
REAL-TIME PERFORMANCE IMPROVEMENTS AND CONSIDERATION

OF PARALLEL PROCESSING FOR BEAM SYNCHRONOUS

ACQUISITION (BSA)*

K. H. Kim#, S. Allison, T. Straumann, E. Williams

SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

Abstract
Beam Synchronous Acquisition (BSA) provides a

common infrastructure for aligning data to each
individual beam pulse, as required by the Linac Coherent
Light Source (LCLS)[1]. BSA allows 20 independent
acquisitions simultaneously for the entire LCLS facility
and is used extensively for beam physics, machine
diagnostics and operation. BSA is designed as a part of
LCLS timing system [2,3] and is currently an EPICS
record based implementation, allowing timing receiver
EPICS applications to easily add BSA functionality to
their own record processing. However the lack of real-
time performance of EPICS [4] record processing and the
increasing number of BSA devices has brought real-time
performance issues. The major reason for the performance
problem is due to the lack of separation between time-

critical BSA upstream processing and non-critical
downstream processing. We are improving BSA with
thread level programming, breaking the global lock in
each BSA device, adding a queue between upstream and
downstream processing, and moving out the non-critical
downstream to a lower priority worker thread. We are also
investigating the use of multiple worker threads for
parallel processing in Symmetric Multi-Processor (SMP)
system.

Figure 1: Data Acquisition across IOCs

BEAM SYNCHRONOUS ACQUISITION

BSA has been designed as a part of event system in
LCLS-I to acquire all of beam dependent scalars across

multiple IOCs in the entire accelerator facility on the
same beam pulse, allowing correlation analysis using the
pulse by pulsed aligned acquisition data (Figure 1). BSA
acquires up to 2,800 values per scalar in one acquisition
request; each value of the 2,800 can be an average of up
to 1,000 values. It also provides RMS values and other
statistics. The BSA can process 20 different acquisitions
simultaneously [5].

BSA is implemented in three parts. A user request for
an acquisition is done by EPICS CA client. Data
gathering is processed on the Event Generator (EVG) and
Event Receiver (EVR) IOCs. When gathering is finished,
access of prepared data waiting on IOCs is done by CA
clients, with checks for a good acquisition.

Figure 2: 360Hz tasks in EVG and EVR

360Hz Task in EVG

Acquisition setup and start requests done on the EVG
IOC. The EVG IOC performs 360Hz checking and user
notification when a BSA is finished. A 360Hz event task
wakes up on an interrupt from a clock synched AC
powerline zero-crossing which also provides timeslot for
the event system. The event task is the heart of EVG IOC,
generating a timing pattern for 3 pulses ahead and
schedules timing events for the next pulse. The event task
also checks for a match between the new pulse’s timing
pattern, beam code, and each active acquisition for BSA.
It keeps a count of the number of measurements and the
number of values in the current average per acquisition.
One part of the timing pattern represents which
acquisitions are matched. The timing pattern is
broadcasted to EVRs and contains pulse id, timestamp,
and additional BSA information. The pulse information is
pipelined, thus the timing pattern is for 3 pulses ahead
(Figure 2).

*Work supported by the the U.S. Department of Energy, Office of
Science under Contract DE-AC02-76SF00515 for LCLS I and LCLS II.
#khkim@slac.stanford.edu

WEPGF122 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

992C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync

360Hz Task in EVR

The Event Definition (EDEF) bits included in 360Hz
data are sent by EVG to EVR. EVR IOC caches the data
on the EVR data interrupt. The EVR IOC 360Hz event
task is activated on the next fiducial interrupt (actually,
event code 1), copying the data to the end of the timing
pipeline, and then shifting the pipeline. Finally, the 360Hz
task updates EDEF table which is used by BSA
processing done later in the same pulse (Figure 3).

Figure 3: 360Hz tasks and EDEF table update

BSA Processing

BSA processing is driven by data source processing
variable (PV). The data source PV provides new data with
timestamp and triggers BSA processing. The data receptor
PV receives new data and timestamp, and then checks the
timestamp against the EDEF tables. If there is a
timestamp match, the data is included in the BSA buffer.
The data receptor PV calculates RMS and average, if
required, and then requests BSA record processing to
update the BSA buffer PV. Each BSA record then delivers
data to a compress record.

IMPROVEMENT REQUIRED

LCLS-I has around 1,150 BSA PVs and more than 980
BSA PVs work successfully. However, around 160 PVs
sometimes fail. The reason of BSA failure varies, and is
sometimes due to misconfigured data source PVs, and
rates. Some data sources PVs deliver the data too late
without enough time to process BSA. The
misconfiguration and lazy data source PVs are fixed, as
they are found, to resolve the BSA problems.

Figure 4: BSA fail scenario

We also found, under test conditions, that some BSA
PVs fail even when there is an enough time budget.
Sometimes the data source PVs are not completed within
the expected time, and get a wrong timestamp. Thus, we

discovered an unexpected delay on the data source PV
and BSA processing, due to EPICS record processing.
The data source and BSA processing are processed by
high priority callback thread in the EPICS IOC. The
callback thread also processes other records and results in
unexpected delay (Figure 4).

BSA IMPROVEMENT

EVR side BSA processing has been implemented in
two parts – data reception and BSA record processing – in
the current implementation. The data receptor PV is
triggered by the data source PV through a forward link
when new data is ready. The data receptor matches
timestamp to decide if the data goes into the BSA buffer,
and performs RMS and average calculations, and then
requests BSA record processing to update BSA data
buffer implemented in a compress record. The timestamp
matching in the data receptor PV is the only time-critical
part of BSA processing. It cannot be delayed though the
rest of the processing can be delayed if we do not lose
information.

If we separate out the time-critical part, and process it
immediately after data is ready, the rest is queued up for a
lower priority thread. The lower priority thread takes care
of the non-time-critical parts and finally updates BSA
data buffer whenever it can get CPU time (Figure 5).

Figure 5: Processing timeline for BSA improvement

We provide a new API for this improvement. The new
API is called by the device driver of the data source. In
this case, the time-critical part is run in the driver context.
We keep the EPICS record interface – data receptor PV –
for backward compatibility. In this case, the time-critical
part is run by the high priority callback thread. But, the
non-time-critical part is run by the lower priority thread.

The new EPICS base R3.15 provides parallel callbacks.
We can parallelize the high priority callback with the new
feature. The improvement also allows multiple lower
priority agent threads for the non-time-critical parts. The
multiple threads share a single queue to receive BSA
information from the upstream time-critical part (Figure
6). It improves performance in Symmetric Multi-
Processor (SMP) system. Recently, we moved to the
linuxRT [6] operating system from RTEMS [7] and the
new platform provides the multi-core system. The parallel

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF122

Timing and Sync

ISBN 978-3-95450-148-9

993 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

callbacks and multiple lower priority agent threads bring
a performance improvement for the multi-core system.

Figure 6: Consideration for parallel callbacks for multi-
core system

PROTOTYPING AND TEST RESTULTS

We made a quick prototype for the BSA improvement
and tested its performance.

Test Results for a Single Core System

We tested the prototype with a single core system
(MVME6100/RTEMS/epics-3.15.1). For a realistic test,
we forced 100% CPU load with an infinite loop in the
lowest priority thread which has no effect on BSA
processing and any other mission critical tasks. The
system could handle up to 64 BSA PVs at 120Hz rates for
8 active EDEFs. The BSA capacity almost doubled. The
system only allows 32 BSA PVs with the same condition.
We also found that the time-critical part spends around 5
micro-seconds, and non-time-critical part spends slightly
longer than 10 micro-seconds. Thus, the queueing
mechanism and lower priority agent thread improves the
BSA capacity for a single core system.

Test Results for a Multi-Core System

We also tested the prototype with a multi-core system
(x86, 32 cores/linuxRT/epics-3.15.1). We also forced
100% CPU load in the lowest priority infinite loop thread.
We tried parallel callbacks for upstream processing and
multiple lower priority agent threads for downstream
processing.

We assumed a dramatic performance improvements but
it only doubled compares to the original code. The
number of callback threads and the number of agent
threads did not affect the result. We varied these numbers
from16 to 32.

Finally, we discovered a global locking and lockset
issues in EPICS record processing, and it affects the
performance of record processing for parallel callbacks.
We asked the EPICS core development team to fix this
issue and they provided a snapshot version for testing. We
contributed to the debugging of the snapshot version and
continue our testing with it.

CONCLUSION

We have developed a quick prototype for BSA
improvement. We separated out time-critical and non-

time critical parts and queued the non-time-critical
processing into a lower priority thread. We verified the
prototype shows improvement for a single core system.
We also tested the prototype for a multi-core system with
parallel callbacks and multiple agent threads. We
expected a dramatic performance improvement for the
multi-core system but it only shows a similar
improvement as the single core system due to a global
locking issue in the EPICS record processing. We need
more multi-core testing with an improved version of
EPICS.

We will implement an API for production which can be
called by the data source driver to avoid EPICS record
processing overhead. It will improve performance.

REFERENCES

[1] J. Arthur, et.al., “Linac Coherent Light Source

(LCLS) conceptual design report,” SLAC-R593,

SLAC (2002)

[2] P. Krejcik, et.al., “Timing and Synchronization at the

LCLS,” DIPAC 2007, Venice, Italy, May 2007,

SLAC-PUB-12593

[3] J. Dusatko, et.al., “The LCLS Timing Event System,”
BIW 2010, Santa Fe, New Mexico, USA, May 2010

[4] “Experimental Physics and Industrial Control

System,” http://www.aps.anl.gov/epics

[5] M. Zelazny, et.al., “Orbit Display’s use of the

Physics Application Framework for LCLS,” SLAC-

PUB-13788 SLAC (2009)

[6] “Real-Time Preemption Patch-Set,”

http://elinux.org/images/4/4e/Real-Time-Preemption-

Patchset.pdf

[7] “RTEMS Real Time Operating System (RTOS),”

https://www.rtems.org

WEPGF122 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

994C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync

