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1 Introduction

W-algebras are remarkable algebraic structures introduced first by Zamolodchikov [1]. The

algebra that he was studying was an extension of the Virasoro algebra underlying two-

dimensional conformal field theory by an additional generator of spin 3. Since then there

have been many applications of these algebras in various areas of mathematical physics.

Among the oldest are applications to integrable hierarchies of partial differential equa-

tions [2], matrix integrals [3], topological strings [4] or in the quantum Hall effect [5, 6].

More recently there are two directions of research where W-algebras play a prominent

role. The first one is the AdS3/CFT2 duality with higher spin symmetries [7–10]. The

cosmological Einstein gravity in three dimensions can be formulated as a Chern-Simons

theory with the gauge group being two copies of SL(2,R) [11, 12]. Replacing the SL(2,R)

gauge group by SL(N,R) extends the gravity theory to a theory of higher spins. The

algebra of asymptotic symmetries which in the case of Einstein gravity is the Virasoro

algebra [13] is in this case extended to a WN algebra. These asymptotic symmetry algebras

are interpreted as symmetry algebras of holographic dual two-dimensional conformal field

theories. There have been many extensions of this class of holographic dualities for various

other gauge groups [14, 15] or including supersymmetry [16–22]. Later this program was

extended to stringy holography [23–30]. In this series of papers the authors found an

explicit holographic duality involving string theory on AdS3 × S3 × T 4 at special point in

the moduli space where both sides of the duality have tractable description.

Another area whereW-algebras show up are 4-dimensionalN = 2 supersymmetric field

theories in connection with their BPS states. The AGT correspondence [31, 32] relates the

instanton partition functions of 4d supersymmetric gauge theories [33, 34] with SU(N)

gauge group to two-dimensional conformal blocks with WN symmetry. Geometrically W-

algebras act on equivariant cohomology of instanton moduli spaces [35–39]. W-algebras

can be also seen as a subsector of local fields of superconformal field theories in 4 and

6 dimensions [40, 41] whose traces can in turn be seen also holographically [42, 43] in

compactifications of 11-dimensional supergravity. The index calculations in [44, 45] link

W-algebra characters to wall-crossing formulas [46, 47]. Last but not least, W-algebras

do not only act on equivariant cohomology of instanton moduli spaces but also on moduli

spaces of Higgs bundles [48] which again are tightly connected with the N = 2 quantum

field theories [49].

There is an interesting two-parametric family of W-algebras W1+∞ which is generated

by fields of dimension 1, 2, 3, . . . [50–52]. For special values of parameters its quotients are

WN algebras associated to Ak series of simple Lie algebras. It also contains two-parametric

family of even spin Wev∞ whose quotients are orthosymplectic W-algebras associated Bk,

Ck and Dk series [15, 53]. The W1+∞ family admits a completely different description as

Yangian of ĝl(1), an associative algebra given by generators and relations [54–56]. The map

between the two pictures is non-local from VOA point of view and manifests integrability

on the Yangian side. Although the map is known explicitly at the level of generators [57],

there is a more conceptual understanding of the transformation using the Maulik-Okounkov

instanton R-matrix [36, 58]. The aim of this article is to discuss this explicitly.
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The central object linking the Yangian and W-algebra is the Miura transformation

(GL(n)-oper) [59–62]. From W-algebra point of view it provides a free field representation

of the algebra. The Miura transformation shows that one can think of WN -algebra as

being a quantization of the space of N -th order differential operators.1 The specific free

field embedding of WN in the Fock space of N free bosons depends on the ordering of

the free fields. The observation of Maulik and Okounkov is that the Fock space operator

intertwining one embedding with the another one satisfies the Yang-Baxter equation [36].

Knowing this, we can apply the machinery of algebraic Bethe ansatz [65–67] to study this

algebra. In particular, the generators and relations given by Arbesfeld, Schiffmann and

Tsymbaliuk should follow from the Yang-Baxter equation with Maulik-Okounkov instanton

R-matrix.

Currently the expressions for the instanton R-matrix in the bosonic case are known

explicitly to first few orders in the large spectral parameter expansion [68]. There is also a

fermionic expression for R-matrix given in [58] which is however rather complicated. The

aim of this work is to derive another expression for R-matrix, study the resulting relations

in the Yangian algebra and compare it to Arbesfeld-Schiffmann-Tsymbaliuk presentation.

Actually, what we find is a formula for R-matrix where each of the representation spaces

is a Fock space, but these representations are inequivalent representations of W1+∞. In

this case, we can use the expressions for higher Jack Hamiltonians found by Nazarov and

Sklyanin [69, 70] to write a closed-form formula for the R-matrix.

Overview. Let us now summarize in more detail the content of this article.

In section 2 we review the free field representations of W1+∞. In particular, there

are three inequivalent representations in Fock space of a single boson associated to three

parameters exchanged by the triality symmetry. The corresponding Miura factors were

introduced already in [71], but here we rewrite them in compact form (2.12) as suggested

by A. Litvinov. We study in detail conformal transformation properties of Miura operators.

Written in terms of a differential operator, the resulting expression (2.32) agrees with the

classical case considered in [2]. The expression (2.38) generalizes it to the case of pseudo-

differential operator where the elementary Miura factors are of different type.

The next section introduce the R-matrix following [36, 68]. We study the R-matrix

not only in the case where both of the representation spaces on which R acts are the same

representation, but also R-matrices of a mixed type where both spaces are still Fock spaces

but associated to different asymptotic directions in W1+∞ parameter space. Next, we show

how to evaluate matrix elements of Fock-space R-matrix from its definition, without using

any expansion in large spectral parameter. Finally, following the logic of algebraic Bethe

ansatz, we consider three special matrix elements of R-matrix acting between auxiliary

Fock space and an arbitrary quantum space. These matrix elements will play the role of

Arbesfeld-Schiffmann-Tsymbaliuk Hamiltonians and raising and lowering operators. Using

the Yang-Baxter equation we derive some relations satisfied by these operators.

Next, in section 4 we consider a special case where the quantum space is a single free

boson. We find that the generating function of Hamiltonians is diagonalized by Jack poly-

1An analytic continuation of this to pseudo-differential operators and W∞ is considered in [63, 64].
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nomials. Interesting Hamiltonians acting on Jack polynomials were studied by Nazarov

and Sklyanin [69, 70] and we use their expressions for Hamiltonians to reconstruct the full

mixed R-matrix (4.22). We next turn to ladder operators and comparing them to ladder

operators studied in [57] we find a candidate for a map between these (4.34), (4.35), (4.40).

We conclude the section by mentioning a nice determinantal formula for another set of com-

muting Hamiltonians found by Nazarov and Sklyanin. In combination with the fermionic

expression for R-matrix these give a quantum analogue of Szegö formula.

In section 5 we derive another formula for the mixed R-matrix. We start by fermionic

representation of the commuting Hamiltonians for a special choice of parameters of W1+∞.

To find a formula for any value of W1+∞ parameters, we use the result of Nazarov-Sklyanin

that in the bosonic picture the deformation of parameters can be achieved purely by rescal-

ing the normalization of Fock oscillators once the operators are written in a normal ordered

form. On the other hand, after we bosonize the fermionic fields, the resulting vertex op-

erators can be brought to a normal ordered form in a well-known way by Wick theorem.

In section 6 we test some of the relations between the Yangian generators and the corre-

sponding relations of Arbesfeld-Schiffmann-Tsymbaliuk.

In the final section we interpret the elementary Miura factor as being a transfer ma-

trix in Fock representation and in representation by differential operators acting on CFT

worldsheet. In the case of a cylinder, we find Hamiltonians of Calogero-Sutherland model

together with ladder operators satisfying the Yangian commutation relations. Geometri-

cally, we consider correlation functions with n insertions of Miura operators on cylinder

and a special in and out state at plus and minus infinity. Each choice of in and out states

corresponds to one matrix element of the R-matrix which is a differential operator acting

on the space of positions of Miura insertions (i.e. the moduli space of a cylinder with n

punctures). The Yangian algebra encodes the Ward identities for this class of correlation

functions as we vary the in and out states. Choosing just a one insertion leads to a vector

representation of W1+∞ which is the simplest known representation of the algebra [56].

Although we have not studied what happens for higher genus surfaces (where one would

need to understand how the handle insertion interacts with the R-matrix), it is nice to see

that n-point functions of the elementary Miura factor on torus reproduce the Hamiltonians

of elliptic Calogero-Moser systems [72].

2 Miura transformation

One of the possible ways of defining WN algebras is starting from their free field represen-

tation [59, 60, 73]. We first consider N free û(1) currents Jj(z) with OPE

Jj(z)Jk(w) ∼
δjk

(z − w)2
(2.1)

and define an operator

L(z) = (α0∂ + J1(z))(α0∂ + J2(z)) · · · (α0∂ + JN (z)) ≡
N∑

k=0

Uk(z)(α0∂)
N−k. (2.2)
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This operator will play a central role in the following. Here α0 is a free parameter which will

be later related to the central charge of the algebra. The non-trivial fact is that expressing

the local fields Uj(z) in terms of the free currents Jk(z) as in (2.2), the fields Uj themselves

generate a closed algebra under operator product expansions. This algebra is by definition

û(1)×WN ≡ Y0,0,N . The currents Uj(z) do not transform as primary fields under conformal

transformations, but perhaps surprisingly their operator product expansions have purely

quadratic non-linearity [60, 73]. This is one of signs of the connection to integrability,

where the algebras with quadratic non-linearity appear naturally.

We can split the N free bosons in (2.2) into two groups of N1 and N2 bosons. Multi-

plying two Miura operators associated to N1 and N2 bosons and passing the derivatives to

the right, we find a coproduct in W1+∞ which embeds [73]

Y0,0,N1+N2 ⊂ Y0,0,N1 × Y0,0,N2 . (2.3)

This fusion operation fixes the value of α0 parameter, i.e. the ratios of λj parameters intro-

duced later stay the same and the vector (λ1, λ2, λ3) is thus additive under the fusion [73].

Another important point to mention is that the way WN is embedded in the Heisen-

berg algebra of creation and annihilation operators associated to the bosonic Fock space

depends on the ordering of free fields in (2.2). It was noticed in [36, 68] that the inter-

twining operator between different embeddings satisfies Yang-Baxter equation. The aim

of this work is to study this R-matrix and use it to connect W-algebras to their Yangian

description [35, 55–57].

2.1 Other triality frames

In [50–52] a two-parametric family of algebras called W∞ was studied which interpolates

between all the WN algebras. Unlike the linear versions of W∞ constructed in [74, 75], this

two-parametric family has all WN algebras with an arbitrary value of the central charge

as its truncations. It is generated by fields of spin 2, 3, . . . (with one generator of every

spin). A very surprising property found by [51] was the triality symmetry of the algebra:

parametrizing W∞ in terms of the central charge c and the rank-like parameter λ, for each

value of c there are generically three values of λ which give the same structure constants.

This has important consequences for the representation theory of the algebra and points

towards to the connection to topological strings and affine Yangian picture [57, 73].

To make the triality symmetry manifest, it is useful to parametrize the algebra in

terms of three values λj . They are related by the equation

1

λ1
+

1

λ2
+

1

λ3
= 0. (2.4)

Furthermore, the central charge of the stress-energy tensor of W∞ is parametrized as [73]

c = (λ1 − 1)(λ2 − 1)(λ3 − 1). (2.5)

The relation between these and the parameters α0 and N appearing in (2.2) is

λ3 = N (2.6)
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and

c = (N − 1)(1−N(N + 1)α2
0). (2.7)

Note that this choice of the identification of parameters manifestly breaks the triality

symmetry, i.e. the Miura transformation (2.2) is written with the choice of 3rd direction

as the preferred one. From the triality symmetry we expect that there should be also free

field representations corresponding to integer values of λ1 or λ2. That this is indeed the

case was verified in [71].

The truncations of W1+∞ to Y0,0,N ≡ û(1) × WN are not the only possible trunca-

tions of the algebra. By studying singular vectors of the vacuum representation [73] and

independently from the gauge theory construction [76, 77] it was understood that we have

a family of truncations YN1,N2,N3 parametrized by three non-negative integers N1, N2 and

N3. If the λ-parameters of W1+∞ satisfy the constraint

N1

λ1
+

N2

λ2
+

N3

λ3
= 1, (2.8)

there appears a singular vector in the vacuum representation at level (N1+1)(N2+1)(N3+1)

and the whole infinitely-generated W1+∞ can be truncated to a subalgebra generated by

fields of spin 1, 2, . . . , (N1+1)(N2+1)(N3+1)−1.2 There is a nice combinatorial description

of the truncation in terms of plane partitions (box-counting) which is discussed in [76, 77].

The free field representation of YN1,N2,N3 was constructed in [71]. The idea is to

consider a simple modification of (2.2) where we generalize the elementary factor

L(3)(z) ≡ α0∂ + J (3)(z) =: e
− 1

h3
iφ(3)(z)

(α0∂)e
1
h3

iφ(3)(z)
: (2.9)

associated to the third direction and to Y0,0,1 algebra by finding an analogous factors L(1)

and L(2). The only tricky point is that the quadratic basis of Uj fields introduced in (2.2)

are also associated to the 3rd direction so if we try to find an expression for Y1,0,0 or Y0,1,0

generators in terms of Uj fields, there will be an infinite number of non-trivial Uj fields.

Related to this, the leading power (order) of the differential operator L in this basis is λ3

which does not take a positive integral value for Y1,0,0 or Y0,1,0 so instead of a differential

operator we have to consider a formal pseudo-differential operator. With this in mind, we

can write [71]

L(τ)(z) ≡ (α0∂)
hτ
h3 +

∞∑

k=1

U
(τ)
k (z)(α0∂)

hτ
h3

−k
(2.10)

with

U
(τ)
j =

j−1∏

k=1

(
1−

kh3
hτ

) ∑

m1+2m2+...+jmj=j

j∏

k=1

1

mk!kmk

(
hk−1
τ

(k − 1)!
∂k−1J (τ)

)mk

. (2.11)

2If one of Nj is zero, this is the lowest level singular vector that appears for generic values of the central

charge. If all Nj are positive, due to (2.4) there is a singular vector at lower level in the vacuum module.

If two of Nj parameters vanish, the algebra is freely generated.
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By an observation of A. Litvinov, this can be also written in terms of free boson normal

ordering as

L(τ)(z) =: e−
1
hτ

iφ(τ)(z)(α0∂)
hτ
h3 e

1
hτ

iφ(τ)(z) : (2.12)

i.e. as pseudo-differential operator ∂
hτ
h3 dressed by a free boson vertex operator. The free

bosons are normalized as

J
(τj)
j (z)J

(τk)
k (w) ∼ −

hτj
h1h2h3

δjk
(z − w)2

. (2.13)

with J(z) = i∂φ(z) and the Yangian parameters are introduced via [57]

λj = −
ψ0h1h2h3

hj
. (2.14)

Having found these three basic free field representations, a free field representation of an

arbitrary YN1,N2,N3 can be obtained by taking N1 + N2 + N3 free bosons normalized as

in (2.13) and multiplying the corresponding simple Miura factors (2.10).

As already mentioned, the way YN1,N2,N3 is embedded in the bosonic Fock space (more

precisely in the associated Heisenberg algebra) depends on the choice of ordering of basic

Miura factors. Since these different choices of the order are equivalent, there should be

a Fock space operator that intertwines between these embeddings. For an elementary

permutation of two neighboring Miura factors this will be the R-matrix that is the main

subject of this article.

2.2 Conformal transformations

In the following, it will be useful to understand how the fields appearing in the Miura

transformation transform under conformal transformations. Let’s first focus on the case of

Y0,0,N algebras with Miura transformation (2.2). The algebra W1+∞ has a unique stress-

energy tensor with respect to which the spin 1 current is a primary of dimension 1. The

formula for this stress-energy tensor is

T (z) ≡ T1+∞(z) = −U2(z) +
(N − 1)α0

2
∂U1(z) +

1

2
(U1U1)(z). (2.15)

Stress-energy tensor as generator of conformal transformations. One of the im-

portant roles played by T (z) is that it is a generator of the conformal transformations.

Consider an infinitesimal conformal transformation

z → z̃ = z + ǫ(z) +O(ǫ2). (2.16)

Under this transformation, the fields transform such that

φ̃(z̃)− φ(z̃) = −

∮

z

dw

2πi
ǫ(w)T (w)φ(z) +O(ǫ2). (2.17)

As an example, consider a primary field φ(z) of dimension h. Being primary of weight h

means that under conformal transformations it transforms as

φ(z) → φ̃(z̃) =

(
dz̃

dz

)−h

φ(z). (2.18)
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For an infinitesimal transformation, we find

φ̃(z̃)− φ(z̃) = −hǫ′(z)φ(z)− ǫ(z)φ′(z) + . . . (2.19)

which is indeed equal to

−

∮

z

dw

2πi
ǫ(w)T (w)φ(z) (2.20)

if we use the OPE of the stress-energy tensor primary field φ(w)

T (z)φ(w) ∼
hφ(w)

(z − w)2
+

∂φ(w)

z − w
+ reg. (2.21)

More complicated transformation properties. Not all the fields transform as simply

as the primary fields. Let us consider two examples of fields that transform in more

complicated way. First is the most well-known transformation property of the stress-energy

tensor itself. Due to OPE

T (z)T (w) ∼
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
(2.22)

which has an anomalous quartic term proportional to the central charge, the transformation

of T (z) is

T (z) → T̃ (z̃) =

(
dz̃

dz

)−2

T (z)−
c

12

(
dz̃

dz

)−2
[(

d3z̃

dz3

)(
dz̃

dz

)−1

−
3

2

(
d2z̃

dz2

)2(
dz̃

dz

)−2
]
.

(2.23)

The second term on the right-hand side is the anomalous term coming from the quartic

pole of OPE of T (z) with itself. It is proportional to the Schwarzian derivative of the

function z̃(z).

Another example is the û(1) current J(z) with the OPE

T (z)J(w) ∼
2α

(z − w)3
+

J(w)

(z − w)2
+

∂J(w)

z − w
. (2.24)

The linear and quadratic poles are just those of ordinary spin 1 primary, but the cubic pole

is responsible for the anomalous transformation property

J(z) → J̃(z̃) =

(
dz̃

dz

)−1

J(z)− α

(
dz̃

dz

)−2(d2z̃

dz2

)
. (2.25)

In a conformal field theory with a spin 1 primary current J(z) we can deform the stress-

energy tensor by redefining T → T − α∂J . The new Feigin-Fuchs stress-energy tensor still

satisfies the OPE (2.22) (with modified value of the central charge) but the field J(z) is no

longer primary and has exactly the anomalous transformation (2.25).
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Transformation of Uj fields. Let us now return to the Miura transformation (2.2). As

already mentioned, the fields Uj do not transform as primary fields under the conformal

transformations. The stress-energy tensor T (z) ≡ T1+∞(z) takes the form

T1+∞(z) = −U2(z) +
(N − 1)α0

2
∂U1(z) +

1

2
(U1U1)(z). (2.26)

The operator product expansions of T1+∞ with Uj has non-trivial poles of order up to j+2,

but their coefficients are proportional to Uk(w) with an exception of the linear pole which

equals ∂Uj . This means that the conformal transformations of Uj fields form a triangular

matrix which mixes Uj fields with Uk, k < j. As an illustration, for dimension 2 field U2

we find

Ũ2(z̃) =

(
∂z̃

∂z

)−2

U2(z)−
(N − 1)α0

2

(
∂2z̃

∂z2

)(
∂z̃

∂z

)−3

U1(z) (2.27)

−
(N − 1)N(N + 1)α2

0

12

(
∂z̃

∂z

)−2
[(

d3z̃

dz3

)(
dz̃

dz

)−1

−
3

2

(
d2z̃

dz2

)2(
dz̃

dz

)−2
]
.

One can deduce this from the conformal transformation property of U1 which is primary

of spin 1 and of the stress-energy tensor itself. An alternative way is to verify that this

expression behaves well under the composition of conformal transformations and that in-

finitesimally it agrees with the OPE with T1+∞.

We could proceed analogously for higher Uj fields, but it is easier to find first how

the free boson fields transform under the conformal transformations. In terms of Jj fields

of (2.2), the stress-energy tensor is

T1+∞(z) =
1

2

N∑

j=1

(JjJj)(z) +
α0

2

N∑

j=1

(N + 1− 2j)∂Jj(z). (2.28)

The OPE with Jj field is thus

T1+∞(z)Jj(w) ∼ −
α0(N + 1− 2j)

(z − w)3
+

Jj(w)

(z − w)2
+

∂Jj(w)

z − w
(2.29)

which means that under the conformal transformations Jj(z) transform as

J̃j(z̃) =

(
dz̃

dz

)−1

Jj(z) +
α0(N + 1− 2j)

2

(
dz̃

dz

)−2(d2z̃

dz2

)
. (2.30)

Let us emphasize that this anomalous OPE depends on the ordering of Jj fields in the

definition of the Miura transformation (which is in contrast with Uj fields whose trans-

formation properties are governed by W1+∞ algebra). This is because the expression for

T1+∞ itself depends via Feigin-Fuchs background charge term on the way we ordered the

free boson fields.
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For our fixed ordering (where J1 appears on the left), the elementary Miura factor

transforms as

α0∂z + Jj(z) →α0∂z̃ + J̃j(z̃)

=

(
dz̃

dz

)−1
[
α0∂z + Jj(z) +

α0(N + 1− 2j)

2

(
dz̃

dz

)−1(d2z̃

dz2

)]

=

(
dz̃

dz

)−1−N+1−2j
2

[α0∂z + Jj(z)]

(
dz̃

dz

)N+1−2j
2

. (2.31)

Multiplying these elementary factors, we see that the intermediate Jacobian factors cancel

out and the total Miura L(z) has a nice transformation property

L(z) → L̃(z̃) =

(
dz̃

dz

)−N+1
2

L(z)

(
dz̃

dz

)−N−1
2

. (2.32)

This agrees with [2] where the authors study the classical transformation properties of the

WN generators. What we see now is that these transformation properties at the level of

L(z) are not modified in the quantum version of the algebra.

Another thing to be emphasized at this point is that the transformation of L(z) or

Uj(z) fields does not depend on the choice of ordering of the free fields. If we ordered the Jj
fields in a different way, the expression for T1+∞ in terms of Jj would be modified in such a

way that the full L(z) would still transform in the same way for all orderings. This is simply

a consequence of the already mentioned fact that the transformation properties of Uj fields

which determine that of L(z) are independent of the particular free field representation.

Transformation of L for any type of bosons. Let us now generalize the previous

discussion to the case where the free bosons are not necessarily of the 3rd type, i.e. to the

case of YN1,N2,N3 . Consider the ordering

L(z) = L
(τ1)
1 (z)L

(τ2)
2 (z) . . .L

(τn)
N (z) (2.33)

where n ≡ N1 +N2 +N3. N1 is the number of j for which τj = 1 etc. The stress energy

tensor T1+∞(z) in terms of free fields J
(τj)
j (z) is given by [71]

T1+∞(z) = −
1

2

n∑

j=1

h1h2h3
hτj

(JjJj)(z)−
1

2

∑

j<k

hτj∂Jk(z) +
1

2

∑

j>k

hτj∂Jk(z) (2.34)

which reduces to the previous expression if all τj = 3. The dependence on hj parameters is

also consistent with the scaling symmetry of W1+∞ discussed in [57]. OPE of T1+∞ with

Jj is easy to evaluate:

T1+∞(z)Jj(w) ∼
hτj

(∑
k>j hτk −

∑
k<j hτk

)

h1h2h3

1

(z − w)3
+

Jj(w)

(z − w)2
+

∂Jj(w)

z − w
. (2.35)
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This means that under the conformal transformations the currents Jj transform as

Jj(z) → J̃j(z̃) =

(
dz̃

dz

)−1

Jj(z)−
hτj

(∑
k>j hτk −

∑
k<j hτk

)

2h1h2h3

(
dz̃

dz

)−2(d2z̃

dz2

)
. (2.36)

Using this, we can verify that the individual Miura factors transform as

L
(τj)
j (z) → L̃

(τj)
j (z̃) =

(
dz̃

dz

)
−

1

2
+ 1

2

∑
k<j

hτk
h3

−
1

2

∑
k≥j

hτk
h3

Lj(z)

(
dz̃

dz

) 1

2
−

1

2

∑
k≤j

hτk
h3

+ 1

2

∑
k>j

hτk
h3

.

(2.37)

Multiplying these out, we find for the total Miura operator

L(z) → L̃(z̃) =

(
dz̃

dz

)− 1
2
− 1

2

∑
k

hτk
h3

L(z)

(
dz̃

dz

) 1
2
− 1

2

∑
k

hτk
h3

(2.38)

which generalizes (2.32) to the case of YN1,N2,N3 .

3 R-matrix

We saw that the free field representation of YN1,N2,N3 obtained from the Miura transfor-

mation depends on the way in which we order the free bosons. Any permutation of free

bosons can be obtained by composing the elementary transpositions of neighboring factors

so we can focus on these. We define R-matrix Rj,j+1 to be the intertwiner between the

free field representations which differ by the order of two neighboring free fields:

R
(τjτj+1)
j,j+1 L

(τj)
j (z)L

(τj+1)
j+1 (z) = L

(τj+1)
j+1 (z)L

(τj)
j (z)R

(τjτj+1)
j,j+1 (3.1)

The operator Rj,j+1 defined in this way acts only on Fock spaces Fj and Fj+1, i.e. it is a

linear map

Rj,j+1 : Fj ⊗Fj+1 → Fj ⊗Fj+1. (3.2)

R-matrix for two bosons of third type. The simplest situation is if we consider two

Miura operators of 3rd type. In this case the equation (3.1) reads

R
(33)
12 (α0∂ + J1(z))(α0∂ + J2(z)) = (α0∂ + J2(z))(α0∂ + J1(z))R

(33)
12 (3.3)

or

R
(33)
12

[
α2
0∂

2 + (J1(z) + J2(z))α0∂ + (J1J2)(z) + α0(∂J2)(z)
]
=

=
[
α2
0∂

2 + (J1(z) + J2(z))α0∂ + (J1J2)(z) + α0(∂J1)(z)
]
R

(33)
12 . (3.4)

Comparing the terms of different powers of ∂, we see that

R
(33)
12 [J1(z) + J2(z)] = [J1(z) + J2(z)]R

(33)
12 (3.5)

R
(33)
12 [(J1J2)(z) + α0∂J2(z)] = [(J1J2)(z) + α0∂J1(z)]R

(33)
12 . (3.6)
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The first of these equations implies that R12 commutes with the total current J1 + J2.

For this reason, it is useful to rewrite these equations in terms of orthogonal combinations

J+ ≡ J1+J2 and J− ≡ h3(J1−J2). Commutativity with J+ implies that R12 is constructed

from mode operators of J− only and furthermore that it needs to satisfy

R
(33)
12

[
(J−J−)(z)−

2h33
h1h2h3

∂J−(z)

]
=

[
(J−J−)(z) +

2h33
h1h2h3

∂J−(z)

]
R

(33)
12 . (3.7)

Here J−(z) is a current which satisfies OPE

J−(z)J−(w) ∼ −
2h33

h1h2h3

1

(z − w)2
∼ −

2λ1λ2

λ2
3

1

(z − w)2
. (3.8)

Note that the requirement (3.7) is closely related to Liouville reflection operator [68, 78].

R-matrix for two bosons of 1st and 2nd type. The situation with bosons of first

or second type is analogous, but now the operator L(τ)(z) (τ = 1, 2) is pseudo-differential

operator with infinite number of derivatives so it would seem that we get more constraints

on R(ττ). But it turns out (as we expect from the triality symmetry of the three bosonic

representations as well as from the fact that with two bosons we are still studying Virasoro

algebra) that there are again only two independent conditions. Introducing again currents

J±, the definition of R(ττ) reduces to equations

R
(ττ)
12 J+(z) = J+(z)R

(ττ)
12 (3.9)

R
(ττ)
12

[
(J−J−)(z)−

2h3τ
h1h2h3

(∂J−)(z)

]
=

[
(J−J−)(z) +

2h3τ
h1h2h3

(∂J−)(z)

]
R

(ττ)
12 (3.10)

where

J−(z)J−(w) ∼ −
2h3τ

h1h2h3

1

(z − w)2
. (3.11)

These take exactly the same form as the equations for R(33). Note that the Miura transfor-

mation was defined in a way which is not symmetric with respect to the three directions,

but the definitions of Fock space R-matrices that we found are completely symmetric.

3.1 R-matrices of the mixed type

We can also consider what happens if we exchange the two bosons of different types.

Consider for example

R
(12)
12 L

(1)
1 (z)L

(2)
2 (z) = L

(2)
2 (z)L

(1)
1 (z)R

(12)
12 . (3.12)

We get a set of equations by comparing the coefficients of various derivatives. The leading

order equation is

R
(12)
12 (J

(1)
1 + J

(2)
2 )(z) = (J

(1)
1 + J

(2)
2 )(z)R

(12)
12 (3.13)

so R
(12)
12 commutes with all mode operators of J+ = J

(1)
1 + J

(2)
2 . The linear combination of

J
(1)
1 and J

(2)
2 orthogonal to J+ is this time

J−(z) = h2J
(1)
1 (z)− h1J

(2)
2 (z) (3.14)
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and it has OPE with itself

J−(z)J−(w) ∼
1

(z − w)2
. (3.15)

The coefficient of the subleading power of ∂ in (3.12) is

R
(12)
12 [(J−J−)(z) + ∂J−(z)] = [(J−J−)(z)− ∂J−(z)]R

(12)
12 . (3.16)

Unlike in the case of Rττ where the associated algebra was Y002, i.e. û(1) × Vir, now

the algebra obtained from Miura transformation is of the type Y110, i.e. û(1) times the

parafermion algebra. The parafermion algebra is not generated by the stress-energy tensor

alone, so by looking at coefficients of lower derivatives in (3.12) we find other conditions like

R
(12)
12

[
4(J−(J−J−)) + 6(∂J−J−) + ∂2J−

]
=

[
4(J−(J−J−))− 6(∂J−J−) + ∂2J−

]
R

(12)
12

(3.17)

at dimension 3 or

R
(12)
12

[
3(J−(J−(J−J−))) + 6(∂J−(J−J−)) + 3(∂J−∂J−) + 6(∂2J−J−) + 2∂3J−

]
=

=
[
3(J−(J−(J−J−)))− 6(∂J−(J−J−)) + 3(∂J−∂J−) + 6(∂2J−J−)− 2∂3J−

]
R

(12)
12 (3.18)

at dimension 4. We can find higher order relations either by studying coefficients of lower

derivatives in (3.12) or by studying the operator product expansions of relations that we

already found. Since the primaries of dimension 4 and higher in Y110 appear in the OPE

of spin 3 field with itself, the higher order equations for R-matrix will be satisfied if they

are satisfied for the fields of spin 1, 2 and 3.

3.2 Mode expansions

Let us now study the mode expansions of (3.10) and (3.16). First of all, notice that all of

these equations can be compactly written as

R [(J−J−)(z) + ρ∂J−(z)] = [(J−J−)(z)− ρ∂J−(z)]R (3.19)

with normalization

J−(z)J−(w) ∼
ρ

(z − w)2
(3.20)

where ρ takes the value

ρ = −
hσhτ (hσ + hτ )

σ3
(3.21)

for Rτσ and σ3 ≡ h1h2h3. Note that the field

1

2ρ
((J−J−)(z)± ρ∂J−(z)) (3.22)

satisfies OPE of stress-energy tensor with the central charge c = 1− 3ρ.
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Complex plane. Let us consider the mode expansion on the complex plane. We have

Jj(z) =
∑

j∈Z

aj,m
zm+1

. (3.23)

The operator product expansion of Jj(z) with itself can be translated to commutation

relations

[aj,m, ak,n] = −
hτj

h1h2h3
mδm+n,0δjk (3.24)

and analogously for modes of J±. Note that the zero modes aj,0 are central, i.e. commute

with any other mode operator. The mode expansion of (3.19) is

R

[
∑

k∈Z

: a−k a
−
m−k : −ρ(m+ 1)a−m

]
=

[
∑

k∈Z

: a−k a
−
m−k : +ρ(m+ 1)a−m

]
R . (3.25)

Cylinder. In the existing literature [68], the mode expansions are usually done on the

cylinder which is related to the complex plane by the exponential mapping. Denoting the

cylinder coordinate by z̃, the map is

z = ez̃. (3.26)

We must remember that as discussed in section 2.2, under conformal transformations J−(z)

does not transform as a primary field, but instead has an anomalous transformation

J̃−(z̃) =

(
dz̃

dz

)−1

J−(z) +
ρ

2

(
dz̃

dz

)−2(d2z̃

dz2

)
. (3.27)

In terms of modes, this means

J̃−(z̃) =
∑

k∈Z

a−k e
−kz̃ −

ρ

2
. (3.28)

This is a usual mode expansion of free boson on the cylinder, apart from the fact that the

zero mode is shifted by a constant,

a−0(cyl) = a−0(pl) −
ρ

2
. (3.29)

Using this in equation (3.25), we can write an analogous formula on the cylinder,

R

[
∑

k∈Z

: a−k(cyl)a
−
m−k(cyl) : −ρma−m(cyl)

]
=

[
∑

k∈Z

: a−k(cyl)a
−
m−k(cyl) : +ρma−m(cyl)

]
R (3.30)

which is the form used in [68]. Note that both of the sides of this equation come from free

bosons considered in different ordering, so the conformal transformation acts differently on

expression in the bracket on the left-hand side and on the right-hand side. But conjugation

byR that appears in this equation exactly compensates for this, i.e. conjugation of operator

implementing the conformal transformation in one ordering by R changes it into conformal

transformation in the other ordering. In other words, the matrix R intertwines between

two different actions of conformal transformations on a−(cyl) on l.h.s. and r.h.s. .
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Because the effect of (3.29) is just a shift of a zero mode by a constant, it is easy to go

between equations for R-matrix derived on a cylinder to equations on a complex plane. In

the rest of this paper we will mostly work on a cylinder and drop the (cyl) subscript and

the tilde to ease the notation.

The equation (3.30) could have been obtained by directly taking the mode expansion of

equation (3.19) on the cylinder. The independence of the Fock R-matrix on the conformal

frame is a consequence of the transformation property (2.38) of Miura operator under

conformal transformations.

In the case of R-matrix of mixed type, we should consider not only spin 2 defining

relation (3.30) but also spin 3 relation. On cylinder, this requires

R, 4a30 − a0 + 24a0

∑

k>0

: a−kak + 12
∑

j,k>0

(a−ja−kaj+k + a−j−kajak)


 = 0 (3.31)

for mode number zero and

R


4

∑

j+k+l=m

: ajakal : −6
∑

j

j : ajam−j : +(m2 − 1)am




=


4

∑

j+k+l=m

: ajakal : +6
∑

j

j : ajam−j : +(m2 − 1)am


R (3.32)

for m 6= 0. An easy way to find these mode expansions is to start in the plane and

use (3.29) to transform to cylinder. As consistency check, it is also easy to verify that the

mode expansions (3.32) are those of spin 3 primary field so it is enough to verify that the

zero mode transforms correctly under the conjugation by R-matrix.

3.3 Expansion of R at large spectral parameter

In [68] an expansion of (3.30) at infinite value of the central element a−0(cyl) was studied.

In the rest of this section, we will write simply am instead of a−m(cyl). The R-matrix has to

satisfy

R

[
′∑

k∈Z

akam−k + 2a0am − ρmam

]
=

[
′∑

k∈Z

akam−k + 2a0am + ρmam

]
R (3.33)

for m 6= 0 where
∑′ means that we leave out the terms which contain the zero mode a0.

For m = 0 we have

R

[
∑

k>0

a−kak +
a20
2

]
=

[
∑

k>0

a−kak +
a20
2

]
R, (3.34)

i.e. R must preserve the Fock level. For large values of a0 the ρ-dependence drops out so

we can look for expansion

R = R(0) + a−1
0 R(1) + a−2

0 R(2) + . . . (3.35)

with R(0) = 1. The jth order equation we have to solve is

2
[
R(j), am

]
= ρm

{
R(j−1), am

}
−

[
R(j−1),

′∑

k∈Z

akam−k

]
(3.36)
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which for j = 1 simplifies to [
R(1), am

]
= ρmam. (3.37)

The constant term is not determined by this equation, so that we can fix it so that R(1)

annihilates the highest weight state. Under this condition we find

R(1) = −
∑

k>0

a−kak. (3.38)

At next order, we have

2
[
R(2), am

]
= ρm

{
R(1), am

}
−

[
R(1),

′∑

k∈Z

akam−k

]
. (3.39)

The solution of this equation annihilating the highest weight state is

R(2) =
1

2

∑

j1,j2>0

(a−j1−j2aj1aj2 + a−j1a−j2aj1+j2) +
1

2
R(1)R(1). (3.40)

Perhaps surprisingly, R(2) is equal to a zero mode of a local field plus a quadratic term in

R(1) which is not a zero mode of a density, but can be eliminated by taking a logarithm of

R. For this reason, it is convenient following [68] to parametrize R as

R = exp
[
a−1
0 r(1) + a−2

0 r(2) + a−3
0 r(3) + . . .

]
. (3.41)

Even at higher orders, r(j) will be zero modes of local densities of the current J−(z) − a0
(we are still working on cylinder). At third order, we find

R(3) = r(3) +
1

6
r(1)r(1)r(1) +

1

2
r(1)r(2) +

1

2
r(2)r(1) (3.42)

with

r(3) = −
1

3

∑

j1,j2,j3>0

(a−j1−j2−j3aj1aj2aj3 + a−j1a−j2a−j3aj1+j2+j3) (3.43)

−
1

2

∑

j1+j2=k1+k2

a−j1a−j2ak1ak2 +
ρ

12

∑

j>0

a−jaj −
ρ(ρ+ 1)

12

∑

j>0

j2a−jaj . (3.44)

The fourth and fifth order expressions are given in the appendix A. Unlike the expansion

coefficients of the R-matrix itself, the coefficients in expansion of its logarithm can always

be expressed at zero modes of local fields. We have

r(1) = −
1

2
(J−J−)0 (3.45)

r(2) =
1

6
(J−(J−J−))0 (3.46)

r(3) =
1

12
(J−(J−(J−J−)))0 +

ρ

24
(J−J−)0 +

ρ(ρ+ 1)

24
(∂J−∂J−)0 (3.47)

where we always leave out the zero mode.3

3A. Litvinov considered the expansion of the logarithm of R-matrix to order u
−8 and all the terms

appearing there are zero modes of local currents.
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Expressions for R. As was already discussed, we looked for the large spectral parameter

expansion of the logarithm of R-matrix which leads to expressions involving zero modes of

local fields. But in the following it will also be useful to have expressions for the expansion

coefficients of R-matrix itself. We will write them in the normal-ordered form which will

be convenient later. The first coefficient r(1) is unchanged. For the second one we have

R(2) = r(2) +
1

2
r(1)2 =

1

2

∑

j,k>0

(a−j−kajak + a−ja−kaj+k) +
1

2

∑

j,k>0

a−jaja−kak

=
1

2

∑

j,k>0

(a−j−kajak + a−ja−kaj+k + a−ja−kajak) +
ρ

2

∑

j>0

ja−jaj (3.48)

=
1

2

∑

j,k>0

(a−j−k + a−ja−k)(aj+k + ajak) +
1

2

∑

j>0

a−jaj +
ρ− 1

2

∑

j>0

ja−jaj .

and for the third

R(3) = −
1

6

∑

j,k,l>0

a−ja−ka−lajakal −
1

3

∑

j,k,l>0

(a−ja−ka−laj+k+l + a−j−k−lajakal)

−
1

2

∑

j,k,l>0

(a−ja−ka−laj+kal + a−j−ka−lajakal)−
1

2

∑

j+k=l+m

a−ja−kalam

−
ρ

4

∑

j,k>0

(j + k)a−ja−kajak −
ρ

2

∑

j,k>0

(j + k)(a−ja−kaj+k + a−j−kajak) (3.49)

+
ρ

12

∑

j>0

a−jaj −
ρ(1 + 3ρ)

12

∑

j>0

j2a−jaj .

We see that the expression for R(j) are more complicated than those for r(j) at the same

order of the expansion. There are also very few cancellations when going from r(j) to

R(j) so indeed taking the logarithm simplifies the large spectral parameter expansion of R

considerably. But for ρ = 1 these expansion coefficients for R factorize up to a combination

of lower order terms. We have for example

R(3) = −
1

6

∑

j,k,l>0

(a−ja−ka−l + a−j−ka−l + a−j−la−k + a−k−la−j + 2a−j−k−l)×

× (ajakal + aj+kal + aj+lak + ak+laj + 2aj+k+l)

−
∑

j,k>0

(a−ja−k + a−j−k)(ajak + aj+k)−
1

4

∑

j>0

a−jaj (3.50)

−
ρ− 1

4

∑

j,k>0

(j + k)a−ja−kajak −
ρ− 1

2

∑

j,k>0

(j + k)(a−ja−kaj+k + a−j−kajak)

+
ρ− 1

12

∑

j>0

[
1− (3ρ+ 4)j2

]
a−jaj
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so at ρ = 1 the R-matrix simplifies considerably,

R(ρ = 1) = 1+

(
−

1

a0
+

1

2a20
−

1

4a30
+ . . .

) ∑

j1>0

M−j1Mj1

+

(
1

2a20
−

1

a30
+ . . .

) ∑

j1,j2>0

M−j1,−j2Mj1,j2 (3.51)

−
1

6a30

∑

j1,j2,j3>0

M−j1,−j2,−j3Mj1,j2,j3 + . . .

with

Mj1 = aj1

Mj1,j2 = aj1+j2 + aj1aj2 (3.52)

Mj1,j2,j3 = aj1aj2aj3 + aj1+j2aj3 + aj1+j2aj3 + aj1+j2aj3 + 2aj1+j2+j3 .

We will see in the following that such a factorization at ρ = 1 is a general feature of the

R-matrix.

3.4 Matrix elements of R between simple states

Although the discussion of the previous section can in principle be continued to higher

orders, it is useful in the following to know the matrix elements of R at least between

simple states exactly for all values of the spectral parameter. We still consider the subspace

of the Fock space spanned by oscillators of J−. By our choice of normalization of R we

know that

R|0−〉 = |0−〉 . (3.53)

We can now act on this state with (3.33) with the choice m = −1 and we find

(2a0 + ρ)Ra−−1 |0
−〉 = (2a−0 − ρ)a−−1 |0

−〉 (3.54)

so

Ra−−1 |0
−〉 =

(
2a−0 − ρ

2a−0 + ρ

)
a−−1 |0

−〉 . (3.55)

Taking a logarithm of R we find

logRa−−1 |0
−〉 =

(
−

ρ

a−0
−

ρ3

12(a−0 )
3
−

ρ5

80(a−0 )
5
−

ρ7

448(a−0 )
7
+ . . .

)
a−−1 |0

−〉 (3.56)

which reproduces the results of the previous section. Dually, we have

〈0−| a−1 R =

(
2a−0 − ρ

2a−0 + ρ

)
〈0−| a−1 . (3.57)
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At the next level, we can act twice with m = −1 (3.33) or once with m = −2 on the

vacuum. We find

Ra−−2 |0
−〉 =

4(a−0 )
3 − 2a−0 ρ+ ρ2 − 3a−0 ρ

2 − ρ3

(2a−0 + ρ)(2(a−0 )
2 − ρ+ 3(a−0 )ρ+ ρ2)

a−−2 |0
−〉 (3.58)

+
4a−0 ρ

(2a−0 + ρ)(2(a−0 )
2 − ρ+ 3a−0 ρ+ ρ2)

(a−−1)
2 |0−〉 (3.59)

R(a−−1)
2 |0−〉 =

4a−0 ρ
2

(2a−0 + ρ)(2(a−0 )
2 − ρ+ 3a−0 ρ+ ρ2)

a−−2 |0
−〉 (3.60)

+
4(a−0 )

3 − 2a−0 ρ− ρ2 − 3a−0 ρ
2 + ρ3

(2a−0 + ρ)(2(a−0 )
2 − ρ+ 3a−0 ρ+ ρ2)

(a−−1)
2 |0−〉 . (3.61)

Proceeding in similar way, we can determine in principle all the matrix elements of R

exactly without using any Taylor expansion or without knowledge of Fock-space formula

for R. Requiring R|0〉 = |0〉 uniquely fixes R.

3.5 Yang-Baxter equation

If we consider three bosonic Fock spaces, we can derive an important equation satisfied by

the R-matrices which is the Yang-Baxter equation. Namely, starting from L3L2L1 we can

bring it into the opposite order in two different ways:

L3L2L1 = R23L2L3L1R
−1
23 = R23R13L2L1L3R

−1
13 R

−1
23 = R23R13R12L1L2L3R

−1
12 R

−1
13 R

−1
23

= R12L3L1L2R
−1
12 = R12R13L1L3L2R

−1
13 R

−1
12 = R12R13R23L1L2L3R

−1
23 R

−1
13 R

−1
12 .

(3.62)

The Fock space operator completely exchanging the order is thus

R12R13R23 = R23R13R12 (3.63)

which is the celebrated Yang-Baxter equation. Note that each R depends on the types τj of

the Fock spaces on which it acts. Also, as always the zero mode of the û(1) currents plays

the role of the spectral parameter and since Rjk depends (up to a conventional rescaling)

only on the difference of zero modes, what we find is exactly the Yang-Baxter equation

with an additive spectral parameter (i.e. R-matrix of the rational type).

As usual in the algebraic Bethe ansatz [66, 67], once we have a solution of Yang-Baxter

equation for certain choice of representation spaces, we can take their tensor products and

the corresponding products of R-matrices again satisfy the Yang-Baxter equation with

more complicated representation spaces. Consider N Fock spaces Fj and one additional

auxiliary space FA. We will call FQ ≡ F1 ⊗ . . .⊗FN the quantum space. We can use FA

to define a monodromy operator TA : FA ⊗FQ → FA ⊗FQ,

TA ≡ RA1RA2 · · ·RAN . (3.64)
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Considering another auxiliary space FB (but the same quantum space)4 and using the

Yang-Baxter equation, it is easy to see that

RABTATB = TBTARAB, (3.65)

i.e. we see that TA satisfies again the Yang-Baxter equation. Since RAB is generically

invertible, exchanging the order of TA and TB (which are still operators in the quantum

space) can be undone by a similarity transformation RAB in the auxiliary space. If the

representation spaces FA and FB were finite-dimensional, we could simply take the trace

of TA over FA to find an infinite set of commuting operators in the quantum space F1 ⊗

F2⊗· · ·⊗FN [66, 67]. In our application we cannot do this because the trace over infinite-

dimensional vector space does not need to converge,5 but we can use a special property of

RAB which is the fact that it preserves the Fock vacuum vector,

RAB |0〉A ⊗ |0〉B = |0〉A ⊗ |0〉B (3.66)

and

〈0|A ⊗ 〈0|B RAB = 〈0|A ⊗ 〈0|B . (3.67)

We can thus define the (analogue of) transfer matrix (here τ is the type of the auxiliary

Fock space)

H(τ) ≡ 〈0|A T
(τ)
A |0〉A (3.68)

which is an operator on the quantum space F1 ⊗ · · · ⊗FN which moreover depends on the

spectral parameter aA,0. Taking the vacuum-to-vacuum matrix element of (3.65) we find

H(aA,0)H(aB,0) = 〈0|A 〈0|B TATB |0〉A |0〉B = 〈0|A 〈0|B RABTATB |0〉A |0〉B

= 〈0|A 〈0|B TBTARAB |0〉A |0〉B = 〈0|A 〈0|B TBTA |0〉A |0〉B (3.69)

= H(aB,0)H(aA,0).

We have thus constructed an infinite set of operators acting in the quantum space which

commute among themselves (since the previous equation is true for arbitrary values of the

spectral parameter).

3.6 Yangian generators

It is well-known from the algebraic Bethe ansatz approach to XXX spin chains that the

transfer matrix is not the only interesting object that can be constructed from the mon-

odromy matrix. In fact, for GL(N) spin chain one can consider all N2 matrix elements

of R in the N -dimensional auxiliary space and the associated quantum space operators

satisfy the defining relations the of Yangian of gl(N).

4As is common in the integrable model literature we also implicitly extend the action of TA on Hilbert

space FA ⊗FQ to action on Hilbert space FA ⊗FB ⊗FQ such that it acts as the identity operator on FB .
5We could regularize the trace by including a Boltzmann factor to ensure convergence [79, 99, 100]. This

leads to an interesting one-parametric family of conserved quantities that interpolate between the Yangian

conserved charges and local conserved BLZ charges.
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In our situation the auxiliary space is the Fock space of one free boson which is infinite

dimensional, the states being conveniently labeled by the Young diagrams. The associated

Yangian of ĝl(1) would be thus given by an infinite set of generators and relations. For our

purposes, it will be enough to first consider the first three of them. We already defined

one of them, the analogue of the transfer matrix (3.68). It was defined as the vacuum-

to-vacuum matrix element of T in the auxiliary space. Analogously we can introduce the

matrix elements

E(τ) = 〈0|A T
(τ)
A aA,−1 |0〉A (3.70)

and

F (τ) = 〈0|A aA,1T
(τ)
A |0〉A . (3.71)

As we will shortly see, these will be the simplest creation and annihilation operators of

our Yangian. Without any assumptions on the details of the quantum space, we can

find the first few commutation relations satisfied by these operators. For that we only

need the R-matrix in the auxiliary space. We have already shown that H(τ) commute

among themselves (for any value of the spectral parameter) but in fact the same argument

shows that [
H(τA)(aA,0),H

(τB)(aB,0)
]
= 0, (3.72)

i.e. the operators H commute even for a different choice of the type of the auxiliary Fock

space. To find the commutation relation between E and H we write

H(τA)E(τB) = 〈0|A 〈0|B TATB aB,−1 |0〉A |0〉B = 〈0|A 〈0|B R−1
ABTBTARAB aB,−1 |0〉A |0〉B .

(3.73)

The inverse of RAB preserves the vacuum on the left just as RAB did. On the other hand,

the action of RAB on the right on the excited state can be calculated from the results of

section 3.4:

RAB aA,−1 |0〉AB =
uA − uB + hτA − hτB

uA − uB + hτA
aA,−1 |0〉AB +

hτA
uA − uB + hτA

aB,−1 |0〉AB

RAB aB,−1 |0〉AB =
hτB

uA − uB + hτA
aA,−1 |0〉AB +

uA − uB
uA − uB + hτA

aB,−1 |0〉AB (3.74)

where we introduced the spectral parameter

uA ≡ −
σ3
hτA

aA,0 −
hτA
2

. (3.75)

Note that we have

a−0 = hτBaA,0 − hτAaB,0 = −
hτAhτB

σ3
(uA − uB)−

hτAhτB (hτA − hτB )

2σ3
. (3.76)

Using this, we find the first non-trivial Yangian commutation relation

H(τA)(uA)E
(τB)(uB) =

hτB
uA − uB + hτA

H(τB)(uB)E
(τA)(uA) (3.77)

+
uA − uB

uA − uB + hτA
E(τB)(uB)H

(τA)(uA). (3.78)
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and symmetrically

E(τA)(uA)H
(τB)(uB) =

uA − uB + hτA − hτB
uA − uB + hτA

H(τB)(uB)E
(τA)(uA) (3.79)

+
hτA

uA − uB + hτA
E(τB)(uB)H

(τA)(uA). (3.80)

We can proceed analogously to derive the commutation relation between H and F start-

ing from

〈0|AB aA,1R
−1
AB =

uA − uB
uA − uB − hτB

〈0|AB aA,1 +
−hτA

uA − uB − hτB
〈0|AB aB,1 (3.81)

〈0|AB aB,1R
−1
AB =

−hτB
uA − uB − hτB

〈0|AB aA,1 +
uA − uB + hτA − hτB

uA − uB − hτB
〈0|AB aB,1 (3.82)

and we find

H(τA)(uA)F
(τB)(uB) = −

hτB
uA − uB − hτB

H(τB)(uB)F
(τA)(uA) (3.83)

+
uA − uB + hτA − hτB

uA − uB − hτB
F (τB)(uB)H

(τA)(uA) (3.84)

and

F (τA)(uA)H
(τB)(uB) =

uA − uB
uA − uB − hτB

H(τB)(uB)F
(τA)(uA) (3.85)

−
hτA

uA − uB − hτB
E(τB)(uB)H

(τA)(uA). (3.86)

In particular, if both auxiliary spaces are of the same type, τA = τ = τB, we have more

simply

(u− v + hτ )H
(τ)(u)E(τ)(v) = hτH

(τ)(v)E(τ)(u) + (u− v)E(τ)(v)H(τ)(u) (3.87)

(u− v + hτ )E
(τ)(u)H(τ)(v) = (u− v)H(τ)(v)E(τ)(u) + hτE

(τ)(v)H(τ)(u). (3.88)

and

(u− v − hτ )H
(τ)(u)F (τ)(v) = −hτH

(τ)(v)F (τ)(u) + (u− v)F (τ)(v)H(τ)(u) (3.89)

(u− v − hτ )F
(τ)(u)H(τ)(v) = (u− v)H(τ)(v)F (τ)(u)− hτF

(τ)(v)H(τ)(u). (3.90)

We can think of these relations as the first few relations of the affine Yangian. They are

true for any representation of the algebra, i.e. any choice of the quantum space as long

as the quantum space is obtained in a way that respects the Yang-Baxter equation. The

equations we found can be also rewritten as

(u− v)
[
H(τ)(u), E(τ)(v)

]
= −hτ

(
H(τ)(u)E(τ)(v)−H(τ)(v)E(τ)(u)

)
(3.91)

(u− v)
[
E(τ)(u),H(τ)(v)

]
= −hτ

(
E(τ)(u)H(τ)(v)− E(τ)(v)H(τ)(u)

)
(3.92)

(u− v)
[
H(τ)(u),F (τ)(v)

]
= −hτ

(
H(τ)(v)F (τ)(u)−H(τ)(u)F (τ)(v)

)
(3.93)

(u− v)
[
F (τ)(u),H(τ)(v)

]
= −hτ

(
F (τ)(v)H(τ)(u)−F (τ)(u)H(τ)(v)

)
. (3.94)
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Note that the first two of these equations are not independent: by replacing u ↔ v in the

first equation and eliminating H(u)E(v) from the resulting system of linear equations gives

the second equation of the list. A similar argument shows the equivalence of the last two

equations. Equating the first two and the second two equations we find
[
H(τ)(u), E(τ)(v)

]
=

[
H(τ)(v), E(τ)(u)

]
(3.95)

[
H(τ)(v),F (τ)(u)

]
=

[
H(τ)(u),F (τ)(v)

]
. (3.96)

4 Single boson representation

Let us now discuss the results of the previous section more explicitly in the case of a single

free boson representation, i.e. the choice N = 1 (spin chain of length 1). Let us consider the

auxiliary space of type τ and the quantum space of type σ. Using the oscillator expansions

of R given in section 3.3, we can find the first few terms in the expansion of H(τ),

H(τ) = 1−
h2τ
a−0

∑

k>0

b−kbk +
1

2(a−0 )
2


 ∑

j,k>0

(−hτ b−j−k + h2τ b−jb−k)(−hτ bj+k + h2τ bjbk)

+h2τ
∑

j>0

b−jbj + (ρ− 1)h2τ
∑

j>0

jb−jbj


+ . . . (4.1)

Here and in the following we denote the oscillators acting in the quantum Fock space by

bj . Note that to get from R-matrix to H we are taking the vacuum-to-vacuum matrix

element in the auxiliary space. Furthermore R only depends on the difference of auxiliary

and Fock oscillators and commutes with their sum. If we start from the normal-ordered

expression for R, this guarantees that H is obtained by just making a replacement

a−j → −hτ bj . (4.2)

Note that we would not be able to do this simple replacement if our expression for R was

not normal-ordered, because the commutation relations satisfied by a−j and bj are different.

We can also go back: if we know a normal-ordered expression for H, we can do the same

replacement in the other direction to find an expression for the full R. In this sense, the

knowledge of normal-ordered expression of R-matrix acting on two Fock spaces is the same

thing as knowing the normal-ordered expression for the vacuum-to-vacuum matrix element

of R in the auxiliary space. For this to work in the simple way described, it is important

that the R-matrix depends only on the differences of auxiliary and quantum oscillators and

commutes with their sum.

We can now diagonalize H(τ) in one-boson representation. By our choice of the vacuum

vector, we have

H(τ) |0〉Q = |0〉Q . (4.3)

At level one we have a single state b−1 |0〉Q on which H(τ) acts with an eigenvalue

2a−0 σ3 + hτhσ(hτ − hσ)

2a−0 σ3 − hτhσ(hτ + hσ)
. (4.4)
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At higher levels the eigenstates of H(τ) are labeled by partitions since we are considering

a single bosonic Fock space. Furthermore, since H(τ) mutually commute for any value of

the spectral parameter and for all three values of τ , the eigenvectors will only depend on

Young diagram label and the choice of hσ. Let us for simplicity of notation choose hσ = h3.

The first few eigenstates are summarized in the following table:

Young d. state roots

(1) b−1 0

(2) b2−1 − h−1
2 b−2 0, h1

(1, 1) b2−1 − h−1
1 b−2 0, h2

(3) b3−1 − 3h−1
2 b−2b−1 + 2h−2

2 b−3 0, h1, 2h1

(2, 1) b3−1 − (h−1
1 + h−1

2 )b−2b−1 + h−1
1 h−1

2 b−3 0, h1, h2

(1, 1, 1) b3−1 − 3h−1
1 b−2b−1 + 2h−2

1 b−3 0, h2, 2h2

(4) b4−1 − 6h−1
2 b−2b

2
−1 + 3h−2

2 b2−2 + 8h−2
2 b−3b−1 − 6h−3

2 b−4 0, h1, 2h1, 3h1

(3, 1) b4−1 − (h−1
1 + 3h−1

2 )b−2b
2
−1 + h−1

1 h−1
2 b2−2 + . . . 0, h1, 2h1, h2

. . .+ 2h−1
2 (h−1

1 + h−1
2 )b−3b−1 − 2h−1

1 h−2
2 b−4

(2, 2) b4−1 − 2(h−1
1 + h−1

2 )b−2b
2
−1 + (h−2

1 + h−2
2 − h−1

1 h−1
2 )b2−2 + . . . 0, h1, h2, h1 + h2

. . .+ 4h−1
1 h−1

2 b−3b−1 − (h−1
1 + h−1

2 )h−1
1 h−1

2 b−4

(2, 1, 1) b4−1 − (3h−1
1 + h−1

2 )b−2b
2
−1 + h−1

1 h−1
2 b2−2 + . . . 0, h1, h2, 2h2

. . .+ 2h−1
1 (h−1

1 + h−1
2 )b−3b−1 − 2h−2

1 h−1
2 b−4

(1, 1, 1, 1) b4−1 − 6h−1
1 b−2b

2
−1 + 3h−2

1 b2−2 + 8h−2
1 b−3b−1 − 6h−3

1 b−4 0, h2, 2h2, 3h2

First of all, we notice that the expressions for eigenvectors are closely related to Jack

polynomials. It is a known fact that in free field representations of Virasoro algebra one

encounters these [80], so it thus comes at no surprise to also find them here. For review of

properties of Jack polynomials see [69, 81, 82]. What we need here is the fact that Jack

polynomials are symmetric polynomials which are a deformation of the well-known Schur

polynomials. They form a basis of the vector space of all symmetric functions. Following

the conventions of Stanley (i.e. the coefficient of en is n!), the first few Jack polynomials J

expressed as linear combinations of Newton’s power sum polynomials pj are:

Jα
(1) = p1 = e1

Jα
(2) = p21 + αp2

Jα
(1,1) = p21 − p2 = e2

Jα
(3) = 2α2p3 + 3αp1p2 + p31

Jα
(2,1) = p31 + (α− 1)p1p2 − αp3

Jα
(1,1,1) = p31 − 3p1p2 + 2p3 = 6e3
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Jα
(4) = 6α3p4 + 8α2p1p3 + 3α2p22 + 6αp21p2 + p41

Jα
(3,1) = −2α2p4 + 2α(α− 1)p1p3 − αp22 + (3α− 1)p21p2 + p41

Jα
(2,2) = α(1− α)p4 − 4αp1p3 + (1 + α+ α2)p22 + 2(α− 1)p21p2 + p41

Jα
(2,1,1) = 2αp4 + 2(1− α)p1p3 − αp22 + (α− 3)p21p2 + p41

Jα
(14) = −6p4 + 8p1p3 + 3p22 − 6p21p2 + p41 .

The identification between our eigenvectors and Jack polynomials is the following: the

deformation parameter α is identified with

α = −
h1
h2

. (4.5)

The Newton power sum polynomials are identified with bj oscillators via

pj ↔ h1b−j (4.6)

and the eigenstates are exactly the Jack polynomials and agree with the normalization of

the eigenvectors given in the table if we rescale J by hdeg J1 . The Fock representation that

we are studying (Y001 in the notation of [76]) has a symmetry under exchange of h1 ↔ h2.

In terms of Jack polynomials and eigenstates of H(τ) this symmetry acts as α ↔ α−1 and

is accompanied by a transposition of the Young diagram labeling the corresponding state.

Let’s now turn to the spectrum of H(τ) operators in this basis. First of all, for each

eigenvector the table above gives a list of what we call the roots. They correspond to

boxes of the Young diagram and are simply the weighted coordinates of the given box

with h1 being the weight associated to the horizontal direction and h2 to the vertical

direction. We choose the origin of the coordinates such that the first box (upper left) has

weighted coordinate 0. This type of weighted coordinates of boxes of (plane) partitions

appears frequently in the representations of the affine Yangian, see for example [56, 57].

The eigenvalue of H(τ) acting on the eigenstate labeled by Young diagram Λ turns out

to be

H(τ)(u) |Λ〉 =
∏

�∈Λ

u− q − h�
u− q − h� + hτ

|Λ〉 (4.7)

where we defined h� = h1x1(�) + h2x2(�) + h3x3(�) and

uA − q =
hσ − hτ

2
−

a−0 σ3
hσhτ

=
hσ − hτ

2
−

(hσaA,0 − hτ b0)σ3
hσhτ

= uA +
b0σ3
hσ

+
hσ
2
. (4.8)

or

q = −
b0σ3
hσ

−
hσ
2
. (4.9)

We see that the spectrum of H(τ) is determined combinatorially in terms of the Young

diagrams labeling the state. The eigenvalues take a similar product form as the eigenvalues

of Yangian ψ(u) generating function, but in the case ofH(τ) every box in the Young diagram

contributes by a single zero and a single pole which are distance hτ apart. In the case of

ψ(u) every box gave contribution ϕ(u) (where ϕ(u) is the structure constant of the Yangian)
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which had three zeros and three poles, symmetrically shifted in h1, h2 and h3 directions.

It is thus quite easy to express ψ(u) in terms of H(τ) which we will do later.

The constant u0 is related to the zero modes of the fields. Shifting a zero mode of

free boson by a constant is an automorphism of the free boson Heisenberg algebra. The

corresponding symmetry of affine Yangian is a translation of the spectral parameter.

4.1 Nazarov-Sklyanin operators

Having found the eigenvectors of H(τ) and identified them with Jack polynomials, it is

natural to ask if there are explicit expressions for operators which would act on Jack

polynomials with the same spectrum as we found. In fact, such operators have been found

in a nice paper by Nazarov and Sklyanin [69].6 The authors modified the differential

operators studied by Debiard and Sekiguchi (acting diagonally on Jack polynomials of n

variables, n < ∞) in such a way that the modified operators are stable as n → ∞. The

resulting operators (considered as a generating function depending on a spectral parameter

u) were then expanded at large values of the spectral parameter. The form of the expansion

looks as follows: we have

A(uNS) = 1−
1

uNS

∑

j1>0

Mj1M
†
j1
+

1

2!uNS(uNS + 1)

∑

j1,j2>0

Mj1,j2M
†
j1,j2

−
1

3!uNS(uNS + 1)(uNS + 2)

∑

j1,j2,j3>0

Mj1,j2,j3M
†
j1,j2,j3

+ . . . (4.10)

=
∞∑

k=0

(−1)k

k!(uNS)k

∑

j1,...,jk>0

Mj1,...,jkM
†
j1,...,jk

where Mj1,...,mk
are operators of multiplication by symmetric polynomials and M †

j1,...,mk

are the corresponding annihilation operators acting by differentiation. More precisely, for

the first few Mj1,...,mk
we have

Mj1 = pj1

Mj1,j2 = pj1pj2−pj1+j2

Mj1,j2,j3 = pj1pj2pj3−pj1+j2pj3−pj1+j3pj2−pj2+j3pj1+2pj1+j2+j3

Mj1,j2,j3,j4 = pj1pj2pj3pj4−pj1+j2pj3pj4−pj1+j3pj2pj4−pj1+j4pj2pj3−pj2+j3pj1pj4 (4.11)

−pj2+j4pj1pj3−pj3+j4pj1pj2+pj1+j2pj3+j4+pj1+j3pj2+j4+pj1+j4pj2+j3

+2pj1+j2+j3pj4+2pj1+j2+j4pj3+2pj1+j3+j4pj2+2pj2+j3+j4pj1−6pj1+j2+j3+j4

and the general pattern should be clear: we are summing over all ways of grouping the

indices (j1, . . . , jk) with alternating minus signs and with an additional factor of (l − 1)!

every time l indices were grouped together. If all the indices jk take different values,

this is just the expression of monomial symmetric function in terms of Newton power sum

polynomials, but if some of jk’s are equal, there are additional overall combinatorial factors

6These operators have been used in studies of random partitions in [83]. It would be nice to see if the

R-matrix plays any role in that setting.
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which cancel out in the final formula for A(uNS) (see [69] for details on these additional

factors). We can write this compactly as

Mj1,...,jn = Symj1,...,jn

∑
∑k

l=1 λl=n

pj1+...+jλ1
pjλ1+1+...+jλ1+λ2

· · · pjλ1+...+λk−1+1+...+jλ1+...+λk
×

×
(−1)kn!

zλ
×

k∏

l=1

(λl − 1)! (4.12)

where zλ is the standard combinatorial factor (for partition with lj cycles of length j it is

given by
∏

j lj !j
lj ).

The expressions for M †
j1,...,jk

take formally the same form with pj replaced by p†j where

p†j are the lowering operators acting as derivatives with respect to pj ,

p†j = αj
∂

∂pj
. (4.13)

We have the obvious commutation relation
[
p†j , pk

]
= αjδj,k. (4.14)

so if we identify pj with a−j and p†k with ak we get exactly the free boson Heisenberg

algebra with normalization constant (two point function) α. In this sense, (4.10) can be

interpreted as normal-ordered expression for an operator acting in the bosonic Fock space.

One additional piece of information that Nazarov and Sklyanin provide is the spectrum of

A(u) when acting on Jack polynomials. The eigenvalues take the product form

A(uNS)Jλ =
n∏

j=1

(
uNS + j − 1− αλj

uNS + j − 1

)
Jλ . (4.15)

Here λj are lengths of rows of the Young diagram and n is any sufficiently large integer

(it should be at least equal to the number of rows of the Young diagram). It is exactly

the denominator factors that were added by Nazarov and Sklyanin to make this expression

independent of the number of variables and thus stable in the limit of large number of

independent variables.

We want now to identify these operators withH(τ) transfer matrices constructed above.

First of all, we can rewrite (4.15) in the form

A(uNS)Jλ =
∏

�∈λ

(
−uNSh2 − h1 − x1(�)h1 − x2(�)h2 − x3(�)h3

−uNSh2 − x1(�)h1 − x2(�)h2 − x3(�)h3

)
Jλ (4.16)

where we used (4.5) and introduced formally the third coordinate of the boxes of λ in such

a way that we can think of the upper left box of λ to have coordinates either (0, 0, 0) or

(1, 1, 1) without changing the result (because h1 + h2 + h3 = 0). Comparing this to the

spectrum of (4.7) we see that we need to put hτ = h1 and still hσ = h3 and furthermore

uA − q = −uNSh2 − h1 (4.17)
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or

uNS = a−0 +
1

2
. (4.18)

With these identifications and the identification

h1b−k ↔ pk, −h2bk ↔ k
∂

∂pk
, h1bk ↔ p†k (4.19)

we can identify the operator H(1) with Nazarov-Sklyanin operator A(uNS),

H(1)(a−0 ) = A(a−0 + 1/2). (4.20)

The expansion of H(1) is thus

H(1)(a−0 ) = 1−
1

(a−0 +1/2)

∑

j1>0

h21b−j1bj1 (4.21)

+
1

2! (a−0 +1/2)(a−0 +3/2)

∑

j1,j2>0

(h21b−j1b−j2−h1b−j1−j2)(h
2
1bj1bj2−h1bj1+j2)+. . .

Finally, we may use the replacement rule (4.2) to reconstruct the whole R-matrix (of the

mixed type),

R = 1−
1

(a−0 + 1/2)

∑

j1>0

a−−j1
a−j1

+
1

2! (a−0 + 1/2)(a−0 + 3/2)

∑

j1,j2>0

(a−−j1
a−−j2

+ a−−j1−j2
)(a−j1a

−
j2
+ a−j1+j2

) (4.22)

−
1

3! (a−0 + 1/2)(a−0 + 3/2)(a−0 + 5/2)

∑

j1,j2,j3>0

M−j1,−j2,−j3Mj1,j2,j3 + . . .

where we used the same shorthand notation as in (3.51). We should compare this to the

results of section 3.3, in particular the equation (3.51) and indeed expanding (4.22) at large

a0 we reproduced exactly all the terms in (3.51).

The reason why we were able to write only the mixed R-matrix and not the R-matrix

for bosons of the same type is that if we choose the convention that the boxes associated

to Young diagrams labeling the Jack polynomials are in 1–2 plane of the plane partition

space, the shift between the numerator and the denominator in equation (4.16) is by h1. A

small change of the identification can produce the shift by h2, but no analogue of Nazarov-

Sklyanin operators is known which would have shift by h3.

To summarize, we have used the known eigenstates of the transfer matrix obtained

from the mixed R-matrix and the Nazarov-Sklyanin formula for the generating function

of commuting Hamiltonians acting on Jack polynomials to find a closed-form expression

for the mixed R-matrix, equation (4.22). This is one of the most important results of this

article.

4.2 Ladder operators

We can now turn to ladder operators of W1+∞ and relate them to the generators of the

Yangian algebra associated to Fock R-matrix.
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Ladder operators in the Yangian presentation. First of all, we know that in

Arbesfeld-Schiffmann-Tsymbaliuk presentation of W1+∞ there are ladder operators e(u)

and f(u) such that in representations on plane partitions these act as [55–57]

e(u) |Λ〉 =
∑

�∈Λ+

E(Λ → Λ +�)

u− q − h�
|Λ +�〉 (4.23)

f(u) |Λ〉 =
∑

�∈Λ−

F (Λ → Λ−�)

u− q − h�
|Λ−�〉 , (4.24)

i.e. the action of e(u) on a state labeled by a certain plane partition Λ gives a linear

combination of states labeled by all possible plane partitions obtained from Λ by adding a

box (in way compatible with plane partition rules). E(Λ → Λ+�) are certain probability

amplitudes of this process and depend on the choice of the normalization of vectors |Λ〉. On

the other hand, the spectral parameter dependence of these formulas is completely fixed

by the relations of W1+∞.

In the case at hand (representation of W1+∞ on one free boson) we can even find the

amplitudes E and F . First of all, we can simplify the calculation by putting q = 0 (we

can always reconstruct the general case by shifting the spectral parameter). After this is

done, the amplitudes E can be fixed from (4.23) by only looking at the leading coefficient

of e(u) as u → ∞, i.e.

e0 |Λ〉 =
∑

�∈Λ+

E(Λ → Λ +�) |Λ +�〉 . (4.25)

Choosing for concreteness |Λ〉 to be the Jack polynomials normalized as in the table above

and identifying7

e0 = b−1, f0 = −b1, (4.26)

we find for the action

e0 |Λ〉 =
∑

�∈Λ+

1

h�
resu=h�

(
∏

�′∈Λ

(u− h�′)(u− h�′ − h1 − h2)

(u− h�′ − h1)(u− h�′ − h2)

)
|Λ +�〉 . (4.27)

Few concrete examples of application of this formula are given in appendix B. Analogously,

for the annihilation amplitudes we find

f0 |Λ〉 =
∑

�∈Λ−

h� + h1 + h2
h21h

2
2

resu=h�

(
∏

�′∈Λ

(u− h�′ + h1)(u− h�′ + h2)

(u− h�′)(u− h�′ + h1 + h2)

)
|Λ−�〉 .

(4.28)

Ladder operators from the YBE. Let us now take a matrix element of equation (3.91)

between the states 〈Λ +�| and |Λ〉. Denoting the matrix element of E(τ) by the same

7This choice of normalization is slightly different than the one used in [57], but it is equivalent to this

one after applying the scaling symmetry of the algebra.
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symbol, we find using (4.7) the condition

(u−v+hτ )(u−q−h�)

(u−q−h�+hτ )

∏

�′∈Λ

(
u−q−h�′

u−q−h�′+hτ

)
E(τ)(v) =

(u−v)
∏

�′∈Λ

(
u−q−h�′

u−q−h�′+hτ

)
E(τ)(v)+

hτ (v−q−h�)

(v−q−h�+hτ )

∏

�′∈Λ

(
v−q−h�′

v−q−h�′+hτ

)
E(τ)(u)

(4.29)

which determines E(τ)(Λ → Λ +�) uniquely up to a u-independent factor to be

E(τ)(Λ → Λ +�)(u) ∼
1

u− q − h� + hτ

∏

�′∈Λ

u− q − h�′

u− q − h�′ + hτ
(4.30)

∼
1

u− q − h�

∏

�′∈Λ+�

u− q − h�′

u− q − h�′ + hτ

with q as in (4.8) and u ≡ uA.

We can compare this to the large u expansion of E(τ) obtained from the R-matrix. For

the first few terms, we find

E(τ) = −
hτhσ

σ3a
−
0

hτ b−1 −
1

(a−0 )
2

hτhσ
σ3


∑

j>0

(h2τ b−j−1 − h3τ b−jb−1)bj −
ρ

2
hτ b−1


+

+
hτhσ

σ3(a
−
0 )

3


1

2

∑

j,k>0

(−h3τ b−jb−kb−1 + h2τ b−j−kb−1 + h2τ b−j−1b−k

+ h2τ b−k−1b−j − 2hτ b−j−k−1)× (h2τ bjbk − hτ bj+k) (4.31)

− 2h3τ
∑

j>0

b−1b−jbj − h3τ
ρ− 1

2

∑

j>0

(j + 1)b−1b−jbj + 2h2τ
∑

j>0

b−j−1bj

+(ρ− 1)h2τ
∑

j>0

(j + 1)b−j−1bj −
hτ
4
b−1 + hτ (ρ− 1)(1− 3ρ− 4)/12b−1


+ · · ·

For lower lying states it is easy to check that this expansion exactly acts as in (4.30).

We can use the action (4.27) together with the fact that the leading term in the large u

expansion of E(u) is

E(τ)(u) ∼
hτe0
u

+O

(
1

u2

)
(4.32)

to fix the normalization. We find

E(τ)(u) |Λ〉 =
∑

�∈Λ+

hτ
h�

1

u− q − h� + hτ

∏

�′∈Λ

(
u− q − h�′

u− q − h�′ + hτ

)
×

× resu=h�

(
∏

�′∈Λ

(u− h�′)(u− h�′ − h1 − h2)

(u− h�′ − h1)(u− h�′ − h2)

)
|Λ +�〉 (4.33)
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where we still have hσ = h3. Comparing this result with (4.7) and (4.23), we find an

operator relation between Arbesfeld-Schiffmann-Tsymbaliuk generating function e(u) and

our Yangian generator E(u),

e(u) = h−1
τ E(τ)(u− hτ )

(
H(τ)(u− hτ )

)−1
. (4.34)

Note in particular that the left-hand side does not depend on our choice of τ . We could

have also multiplied E and H in the opposite order, finding

e(u) = h−1
τ

(
H(τ)(u)

)−1
E(τ)(u). (4.35)

Analogously, the functional equation (3.93) implies that

F (τ)(Λ +� → Λ)(u) ∼
1

u− q − h� + hτ

∏

�′∈Λ

u− q − h�′

u− q − h�′ + hτ
(4.36)

∼
1

u− q − h�

∏

�′∈Λ+�

u− q − h�′

u− q − h�′ + hτ
. (4.37)

At large u we have the expansion

F (τ)(u) = −
hτhσ

σ3a
−
0

hτ b1 −
hτhσ

σ3(a
−
0 )

2


∑

j>0

(h2τ b−jbj+1 − h3τ b−jbjb1)−
ρ

2
hτ b1


+

+
hτhσ

σ3(a
−
0 )

3


1

2

∑

j,k>0

(h2τ b−jb−k − hτ b−j−k)×

× (−h3τ bjbkb1 + h2τ bj+kb1 + h2τ bj+1bk + h2τ bk+1bj − 2hτ bj+k+1) (4.38)

− 2h3τ
∑

j>0

b−jbjb1 − h3τ
ρ− 1

2

∑

j>0

(j + 1)b−jb1bj + 2h2τ
∑

j>0

b−jbj+1

+(ρ− 1)h2τ
∑

j>0

(j + 1)b−jbj+1 −
hτ
4
b1 + hτ (ρ− 1)(1− 3ρ− 4)/12b1


+ · · · .

By comparing the leading order coefficient with (4.28)

F (τ)(u) |Λ〉 =
∑

�∈Λ−

h� + h1 + h2
h21h

2
2

−hτ
u− q − h� + hτ

(
∏

�′∈Λ−�

u− q − h�′

u− q − h�′ + hτ

)
×

× resu=h�

(
∏

�′∈Λ

(u− h�′ + h1)(u− h�′ + h2)

(u− h�′)(u− h�′ + h1 + h2)

)
|Λ−�〉 . (4.39)

The corresponding Arbesfeld-Schiffmann-Tsymbaliuk generating function f(u) is given by

f(u) = −h−1
τ

(
H(τ)(u− hτ )

)−1
F (τ)(u− hτ )

= −h−1
τ F (τ)(u)

(
H(τ)(u)

)−1
. (4.40)

We have thus identified the Arbesfeld-Schiffmann-Tsymbaliuk generating functions in terms

of the Yangian generators (matrix elements of the Fock R-matrix).
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4.3 Nazarov-Sklyanin II

Before closing this section, let us mention another interesting operator constructed by

Nazarov and Sklyanin [70]. Consider an infinite matrix with non-commuting matrix ele-

ments

L(u) =




0 γb−1 γb−2 γb−3 γb−4 . . .

γb1 h1 + h2 γb−1 γb−2 γb−3 . . .

γb2 γb1 2(h1 + h2) γb−1 γb−2 . . .

γb3 γb2 γb1 3(h1 + h2) γb−1 . . .

. . . . . . . . . . . . . . . . . .




(4.41)

with γ = −h1h2 and take the upper left matrix element of its resolvent

U(u) =

(
u

u− L

)

00

≡ 1 + u−1L00 + u−2
∑

j≥0

L0jLj0 + u−3
∑

j,k≥0

L0jLjkLk0 + . . . (4.42)

considered as Laurent expansion at infinite spectral parameter u. More concretely

U(u) = 1 + u−2h21h
2
2

∑

j>0

b−jbj

+ u−3


−h31h

3
2

∑

j,k>0

(b−jb−kbj+k + b−j−kbjbk) + h21h
2
2(h1 + h2)

∑

j>0

jb−jbj




+ u−4


h41h

4
2

∑

j,k,l>0

(b−j−k−lbjbkbl + b−jb−kb−lbj+k+l + 2b−jb−k−lbj+kbl

+ b−j−kbkb−k−lbj+k+l + b−j−k−lbk+lb−kbj+k) (4.43)

+ h41h
4
2

∑

j,k>0

(b−jbjb−j−kbj+k + b−j−kbj+kb−jbj + b−jb−kbjbk + b−j−kbkb−kbj+k)

−
3

2
h31h

3
2(h1 + h2)

∑

j,k>0

(j + k)(b−j−kbjbk + b−jb−kbj+k) + h41h
4
2

∑

j>0

b−jbjb−jbj

+h21h
2
2(h1 + h2)

2
∑

j>0

j2b−jbj


+O

(
u−5

)
.

It was shown in [70] that the action of U(u) on Jack polynomials analogously to (4.7) is

diagonal with eigenvalues

U(u) |Λ〉 =
∏

�∈Λ

(u− h�)(u− h� − h1 − h2)

(u− h� − h1)(u− h� − h2)
|Λ〉 . (4.44)

These operators give us another interesting family of commuting operators acting diago-

nally on Jack polynomials.
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5 R-matrix from fermions

We can derive another expression for the mixed R-matrix starting from the complex

fermion. We start with the observation that at h1 = 1 = −h2 and h3 = 0 the Jack

polynomials simplify to Schur polynomials. Furthermore, these are mapped very simply

under boson-fermion correspondence to states in the fermionic Fock space:

Young diagram Schur polynomial fermionic state

(1) b−1 Ψ̄−1/2Ψ−1/2

(2) 1
2(b

2
−1 + b−2) Ψ̄−3/2Ψ−1/2

(1, 1) 1
2(b

2
−1 − b−2) −Ψ̄−1/2Ψ−3/2

(3) 1
6(b

3
−1 + 3b−1b−2 + 2b−3) Ψ̄−5/2Ψ−1/2

(2, 1) 1
3(b

3
−1 − b−3) −Ψ̄−3/2Ψ−3/2

(1, 1, 1) 1
6(b

3
−1 − 3b−1b−2 + 2b−3) Ψ̄−1/2Ψ−5/2

(4) 1
24(b

4
−1 + 6b2−1b−2 + 3b2−2 + 8b−1b−3 + 6b−4) Ψ̄−7/2Ψ−1/2

(3, 1) 1
8(b

4
−1 + 2b2−1b−2 − b2−2 − 2b−4) −Ψ̄−5/2Ψ−3/2

(2, 2) 1
12(b

4
−1 + 3b2−2 − 4b−1b−3) Ψ̄−3/2Ψ̄−1/2Ψ−3/2Ψ−1/2

(2, 1, 1) 1
8(b

4
−1 − 2b2−1b−2 − b2−2 + 2b−4) Ψ̄−3/2Ψ−5/2

(1, 1, 1, 1) 1
24(b

4
−1 − 6b2−1b−2 + 3b2−2 + 8b−1b−3 − 6b−4) −Ψ̄−1/2Ψ−7/2

Here we use the fact that for a pair of complex fermions with OPE

Ψ(z)Ψ(w) ∼
1

z − w
(5.1)

the corresponding current operator

J(z) = (ΨΨ)(z) (5.2)

satisfies the same OPE as the free boson current J(z) = i∂φ(z) normalized as

J(z)J(w) ∼
1

(z − w)2
. (5.3)

In terms of mode operators we have

bm =
∑

k∈Z+1/2

: Ψm−kΨk : . (5.4)

Using this explicit expression for the current mode operators, we can verify the expressions

given in the table. The right-hand side can be obtained also directly from the associ-

ated Young diagrams: for that we use the Frobenius notation for the Young diagrams,

counting the arm and leg lengths of the diagonal boxes of the Young diagram. In the
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fermionic Fock space the state associated to Young diagram with Frobenius coordinates

(a1, a2, . . . , ar; l1, l2, . . . , lr) corresponds up to a sign to a state [84–86]

Ψ−ar−1/2 · · ·Ψ−a1−1/2Ψ−lr−1/2 · · ·Ψ−l1−1/2 |0〉 . (5.5)

Consider now a generating function

H(1)(u) =
∏

m≥ 1
2

(
1− u−1

(
m− 1

2

))Ψ−mΨm

(
1 + u−1

(
m+ 1

2

))Ψ−mΨm

. (5.6)

We don’t need to worry about the ordering on the right-hand side because all the operators

in exponents commute. Also, for any fermionic Fock state with bounded Virasoro level

there is only a finite number of terms which don’t act as identity so we don’t need to worry

about the convergence. These operators act diagonally on the fermionic representatives of

Schur polynomials, the eigenvalues being given by

∏

�∈Λ

u− h�
u− h� + h1

(5.7)

which is of the form (4.7). Note that we still have h1 = 1 = −h2 and h3 = 0 and for now

(for simplicity) we restrict to subspace of states which have q = 0.

We want to bosonize this expression and write it in the normal-ordered form so that

we can deform the expression to the case h3 6= 0. First of all, we write

H(1)(u) = exp


−

∑

m∈Z+1/2

: Ψ−mΨ̄m : log

[
1 + u−1

(
m+

1

2

)]
 . (5.8)

Using the mode expansion of Ψ(z) in the complex plane,

Ψ̄(z) =
∑

m∈Z+1/2

Ψ̄mz−m−1/2 (5.9)

we can write this as

H(1)(u) = exp

[
−

∮

0

dw

2πi

∮

w

dz

2πi

1

z − w
Ψ(z) log

(
1− u−1w∂w

)
Ψ̄(w)

]
. (5.10)

This operator can now be bosonized using the identification [84–86]

Ψ(z) =: eiφ(z) : Ψ(z) =: e−iφ(z) : . (5.11)

We find

H(1)(u) = exp

[
−

∮

0

dw

2πi

∮

w

dz

2πi

1

z − w
: e−iφ(z) : log

(
1− u−1w∂w

)
: eiφ(w) :

]
. (5.12)

We can integrate by parts in the w integral, introducing the kernel

κ(u; z, w) = log
(
1 + u−1∂ww

) 1

z − w
=

z

u(z − w)2
−

z(z + w)

2u2(z − w)3
+

z(z2 + 4zw + w2)

3u3(z − w)4
+ . . .

(5.13)
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Note that the expansion is not necessarily convergent and we will treat it as a formal power

series at u = ∞ with coefficients rational functions of z and w singular only on the diagonal

z = w. Using this kernel, we write

H(1)(u) = exp

[
−

∮

0

dw

2πi

∮

w

dz

2πi
κ(u; z, w) : e−iφ(z) :: eiφ(w) :

]
. (5.14)

In order to write it in explicitly normal ordered form, we first Taylor expand the expo-

nential,

H(1)(u) =

∞∑

n=0

(−1)n

n!

n∏

j=1

[∮

0

dwj

2πi

∮

wj

dzj
2πi

κ(u; zj , wj) : e
−iφ(zj) :: eiφ(wj) :

]
. (5.15)

We can now use the Wick theorem

: eiαφ(z) :: eiβφ(w) := (z − w)αβ : eiαφ(z)eiβφ(w) : (5.16)

to write

H(1)(u) =
∞∑

n=0

(−1)
n(n+1)

2

n!

n∏

j=1

[∮

0

dwj

2πi

∮

wj

dzj
2πi

κ(u; zj , wj)

]
×

×

∏
j<k(zj − zk)(wj − wk)∏

j,k(zj − wk)
: e−i

∑
j φ(zj)+i

∑
j φ(wj) : . (5.17)

Our convention for wj integrals around the origin is such that |wn| > |wn−1| > . . . > |w2| >

|w1|. This is important when taking the residues to evaluate the terms in 1/u expansion of

the expression. After evaluating the zj-integrals by taking the residues, we must take the

wj-residues in a correct order (the order of taking residues matters because of the diagonal

singularities at wj = wk). We also have to be careful about the extra (−1)
n(n−1)

2 sign

coming from the application of the Wick theorem if we order the variables in Vandermonde

determinant as we do above. The expression obtained so far is very reminiscent of the

expressions for solitons of KP or 2d Toda hierarchy in terms of tau functions [84–86] which

should not be surprising because the tau functions are matrix elements of exponential of

fermion bilinears (GL(∞) group element) and our initial expression for H(1)(u) was exactly

of this form.

We can verify the correctness of (5.17) by expanding it at large u. Using equations like

resw2=0

(
resw1=0

w2
1 − w1w2 + w2

2

2(w1 − w2)2
: J(w1)J(w2) :

)
=

1

2

∑

j>0

jb−jbj (5.18)

(putting the zero modes b0 to zero) we find

H(1)(u) = 1+u−1


−

∑

j>0

b−jbj


+u−2


−1

2

∑

j,k>0

(b−jb−kbj+k+b−j−kbjbk)

+
1

2

∑

j>0

(j+1)b−jbj+
1

2

∑

j,k>0

b−jb−kbjbk



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+u−3


∑

j>0

(
−
1

6
−
1

2
j−

1

3
j2
)
b−jbj+

1

2

∑

j,k>0

(j+k+1)(b−jb−kbj+k+b−j−kbjbk)

−
1

3

∑

j,k,l>0

(b−jb−kb−lbj+k+l+b−j−k−lbjbkbl)−
1

2

∑

j+k=l+m

b−jb−kblbm (5.19)

−
1

4

∑

j,k>0

(j+k+2)b−jb−kbjbk+
1

2

∑

j,k,l>0

b−jb−kb−lbj+kbl

−
1

6

∑

j,k,l>0

b−jb−kb−lbjbkbl


+. . .

or

H(1)(u) = 1−
1

u+1

∑

j>0

b−jbj+
1

2!(u+1)(u+2)

∑

j,k>0

(b−jb−k−b−j−k)(bjbk−bj+k)

−
1

3!(u+1)(u+2)(u+3)

∑

j,k,l>0

(b−jb−kb−l−b−j−kb−l−b−j−lb−k−b−k−lb−j+2b−j−k−l)×

×(bjbkbl−bj+kbl−bj+lbk−bk+lbj+2bj+k+l)+. . . (5.20)

which is exactly coincides with the expansion (4.21) with hσ = h3 = 0, q = 0 and hτ =

h1 = 1. In this case a−0 = u+ 1/2 and the formula nicely agrees with the previous result.

Charged states. Until now we focused on a subsector of the fermionic Fock space which

had total charge zero. But we can also consider other subsectors with b0 ∈ Z. The charged

vacua are obtained by acting on an uncharged vacuum |0〉 by fermions of the same charge

|n〉 ∼ Ψ−n+1/2 · · ·Ψ−3/2Ψ−1/2 |0〉 , n > 0 (5.21)

with charge q = n and

|−n〉 ∼ Ψ−n+1/2 · · ·Ψ−3/2Ψ−1/2 |0〉 , n > 0. (5.22)

of charge q = −n. The excited states are then obtained by acting by the modes of the

current bj and are still labeled by Young diagrams. The operator H(1)(u) now acts in the

charged Fock space with eigenvalues

Γ(u+ 1)

uqΓ(u− q + 1)

∏

�∈Λ

u− q − h�
u− q − h� + h1

. (5.23)

The prefactor is the H(1) eigenvalue of the corresponding charged vacuum. It has a well-

defined large u expansion

Γ(u+ 1)

uqΓ(u− q + 1)
∼ 1− u−1

(
q

2

)
+ u−2

(
q

3

)
3q − 1

4
− u−3

(
q

4

)
q(q − 1)

2
+ . . . . (5.24)

With our choice of h1 = 1 = −h2 and h3 = 0 we have a simple identification b0 = q and

it is straightforward to verify that (5.17) acts correctly also on the charged bosonic Fock

space (5.23).
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Mixed R-matrix. We can now use the fact that the normal-ordered large u expansions

of the Nazarov-Sklyanin operators (4.21) for all values of h1 (not just h1 = 1 as we assumed

until now) are trivially related by just rescaling the current. This means that we only need

to make the replacements

φ(z) → h1φ(z)

bj → h1bj (5.25)

u → a−0(cyl) − 1/2 = a−0(pl) − 1

in (5.17) to arrive at (4.21) with an extra overall factor modifying the operator for q 6=

0. For the R-matrix the situation is even simpler because in this case we only need

to change the sign of the bj modes to get an expression written in terms of a−j . Note

that multiplication of the R-matrix by a scalar function of the difference of the spectral

parameters does not change the YBE.

To summarize this section, we found an alternative expression for the mixed R-

matrix (4.22) such that

R̃(u) =
∞∑

n=0

(−1)
n(n+1)

2

n!

n∏

j=1

[∮

0

dwj

2πi

∮

wj

dzj
2πi

κ (u; zj , wj)

]
×

×

∏
j<k(zj − zk)(wj − wk)∏

j,k(zj − wk)
: ei

∑
j φ−(zj)−i

∑
j φ−(wj) : (5.26)

=
Γ(u+ 1)

u−a−0 Γ(u+ a−0 + 1)

[
1−

∑
j1>0M−jMj

u+ a−0 + 1
+

∑
j1,j2>0M−j1,−j2Mj1,j2

2!(u+ a−0 + 1)(u+ a−0 + 2)
+ . . .

]
.

Choosing the uncharged subsector a−0 = 0 and using the replacement rule (5.25) reproduces

the result (4.22) found before. Note that the gamma-function prefactor has a similar

structure to the anomaly studied in [87]. If we require the R-matrix to preserve the

highest weight state we miss this term, but it seems to naturally appear in the fermionic

derivation of the R-matrix.

Classically, there is a famous Szegö formula comparing a determinantal formula analo-

gous to (4.41) to a contour integral of bosonized vertex operators like in (5.26) [88]. We can

thus interpret the transformation between these different generating functions of conserved

quantities as a quantum version of the Szegö formula.

6 Arbesfeld-Schiffmann-Tsymbaliuk presentation

In the previous section we studied the representation of the Yangian R-matrix generators

H, E and F on single free boson Fock space. We found that H acts as (4.7). The generating

function ψ(u) of Tsymbaliuk presentation of Yangian acts as [56, 57]

ψ(u) |Λ〉 =
u−q+h1h2h3ψ0

u−q

∏

�∈Λ

(u−q−h�+h1)(u−q−h�+h2)(u−q−h�+h3)

(u−q−h�−h1)(u−q−h�−h2)(u−q−h�−h3)
|Λ〉 . (6.1)
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By comparing these two actions, we can identify

ψ(u) =
u− q + h1h2h3ψ0

u− q

H(3)(u+ h1)H(3)(u+ h2)

H(3)(u)H(3)(u+ h1 + h2)
. (6.2)

The generating functions H(3)(u) commute for all values of the spectral parameter u so

we can order them arbitrarily. Note that the right-hand side is written for τ = 3 but the

combination that appears is independent of τ .

The generating functions e(u) and f(u) can be identified from (4.34) and (4.35),

e(u) = h−1
τ E(τ)(u− hτ )

(
H(τ)(u− hτ )

)−1
= h−1

τ

(
H(τ)(u)

)−1
E(τ)(u). (6.3)

and (4.40)

f(u) = −h−1
τ

(
H(τ)(u− hτ )

)−1
F (τ)(u− hτ ) = −h−1

τ F (τ)(u)
(
H(τ)(u)

)−1
. (6.4)

We made this identifications based on the comparison of single boson representations,

but the general form of the action is the same for all representations of MacMahon type

obtained by taking a coproducts of single boson representations. Using the compatible

coproduct guarantees that these identifications will hold also for any MacMahon represen-

tations. Note that the coproduct used in the R-matrix description of the algebra is the

same one as the one used in [73] as product of Miura operators. In [57] this coproduct was

studied in the language of Tsymbaliuk’s generators.

It is instructive to compare the Yangian algebra coming from Maulik-Okounkov R-

matrix with Arbesfeld-Schiffmann-Tsymbaliuk presentation more explicitly. Assuming the

large central charge expansion of the form

ψ(u) = 1 + σ3
ψ0

u
++σ3

ψ1

u2
+ . . . (6.5)

with ψ0 and ψ1 central and the analogous expansion

H(u) = 1 +
H1

u
+

H2

u2
+ . . . , (6.6)

the formula (6.2) allows us to find a triangular non-linear map between ψj and Hj gener-

ators. The first few terms are

H1 = −
h3ψ2

ψ0
+

h3ψ
2
1

2ψ0
(6.7)

H2 = −
h3ψ3

6
+

h23(2h1h2ψ0 + 3)ψ2

12
−

h23ψ
2
1ψ2

4ψ0
+

h23ψ
2
2

8

+
h23ψ

4
1

8ψ2
0

+
h3ψ

3
1

6ψ2
0

−
h23(2h1h2 + ψ0)ψ

2
1

12ψ0
(6.8)

and where we identify the u(1) charge ψ1 with ψ0q. The first terms of the inverse trans-

formation are

ψ1 = qψ0 (6.9)

ψ2 = q2ψ0 − 2h−1
3 H1 (6.10)

ψ3 = q3ψ0 − (2h1h2ψ0 + 3)H1 + 3h−1
3 H2

1 − 6h−1
3 H2. (6.11)

The subalgebra generated by ψj and by Hj is abelian.
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[H, E] and [ψ, e]. The next thing to compare are the ej and Ej generators. We use the

left formula in (6.3) and find

E1 = h3e0 (6.12)

E2 = h3e1 + h23e0

(
−
ψ2

2
+

ψ2
1

2ψ0
− 1

)
(6.13)

and the inverse

e0 = h−1
3 E1 (6.14)

e1 = h−1
3 E2 + h−1

3 E1(h3 −H1) (6.15)

e2 = h−1
3 E3 + h−1

3 E2(2h3 −H1) + h−1
3 E1(h

2
3 − 2h3H1 +H2

1 −H2). (6.16)

First we compare the commutation relations of ψj with ek and those of Hj and Ek. The

relations

0 = [ψj+3, ek]− 3 [ψj+2, ek+1] + 3 [ψj+1, ek+2]− [ψj , ek+3] (6.17)

+ σ2 [ψj+1, ek]− σ2 [ψj , ek+1]− σ3 {ψj , ek} (6.18)

together with

[ψ2, ej ] = 2ej (6.19)

and the fact that ψ0, ψ1 are central allow us to calculate an arbitrary commutator [ψj , ek].

The corresponding commutation relation in the Maulik-Okounkov algebra is (3.91) which

in terms of modes reads

[Ej+1,Hk]− [Ej ,Hk+1] = hτ (HjEk −HkEj) = hτ (EkHj − EjHk) . (6.20)

This holds for any j and k with the convention that Ej = 0 for j ≤ 0, Hk = 0 for k < 0

and H0 = 1. In particular, the j = 0 case is simply

[Hk, E1] = −hτEk (6.21)

and k = 0 case is

[H1, Ej ] = −hτEj . (6.22)

For low values of j and k one can explicitly check that these equations are equivalent to

those of Arbesfeld-Schiffmann-Tsymbaliuk for [ψj , ek] commutators (we checked these up

to j ≤ 4).

[H,F ] and [ψ, f ]. The situation is analogous for the annihilation operators. The com-

mutation relations of modes of H(u) and E(v) are

[Fj+1,Hk]− [Fj ,Hk+1] = −hτ (HjFk −HkFj) = −hτ (FkHj −FjHk) . (6.23)

The j = 0 case gives

[Hk,F1] = hτFk (6.24)

and for k = 0 we have

[H1,Fj ] = hτFj . (6.25)

Again, for lower mode numbers j ≤ 4 we have checked that these relations are equivalent

to the [ψj , fk] commutation relations of Arbesfeld-Schiffmann-Tsymbaliuk.
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Other relations. It would be nice to compare other relations that follow from Maulik-

Okounkov R-matrix to those of Arbesfeld-Schiffmann-Tsymbaliuk, but unfortunately this

is not so easy to do in practice. One reason is that the R-matrix in Fock representation

has matrix elements labeled by pairs of partitions which is a very large set of generators.

On the other hand, in Arbesfeld-Schiffmann-Tsymbaliuk presentation there are few gener-

ators (three generating functions ψ(u), e(u) and f(u)) but their relations are not strong

enough to use an analogue of Poincaré-Birkhoff-Witt theorem directly. In fact, labeling

the generators by non-negative spin and integer mode seems to be the optimal choice if

we want to have a non-linear version of PBW theorem (i.e. a generalization of universal

enveloping algebra with possible non-linear commutators). One possible generating set

with this cardinality is to take the Us,m modes of W1+∞. Another option is to consider

the h1 = h2 = h3 = 0 specialization of Arbesfeld-Schiffmann-Tsymbaliuk algebra which is

equivalent to w∞ labeled again by spin and mode number. Since the generating functions

ψ(u), e(u) and f(u) are summing the generators in the spin direction, it would be nice to

complement Arbesfeld-Schiffmann-Tsymbaliuk generators f(u), ψ(u), e(u) by an additional

set of generating functions ej(u) and fj(u) with j > 1. A simple possible candidate could

be Ej(u) and Fj(u) fields as discussed in the appendix C. While it seems that there is a

homomorphism from the Maulik-Okounkov Yangian to Arbesfeld-Schiffmann-Tsymbaliuk

Yangian, the existence of the map in the opposite direction is less clear, i.e. the Maulik-

Okounkov Yangian is possibly larger than the Arbesfeld-Schiffmann-Tsymbaliuk Yangian.

This issue surely deserves further study.

7 Calogero-Moser-Sutherland models

As an application of the R-matrix formalism we will now study its connection to Calogero-

Moser-Sutherland models. We will find simple vector representations of the Yangian (which

can be useful to test the Yangian relations) and also a conformal field theoretic construction

of quantum mechanical integrable models of Calogero type.

We will interpret the Miura operators (2.9) as being an R-matrix in a mixed represen-

tation where one representation space is the bosonic Fock space while the other one is a

space of functions of z on which differential operators act. Instead of taking tensor product

of N Fock spaces with fixed z-space like we did until now, this time we consider n z-spaces

but a fixed Fock space, i.e. we consider the product

L(z1)L(z2) . . .L(zn). (7.1)

By the general logic explained in section 3 the matrix elements of this operator should

satisfy the relations of Yangian algebra derived from the Fock-Fock R-matrix.

Let us first consider the case of cylinder.8 The mode expansion of the elementary

Miura factor (2.9) is

−
h3

h1h2
∂z + J(z) = −

h3
h1h2

∂z + b0 +
∑

k 6=0

bke
−kz. (7.2)

8Note that in this section we will use z as the coordinate on the cylinder and z̃ as the coordinate on the

complex plane.
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Here we expressed the parameter α0 in terms of h1, h2 and h3 in such a way that L(z) is

homogeneous with respect to rescaling of hj . The zero mode b0 is related to the spectral

parameter by (3.75) so up to an irrelevant constant shift of the spectral parameter we can

put u = −h1h2b0. Finally, for purposes of this section it is convenient to rescale the whole

Miura factor such that its large u-expansion starts with the identity. The Miura factor

that we will use in this section is thus

L(z) = 1 + u−1


h3∂z − h1h2

∑

k 6=0

bke
−kz


 . (7.3)

None of these rescalings or shifts of the spectral parameter affects the Yang-Baxter equation

satisfied by L(z).

One insertion. The simplest situation is if we take just one Miura factor. The transfer

matrix equals L(z). The generating function of Hamiltonians is

H(u) = 〈0| L(z) |0〉 = 1 + u−1h3∂z (7.4)

while the elementary ladder operators are

E(u) = 〈0| L(z)b−1 |0〉 = u−1e−z (7.5)

F(u) = 〈0| b1L(z)b1 |0〉 = u−1ez . (7.6)

We can now verify the Yangian commutation relations to check the consistency of our pro-

posal. It is easy to see that the relations (3.87)–(3.90) are indeed satisfied. The Hamiltonian

is diagonalized by the states of the form

|k〉 = ekz (7.7)

and the operators E and F act simply as ladder operators in this infinite dimensional

space of periodic functions. Note that the representation that we obtain is has well-defined

weight spaces with respect to H but it is not a highest weight representation. It is the

vector representation discussed in [56].

Two insertions. Picking two points on cylinder with coordinates z1 and z2 with ℜz2 >

ℜz1, the transfer matrix is

T = L(z2)L(z1) (7.8)

and the Hamiltonian

H(u) = 〈0| T |0〉 = 1 +
h3
u
(∂z1 + ∂z2) +

h23
u2

∂z1∂z2 −
h1h2
u2

ez1+z2

(ez1 − ez2)2
(7.9)

= 1 +
h3
u
(∂z1 + ∂z2) +

h23
u2

∂z1∂z2 −
h1h2
u2

1

4 sinh2
(
z1−z2

2

) . (7.10)

We see that the coefficients of Taylor expansion in b0 commute as follows from the Yang-

Baxter equation. Interpreting this equation quantum mechanically, we see that we found
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a variant of Pöschl-Teller potential for the relative motion of two particles. The term of

order u−1 is the total momentum while the u−2 term is after addition of the square of the

momentum equal to the energy. We can similarly find the ladder operators:

E(u) = 〈0| T b−1 |0〉 =
1

u
(e−z1 + e−z2) +

h3
u2

(e−z1∂z2 + e−z2∂z1) (7.11)

F(u) = 〈0| b1T |0〉 =
1

u
(ez1 + ez2) +

h3
u2

(ez1∂z2 + ez2∂z1). (7.12)

Analogously to n = 1 case, we don’t expect to find a highest weight representation. But

we can look at a state of vanishing total momentum (i.e. a wave-function depending only

on z1 − z2) with minimum energy. There are two such states,

ϕ1(z1, z2) =

[
sinh2

(
z1 − z2

2

)]−h1
h3

and ϕ2(z1, z2) =

[
sinh2

(
z1 − z2

2

)]−h2
h3

(7.13)

with H(u) eigenvalues
(
u− h1

2

)(
u+ h1

2

)

u2
and

(
u− h2

2

)(
u+ h2

2

)

u2
. (7.14)

We may obtain other states by acting with ladder operators. For example, the action of

E(u) on ϕ1(z1, z2) gives us wave function

(e−z1 + e−z2)ϕ1(z1, z2) (7.15)

which is an eigenstate of H(u) with eigenvalue
(
u− h1

2

)(
u+ h1

2 − h3

)

u2
(7.16)

while the action of F(u) on ϕ1(z1, z2) gives

(ez1 + ez2)ϕ1(z1, z2) (7.17)

with H(u) eigenvalue (
u− h1

2 + h3

)(
u+ h1

2

)

u2
. (7.18)

Action of E(u) followed by the action of F(u) on ϕ1(z1, z2) results in a linear combination

of the state ϕ1(z1, z2) and another state

cosh(z1 − z2)ϕ1(z1, z2) (7.19)

with H(u) eigenvalue (
u− h1

2 + h3

)(
u+ h1

2 − h3

)

u2
. (7.20)

The simplest way how to decouple the states produced by the action of ladder operator into

H(u) eigenstates is to use the ladder operators (6.3) and (4.40) which have the property

that the residues at their simple poles in u are H-eigenstates. This is the analogue of Bethe

states for our algebra.
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Multiple insertions. We can proceed similarly with any number of insertions of L(z).

The ladder operators E(u) and F(u) as well as the Hamiltonian H(u) can be evaluated

straightforwardly using the Wick theorem: the Hamiltonian takes the form

H(u) =
∑

pairings

∏

l unpaired

(
1 + u−1h3∂zl

) ∏

pairs j<k


−

h1h2
u2

1

4 sinh2
(
zj−zk

2

)


 . (7.21)

The sum is over all possible partial pairings. The first product runs over all terms that

are not paired while the second product is the contraction corresponding to contracted

pairs. Incidentally, this kind of generating function of commuting higher Hamiltonians of

n-particle Calogero-Sutherland model was discussed recently in [72]. The leading terms in

the large u expansion of H(u) are

H(u) = 1 +
h3
u

∑

j

∂zj +
1

u2

∑

j<k


h23∂zj∂zk − h1h2

1

4 sinh2
(
zj−zk

2

)


+ (7.22)

+
1

u3

∑

j<k<l


h33∂zj∂zk∂zl − h1h2h3

∂zl

4 sinh2
(
zj−zk

2

) + cycl.


+ · · · (7.23)

where in the last term we have three cyclic permutations of (zj , zk, zl).

One way of writing the ladder operators is to notice that in the case of E(z) the in-

state b−1 |0〉 must be contracted with one of the L(z) operators after which the evaluation

reduces to that of H(z) with one less variable. This means that we have

E(z) = u−1
n∑

j=1

e−zjHĵ(z) (7.24)

F(z) = u−1
n∑

j=1

ezjHĵ(z) (7.25)

where we used the notation Hĵ(u) for (7.21) where the j-th coordinate is left out.

Plane. Instead of finding differential operators acting on the cylinder, we can transform

to the plane via (3.26). The differential operators for one insertion are

H(u) = 1 + u−1h3z̃∂z̃ (7.26)

E(u) = u−1z̃−1 (7.27)

F(u) = u−1z̃, (7.28)

for two insertions

H(u) = 1 + u−1h3(z̃1∂z̃1 + z̃2∂z̃2) + u−2

(
h23z̃1z̃2∂z̃1∂z̃2 − h1h2

z̃1z̃2
(z̃1 − z̃2)2

)
(7.29)

E(u) = u−1(z̃−1
1 + z̃−1

2 ) + u−2h3(z̃
−1
1 z̃2∂z̃2 + z̃−1

2 z̃1∂z̃1) (7.30)

F(u) = u−1(z̃1 + z̃2) + u−2h3(z̃1z̃2∂z̃2 + z̃2z̃1∂z̃1) (7.31)
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etc. Returning to the case of one insertion, we can use the equations (4.35) and (4.40) to

find the generating functions of Tsymbaliuk

e(u) = h−1
3 u−1(1 + u−1h3E)−1z̃−1 (7.32)

f(u) = −h−1
3 u−1z̃(1 + u−1h3E)−1 (7.33)

with Euler operator E ≡ z̃∂z̃. In terms of (spin) modes

ej = (−1)jhj−1
3 Ej z̃−1 (7.34)

fj = (−1)j−1hj−1
3 z̃Ej . (7.35)

These allow us to determine the ψj generators

ψ0 = 0 (7.36)

ψ1 = h−1
3 (7.37)

ψ2 = 1− 2E (7.38)

ψ3 = h3(1− 3E + 3E2) (7.39)

ψ4 = h23(1− 4E + 6E2 − 4E3) (7.40)

and in general

ψj = hj−2
3

j−1∑

k=0

(−1)k
(
j

k

)
Ek = hj−2

3 ((1− E)j − (−E)j). (7.41)

The corresponding generating function of ψ-charges is

ψ(u) =
(u+ h3E + h1)(u+ h3E + h2)

(u+ h3E)(u+ h3E − h3)
. (7.42)

In contrast to representations of the affine Yangian on partitions and plane partitions where

ψ0 6= 0, here ψ0 = 0. This representation of the algebra is the vector representation of [56]

and is the representation that acts on orbital degrees of freedom in Calogero models.

The transition from vector-like representations which have fixed number of Bethe roots

to Fock representations physically corresponds to the transition to the second quantized

picture (or grand-canonical ensemble) with variable number of particles (Bethe roots). The

Fock oscillators can be identified with collective coordinates of the particles.

Torus. Studying the n-point functions of the elementary Miura factor on the plane and

cylinder we found the rational and trigonometric Calogero-Moser-Sutherland models. It is

interesting to observe that if we replace in (7.21) the two-point function

1

4 sinh2
(
zj−zk

2

) (7.43)

by its generalization on a torus which is the Weierstrass function, we find a generating

function of quantum mechanical elliptic Calogero model, i.e.

H(u) =
∑

pairings

∏

l unpaired

(
1 + u−1h3∂zl

) ∏

pairs j<k

(
−
h1h2
u2

℘τ (zj − zk)

)
. (7.44)
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The commutativity of these quantum Hamiltonians is not immediately guaranteed by the

Yang-Baxter equation (because in the Hamiltonian formalism we are using the handle-

insertion operator whose Yang-Baxter equation we have not verified), but still they com-

mute as can be verified on first few Hamiltonians using the identities satisfied by elliptic

functions. The commutativity of quadratic and cubic Hamiltonian requires for example

det




℘(z1 − z2) ℘(z2 − z3) ℘(z3 − z1)

℘′(z1 − z2) ℘′(z2 − z3) ℘′(z3 − z1)

1 1 1


 (7.45)

which is the well-known addition identity for Weierstrass elliptic function.

Summary. In this section we interpreted the Miura transformation as a transfer matrix

in the mixed representation where one of the vector spaces is the Fock space while the other

one is a space of functions of worldsheet position z with action of differential operators. The

Yangian generators that we found were geometrically given by CFT correlation functions

on a sphere or a cylinder with insertions of elementary Miura factors. The choice of in and

out state specifies the Yangian generator. The Yangian algebra itself was insensitive to

positions of insertions of Miura factors or their number. The Yangian algebra is encoding

the Ward identities for this class of correlators. There are few obvious generalizations that

one can consider: instead of N = 1 Fock space and Miura operator one could consider the

higher rank case. The whole discussion should be entirely analogous. Another possible

generalization would be to consider more complicated insertions. Interpreting the differen-

tial operators representing the Yangian as differential operators acting on moduli space of

punctured spheres, one could also ask what happens if the genus is higher than zero.

8 Outlook

There are various possible directions in which the results of this article could be extended.

We found two formulas for the R-matrix of the mixed type, but if the Fock spaces are of

the same type, the only explicit expression known so far is the fermionic formula derived

by Smirnov [58]. Parts of that formula are quite reminiscent of the mixed R-matrix at

ρ = 1 discussed here so perhaps the ρ 6= 1 bosonic R-matrix is not out of the reach.

We also made only first steps in exploration of the structure of Maulik-Okounkov

Yangian. We found a map from the Maulik-Okounkov Yangian to Arbesfeld-Schiffmann-

Tsymbaliuk algebra, but it is not clear what is its kernel. It doesn’t seem to be trivial, so

in the optimistic case it could be central.9 Focusing on simpler vector representations of

the Yangian could possibly further simplify the problem of studying the R-matrix.

Orthosymplectic case. The R-matrix considered here is associated to W-algebras of

Dynkin type AN−1. But there are also orthosymplectic W-algebras which are quotients of

even spin subalgebra of W1+∞. On the level of classical differential operators one can get

the orthosymplectic spin chain by adding a reflection operator at one of the ends of the

9Thanks to O. Schiffmann for discussing this issue.
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spin chain [89]. Better understanding how this works in the quantum case could lead to

an analogue of Arbesfeld-Schiffmann-Tsymbaliuk description of even spin W∞ev.

Calogero models. We found in the last section that the correlation functions of rank 1

Miura factors on a cylinder produce Hamiltonians and ladder operators of the trigonometric

Calogero-Sutherland model. The generalization to higher ranks is straightforward, but it

would be interesting to see if there is also a similar picture that would apply to higher

genus Riemann surfaces or to different types of insertions. The Hitchin systems provide a

large class of classical integrable models labeled by (punctured) Riemann surfaces together

with a gauge group so it would be interesting to see which of those one can reproduce

using the Maulik-Okounkov R-matrix approach. In the conformal field theory we have

Knizhink-Zamolodchikov-Bernard equations which take a form of differential equations on

Riemann surfaces so one should see how these are related.

Classical integrability and KP hierarchy. There is a well-developed theory of hi-

erarchies of classical integrable partial differential equations [84, 86]. The WN -algebras

considered here are quantization of the first equations of KdVN hierarchies. Just like W∞

interpolates between all WN algebras, there is a KP hierarchy containing all the KdVN

hierarchies. There is a way of encoding the hierarchy into Hirota equations for tau function

which in its symmetric formulation [86] is reminiscent of the triality-invariant variables like

those of Arbesfeld-Schiffmann-Tsymbaliuk. It would be nice to understand what is the

quantum analogue of all of these classical constructions.

q-deformed version. Everything discussed here has an analogue in the context of quan-

tum toroidal or Ding-Iohara-Miki algebras [79, 90, 91]. In particular, the R-matrix in q-

deformed setting was studied in detail in a series of papers [87, 92, 93] and in [94]. Since

there is a Macdonald q-deformed version of Nazarov-Sklyanin opertors [95], it could be

interesting to see if it could lead to any additional insights in combination with the well-

developed story of [87, 92, 93]. It would be also useful to translate the results on shuffle

algebras studied in detail in the q-deformed case [96–98] to the rational setting. In partic-

ular, the shuffle algebra could be the right way to describe more general matrix elements

of the R-matrix studied here.
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A Higher order expressions for R-matrix

The fourth order expression for R-matrix (in terms of J− current) is

R(4) = r(4) +
1

24

(
r(1)

)4
+

1

2

(
r(1)r(3) + r(3)r(1) + r(2)r(2)

)

+
1

6

(
r(1)r(1)r(2) + r(1)r(2)r(1) + r(2)r(1)r(1)

)
(A.1)

and

r(4) =
1

4

∑

j1,j2,j3,j4>0

(a−j1a−j2a−j3a−j4aj1+j2+j3+j4 + a−j1−j2−j3−j4aj1aj2aj3aj4)

+
1

2

∑

j1+j2=k1+k2+k3

(a−j1a−j2ak1ak2ak3 + a−k1a−k2a−k3aj1aj2)

−
ρ

8

∑

j1,j2>0

(a−j1a−j2aj1+j2 + a−j1−j2aj1aj2) (A.2)

+
ρ(ρ+ 1)

8

∑

j1,j2>0

(j21 + j22 + j1j2) (a−j1a−j2aj1+j2 + a−j1−j2aj1aj2) .

At fifth order, we have

r(5) = −
1

5

∑

j1,j2,j3,j4,j5>0

(a−j1a−j2a−j3a−j4a−j5aj1+j2+j3+j4+j5+a−j1−j2−j3−j4−j5aj1aj2aj3aj4aj5)

−
1

2

∑

j1+j2+j3+j4=k1+k2

(a−j1a−j2a−j3a−j4ak1
ak2

+a−k1
a−k2

aj1aj2aj3aj4)

−
2

3

∑

j1+j2+j3=k1+k2+k3

a−j1a−j2a−j3ak1
ak2

ak3

+
ρ

6

∑

j1,j2,j3>0

(a−j1a−j2a−j3aj1+j2+j3+a−j1−j2−j3aj1aj2aj3)

−
ρ(ρ+1)

6

∑

j1,j2,j3>0

(j21+j22+j23+j1j2+j1j3+j2j3)× (A.3)

×(a−j1a−j2a−j3aj1+j2+j3+a−j1−j2−j3aj1aj2aj3)

+
ρ

4

∑

j1+j2=k1+k2

a−j1a−j2ak1
ak2

−
ρ(ρ+1)

8

∑

j1+j2=k1+k2

(j21+j22+k21+k22)a−j1a−j2ak1
ak2

−
ρ2(3ρ2+9ρ+4)

240

∑

j>0

j4a−jaj+
ρ2(ρ+1)

24

∑

j>0

j2a−jaj−
ρ2(ρ+6)

240

∑

j>0

a−jaj .

B Fock representation of W1+∞

Since we are using here slightly different normalization of Fock oscillators than the one

used in [57], let us summarize here the generators of W1+∞ in terms of the oscillators. For
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concreteness we choose the representation associated to the third direction and choose the

zero mode b0 to act as zero (it can be reintroduced easily by a spectral shift).

ψ0 = −
1

h1h2

ψ1 = 0

ψ2 = −2h1h2
∑

j>0

b−jbj

e0 = b−1 (B.1)

f0 = −b1

e1 = −h1h2
∑

j>0

b−j−1bj

f1 = h1h2
∑

j>0

b−jbj+1 .

Box addition amplitudes in this representation

e0J1 = −
h2

h1 − h2
J2 +

h1
h1 − h2

J1,1

e0J2 = −
h2

2h1 − h2
J3 +

2h1
2h1 − h2

J2,1

e0J1,1 = −
2h2

h1 − 2h2
J2,1 +

h1
h1 − 2h2

J1,1,1

e0J3 = −
h2

3h1 − h2
J4 +

3h1
3h1 − h2

J3,1 (B.2)

e0J2,1 = −
h2(h1 − 2h2)

2(h1 − h2)2
J3,1 −

h1h2
(h1 − h2)2

J2,2 +
h1(2h1 − h2)

2(h1 − h2)2
J2,1,1

e0J1,1,1 = −
3h2

h1 − 3h2
J2,1,1 +

h1
h1 − 3h2

J1,1,1,1 .

Box annihilation amplitudes are instead

f0J1 =
1

h1h2
J•

f0J2 =
2

h1h2
J1

f0J1,1 =
2

h1h2
J1

f0J3 =
3

h1h2
J2

f0J2,1 =
h1 − 2h2

h1h2(h1 − h2)
J2 +

2h1 − h2
h1h2(h1 − h2)

J1,1

f0J1,1,1 =
3

h1h2
J1,1 (B.3)
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f0J4 =
4

h1h2
J3

f0J3,1 =
2(h1 − h2)

h1h2(2h1 − h2)
J3 +

6h1 − 2h2
h1h2(2h1 − h2)

J2,1

f0J2,2 =
4

h1h2
J2,1

f0J2,1,1 =
2(h1 − 3h2)

h1h2(h1 − 2h2)
J2,1 +

2h1 − 2h2
h1h2(h1 − 2h2)

J1,1,1

f0J1,1,1,1 =
4

h1h2
J1,1,1 .

C Higher relations of Yangian algebra

C.1 [E,F ] relations

For an illustration, let’s discuss higher order relations of Yangian algebra. Analogously to

H, E and F , we can define

H
(τ)
�

= 〈0|A aA,1T
(τ)
�,AaA,−1 |0〉A . (C.1)

The Yang-Baxter equation implies relations

(uA−uB+hA)(uA−uB−hB)H
AHB

� = −h2BH
BHA

�+(uA−uB)(uA−uB+hA−hB)H
B
�H

A

−hB(uA−uB)E
BFA+hB(uA−uB+hA−hB)F

BEA

(C.2)

and

(uA−uB+hA)(uA−uB−hB)H
A
�H

B = (uA−uB)(uA−uB+hA−hB)H
BHA

�−h2AH
B
�H

A

+hA(uA−uB)E
BFA−hA(uA−uB+hA−hB)F

BEA.

(C.3)

Permuting labels A ↔ B we find additional two relations

(uA−uB+hA)(uA−uB−hB)H
BHA

� = (uA−uB)(uA−uB+hA−hB)H
A
�H

B−h2AH
AHB

�

+hA(uA−uB)E
AFB−hA(uA−uB+hA−hB)F

AEB

(C.4)

and

(uA−uB+hA)(uA−uB−hB)H
B
�H

A = (uA−uB)(uA−uB+hA−hB)H
AHB

�−h2BH
A
�H

B

−hB(uA−uB)E
AFB+hB(uA−uB+hA−hB)F

AEB.

(C.5)

We also have relations

(uA−uB+hA)(uA−uB−hB)E
AFB = −hB(uA−uB+hA−hB)H

BHA
�
+hA(uA−uB+hA−hB)H

B
�
HA

−hAhBE
BFA+(uA−uB+hA−hB)

2FBEA (C.6)
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and

(uA − uB + hA)(uA − uB − hB)F
AEB = hB(uA − uB)H

BHA
� − hA(uA − uB)H

B
�H

A

+ (uA − uB)
2EBFA − hAhBF

BEA. (C.7)

as well as their A ↔ B permutations

(uA−uB+hA)(uA−uB−hB)E
BFA = hA(uA−uB+hA−hB)H

AHB
�
−hB(uA−uB+hA−hB)H

A
�
HB

−hAhBE
AFB+(uA−uB+hA−hB)

2FAEB (C.8)

and

(uA − uB + hA)(uA − uB − hB)F
BEA = −hA(uA − uB)H

AHB
� + hB(uA − uB)H

A
�H

B

+ (uA − uB)
2EAFB − hAhBF

AEB. (C.9)

Out of these 8 relations for 8 unknowns, only 4 are independent. We can eliminate from

these equations H� (and thus also H) and find

(uA − uB)(E
AFB − EBFA) = (uA − uB + hA − hB)(F

BEA −FAEB) . (C.10)

Note that this equation is trivially satisfied for A = B, i.e. for auxiliary spaces of the same

type. Analogously we can derive relations

hA
[
HA,HB

�

]
= hB

[
HB,HA

�

]
(C.11)

(uA − uB)E
BFA − (uA − uB + hA − hB)F

AEB = hAH
B
�H

A − hBH
A
�H

B (C.12)

hB
[
EA,FB

]
+ hB

[
FA, EB

]
= (hA − hB)

[
HA,HB

�

]
(C.13)

(uA − uB + hA − hB)
[
HA,HB

�

]
= hB(E

AFB − EBFA) . (C.14)

C.2 [E, E] relations

Consider now two additional operators by taking the matrix elements

E
(τ)
2 = 〈0|A T

(τ)
A aA,−2 |0〉A (C.15)

and

E
(τ)
1,1 = 〈0|A T

(τ)
A a2A,−1 |0〉A . (C.16)

To derive the commutation relations between these and H(τ), we need to know the matrix

elements of RAB at level 2. It is straightforward to derive these from (3.58) but since the

result is quite complicated, let us specialize for simplicity to τA = τB = τ . In this case

we have

∆RABaA,−2 |0〉 = (uA−uB)(hτ (uA−uB+hτ )
2+σ3)aA,−2−hτ (uA−uB)σ3a

2
A,−1

+hτ (2hτ (uA−uB+hτ )
2+σ3)aB,−2−hτ (uA−uB)σ3a

2
B,−1

+2hτ (uA−uB)σ3aA,−1aB,−1 (C.17)
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∆RABaB,−2 |0〉 = hτ (2hτ (uA−uB+hτ )
2+σ3)aA,−2+hτ (uA−uB)σ3a

2
A,−1

+(uA−uB)(hτ (uA−uB+hτ )
2+σ3)aB,−2+hτ (uA−uB)σ3a

2
B,−1

−2hτ (uA−uB)σ3aA,−1aB,−1 (C.18)

∆RABa
2
A,−1 |0〉 = h2τ (uA−uB)aA,−2+(uA−uB)(hτ (uA−uB+hτ )

2+σ3−h3τ )a
2
A,−1

−h2τ (uA−uB)aB,−2+hτ (h
2
τ (uA−uB+2hτ )+σ3)a

2
B,−1

+2h2τ (uA−uB)(uA−uB+2hτ )aA,−1aB,−1 (C.19)

∆RABa
2
B,−1 |0〉 = h2τ (uA−uB)aA,−2+hτ (h

2
τ (uA−uB+2hτ )+σ3)a

2
A,−1

−h2τ (uA−uB)aB,−2+(uA−uB)(hτ (uA−uB+hτ )
2+σ3−h3τ )a

2
B,−1

+2h2τ (uA−uB)(uA−uB+2hτ )aA,−1aB,−1 (C.20)

∆RABaA,−1aB,−1 |0〉 = −h2τ (uA−uB)aA,−2+h2τ (uA−uB)(uA−uB+2hτ )a
2
A,−1

+h2τ (uA−uB)aB,−2+h2τ (uA−uB)(uA−uB+2hτ )a
2
B,−1 (C.21)

+(σ3(uA−uB+hτ )+hτ (uA−uB+2hτ )((uA−uB)
2+h2τ ))aA,−1aB,−1

where

∆ = (uA − uB + hτ ) [hτ (uA − uB + hτ )(uA − uB + 2hτ ) + σ3] . (C.22)

The level 2 relations are then

∆E2(u)H(v) = (u− v)(hτ (u− v + hτ )
2 + σ3)H(v)E2(u)− hτ (u− v)σ3H(v)E1,1(u)

+ hτ (2hτ (u− v + hτ )
2 + σ3)E2(v)H(u)− hτ (u− v)σ3E1,1(v)H(u)

+ 2hτ (u− v)σ3E(v)E(u) (C.23)

∆H(u)E2(v) = hτ (2hτ (u− v + hτ )
2 + σ3)H(v)E2(u) + hτ (u− v)σ3H(v)E1,1(u)

+ (u− v)(hτ (u− v + hτ )
2 + σ3)E2(v)H(u) + hτ (u− v)σ3E1,1(v)H(u)

− 2hτ (u− v)σ3E(v)E(u) (C.24)

∆E1,1(u)H(v) = h2τ (u− v)H(v)E2(u) + (u− v)(hτ (u− v + hτ )
2 + σ3 − h3τ )H(v)E1,1(u)

− h2τ (u− v)E2(v)H(u) + hτ (h
2
τ (u− v + 2hτ ) + σ3)E1,1(v)H(u)

+ 2h2τ (u− v)(u− v + 2hτ )E(v)E(u) (C.25)

∆H(u)E1,1(v) = h2τ (u− v)H(v)E2(u) + hτ (h
2
τ (u− v + 2hτ ) + σ3)H(v)E1,1(u)

− h2τ (u− v)E2(v)H(u) + (u− v)(hτ (u− v + hτ )
2 + σ3 − h3τ )E1,1(v)H(u)

+ 2h2τ (u− v)(u− v + 2hτ )E(v)E(u) (C.26)

∆E(u)E(v) = −h2τ (u− v)H(v)E2(u) + h2τ (u− v)(u− v + 2hτ )H(v)E1,1(u)

+ h2τ (u− v)E2(v)H(u) + h2τ (u− v)(u− v + 2hτ )E1,1(v)H(u)

+ (σ3(u− v + hτ ) + hτ (u− v + 2hτ )((u− v)2 + h2τ ))E(v)E(u) . (C.27)

We can find another 5 relations if we exchange u ↔ v. In total, we have 10 homogeneous

linear equations for 10 unknowns, but three of the equations are dependent (the matrix of

the linear system has rank 5). We can eliminate some variables and find

[H(u), E2(v)] = [H(v), E2(u)] (C.28)
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(which is a consequence of commutativity of R with J+),

(u− v) [H(u), E2(v)] + 2h3 (H(u)E2(v)−H(v)E2(u)) = h1h2 [E(u), E(v)] (C.29)

generalizing (3.91) or

(2h3(u− v + h3) + h1h2)E(u)E(v) + (2h3(u− v − h3)− h1h2)E(v)E(u) =

= 2(u− v)((u− v + h3)H(u)E1,1(v)− (u− v − h3)E1,1(v)H(u))− (u− v) [H(u), E2(v)] .

(C.30)
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A.B. Zamolodchikov, Infinite Additional Symmetries in Two-Dimensional Conformal

Quantum Field Theory, Theor. Math. Phys. 65 (1985) 1205 [INSPIRE].

[2] P. Di Francesco, C. Itzykson and J.B. Zuber, Classical W algebras,

Commun. Math. Phys. 140 (1991) 543 [INSPIRE].

[3] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and S. Pakuliak, Conformal matrix

models as an alternative to conventional multimatrix models, Nucl. Phys. B 404 (1993) 717

[hep-th/9208044] [INSPIRE].

[4] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and

integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].

[5] A. Cappelli, C.A. Trugenberger and G.R. Zemba, Infinite symmetry in the quantum Hall

effect, Nucl. Phys. B 396 (1993) 465 [hep-th/9206027] [INSPIRE].

[6] A. Cappelli, C.A. Trugenberger and G.R. Zemba, Stable hierarchical quantum hall fluids as

W1+∞ minimal models, Nucl. Phys. B 448 (1995) 470 [hep-th/9502021] [INSPIRE].

[7] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of

three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007

[arXiv:1008.4744] [INSPIRE].

[8] A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in

three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290]

[INSPIRE].

[9] M.R. Gaberdiel and R. Gopakumar, An AdS3 Dual for Minimal Model CFTs,

Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

[10] M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition Functions of

Holographic Minimal Models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].

[11] A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional

anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

[12] E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System,

Nucl. Phys. B 311 (1988) 46 [INSPIRE].

– 52 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF01036128
https://inspirehep.net/search?p=find+J+%22Theor.Math.Phys.,65,1205%22
https://doi.org/10.1007/BF02099134
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,140,543%22
https://doi.org/10.1016/0550-3213(93)90595-G
https://arxiv.org/abs/hep-th/9208044
https://inspirehep.net/search?p=find+EPRINT+hep-th/9208044
https://doi.org/10.1007/s00220-005-1448-9
https://arxiv.org/abs/hep-th/0312085
https://inspirehep.net/search?p=find+EPRINT+hep-th/0312085
https://doi.org/10.1016/0550-3213(93)90660-H
https://arxiv.org/abs/hep-th/9206027
https://inspirehep.net/search?p=find+EPRINT+hep-th/9206027
https://doi.org/10.1016/0550-3213(95)00233-I
https://arxiv.org/abs/hep-th/9502021
https://inspirehep.net/search?p=find+EPRINT+hep-th/9502021
https://doi.org/10.1007/JHEP11(2010)007
https://arxiv.org/abs/1008.4744
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4744
https://doi.org/10.1007/JHEP09(2011)113
https://arxiv.org/abs/1107.0290
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0290
https://doi.org/10.1103/PhysRevD.83.066007
https://arxiv.org/abs/1011.2986
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2986
https://doi.org/10.1007/JHEP08(2011)077
https://arxiv.org/abs/1106.1897
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.1897
https://doi.org/10.1016/0370-2693(86)90140-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B180,89%22
https://doi.org/10.1016/0550-3213(88)90143-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B311,46%22


J
H
E
P
1
2
(
2
0
1
9
)
0
9
9

[13] J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic

Symmetries: An Example from Three-Dimensional Gravity,

Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

[14] M.R. Gaberdiel and C. Vollenweider, Minimal Model Holography for SO(2N),

JHEP 08 (2011) 104 [arXiv:1106.2634] [INSPIRE].

[15] C. Candu, M.R. Gaberdiel, M. Kelm and C. Vollenweider, Even spin minimal model

holography, JHEP 01 (2013) 185 [arXiv:1211.3113] [INSPIRE].

[16] C. Candu and M.R. Gaberdiel, Supersymmetric holography on AdS3, JHEP 09 (2013) 071

[arXiv:1203.1939] [INSPIRE].

[17] C. Candu and M.R. Gaberdiel, Duality in N = 2 Minimal Model Holography,

JHEP 02 (2013) 070 [arXiv:1207.6646] [INSPIRE].

[18] M.R. Gaberdiel and R. Gopakumar, Large N = 4 Holography, JHEP 09 (2013) 036

[arXiv:1305.4181] [INSPIRE].

[19] M. Beccaria, C. Candu and M.R. Gaberdiel, The large N = 4 superconformal W∞ algebra,

JHEP 06 (2014) 117 [arXiv:1404.1694] [INSPIRE].

[20] M.R. Gaberdiel and C. Peng, The symmetry of large N = 4 holography, JHEP 05 (2014) 152

[arXiv:1403.2396] [INSPIRE].

[21] T. Creutzig, Y. Hikida and P.B. Ronne, Higher spin AdS3 holography with extended

supersymmetry, JHEP 10 (2014) 163 [arXiv:1406.1521] [INSPIRE].

[22] D. Kumar and M. Sharma, Conformal embeddings and higher-spin bulk duals,

Phys. Rev. D 95 (2017) 066015 [arXiv:1606.00791] [INSPIRE].

[23] M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP 11 (2014) 044

[arXiv:1406.6103] [INSPIRE].

[24] M.R. Gaberdiel and R. Gopakumar, Stringy Symmetries and the Higher Spin Square,

J. Phys. A 48 (2015) 185402 [arXiv:1501.07236] [INSPIRE].

[25] M.R. Gaberdiel and R. Gopakumar, String Theory as a Higher Spin Theory,

JHEP 09 (2016) 085 [arXiv:1512.07237] [INSPIRE].

[26] M. Sharma, The Higher Spin Rectangle, JHEP 01 (2018) 073 [arXiv:1708.04996] [INSPIRE].

[27] L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on

AdS3 × S3 × S3 × S1, JHEP 08 (2017) 111 [arXiv:1707.02705] [INSPIRE].

[28] L. Eberhardt, M.R. Gaberdiel and I. Rienacker, Higher spin algebras and large N = 4

holography, JHEP 03 (2018) 097 [arXiv:1801.00806] [INSPIRE].

[29] L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The Worldsheet Dual of the Symmetric

Product CFT, JHEP 04 (2019) 103 [arXiv:1812.01007] [INSPIRE].

[30] D. Kumar and M. Sharma, Symmetry Algebras of Stringy Cosets, JHEP 08 (2019) 179

[arXiv:1812.11920] [INSPIRE].

[31] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from

Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219]

[INSPIRE].

[32] N. Wyllard, AN−1 conformal Toda field theory correlation functions from conformal N = 2

SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

– 53 –

https://doi.org/10.1007/BF01211590
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,104,207%22
https://doi.org/10.1007/JHEP08(2011)104
https://arxiv.org/abs/1106.2634
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2634
https://doi.org/10.1007/JHEP01(2013)185
https://arxiv.org/abs/1211.3113
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3113
https://doi.org/10.1007/JHEP09(2013)071
https://arxiv.org/abs/1203.1939
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1939
https://doi.org/10.1007/JHEP02(2013)070
https://arxiv.org/abs/1207.6646
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.6646
https://doi.org/10.1007/JHEP09(2013)036
https://arxiv.org/abs/1305.4181
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4181
https://doi.org/10.1007/JHEP06(2014)117
https://arxiv.org/abs/1404.1694
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1694
https://doi.org/10.1007/JHEP05(2014)152
https://arxiv.org/abs/1403.2396
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2396
https://doi.org/10.1007/JHEP10(2014)163
https://arxiv.org/abs/1406.1521
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1521
https://doi.org/10.1103/PhysRevD.95.066015
https://arxiv.org/abs/1606.00791
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00791
https://doi.org/10.1007/JHEP11(2014)044
https://arxiv.org/abs/1406.6103
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6103
https://doi.org/10.1088/1751-8113/48/18/185402
https://arxiv.org/abs/1501.07236
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.07236
https://doi.org/10.1007/JHEP09(2016)085
https://arxiv.org/abs/1512.07237
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07237
https://doi.org/10.1007/JHEP01(2018)073
https://arxiv.org/abs/1708.04996
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.04996
https://doi.org/10.1007/JHEP08(2017)111
https://arxiv.org/abs/1707.02705
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.02705
https://doi.org/10.1007/JHEP03(2018)097
https://arxiv.org/abs/1801.00806
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.00806
https://doi.org/10.1007/JHEP04(2019)103
https://arxiv.org/abs/1812.01007
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.01007
https://doi.org/10.1007/JHEP08(2019)179
https://arxiv.org/abs/1812.11920
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.11920
https://doi.org/10.1007/s11005-010-0369-5
https://arxiv.org/abs/0906.3219
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3219
https://doi.org/10.1088/1126-6708/2009/11/002
https://arxiv.org/abs/0907.2189
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2189


J
H
E
P
1
2
(
2
0
1
9
)
0
9
9

[33] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting,

Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[34] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions,

Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].

[35] O. Schiffmann and E. Vasserot, Cherednik algebras, W-algebras and the equivariant

cohomology of the moduli space of instantons on A2, Publ. Math. Paris 118 (2013) 213

[arXiv:1202.2756].

[36] D. Maulik and A. Okounkov, Quantum Groups and Quantum Cohomology,

arXiv:1211.1287 [INSPIRE].

[37] A. Braverman, M. Finkelberg and H. Nakajima, Instanton moduli spaces and W-algebras,

arXiv:1406.2381 [INSPIRE].

[38] Y. Tachikawa, A review on instanton counting and W-algebras, in

New Dualities of Supersymmetric Gauge Theories , J. Teschner ed., Springer, Cham

Switzerland (2016), pp. 79–120 [arXiv:1412.7121] [INSPIRE].

[39] M. Rapcak, Y. Soibelman, Y. Yang and G. Zhao, Cohomological Hall algebras, vertex

algebras and instantons, arXiv:1810.10402 [INSPIRE].

[40] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral

Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344]

[INSPIRE].

[41] C. Beem, L. Rastelli and B.C. van Rees, W symmetry in six dimensions,

JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].

[42] F. Bastianelli and R. Zucchini, Three point functions of chiral primary operators in d = 3,

N = 8 and d = 6, N = (2, 0) SCFT at large N , Phys. Lett. B 467 (1999) 61

[hep-th/9907047] [INSPIRE].

[43] R. Corrado, B. Florea and R. McNees, Correlation functions of operators and Wilson

surfaces in the d = 6, (0, 2) theory in the large N limit, Phys. Rev. D 60 (1999) 085011

[hep-th/9902153] [INSPIRE].

[44] S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences,

arXiv:1006.3435 [INSPIRE].

[45] C. Cordova and S.-H. Shao, Schur Indices, BPS Particles and Argyres-Douglas Theories,

JHEP 01 (2016) 040 [arXiv:1506.00265] [INSPIRE].

[46] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants

and cluster transformations, arXiv:0811.2435 [INSPIRE].

[47] M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures

and motivic Donaldson-Thomas invariants, Commun. Num. Theor. Phys. 5 (2011) 231

[arXiv:1006.2706] [INSPIRE].

[48] L. Fredrickson and A. Neitzke, From S1-fixed points to W-algebra representations,

arXiv:1709.06142 [INSPIRE].

[49] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB

Approximation, arXiv:0907.3987 [INSPIRE].

[50] K. Hornfeck, W algebras of negative rank, Phys. Lett. B 343 (1995) 94 [hep-th/9410013]

[INSPIRE].

– 54 –

https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
https://doi.org/10.1007/0-8176-4467-9_15
https://arxiv.org/abs/hep-th/0306238
https://inspirehep.net/search?p=find+EPRINT+hep-th/0306238
https://doi.org/10.1007/s10240-013-0052-3
https://arxiv.org/abs/1202.2756
https://arxiv.org/abs/1211.1287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1287
https://arxiv.org/abs/1406.2381
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2381
https://doi.org/10.1007/978-3-319-18769-3_4
https://arxiv.org/abs/1412.7121
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7121
https://arxiv.org/abs/1810.10402
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.10402
https://doi.org/10.1007/s00220-014-2272-x
https://arxiv.org/abs/1312.5344
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5344
https://doi.org/10.1007/JHEP05(2015)017
https://arxiv.org/abs/1404.1079
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1079
https://doi.org/10.1016/S0370-2693(99)01179-X
https://arxiv.org/abs/hep-th/9907047
https://inspirehep.net/search?p=find+EPRINT+hep-th/9907047
https://doi.org/10.1103/PhysRevD.60.085011
https://arxiv.org/abs/hep-th/9902153
https://inspirehep.net/search?p=find+EPRINT+hep-th/9902153
https://arxiv.org/abs/1006.3435
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.3435
https://doi.org/10.1007/JHEP01(2016)040
https://arxiv.org/abs/1506.00265
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00265
https://arxiv.org/abs/0811.2435
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.2435
https://doi.org/10.4310/CNTP.2011.v5.n2.a1
https://arxiv.org/abs/1006.2706
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2706
https://arxiv.org/abs/1709.06142
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.06142
https://arxiv.org/abs/0907.3987
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3987
https://doi.org/10.1016/0370-2693(94)01442-F
https://arxiv.org/abs/hep-th/9410013
https://inspirehep.net/search?p=find+EPRINT+hep-th/9410013


J
H
E
P
1
2
(
2
0
1
9
)
0
9
9

[51] M.R. Gaberdiel and R. Gopakumar, Triality in Minimal Model Holography,

JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].

[52] A.R. Linshaw, Universal two-parameter W∞-algebra and vertex algebras of type

W(2, 3, . . . , N), arXiv:1710.02275 [INSPIRE].

[53] S. Kanade and A.R. Linshaw, Universal two-parameter even spin W∞-algebra,

Adv. Math. 355 (2019) 106774 [arXiv:1805.11031] [INSPIRE].

[54] O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and

Macdonald polynomials, Compos. Math. 147 (2011) 188.

[55] N. Arbesfeld and O. Schiffmann, A Presentation of the Deformed W1+∞ Algebra, in

Symmetries, Integrable Systems and Representations , K. Iohara, S. Morier-Genoud and
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[96] A. Neguţ, Quantum toroidal and shuffle algebras, arXiv:1302.6202 [INSPIRE].

[97] A. Neguţ, Exts and the AGT relations, Lett. Math. Phys. 106 (2016) 1265

[arXiv:1510.05482] [INSPIRE].
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