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José Geraldo Pereira

Agosto de 2017



Abstract

Due to the existence of an invariant length at the Planck scale, Einstein special relativ-
ity breaks down at that scale. A possible solution to this problem is arguably to replace
the Poincaré-invariant Einstein special relativity by a de Sitter invariant special relativity.
Such replacement produces concomitant changes in all relativistic theories, including of
course general relativity, which changes to what is called de Sitter modified general re-
lativity, whose gravitational field equation is the de Sitter modified Einstein equation. A
crucial property of this theory is that both the background de Sitter curvature and the grav-
itational dynamical curvature turns out to be included in the same curvature tensor. This
means that the cosmological term Λ no longer explicitly appears in Einstein equation, and
is consequently not restricted to be constant. In the first part of the thesis, a new definition
for black hole entropy is defined. This new notion of entropy is strongly attached to the
local symmetry, given the fact to be composed of two parts: the usual translational-related
entropy plus an additional piece related to the proper conformal transformation. Also, it is
obtained the de Sitter modified Schwarzschild solution, and using this solution we explore
the consequences for the definition of entropy, as well as for the thermodynamics of the
Schwarzschild-de Sitter system. In the second part the Newtonian limit of the de Sitter
modified Einstein equation is obtained, and the ensuing Newtonian Friedmann equations
are show to provide a good account of the dark energy content of the present-day uni-
verse. Finally, by using the same Newtonian limit, the circular velocity of stars around
the galactic center is studied. It is shown that the de Sitter modified Newtonian force,
which becomes effective only in the Keplerian region of the galaxy, could possibly ex-
plain the flat rotation curve of galaxies without necessity of supposing the existence of
dark matter.

Keywords: de Sitter invariant special relativity; de Sitter modified gravitational theory;
dark energy problem; dark matter problem.
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Resumo

Devido à existência de um comprimento invariante na escala de Planck, a relatividade
especial de Einstein deixa de ser válida naquela escala. Uma solução possı́vel para esse
problema é trocar a relatividade especial de Einstein, a qual tem o grupo de Poincaré como
grupo de simetria, por uma relatividade especial invariante sob o grupo de de Sitter. Essa
troca irá produzir mudanças concomitantes em todas as teorias relativı́sticas, incluindo
naturalmente a teoria da relatividade geral. Essa teoria dá origem ao que denominamos
de Sitter modified general relativity, cuja equação para o campo gravitacional foi cha-
mada de de Sitter modified Einstein equation. Uma propriedade crucial dessa teoria é que
tanto a curvatura de fundo de de Sitter como a curvatura dinâmica da gravitação estão
ambas incluı́das no mesmo tensor de curvatura. Isso significa que o termo cosmológico
Λ não aparece explicitamente na equação de Einstein, e consequentemente não é restrito
a ser uma constante. Trabalhando no contexto da de Sitter modified general relativity,
na primeira parte da tese, uma nova definição de entropia para buraco negro é definido.
Esta nova noção de entropia está fortemente ligado à simetria local, dado o fato de ser
composto por duas partes:uma associada as translação e uma parte adicional relacionada
com a transformação conformal. Assim mesmo, nós obtemos a solução de Schwarz-
schild modificada por de Sitter. Usando essa solução exploramos as consequências para
a definição de entropia, bem como para a termodinâmica do sistema de Schwarzschild-de
Sitter. Na segunda parte da tese obtemos o limite Newtoniano da de Sitter modified Ein-
stein equation, e usamos as correspondentes equações de Friedmann Newtonianas para
estudar o problema da energia escura. Mostramos que essas equações fornecem uma
solução bastante razoável para a existência de energia escura do universo atual. Final-
mente, usamos o mesmo limite Newtoniano para estudar a velocidade circular de estrelas
ao redor do núcleo galáctico. Mostramos que a força Newtoniana modificada por de Sit-
ter, a qual torna-se ativa apenas na região Kepleriana da galáxia, pode explicar as curvas
de rotação planas sem necessidade de supor a existência de matéria escura.

Palavras chave: Relatividade especial de de Sitter; teoria gravitacional modificada por
de Sitter; problema da energia escura; problema da matéria escura.
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hasta llegar aqui y es por eso, que no se puede cerrar éste capı́tulo sin mirar hacia atras y
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Preamble

Our understanding of elementary particle physics is intimately related to both group rep-
resentations and special relativity. In fact, all particles of Nature can be classified ac-
cording to the irreducible representations of the Poincaré group P, the kinematic group
of special relativity. This property suggests that the symmetry of special relativity must
be considered as an exact symmetry of Nature. In principle, therefore, there is no reason
to replace Poincaré as the kinematic group of spacetime. However, when one tries to
stick together, elementary particle physics or quantum field theory with gravitation, one
faces conceptual problems related to the existence of a limit length scale, given by the
Planck length. This scale, as is well known, shows up as the threshold of a new physics,
represented by quantum gravity, means that the Planck length or some fundamental scale
related to it must remain invariant under the relevant kinematics ruling the high-energy
physics near to the Planck scale. Since in ordinary special relativity a length will contract
by Lorentz transformations, the invariance requirement of such length scale seems to in-
dicate that either the Lorentz symmetry must be broken down or the action of the Lorentz
group L—in particular the boosts—must in some way be modified, i.e near the Planck
scale, the Poincaré group must be replaced by a more general group, which will preside
over the high-energy kinematics.

The emergence of a new theory, or even a reformulation of one that already exists, is
a direct consequence of the impossibility of the currents to bring statements in order to
explain some experimental facts. Newton’s theory enjoyed its greatest success when it
was used to predict the existence of Neptune based on motions of Uranus, facts that could
not be accounted for by the actions of the other planets. Nevertheless, a discrepancy in
Mercury’s orbit pointed out flaws in Newton’s theory. By the end of the 19th century,
it was known that its orbit showed slight perturbations that could not be accounted for
entirely under Newton’s theory, but all searches for another perturbing body (such as a
planet orbiting the Sun even closer than Mercury) had been fruitless. Einstein in 1915
found the way to give the explanation to this fact with his theory of general relativity
(GR), which accounted for the small discrepancy in Mercury’s orbit.

From the kinematics point of view the Newton’s theory is invariant under the Galilean
transformation; a group of transformation that ruled a physics based on an absolute time
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and space. Nevertheless, at the end of the 19th century, the wave theory of light as a
disturbance of a ”light medium” or luminiferous ether was widely accepted, the theory
reaching its most developed form in the work of James Clerk Maxwell. According to
Maxwell’s theory, all optical and electrical phenomena propagate through that medium,
which suggested that it should be possible to experimentally determine motion relative to
the hypothetical medium. The inconsistency around the Newtonian Mechanics with the
Maxwell equations and the lack of prediction of the motion near to the speed of light, lead
to correct the existing theory and develop the Einstein special relativity theory, which is
adopted as a theory that allows to describe any movement at any speed scale, even close to
the speed of light. However, one problem with the theory arises in the impossibility to deal
with phenomena at the Planck scale due to the incompatibility between a scale-invariant
length and the Lorentz transformation.

The Poincaré group is the group of symmetries of the Einstein special relativity which
is a semidirect product of the Lorentz group L and the 4-dimensional translations T4.
The Lorentz group is responsible for the rotation, boosts and the equivalence between
framework; nevertheless, the cornerstone of Einstein’s special relativity is the Lorentz
symmetry. The problem is that the Lorentz group is believed not to allow the existence
of an invariant length parameter and given the existence of a physical fundamental scale
determined by the Planck length lp ≈ 10−33cm, it is perfectly understandable to think
that, at the Planck scale the Lorentz symmetry must be broken or there must exist another
relativistic theory near to that energy scale. So, the thing is how to get a theory that
can describe physical phenomena at any energy scale, even at the Planck scale without
violated the Lorentz symmetry.

In 1998, a work reported by Amelino-Camelia, Jonh Ellis et al [1], proposed that high-
energy light from distant active galaxies could be used to check the effect of the gravity
at some quantum scale. They gave a theoretical approach that at least some gamma-ray
bursts (GRBs) at some cosmological distance increase the possibility that the observations
could provide interesting constraints on the fundamental laws of physics, suggesting that
at the Planck energy scale it must exist some interaction that disturbs in some way the
structure of the spacetime.

In 2005, the Major Atmospheric Gamma-ray Imaging Cherenkov telescope (MAGIC),
analyzed two flares from the Markarian 501 (MRK 501), between May and July 2005.
The intense portions of the flares were quantified using four different energy bands. On
June 30 the flare appeared in the energy band of 0.25–0.6 Tev, and the determinants results
were found in the flare of July 9 in an energy band of 1.2–10 Tev with a time lag about
4 min; those results seemed to match with the facts proposed by Amelino-Camelia and
Jonh Ellis [2].

Some scientist assumed that such a delay in the emission that came from the MRK
501 was a consequence of some perturbation made by something intrinsic of the source,
for example, an acceleration by some magnetic field near of the center of the galaxy. So,
it is interesting tries to look for some explanations about what could cause this delay. This
experimental fact constitutes a clear evidence that at those energies regimens, there must
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exist a theory capable to describe such as interaction with the spacetime; a fact that cannot
be answered under the statements of the Einstein special relativity. In the light of this one
then must look for a modified special relativity.

The attempt to reformulated the Einstein special relativity was in the last years im-
plemented by the work of Amelino-Camelia [3, 4] followed by João Magueijo and Lee
Smolin [5], called double special relativity. This theory is obtained by introducing into
the dispersion relation of the special relativity scale-suppressed term of high order in the
momentum and like this, the existence of an invariant length at the Planck scale is allowed.
The dispersion relation is of the type

E2 − c2p2 − c4m2 + f (E, p,m, lp) = 0. (1)

Now, what is actually relevant in this theory is the fact that this high-order term is con-
trolled by a parameter κ, which changes the kinematics group of special relativity from
Poincaré to a κ-deformed Poincaré in which the Lorentz symmetry is explicitly violated.
What happens is that, as far as the theory goes away from the Planck scale, the Lorentz
symmetry is recovered and the relativity effect returns to be described by the ordinary
special relativity.

So, in the light of the latter and having in mind the Planck length, how from the
perspective of the Einstein special relativity can be answered fact like the one exposed?
or how could lp plays a role in the structure of the spacetime without violating Einstein
special relativity?. The answer is twofold, or the Lorentz symmetry is violated from the
beginning in order to consider the role of the Planck length in the quantum structure of the
spacetime or the Einstein special relativity is reformulated with the purpose to consider
such a facts, but without violates the Lorentz symmetry—given the relationship between
the Lorentz symmetry and causality [6].

There exists a solution for this, it is known that the Lorentz transformations do not
change the curvature of the homogeneous spacetimes in which they performed and con-
sidering that the scalar curvature R of any homogeneous spacetimes is of the form

R ∼ ±l−2, (2)

with l the pseudo-radius—of the hyperboloid in this case—then, the Lorentz transform-
ations are founded to leave the length parameter l invariant. This is a geometric charac-
teristic that is not notorious in Minkowski spacetime, because in this case, what is left
invariant will be an infinite length. However, in de Sitter and anti de Sitter space—that
is the reason of the ± signal—the pseudo-radius is finite and from these spacetimes, one
then sees that contrary to the usual belief, the Lorentz transformation leaves invariant the
length parameter related to the scalar curvature of the homogeneous spacetime. Now here
is the thing, it could be possible to think that if the Planck length lp is to be invariant
under Lorentz transformations, then taking it to represent the pseudo-radius, the scalar
curvature turns

R ∼ ±l−2
p ∼ ±1066cm−2, (3)
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predicting indeed, that even at the Planck scale the Lorentz symmetry and the causality [6]
are preserved. So, as one moves away from the Planck scale the l pseudo-radius becomes
greater and the physics pass to be described by the Einstein special relativity—which is
ruled by the Poincaré group. So as it is possible to see the Einstein special relativity as a
generalization of Galileo relativity for velocities close to the speed of light, de Sitter-ruled
special relativity—the kinematics will be ruled by the de Sitter group—can be seen as a
generalization of the Einstein special relativity for any energy scale, even at the Planck
scale.

The de Sitter special relativity is a theory that seems to live between two limit case,
specific scenarios determined by the behavior of the Eq.(2) in the limit for great and small
values of l. This is traduced in the non-cosmological and the infinity cosmological limits,
two scenarios where it is possible to study different physics configurations [7]. During
the past ten years, this geometric-relativistic theory is gaining attention even when this
approach is not as new as it is believed, the first ideas about de-Sitter special relativity are
due to L. Fantappié, who in 1952 introduced what he called Projective Relativity, a theory
that was further developed by G. Arcidiacono (for details [8]).

The large pseudo radius parametrization has already been shown to bear algebraic,
geometric and thermodynamic properties that fit with what one would expect for the cur-
rent cosmological observation [9–11]. Also in [12], it is explored the fact that the re-
scaling factor of the de Sitter metric can be used as refractive index and under the optical
geometric approximation, this scenario gives an acceptable numerical estimation about
the photons-delay reported by the MAGIC experiment; representing a crucial point in
the sense that it could be used as an experimental fact of the de Sitter-invariant special
relativity. But, the de Sitter special relativity has been used also in other fields. Some
recent works [13, 14] show that the conformal geometry of the 4D-de Sitter space dS4
represented by the hyperboloid helps to deal with the quark-confinement problem, taking
into account the hypothetical relationship between the conformal symmetry and the color
confinement.

By other hand, under the infinite cosmological term, the underlying de Sitter space-
time contracts to the four-dimensional homogeneous conic spacetime [15], such a space-
time seems also to present the geometric and thermodynamic properties that fit with what
one expect for an initial condition of a big bang Universe, what actually plays an import-
ant role in the Penrose’s Conformal Cyclic Cosmology [16].

Now, this work is entirely developed for large values of the pseudo-radius l and it
is organized in two main parts. The first part will address the basis and foundations
of the de Sitter invariant special relativity, as well as the construction of the modified
general relativity theory. The second part is devoted basically to physical implication of
the theory. One will highlight how this theory is capable to provide a good background
for topics such as the concept of entropy, thermodynamic in horizons, the problem of the
amount of dark energy in the universe and the galaxy rotation curve problem.

• In Chapter 1, it will be presented how the de Sitter invariant special relativity was
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formulated, with special attention to the geometric and algebraic development of
the theory.

• The Chapter 2, will be devoted in gives details of how the changes in the translation
sector of the symmetry group, re-defines the ordinary conservation of the stress-
energy tensor, where it is going to be identified a new definition for the stress-energy
tensor [17].

The original part of this work is developed in the last five chapters

• In Chapter 3, it is studied the replacement of the Poincaré-invariant Einstein spe-
cial relativity by de Sitter-invariant special relativity on the construction of general
relativity, letting the spacetime being described by the de Sitter modified general
relativity [18]. It will study the non-relativistic limit of this theory, which it will
leave a Newtonian potential with an extra repulsive term proportional to the cosmo-
logical term Λ and lineal in r , being mathematically and physically different to the
Newton-Hooke potential.

• In Chapter 4, it will be made a brief review of the most relevant concepts of the
thermodynamics in horizons, such as temperature, energy, and entropy. This part
will highlight the new definition of entropy, which is attached to the new defini-
tion of diffeomorphism in a locally-de Sitter spacetime, named proper conformal
entropy [19].

The Following three Chapters are dedicated to apply the modified Newtonian gravit-
ational potential and to study the intrinsic changes that the de Sitter kinematics generates
in the Schwarzschild solution.

• In Chapter 5, it will be redefined the Schwarzschild solution according to the changes
that the de Sitter kinematics does to this solution. In this part of the work, it will be
emphasized that there exist a new relationship between the horizons in the Schwar-
zschild de Sitter solution, obtaining a new thermodynamic constraint between the
parameter of the metric [19].

• In Chapter 6, the Newtonian Friedman equations are going to be formulated based
on the force generated by the modified potential. It will be possible to give account
for the amount of dark energy in the current Universe obtaining values close to
those observed [20].

• The Chapter 7, will analyze how the modified-Newtonian potential is able to give
account for the flat behavior in the Keplerian range of the rotation curves of galax-
ies, without the need for inclusion of non-baryonic matter or dark matter [21]

Finally, there will be a section devoted to the conclusions, possible future approaches, and
some technical issues.
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Part I

Foundations and construction of the
theory
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Chapter 1
de Sitter special relativity, foundations
and construction

“I was, at one time, greatly interested in establishing all linear equations which are
invariant under the inhomogeneous Lorentz group . . . E. P. Wigner”.

1.1 Double special relativity
The attempt to reformulated the Einstein special relativity was in the last years implemen-
ted by the work Amelino-Camelia [3, 4] followed by João Magueijo and Lee Smolin [5],
who focused on the invariance of Planck length in a very high energy. In this kind of the-
ory, Lorentz symmetry is deformed through of a dimensional parameter κ, proportional to
the Planck length, with the purpose to construct a theory capable of achieving ultra-high
energy regimes, nevertheless at the moment to introduce such parameter automatically
the theory loses the invariance under the Lorentz group.

The Galilei group is one of the first wells studied group, given the fact that Newtonian
mechanics is invariant under its transformation; nevertheless, by the end of the nineteenth
century, inconsistencies between Newtonian mechanics and the theory of electromagnet-
ism have triggered the search for another kinematics group, another relativistic theory.
The search ends once the Einstein special relativity was established. Einstein special re-
lativity is a theory developed in Minkowski space and whose kinematics is ruled by the
Poincaré group—the Lorentz symmetry plus the 4-D translations. But, even when all
the elementary particles of the nature are described by representations of this group, the
physics is again facing intricate consistency problems, two examples are

• the impossibility for find a role of the Planck length in the gravitation theory

• the acceleration in the universe expansion rate, known as the dark energy problem.

Could these statements mean that a new relativistic theory is needed? Well, there exist ar-
guments suggesting that the Poincaré symmetry might break down at ultrahigh energies.

8



An alternative to the double special relativity theory, is a propose where the Poincaré
group is replaced by another symmetry group defining like this, a new special relativity
theory with a new kinematics group, in order that in a natural way incorporates two invari-
ant quantities: the speed of light c— which is a fundamental constant of the nature—and
a Lorentz invariant length without breaking the Lorentz invariance preserving in that way,
the causality of the theory [6], this theory is the de Sitter-ruled special relativity, a gener-
alization of the ordinary special relativity for energies comparable to the Planck energy.

This approach is not as new as it is believed, the first ideas about de-Sitter special
relativity are due to L. Fantappié, who in 1952 introduced what he called Projective Re-
lativity, a theory that was further developed by G. Arcidiacono (for details [8]). In the
next it will be shown that since the de Sitter special relativity, naturally incorporates an
invariant length parameter, this theory can be interpreted as an example of the so-called
doubly special relativity; nevertheless, there is a fundamental difference, though: whereas
in all doubly special relativity models the Lorentz symmetry is violated, in de Sitter-ruled
special relativity it remains as a physical symmetry*.

1.2 de-Sitter Cartan geometry

The geometry of the de Sitter space is part of a generalization of the Euclidean geometry
names Klein geometry. It describes homogeneous spaces defined in terms of the sym-
metry of Lie groups, giving like this a starting point for the study of theories that will not
require anymore the Minkowski space describes the local geometry †.

In his so-called Erlanger Programm, Felix Klein aimed to systematize all geomet-
ries/spaces known at the time. The idea is to investigate groups of transformations of a
space onto itself or to adjoin to any geometry a group of transformations that leave the
geometry invariant. Thus, the geometry of a manifold is characterized as the theory of in-
variants of a transformation group of that manifold. This yields an one-to-one relationship
between a symmetry group and a geometry/space.

The symmetry group associated to a geometry is called the isotropy group or its group
of motion. Bacry and Levy-Leblon [23] showed that all kinematical groups admit a four-
dimensional spacetime interpretation. This is basically true because by assumptions ro-
tations and boosts form a subgroup of each of the kinematical groups. Thus, for every
kinematical group, one can define a four-dimensional homogeneous space as the quotient
of the group by the six-dimensional subgroup. In the case of the de Sitter groups and the
Poincaré group, this six-dimensional group is the Lorentz group.

Now, just to have an idea of those theories, in the following some general facts are
going to be explored. The Cartan geometry generalizes the local geometry of Riemann;

*For details of the relationship between doubly special relativity, de Sitter space and general relativity
[22] by Derek Wise.

†It is important to note, when a homogeneous space, describes the spacetime of the physics theory, the
group of symmetry is also called the kinematics group.
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means that for each point p of the manifold M , the geometry of the manifold is not
described anymore by the Riemannian geometry. The geometry instead of being repres-
ented locally by an open set defined for each p ∈ M; it passes to be represented by a
symmetry group. In the present work physics quantities are going to be constructed tak-
ing into account that the spacetime-manifold is no longer anymore locally represented
by a Minkowski space but for a de Sitter spacetime, so from now and on the theory is
considered as the de Sitter-Cartan geometry.

1.3 Aspects of the de Sitter special relativity, definitions
and construction

The de Sitter special relativity is a first principles theory based on the fact to replace the
Poincaré-invariance group by the de-Sitter group like this, it is expected to explore aspects
of the geometry and the group itself.

1.3.1 The de Sitter Space
The de Sitter Space is a homogeneous and a maximally symmetric spacetime, a quotient
space defined as

dS(4, 1) = SO(4, 1)/L, (1.1)

with the Lorentz group as a sub-group of de Sitter group. The significant changes in
contrast with the Poincaré group yield in the total replacement of how are defined or
represented the translation in the kinematics group. The four-dimensional translations
are replaced by a combination of the ordinary-Poincaré translations plus, the conformal
transformations. The Lorentz group is maintained as the responsible for the isotropy
and the equivalence between the inertial frames. Keeping the Lorentz group into the
kinematics of the theory will provide some advantages, for example as homogeneous
space the de Sitter spacetime has constant sectional curvature given by

R ∼ l−2, (1.2)

where l is the de Sitter length parameter or pseudo-radius. Now, by definition the Lorentz
transformations do not change the curvature of the homogeneous spacetime in which
they are performed and by (1.2) Lorentz transformations are found to leave the length
parameter l invariant, which gives to the relativistic theory invariant under the de Sitter
group—the de Sitter special relativity—special and suitable conditions, this theory counts
with the speed of light and a length parameter without violating Lorentz symmetry, which
leaves a theory capable to reach even the Planck scale given the fact that, if the Planck
length lp is to be invariant under Lorentz transformation, then taking it to represent the
pseudo-radius, the scalar curvature turns

R ∼ l−2
p ∼ 1066cm−2, (1.3)
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predicting indeed, that even at the Planck scale the Lorentz symmetry and the causality [6]
are preserved.

1.3.2 The geometry
The de Sitter spaces can be defined as a hyper-surfaces embedded into the pseudo-Euclidean
spaces E4,1, with metric

ηAB = (1,−1,−1,−1,−1), (A, B = 0, · · · , 4), (1.4)

whose points in Cartesian coordinates

( χA) = ( χµ χ4); µ = 0, ...3 (1.5)

satisfies
ηAB χ

A χB = −l2 (1.6)

or equivalent in four dimensional coordinates

ηµν χ
µ χν − χ4 = −l2, (1.7)

with l the de Sitter length parameter. Even when in the following the geometries and
physical quantities will be express in stereographic coordinates—this represent just a fact
of the interest in this part of the work—the de Sitter spacetime could be represents in
more than one coordinate system [24].

Through the stereo-graphic projection, the 5-dimensional coordinates are carrying to
4-dimension as follow

χa ≡ ha
µxµ, ha

µ = Ω(x)δa
µ,

‡ (1.8)

then

χa = Ω(x)xµ, χ4 = −l2
Ω(x)

(
1 + ε

σ2

4l2

)
(1.9)

where
Ω(x) =

1
1 + σ2/4l2 (1.10)

and σ2 = ηabxa xb, is the Lorentz quadratic form. Finally in this coordinate system the
metric turns to be represented as

gµν = Ω
2(x)ηµν (1.11)

which leave us a conformally flat metric.

‡ha
µ , is a tetrad field, which allows to establish a bridging between the spacetime and the tangent space.
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1.3.3 Curvature parameters in conformal space
Being de Sitter spacetime a curved spacetime, it is natural to look for how are defined the
curvatures tensor, such as the Riemann tensors, Ricci tensor and the scalar curvature.

The corresponding Christoffel connection is [25]

Γ
λ
µν =

Ω

2l2

(
δλµ ηνα xα + δλν ηµα xα − ηµν xλ

)
, (1.12)

the Riemann tensor given by

Rµ
νρσ =

Ω2

l2

(
δ
µ
ρ ηνσ − δ

µ
σ ηνρ

)
, (1.13)

and the Ricci and the scalar curvature are consequently,

Rνσ =
3Ω2

l2 ηνσ and R =
12
l2 . (1.14)

1.4 The de Sitter group and the algebra
As Poincaré, the de Sitter group SO(4, 1), has also a well-defined algebra. In order to
study the de Sitter algebra, one should start for the Lorentz generator Lab a, b = 0, ..., 3
which follow the algebra

[Lab, Lcd] = δbcLad + δad Lbc − δbd Lac − δacLbd, (1.15)

By another hand, the generators of infinitesimal de Sitter transformations in Cartesian
coordinates x A are given by

JAB = ηAC xC ∂

∂xB − ηBC xC ∂

∂x A, (1.16)

which satisfied the commutations relations

[JAB, JCD] = ηBC JAD + ηAD JBC − ηBD JAC − ηAC JBD . (1.17)

Again in stereographics coordinates {xµ} (1.16) end up express as

Jµν = ηµρx ρPν − ηνρx ρPµ, Jµ4 = lPµ − (4l2)−1Kµ. (1.18)

where
Pµ = ∂µ and Kµ =

(
2ηµνxνx ρ − σ2δ

ρ
µ

)
∂ρ (1.19)

are the generators of ordinary translations and proper conformal transformations respect-
ively [26]. At this point is important to emphasize that the Lµν refers to the generators of
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the Lorentz transformation—means the Lorentz group remains unchanged—meanwhile
the elements L4µ defines the transitivity on the homogeneous space. So from Eq. (1.18)
it follows that the de-Sitter spacetime is transitive under a combination of ordinary trans-
lations and proper conformal transformations — usually called de Sitter “translations”.

In terms of these generators the de-Sitter algebra (1.17) assumes the form

[Jµν, Jρσ] = ηνρJµσ + ηµσ Jνρ − ηνσ Jµρ − ηµρJνσ, (1.20)

[J4µ, Jνρ] = ηµν J4ρ − ηµρJ4ν, [J4µ, J4ν] = l−2 Jµν . (1.21)

reveling that the commutation rules related to the translation part are involved with the de
Sitter length parameter.

Everything previously developed, represented basically the foundations of this relativ-
istic theory, because now the local symmetry of the theory and in consequence, all the
facts related to it will be changed according to this. The de-Sitter special relativity is a
combination of two kinds of relativistic theory, one related to the symmetries of the Poin-
caré-translation and another related to some kind of proper conformal transformations as
it is going to be shown in the following.

This theory lives between two limits, one of them describes a spacetime with a van-
ished cosmological constant and the another will be a limit related to an infinity cosmolo-
gical constant; this last brings important cosmological implications, for more details [16].

1.5 Inönü Wigner contraction of de Sitter group

Among of the kinematics groups, the most discussed in the literature are the Galilean and
Poincaré group. The group’s structure of each one of them is totally described through
its algebra. It is often mentioned that the Galilean group is the non-relativistic or low-
velocity limit of the Poincaré group.

There exist a mathematical procedure name The Inönü Wigner group contraction [27],
from which it is possible to obtain a group’s algebra of some specific group through
another one. In this method, the generators of the transformation of some group are re-
defined according to the limit—the contraction limit—that wants to be performed. So, as
it was already said, in the following, in order to perform the contraction limit from the de
Sitter algebra, (For details see Appendix A) the generators must be re-defined being the
de Sitter length l the parameter that will allow performing the contraction group.

1.5.1 The contraction limit (l → ∞)
In order to explore the non-cosmological limit (l → ∞), one should re-write (1.18), as
follows

Jµν ≡ Lµν = ηµρx ρPν − ηνρx ρPµ, (1.22)
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where Lµν, is identified as the Lorentz generators, which follows the commutation rela-
tions

[Lµν, Lρσ] = ηνρLµσ + ηµσLνρ − ηνσLµρ − ηµρLνσ . (1.23)

By other hand defining a new quantity as

Πµ ≡
Jµ4

l
=

(
Pµ −

1
4l2 Kµ

)
, (1.24)

together with (1.23) the commutations relations (1.20, 1.21) turns

[Πµ, Lνρ] = ηµνΠρ − ηµρΠν, [Πµ,Πν] = l−2Lµν . (1.25)

Now, under the limit l → ∞,

lim
l→∞

Lµν = Lµν, lim
l→∞
Πµ = Pµ, (1.26)

means that, the Lorentz sector of the kinematics group does not change, and the modified
translation operator goes to the Poincaré translational operator. Meanwhile, the commut-
ation rules turn

[Lµν, Lρσ] = ηνρLµσ + ηµσLνρ − ηνσLµρ − ηµρLνσ, (1.27)

[Pµ, Lρσ] = ηµσPρ − ηµρPσ, [Pµ, Pσ] = 0. (1.28)

What is actually happening is that under this contraction process the de-Sitter algebra
is transformed into the Poincaré algebra, and de Sitter space is transformed into the
Minkowski space

dS = SO(4, 1)/L −→ M = P/L, (1.29)

which is transitive under ordinary translation.
As it is expected the Riemann, Ricci tensor and also the scalar curvature vanishes

under thus limit [25]:
Rµ

νρσ → 0, Rνσ → 0, R→ 0; (1.30)

as it was expected, because, in this limit, the de Sitter space goes asymptotically to
Minkowski spacetime and the de Sitter group is deformed to the Poincaré group—the
respective algebra in the strict sense §.

§There exist another limit group of de Sitter group, the non-relativistic limit which carries de Sitter
group to Newton-Hooke group, for details see [28] Appendix A.
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Chapter 2
Diffeomorphism and conservations laws
on locally de Sitter spacetime

The goal of this Chapter is to explore and analyze the changes in the conserved quantities
when the kinematics is ruled by the de Sitter group. Most of the concepts involved and
the conservation laws were already explored [17], nevertheless, here again, they are going
to be presented with some kind of details, without underestimating the previous work.

2.1 Symmetries and Killing vectors
In Chapter 1 it was already presented that, when the de Sitter group starts to rule the local
kinematics in the theory, the physics turns out to be invariant under the so-called de Sitter
translations, which in stereographics coordinates can be seen as a combination of ordinary
translations and proper conformal transformations. So, it is expected—as the Noether’s
theorem established—that a new symmetry must imply a new conservation law.

In the next, the consequences of the latter are going to be explored; how this new way
to connect any two points in de Sitter space modifies the ordinary invariance law under
the Poincaré translation.

2.1.1 The Killing vector
Minkowski and de Sitter spacetimes are maximally symmetric space and they can lodge
the highest possible number of Killing vectors.

Having Killing vector into the geometric description of the spacetime contributes in
the definition of what it is a spacetime symmetry. A spacetime possesses a symmetry if it
admits a vector field ξa, called a Killing Vector, which satisfies that

Lξgab = 0, (2.1)

which at the same time is related to the Killing equations as it follows

Lξgab = ξ
c∇cgab + gac∇bξ

c + gcb∇aξ
c = 0, (2.2)
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so considering the compatibility of the metric with the Levi-Civita connection; ∇agbc = 0,
where can be identified the Killing equation

∇bξ
c + ∇cξ

b = 0. (2.3)

By another hand; an infinitesimal coordinate transformations is given by

δxa =
1
2
εbc Jbc xa, (2.4)

where Jbc, are the generator of the transformations. Again in stereographic coordinates
(2.4) split out turns to be defined as

δxµ = δL xµ + δΠxµ; (2.5)

where the first term represent the infinitesimal Lorentz transformation and the second
term is the one related to the de Sitter translations, which are given respectively by

δL xµ =
1
2
ενρLνρxµ, δΠxµ = ενΠνxµ; (2.6)

which at the same time can be represented in terms of the Killing vector as

δL xµ =
1
2
ξ
µ
(νρ)ε

νρ, (2.7)

with ενρ = −ερν the transformation parameter. The de Sitter translations on the another
hand, assumes the form

δΠxµ = ∆µνε
(ν); (2.8)

with εν the transformation parameter and

ξ
µ
νρ = ηνσxσδµρ − η ρσxσδµν, ∆

µ
ν = δ

µ
ν −

1
4l2 δ̄

µ
ν, where δ̄

µ
ν = (2ηνσxσxµ − σ2δ

µ
ν ),

(2.9)
represent the Lorentz Killing vectors, and the de Sitter Killing vectors respectively, which
are defined in consistency with the proper conformal generator.

2.2 Diffeomorphism
In any theory with a general covariant action, the invariance of this action under infinites-
imal coordinate transformation (diffeomorphism)

xγ → xγ + qγ (x), (2.10)

leads to the conservation of a Noether current and it is right here where lies the importance
of the above statements. When
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qγ (x) = δγα ε
α (x) (2.11)

where δγα εα (x) is the local Killing vector, the one corresponding with those spacetimes
that reduces locally to Minkowski spacetime; a general diffeomorphism is written in the
form

xγ → xγ + δγα ε
α (x). (2.12)

Now, if it is considered the case when the Killing vector is defined by (2.9) the cor-
responding general diffeomorphism is defined by

xγ → xγ + ∆γα ε
α (x). (2.13)

Certainly, the re-definition of diffeomorphism will bring change in all the facts related to
it, for example, one should expect that general relativity changes accordingly—implications
of the latter will be explored forward.

2.2.1 Reprasing the notion of stress-energy tensor
In order to explore how are modified the conserved quantities under a new infinitesimal
coordinate variation, let us consider a general matter field with a Lagrangian Lm, where
the respective action is

Sm =
1
c

∫
d4x Lm. (2.14)

Under local transformations δx ρ, the variation

δSm =

∫
d4x
√
−gT µνδgµν, (2.15)

where
T µν = −

2
√
−g

δLm

δgµν
(2.16)

is the symmetric energy momentum tensor.
At this point, it is important to remind the following. Through the Noether theorem, it

is known that to each symmetry there is a conserved quantity—Killing vectors are those
who carry on the information about symmetries. Reminding the standard procedure in
the way to look at the corresponding conserved quantity, one usually does not see such
expression related with the Killing vector because in most of the case that Killing vector
is the one related to the Poincaré translation, it is mean δµν . So, what is actually related to
the symmetry at the end is, in some way hidden with the parameter ερ(x).

In the following it is going to be consider the variation of the Eq. (2.15) under the de
Sitter translation, which as it was pointed, they will be related with the Killing vector of
the de Sitter translations given by Eq. (2.9).

Now as the local diffeomorfism

δx ρ = εα (x)∆ρα (2.17)
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is able to detect the local structure of the spacetime, through the Noether theorem and
considering the de-Sitter kinematics, we have

δSm =
1
c

∫
dx4√−gT µν

∆αν∇µε
α, (2.18)

and integrating by parts

∇µ(T µν
∆αν)εα = ∇µ(T µν)∆ανεα + T µν∇µ∆ανε

α, (2.19)
∇µ(T µν

∆αν)εα − ∇µ(T µν)∆ανεα = T µν∇µ∆ανε
α, (2.20)

∇µ(T µν
∆αν)εα = T µν∇µ∆ανε

α . (2.21)

So, the variation of the action turns

δSm =
1
c

∫
dx4√−g∇µ(T µν

∆αν)εα, (2.22)

from where it is possible to identify a full divergency and defining

Π
µα = T µν

∆
α
ν , (2.23)

and using the definition of the de Sitter Killing vector, the latter equation ends as

Π
µα = T µνδαν −

1
4l2 K µν, (2.24)

where Kµν is the proper conformal current, defined as

Kµν = (2ηµνx ρxα − σ2δαµ)Tαν, (2.25)

with σ2 = ηµνxµxν the Lorentz invariant quadratic form.
At this point, it seems important to take at look closer (2.24). First, previously it was

established the non cosmological limit case of the de Sitter special relativity and the fact
to express the quantities involved in the right parametrization. Well (2.24) is suitable for
large values of l and under the limit of non-cosmological constant (l → ∞) the latter
turns into the ordinary energy-momentum tensor Tµν the one associated with the ordinary
translation of the Einstein special relativity.

Second, the conservation law
∇µΠ

µν = 0, (2.26)

does not imply the conservation of the each one of the quantities involved. Neither Tµν
nor Kµν are conserved separately,

∇µT µν =
2T ρ

ρ xν

4l2 − σ2 , ∇µK µν =
2T ρ

ρ xν

1 − σ2/4l2 , (2.27)
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both will be zero separately if the trace of the ordinary stress energy tensor is zero.
Besides, it is important to emphasize that here the definition of the stress-energy tensor

and the conservation law associated to it have been redefined; a fact that brings a direct
violation of the energy conservation of the ordinary stress-energy tensor Tµν. From the
moment the local symmetry is ruled by de Sitter group arises a new conservation law
given by (2.26), but the non-conservation of the ordinary stress-energy tensor, is not an
isolated case a similar scenario can be found in [29], where they consider the possibility
of a physical theory allowing a violation of the stress-energy conservation law, in order to
have a non-constant cosmological constant with the purpose to study problems like dark
energy.

Finally, it is important to emphasize that in this work is maintained the fact that energy
and its conservation can be re-defined, but one does not prefer to change are the quantities
related to the Lorentz group given the dual relation between Lorentz symmetry/causality
[6].
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Chapter 3
The de Sitter-modified gravitational the-
ory

Quantum field theories are geometrically described in Minkowski space; the local sym-
metry of the space manifold is ruled by the Poincaré group. So here comes the thing, as
in this work it is proposed a change in the translation sector of the symmetry group that
ruled the local symmetry and as it was showed in Chapter 2, there is a relation between
the Killing vectors and the expression that defined the local diffeomorphism. In fact, this
is something that it is expected because the local diffeomorphisms are able to detect the
local structure of spacetime.

The replacement of the Poincaré invariant special relativity by the de Sitter-invariant
special relativity brings changes in the construction of all relativistic theories, including
general relativity. In this Chapter, the implications of this are going to be discussed. One
important fact will be attached to the cosmological constant, which no longer will require
being constant. This by fact will represent a concomitant change in standard general
relativity and in cosmology.

3.1 The Einstein equation in locally-de Sitter spacetimes
The theory of general relativity is a geometric theory that studies how the curvature and
matter interact with each other. This relationship is established in a suitable way through
the Einstein’s field equation,

Rµν −
1
2
gµνR =

8πG
c4 Tµν . (3.1)

The symmetries are determinant, both to define the new conserved quantities and to define
how is locally represented the spacetime for each observed. The local symmetry of the
theory of general relativity is described by the Poincaré group and the underlying space-
time is described by Minkowski. This, in very formal way to say, is what it is known as
the strong equivalence principle of general relativity
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In the presence of a gravitational field, it is always possible to find a local coordinate
system in which the laws of physics reduces to those of special relativity,

it means that when it is chosen a frame where the local inertial effects can be compensated
by the effects of the gravity; in that region, the spacetime is represented by the Minkowski
space and the symmetry ruled by the Poincaré group.

On the other hand, under the observational facts [9–11] about the expansion and ac-
celeration of the Universe, one should consider the cosmological constant Λ into the Eq.
(3.1) *

Rµν −
1
2
gµνR + gµνΛ =

8πG
c4 Tµν . (3.2)

In this case, the second Bianchi identity implies that Λ must be constant:

∇µΛ = ∂µΛ = 0. (3.3)

This fact represents a serious restriction in its prospective use for explaining the evolution
of the of the Universe. For example, a possible explanation for the acceleration of the
Universe expansion rate is to suppose that the cosmological term Λ is bigger today than it
was a few billion years ago. However, since Einstein equation does not allow Λ to evolve,
one cannot make use of it in cosmology. In order to circumvent this problem, many
different models have been used in the literature for mimicking an evolving cosmological
term. Examples of these models are the inflaton field, quintessence models, and also
modified gravity models.

Solutions to Eq. (3.1) in the vacuum are spacetimes that outside of the strong regi-
men of the gravitational source of gravity, the spacetime is represented by Minkowski
spacetime. Going back to the strong equivalence principle one should think of the fol-
lowing, what about if in those coordinates system, where those gravitational effects have
suppressed the spacetime is not described anymore by Minkowski space. The replace-
ment of the underlying Poincaré-ruled kinematics by a de Sitter-ruled kinematics does
not change the dynamics of the gravitational field—the Einstein field equation for the
spacetime-metric are the same—but what actually is changed is the strong equivalence
principle, which in those coordinates system where the gravity effect is compensated by
the inertial effect the spacetime will describe the de Sitter space. But, it could be perfectly
natural to ask what else changes when such replacement is performed.

In Chapter 1, was showed that as homogeneous space the de Sitter space has the scalar
curvature directly related to the length parameter l—as with the cosmological constant—
so when the Einstein field equation is defined the cosmological parameter is already en-
coded into the equation—it does not appear explicitly in the equation—besides to the fact
of counting with a new definition for the stress-energy tensor.

*Considering Λ to be responsible for the acceleration of the expanding Universe.
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From the Einstein-Hilbert action of general relativity in a locally-de Sitter spacetime
is written as

Sg =
∫

R
√
−gd4x, (3.4)

with R the scalar curvature. Despite similarities to the Einstein-Hilbert lagrangian, there is
a fundamental difference, The Riemann tensor Rα

βµν represents now both the dynamical
curvature of general relativity and the kinematic curvature of the underlying de Sitter
spacetime

Now, considering the total action integral

S = Sg + Sm, (3.5)

the invariance of S under the diffeomorphism Eq. (2.13) yields the de Sitter-modified
Einstein equation

Rµν −
1
2gµνR =

8πG
c4 Πµν . (3.6)

This is the equation that replaces the ordinary Einstein equation when the Poincaré-
invariant special relativity is replaced by a de Sitter-invariant special relativity. At this
point there is two important fact: first, in contrast with others modified-gravity theories
where they change the way to define the general action field Sg, here what is present came
entirely from first-principles: one has just to replace the Poincaré-invariant Einstein spe-
cial relativity by a de Sitter-invariant special relativity—what is changing is the special
relativity theory—and second, since both the dynamical curvature of general relativity
and the kinematic curvature of the underlying de Sitter spacetime are now included in the
Riemann tensor Rα

βµν, the (contracted form of the second) Bianchi identity,

∇µ(Rµν − 1
2g

µνR) = 0, (3.7)

does not require Λ to be constant.
Certainly, the latter statement represents a changing in the way to think and to con-

sider the cosmological constant. So, given the relationship between the way to define
in homogeneous space the cosmological constant and the necessity of such local Λ to
comply with the local symmetry of spacetime—now ruled by the de Sitter group— let us
understand in a better way what does mean this local Λ.

3.2 Local value of the cosmological term Λ
According to the de Sitter special relativity, a physical system produces both a dynamic
gravitational field described by general relativity, and a kinematic local cosmological term
Λ in the underlying spacetime †. It is important to remark that this cosmological term is

†This idea was put forward for the first time by F. Mansouri [30].
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different from the usual notion in the sense that it is not constant. In fact, outside the
region occupied by the physical system, it vanishes. In a sense, it is possible to say that
it represents an asymptotically flat de Sitter spacetime. The natural question then arises:
given a physical system, how to obtain the local value of the cosmological term? In order
to do this, for example, the smallest amount of an electromagnetic field, a photon, is
determined by the Planck constant as a quantum of the field. In a similar fashion, the
smallest possible length is the Planck length. Since in de Sitter relativity there is a free
length parameter l, its minimum value will then be the Planck length lP =

√
G~/c3. Let us

then consider a de Sitter spacetime with l = lP, for which the corresponding cosmological
term is

ΛP =
3
l2
P

. (3.8)

Considering that a cosmological term represents ultimately an energy density, it is defined
the Planck energy density

εP =
mP c2

(4π/3)l3
P

, (3.9)

with mP =
√

c~/G the Planck mass. In terms of εP, Eq. (3.8) assumes the form

ΛP =
4πG
c4 εP . (3.10)

Now, the very definition of ΛP can be considered an extremal particular case of a general
expression relating the local “cosmological” term to the corresponding energy density of a
physical system. Accordingly, to a physical system of energy density ε will be associated
the “cosmological” term [31]

Λ =
4πG
c4 ε =

4πG
c2 εm (3.11)

where εm = ρc2 has been used. It is important to note that the energy density εm ap-
pearing in this equation is not the dark energy density, but the energy density of ordinary
matter. For small values of ε, the local cosmological term Λ will be small, spacetime
will approach Minkowski, and de Sitter special relativity will approach ordinary special
relativity, whose kinematics is governed by the Poincaré group

This local value for the cosmological constant will indeed bring some interesting fact
for the overcoming studies and in order to do so, in the following it is going to be analyzed
the Newtonian limit of the modified Einstein field equation (3.6).
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3.3 The weak field limit of de Sitter-modified Einstein’s
equation

The non-relativistic Newtonian limit of the ordinary-Einstein field equation is the Poisson
equation

∇2φ = 4πGρ (3.12)

where ρ is the mass density. Its solution for a point particle of mass m is given by

φ = −
Gm

r
. (3.13)

which represent the static Newtonian gravitational potential.

As one should know the latter equation and in consequence, its solution is obtained
under a small perturbation of the metric/spacetime. In the next, the modified-Einstein
equation Eq. (3.6) is going to be linearized in order to look for the analogous Poisson
equation and with that obtains what is going to be the modified Newtonian potential. It
is expected that this new modified Newtonian potential provides a good approach to deal
with problems such the dynamics of the rotation curve for galaxies—a problem frequently
studied under the hypothesis of the existence of some non-baryonic matter—which appar-
ently does not obey the Newtonian dynamics and to deal with the so-called coincidence
problem.

3.3.1 The set up

In terms of the ambient space coordinates χA, again an infinitesimal de Sitter transform-
ation is written as

δ χA = 1
2 ε

BCξ A
BC (3.14)

where εBC = −εCB are the transformation parameters, and

ξ A
BC = χB δ

A
C − χC δ

A
B . (3.15)

are the Killing vectors of the de Sitter group. The components

ξ α
βγ = χγ δ

α
β − χ β δ

α
γ (3.16)

represent the Killing vectors of the Lorentz group, whereas the components

∆
α
β ≡ l−1

∆
α
β4 = l−1 ( χ4 δ

α
β − χ β δ

α
4
)
= l−1 χ4 δ

α
β (3.17)

represent the Killing vectors of the de Sitter “translations”.
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It will usefulness to work in static coordinates (ct, r, θ, ϕ). They can be obtained from
the embedding coordinates χA through

χ0 = l
√

1 − r2/l2 sinh(ct/l), χ1 = r sin θ sin ϕ (3.18)

χ2 = r sin θ cos ϕ, χ3 = r cos θ (3.19)

χ4 = l
√

1 − r2/l2 cosh(ct/l). (3.20)

The de Sitter metric in terms of the embedding coordinates is

ds2 ≡ ηAB dχAdχB = (dχ0)2 − (dχ1)2 − (dχ2)2 − (dχ3)2 − (dχ4)2 . (3.21)

Using Eq. (3.18-3.20), one can easily verify that it is

ds2 =
(
1 − r2/l2) c2dt2 −

dr2

1 − r2/l2 − r2
(
dθ2 + sin2 θ dφ2

)
. (3.22)

Similarly, it is possible to obtain the Killing vectors of the de Sitter group in static coordin-
ates. In particular, the Killing vectors Eq. (3.17) associated to the de Sitter “translations”
are found to be

∆
α
β = (1 − r2/l2)1/2 cosh(ct/l) δαβ . (3.23)

In the contraction limit l → ∞ they reduce to the Killing vectors δαβ of ordinary transla-
tions.

Now, since the Newtonian limit is static, the time dependence of ∆αβ is neglected and
rewrite it in the form

∆
α
β = (1 − r2/l2)1/2 δαβ . (3.24)

3.3.2 The weak field limit of the de Sitter-modified Einstein equation
In the Ricci form the field equation Eq. (3.6) turns

Rµν =
8πG
c4

(
Πµν −

1
2 gµνΠ

)
. (3.25)

In a de Sitter-Cartan geometry, in which the background spacetime is de Sitter instead of
Minkowski, the spacetime metric is expanded in the form

gµν = ĝµν + hµν, (3.26)

where ĝµν represents the background de Sitter metric and hµν is the metric perturbation.
The background connection, which corresponds to the zeroth-order connection, is

Γ̂
ρ
µν =

1
2 ĝ

ρλ (∂µĝλν + ∂νĝµλ − ∂λ ĝµν) . (3.27)
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The corresponding Riemann tensor R̂α
βµν represents the curvature of the (non-gravitational)

de Sitter background.
The first-order connection, on the other hand, is given by

Γ
ρ

(1) µν =
1
2 ĝ

µν (∂µhρν + ∂νhρµ − ∂ ρhνµ
)
− 1

2 hρλ
(
∂µĝλν + ∂νĝµλ − ∂λ ĝµν

)
. (3.28)

After some algebraic manipulation, it can be rewritten in the form

Γ
ρ

(1) µν =
1
2
(
∇̂µhρν + ∇̂νhρµ − ∇̂ρhνµ

)
, (3.29)

with ∇̂µ a covariant derivative in the de Sitter connection (3.27). The corresponding first-
order Ricci tensor is

R(1)
µν =

1
2 ∇̂ρ∇̂νhρµ + 1

2 ∇̂ρ∇̂µhρν − 1
2 ∇̂

ρ∇̂ρhµν − 1
2 ∇̂µ∇̂νh, (3.30)

where h = hρρ. Using the identity

∇̂ρ∇̂µhρν − ∇̂µ∇̂ρhρν = − hσν R̂σµ + hρσ R̂σ
νρµ (3.31)

obtaining

R(1)
µν = −

1
2�̂hµν + 1

2 ∇̂µ
(
∇̂ρhρν − 1

2 ∇̂νh
)
+ 1

2 ∇̂ν
(
∇̂ρhρµ− 1

2 ∇̂µh
)
− hσ (ν R̂σµ) + hρσ R̂σ

(µρν),
(3.32)

with the parentheses indicating a symmetrization in the neighbor indices.
At the first order, the class of harmonic coordinates is obtained by imposing the con-

dition
ĝµν Γ

ρ
(1) µν = 0. (3.33)

After some algebraic manipulation, it can be recast in the form

∇̂νhρν − 1
2 ∇̂

ρh = 0. (3.34)

Using this condition in (3.32), the first-order Ricci tensor is found to be

R(1)
µν = −

1
2�̂hµν − hσ (ν R̂σµ) + hρσ R̂σ

(µρν) . (3.35)

At this order the de Sitter-modified Einstein equation (3.6) assumes then the form

− 1
2�̂hµν − hσ (ν R̂σµ) + hρσ R̂σ

(µρν) =
8πG
c4

(
Πµν −

1
2 gµνΠ

)
. (3.36)

3.4 Newtonian limit and de Sitter-modified Poisson equa-
tion

The Newtonian limit is achieved when the fields are weak and the velocities are small.
Nevertheless, in this case an additional fact is added; the presence of the cosmological
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term Λ—which brings some subtleties related to the process of group contraction. For
example the Galilei group is obtained from Poincaré under the contraction limit c → ∞,
the Newton-Hooke group, however, does not follow straightforwardly from the de Sitter
group through the same limit. The reason is that, under such limit the boost transforma-
tions are lost. In order to obtain a physically acceptable result, one has to simultaneously
consider the limits c → ∞ and Λ→ 0, but in such a way that

lim c2
Λ =

1
τ2 (3.37)

with τ a time parameter. This means that the usual weak field condition of Newtonian
gravity must be supplemented by the small Λ condition [32]

Λr2 � 1, (3.38)

which is equivalent to r2/l2 � 1. Accordingly, in what follows terms up to order r2/l2 are
going to be keeping and terms of order r/l2 will be discarded as they represent corrections
to Newtonian limit.

3.4.1 de Sitter-modified Poisson equation

In the Newtonian limit, only the component R(1)

00 is needed. In this case, the last term on
the right-hand side of Eq. (3.35) vanishes. Identifying furthermore

h00 = 2φ/c2, (3.39)

with φ the gravitational scalar potential, it is obtained

R(1)

00 =
2
c2

[
−

1
2
�̂φ − φ R̂00

]
. (3.40)

Neglecting the time derivatives in the d’Alembertian, it is obtained

R(1)

00 =
1
c2

[
∆̂φ − 2φ R̂00

]
(3.41)

with ∆̂ the Laplacian in the de Sitter metric. Using this result the de Sitter-modified
Einstein equation Eq. (3.36), it becomes

∆̂φ + 2φ R̂00 =
4πG
c2 Π00 (3.42)

where the fact that Π = Π0
0 was used .

Now, in static coordinates, the component R̂00 of the Ricci tensor is

R̂00 =
3
l2 (1 − r2/l2) '

3
l2 , (3.43)
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where a term proportional to r2/l4 was discarded. The source current, on the other hand,
is

Πµν = ∆
α
µ Tαν (3.44)

with ξαµ the Killing vectors of the de Sitter “translations”. Since only T00 = ρc2 contrib-
utes in the Newtonian limit, then

Π00 = ∆
0
0 T00. (3.45)

Substituting the Killing vector ξ0
0 as given by Eq. (B.4) of the Appendix B, the zero-zero

component of the source turns
Π00 = ρΠ c2 (3.46)

where
ρΠ = ρ (1 − r2/l2)1/2. (3.47)

Then finally Eq. (3.42) assumes the form

∆̂φ −
6φ
l2 = 4πGρΠ, (3.48)

where the Laplace operator ∆̂ in the background de Sitter metric ĝi j is

∆̂ ≡ ĝi j∇̂i∇̂ j =
1
√
ĝ
∂i

(√
ĝ ĝi j∂j

)
. (3.49)

Now, using the space components of the metric Eq. (3.22), it is found to be

∆̂φ =
1
r2

∂

∂r

[
r2

(
1 −

r2

l2

)
∂φ

∂r

]
. (3.50)

Equation (3.48) can then be rewritten in the form

1
r2

∂

∂r

[
r2

(
1 −

r2

l2

)
∂φ

∂r

]
−

6φ
l2 = 4πGρπ . (3.51)

The solution to this equation will be the de Sitter-modified gravitational potential.

3.4.2 de Sitter-modified gravitational potential
In the contraction limit l → ∞ (which corresponds to Λ→ 0), equation (3.51) reduces to
the usual Poisson equation

∆φ ≡
1
r2

∂

∂r

(
r2 ∂φ

∂r

)
= 4πGρ. (3.52)

Its solution is given by

φ(r) = −
∫

G
r − r′

ρ(r′) dV ′ (3.53)
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where r′ is the distance from the volume element dV ′ to the point where we are de-
termining the potential. For a point particle located at r′, the mass density is given by
ρ(r′) = Mδ(r − r′) and it is obtains

φ(r) = −
GM

r
, (3.54)

which is the Newtonian potential. The same procedure should in principle be used to
solve equation (3.51). However, this is not necessary because as an easy computation
shows, if it is replaced

φ(r) →
(
1 −

r2

l2

)
φ(r) (3.55)

the left-hand side of the ordinary Poisson equation (3.52), up to terms of order r/l2 it
transforms into the left hand side of the de Sitter-modified Poisson equation (3.51). If the
solution of the ordinary Poisson equation is given by Eq. (3.54), the transformed potential
(1 − r2/l2)φ(r) will be a solution of the de Sitter-modified Poisson equation (3.51) with
the same Green function:(

1 −
r2

l2

)
φ(r) = −G

∫
d3r′

1
r − r′

ρ(r′)
(
1 −

r′2

l2

)1/2
. (3.56)

For a point particle located at r′, the mass density is given by ρ(r) = Mδ(r −r′), the latter
equation turns

φ(r) = −
(
1 −

r2

l2

)−1 (
1 −

r2

l2

)1/2 GM
r
, (3.57)

and performing the suitable simplification

φ(r) = −
GM

r

(
1 −

r2

l2

)−1/2
;

(
1 −

r2

l2

)−1/2
' 1 +

r2

2l2 + ..., (3.58)

the de Sitter-modified Newtonian potential can be re-written in the form

φ = −
GM

r
−

GM
2l2 r . (3.59)

The corresponding gravitational force F = −∂φ/∂r is

F = −
GM
r2 +

GM
2l2 . (3.60)

which using the relation Λ ∼ 3/l2, de Sitter-modified Newtonian force assumes the form

F = −
GM
r2 +

GMΛ
6

. (3.61)

The first term of the gravitational force Eq. (3.61), represents the Newtonian force. The
de Sitter background is then found to contribute with an additional constant force. Far
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away from the sources, where ordinary Newtonian force becomes small, it may become
relevant.

Given the result, it is not possible to not compare with the Newton-Hooke potential,

φN H = −
GM

r
−

r2

l2 ; (3.62)

which in term of the cosmological term ends as

φN H = −
GM

r
−
Λ

3
r2. (3.63)

The first thing to note in Eq. (3.63)—apart from the Newtonian term— is that the new
term is quadratic in r , while in Eq. (3.59) is lineal in r . Another fact to emphasize is
that even when the modified-de Sitter potential was obtained by changing the local sym-
metry at the moment to perform the linealization of the field equation, this new potential
acquired a gravitational status gaining in the extra term the gravitational constant G as it
can be observed from its expression.

Finally, the last Chapters of this work are devoted in the application of this modified-
Newtonian potential in the discrepancy between the theoretical and the observation in the
rotation curve of galaxies as well as the cosmological constant problem.
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Part II

Some physical implications
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Chapter 4
Thermodynamics and the de Sitter spe-
cial relativity

The de Sitter special relativity has two main characteristics, the change in the translation
symmetry and the fact that Lorentz symmetry is preserved at any energy scale, even close
to the Planck scale. This Chapter is dedicated to studying some thermodynamics quantit-
ies that might arise as a consequence of the redefinition of the stress-energy tensor Πµν,
specifically the definition of entropy.

It is known that under a suitable coordinate system is possible to identify the horizon
in the de Sitter space [33], which suggests that such spacetime will have non trivial ther-
modynamics features. Being able to define the notion of the horizon such as in the case of
the Black hole, gives to de Sitter spacetime the ability to determine the notion of surface
gravity which will relate to the temperature associated with this horizon. But actually, this
is not new, the first work to analyze the thermodynamic quantities of the causal horizon
was given by Gibbons& Hawking 1976 [34].

So, having in mind that it could be possible to determine the notion of temperature, and
giving the fact that we already have a new Noether charge, it is going to be defined a notion
of entropy in according principally with the change in the local diffeormorfims [35].

4.1 Horizons, temperature and entropy

Besides to the fact that thermodynamics laws are well defined and study in the context
of black holes event horizons [36, 37] *, there is so much less discussed for spacetimes
where cosmological aspect are involved such as the de Sitter spacetime.

The Schwarzschild black hole can be considered as a thermodynamics system; tem-
perature, energy, and entropy can be attributed to it; indeed Bardeen-Carter & Hawking
summarized the four thermodynamics laws for black hole [37]. This four mechanics laws,
suggests that one can identify the surface gravity κ of a black hole with temperature and

*The term event horizon will be used for the causal limit region on the black hole.
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the area A of the event horizon with entropy S at least up to some multiplicative constants.
The concept of temperature of a black hole arrives when quantum mechanical effects

are taken into account. One finds that black holes emit thermal radiation knows as Hawk-
ing radiation [38], at a temperature

TBH =
~ κ

2π c kB
,† (4.1)

setting in this way the first relationship between a geometric parameter of the black hole
and a thermodynamic one.

The Schwarzschild black hole has a compact spherical surface of radius r = 2M ,
which is what determines the well known event horizon. Since this horizon can hide
“information”—which is connected with entropy—it is possible through the Bekenstein
entropy [39], associates to this horizon such value for the entropy as

SBH =
kB c3 A

4~G
. (4.2)

which is actually proportional to the area of the event horizon, characterist of such defin-
ition as it was comment above.

Meanwhile, given the good work in the laws of thermodynamics for event horizons,
the question will be, how are define those thermodynamics variables on cosmological
horizons, such as the case for de Sitter causal horizons? From now, here the objective is
to extend the above concepts—briefly studied—-for more general spacetime such as the
de Sitter spacetime.

4.2 Thermodynamics variables on de Sitter spacetime
In Chapter 2, a new Noether current was found due to the change in the notion of a local
transitivity. This new definition for the stress-energy must changes the quantities that are
related to it, such as for example the entropy.

4.2.1 Temperature
Spacetimes with horizons possess a natural analytic continuation from Minkowski signa-
ture to the Euclidean signature with τ → t = iτ. If the metric is periodic in τ, then one
can associate a natural notion of a temperature to such spacetimes [40] ‡.

For example, from the de Sitter manifold with the metric

ds2 = −c2dτ2 + l2 cosh(l−1cτ)[dχ2 + sin2 χ(dθ2 + sin2θdφ2)] (4.3)
†For the case of the Schwarzschild black hole the the temperature is given by TBH = 1/8π M , where

κ = 1/4M
‡See Appendix D for details of the relation between the Euclidean time and temperature.
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it is possible to make such analytic continuation, defining a metric

ds2 = c2dt2 − l2 cos(l−1c/t)[dχ2 + sin2 χ(dθ2 + sin2θdφ2)] (4.4)

which is clearly periodic in t with period 2πl § . Like this the temperature associated to
the de Sitter horizon is given by

Tds =
~ c

2 π l kB
, (4.5)

with l the de-Sitter radius. As it was seen, the de Sitter temperature is not so far from the
notion of temperature in black hole; but the analogy remains until here.

Energy and entropy are less discussed in spacetimes more complicated as de Sitter
space. A possible reason could be that in the simplest context of a Schwarzschild black
hole of mass M , one can relate the energy with the matter as an equal, E = M , temperature
T = (8 π M)−1 and entropy S = (1/4)AH/lP, where AH is the area of the horizon and lP =

(G~/c3)1/2 is the Planck length; quantities that are clearly related to the thermodynamic
identity

TdS = dE, (4.6)

usually called the first law of black hole thermodynamics. This result has been obtained
in much more general contexts and has been investigated from many different points of
view in the literature [40]. The simplicity of the result depends on the following features:

• The Schwarzschild metric is a vacuum solution with no pressure so that there is no
PdV term in the first law of thermodynamics.

• The metric has only one parameter M , then the changes in all the physical paramet-
ers can be related to this parameter, changing in time i.e dM .

• Most importantly, there exists a well-defined notion of energy E to the spacetime
and the changes in the energy dE can be interpreted in terms of the physical process
of the black hole evaporation.

So, if the goal is to extend thermodynamics concepts as the mentioned before, it is im-
portant to recognize which is (are) the dynamical parameter, when it is considered the de
Sitter special relativity approach.

So, the answer to the question above could be that, even when it is possible to define
quantities such as temperature, energy, and entropy for de Sitter horizons; without a para-
meter that allows some kind of dynamics in it, there will be no dynamics between those
variables. Indeed, even having a notion of energy, it is not clear how to write and inter-
preted an equation analogous to (4.6) in a spacetime which is locally de Sitter, because dE
is attached to the notion of evaporation and how this is understood under de Sitter-ruled
special relativity approach still remains unclear.

§It is important to remark that the spacetime described by Eq. (4.3) represents a 4-dimensional hyper-
boloid in the 5-dimensional space, while the Eq. (4.4) represents a 4-sphere, from where the notion of
period is more natural
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Commentary 4.1 In order to get a glimpse about how can be related those variables, in the next
Chapter is going to be redefined the thermodynamics of horizons where these two variables are going to be
related to each other, as a unique system. J

4.2.2 Energy as the new Noether charge
A new Noether current gives a new Noether charge. From (2.24), the generalized notion
of energy will be

E ≡ Π00 = ET − (2l)−2 EK, (4.7)

where ET is the ordinary translational notion of energy and EK is the proper conformal
notion of energy. Again, in the formal limit for large values of l, it remained that the total
energy is given by the ordinary translation energy ET .

4.2.3 Entropy on locally Minkowski spacetime
As it was discussed, there is no problem in defines temperature on de Sitter horizon; so in
the light of this, is reasonable to try to define the entropy associated to the causal de Sitter
horizon as

Sds =
kB AH

4l2
p
=
π c3 kBl2

G ~
, (4.8)

where AH = 4π l2 is the area of the causal horizons; but these quantities are related by
the first law of thermodynamics (4.6), and with a new definition for the energy (4.7), there
must be a new definition for the entropy and in a consequence a variation for the first law
of thermodynamics at least into the de-Sitter special relativity approach.

The procedure to construct the definition for the entropy, according to with the de
Sitter stress energy tensor Πµν, is addressed practically, following the work by Wald [41]
where the entropy is defined as a Noether charge. It is important to remind that the concept
of Entropy, measures the lack of information of some physical system, and in this case,
that information is attached to the causal-de Sitter horizon.

Under this, the event horizon of a stationary black hole is a Killing horizonH ¶, a null
surface to which a Killing vector field ζα is normal then, the surface gravity κ at any point
of the Killing horizon, is defined by the condition

ζα∇αζ
β = κ ζ β, (4.9)

being able to determine the physical temperature T = κ/2π at the horizon. So, the quantity
playing the role of black hole entropy in this formula is simply 2π times the integral over
Σ of the Noether charge associated with the horizon Killing field (i.e., the Killing field
which vanishes on Σ). Therefore, in order to define the entropy for a spacetime locally-de

¶For more information about causal theory, horizons and Killing horizons see Appendix C
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Sitter first let see, how is the formalism for a spacetime locally Minkowski. The ET , is
the Noether charge relative to infinitesimal coordinate variation (2.11); its integral over a
closed spacelike two-dimensional surface Σ will be referred to as the Noether charge of Σ
relative to δγ.

In this case, it can be shown that the entropy S of a Killing horizon is related to
Noether’s charge according to [35, 41]

S =
2π
κ

∫
Σ

ET, (4.10)

where Σ is a two-dimensional surface endowed with a positive-defined metric, allowing
in this way the definition of length. It is actually a bifurcate Killing horizon, that is, a
surface formed by two Killing horizons that intersect on the space-like surface Σ. One
should remark that the subscript ‘T’ has been used to remind that the above result holds in
a general spacetime that reduces locally to Minkowski, which is transitive under ordinary
spacetime translations.

4.2.4 Entropy on de-Sitter Cartan geometry
Having in mind the fact of those spacetimes which the local symmetry will not be de-
scribed anymore by the Poincaré group, the aim of this section is to introduce the defin-
ition of the entropy for the specific case of spacetimes that reduces locally to de Sitter
spacetime.

Based on the case explained in the last section, now it is going to be considered a
spacetime that reduces locally to de Sitter space, which is transitive under a combination
of translations and proper conformal transformations and where the local diffeomorfism
are determined by (2.13). As a consequence, the Noether charges associated with such
transformation will acquire an additional piece related to the proper conformal transform-
ations, as can be seen from Eq. (2.9).

This means that in such spacetimes the relation between entropy of a Killing horizon
and Noether’s charge assumes the form

S =
2π
κ

∫
Σ

[
ET − (2l)−2 EK

]
(4.11)

where ET represents the part of the Noether charge related to translations, and EK the part
related to proper conformal transformations, and specifically for this case κ = 1/l [42]

Entropy is consequently made up of two parts, one connected to the translations
which correspond to the usual gravitational notion of entropy and another connected to
the proper conformal transformations, which it has been called proper conformal en-
tropy [19]. Also notes that even when it could be possible to think in separates (4.11)
in two integrals, the fact of being the whole quantity into the integral what is actually
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conserved made this not possible, what makes this concept to be strongly attached to the
local new symmetry.

The proper conformal entropy is a concept that is not present in locally-Minkowski
spacetimes. In fact, in the contraction limit l → ∞, the underlying de Sitter spacetime
reduces to Minkowski and the usual (or Riemannian) expression (4.10) for entropy is
recovered ||.

In this approach, the de Sitter symmetry allows introducing a new kind of degree of
freedom. This new general definition of entropy presents a new term that is not considered
in the usual definition of black hole entropy, even in the original work of Wald [41], the
invariance of the general field action is under the Poincaré symmetry, not allowing to see
the new term added in Eq. (4.11).

Meanwhile, it is interesting to look for the application of this new definition of en-
tropy. One of the main problems around the thermodynamics in horizons is the prob-
lem or paradox—associated with the information lost once a particle crosses the horizon.
Many theories have developed tools in order to try to explain this possible problem, string
theories, quantum field theory in curved spacetime and even there are some theories that
include modifications of quantum mechanics [43].

On the other hand, there is an interesting approach pointed by Penrose, calls Con-
formal Cyclic Cosmology (CCC) **. In [44], is exposed the need of an explanation to the
extraordinary evidence of the thermal equilibrium presented in the Cosmic Microwave
Background. The problem is in the fact that thermal equilibrium corresponds to a max-
imum entropy state and if this is true, how could there be a maximum value for the entropy
at the beginning of the evolution of the Universe? Clearly, there must be something wrong
in the way that this topic needs to be treated or perhaps the value of the entropy to which
it reference is made is not related to the whole matter content by that time.

One of the hypothesis is that for that moment, the gravitational degrees of freedom
potentially available in the Universe are not being excited at all. As the time progress,
the entropy rise as the initially uniform distribution of matter begins to clump allowing
the star to be formed, contributing to an extra degree of freedom to the total matter con-
tent. This dynamic way to pass to one entropy to another is the positive aspect of the
Eq. (4.11); what is by fact missing in the usual approach or definition of entropy in
horizons—because the way of the spacetime-local symmetry is defined— and could be
used in the paradox problem without having to change for example quantum mechanics
(for example).

Commentary 4.2 The Wald entropy is a concept established for spacetimes which are asymptotically
flat. The following Chapters will show that this definition also fits for locally-de Sitter spacetime as long as

||It should be remarked that the entropy usually assumed to satisfy the second law of thermodynamics
is the translational entropy given by Eq. (4.10). How to interpreted the second law of thermodynamics in
terms of the new entropy (4.11) is an open question yet to be studied.

**Also the de-Sitter special relativity achieve to gives to the CCC a mathematical framework [16].
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the matter content vanishes; also this point will clear a new total aspect of the cosmological constant which
actually will not require being constant ††. J

††New roles of the cosmological constant has been found recently in the literature gaining more attention
each day [45, 46].
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Chapter 5
The Schwarzschild solution in locally
de Sitter spacetime

The goal of this part of the work is to explore how is redefined— in the case of being
modified—black hole solution in presence of a cosmological constant. In order to do that,
let us consider a black hole immersed in a universe with an effective cosmological term
Λ. At the end of the Chapter, the thermodynamic of the horizons is going to be analyzed,
noting that there exist a unique system formed by the two horizons l and 2M [19]

5.1 The Schwarzschild in the presence of a background
Λ

Consider a gravitational field possessing central symmetry, and produced by a centrally
symmetric distribution of matter. Using arguments based on the symmetry of the solution,
its metric can be written in the form

ds2 = eν c2 dt2 − eλ dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (5.1)

where ν(r, t) and λ(r, t) functions of the coordinates r and t. Denoting by {x0, x1, x2, x3},
respectively, the coordinates {ct, r, θ, φ}, the non-zero components of the metric tensor are

g00 = eν, g11 = −eλ, g22 = −r2, g33 = −r2 sin2 θ . (5.2)

On the other hand, consider this spacetime immersed in a universe with an overall energy
density εm, which induces an effective cosmological term

Λ =
4πG
c4 εm . (5.3)

In this case, therefore, the de Sitter modified Einstein equation must be written with an
external cosmological term—that is, a cosmological term not generated by the masses
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producing the black hole—to its right-hand side:

Rµ
ν =

8πG
c4

(
Π
µ
ν −

1
2δ

µ
νΠ

)
+ Λ δ

µ
ν , (5.4)

where Πµ
ν = ξ

µ
α Tα

ν is the source for the Schwarzschild solution only. As in the previous
case, it is going to be consider the vacuum solution, that is, a solution that holds outside
of the masses producing the black hole field, where the energy-momentum tensor Tα

ν

vanishes. The field equation (5.4) assumes then the form

Rµ
ν = Λ δ

µ
ν . (5.5)

A straightforward computation yields the following equations:

− e−λ
(
ν′

r
+

1
r2

)
+

1
r2 = Λ δ

1
1 (5.6)

− 1
2 e−λ

(
ν′′ +

ν′2

2
+
ν′ − λ′

r
−
ν′λ′

2

)
+ 1

2 e−ν
(
λ̈ +

λ̇

2
−
λ̇ ν̇

2

)
= Λ δ2

2 = Λ δ
3
3 (5.7)

− e−λ
( 1
r2 −

λ′

r

)
+

1
r2 = Λ δ

0
0 (5.8)

− e−λ
λ̇

r
= Λ δ0

1 = 0 . (5.9)

All other components of (5.5) vanish identically.
Considering now that in this case Eq. (5.7) is redundant in the sense that it can be

obtained from the other three equations, it is obtained:

e−λ
(
ν′

r
+

1
r2

)
−

1
r2 = −Λ (5.10)

e−λ
(
λ′

r
−

1
r2

)
+

1
r2 = Λ (5.11)

λ̇ = 0 . (5.12)

It follows from Eq. (5.12) that λ does not depend on the time. Furthermore as in the case
before, adding Eqs. (5.10) and (5.11), it is found λ′ + ν′ = 0, that is,

λ + ν = f (t) , (5.13)

where f (t) is an arbitrary function of the time. However, when we chose the quadratic
interval ds2 in the form (5.1), there still remained the possibility of an arbitrary transform-
ation of the time of the form t = f (t′). Such a transformation is equivalent to adding to ν
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an arbitrary function of the time. With this process we can always make f (t) in (5.13) to
vanish. Without loss of generality, therefore,

λ + ν = 0 . (5.14)

In this case, equation (5.11) is easily integrated and gives

e−λ = eν = 1 +
κ

r
−
Λ

3
r2 , (5.15)

with κ an integration constant. Considering that for a vanishing Λ the solution must
reduce to the Schwarzschild solution in locally Minkowski spacetimes, the value of the
integration constant κ is that given by 2GM/c2. Using furthermore the relation

Λ = 3/l2 , (5.16)

the solution assumes the form

e−λ = eν = 1 − rs/r − r2/l2 , (5.17)

with rs the Schwarzschild radius. The corresponding metric is the so-called Schwarzschild-
de Sitter metric

ds2 =
(
1 − rs/r − r2/l2

)
c2 dt2 −

dr2(
1 − rs/r − r2/l2) − r2

(
dθ2 + sin2 θdφ2

)
. (5.18)

Commentary 5.1 It is important to remark that the Schwarzschild-de Sitter solution (5.18) can be
obtained directly from the ansatz (5.1) with the identification

g00 = 1 + 2φ/c2 , (5.19)

where φ is the Newtonian potential, provided the gravitational potential is given by

φ = −
GM

r
−
Λc2

6
r2 . (5.20)

This is the so-called Newton-Hooke potential [47]. J

5.2 Thermodynamics of horizons
The aim of what is next is to explore the thermodynamics aspects of the Schwarzschild-de
Sitter solution. Consider a black hole and a positive cosmological constant, means that the
spacetime will be describe necessary by the metric mentioned before; just that as it was
already seen, the way to obtain and the origin of such cosmological constant here changes.
Even this, there is some works that attempt to give to the cosmological constant another
connotation when it is consider together with a black hole ”system”; such connotation is
a thermodynamic one [45, 46].

41



The Comment 4.1, remarked that it could be possible some kind of dynamic relation
between the two horizon determined by M and l; here this will be taking into consid-
eration in order to explore if the variation of the parameter l affects or not—in some
way—the Schwarzschild radius. Finally in the light of the last mentioned in [48] is men-
tioned that could be a relationship between the dynamic of the black hole and the dynamic
of the Universe, and if the universe is taking to be describe by the de Sitter space, then,
the following could attempt to deal with such assumption.

The Schwarzschild solution immersed in a universe with an effective cosmological
term, is a spacetime that ends represented by the Schwarzschild-de-Sitter solution. It
is on this metric that concepts such as entropy, temperature and energy are going to be
studied for each one of the horizons; the goal is to analyzed the possible relation between
them. Remembering that rs = 2M *

ds2 = f (r) dt2 − f (r)−1dr2 − r2
(
dθ2 + sin2 θdφ2

)
. (5.21)

with
f (r) =

(
1 − rs/r − r2/l2

)
. (5.22)

As can be easily checked, in a locally inertial frame, where gravitation is eliminated
by inertial effects, it reduces to the de Sitter metric. Considering furthermore that this
metric represents ultimately the Schwarzschild solution, the function f (r) must keep its
Schwarzschild form

f (r) = 1 −
2M
R

(5.23)

with
R =

r
1 + r3/2Ml2 . (5.24)

Seen from this perspective, the background de Sitter kinematics is found to produce a
change in the Schwarzschild radius, which by equating R = 2M turns out to be defined
by the solutions of the cubic polynomial equation [49]

r3
SdS

l2 − rSdS + 2M = 0, (5.25)

where rSdS denotes the radius of the horizons present in the solution.
From now on, for the sake of simplicity, the de Sitter pseudo-radius is considered

much larger than the Schwarzschild radius: l � rS = 2M . One of the three roots of the
cubic polynomial equation (5.25) is negative, and for this reason it will be neglected. The
other two, when expanded in powers of M/l, are given by

rSdS = 2M
(
1 +

4M2

l2 + · · ·
)

(5.26)

*Using units where G = ~ = c = kB = 1
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and

r′SdS = l
(
1 −

M
l
−

3M2

2l2 + · · ·
)
. (5.27)

The first root represents the Schwarzschild horizon, now modified by the underlying de
Sitter kinematics. The second solution, on the other hand, represents the de Sitter hori-
zon, which in turn appears modified by the presence of the black hole. This means that
the black hole and the de Sitter horizons are connected to each other and cannot be con-
sidered separately. In particular, when studying their thermodynamic properties, one has
necessarily to consider both horizons as a unique entangled system. Of course, they have
different temperatures, and for this reason they require independent thermodynamic ana-
lysis. In the remaining of this Section, it begins with the black hole and then the de Sitter
case.

5.2.1 Black hole thermodynamics
The entropy S = A/4 defined by the de Sitter-modified Schwarzschild radius (5.26) is

S = 4πM2
(
1 +

8M2

l2 + · · ·
)
. (5.28)

The first term on the right-hand side is the usual entropy associated with the translational
part of the spacetime local transitivity. The remaining terms, as discussed in Section 4.2.4,
represent the contribution to the entropy coming from the proper conformal part of the
spacetime local transitivity.† In the formal limit l → ∞, the underlying de Sitter spacetime
contracts to Minkowski, and the usual entropy S = 4πM2 of an isolated black hole horizon
is recovered. Observe that now all thermodynamic quantities are functions of M and l,
which represent the two thermodynamic variables of the system [46]. The differential of
the entropy (5.28) is consequently given by

dS = 8πM
(
dM +

16M2

l2 dM −
8M3

l3 dl + · · ·
)
. (5.29)

The horizon temperature, on the other hand, is defined by

T =
κ

2π
, (5.30)

where κ is the surface gravity, which in the case of ordinary Schwarzschild solution has
the form

κ =
1

4M
≡

1
2 rS

. (5.31)

†One should note that in the exact case only terms proportional to l−2 would appear in the entropy
expression, as well as in all other thermodynamic variables. In the present case, however, because all
variables were expanded in powers of M/l, they turn out to be expressed also by an infinite series in powers
of M/l.
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In the case of a de Sitter-modified Schwarzschild solution, the surface gravity turns out to
be

κ ≡
1

2 rSdS
=

1
4M

(
1 −

4M2

l2 + · · ·
)
. (5.32)

The horizon temperature assumes then the form

T =
1

8πM

(
1 −

4M2

l2 + · · ·
)
. (5.33)

Similarly to the entropy, the first term on the right-hand side represents the temperature of
the usual black hole horizon, whereas the remaining terms represent the change induced
by the underlying de Sitter spacetime, which has already discussed is part of the system
Schwarzschild-de Sitter system.

The de Sitter-modified energy of a black hole can be obtained from the first law of
black hole thermodynamics

dE = T dS. (5.34)

Using expressions (5.29) and (5.33), it assumes the form

dE = dM +
12M2

l2 dM −
8M3

l3 dl + · · · . (5.35)

An integration yields

E = M +
8M3

l2 + · · · . (5.36)

The first term on the right-hand side is the usual energy of a black hole. The remaining
terms represent the contribution to the energy coming from the underlying de Sitter space-
time. In the limit l → ∞, the background de Sitter spacetime contracts to Minkowski, and
the usual black hole energy is recovered.

5.2.2 de Sitter thermodynamics

There is naturally a de Sitter horizon present in spacetime. Now, here is described its
thermodynamic evolution [34]. The entropy S′ = A′/4 of the de Sitter horizon with
radius r′SdS, given by Eq. (5.27), is

S′ = πl2
(
1 −

2M
l
−

2M2

l2 +
3M3

l3 + · · ·
)
. (5.37)

The first term on the right-hand side is the usual entropy associated with the de Sitter
horizon. The remaining terms, as discussed in Section 4.2.4, represent the contribution
to the entropy coming from the proper conformal part of the spacetime local transitivity.
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In the limit M → 0, which represents absence of black hole, these terms vanish and one
obtains back the entropy S = πl2 of an isolated de Sitter horizon. The differential of S′ is

dS′ = 2π
(
ldl − ldM − Mdl − 2MdM +

9M2

2l
dM + · · ·

)
. (5.38)

In the usual case, the temperature of the de Sitter horizon is T ′ = 1/2πl, with l the
horizon radius. In the presence of a black hole, the de Sitter horizon turns out to be given
by r′SdS, and the temperature assumes the form

T ′ ≡
1

2πr′SdS
=

1
2πl

(
1 +

M
l
+

3M2

2l2 + · · ·
)
. (5.39)

The first term on the right-hand side represents the temperature of an isolated de Sitter
horizon. The remaining terms represents the change induced by the presence of the black
hole.

The black hole-modified energy of a de Sitter horizon can be obtained from the ther-
modynamic equation

dE′ = T ′ dS′. (5.40)

Of course, since the cosmological term is interpreted as a purely kinematic entity, and not
a solution of Einstein’s equations with a source possessing negative pressure, no P′dV ′

appears in the above thermodynamic equation. Using expressions (5.38) and (5.39), that
equation assumes the form

dE′ = dl − dM −
3M

l
dM +

M2

2l2 dl +
M2

l2 dM −
3M3

2l3 dl + · · · . (5.41)

Integrating

E′ = l − M −
2M2

l
+

13M3

12l2 · · · . (5.42)

The first term on the right-hand side represents the usual energy of an isolated de Sitter
horizon. The remaining terms represent the contribution to the energy coming from the
presence of a black hole.

Finally, the temperature of the two horizons are different, which means that the system
is not thermodynamically stable [50]. This suggests that there can exist a heat flow from
the dynamic black hole horizon to the kinematic de Sitter horizon, and vice versa. In fact,
as discussed in Chapter 2, in a locally-de Sitter spacetime there is an additional freedom—
not present in locally Minkowski spacetimes—that allows ordinary energy-momentum
current to transform into proper conformal current, while keeping the total energy E + E′

constant, where E is the black hole energy (5.36) and E′ is the de Sitter energy (5.42).
This conservation law can be written in the equivalent form

dE + dE′ = 0,
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from where the constraint

dl =
(

3M
l
−

13M2

l2 + · · ·

)
dM (5.43)

between the thermodynamic variables of the de Sitter and of the black hole horizons can
be easily obtained. Such constraint says that every change in the radius of a black hole
horizon—either by emitting or absorbing a particle—will produce concomitant changes in
the radius of the de Sitter horizon. This result provides a new scenario for the study of cos-
mology, and in particular for the study of Penrose’s Conformal Cyclic cosmology [44,51].
Finally, under a speculatively context, it is known that recent experimental results indic-
ate that the universe expansion became accelerated in the last few billion years [9–11].
A possible explanation for this late time acceleration is to suppose that the cosmological
term Λ is bigger today than it was a few billion years ago. Considering that Λ ∼ l−2, this
is equivalent to say that the de Sitter parameter l is becoming smaller, which implies that
dl < 0. Since the leading-order term of the expansion within parentheses in the constraint
(5.43) is positive, this implies that dM < 0. In this context, therefore, the recent acceler-
ated expansion of the universe can be explained by supposing that in the last few billion
years the black holes inside the de Sitter causal horizon—all of them exchanging energy
(heat) with the de Sitter horizon—are preponderantly emitting more Hawking radiation
than absorbing baryonic matter.
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Chapter 6

On the dark energy problem

6.1 The dark energy problem

In the standard cosmology there exist a problem—among other—which is, that most of
the content of matter in the Universe has never been directly detected in the laboratory.
The mayor among of the total energy in the Universe is the form of what is called dark
energy almost 69 %, the remaining contributions are composed of matter (dark and ba-
ryonic matter). Into the scenarios in cosmology, the most accepted candidate for being
that mysterious component is the cosmological constant Λ—which is strongly projected
as responsible for the accelerated expansion of the Universe.

The cosmological constant was originally introduced by Einstein in 1917 to achieve
a static Universe. After Hubble’s discovery of the expansion of the Universe in 1929, it
was dropped by Einstein as it was no longer required. From the point of view of particles
physics, the cosmological constant arises as an energy of the vacuum but if Λ originates
from a vacuum energy density, then this must require a fine-tuning to adjust, given the
discrepancy between the observed value and the theoretical one. That is to say, observa-
tionally it is known that the cosmological term is of order the present value of the Hubble
parameter H0, which corresponds to a critical density of

εΛ ∼ 10−47GeV 4. (6.1)

On the other hand, another possibility to approach to the critical density associated to
the cosmological constant is thinking, that such value could arise as the vacuum energy
density and like this, evaluating by the sum of the zero-point energies of quantum fields
with mass m,

εΛ =
1
2

∫ ∞

0

d3k
(2π)3

√
k2 + m2 (6.2)

=
1

4π2

∫ ∞

0
dk k2

√
k2 + m2 (6.3)
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so, It is expect the validity of quantum field theory up to some cut-off kmax , in which the
last integral is finite

εΛ ≈
k4

max

16π2 ; (6.4)

for some extreme case of general relativity, one expects to be valid to just below the
Planck scale mpl ∼ 1019, then if this scale is considered as the kmax , it is found that

εΛ ≈ 1074GeV 4 (6.5)

which is about 10121 orders of magnitude larger that the observed, revealing what is the
so-called the cosmological constant problem.

Returning to the gravitational role that may play the cosmological constant, it is known
that from the Einstein field equation with cosmological constant for a universe homogen-
ous and isotropic, it is obtained the Friedman equation, from which it is possible to read
the following

εc = εm +
Λ

8πG
(6.6)

where εc = 3H2c2/8πG and εm is the Friedman critical density and the mass density
respectively. The another term is what it might represent the density associated to the
cosmological constant.

So here comes the thing, for a universe with a flat spatial section k = 0 what take us
to a cosmological parameter Ω = 1—into this parameter it is expected all kind of energy,
matter and even dark energy—it is obtained that the energy density associated to Λ is of
the order of 10−52, generating a coincidence for the critical and the mass density, given its
small value [52, 53].

What really happens is the fact, that at 1998, Pelmutter et al [9] found that for a
universe with k = 0,

Ωm +ΩΛ = 1 (6.7)

where Ωm = 0, 28+0,09
−0,08 (1σ-statistical), letting a value for ΩΛ ∼ 70%.

The reason for the above is to expose in a better way that there is not a clear role for
the cosmological constant—it is dynamic, it could change according to Eq. (3.11)—-and
also there is not a unique procedure to obtain the value of the density associated with it.
But what it is unclear is that indeed there is a discrepancy in such value which by fact
does not help to conciliate the results in Eq. (6.7). There have been a number of attempts
to solve this problem, quantum gravity, supergravity, string theory and even changing
gravity, nevertheless, no clear solution is known up to date. But from the cosmological
point of view and having in mind the role that might have the cosmological constant in
the inflation, how the cosmological constant and inflation are conciliated?

There are two ways either supplementing the energy-momentum tensor by an exotic
form of matter such cosmological constant or scalar field or even changing the theory of
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gravity. In inflationary cosmology, the cosmological constant is considered as fluid with a
constant equation of state w = −1. So for example, in the case of the accelerating cosmic
expansion being considered driven by a new form of energy such as a scalar field φ with
potential V (φ); in the limit of 1

2 φ̇
2 << V (φ) the scalar field acts like a cosmological

constant, with
Pφ ∼ −ρφ, (6.8)

which at the end it will require the existence of an exotic fluid with such characteristic.
On the other side, there are the theories that attempt to modify the geometry itself.

Into the modifies gravity theories, the f (R)-gravity are the most discussed. These theories
replace the Ricci scalar R by a function of f (R) in the Einstein-Hilbert action

SEH =

∫
dx4√−g f (R). (6.9)

Just for mention one example [54] , here is considered f (R) = R−α2/R—a 1/R function—
where in contrast to the Einstein-Hilbert action gives a non-trivial second order equation
in the metric whose solution approach to a de Sitter Universe, given like this an alternative
explanation for the cosmological acceleration.

In this part of the work is presented another alternative. It was already studied the
de Sitter modified gravitation theory, and calculated the Newtonian limit of this new the-
ory, the purpose of the next is to use this new modified potential and explores how the
Newtonian Friedman equation provides a good account of the dark energy content of
the present-day Universe [20]— giving a positive contribution to the problem exposed
before—nevertheless, it seems important to remark that even when the Friedman equa-
tion coming from the Einstein general relativity coincides with the ones coming from the
Newtonian gravity, these equations are an analogous of the Friedman equation just that
they are obtained under the ”Newtonian gravitation”—in this case, a modified Newtonian
gravitation.

Finally, in the light of the two alternative theories briefly exposed before, the modified-
de Sitter gravitational theory nor does not require the existence of any fluid with specific
characteristics to emulate the cosmological constant nor appeals for redefinition of the
geometry in the Einstein-Hilbert action; this theory appeal entirely to first principles: to
replace the Poincaré invariant special relativity by a de Sitter invariant relativity.

6.2 The Newtonian Friedmann equations
The derivation of the relativistic Friedmann equations is usually done by inserting the
Friedmann-Robertson-Walker metric into Einstein equations. Nevertheless, it is possible
to obtain the Friedmann equations from the Newtonian gravity—under some limits, for
example, the absence of pressure. Even the surprising result in the way of these two
approaches coincided, there are fundamental differences between them. For example,
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whereas in the Newtonian view the universe expands in flat Euclidian space under the
influence of Newtonian gravity, in the relativistic view the whole universe consists of
an expanding curved space. The purpose here is not to study the time evolution of the
universe, but just to explore the consequences of the de Sitter-invariant special relativity
for the present-day universe, and for that, the Newtonian Friedmann equations should
suffice.

Considering a sphere of radius R = R (t) and mass M undergoing an isotropic and
homogeneous expansion. The equation of motion for R can be obtained from the gravit-
ational acceleration at the border of the sphere

d2R

dt2 = −
GM
R2 +

GMΛ
6

, (6.10)

where the de Sitter modified force Eq. (3.61) were consider. Multiplying both sides by
dR/dt and integrating, the energy equation is given by

1
2

(dR
dt

)2
=

GM
R
+

GMΛR
6

+ E , (6.11)

where the integration constant E represents the total energy per unit mass at the surface
of the expanding sphere. Now the radius turn into the form

R (t) = r a(t) , (6.12)

with a(t) ≡ a the scale function parameter, and r the comoving radius of the sphere.
Recalling that the mass of the sphere is

M =
4π
3
R3ρ, (6.13)

with ρ ≡ ρ(t) the mass density, after some algebraic manipulation the energy equation
(6.11) assumes the form ( ȧ

a

)2
=

8πG
3

ρ +
4πGΛρR2

9
+

2E
R2 a2 . (6.14)

Now, in order to make contact with the Friedmann equations, the mass density ρ
must be replaced by the total density εm/c2, where the subscript ‘m’ denotes all forms of
matter (or source) energy, in addition to the mass energy. Furthermore, the energy E must
be related to the curvature of space. If it is consider

E = −
kc2

2
, (6.15)

with k the curvature parameter, Eq. (6.14) acquires the usual form of the Friedmann equa-
tions

H2 ≡

( ȧ
a

)2
=

8πG
3c2 εm +

4πGΛR2

9c2 εm −
kc2

R2 a2 , (6.16)
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where H = ȧ/a is the Hubble parameter. Assuming a universe with a flat space section
(k = 0), it becomes

3H2c2

8πG
=

(
1 +
ΛR2

6

)
εm . (6.17)

One should note that the Friedmann critical energy density for a vanishing Λ, given by

εc =
3H2c2

8πG
, (6.18)

is modified due to the presence of the de Sitter background:*

εc =

(
1 +
ΛR2

6

)
εm . (6.19)

Considering that εc = εm + εΛ, immediately can be identify the dark energy density

εΛ =
ΛR2

6
εm . (6.20)

The results in Eq. (6.20) differs from the obtained under the standard approach— presen-
ted in Eq. (6.6)—where exist an equivalent behavior between the mass-energy density
and the dark energy density. Here instead, there is a coupling relationship between both
densities, making clear that in this model, that the existence of one determines the other.
According to the de Sitter invariant special relativity, any physical system with energy
density εm produces a cosmological term Λ, with a dark energy density εΛ which is
necessary to comply with the local symmetry of spacetime, now ruled by the de Sitter
group. This is exactly what it was commented at Comment 4.2, the presence of a local
cosmological term Λ is then a natural consequence of the presence of ordinary matter.

For example, using the approximate present-day values ofΛ and R, given respectively
by

Λ ' 10−52 m−2 and R ' 4 × 1026 m , (6.21)

it is obtain
εΛ = 2.7 εm . (6.22)

The corresponding density parameters are found to be

Ωm ≡
εm

εc
' 0.24 and ΩΛ ≡

εΛ
εc
' 0.76 , (6.23)

which are close to the current values obtained from observations. In this way the present
theory provides a good explanation for the so-called coincidence problem.
Commentary 6.1 Finally, it is important to remark that the values for the cosmological parameter
Ωm depends on the cosmological model used. To have a full description of the model presented here, it
is expected to extract this values from the own model by fitting the modified de Sitter Friedman equation
without any approximation. J

*Note that, by using the identity Λ = 3/l2, relation (6.19) can be rewritten in the form εc = ξ
0
0 εm , with

ξ0
0 the Killing vector (B.5). This relation between the energy densities is then a direct consequence of the

underlying de Sitter symmetry.
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Chapter 7

On the dark matter problem

7.1 The missing mass problem

Since the 1930s, astronomical observations have accumulated evidence that our under-
standing of the dynamics of galaxies and groups of galaxies is grossly incomplete, and
by today it is a fact that there is something missing in the way that such astrophysical
systems are studied.

The discrepancy between the observed and the theoretical around the subject men-
tioned is known as the ”missing mass problem” was first identified in clusters by Swiss
astronomer Fritz Zwicky in 1933 (who studied the Coma cluster), and subsequently exten-
ded to include spiral galaxies by the 1939 work of Horace Babcock on Andromeda. These
early studies were augmented and brought to the attention of the astronomical community
in the 1960s and 1970s by the work of Vera Rubin at the Carnegie Institute in Washington,
who mapped in detail the rotation velocities of stars in a large sample of spirals. While
the Laws in the Newton theory predict that stellar rotation velocities should decrease with
distance from the galactic centre, Rubin and collaborators found instead that they remain
almost constant; the rotation curves are said to be ”flat”. This observation necessitates at
least one of the following:

1. There exists in galaxies large quantities of unseen matter which boosts the stars’
velocities beyond what would be expected on the basis of the visible mass alone, or

2. Newton’s Laws do not apply to galaxies.

The first statements lead to the dark matter hypothesis and the latter to the modified gravity
theories. This part of the work is addressed to look for some new dynamics for this
problem instead of considering some kind of exotic missing mass. In what follows, an
attempt will be made to address the problem of the missing mass in galaxy rotation curve
and for that, it will be explored briefly one of the modified theories, the one proposed by
Mordehai Milgrom follows by the proposed under the de Sitter-invariant special relativity.
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7.1.1 Galaxy rotation curve
Galaxies are found in a wide range of shapes, sizes, and masses, but usefully divided into
four main types according to Hubbles’s classification system, they are, Elliptical, Len-
ticular, Spiral, and irregular galaxies. The following analysis is made on spiral galaxies.

A spiral galaxy is a system composed of gas, dust and stars with three main compon-
ents, a flat-rotating disk, a central bulge and a near-spherical galactic halo; each one of
this region is composed of a specific kind of population of star. One of the subject studied
in the dynamics of these objects is the rotating velocity curve of a star or cloud of gas.
This latter is tightly related to the gravitational potential in it.

The Fig. 7.1, is a pictorial manifestation of what has been exposed. The curve A
falls with the distance as it is expected, nevertheless the curve B, as long as the distance
increases from the galactic center, the curve begins to grow and start to become flat.

Figure 7.1: Theoretical and observational galaxy rotation curves

The first approach address to the existence of a non-baryonic matter, the so called
Dark matter, a kind of exotic matter that might compose the halo region of the galaxy. It
is important to note that each one of the region of the galaxy has a characteristic-curve,
for example, in the inner region of the galaxy; the disk, the rotation curve is expected to
behave following the Newton law, but it is out of this region where the matter content
behaves different. In the Fig. (7.2), one can see a different curve for each one of the
regions, even the speculative curve, predicting the existence of a dark matter in the galactic
halo.

7.1.2 The set up for a galaxy rotating curve
In this case, of Newtonian gravitational force

F (r) = −
G M (r)

r2 . (7.1)
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Figure 7.2: The dynamic for each sector of the galaxy

The circular velocity vc(r) of a star at a distance r from the galactic center is [55]

v2
c (r) ≡ r |F (r) | =

G M (r)
r

, (7.2)

where
M (r) = 4π

∫ r

0
ρ(r′) r′2dr′ (7.3)

is the galaxy inner mass, with ρ(r) the mass density in function of the radius. Given the
mass density profile ρ(r) of a galaxy, it is then possible to determine the galaxy rotation
curve. Generically, the rotation curve can be divided into three regions: (i) an inner
region in which the speed rises linearly with the distance from the center; (ii) a region
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where the speed reaches a maximum and then begins to decrease—it is important to take
into account that this regions is observable in some galaxies—-(at the so-called turn over
radius); (iii) a Keplerian region—which a region that is not observable—in which the
gravitational force resembles that of a point mass force,

F = −
GM
r2 , (7.4)

which made the rotation speed (7.2) falls as vc ∼ r−1/2 in this region, as depicted in the
curve A of Figure 7.1. However, instead of such behavior some galaxies show a flat-like
rotation curve, as depicted in curve B of Figure 7.1.

7.1.3 The Tully-Fisher relation
The Tully-Fisher relation is a correlation that holds for galaxies with disks stabilized by
rotation, between the intrinsic luminosity L of the galaxy in optical or near-infrared bands
and the rate of rotation V ,

L? ∼ Vα . (7.5)

Such luminosity profile is built from the stellar bright, allowing to infer the mass distri-
bution of the galaxy. For the aim of this work, the importance of this relation is around to
the MOND formalism, because is one of the strong experimental statement that the theory
has. In this particular case, it is found that

L? ∼ V 4 (7.6)

7.2 Modified gravity theories

7.2.1 Modified Newtonian Dynamic, MOND
At the begging of this Chapter was discussed the problem of the discrepancy in the dynam-
ics of the galaxies. In 1983, was postulated the Modified Newtonian dynamics (MOND).
The motivation of this theory was to explain the fact that the rotation curve in galaxies
was observed to be larger than the expected on the Newtonian dynamics.

The MOND theory is based on the fact that the discrepancy can be solved if the grav-
itational force between the star in the galaxy in the outer-disk region is proportional to
the square of the centripetal acceleration [56]. The basic premise of MOND is that while
Newton’s laws have been extensively tested in high-acceleration environments (in the
Solar System and on Earth), they have not been verified for objects with extremely low
acceleration, such as stars in the outer parts of galaxies. The theory postulates a new ef-
fective gravitational force law (sometimes referred to as ”Milgrom’s law”) that relates the
true acceleration of an object to the acceleration that would be predicted for it on the basis
of Newtonian mechanics. This law is the keystone of MOND, is chosen to reduce to the
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Newtonian result at high acceleration, but lead to different (”deep-MOND”) behavior at
low acceleration; in other words, the dynamics of the outer-disk region must be described
differently—which is the region where the velocity curve starts to be flat.

Such a new force is defined as

FNew = m µ
( a
a0

)
a, (7.7)

a is the gravitational acceleration, µ is the so-called interpolating function, and a0 the
new constant that establishes the transition between the Newtonian regimen to the deep-
MOND one. Defining the interpolating function as

µ
( a
a0

)
=

(
1 + (a/a0)2

)−1/2
(7.8)

and for a � a0, finally helps to turn Eq. (7.7)in

FNew = m
a2

a0
. (7.9)

By other hand, the centripetal acceleration is given by,

a =
v2

r
, (7.10)

then applying this to an object of mass m in circular orbit around a point mass M , one
finds

GM m
r2 =

m (v2/r)2

a0
, (7.11)

getting at the final
v4 = GMa0, (7.12)

the rotation velocity is proportional this transition acceleration. An interesting point here
is the fact that this expression for the velocity is independent of its distance r from the
center of the galaxy, like this the rotation curve from some region become flat, matching
with the observations.

The MOND theory is an alternative to LCDM model. An alternative based on changes
in the dynamic of the galaxies. One of the powerful characteristics is that it provides a
theoretical basis for the Tully-Fisher relation. Nevertheless, the theory is constructed in
order to achieve these results and for this, the theory is kind of a ad hoc empirically
motivated model.

7.2.2 The de Sitter invariant and the galaxy rotation curve
As it was seen, the replacement of the Poincaré symmetry by the de Sitter symmetry in
the construction of general relativity allowed to define a modified Einstein equation and
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through the linearization of it a modified Newtonian potential and force were obtained
[20].

In the following, is going to be presented how this potential and force give an under-
standable theoretical approach for the galaxy rotation curve problems.

The gravitational potential

φ(r) = −
GM

r
−

GMΛ(r)
6

r , (7.13)

withΛ given by Eq. (3.11). Considering that the galaxy mass density ρm is not constant,Λ
is not constant either, and the corresponding gravitational force F = −dφ(r)/dr assumes
the form

F = −
GM
r2 +

GMΛ(r)
6

+
GM

6
r

dΛ(r)
dr

. (7.14)

The first term on the right-hand side represents the usual attractive Newtonian force. The
background de Sitter spacetime contributes with an additional repulsive force proportional
to Λ(r), as well as with a force proportional to the radial derivative of Λ(r), which will
be attractive or repulsive depending on the sign of dΛ(r)/dr . In what follows the grav-
itational force (7.14) is going to be used in order to study the circular velocity of a star
around the galactic center.

The Fig 7.3, represented how the problem is going to be study. First the inner region
of the galaxy r � r0, where the circular velocity of the stars rises almost linearly with r .

A

B

r

v(r)

r0

Figure 7.3: Here it is denoted the region on where the analysis is performed, for r � r0,
r = r0 and r � r0

This means that in this region only the Newtonian force is in action, and the mass dens-
ity ρm(r) of the galaxy decreases slowly with the radius r . In fact, for a nearly constant
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mass density ρm(r) ' ρ0, the inner mass M (r) assumes the form M (r) = (4/3)πρ0r3,
and the Newtonian star velocity is easily seen to grow linearly with r

v(r) =
√

(4/3)πGρ0 r , (7.15)

in agreement with observations.
At the turn over point r0, on the other hand, using the Milky Way values as the typical

values for the mass density and radius of the bulge [?],

ρ0 ' 10−12 Kg m−3 and r0 = 3 kpc ' 1020 m , (7.16)

the corresponding bulge cosmological term is found to be

Λ0 =
4πG
c2 ρ0 ' 10−40 m−2 . (7.17)

Considering furthermore that around r0 the mass density ρm(r) still decreases slowly with
the radius r , the same will happen to cosmological term Λ(r), and consequently the last
term of the gravitational force (7.14) can be neglected. In this case it is easy to see that,
at the turn over point r0, the first two terms of the force (7.14) are of the same order:

|GM0/r2
0 | ' |GM0Λ0/6| . (7.18)

The region around the turn over radius r0 can accordingly be considered a transition region
from the Newtonian to the de Sitter modified Newtonian regimes.

Now, the interesting part in terms of dynamics will be for r � r0, which defines
the Keplerian region*, the Newtonian force becomes negligible and the relevant force
assumes the form

F =
GM0

6
Λ(r) +

GM0

6
r

dΛ(r)
dr

, (7.19)

where it is assumed that in this region the whole mass of the galaxy can be represented by
the bulge mass M0. The squared circular velocity of a star at a distance r from the galactic
center is now given by

v2(r) ≡ r |F (r) | =
GM0

6

[
Λ(r)r + r2 dΛ(r)

dr

]
. (7.20)

Then comes the point: the above expression has a solution in which v2(r) is constant.
Such solution is obtained when Λ(r) satisfies the first-order differential equation

r2 dΛ(r)
dr

+ Λ(r)r = β , (7.21)

with β a constant.

*Even when from the experimental point of view, we are aware that this region is not visible, here in this
model we tried to infer some analytical statements after all
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It is convenient at this point to introduce the dimensionless coordinate r′ = r/r0, in
terms of which the differential equation (7.21) assumes the form

r′2
dΛ(r)

dr′
+ Λ(r)r′ −

β

r0
= 0 . (7.22)

In terms of the original variables, its solution is

Λ(r) =
β

r
ln

( r
r0

)
+ γ

r0

r
, (7.23)

with γ an integration constant. Since at r = r0 the cosmological term has the value
Λ(r) = Λ0, from where immediately it is possible to infer, that γ = Λ0. Imposing
furthermore that dΛ(r)/dr = 0 at r = r0, it is found that that β = Λ0r0. The final form of
the solution is consequently

Λ(r) = Λ0

[
r0

r
ln

( r
r0

)
+

r0

r

]
. (7.24)

On account of the relation (3.11), in terms of the mass density the solution is written as

ρ(r) = ρ0

[
r0

r
ln

( r
r0

)
+

r0

r

]
. (7.25)

The combination of this fiducial mass density profile with the de Sitter modified Newto-
nian force yields a flat rotation curve for the galaxy without necessity of supposing the
presence of dark matter. It should be noted that this mass density profile represents a
small correction to the power law ρ(r) ' ρ0(r0/r), which is within the class of physically
acceptable profiles [55].

Furthermore, note also that, from Eqs. (7.20) and (7.21), the squared velocity of the
flat portion of a galaxy rotation curve is given by

v2
0 ≡

GM0

6
β =

GM0

6
Λ0r0 . (7.26)

Using the average values for the mass and radius of a typical galaxy bulge, given respect-
ively by [?]

M0 = 1010M� ' 2 × 1040 Kg and r0 = 3 kpc ' 1020 m ,

as well asΛ0 given by Eq. (7.17), the squared circular velocity of a star around the galactic
center is found to be

v2
0 =

GM0

6
Λ0r0 ' 1010 m2s−2 , (7.27)

which is of the order of magnitude of the flat portion of a typical galaxy rotation curve. For
example, the squared velocity of the Sun around the galactic center is v2 ' 5×1010 m2s−2.

59



In addition to explain the galaxy rotation curve of galaxies without necessity of assuming
the presence of dark matter, the de Sitter modified Newtonian force gives the correct order
of magnitude for the circular velocities of the stars.

Finally, in addition, not all galaxies show a perfectly flat rotation curve. In spite of
this fact, these galaxies can still be studied in this approach: one has simply to replace
Eq. (7.21) by

r2 dΛ(r)
dr

+ Λ(r)r = β(r) , (7.28)

with β(r) a function describing the behavior of the galaxy rotation curve in the Keplerian
region. The solution to this equation is easily found to be

Λ(r) =
1
r

∫
1
r
β(r)dr + γ

r0

r
. (7.29)

Considering that the explicit form of β(r) could be inferred from observations, one can
then find the explicit form of Λ(r), or equivalently, the explicit form of the mass density
profile ρ(r) that gives rise to the observed rotation curve.

As an illustration, let us consider the specific case in which, instead of a flat rotation
curve, the circular velocity of the stars rises slowly and linearly with the distance r . This
corresponds to a β(r) of the form

β(r) = aΛ0r , (7.30)

where a is a constant that determines how fast the circular velocities rise. In this case, and
using the boundary condition Λ(r0) = Λ0, solution (7.29) assumes the form

Λ(r) = Λ0
[
a + (1 − a)

r0

r

]
, (7.31)

which corresponds to the mass density profile

ρ(r) = ρ0
[
a + (1 − a)

r0

r

]
. (7.32)

Conversely, given a specific mass density profile, we can proceed backwards to find β(r),
which determines the corresponding galaxy rotation curve through Eq. (7.20). This allows
the theory to be applied individually for each galaxy, taking into account their different
specificities. It is worth mentioning finally that our results are in agreement with recent
theoretical and experimental evidences favoring a gravitational solution to the missing
mass problem [57], as well as with the lack of experimental signs of particles that could
play the role of dark matter [58–61].
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Chapter 8

Conclusions and outlook

Physical motivations required Galileo relativity to be generalized to Einstein special re-
lativity, in order to have a theory capable to deal with velocities comparable to the speed
of light. However, Einstein special relativity cannot deal with phenomena at the Planck
scale, where there is an invariant length represented by the Planck length lP. The prob-
lem was—as it was already pointed out—the Lorentz symmetry, given the fact that the
Lorentz symmetry is believed not to allow the existence of an invariant length parameter.
Nevertheless, this is not a problem if it is considered that the Lorentz transformations do
not change the curvature of the homogeneous spacetime in which they are performed.
Being the de Sitter spacetime a homogeneous space, Lorentz transformations are found
to leave the length parameter l invariant. Moreover—what is truly interesting—-if the
Planck length lP is to be invariant under Lorentz transformations, it must then represent
the pseudo-radius of spacetime at the Planck scale, which will be a de Sitter space with a
Planck cosmological term

ΛP = 3/l2
P ' 1.2 × 1066 m−2

and therefore in de Sitter-invariant special relativity the existence of an invariant length-
parameter at the Planck scale does not clash with Lorentz invariance—the Lorentz sym-
metry remains at all scales even at the Planck scale–and then the theory can be thought of
as a generalization of Einstein special relativity for energies near to the Planck energy.

From the mathematical point of view, when the local Riemannian geometry is general-
ized to the Cartan geometry important facts related to the local symmetry are attached. As
the de Sitter spacetime is transitive under a combination of translations and proper con-
formal transformations the definition of diffeomorphism in this spacetimes will change
accordingly and as a consequence a new Noether charge is defined. Under the latter and
supporting by the Wald entropy’s approach, the proper conformal entropy

S =
2π
κ

∫
Σ

[
ET − (2l)−2 EK

]
;
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the relation between the entropy of a Killing horizon and Noether’s charge was con-
sequently made up of two parts, one connected to the translations ET —which corres-
ponds to the usual gravitational notion of entropy—and another connected to the proper
conformal transformations EK . This new definition of entropy represents a new paradigm,
given the extra term that carries on. It is important to mention that this characteristic is
something that is not present in spacetime which reduces to Minkowski spacetime.

On the other hand, certainly, the replacement of the Poincaré-invariant Einstein spe-
cial relativity by a de Sitter-invariant special relativity produces concomitant changes in
all relativistic theories included general relativity. Considering de Sitter space as a fun-
damental background instead of Minkowski, when general relativity is constructed on it,
the underlying spacetime will be described by de Sitter, and the local kinematic is ruled
by the de Sitter group, turning the spacetime to be described by a Cartan geometry and
gravitation turns out to be represented by a de Sitter-modified general relativity. As a
consequence, the kinematical and dynamical curvature were both included in the same
Riemann tensor making possible that the cosmological term no longer appears explicitly
in the Einstein equation and consequently the second Bianchi identity does not require to
be constant

∇µ(Rµν − 1
2g

µνR) = 0.

One of the first point explored under the above was, how the de Sitter kinematics modi-
fied the Schwarzschild solution even in the presence of an overall effective cosmological
constant. It was found that, that the Schwarzschild solution in locally de Sitter coincide
with the usual solution and in the case to count with an external cosmological constant
the Schwarzschild de Sitter solution brought important statements in the thermodynamics
in horizons.

The de Sitter modified general relativity also was used in order to approach to some
mainstream problems in cosmology and astrophysics. Observationally, the corresponds
density parameter for mass and dark energy in the Universe are well known. Assuming
a flat Universe Perlmutter et al found Ωm = 0, 28 ± 0, 04, thus showing that about 70%
of the energy density of the present Universe consists of dark energy. Nevertheless, from
the theoretical point of view, the critical density associated to Λ does not report the same.
According to the de Sitter-modified general relativity, any physical system with energy-
momentum tensor induces in spacetime a local cosmological constant term

Λ =
4πG
c4 εm ,

in regions where no matter is present, both the mass density εm and the cosmological
term will not contribute. Now thinking about the observational values reported in the
Supernova cosmology project, for a universe as a whole, εm produces a cosmological
term Λ, with a dark energy density εΛ, which in the Newtonian limit was found to be
related as

εΛ =
ΛR2

6
εm .
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At the moment to be applied to the present-day universe, gave a good account of the
observed relation between those, seeing that the present theory provided a natural explan-
ation for the coincidence problem.

Having performed the Newtonian limit of the modified Einstein field equation also,
one could verify their prediction for the galactic rotation curves problem. The dependence
of the cosmological constant on the local matter content and its relation to the extra term
of the modified potential, gave a constraint about what it is the expression for the cos-
mological function, in order to achieve a flat rotation curve of galaxy—in the Keplerian
region—- without the necessity of supposing the existence of dark matter. Through the
de Sitter modified Newtonian force it was found a mass density profile presenting a small
correction to the power law ρ(r) ∼ ρ0(r0/r)—which is within the class of physically ac-
ceptable profiles. The flat portion of the galaxy rotation curve was found directly related
to the local value of the cosmological constant and giving the correct order of magnitude
for the circular velocities of the stars, without the constraint of the existence of dark mat-
ter and even more now, given the latest result in the X ENON100-experiment where it
was reported—so far—the non-evidence for dark matter [58].

It goes without saying that the ideas presented along this work left some open prob-
lems. Certainly the proper conformal entropy may represent a new model in the analysis
of the information paradox problem in horizon, also here is highlighted the role that may
has in Penrose’s conformal cyclic cosmology with respect to the uniformity of the CMB
in the primordial universe and its relation to the value of the entropy at that time.

Also, it is important to note that, in order to access all properties of how the de Sitter
modified general relativity brings full advantage to cosmology the relativistic Friedmann
equations for the de Sitter-modified Einstein equation should be obtained and studied.
Based on the preliminary results obtained in this work, such approach may constitute
a new paradigm for the study of cosmology. Finally, it is appropriate— and it is the
intention—-to put the model under astrophysical model and sees if the approach gives a
good account also for cluster galaxy.
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Appendix A

Some group contractions

A.1 The Inönü-Wigner group contraction
The symmetries are behind of what characterizes a physical system. Knowing the trans-
formations that leaves invariants the quantities that are involve in some physical theory
will allow to know the symmetries of the theory. Those transformation are often associ-
ated with the group of symmetry and as it was showed in the first Chapter of this work,
it is possible that from the algebra of some group obtains another through the contraction
process.

Here besides to the the contraction group studied from the de Sitter algebra, it is going
to be present the group contraction from Poincaré algebra and the another limit of the de
Sitter group.

A.1.1 Contraction of the Poincaré group
As it was said that the Poincaré group is a direct product of the Lorentz group and the
4-dimensional translation, also it was emphasized that the contraction is made on the
algebra that represents each group. In the case of the Poincaré its algebra defined as

[Ji, Jj] = iε i j kl Jk, [Ji, K j] = iε i j kl Kk, [Ki, K j] = −iε i j kl Jk, (A.1)

[Ji, Pj] = iε i j kl Pk, [Ki, Pj] = iδi j H, [Ji, H] = 0, (A.2)

[Ki, H] = iPi, [Pi, Pj] = 0, [Pi, H] = 0. (A.3)

where
Ji, Ki, Pi, H, (i = 1, 2, 3) (A.4)

are the generators of rotations, inertial transformations, space and time translations re-
spectively.

The first question around this algebraic process respects with the Poincaré group is
what is the process involved in order to obtain the algebra that represents the Galilei
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group and if there is another kind of contraction from the algebra in discussion. For
instance, the Galilei group is obtained by contraction the Poincaré group with respect to
the direct product of the rotation and the time translation subgroup: i.e, leaving unchanged
the generators J and H of these subgroups. Redefining

P→ εP, K→ εK, (A.5)

and under the ε → 0, the Poincaré algebra yields

[Ji, Jj] = iε i j kl Jk, [Ji, K j] = iε i j kl Kk, [Ki, K j] = 0, (A.6)

[Ji, Pj] = iε i j kl Pk, [Ki, Pj] = iδi j H, [Ji, H] = 0, (A.7)

[Ki, H] = 0, [Pi, Pj] = 0, [Pi, H] = 0. (A.8)

The physical meaning of the contraction is very simple: the factor ε has affected the gen-
erator P and sK, so the contracted group will describe a situation where the velocities—
parameter associated to K—and space translation are small. Moreover, if it is considers
the speed of light as the unit speed and the spacelike intervals small compared with the
timelike intervals, the latter means

v << 1, ∆ s << ∆ t, (A.9)

This is why this process is called speed-space contraction.
But contrary to the usual belief, the Poincaré group does has another limit group. In

this case, leaving unchanged the generator of rotations and space translations, J and P,

H→ εH, K→ εK, (A.10)

this The speed-time contraction is made with respect to the three-dimensional Euclidean
group, turning the algebra of Poincaré in

[Ji, Jj] = iε i j kl Jk, [Ji, K j] = iε i j kl Kk, [Ki, K j] = 0, (A.11)

[Ji, Pj] = iε i j kl Pk, [Ki, Pj] = 0, [Ji, H] = 0, (A.12)

[Ki, H] = iPi, [Pi, Pj] = 0, [Pi, H] = 0. (A.13)

The interpretation, low velocities and large spacelike intervals—where lies the unusual.
This contraction has an unphysical meaning [23], given the fact that it describes intervals
that are not causally connected, for this reason it was named the Carroll group,* [62].

Now, as the Poincaré group, the de Sitter group does have others contracted group
[16]. Nevertheless, here is going to be analyzed the process that take the de Sitter group
to the non-relativistic Newton-Hooke group

*Named after the author of Alice in Wonderland, Lewis Carrol
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A.1.2 Contraction of the de Sitter group
The Newton-Hooke group, is the non-relativistic limit with non-vanish cosmological con-
stant of the de Sitter group. This limit can be obtained from the non-relativistic limit
(c → ∞), but keeping the cosmological factor given by the geometric parameter l. In
this limit the translations of the spacetime are involved with a global effect inherent from
the de Sitter curvature. Again, the generators must to be re-written, in order to take the
convenient limit and avoid divergency. It is useful to consider the generators of the infin-
itesimal JAB Eq. (1.16) been separated in space and time components obtaining explicit
forms for Lab, La0, La4 and L04, where a, b = 1, 2, 3. The generator ens redefiend as

Lab ≡ Lab, La0 ≡ La0/c, Ta ≡ εLa4/cτ, T0 ≡ εL04 ≡ /τ, (A.14)

where it was took τ = l/c as the parameter that will allow to take the correct limit—
actually is a kind of time-parameter. So, under the respective re-definitions of the gener-
ator, the commutations rules turns

[Lab, Lde] = δbcLad + δad Lbc− δbd Lac− δacLbd, [Lab, Ld0] = δbd La0− δad Lb0 (A.15)

[L0b, L0e] =
1
c2 Lbe, [Lab,Td] = δbdTa − δadTb (A.16)

[La0,Tb] =
1
c2 δabT0, [La0,T0] = −Ta (A.17)

[Ta,Tb] = −
ε

τ2c2 Lab, [Ta,T0] = −
ε

τ2 La0, [T0,T0] = 0. (A.18)

Once it is considers the non-relativistic limit c → ∞—which reminds the process for the
Galilean algebra with the difference that there is not commutativity in the translations
between the space and time—the relevant facts turns to be

[Ta,T0] =
1
τ2 La0 , 0. (A.19)

The interpretation; this non-commutative is a consequence of the curvature, which came
from the de Sitter space—given the definition of the parameter τ. Actually, this is the
correct way to perform this contraction, in order to maintain the boots transformations
[32] in the groups and in that way, keeps what is was pointed at the begging of this part
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Appendix B

Newtonian limit of the Killing vectors

In the following the technical aspect of the calculus of the Killing vectors associated with
the de Sitter “translations” are going to be presented. Even when at the begging of this
work those Killing vectors were presented in stereographic coordinates, here the calculus
is made in static coordinates but just for an specific needs on where these vectors were
used.

From the Section 3.3.1, the Killing vectors associated to the de Sitter are

ξαβ = (1 − r2/l2)1/2 cosh(ct/l) δαβ . (B.1)

As is well-known, the Newtonian limit is achieved by taking the limit c → ∞. However, in
the presence of a cosmological constant, such limit has physical meaning only if l → ∞,
but in such a way that [32]

lim
c, l→∞

c
l
=

1
τ
, (B.2)

with τ an arbitrary time parameter. This means that, in the limit c → ∞, the Killing
vectors (B.1) assumes the form

ξαβ = (1 − r2/l2)1/2 cosh(t/τ) δαβ , (B.3)

which does not depend on c. Now, since the Killing vector in the Newtonian limit should
be static, one can choose t such that cosh(t/τ) = 1, which yields

ξαβ = (1 − r2/l2)1/2 δαβ ' (1 − r2/2l2) δαβ . (B.4)

These are the Newtonian Killing vectors. In particular, the component ξ0
0 is

ξ0
0 ' (1 − r2/2l2) . (B.5)
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Appendix C

Causal properties of the spacetime

C.1 Causality theory
In de Sitter spacetime, an event or observer is equipped of one past and one future; means
that, for each observer it is possible to define a particular causal structure. It is exactly
what determines that, in the de Sitter spacetime the concepts are observer-dependent.

In those kind of causal structure, like for example Minkowski spacetime it is possible
to define three types of vectors depending of the sing of the inner product ((0, 2), g-form
acting on some vector basic) of those vectors.

Let be M , the spacetime manifold and a vector X ∈ TPM , X is

• Spacelike, if g(X, X ) > 0

• Null, if g(X, X ) = 0

• Timelike, if g(X, X ) < 0

An important remark, is that if X is either timelike or null, then is called causal. If
X = (t, x1, x2, x3) is null vector at p, then t2 = (x1)2 + (x2)2 + (x3)2, and hence X lies on
cone with vertex at p, know as the double null cone. It is denoted by Sp

Sp = X ∈ TpM3+1 : g(X, X ) > 0, (C.1)

the set of spacelike vector at p, by Ip

Ip = X ∈ TpM3+1 : g(X, X ) < 0, (C.2)

the set of timelike vector at p, and by Np,

Np = X ∈ TpM3+1 : g(X, X ) = 0, (C.3)

the set of null vector at p. An important topological characteristic arise from those set; for
example Ip, is an open set consisting of two components which may denote by I+ and
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I− (resp.Np). In that sense,N +p (resp. N −p ) is the topological boundary of I+p (resp. I−p ).
So it is allow to ask about the time orientation respect of some point p of the manifold p,
and how it helps to define the notion of past and future of it.

The time orientation is a choice of the positive component I+p at each point p. Then
I+p is called, the set of the future-direct timelike (resp null) vector at p. The next is to
extend the causality properties for geodesic.

C.1.1 Observers and particles

It is possible to extend the causal characterizations for curves. In particular, a curve α
is called future-direct timelike if α̇(t) is a future-direct timelike vector at α(t) for all t.
The worldline (the observer path) of an observer is represented by a timelike curve; then
if the observer is inertial, then he/she moves on a timelike geodesic. On the other hand,
photons move on null geodesic, so that is means that the information propagates along
the null geodesics. The Figure(C.1.1), illustrates the fact that from the point p, going the

Figure C.1: Timelike and null curves.

worldline of some specific observer and also the propagating path of the light.
Those curves or geodesic (in the case of one inertial observer); can in some way fill

out some region of the space, getting in that way, what is defined in the following

C.1.2 Hypersurfaces

In addition to the curves, it is important to discuss the causality of some sub-manifold.

• A hypersurfaceH is called spacelike, if the normal vector Nx , at each point x ∈ H
is timelike. In this case the metric restricted to the tangent plane at x, is positive-
definite; in other words the hypersurface is a Riemannian manifold.
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• A hypersurface H is called null, if the normal vector Nx , at each point x ∈ H is
null.

• A hypersurface H is called timelike, if the normal vector Nx , at each point x ∈ H
is spacelike

Remark 1 In the case of a spacelike hypersurface, the metric restricted to the tangent
plane at some x, is positive-definite; in other words the hypersurface is a Riemannian
manifold. This result allows to have a well defined notion of length of curves, angles and
specially areas. At this point is important to remind that macroscopic definition for the
entropy of black holes is function of the area of the event horizon.

The spacelike hypersurface are not the only that keeps some interesting causal char-
acteristic, the null hypersurfaces plays an important role in General Relativity as they
represent the horizons of various sort. For example the event horizon in the Schwarz-
schild spacetime is a null hypersurface. A null hypersurface has its null cone tangent to
each of its points; also it is possible to say that the generator of this special hypersurface
are null geodesic whose tangent vector is normal to the hypersurface. An ilustration of
those kind of curves, and the hypersurfaces generated by them has been showed in the
Figure (C.1.2)

Figure C.2: Hypersurfaces
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C.2 The Killing Horizons

First of all, a horizon it could be define as the boundary of the set of the future direct point
I+p ; is a limit part of the spacetime. For example in the Schwarzschild spacetime there
exist an event horizon at r = 2M , which is a null hypersurface. It is worth it to know
more about those. From Fig (C.2), can be observed, that there exist a limit part until one

Figure C.3: The shaded region is known as the black hole region

observer can reach, that limit part is exactly the horizons of events, the one beyond that
the black hole region.

Besides of the one mentioned there is a special and very important class of null hy-
persurface.

Definition 1 Let us considerer a Killing vector field ξa, a Killing horizons is a null hy-
persurface on which the Killing vector is normal.

For those metric that are static and stationary; the Killing vector is timelike and orthogonal
to a family of hypersurface.

Finally, another important remark about those kind of horizon is mentioned in the
work of Racz and Wald, [63], they strongly suggests that all physically relevant Killing
horizons are either of bifurcate type or degenerate. The following is focus on the bifurcate
type.
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C.3 The causality on general spacetimes
In the article [41] Wald developed a formalism that allow to define the notion of entropy
for a static black hole. A metric is called statics if it possesses a timelike Killing vector
which is orthogonal to a family of hypersurfaces; well metrics like Schwarzschild has
timelike Killing vector ∂0.

Spacetimes with stationary and static metrics have Killing horizons, just for mention
some, Minkowski and de Sitter spacetimes has Killing horizons. Inside the causal the-
ory, sometimes it is convenient to apply conformal transformations on the spacetimes;
note that such as transformation preserves the causal structure, since they “send” timelike
curves in timelike curves, spacelike and null to, spacelike, null curves respectively.

In this context, let us take for example in Minkowski spacetime, the null coordinates

U = t − r V = t + r (C.4)

where (t, r) are the time and radial of the spherical coordinates of the null cone; note that
this two straight lines bifurcate a region of the spacetime. Now, it is possible to considerer
a pair of null plane, hA and hB, that separate the spacetime in four causal sector, and
intersecting at Σ.

hB hA

Σ

Figure C.4: The pair of null surfaces hA and hB, intersecting at Σ, is called the Bifurcate
Killing Horizon

Exactly the same analysis applies for any n-dimensional manifold, either Riemannian
or with a Lorentzian signature. In the Lorentzian case, those pair of null plane, are now
considerer as a pair of null hypersurfaces hA and hB generated by null geodesic ortho-
gonal to the Σ. In 4-dimensions (4-D), Σ, will be a 2-D spacelike surface, called Bifurc-
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ation surface. In the case to consider some Killing vector field ξa * defined over the null
hypersurfaces, the sector comprised between hA and hB, is called Bifurcate Killing Ho-
rizon and the 2-D surface perpendicular to those horizons it is called Killing bifurcation
surface [42].

Finally, it seems important to point out that, having a Bifurcation surface (a 2-D space-
like), gives a constraint that allow to have a well defined quantity such as entropy given
the need to measure the area of the horizon. [63]

*The Killing vector ξa is normal to hA and hB .
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Appendix D

Euclidean time and temperature

The goal of this Appendix is to provide the theoretical facts in order to relate the Euclidean
extension of a spacetime with the notion of temperature, it is important to remark the
facts in the following is a standard procedure in statistic mechanics and quantum field
theory [64]. To see this connection, let us recall that the mean value of some dynamical
variable f (q) in quantum statistical mechanics can be expressed in the form

f =
1
Z

∑
E

∫
φ∗E (q) f (q)φE (q)e−βEdq (D.1)

where φE (q) is the stationary state eigen function of the Hamiltonian with HφE = EφE ,
β = (1/T ) is the inverse temperature and Z (β) is the partition function. This expression
calculates the mean value < E | f |E > in a given energy state and then averages over a
Boltzmann distribution of energy states with the weightage Z−1e−βE . On the other hand,
the quantum mechanical kernel giving the probability amplitude for the system to go from
the state q at time t = 0 to the state q′ at time t is given by

K (q′, t; q, 0) =
∑

E

φ∗E (q′)φE (q)e−itE (D.2)

Now, comparing Eq. (D.1) and Eq. (D.2), it is possible to find that the thermal average in
(D.1) can be obtained by

f =
1
Z

∫
dqK (q′,−i β; q, 0) f (q). (D.3)

In the latter some considerations were taking into account

• The time coordinate has been analytically continued to imaginary values with it =
τ.

• The system is assumed to exhibit periodicity in the imaginary time tau with period
beta in the sense that the state variable q has the same values at τ = 0 and at τ = β.
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These considerations continue to hold even for a field theory with q denoting the field
configuration at a given time. If the system, in particular the Greens functions describing
the dynamics, are periodic with a period p in imaginary time, then one can attribute a
temperature T = (1/p) to the system. Also the partition function Z (β) can be express as
follows

Z (β) =
∑

E

eβ E
∫

dqK (q′,−i β; q, 0) =
∫

Dqexp[−AE (q, β; q, 0)] (D.4)

The first equality is the standard definition for Z (β); the second equality follows from
Eq. (D.2) and the normalization of φE (q); the last equality arises from the standard path
integral expression for the kernel in the Euclidean sector (with AE being the Euclidean
action) and imposing the periodic boundary conditions. (It is assumed that the path in-
tegral measure curly Dqincludes an integration over q.) Finally Eq. (D.3) and Eq. (D.4)
represent the relation between the periodicity in Euclidean time and temperature.
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etical Physics II: Festschrift for A.H. Zimerman Sao Paulo, Brazil , (1998), gr-
qc/9809061v1.

[8] Licata I and Chiatti L. The Archaic Universe: Big Bang, Cosmological Term and
the Quantum Origin of Time in Projective Cosmology. Int. J. Theor. Phys, 48:1003,
(2009), gr-qc/0808.1339.

[9] Perlmutter S at all. Measurements of Omega and Lambda from 42 high redshift
supernovae. Astrophys. J, 517:565, (1999), astro-ph/9812133.

[10] Riess A G at all. Observational evidence from supernovae for an accelerating uni-
verse and a cosmological constant. Astron. J, 116:1009, (1998), astro-ph/9805201.

76



[11] de Bernardis P at all. A Flat universe from high resolution maps of the cosmic
microwave background radiation. Nature, 404:955, (2000), astro-ph/0004404.

[12] Aldrovandi R and Pereira J G. de Sitter Relativity: A New Road to Quantum Grav-
ity? Found. Phys, 39:1, (2009), arXiv/0711.2274.

[13] M. Kirchbach and C. B. Compean. De Sitter Special Relativity as a Possible Reason
for Conformal Symmetry and Confinement in QCD. ArXiv e-prints, December
2017.

[14] M. Kirchbach and C. B. Compean. Modelling duality between bound and resonant
meson spectra by means of free quantum motions on the de Sitter space-time dS4.
Eur. Phys. J., A52(7):210, 2016. [Addendum: Eur. Phys. J.A53,no.4,65(2017)].

[15] Aldrovandi R; Beltran Almeida J P and Pereira J G. A Singular conformal universe.
J. Geom. Phys, 56:1042, (2006), gr-qc/0403099.

[16] Araujo A; Jennen H; Pereira J G; Sampson A and Savi L L. On the spacetime con-
necting two aeons in conformal cyclic cosmology. Gen. Rel. Grav, 47:151, (2015),
arXiv/1503.05005.

[17] Pereira J G; Sampson A C and Savi L L. de Sitter transitivity, conformal trans-
formations and conservation laws. Int. J. Mod. Phys. D, 23:1450035, (2014),
arXiv/1312.3128.

[18] Aldrovandi R; Beltran Almeida J P and Pereira J G. de Sitter special relativity.
Class. Quant. Grav, 24:1385, (2007), gr-qc/0606122.

[19] Araujo A and Pereira J G. Entropy in locally-de Sitter spacetimes. Int. J. Mod. Phys.
D, 24:1550099, (2015), arXiv/1506.06948.

[20] Araujo A; Lopez D F and Pereira J G. de Sitter-invariant special relativity and the
dark energy problem. Class. Quant. Grav, 34:115014, (2017), arxiv/1704.02120.

[21] Araujo A; Lopez D F and Pereira J G. de Sitter invariant special relativity and galaxy
rotation curves, arXiv:1706.06443. (2017).

[22] Wise D. Macdowell–mansouri gravity and cartan geometry. Class. Quant. Grav,
27(15):155010, (2010).
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