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Abstract 
Beam Synchronous Acquisition (BSA) provides a 

common infrastructure for aligning data to each 
individual beam pulse, as required by the Linac Coherent 
Light Source (LCLS)[1]. BSA allows 20 independent 
acquisitions simultaneously for the entire LCLS facility 
and is used extensively for beam physics, machine 
diagnostics and operation. BSA is designed as a part of 
LCLS timing system [2,3] and is currently an EPICS 
record based implementation, allowing timing receiver 
EPICS applications to easily add BSA functionality to 
their own record processing. However the lack of real-
time performance of EPICS [4] record processing and the 
increasing number of BSA devices has brought real-time 
performance issues. The major reason for the performance 
problem is due to the lack of separation between time-

critical BSA upstream processing and non-critical 
downstream processing. We are improving BSA with 
thread level programming, breaking the global lock in 
each BSA device, adding a queue between upstream and 
downstream processing, and moving out the non-critical 
downstream to a lower priority worker thread. We are also 
investigating the use of multiple worker threads for 
parallel processing in Symmetric Multi-Processor (SMP) 
system. 

 

 
Figure 1: Data Acquisition across IOCs 

BEAM SYNCHRONOUS ACQUISITION 

BSA has been designed as a part of event system in 
LCLS-I to acquire all of beam dependent scalars across 

multiple IOCs in the entire accelerator facility on the 
same beam pulse, allowing correlation analysis using the 
pulse by pulsed aligned acquisition data (Figure 1). BSA 
acquires up to 2,800 values per scalar in one acquisition 
request; each value of the 2,800 can be an average of up 
to 1,000 values. It also provides RMS values and other 
statistics. The BSA can process 20 different acquisitions 
simultaneously [5].  

BSA is implemented in three parts. A user request for 
an acquisition is done by EPICS CA client. Data 
gathering is processed on the Event Generator (EVG) and 
Event Receiver (EVR) IOCs. When gathering is finished, 
access of prepared data waiting on IOCs is done by CA 
clients, with checks for a good acquisition.  

 

 
Figure 2: 360Hz tasks in EVG and EVR 

 

360Hz Task in EVG 

Acquisition setup and start requests done on the EVG 
IOC. The EVG IOC performs 360Hz checking and user 
notification when a BSA is finished.  A 360Hz event task 
wakes up on an interrupt from a clock synched AC 
powerline zero-crossing which also provides timeslot for 
the event system. The event task is the heart of EVG IOC, 
generating a timing pattern for 3 pulses ahead and 
schedules timing events for the next pulse. The event task 
also checks for a match between the new pulse’s timing 
pattern, beam code, and each active acquisition for BSA. 
It keeps a count of the number of measurements and the 
number of values in the current average per acquisition. 
One part of the timing pattern represents which 
acquisitions are matched. The timing pattern is 
broadcasted to EVRs and contains pulse id, timestamp, 
and additional BSA information. The pulse information is 
pipelined, thus the timing pattern is for 3 pulses ahead 
(Figure 2). 
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360Hz Task in EVR 

The Event Definition (EDEF) bits included in 360Hz 
data are sent by EVG to EVR. EVR IOC caches the data 
on the EVR data interrupt. The EVR IOC 360Hz event 
task is activated on the next fiducial interrupt (actually, 
event code 1), copying the data to the end of the timing 
pipeline, and then shifting the pipeline. Finally, the 360Hz 
task updates EDEF table which is used by BSA 
processing done later in the same pulse (Figure 3).  

 
Figure 3: 360Hz tasks and EDEF table update 

 

BSA Processing 

BSA processing is driven by data source processing 
variable (PV). The data source PV provides new data with 
timestamp and triggers BSA processing. The data receptor 
PV receives new data and timestamp, and then checks the 
timestamp against the EDEF tables. If there is a 
timestamp match, the data is included in the BSA buffer. 
The data receptor PV calculates RMS and average, if 
required, and then requests BSA record processing to 
update the BSA buffer PV. Each BSA record then delivers 
data to a compress record. 

IMPROVEMENT REQUIRED 

LCLS-I has around 1,150 BSA PVs and more than 980 
BSA PVs work successfully. However, around 160 PVs 
sometimes fail. The reason of BSA failure varies, and is 
sometimes due to misconfigured data source PVs, and 
rates. Some data sources PVs deliver the data too late 
without enough time to process BSA. The 
misconfiguration and lazy data source PVs are fixed, as 
they are found, to resolve the BSA problems. 

 
Figure 4: BSA fail scenario 

 

We also found, under test conditions, that some BSA 
PVs fail even when there is an enough time budget. 
Sometimes the data source PVs are not completed within 
the expected time, and get a wrong timestamp. Thus, we 

discovered an unexpected delay on the data source PV 
and BSA processing, due to EPICS record processing. 
The data source and BSA processing are processed by 
high priority callback thread in the EPICS IOC. The 
callback thread also processes other records and results in 
unexpected delay (Figure 4). 

BSA IMPROVEMENT 

EVR side BSA processing has been implemented in 
two parts – data reception and BSA record processing – in 
the current implementation. The data receptor PV is 
triggered by the data source PV through a forward link 
when new data is ready. The data receptor matches 
timestamp to decide if the data goes into the BSA buffer, 
and performs RMS and average calculations, and then 
requests BSA record processing to update BSA data 
buffer implemented in a compress record. The timestamp 
matching in the data receptor PV is the only time-critical 
part of BSA processing. It cannot be delayed though the 
rest of the processing can be delayed if we do not lose 
information. 

If we separate out the time-critical part, and process it 
immediately after data is ready, the rest is queued up for a 
lower priority thread. The lower priority thread takes care 
of the non-time-critical parts and finally updates BSA 
data buffer whenever it can get CPU time (Figure 5).  

 
Figure 5: Processing timeline for BSA improvement 

 

We provide a new API for this improvement. The new 
API is called by the device driver of the data source. In 
this case, the time-critical part is run in the driver context. 
We keep the EPICS record interface – data receptor PV – 
for backward compatibility. In this case, the time-critical 
part is run by the high priority callback thread. But, the 
non-time-critical part is run by the lower priority thread.  

The new EPICS base R3.15 provides parallel callbacks. 
We can parallelize the high priority callback with the new 
feature. The improvement also allows multiple lower 
priority agent threads for the non-time-critical parts. The 
multiple threads share a single queue to receive BSA 
information from the upstream time-critical part (Figure 
6). It improves performance in Symmetric Multi-
Processor (SMP) system. Recently, we moved to the 
linuxRT [6] operating system from RTEMS [7] and the 
new platform provides the multi-core system. The parallel 
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callbacks and multiple lower priority agent threads bring 
a performance improvement for the multi-core system. 

 
Figure 6: Consideration for parallel callbacks for multi-
core system 

PROTOTYPING AND TEST RESTULTS 

We made a quick prototype for the BSA improvement 
and tested its performance.  

Test Results for a Single Core System 

We tested the prototype with a single core system 
(MVME6100/RTEMS/epics-3.15.1). For a realistic test, 
we forced 100% CPU load with an infinite loop in the 
lowest priority thread which has no effect on BSA 
processing and any other mission critical tasks. The 
system could handle up to 64 BSA PVs at 120Hz rates for 
8 active EDEFs. The BSA capacity almost doubled. The 
system only allows 32 BSA PVs with the same condition. 
We also found that the time-critical part spends around 5 
micro-seconds, and non-time-critical part spends slightly 
longer than 10 micro-seconds. Thus, the queueing 
mechanism and lower priority agent thread improves the 
BSA capacity for a single core system. 

Test Results for a Multi-Core System 

We also tested the prototype with a multi-core system 
(x86, 32 cores/linuxRT/epics-3.15.1). We also forced 
100% CPU load in the lowest priority infinite loop thread. 
We tried parallel callbacks for upstream processing and 
multiple lower priority agent threads for downstream 
processing. 

We assumed a dramatic performance improvements but 
it only doubled compares to the original code. The 
number of callback threads and the number of agent 
threads did not affect the result. We varied these numbers 
from16 to 32.  

Finally, we discovered a global locking and lockset 
issues in EPICS record processing, and it affects the 
performance of record processing for parallel callbacks. 
We asked the EPICS core development team to fix this 
issue and they provided a snapshot version for testing. We 
contributed to the debugging of the snapshot version and 
continue our testing with it. 

CONCLUSION 

We have developed a quick prototype for BSA 
improvement. We separated out time-critical and non-

time critical parts and queued the non-time-critical 
processing into a lower priority thread. We verified the 
prototype shows improvement for a single core system. 
We also tested the prototype for a multi-core system with 
parallel callbacks and multiple agent threads. We 
expected a dramatic performance improvement for the 
multi-core system but it only shows a similar 
improvement as the single core system due to a global 
locking issue in the EPICS record processing. We need 
more multi-core testing with an improved version of 
EPICS.  

We will implement an API for production which can be 
called by the data source driver to avoid EPICS record 
processing overhead. It will improve performance. 

 

REFERENCES 

[1] J. Arthur, et.al., “Linac Coherent Light Source 

(LCLS) conceptual design report,” SLAC-R593, 

SLAC (2002)  

[2] P. Krejcik, et.al., “Timing and Synchronization at the 

LCLS,” DIPAC 2007, Venice, Italy, May 2007, 

SLAC-PUB-12593 

[3] J. Dusatko, et.al., “The LCLS Timing Event System,”  
BIW 2010, Santa Fe, New Mexico, USA, May 2010 

[4] “Experimental Physics and Industrial Control 

System,” http://www.aps.anl.gov/epics 

[5] M. Zelazny, et.al., “Orbit Display’s use of the 

Physics Application Framework for LCLS,” SLAC-

PUB-13788 SLAC (2009) 

[6] “Real-Time Preemption Patch-Set,”  

http://elinux.org/images/4/4e/Real-Time-Preemption-

Patchset.pdf 

[7] “RTEMS Real Time Operating System (RTOS),” 

https://www.rtems.org 

 

WEPGF122 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

994C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync


