

A1/2

∑
b=1

˛
Ab=1/Aa

1
y

p
′
2 (y)dy

= −
√

λ

8π2i

A1/2

∑
a=1

˛
Aa

xp
′
2 (x)dx ,
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and recalling that the total number of cuts between sheets 1,2, the C1,a and C1,b = 1/C1,a,

is given by A1, then

A1/2

∑
a=1

K1,a ≡
√

λ

8π2i

A1/2

∑
a=1

˛
Aa

(
x +

1
x

)
d p1 =

√
λ

8π2i

A1

∑
a=1

˛
Aa

xp
′
1 (x)dx

= −
√

λ

8π2i

A1

∑
a=1

˛
Aa

xp
′
2 (x)dx .

A very similar result can be found for cuts between sheets 3,4 (total A3). In the same way

considering now cuts between sheets 2,3, which total A2 (C2,a and C2,b = 1/C2,a), we easily

see that

√
λ

8π2i

A2/2

∑
a=1

˛
Aa

1
x

d p2 =
√

λ

8π2i ∑
A2/2
a=1

¸
Aa

1
x3 p

′
1 (1/x)dx = −

√
λ

8π2i

A2/2

∑
b=1

˛
Ab=1/Aa

yp
′
1 (y)dy ,

and consequently

A2/2

∑
a=1

K2,a ≡
√

λ

8π2i

A2/2

∑
a=1

˛
Aa

(
x +

1
x

)
d p2 =

√
λ

8π2i

A2/2

∑
a=1

˛
Aa

xd p2−
√

λ

8π2i

A2/2

∑
b=1

˛
Ab=1/Aa

yp
′
1 (y)dy.

Now one should notice that all of the cuts existing in sheet 1 are A1 connecting sheets

1,2 and A2/2 connecting 1,4. If we sum over all possible A -cycles around these cuts, this

is equivalent to integrating over a closed contour at infinity (with all of the singularities

inside) if we add the singularities at x =±1. Then

A1/2

∑
a=1

K1,a =

√
λ

8π2i

˛
∞

xp
′
1 (x)dx−

√
λ

8π2i

A2/2

∑
b=1

˛
Ab

yp
′
1 (y)dy−

√
λ

8π2i

˛
±1

xp
′
1 (x)dx

=

√
λ

8π2i

˛
∞

xp
′
1 (x)dx−

√
λ

8π2i

A2/2

∑
b=1

˛
Ab

yp
′
1 (y)dy +

√
λ

8π2i

˛
±1

x
πκ

(x∓1)2 dx.

For sheet 2 we have A1 cuts connecting it to sheet 1, and A2/2 cuts connected to sheet 3:
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A2/2

∑
a=1

K2,a =

√
λ

8π2i

˛
∞

xp
′
2 (x)dx−

√
λ

8π2i

A1

∑
a=1

˛
Aa

xd p2

−
√

λ

8π2i

˛
±1

xp
′
2 (x)dx−

√
λ

8π2i

A2/2

∑
b=1

˛
Ab

yp
′
1 (y)dy

=

√
λ

8π2i

˛
∞

xp
′
2 (x)dx +

A1/2

∑
a=1

K1,a +

√
λ

8π2i

˛
±1

x
πκ

(x∓1)2 dx−
√

λ

8π2i

A2/2

∑
b=1

˛
Ab

yp
′
1 (y)dy .

For sheet 3 we have A3 cuts connecting it to sheet 4, and A2/2 connecting it to sheet 2:

A3/2

∑
a=1

K3,a =

√
λ

8π2i

A3/2

∑
a=1

˛
Aa

(
x +

1
x

)
d p3 =

√
λ

8π2i

A3

∑
a=1

˛
Aa

xd p3

=

√
λ

8π2i

˛
∞

xp
′
3 (x)dx−
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λ

8π2i

A2/2

∑
b=1

˛
Ab

yp
′
3 (y)dy−

√
λ

8π2i

˛
±1

x
πκ

(x∓1)2 dx .

Finally, for sheet 4 we have A3 cuts connecting it to sheet 3 and A2/2 connecting sheets 1

and 4, and the relations can be written as the previous ones.

C.2 The behaviour of the quasi-momenta at a fermionic pole

In page 114 we reviewed the behaviour of the monodromy matrix eigenvalues at the points x̃a

where two eigenvalues corresponding to S5 coincide, and found that these points were square

root singularities of the eigenvalues. The same behaviour is expected from points x̂a where

two eigenvalues corresponding to AdS5 coincide. But the eigenvalues of the monodromy

matrix will have a different behaviour at points x∗a where eigenvalues of opposite gradings

coincide, that is, points at which an eigenvalues of the S5 part of the monodromy matrix

eip̃k coincides with an eigenvalue of the AdS5 part eip̂l .

The restriction of Ω(x) to the subspace of these two eigenvalues then has the form

Γ =

 a b

c d

 ,

where the lines above separate the two gradings. One can calculate the eigenvalues of this
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super-matrix to be1

γ1 = a +
bc

d−a
, γ2 = d +

bc
d−a

The parameters a,b,c,d depend analytically on x, but in this case it is the supertrace of

this sub-matrix, f (x) = strΓ = a−d, which vanishes at x = x∗a, that is f (x∗a) = 0. This is the

denominator present in the eigenvalues γ1,2. The numerator, α∗a = −bc|x=x∗a
does not need

to be zero, and so we have a simple pole at x = x∗a and obtain f (x) = α∗a
x−x∗a

+O (x− x∗a). Thus

expanding around the singularity we find

eip̃k(x) = eip̂l(x) = ei/̃pk(x∗a)
(

α∗a
x− x∗a

+ 1 +O (x− x∗a)
)

,

for some coefficient α∗a =−bc. Note that this coefficient is nilpotent, i.e., (α∗a )2 = 0.

1This can be easily seen from the fact that strΓ≡ γ1− γ2 = a−d and sdetΓ= γ1
γ2

= a
d −

bc
d2 , and by recalling

that b,c are Grassmann-odd variables, that is, (bc)2 = 0.



Appendix D

On the CP3 Geometry And

Conserved Charges

In this appendix we review some properties of the CP3 geometry, and the constraints that a

string solution living in this space has to obey. We also perform semi-classical quantization

around the vacuum (6.11), are recover the quantity ∆− J1−J4
2 as being the Hamiltonian for

the physical excitations.

We finalize by giving a summary of the finite-J expansion of conserved charges for the

several magnon solutions in CP3.

D.1 More about the geometry of CP3

The complex projective space CP3 is defined by

CP3 =
C4

~z∼ λ~z

where the co-ordinates ~z = za are called homogeneous co-ordinates, and λ is complex. The

identification ~z ∼ λ~z can be separated in two parts: ~z ∼ r~z and ~z ∼ eiφ~z (for any r,φ ∈ R).

Then, setting the first one to be |~z|2 = 1, we obtain a sphere with one identification

CP3 =
S7

~z∼ eiφ~z
=

S7

U(1)
.

226
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The isometry group is SU(4), acting in the natural way on ~z. The stabilizer group of, for

example, the point z4 = 1 is U(3), thus we can also write

CP3 =
SU(4)
U(3)

.

The standard Fubini–Study metric for this space is, in the infinitesimal form:

ds2
CP3 =

dzidz̄i

ρ2 − |zidz̄i|2

ρ4

= ds2
sphere−dγ

2 (D.1)

=
ds2

flat−dρ2

ρ2 −dγ
2

where ρ2 = ziz̄i.1 In the equation above ds2
flat = dzidz̄i is the Euclidean metric for C4, and

ds2
sphere is a metric for S7 in terms of the homogeneous co-ordinates. Instead of fixing ρ = 1,

we subtract from the sphere the component coming from radial motion (and scale the rest

appropriately). Consequently, we obtain CP3 from the sphere S7 by fixing the total phase

γ = arg∏i zi (this can be understood as subtracting the total phase component from the

sphere). These radial and total phase components are given by

dρ =
1

2ρ
(zidz̄i + z̄idzi) =

1
ρ

Re(z̄idzi)

dγ =
i

2ρ2 (zidz̄i− z̄idzi) =
1

ρ2 Im(z̄idzi) .

We now recall the two forms of the CP3 metric in terms of real angles, and present the

maps between these angles and the homogeneous co-ordinates. These maps can be found

in [217] and [215], up to a relabeling of the zi. For the metric (6.6) (η is often called ψ)

ds2
CP3 = dξ

2 +
1
4

sin2 2ξ

(
dη +

1
2

cosϑ1 dϕ1−
1
2

cosϑ2 dϕ2

)2

+
1
4

cos2
ξ
(
dϑ

2
1 + sin2

ϑ1 dϕ
2
1
)

+
1
4

sin2
ξ
(
dϑ

2
2 + sin2

ϑ2 dϕ
2
2
)

1In some conventions [246,192] the metric has an extra factor of 4, making CP1 (6.16) a unit sphere.
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the map was given in the main text (6.5), and it is:

z1 = sinξ cos(ϑ2/2) e−iη/2 eiϕ2/2

z2 = cosξ cos(ϑ1/2) eiη/2 eiϕ1/2 (D.2)

z3 = cosξ sin(ϑ1/2) eiη/2 e−iϕ1/2

z4 = sinξ sin(ϑ2/2) e−iη/2 e−iϕ2/2.

For the other set of angular variables (6.7)

ds2
CP3 = dµ

2 +
1
4

sin2
µ cos2

µ
[
dχ + sin2

α (dψ + cosθ dφ)
]2

+ sin2
µ

[
dα

2 +
1
4

sin2
α

(
dθ

2 + sin2
θ dφ

2 + cos2
α (dψ + cosθ dφ)2

)]

the map can be written as:

z1/z4 = tan µ cosα eiχ/2

z2/z4 = tan µ sinα sin(θ/2) eiχ/2 ei(ψ−φ)/2 (D.3)

z3/z4 = tan µ cosα cos(θ/2) eiχ/2 ei(ψ+φ)/2.

The ratios zi/z4 are called inhomogeneous co-ordinates, and cover the patch z4 6= 0 with

no identifications [246]. Taking the ranges of the angles (given in the main text, on page

155) into account, the trigonometric functions controlling the amplitudes of these rations

are always positive in both (D.2) and (D.3). Analyzing the phases of the inhomogeneous

co-ordinates of zi/z4 one can confirm that ranges of the remaining angles are correct.

D.2 Strings in homogeneous co-ordinates

It has been seen that it is convenient to use embedding co-ordinates for Rn+1 to study

bosonic string theory in Sn, using a constraint for the radius to be 1. This way one avoids

the trigonometric algebra related with angular co-ordinates, and (in AdS/CFT) the cor-

respondence between the R-symmetry generators and the rotations of the space becomes
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natural. We want to do an analogous construction for CP3, by means of the homogeneous

co-ordinates ~z. In this case, we will need two constraints: ρ2 = 1 and γ = 0.

Using Lagrange multipliers

We start by re-writing the metric for R×CP3 in the form:

ds2 =−
(
dX0)2

+ dz̄iGi jdz j with Gi j =
δi j

ρ2 −
ziz̄ j

ρ4

In a conformal time-like gauge (X0 = κτ), the Polyakov action becomes

S =
ˆ

dxdτ

2π
R2L (D.4)

= 2
√

2λ

ˆ
dxdτ L

2L = κ
2 + ∂

aZ̄iGi j∂aZ j + Λρ (Z̄iZi−1)+ iΛγ (Z1Z2Z3Z4− Z̄1Z̄2Z̄3Z̄4) ,

where Λγ ∈R, since the term in brackets is proportional to 2isinγ, thus imaginary. In order

to determine the Euler–Lagrange equations, we first set ρ = 1, simplifying ∂Gi j/∂Zi etc. The

Lagrange multipliers are simply determined from the parallel component of the equations

(i.e. the product of Z̄i with the equation of motion for Zi), and the result is:

Λρ −4i(Z1Z2Z3Z4)Λγ = ∂τ Z̄i∂τZi−2 |Z̄i∂τZi|2 − ∂xZ̄i∂xZi + 2 |Z̄i∂xZi|2 ,

where the factor 4 above comes from the number of complex embedding co-ordinates. The

right-hand side of the equation is real, which implies Λγ = 0. Using this result, we can write

the equation of motion for Zi as

−∂τ (Gi j∂τZ j)+ ∂x (Gi j∂xZ j) = ZiΛρ − (Z̄ j∂τZ j)∂tZi +(Z̄ j∂xZ j)∂xZi . (D.5)

The Virasoro constraints are given by

−κ
2 + ∂τ Z̄i Gi j ∂τZ j + ∂xZ̄i Gi j ∂xZ j = 0
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Re(∂τ Z̄i Gi j ∂xZ j) = 0 .

We should expand some more on the fact that Λγ = 0. Going back to the simple example

of strings on the sphere, if we used a similar metric (in fact exactly ds2
sphere from (D.1)):

2L = 1 + ∂
aXi∂aX jgi j + Λ(X2−1), with gi j =

δi j

ρ2 −
XiX j

ρ4

then we would also have Λ = 0, even though the equations of motion are the same as the

ones obtained with gi j = δi j (i.e. using ds2
flat). In some sense the metric is directly enforcing

the constraint, and the reason we had the other Lagrange multiplier Λρ 6= 0 in the CP3 case

was because we set ρ = 1 in the beginning of the calculation.

Constraining S7 solutions

In [193] (and others) they set up the problem of finding string solutions on CP3 by first

finding solutions on the sphere S7 ∈ C4, and then demanding that the two Noether charges

from ∂γ vanish:

0 = C0 ≡
4

∑
i=1

Im(Z̄i∂τZi) , 0 = C1 ≡
4

∑
i=1

Im(Z̄i∂xZi) .

This in fact happens for the RP2 solution (6.20) given by [193], and for any solution on

the larger RP3 subspace of Section 6.4. Using the co-ordinates ~w from (6.21), the condition

w3 = w4 = 0 which defines this subspace RP3 implies C0 = C1 = 0, and at the same time

reduces the equations of motion (D.5) to those for a sphere S3 embedded in (w1,w2).

But more general solutions, like the CP1 solution (6.18), will solve neither these con-

straints nor the equations of motion for S7 ⊂ C4. Thus, the above conditions (solution on

S7, and C0 = C1 = 0) are certainly not necessary for a solution. Whether they are sufficient

or not is not entirely clear.2

2A similar approach can be done to strings on the sphere. It consists on finding solutions in flat (embed-
ding) space and then reject all of the ones which do not have ρ = 1. In this sphere case, solving the flat space
equations and having ρ = 1 is a sufficient, not necessary, condition to find a solution.

For example, one can study loops of string rotating in S3, where we find one critical speed at which they
are solutions in unconstrained R4 as well [113]. But faster and slower motions are possible on the sphere
which are not solutions in R4, such as the extreme cases of a point particle and a stationary hoop.



231

In Section 6.4 it was seen that in the subspace RP3, the second term in the definition of

charges Ji (6.9) vanishes, leaving just the conserved charge from rotational symmetry of the

zi plane one would expect in S7. This term that vanishes is just |Zi|2C0/ρ4, which does not

vanish for the CP1 case (6.18), see footnote 10 on page 161. Instead of the constraint C0 = 0,

the constraint that holds is ∑
4
i=1 Ji = 0, which follows immediately from the definition of the

charges Ji (6.9).

D.3 Fluctuation Hamiltonian for the point particle

Start with the metric for the AdS4 factor in the following form

ds2
AdS4

=−
(

1 +~r2

1−~r2

)2

dt2 +
4

(1−~r2)2 d~r2 (D.6)

where ~r = ri, i = 1,2,3 are zero at the center of AdS, and t is AdS time (we will be using

worldsheet space and time to be x,τ). For the CP3 sector we will use yet other co-ordinates:3

~z =
(

eiβ 1 + ε√
2

, y1 + iy2, y3 + iy4, e−iβ 1− ε√
2

)
, (D.7)

in terms of which ρ2 = z̄izi = 1 + ε2 +~y2 (where we use the notation ~y2 = y jy j). The metric

(6.4) can then be written as

ds2
CP3 =

(1 + ε2)dβ 2 + dε2 + d~y2

1 + ε2 +~y2

− (εdε +~y ·d~y)2 +(2εdβ + y1dy2− y2dy1 + y3dy4− y4dy3)2

(1 + ε2 +~y2)2 .

Joining the AdS and the CP3 parts of the metric, and dropping R2 in (6.3) (it will become

3The convenience of these co-ordinates (as opposed to the angles) is that we can easily identify the charges
Ji in (6.9) with the ones for the magnons in section 6.4 and those for the dual gauge theory in section 6.1.

In order to cover the whole space, these co-ordinates will have to obey β ∈ [0,π] and ε ∈ [−1,1). This can
be seen by connecting these co-ordinates with the inhomogeneous ones z1/z4 = ei2β (1 + ε)/(1− ε) and z2/z4,
z3/z4 (similar co-ordinates were used in [18]).
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a prefactor in the action) the full metric becomes

ds2 =
1
4

ds2
AdS4

+ ds2
CP3 (D.8)

=
(
−1

4 −~r2)dt2 + d~r2 +(1−4ε
2−~y2)dβ

2 + dε
2 + d~y2 + . . . ,

where we have expanded near ~r = ~y = 0, ε = 0 and present only the terms that will be

needed. The point particle travels on the line t = 2τ, β = τ, and perturbations about this

solution are given by:

t = 2τ + 1
λ 1/4 t̃ ~r = 1

λ 1/4~̃r

β = τ + 1
λ 1/4 β̃ ε = 1

λ 1/4 ε̃ (D.9)

~y = 1
λ 1/4~̃y .

The perturbations t̃ and β̃ will lead to modes which are pure gauge, but are needed for now

to maintain conformal gauge.

In terms of the induced metric γab, the Lagrangian is L = 1
2 (−γ00 + γ11) and the Virasoro

constraints are γ00 + γ11 = 0 and γ01 = 0. The components we will need are:

γ00 = Gµν∂τX µ
∂τXν

=
1

λ 1/4

[
−∂τ τ̃ + 2∂τ β̃

]
+

1√
λ

[
−(∂τ t̃)2

4
+(∂τ~̃r)2 +(∂τ β̃ )2 +(∂τ ε̃)2 +(∂τ~̃y)2−4~̃r2−4ε̃

2−~̃y2
]

+
1

λ 3/4

[
−4~̃r2

∂τ t̃ + ∂τ β̃ (. . .)+ ∂τ~̃y · (. . .)
]

+ o(
1
λ

)

(where (. . .) indicates terms that won’t be needed for this calculation) and

γ11 = Gµν∂xX µ
∂xXν

=
1√
λ

[
−(∂xt̃)2

4
+(∂x~̃r)2 +(∂xβ̃ )2 +(∂xε̃)2 +(∂x~̃y)2

]
+ o(

1
λ

).

We proceed to define the conserved charges of the string: the charge generated by time
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translation, ∆

∆ = 2
√

2λ

ˆ
dx

∂L [τ,~r,β ,ε,~y]
∂ ∂tτ

= 2
√

2λ
3/4
ˆ

dx
∂L̃

[
τ̃,~̃r, β̃ , ε̃,~̃y

]
∂ ∂t τ̃

and the charge generated by rotation of the zi complex plane, Ji
4

J1 = 2
√

2λ

ˆ
dx

∂L

∂ ∂τ(argZ1)

= 2
√

2λ

ˆ
dx

[
Im(Z̄1∂τZ1)

ρ2 − |Z1|2 ∑i Im(Z̄i∂τZi)
ρ4

]
(D.10)

J4 = 2
√

2λ

ˆ
dx

[
Im(Z̄4∂τZ4)

ρ2 − |Z4|2 ∑i Im(Z̄i∂τZi)
ρ4

]
.

Using the above co-ordinates (D.7) and mode expansion (D.9), we get

∆ =
√

2
ˆ

dx

[
√

λ +
λ 1/4

2
∂τ t̃ + 4~̃r2 + o(

1
λ 1/4 )

]
(D.11)

J1 =
√

2
ˆ

dx
[√

λ + λ
1/4

∂τ β̃ −4ε̃
2−~̃y2 +(ỹ2∂τ ỹ1− ỹ1∂τ ỹ2 + ỹ4∂τ ỹ3− ỹ3∂τ ỹ4)+ o(

1
λ 1/4 )

]
J4 =

√
2
ˆ

dx
[
−
√

λ −λ
1/4

∂τ β̃ + 4ε̃
2 +~̃y2 +(ỹ2∂τ ỹ1− ỹ1∂τ ỹ2 + ỹ4∂τ ỹ3− ỹ3∂τ ỹ4)+ o(

1
λ 1/4 )

]
.

These charges diverge as λ → ∞, but for the particular linear combination used below, the

o(
√

λ ) terms cancel. The o(λ 1/4) terms, linear in the fluctuations, can be re-written as

4In the derivation of these charges we treated Z1, ...,Z4 as independent fields, even though they are in fact
related through ~Z ∼ λ~Z, which defines CP3 from C4. We do this before using the parametrization (D.7), in
which we have fixed some of this gauge freedom by writing only six (and not eight) real co-ordinates.
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quadratic o(1) terms using the Virasoro constraint γ00 + γ11 = 0. We finally obtain

∆− J1− J4

2

=
√

2
2

ˆ
dx

[
(∂τ~̃r)2 +(∂x~̃r)2 + 4~̃r2 +(∂τ ε̃)2 +(∂xε̃)2 + 4ε̃

2 +(∂τ~̃y)2 +(∂x~̃y)2 +~̃y2

− (∂τ t̃)2

4
− (∂xt̃)2

4
+(∂τ β̃ )2 +(∂xβ̃ )2

]
+ o(

1
λ 1/4 ).

The last line of the above expression includes all of the gauge modes, which generate in-

finitesimal reparametrizations, and will be dropped in semiclassical quantization. We are

then left with the Hamiltonian5 ∆− J1−J4
2 =

√
2
´

dxH , where6

H =
1
2
[
(∂τ~̃r)2 +(∂x~̃r)2 + 4~̃r2 + (∂τ ε̃)2 +(∂xε̃)2 + 4ε̃

2 + (∂τ~̃y)2 +(∂x~̃y)2 +~̃y2 ] .
This Hamiltonian describes eight massive modes: the three r̃i in AdS4, together with the ε̃

and the four ỹi in CP3. Note that one of the CP3 modes, ε̃, has acquired the same mass as the

AdS modes ~̃r [18]. The same list of masses was also found by [217, 192, 193] in the Penrose

limit, and by [43, 45, 186, 18] when studying modes of spinning strings in the AdS2× S1

subspace.

D.4 Expansions of charges at finite-J for CP3 magnons

When working out finite-J corrections to the various algebraic curve magnons, we expanded

the asymptotic charges in δ , defined by (5.31) Y±= X±(1± iδe±iφ ). We used these expansions

to work out the correction δE , for example (7.11). Here we give the expansions of these

charges explicitly.

We write all three cases at once, by setting m = 1 for the ‘small’ magnon and m = 2 for

5H is the two-dimensional Hamiltonian that one would obtain from the quadratic part of the fluctuation
Lagrangian L = 1

2 (−γ00 +γ11), by dropping terms linear in time derivative and reversing the signs of the terms

quadratic in the time derivative. But without dropping these o(λ 1/4) terms, the (actual) string Hamiltonian
is fixed to zero by the Virasoro constraint γ00 + γ11 = 0, condition that we have used to derive H .

6There are some obvious charges one could add to ∆− (J1− J4)/2, still keeping it finite, such as J2 and
J3. These would add terms like ỹ2∂τ ỹ1− ỹ1∂τ ỹ2 to H .
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the ‘pair’ and ‘big’. Thus we always have X± = r e±ip/2m.

First, the momentum is p = p0 + δ p(1) + δ 2 p(2) + o(δ 3), where

p(1) = mcos(φ)

p(2) =
3m
8

sin(2φ).

Next, the angular momentum is J = J(0) + δ J(1) + δ 2J(2) + o(δ 3), with

J(0) = 2∆−4gm
r2 + 1

r
sin
( p0

2m

)
J(1) =−2gm

r

[
r2 cos

( p0

2m
+ φ

)
+ cos

( p0

2m
−φ

)]
J(2) =

3gm
2r

sin
( p0

2m
−2φ

)
.

Finally, the second angular momentum is Q = Q(0) + δ Q(1) + δ 2Q(2) + o(δ 3), where for the

small and pair cases we have

Q(0) = 4gm
r2−1

r
sin
( p0

2m

)
Q(1) =

2gm
r

[
r2 cos

( p0

2m
+ φ

)
− cos

( p0

2m
−φ

)]
Q(2) =

3gm
2r

sin
( p0

2m
−2φ

)
.

For the big magnon, Q = 0 to this order in δ . We used in the dispersion relation instead

Qu which (as a function of X±) is the Q from the small magnon. For the purpose of these

expansions (functions of r and p) it is easier to think of this as Qu = 1
2 Qpair since the big

and pair cases both have m = 2.
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the Ruijsenaars-Toda lattice,” Phys. Lett. A 129 (1988) 21–25.

[175] Y. B. Suris, “On the bi-Hamiltonian structure of Toda and relativistic Toda
lattices,” Phys. Lett. A 180 (1993) 419–429.

[176] P. A. Damianou, “Multiple Hamiltonian structures for Toda-type systems,” J. Math.
Phys. 35 (1994) 5511–5541.

[177] J. M. N. da Costa and C.-M. Marle, “Master symmetries and bi-Hamiltonian
structures for the relativistic Toda lattice,” Phys. Lett. A 30 (1997) 7551–7556.

http://arXiv.org/abs/0803.4222


248

[178] W. Oevel and O. Ragnisco, “R-matrices and higher Poisson brackets for integrable
systems,” Physica A 161 (1989) 181–220.
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Magnons: the Lüscher terms,” 0810.0704.

http://arXiv.org/abs/0807.0205
http://arXiv.org/abs/0810.2079
http://arXiv.org/abs/0807.4752
http://arXiv.org/abs/0708.2208
http://arXiv.org/abs/0801.4463
http://arXiv.org/abs/0807.0643
http://arXiv.org/abs/hep-th/0505071
http://arXiv.org/abs/hep-th/0510171
http://arXiv.org/abs/0704.3586
http://arXiv.org/abs/0712.3522
http://arXiv.org/abs/0801.1661
http://arXiv.org/abs/0806.2095
http://arXiv.org/abs/0810.0704


252

[237] B. I. Zwiebel, “Two-loop Integrability of Planar N=6 Superconformal Chern- Simons
Theory,” 0901.0411.

[238] J. A. Minahan, W. Schulgin, and K. Zarembo, “Two loop integrability for
Chern–Simons theories with N = 6 supersymmetry,” 0901.1142.

[239] K. Zarembo, “Worldsheet spectrum in AdS4/CFT 3 correspondence,” 0903.1747.

[240] E. D’Hoker, P. Heslop, P. Howe, and A. V. Ryzhov, “Systematics of quarter BPS
operators in N = 4 SYM,” JHEP 04 (2003) 038, hep-th/0301104.

[241] A. Donos, “A description of 1/4 BPS configurations in minimal type IIB SUGRA,”
Phys. Rev. D75 (2007) 025010, hep-th/0606199.

[242] J. L. Miramontes, “Pohlmeyer reduction revisited,” JHEP 10 (2008) 087, 0808.3365.

[243] H. Nicolai and H. J. Matschull, “Aspects of canonical gravity and supergravity,” J.
Geom. Phys. 11 (1993) 15–62.

[244] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory. Vol. 1:
Introduction. 1987.

[245] N. S. Manton, “A Remark on the Scattering of BPS Monopoles,” Phys. Lett. B110

(1982) 54–56.

[246] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Interscience
Publishers, New York, 1963.

http://arXiv.org/abs/0901.0411
http://arXiv.org/abs/0901.1142
http://arXiv.org/abs/0903.1747
http://arXiv.org/abs/hep-th/0301104
http://arXiv.org/abs/hep-th/0606199
http://arXiv.org/abs/0808.3365

