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Abstract. Leakage currents have put a stop to the semiconductor industry’s ability to increase 
processor frequency in order to enhance the performance of new microprocessors. Instead, we 
observe a slew of changes inside the micro-architecture with an aim of enhancing the 
performance. Several of these changes, however, do not translate into automatic speed 
improvements for the software. This paper discusses the increased complexity of modern 
microprocessors by separating out into dimensions each feature that impacts performance and 
mentions briefly ways of improving software, in particular that of the High Energy Physics 
community, to take full advantage. 

1.  Introduction 
The purpose of this paper is to highlight the increasing complexity of modern microprocessors and the 
corresponding difficulty of programming for peak performance. We focus on the x86-64 architecture, 
but complexity is equally present in processors based, for instance, on the SPARC architecture from 
Oracle, the Power architecture from IBM, or the Itanium architecture also from Intel. The AMD x86-
64 variant is slightly different from the Intel one, mainly due to the current lack of support for 
hardware multithreading. For this reason, we concentrate on the Intel flavour of the architecture and 
describe what we call the seven dimensions of performance that are available in the modern designs. 

We underline the fact that the dimensions are multiplicative, but that a lot of existing software was 
not designed to take advantage of all of them, especially the ones that naturally relate to data-level 
parallelism. 

In Section 2 we describe each hardware dimension in detail, stressing the fact that it is going to 
become more and more vital to program correctly for this level of complexity. 

In Section 3, we describe the typical issues with the mainstream software in use today in the High 
Energy Physics (HEP) community and make a set of proposals for making improvements, either 
incrementally or by more substantial rewrites. 

One thing that we must explain right away is our “high throughput” orientation. Whether we deal 
with physics simulation, event reconstruction, or physics data analysis, HEP computing profits 
enormously from the fact that events are independent of each other.  This leads to the concept of 
“trivial parallelism” that has always helped simplify the computing model needed for a given 
experiment. If NxM events need to be processed, N and M can be chosen freely. If we need to 
simulate 1’000’000 events, for instance, we can split the work in 10’000 jobs processing 100 events 
each, or 100 jobs processing 10’000 events each (or any other combination for that matter) and simply 
join the output files at the end. 
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Finally, we conclude by pointing out that throughput can be disturbingly low when the 
performance dimensions are not properly filled.   

2.  The increasing complexity of processor hardware 
 
In this section we review the historic evolution of the x86 microprocessor from the days of the 
Pentium, the period when HEP started realising that x86 was a credible platform for cost-effective 
computing [1], to the most recent offerings in the market today. The dimensions we will be describing 
are illustrated in Figure 1. 
 

 
Figure 1. The seven dimensions of performance in a modern microprocessor 

 

2.1.  The evolution of the performance dimensions in x86 processors 
 
In the Pentium days, from an execution point of view, there were basically only two major 
performance dimensions. Although the processor itself was superscalar with two semi-independent 
ports for scheduling instruction execution (the so-called “U and V pipes”), its performance was largely 
decided by the frequency of the execution units. PCs with more than one processor on the 
motherboard were rare, so, when people needed more performance than what was available in a single 
system, they would split the load across multiple systems. As we explain towards the end of this 
section this was extremely easy given the paradigm of trivial parallelism that is present in our 
workloads. 

In general this meant that when more performance was needed, the solution typically did not come 
from the programming community, but from one of two external sources. Either the semiconductor 
manufacturers increased the speed of the CPU – the Pentium processor, for instance, went from 50 to 
200 MHz – or one would acquire more boxes to cope with the total load. 

Although another performance dimension became more commonplace with the Pentium Pro, 
namely the multiple-socket dimension, the global view on performance did not change rapidly or 
fundamentally. One initial reason was maybe the fact that Linux did not really support multiprocessing 
until version 2.1. As a matter of fact, when CERN acquired dual-socket Pentium II PCs for the NA48 
experiment in 1998, the second processor was switched off in production mode. 

So, as already stated, in this period when increased throughput performance was needed, either new 
systems would be acquired with higher frequency or one would install more boxes in the computing 
centres. 
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Since then, we have seen several added performance dimensions. In 2001 we saw the introduction 
of SIMD vectors in the second wave of Streaming SMD Extensions (SSE2). In a 128-bit register, one 
could now perform two 64-bit (double-precision) operations or four 32-bit (single-precision) 
operations in parallel. Thus another performance dimension was born. 

In 2005 we were blessed with multi-core processors – our fifth dimension (which we discuss before 
the fourth one). At the time of the Pentium 4, the semi-conductor industry had come to realise that 
continued increase in frequency was impossible because of leakage currents in the underlying 
transistors. The solution, in order to deliver more performance, given Moore’s law, was to propose 
two or more cores on a die. These cores were complete processing units with an entire set of execution 
logic, their own instruction and data caches, and so on. For every workload that exhibited parallelism 
this dimension was, in most cases, immediately useful. For single-threaded software, it was, however, 
of little or no use. 

The fourth dimension, hardware multithreading, is just a “pseudo-dimension” that was first 
introduced on the x86-64 architecture one year prior to multi-core with the availability of the Intel 
Pentium D. “Symmetric Multi-Threading “, or SMT differs from multi-core since it does not provide 
more execution logic on the processor die; it simply allows two (or more) hardware threads to compete 
for the available logic and caches. This can be interesting in a multithreaded (or multi-processing) 
software environment where threads can suffer long stalls. In its simplest incarnation, hardware 
multithreading allows another ready-to-execute thread (or process) to take over execution when the 
first one suffers a long stall, such as last-level cache miss. In SMT, the hardware designers have gone 
one step further and allow instructions from two or more threads to be scheduled in parallel. For 
instance, the hardware may execute a load from thread 1 and a store from thread 2 in the same cycle.  

 The sixth dimension was already mentioned. Multi-socket servers have been commonplace since 
the days of the Pentium II. In the HEP community dual-socket servers have made up the sweet spot, 
since they were more cost-effective than single socket servers. Quad-socket servers, on the other hand, 
were always considered too costly, since they were over-equipped with expensive reliability features. 
This may be about to change since CERN recently purchased a batch of quad-socket AMD Magny-
Cours servers for use as batch nodes. 

The seventh (and final) performance dimension is simply the number of nodes in use, either in a 
cluster or in a grid. This dimension has always been present in our data centres, and as mentioned 
above, it has been the principle method for obtaining more throughput performance, when a single 
server was not enough. 
 

Dimension Hardware Implementation 
1 Pipelined execution units 
2 Superscalar execution 
3 Single Instruction Multiple Data (SIMD/Vector) 
4 Symmetric Multithreading (SMT) 
5 Multi-core 
6 Multi-socket 
7 Multiple nodes (cluster/grid) 

Table 1: Performance dimensions in a modern microprocessor 
 
After this long enumeration of hardware performance dimensions, a few comments are needed. 

• The first three dimensions in Table 1 belong to what we call the “inside-the-core” category 
and are best exploited by data parallel constructs inside a software program. Vectors without 
data dependency between the elements are great for this kind of parallelism, but they are not 
often present in the intensive parts of our programs. The next three dimensions are referred to 
as “across cores” and would best be exploited by task or process parallelism. Operating 
systems detect multiple cores, SMT and multiple sockets as a multiplication of available 
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CPUs. So, a quad-socket server with 8-core chips that are two-way SMT-enabled, will display 
4*8*2 (64) CPUs in response to the Linux “cat /proc/cpuinfo” command. All of these CPUs 
are available for scheduling, but the corresponding throughput will vary depending on the 
actual execution resources that a CPU represents and on their topology within the system. 

• The second comment is that the HEP community has, thanks to the paradigm of trivial 
parallelism, always been able to run multiple jobs across CPUs. Rather than having one single 
job process one million events, a physicist can freely split such a job in multiple parallel runs 
as already discussed. One of issues when doing this with the LHC software frameworks is the 
fact that they need large amounts of memory, typically between one and three gigabytes per 
process. Although modern servers can be equipped with large amounts of memory this 
demand by the software frameworks is becoming an impediment to the full use of “across 
cores” parallelism. 

• A final comment is the fact that all dimensions in Table 1 are multiplicative, i.e. when they are 
exploited by a given software program, the final performance gain is the multiplication of the 
individual gains obtained in each dimension. This is well illustrated by the “Trackfitter” 
benchmark (see Section 3.1.   

2.2.  Performance dimensions in current Intel processors (Nehalem and Sandy Bridge micro-
architectures) 
As we have seen, there are six real performance dimensions plus symmetric multithreading in a 
modern Intel microprocessor architecture. This is also the case in the current Nehalem design [1]. 
Execution units are pipelined, allowing new instructions to be initiated every cycle. Processors are 
superscalar, allowing up to six operations to be spread over six ports in a burst. Since these processors 
can only decode and retire four operations in parallel, four is the more realistic number for this 
superscalar parallelism. The third dimension is also unchanged on the Nehalem architecture; the SIMD 
vector width is as before 128-bit and allows two double-precision numbers to be processed in parallel. 
This doubles, however, with the arrival of the Sandy Bridge architecture which introduces vector 
registers with 256 bits in 20111

 

. With such a size it is going to be somewhat embarrassing if programs 
continue to execute in scalar, rather than packed mode. In the former, only 64 bits are used (in double 
precision mode) inside the registers and execution units and the remaining 192 bits are left unused. In 
the latter, the compiler or the programmer will pack four double-precision (or eight single-precision) 
numbers and execute everything in parallel. Although one rarely obtains the theoretical peak inside a 
dimension, it is going to be difficult to explain why a potential speed-up factor of 4 (or 8) should 
simply be left unused. 

2.3 Performance dimensions in current and future AMD processors 
 As already mentioned in the introduction the AMD processor architecture features the same 
dimensions as the Intel one, with the exception of the pseudo-dimension, defined by SMT. In its next 
architectural update, “Bulldozer”, AMD is going to reduce one dimension by having two cores share 
the floating-point (FP) pipelines [3]. This implies that a program running alone will always have 
access to all of the FP hardware, but if another program is running on the adjacent core, the FP 
pipeline may be busy when needed. Depending on the FP contents in the two programs there may be 
contention or not. HEP programs typically consist of 15-20% FP instructions, so it will be interesting 
to measure if there is a difference in throughput in the two cases. 

3.  Implications on the software 

3.1.  HEP software and the seven performance dimensions 

1 AMD will do the same in their “Bulldozer” architecture (see Section 2.3). 
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In this section we look at some of the issues with HEP software frameworks and the given 
performance dimensions. 

Our C++ software frameworks do not exploit the first two performance dimensions very well. The 
dimensions of superscalar and pipelined execution are jointly referred to as Instruction-Level 
Parallelism (ILP), and it is commonly assumed that it is the job of the compiler to maximise it. 
Unfortunately, compilers are limited in what they can generate as object code once the source code has 
been fixed by the programmers, especially if heavy use of dynamic C++ mechanisms is made (which 
is our case). In our frameworks, we measure on average a minimum value of about 1.0 for the CPI 
(cycles per instruction), whereas it could be closer to 0.25 which is the theoretical minimum. A related 
concern is that fact that about half of the instructions are load/store instructions (and over 10% are 
branches). Although some of these “house-keeping” instructions are surely always needed, others 
might be considered simply as overhead to cope with constructs such as the object hierarchy, virtual 
function calls, and so on. 

As already stated, the third dimension is almost never exploited in our community, so the vector 
capability of modern microprocessors is largely left unused. In the late 80s a lot of effort was invested 
in trying to vectorise Geant3 [4]. The effort failed, probably for multiple reasons. Vector computing is 
best done when vectors are relatively static (in order to avoid unnecessary scatter/gather operations for 
reshaping them), and also when the same algorithm is applied to each element (avoiding loss of 
efficiency when elements have to be masked off). In particle simulation, however, one of the 
complications is definitely the fact that some particles may annihilate and others may be created, so a 
vector of particles might never stay the same for any length of time. Even when it stays the same, each 
particle may be present in materials and geometries that require entirely unique algorithms to be 
deployed. Both arguments make it challenging to achieve an efficient use of vectors in simulation. 

The situation is different in track reconstruction and also in data analysis. In online track 
reconstruction vectors have been used successfully in the “Trackfitter” benchmark created by the 
CBM/ALICE High Level Trigger (HLT) programmers [5]. In data analysis identical algorithms are 
often applied to data elements gathered from a large set of events. 

3.2.  Recommendations for future software 
In the last part of this paper we propose some ways of trying to improve the situation. These 
recommendations are based on performance studies carried out regularly in the CERN openlab.  

3.2.1.  Broad programming talent 
Given the complexity of modern hardware combined with the complexity of modern C++ programs, it 
is practically impossible for a single person to know how best to create a clean design, develop the 
code so that it remains maintainable and readable, and still get close to peak performance from the 
hardware at optimal cost. One approach is therefore to ensure that experts from multiple fields work 
together to create complex toolkits and frameworks. 
 

Problem 
Design, Algorithms, Data structures 

Source program 
Compilers; Libraries 
System architecture 

Instruction set architecture 
Microarchitecture 

Circuits 
Electrons 

Table 2: The layers of expertise when asking electrons to solve a computing problem  
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The layers shown above are adapted from a presentation by Prof. Y.Patt [6]. Fortunately little 
knowledge is mandatory of the bottom two layers. We would claim that it is difficult to find experts 
who cover more than 3 or 4 layers and impossible to find somebody who can cover 7 layers with a 
consistently high level of expertise. The solution is therefore to actively combine talents as already 
mentioned. One example would be to unite a “solution specialist” handling the first four layers and a 
“technology specialist” handling the layers from the micro-architecture to the compilers, but other 
combinations of skills could be equally valid. 

As always, increasing the span of knowledge by training and workshops should also be 
encouraged. 

3.2.2.  Holistic view 
A second recommendation is to take a holistic view of, at least, the performance sensitive part of the 
program. In this paper we can only cover a few aspects since it is broad enough to be the topic of an 
entire book. We firmly believe that a clear three-phase split between preparation, computation and 
clean-up is the right approach. 

It is important that the preparatory phase does not just initialize constructs and data areas in a hap-
hazard fashion but concentrates on the preparation of streamlined layouts for optimized throughput in 
the execution phase. In our opinion this is key to allowing compilers to perform a good job of 
optimization. Modern compilers can achieve good results in terms of optimizing for ILP and vectors 
(our first three dimensions), but only when they are given a playing-field with clear rules. Confusion 
concerning pointer aliasing or data alignments, multiple layers of indirection, lack of data 
independence in loop constructs or general memory abuse can destroy the talents of any compiler. 

It should be obvious that performing a large number of new/delete operations in the kernel routines 
of a framework also will degrade the performance of the code significantly.  

For task/thread parallelism to be implemented optimally, the software designers must indicate in an 
unequivocal way to the compiler which data is shared and which data must be allocated as thread 
private.  

3.2.3.  C++ programming with performance in mind 
As already mentioned compilers should be given clear, unambiguous guidelines in order to be able to 
produce optimal code. One of the laudable aims of C++ is to allow programmers to produce code that 
remains readable and maintainable for humans. Nobody will argue against such a goal, but in this 
paper we claim that this should not be done at the cost of comprehension as far as the compiler is 
concerned. We mention here a few areas where care must be taken, at least in the compute-intensive 
part of the program, but for a more in-depth understanding of the issues, we refer to existing literature 
[7]. 

One of the obvious examples is the avoidance of virtual function calls since these force compilers 
to generate dynamic branching instructions and hinders inlining, which in turn reduces the possibility 
of creating rich code sections. 

Inlining typically yields improved speed when done in compute intensive parts. There may be rare 
cases where it leads to code bloat, but, as a rule, the source code should be structured such that the 
compiler can itself select when to do inline. Far too frequently in performance profile studies, do we 
observe tiny, non-inlined functions, such as getter methods with almost no ILP, simply because the 
compiler was not given visibility of the functions at compile time. 

Another area of concern is data structures. Programmers should, in general, prefer Structures of 
Arrays (SoA), rather than Arrays of Structures (AoS), as depicted in Figure 2. SoA is usually a good 
enabler of compiler optimisation when correctly programmed via loop constructs because it can help 
the  code generator exploit all three dimensions inside the core; generation of vectors, pipelines filled 
with instructions from different loop iterations, as well as independent operations identified for 
superscalar execution.  
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Figure 2. The difference between Structures or Arrays and Arrays of Structures 

 
 

The last thing we comment on here is the use and the corresponding cost of mathematical functions. 
HEP programs are heavy consumers of several categories. They obviously use add and multiply 
instructions, but these have relatively low execution cost (A three or five cycle latency, respectively; 
fully pipelined native instructions). Things get worse with divisions and square root (typically 20 – 30 
cycles, native instructions BUT no pipelining). The cost really becomes high when the algorithms are 
based on functions, such as exp, log and pow, sin, cos, tan, and atan2. All of these may turn up in HEP 
profiling studies. Since the cost is easily one hundred cycles or more, it is obvious that programmers 
must exercise care when the code is written.     

3.2.4.  Controlled memory usage 
We have already discussed the fact that, in the HEP community, we can easily fill a multi-CPU server 
with multiple independent processes. The problem with this approach is that the memory demand 
increases linearly per process. Fortunately, several solutions exist. 

The easiest one, especially for the current software frameworks, is to fork multiple processes from 
a mother process2

[8]

 and exploit the “copy-on-write” feature of Linux. When the fork command is 
issued, the daughter processes are simply given read-only access to all the pages in the page tables of 
the mother. During execution of the daughters, only pages that are changed will be copied from the 
mother and attached as separate pages to the relevant daughter process. Tests by ATLAS  and CMS 
[9] have shown that 30-40% of the memory needs of their reconstruction frameworks can be saved in 
this way. 

A more elaborate way is to create frameworks that are properly multithreaded. A multithreaded 
version of Geant4, developed at the North-eastern University [10], is a good example. This prototype, 
based on the “FullCMS” example in the Geant4 software repository, has been developed with optimal 
memory sharing in mind. Each thread (and therefore each core) is used to simulate an entire event with 
a maximum of data shared between threads. The shared data encompasses the physics tables, the 
magnetic field-map as well as other data that is considered to be global. The code itself has been made 
re-entrant so that a unique copy is used by all the threads. Such a memory layout was already proposed 
at CHEP07 [11]. Analysing the memory requirements of the “FullCMS” multithreaded prototype we 
observe that each additional thread only requires about 25MB per additional thread/core, instead of the 

2 This works best if the mother process completes the treatment of the first event, so that all the initialization 
work has been taken care of. 
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current requirement of one to three Gigabytes. Smaller memory demands are a must if we want to take 
advantage of accelerators, such as Intel’s forthcoming MIC (Many Integrated Cores) architecture. 

3.2.5.  Multithreading C++ code 
Unfortunately there is no native support of multithreading in C++. It is hoped that such support might 
appear with the forthcoming standard [12]. In any case, there are multiple choices available today for 
those who want to use threading. Here we mention some of the most common ones: 

• POSIX threads (“pthreads”): This is the native threading mechanism in Linux (and the basis 
for nearly all the other higher-level threading implementations). Although it requires 
programming at a relatively low level, it is not beyond the scope of good programmers to 
implement, for instance, a master-slave combination for event-level processing using pthreads. 

• OpenMP [13]: This is a standard that has been around since the late 80s. The support is built 
into all modern compilers, whether it supports C, C++, or FORTRAN. For a long time its 
capabilities were centred on loop-level parallelism, but the most recent version (3.0) also 
supports task-level parallelism. 

• Intel’s Threading Building Blocks (TBB): This is an effort to compensate for the lack of 
threading support in standard C++. TBB, a C++ template library, exists both as an open-
source (free) and as a commercial offering. The current version is 3.0 which comes with a 
large set of features: concurrent data containers, locks, task scheduler, a scalable memory 
allocator and select constructs from the forthcoming standard. 

• Intel’s Array Building Blocks (ArBB): This product is currently in beta test. It takes its 
inspiration from NESL [Blelloch G., A Nested Data Parallel Language, CMU Technical 
Report, 1993] and targets primarily data-level parallelism. It will, however, also spawn threads 
as required. Given its ability to cover both data and task parallelism, Intel has already 
successfully implemented a demo version of the Trackfitter benchmark using ArBB. 

• Boost threads: Boost is a set of C++ libraries and it includes facilities for threading. Basic 
thread management and synchronization primitives are provided, creating an interface similar 
to that of pthreads. Boost is valued, amongst other things, for its closeness to the C++ 
philosophy. 

3.2.6.   Excellent tools 
Given the complexity of the hardware and software, excellent support tools are paramount. 

• Compilers: The GNU compilers play a predominant role in our community, but there are also 
good Linux compilers from other sources. Intel continues to invest heavily in their own 
compilers (which are always GNU compatible). We should also mention the Portland Group 
compilers. Finally, there is the open64 compiler suite, which was originally based on the SGI 
MIPS compiler. 

• Debuggers and correctness tools: The obvious choice is gdb, but there are several other 
choices. Intel provides idb and has recently released the Inspector XE 2011 for checking both 
memory leaks and thread checking. The Rogue Wave provides TotalView with similar 
capabilities. Valgrind, which is an open source tool, can also be used for detecting memory 
management bugs and threading errors. 

• Libraries: This is a very broad category and it is beyond the scope of this paper to list 
individual libraries. What is relevant, however, is to mention that libraries do not always come 
with a performance guarantee and it is up to the developers to comprehend the performance 
implications in each case. 

• Performance Analysers: Valgrind may also be used for profiling but it may be slow for use 
with large frameworks because of the instrumentation overhead. Intel offers the recently 
released Amplifier XE 2011 product and Rogue Wave offers SlowSpotter and ThreadSpotter.   
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4.  Conclusions 
In this paper we have highlighted the fact that modern microprocessors have an increasing complexity 
which, in turn, augments the challenge of programming for peak performance. Six dimensions, and 
even seven with hardware multithreading, need to be taken into account. In the HEP programming 
community the first three (“inside-the-core”) are the most difficult ones to get to grips with, basically 
because it is commonly believed that the compiler will do it all. The truth is, however, that for 
programs with a throughput of one instruction per cycle (when the maximum is four) issuing scalar 
instruction rather than packed vector instructions (which again is 1 out of four on Sandy 
Bridge/Bulldozer), one can argue that the programs are extracting 1/16 (or about 6%) of peak 
performance from the hardware. This is obviously quite a disturbing fact. 

Concerning the dimensions “across cores”, the situation is a bit more encouraging, fortunately. 
First of all, there is the trivial parallelism which is prevalent in our computing models. Additionally, 
efforts to use forking and, hopefully, full-fledged multithreading will alleviate the pressure on 
memory. It is vital to exploit the cores close to 100% to avoid that the total efficiency across all 
dimensions shrinks to just a few percent. 

Whenever software is given a major overhaul, efficient use of the performance dimensions must be 
one of the prime targets. 

Finally, it should be mentioned, that the “holy grail” is to create programs that not only achieve 
close to peak performance on today’s hardware, but are able to absorb increased capabilities in all 
dimensions, whether it is longer vectors, more cores or additional hardware threads, without a drop in 
relative efficiency.  
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