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Abstract

Interaction of gravity with complex massive scalar field is considered
by coupling the scalar field equation to the Einstein field equation whose
source term is given by the Energy Momentum tensor of the scalar
field. Assuming general spherically symmetric space time, the scalar
field results to depend only on time and radial coordinate. In turn
this implies consistency of the scheme that is, both the vanishing of
the divergence of the Energy Momentum tensor of the scalar field and
the independence of its trace from the angular variables. The explicit
scheme of coupled partial differential equations is partially integrated
twice on general ground. This leads to a partial differential equation
that can be interpreted as a generalized Kepler like equation whose
solution is difficult. To have some information about explicit solutions,
a method of variable separation integration is employed by considering
suitable special assumptions. The cases considered are essentially those
in which the scalar field is assumed to depend on one only variable.
There result situations in which, among other, a homogenization effect
is recovered. Also a cosmological interpretation of the results could be
possible on condition of solving systems of coupled non-linear separated
differential time equations
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1 Introduction

As is well known the interaction of gravity and fields is a problem of interest in
physics. In General Relativity the problem can be formulated by coupling the
Einstein field equation to the equation of a field of given spin. The interaction
is generally formulated in a canonical way. The source of the Einstein field
equation is assumed to be represented by the Energy Momentum tensor of the
field in a context in which both the Einstein and the spin field equation rely on
the same tensor metric gµν(x). The solution of the problem appears in general
very difficult, not only by increasing the spin of the field, but also according
to preliminary assumptions on gµν(x).

Applications of such scheme are very wide and run from collapsing field by
gravity (e., g., [5, 16]), to cosmological implications of different kind such as
black holes formation, cosmological inflation and accelerated expansion of the
Universe (e., g., [8, 15, 7, 12, 1]). The mentioned interaction picture was
already considered in the context of the Robertson-Walker (RW) space-time
[20]. There it has been shown that the interaction of RW gravity and massive
field of spin s > 0 has no standard solutions. The standard solutions proposed
in [20] are the solution that are essentially obtained by an elementary variable
separation of the equations. Even if they do not exhaust the totality of the
solutions they represent anyway a very large class of “treatable” solutions.

A first step in generalizing the RW space time case is of relaxing the homogene-
ity condition on the space-time, e., g., by considering the Lemaitre-Tolman-
Bondi (LTB) space-time [11, 14, 3] whose interest lies also in the fact that
it is the base of the LTB cosmological model. A study of the interaction of
LTB gravity with a massive (real or complex) scalar field φ(x) was done in
[19, 21, 22, 23]. The result is that, under the assumption φ = φ(r, t), factored
solutions do indeed exist in such context but are very few. There are however
non trivial solutions for mass-less scalar field. Instead factored solutions do
not exist fo r massive real field such that φ = φ(t) [19, 21, 22, 23].

In the present paper the interaction of the general spherically symmetric grav-
ity with (minimally coupled) massive complex scalar field is considered. The
study represents a generalization of [21] and it is performed similarly. Here it is
expected to have solutions richer then in the LTB model. Indeed there are four
functions to be determined, instead of three of the LTB model, satisfying the
same number of differential equations. For what concerns the consistency of
the scheme it is first shown that the spherical symmetry of the metric implies
that the scalar field must be of the form φ = φ(r, t). This is consequence of the
form of the Ricci tensor Rµν and Ricci scalar R (that both are explicitly cal-
culated). It also simplifies the expression of the scalar field equation. In turn
that property ensures the formal consistency of the Einstein field equation: it
is checked that the divergence of the Energy Momentum tensor of the scalar
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field vanishes and the expression of the Ricci tensor does effectively depend
only on the r, t variables.

The explicit differential equations of the scheme are difficult to solve in
general. It is however possible to perform two partial integration on general
grounds. This leads to a Kepler-like equation that can be interpreted as a
generalization of a similar equation in the LTB model [21] that in turn is a
generalization of the Kepler-like equation of the LTB cosmological model [9].
Such equation greatly simplifies in case φ = φ(t) or φ = φ(r), but contrarily
to the LTB case [21], the integration remains a difficult task. It is possible
to proceed in the integration under further special assumptions. In fact, in
the present paper, the case φ = φ(t) is studied together with a factorization
assumptions on the components of the metric tensor. In the study it is dis-
criminating the value the separation constant co, relative to the Rtr equation,
takes. An elementary separation of the remaining differential equations of the
scheme is possible only for co = 1 or co = 0. For these two value, separated
radial and time solutions exist for both mass less and massive scalar field. (In
the LTB model solutions do not exist for massive real scalar field [21, 23].
Explicit solutions of the separated time equations not always are given. This
may be a limitation of the study because it is not always possible to estab-
lish whether solutions exist suitable for a cosmological interpretation of the
scheme, e., g., solutions admitting at least an initial inflationary and a late
accelerated expansion of the universe.

By the same factored assumption it is finally noted that all the equations of
the model separates also for φ = φ(r) with co = 0 in case of massive scalar
field and with co = 1 in case of mass less scalar field.

2 General formulation

In General Relativity the interaction of a massive complex scalar field φ(xµ)
with the gravity of a space-time of metric tensor gµν can be described by
coupling the scalar field equation (in the minimally coupled case [2]) to the
Einstein field equation:

Rµν −
1

2
R gµν = kTµν (|k| = 8πG/c4) (1)

D(φ) ≡ ∇α∇αφ+m2
o φ = 0 (2)

Tµν(φ) =
1

2

[
∂µφ∂νφ̄+ ∂νφ∂µφ̄− gµν∂αφ∂αφ̄+m2

o gµνφφ̄
]

(3)

(∂x = ∂/∂x) where m0 is the mass of the field and Tµν its energy momentum
tensor [10]. By taking the trace in (1), the scalar R can be expressed as a
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function of φ, ∂µφ so that the equation (1) can finally be written:

Rµν =
k

2
[∂µφ∂νφ̄+ ∂νφ∂µφ̄−m2

o gµνφφ̄] (4)

In the following the object is to study the interaction scheme of equations (1-
4) in the general spherical symmetric metric. To that end we refer to [4, 9]
Accordingly the metric tensor gµν is assumed to be defined by

ds2 = e2γ(r,t)dt2 − e2α(r,t)dr2 − Y 2(r, t)(dθ2 + sin2 θ dϕ2) (5)

For the following considerations it is useful to know the explicit expressions of
Rµν and R. By setting Rµν = −Rσ

µνσ where Rµνσα are the expressions given in
[4], the non vanishing components are:

−Rtt =
γ′′ + γ′2 − α′γ′ + 2γ′ Y

′

Y

e2(α−γ)
− α̈− α̇2 + α̇γ̇ − 2

Ÿ

Y
+ 2γ̇

Ẏ

Y
(6)

−Rrr =
α̈ + α̇2 − α̇γ̇ + 2α̇ Ẏ

Y

e2(γ−α)
− γ′′ − γ′2 + α′γ′ − 2

Y ′′

Y
+ 2α′

Y ′

Y
(7)

−Rθθ =
Y Ÿ − γ̇Y Ẏ + α̇Ẏ Y + Ẏ 2

e2γ
− Y Y ′γ′ + Y Y ′′ − α′Y Y ′ + Y ′2

e2α
+ 1 (8)

−Rϕϕ = − sin2 θ Rθθ (9)

−Rtr = −Rrt = −2
[ Ẏ ′
Y
− α̇Y

′

Y
− Ẏ

Y
γ′
]

(10)

′ = ∂/∂r, ˙ = ∂/∂t. From these expressions the Ricci scalar R = R µ
µ can be

calculated :

R = 2e−2α
[
γ′′ + γ′2 − α′γ′ + 2(γ′ − α′)Y

′

Y
+ 2

Y ′′

Y
+
Y ′2

Y 2

]
(11)

−2e−2γ
[
α̈ + α̇2 − α̇γ̇ + 2

Ÿ

Y
+ 2(α̇− γ̇)

Ẏ

Y
+
Ẏ 2

Y 2

]
(12)

One can check that the Rµν ’s and R obtained above, when specialized to
the case of Lemâitre-Tolman-Bond metric, coincide with those obtained in
[6, 19, 21]. The same holds for the special spherical symmetry case considered
in [17].

3 Consistency conditions

One has to take into account that the Einstein tensor has zero divergence.
Moreover, by taking trace of (4), and from (11), R can depend only on the r, t
variables. Therefore the following constraints must be satisfied

∇µTµν = 0, ν = 0, 1, 2, 3 (13)

∂j(∂
µφ∂µφ̄− 2m2

o φφ̄) = 0, j = θ, ϕ (14)
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The condition (14) is satisfied in the present scheme because, as it will be
presently seen, the field φ is forced to depend only on r, t. Indeed from (4) one
has

Rtθ ≡ 0 =
k

2
(φtφ̄θ + φ̄tφθ) (15)

Rtϕ ≡ 0 =
k

2
(φtφ̄ϕ + φ̄tφϕ) (16)

Rθθ ≡ Rθθ(r, t) =
k

2
(2φθφ̄θ +m2

oY
2φφ̄) (17)

Rϕϕ ≡ sin2 θRθθ =
k

2
(2φϕφ̄ϕ +m2

oY
2φφ̄) (18)

Rθϕ ≡ 0 =
k

2
(φθφ̄ϕ + φϕφ̄θ) (19)

(φx = ∂φ/∂x). From (15), (16) one obtains φϕφ̄θ = φ̄ϕφθ so that (19) implies
φϕφ̄θ = 0. If φϕ = 0, then by comparing (17), (18) there follows ∂θφ = 0.
Similarly if φθ = 0 then ∂ϕφ = 0. Therefore φ = φ(r, t).
In order to prove that also condition (13) is fulfilled, it is useful to note that
the angular dependence of the solution of the scalar field equation (2) can be
separated. Indeed by setting φ(t, r, θ, ϕ) = φ(r, t)χ(θ, ϕ) in the general metric
(5), by requiring regularity conditions for θ = 0, ϕ = 0, 2π (See, e.g.,[18] with
the identification Y 2 ≡ exp β(r, t)), one is left with:

χ(θ, ϕ) = Ylm(θ, ϕ), l = 0, 1, 2, .., m = ±l,±(l − 1), ..,±1, 0 (20)

e−2γφ̈− e−2αφ′′ + e−2α
(
α′ − γ′ − 2

Y ′

Y

)
φ′ + e−2γ

(
α̇− γ̇ + 2

Ẏ

Y

)
φ̇+

+
( λ
Y 2

+m2
o

)
φ = 0, λ = l(l + 1) (21)

the Ylm’s being the spherical harmonics. The solution of (2) can then be
represented by

φ(t, r, θ, ϕ) =
∑

lm
φlm(r, t)Ylm(θ, ϕ) (22)

with φlm satisfying (21). Therefore

φ = φ(r, t) ⇒ l = 0 ⇒ λ = 0 (23)

Hence the scalar field depends only on r and t and the scalar field equation,
D(φ) = 0, is given by equation (20) with λ = 0.
Accordingly it is now possible to see the validity of the consistency equation
(13). Indeed one has

∇µTµν = ∇µ[∂µφ∂αφ̄+ ∂µφ̄∂αφ]−∇µ[gµα(∂βφ∂
βφ̄)−m2

oφφ̄] (24)

= [∂µφ(∂µ∂αφ̄− Γkαµ∂kφ̄) + ∂αφ̄(∂µ∂
µφ+ Γµµk∂

kφ)] + [φ↔ φ̄]

−∂α(∂β∂βφ̄−m2
oφφ̄) (25)
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The calculations can be performed by means of the explicit expression of the
Christoffel symbols in the metric (5) (see e.g., [4]). With some care in grouping
the terms one finally gets

∇µTµα = 0, α = θ, ϕ (26)

∇µTµr = φ̄′D(φ) + φ′D(φ̄) (27)

∇µTµt = φ̇D(φ) + φ̇D(φ̄) (28)

where D(φ) is now the right hand side of (20) with λ = 0. Therefore∇µTµν = 0
on account of assumption (2). These properties follows from the spherical
symmetry assumptions and therefore holds also in the LTB model as explicitly
noted in [21].

4 Explicit interacting scheme

According to the previous results the study of the interaction of the complex
scalar field with LTB gravity can be reduced to the study of the system of
equations:

Rtt ≡ α̈ + α̇2 − α̇γ̇ + 2
Ÿ

Y
− 2γ̇

Ẏ

Y
− e2(γ−α)

[
γ′′ + γ′2 − α′γ′ + 2γ′

Y ′

Y

]
= k(φ̇φ̇− 1

2
m2

0 φφ̄ e
2γ) (29)

Rrr ≡ γ′′ + γ′2 − α′γ′ + 2
Y ′′

Y
− 2α′

Y ′

Y
− e2(α−γ)

[
α̈ + α̇2 − α̇γ̇ + 2α̇

Ẏ

Y

]
= k(φ′φ̄′ +

1

2
e2αm2

0 φφ̄) (30)

Rθθ ≡ e−2α[Y Y ′γ′ + Y Y ′′ − α′Y Y ′ + Y ′2]− 1

−e−2γ[Y Ÿ − γ̇Y Ẏ + α̇Ẏ Y + Ẏ 2] =
k

2
m2

0 φφ̄ Y
2 (31)

Rtr ≡ 2
[ Ẏ ′
Y
− α̇Y

′

Y
− Ẏ

Y
γ′
]

=
k

2
(φ̇φ̄′ + φ̇φ′) (32)

φ̈

e2γ
− φ′′

e2α
+

(α′ − γ′ − 2Y
′

Y
)φ′

e2α
+

(α̇− γ̇ + 2 Ẏ
Y

)φ̇

e2γ
+m2

oφ = 0 (33)

The complete solution of the equations (29)-(33) seems very difficult to be
performed exactly. Integration steps can however be performed in general.
Indeed, by following [19, 21], a time integration of equation (31) can be evalu-
ated. There results that the function α can be expressed in terms of the other
ones:

e2α =
Y ′2

1 + 2E(r)
e
−
∫
dt

Y (r,t)

Y ′(r,t)A(r,t), A = (k/2)[φ̇φ̄′ + ¯̇φφ′] + 2Ẏ γ′ (34)
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1+2E(r) the integration constant. By using the expression of α obtained from
(34), the Rtt equation (29) can be recast into the form:

Ÿ Y 2 = −M(r, t) ≡ −
∫
dr Y 2Y ′

{
γ̇

(Y 2Ẏ )′

Y 2Y ′
+

1

2

d

dt

(Y A
Y ′

)
− 1

4

( Y
Y ′
A
)2

+

+
Y Ẏ ′

Y ′2
A−

[
γ′′ + γ′2 − γ′

(
α′ − 2Y ′

Y

)]
e2(α−γ)

+ k
[
φ̇¯̇φ− m2

o

2
φφ̄ e2γ

]}
(35)

By combining the equations (29-31) and taking into account the result (34)
one finally obtains:

Ẏ 2

2
− M(r, t)

Y
− Y Ẏ γ̇ +

1

2
e2γ =

1

2
e2(γ−α)Y ′2 + Y Y ′γ′e2(γ−α) +

+
k

4
Y 2[φ̇¯̇φ+ φ′φ̄′e2(γ−α) −m2

o e
2γ φφ̄] (36)

The last equation can be interpreted as a generalized Kepler like equation as
in the case of Lemâitre Tolman Bondi (LTB) gravity interacting with scalar
field ( e.g., [19, 21]) that in turn is a generalization of the Kepler like equation
to which the LTB cosmological model can be reported [9].
The general integration steps of the scheme have the advantage of allowing
the physical interpretation of eq. (36). An analytical solution of the resulting
equations is still a difficult task. The form of (36) seems however suitable
in case φ depends on only one of the variables t, r, as it already appears in
(32). Indeed in such case the equation greatly simplifies, but it still remains of
difficult solution. If one sets γ = 0 the interaction scheme falls into the context
of the LTB space time that was discussed in [19, 21, 23]. There, ”factorized”
form for both metric coefficients and scalar field have been determined for
mo = 0 and real or complex scalar field. Instead in case mo 6= 0 a particular
solution exists for complex scalar field, but none for real scalar field. However
determination of non ”factorized” solutions was left unsolved.
In the present paper there is the same number of differential equations of the
LTB model, but there is the further degree of freedom given by the presence
of the non trivial gtt metric coefficient. The explicit solution of the differential
equations remains difficult and we are able to proceed only in the search of
factorized solutions.

5 Mass-less time dependent scalar field

The equations (29)-(33) are first studied under the assumptions:

mo = 0, φ = φ(t) (37)

α(t, r) = a(r) + τ(t), γ(t, r) = c(r) + η(t), Y (t, r) = y(r)ξ(t) (38)
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The assumptions generalizes what done in LTB space time [13,14].
The Rtr equation (32) gives then: γ′(y/y′) = co = 1− τ̇ ξ/ξ̇ or:

eτ(t) = τo(ξ(t))
1−co , ec(r) = yo (y(r))co (39)

co, yo, τo the separation and integration constants. Hence, for co 6= 0, 1 both
τ and c are not constant. By these assumptions and preliminary results the
scalar field equation (33) can be integrated:

φ̇ = φo
eη−τ

ξ2
(40)

φo the constant of integration. By proceeding similarly, the Rtt eq. (29)
separates into:

[τ̈ + τ̇ 2 + 2
ξ̈

ξ
− η̇(τ̇ +

ξ̇

ξ
)− k|φ̇|2] = c2 e

2(τ−η) (41)

[c′′ + c′2 + c′(2
y′

y
− a′)]e2(c−a) = c2 (42)

The Rrr eq. (30) separates into:

e2(τ−η)[τ̈ + τ̇ 2 − τ̇ η̇ + 2τ̇
ξ̇

ξ
] = c3 (43)

e2(c−a)[c′′ + c′2 − a′(c′ + 2
y′

y
) + 2

y′′

y
] = c3 (44)

c2, c3 the separation constants. As to Rθθ, eq. (31), one obtains

e2(c−a)
[
c′
y′

y
+
y′′

y
− a′y

′

y
+
y′2

y2

]
− e2(τ−η)

[ ξ̈
ξ

+ (τ̇ − η̇)
ξ̇

ξ
+
ξ̇2

ξ2

]
=
e2τ+2c

ξ2 y2
(45)

that cannot be separated in elementary manner (on account of the right hand
term) unless co = 1 or co = 0. By taking into account (38) for these two
choices, eq. (45) separates into:

y2oe
−2a

[y′′
y
− a′y

′

y
+
y′2

y2

]
− y2oτ

2
o

y2
= c4 (co = 0) (46)

ξ̈ξ + ξ̇ξ(τ̇ − η̇) + ξ̇2 =
c4
τ 2o
e2η (co = 0) (47)

y2oy
2e−2a

[
c′
y′

y
+
y′′

y
− a′y

′

y
+
y′2

y2

]
= c4 (co = 1) (48)

τ 2o e
−2η

[ ξ̈
ξ
− η̇ ξ̇

ξ
+
ξ̇2

ξ2

]
+
τ 2o y

2
o

ξ2
= c4 (co = 1) (49)
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5.1 The special choice co = 1.

In the present case co = 1 one has so that eτ = τo, e
c = yoy and φ̇ =

(φo exp η)/(τoξ
2). As to the separated radial equation one has, by (43), c3 = 0.

Then (44) with c′ = y′/y give

y′′ − a′ y′ = 0, ⇒ ea = c5 y
′ (50)

(c5 integration constant). Then (42) (48) are automatically satisfied and (by
using (50)) if the constants are related by

2y2o = c2 c
2
5, 2y2o = c4 c

2
5 (51)

Hence c2 = c4. Therefore, so far, the solution takes the form

ds2 = y2o e
2η y2dt2 − τ 2o c

2
5 y
′2 dr2 − y2ξ2 (dθ2 + sin2 θdϕ2) (52)

= e2η(t) y2dt2 − dy2 − y2ξ2(t) (dθ2 + sin2 θdϕ2) (53)

by suitable choice of the constants of integration and by interpreting y as the
new radial coordinate, being it still an arbitrary function.

For what concerns the solution of the separated time equations one has that
(43) is automatically satisfied because of c3 = 0 and τ̇ = 0. One is then left
with (41) and (49), namely two equation in the two functions η(t), ξ(t) a priori
compatible. It is possible to make some further comments in the special case
η = 0. For such condition the equations become with (τo = 1):

2ξ̈ − k|φ̇|2ξ = c2ξ, ξ̈ξ + ξ̇2 + y2o = c4ξ
2 (η = 0) (54)

By putting ξ̇ = u(ξ), both equation can be integrated once to get respectively

u2 ≡ ξ̇2 = −k|φo|
2

2ξ2
+
c2
2
ξ2 +D (55)

u2 ≡ ξ̇2 =
C

ξ2
+
c4
2
ξ2 − y2o (η = 0) (56)

Therefore the two equations coincide by a suitable choice of the integration
constants. The solution will then follows by performing the quadrature inte-
gration of anyone of (55), (56):

t− t0 =
1

2

∫ dz√
C + c4

2
z − y2oz2

(z = ξ2) (57)

Note that if z >> 1 the contribution to the integral becomes complex.
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5.2 The special choice co = 0.

Under the assumption co = 0 the following relations are fulfilled:

eτ(t) = τo ξ(t), ec(r) = yo, φ̇(t) = (φo/τo) e
η(t) ξ−3(t) (58)

Hence c′ = 0 and comparing eqs. (44), (46), (that in fact are the same equa-
tion) it must be respectively

c2 = 0, c3 = c4 (59)

For what concerns the solution of the separated radial equations, the eq. (44)
reads:

−2a′ e−2a
y′

y
+ 2

y′′

y
e−2a =

c3
y2o

(60)

By setting u(r) = exp(−2a) into (60) one obtains a first order differential
equation for u whose solution gives

exp(−2a) =
1

y′2

[
C +

c3
2y2o

y2
]

(61)

Compatibility of (44) and (46) then implies C = τ 2o . Therefore, so far, the
solution of the scheme gives:

ds2 = e2η(t) dt2 − τ 2o ξ(t)
2 y′2(r)

τ 2o + c3
2y2o
y2(r)

dr2 − y2(r)ξ2(t)(dθ2 + sin2 θdϕ2) (62)

where again, y being an arbitrary function, can be interpreted as the new radial
coordinate. For what concerns the independent separated time dependence one
is left with the coupled equations

ξ̈ − η̇ξ̇ξ = (k|φo|2/τ 2o )e2η/ξ4, ξ̈ − η̇ξ̇ξ + 2ξ̇2 = (c3/τ
2
o )e2η (63)

that, a priori, should give both ξ(t) and η(t). One can note that, by setting
t′ =

∫ t e2η(t)dt, the equation (62) reads

ds2 = dt′2 − ξ2(t′)
[ dy2

1 + c3
2y2oτ

2
o
y2

+ y2(dθ2 + sin2 θdϕ2)
]

(64)

that can be interpreted, by a suitable choice of the integration constants, as a
Robertson Walker like element of line. However, while y is free, ξ(t) (or ξ(t′))
are determined by the solution of the separated time equations. If the ξ(t′)
solution would show appropriate behavior, namely an initial inflation and a
late accelerated expansion, then a cosmological interpretation of the scheme
could be given.
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6 Massive time dependent real scalar field

Suppose now the factored conditions (38) are fulfilled and mo 6= 0, φ̄ = φ =
φ(t) are assumed to hold. Accordingly the result (39) holds again. Moreover
one can check that the Rtt equation (29) is of the form:

F (t) +G(r) = k
[
φ̇2 − m2

o

2
τ 2o y

2
o φ

2ξ2(1−co) y2co
]

(65)

that separates for co = 0 but not for co = 1. The separated radial equations
coincide then with those of the previous case mo = 0, φ = φ(t). Hence the
solution is again of the form (62). For what concerns the separated time
dependence, one has:

[
τ̈ + τ̇ 2 + 2

ξ̈

ξ
− η̇(τ̇ +

ξ̇

ξ

]
− k|φ̇|2 e2(τ−η) − m2

o

2
y2φ2 = c2 (66)

e2(τ−η)
[
[τ̈ + τ̇ 2 − τ̇ η̇ + 2η̇

ξ̇

ξ
] + k

m2
o

2
y2oφ

2 eτ = c3 (67)

τ 2o e
−2η

[
ξξ̈ + ξ̇ξ(τ̇ − η̇) + ξ̇2

]
+ k

m2
o

2
τ 2o y

2
oξ

2φ2 = c4 (68)

φ̈+
(
3
ξ̇

ξ
− η̇

)
φ̇+

m2
o

y2o
φ e2η = 0 (69)

Since c2 = 0 (see (59)) and τ̇ = ξ̇/ξ, one can check that equations (67), (68)
coincide. We are therefore left with three independent equation, e.g. (66), (68),
(69), for three independent functions ξ, η, φ, in contrast to what happens in
the LTB space time model [23] where the time solution is not possible. There
is therefore the possibility of the existence of a non trivial time solution of the
problem whose explicit form would give, also here, the possibility of testing
whether the model is suitable for a cosmological interpretation satisfying some
basic experimental features.

In absence of a general integration procedure, the method of looking for
separated solutions can be applied in many other special situations. In case φ
is assumed to depend only on r or only on t, the result (39) may be again of
help. One can check that, e.g., if φ = φ(r) is assumed, then equations (29)-(33)
separate for co = 1 if mo = 0 and for co = o if mo 6= 0.

7 Remarks and Comments.

The study of the interaction of a general spherically symmetric gravity with
complex massive scalar field has been consistently reduced to the set of coupled
equation (29)-(33). The partial integration of the scheme leading to equation
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(36), even if it allows the physical interpretation in terms of a Kepler like
equation, it does not seem to facilitate very much a further integration step
except the case of φ depending only on r or only on t. Therefore the study
has been developed by special assumptions at the very beginning. If φ = φ(t)
and the factorization property (37) are assumed, the equations separate under
both values co = 0, 1 if mo = 0, but only for co = 1 if mo 6= 0 and the field
is real. Instead if φ = φ(r) the equations separate for co = 1 if mo = 0 and
for co = 0 if mo 6= 0. Contrarily to the LTB model, factorized solutions exist
for massive purely time dependent scalar field. Indeed here there are the same
constraint equations but a further degree of freedom with respect to the LTB
model.

A case of interest is the one of Section 5.2. The resulting metric tensor in
(64) can be interpreted as due to a homogenization effect of the interaction
of spherical gravity with a homogeneous scalar field. It is the analog of sim-
ilar result already discussed in the LTB metric (see e.,g., [13, 21]). In this
connection it remains also open the problem of establishing whether the time
solution ξ(t′) in (64) shows both an initial and a late inflationary phase. In
such case the resulting space time model could be suitable for a cosmological
interpretation. The interaction scheme has been studied under very special as-
sumptions. It would be interesting to establish and possibly determine other
solutions in which φ depends on both r and t in a non factored and in a factor-
ized form. (As far as the author knows this is an open problem already in the
LTB model in case of non factored solutions). From a mathematical point of
view, it would be desirable to have both particular solutions as well as general
properties of the solutions of the interaction scheme. From a physical point of
view the knowledge of those solutions would be again of interest to establish
whether they are suitable for the interpretation of the expansion cosmological
data. If so, one could also investigate whether the introduction of the notion
of dark matter in the conventional cosmological model is strictly necessary.
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