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Abstract

The scalar field plays a fundamental role in the investigation of con-
finement property characterising many particle physics models. This
is achieved by coupling this particle directly with gauge fields at the
lagrangian level. In this paper we follow the same approach to build an
interquark potential [10].
In order to introduce the gravitational effects and inspired from bag
models, we implement a scalar field interacting both with the vacuum
and the electron field. In this context and with presence of the vacuum
condensates, it is possible to derive a more accurate expression for the
electron energy.
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1 Introduction

Bag model is an interesting approach which provides an explanation of con-
finement property characterising quarks interactions. They are also used to
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describe some physical phenomena related to the stability of some particles like
electron. According to this approach, one supposes the existence of a cavity
which is a space zone filled with scalar condensate. The scalar field appears in
many theoretical physics models with different roles. It can be used either as
a massless field or a massive one.
In QCD models, the scalar field appears like a pseudo-Goldstone boson[5].
Whereas, in cosmology, it is considered as an hypothetical particle which is a
dark matter candidate that may explain the missing mass of universe [6].
The scalar field can interact in different ways. For example in string theory, it
couples to super-Yang Mills gauge fields in curved space whereas in the Brans-
Dicke model, it couples to the Ricci curvature[8].
For a long time the electron stability was studied using different approaches.
These latters faced several difficulties related to the electron finite size, the
origin of its mass and the problem with the relativistic transformation prop-
erties of the energy and momentum of the electron electromagnetic field. To
overcome these difficulties, one introduces a model of an electron based on a
charged conducting surface of a cavity with the presence of an electromagnetic
field. In this way, we get a phenomenological solution for the electron stability
problem. In fact, the cavity exhibits a surface tension due to the difference
of the condensate density between its inside and its outside. The surface ten-
sion which depends on the the Higgs potential parameters of the electroweak
gauge-model theory [9-15], allows us to establish the expression of the electron
total energy. This Latter depends both on the vacuum expectation value of
the Higgs field and the Ginzburg-Landau coherence length [16].

2 Confining potential from scalar field-gluon

coupling

The confinement property means that the quarks and gluons cannot exist as
separate objects. In order to investigate it, various QCD models were proposed
to derive an interquark potential which exhibits confinement behavior. Such
potential can be obtained by considering the coupling of a dilaton φ to the
4dSU(Nc) gauge field like in string theory models[8].
To this end, one suggests the following effective lagrangian:

L = − 1

4F (φ)
GµνG

µν − 1

2
∂µφ∂

µφ− 1

2
m2φ2 + JaµA

µ
a , (1)

where the coupling 1
4F (φ)

is a function of the dilaton field φ and m is its mass.
The form of this coupling can have several expressions according to the theo-
retical frameworks.
The current density Jνa = gδ(r)Caη

µ appearing in the lagrangian is considered
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as a point like static source. Ca is the expectation value of the SU(Nc) gener-
ators for a normalized spinor in the color space, satisfying the algebra identity

ΣaC
2
a = N2

c−1
2Nc

.
Using the lagrangian (1), one derives the following equations of motion corre-
sponding to φ and Aµ fields:

∂2φ−m2φ =
1

4

d(1/F (φ))

dφ
GµνG

µν (2)

∂µ(
1

F (φ)
Gµν
a ) + g

1

F (φ)
Abµf

c
abG

µν
c = −Jνa , (3)

which can be rewritten as:

d2

dr2
(rφ)−m2(rφ) =

µ2

2r3
d(F (φ))

dφ
(4)

where µ = g
4π

√
2Nc

2−1
2Nc

.
The equation (4) may be solved for a given dilaton-gluon coupling F (φ) for
which the interquark potential V (r) is given by the following formula [10]:

V (r) = − g

4π
C
∫ F (φ(r))

r2
dr. (5)

This form of the potential is very interesting because it generalizes the Coulom-
bian potential formula

Vc(r) ∼
1

r

obtained in the particular case: F (φ) = 1.
By introducing the coupling between the dilaton field and the Yang Mills
field strength, we derive more general potential which takes into account the
confinement behavior of interquark interaction. Following this approach, one
can get several forms of the interquark potential just by modifying the dilaton-
gluon coupling F (φ).
Indeed, it was shown in [13,14] that the confining terms my take the following
general form:

V =
+∞∑
n=0

(−1)
n

C2n+1r
2n+1

in which the r powers coefficients are directly related to < GµνG
µν > and

< qq >, the QCD vacuum condensates describing the nonperturbative effects.

3 Scalar field condensate and electron energy

In order to investigate the electron stability, a model based on a scalar field φ
and a U(1) gauge field Aµ was suggested [10].
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The electron charge is supposed to be uniformly distributed on of a spherical
cavity immerged in a vacuum filled with the Higgs condensate. In this context,
the lagrangian can be written as:

L = Lφ + LE (6)

the scalar part of the lagrangian is:

Lφ =
1

2
gµν∂φµ∂

νφ+ V (φ) (7)

where gµν is the conventional Minkowski metric tensor: gµν = (1,−1,−1,−1).
To ensure the spontaneous symmetry breaking, the potential V (φ) should take
the form [11]:

V (φ) = −1

2
µ2φ2 +

1

4
λφ4 (8)

the second term in (6) depends on the U(1) the field-strength as follows:

LE = − 1

16π
FαβF

αβ (9)

where Fαβ = ∂αAβ − ∂βAα .
In this framework, the stress energy tensor is defined by the relation:

Tij =
2√
|g|

∂

∂gij
(
√
|g|L) (10)

can be splitted into two main parts:

Tij = THij + TEij (11)

where THij and TEij are respectively the scalar and the gauge field contributions:

THij = ∂iφ∂jφ− gijLH (12)

and

TEij =
1

4
gβjFiλF

λβ +
1

4
gijFµλF

µλ. (13)

Let’s consider the electron charge as a static source confined in a spherical
cavity of radius R and assume that the scalar field has a vanishing vacuum
expectation value inside it. Whereas, its vacuum expectation value is supposed
to have a non-vanishing constant value outside it.
In order to determine the transitional domains which separates between the
two different vaccum expectation values of the scalar field, a coherent length
δ should be defined.
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This transitional zone can be seen as a domain wall separating the false vac-
uum and the true vacuum regions.
With these assumptions, the total energy takes the form [10].

Etot(R) =
e2

2R
+ 4πσR2 (14)

where σ is the surface tension due to the scalar field expectation value outside
the cavity η given by: σ = 2η2

3δ
.

The first term appearing in (15) represents the colombian energy of the cavity
surface whereas the second term depends on the the condensation energy and
the coherent length.

4 Influence of space-time curvature on the elec-

tron energy

The two approaches mentioned above provide two different ways to derive an
interaction potential which describes both the colombian interaction and take
into account the confinement property.
In the first approach, a direct coupling between the scalar field and the field
strength is necessary to obtain such interaction potential which depends on
the form of the scalar field. Whereas, in the second approach, the interaction
between the scalar field and the electric field was not taken into account.

Till now, we did not consider the gravitational effects to the total energy
of the electron.
Let’s now extend the two above approaches by adding a new term to the
lagrangian:

Lφ = −1

2
(µ2 + ξR)φ2 − λ

4
φ4, (15)

Through this coupling, we can introduce the interaction between the scalar
field and the space-time curvature, where the coupling between the scalar field
φ and the space-time curvature R is parameterised by ξ and µ. The previous
form of the potential can be retrieved if, ξ = 0[11].
In this framework, the scalar field vaccum expectation value obtained through
the minimisation of the potential (15), is

η2 =
µ2 + ξR

λ
.

Using this value, the potential can be rewritten like:

V (φ) =
λ

4
(φ2 − η2)2 − λ

4
η4 (16)
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If we assume that the cavity radius is an approximation of the space-time
curvature, then the total energy of the electron takes the following form:

Etot =
e2

2R
+
µ2

δλ
πR2 +

ξ

δλ
R3 (17)

By analyzing (17), we remark that the spacetime curvature nature brings a
new R-contribution to the confining part of the total electron energy.

Finally, due to the space-time curvature, the condensation energy value is
R dependent:

εcond = − 1

4λ3

(
µ2 + ξR

)2
(18)

In fact, the particles are not free but they are embedded in a small space time
region, so any tentative to obtain an estimation of the electron radius must
take into account not only the vaccum effects but also the gravitational ones.
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