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ABSTRACT 

A composite model of hadrons is used to discuss high energy, 

large angle scattering for elastic and quasi-elastic reactions. 

Arguments are given that constituent interchange should be the 

dominant interaction at large angles (both It I , I u I >> m2), rather 

than gluon exchange. Using the asymptotic behavior of the electro- 

magnetic form factors of the hadrons, predictions are made for the 

energy and angular dependence of a large number of processes. 

Detailed numerical comparisons with experiment are given for 

several reactions. A general discussion of the qualitative behavior 

of large angle quasi-two body processes is given. It is shown 

that data in this region can determine the quantum numbers and 

wave functions of the constituents. 
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I. INTRODUCTION 

If any aspect of hadron-hadron reactions can reflect the properties of a 

basic interaction at short distance, it must be the region of large angle., large 

momentum transfer. Certainly, coherent multiparticle effects dominate in the 

forward and backward directions, but such Regge contributions fall off extremely 

rapidly, perhaps exponentially, as t or u increases. The observed smooth, 

structureless, and approximate power law behavior of the pp and np scattering 

cross sections at large t and u could be reflecting the simplicity of the elemen- 

tary forces within and between hadrons. If hadrons are composite, 1 which 

would provide a natural explanation of the scaling observed in deep inelastic 

electron scattering, 2 then there are two fundamental types of interaction 

mechanisms which would control large-angle hadronic scattering: (A) a direct 

elementary interaction between individual constituents of the participating 

hadrons, such’as depicted in Fig. la, and (B) the interchange of common 

constituents between hadrons as shown in Fig. lb. 

The central assumption and starting point of our theory of scattering in the 

deep region, which is defined to be large s, t, and u, is that eventually the inter- 

action time is sufficiently brief that only a single interaction or interchange is 

possible. In our view, this is the definition of the relativistic impulse approxi- 

mation for hadron-hadron scattering. Of course, corrections to this result can 

and must be computed to extend the validity of our lowest order predictions to 

nonasymptotic regions. Both types of interaction, (A) and (B), probe the short 

distance region since they depend upon the large transverse momentum behavior 

of the wave functions describing the binding of the constituents. 

Direct interactions of type (A) surely occur in nature, if not in strong inter- 

actions, then at least on the electromagnetic level. 3 However, the lack of large 
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corrections to Bjorken scaling, the absence of an obvious G;(t) term in elastic 

proton-proton scattering, 4 and the strikingly different angular distributions of 

pp and ip argue for a small coupling of such interactions. Independently of 

whether or not the above type of direct interaction is present, constituent inter- 

change inevitably takes place in any composite model. 596 Therefore it becomes 

an experimental question to determine for what processes and in what kinemati- 

cal regime a particular basic interaction mechanism dominates. Since the 

asymptotic form of the interchange amplitude can be obtained in a manner inde- 

pendent of the exact nature of the binding interaction, it provides the most 

economical and simplest possible description of hadronic reactions in the deep 

scattering region. 7 In this paper, we shall explore the attractive possibility 

that constituent interchange dominates deep scattering and show that it is 

capable of correlating and describing many reactions for large s, t, and u, given 

only the asymptotic behavior, of the electromagnetic form factors. Up to an over- 

all normalization constant, the asymptotic form for deep proton-proton scatter- 

ing is predicted and appears to be in good agreement with experiment. Other 

processes are also treated. It should be stressed at this point that our purpose 

in this paper will be to develop a simple model of the hadrons and to confine our 

predictions to kinematic regions where the theory also is particularly simple. 

Extensions to the more general case will be given later. 

In this paper, we will present a new covariant approach to the scattering of 

composite systems which is a rigorous alternative to the Bethe-Salpeter equa- 

tion and greatly simplifies calculations of the interchange interaction. It is 

based on time-ordered perturbation theory in the infinite momentum frame. 8 

In this approach, the identification of the hadronic constituents with the carriers 

of the electromagnetic current is a natural assumption and has the following 
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consequences: 

(a) Bjorken scaling - the resulting treatment of inelastic electron 

scattering is equivalent to standard models. 

(b) Drell-Yan relation - the connection between the form factor 

and the threshold behavior of the structure function’ is auto- 

matically incorporated. 

(c) Bloom-Gilman duality - in inelastic electron scattering, the 

resonances and the background fall off at the same rate in 

momentum transfer . 10 

(d) Electromagnetic fixed poles - the fixed poles in the Compton 

amplitude automatically have a polynomial residue. 11 

(e) Semi-hadronic fixed poles - J=O fixed singularities in the 

amplitudes for photoproduction of composite hadrons are 

absent. 

(f) Regge behavior - the requirements of binding and the existence 

of the interchange force allows the theory to develop Regge be- 

havior in a manner which is fully consistent with conventional 

Regge theory at low momentum transfer. In addition, it 

describes the way in which Regge behavior is joined smoothly 

onto fixed angle behavior. 

In this paper, this new formalism is utilized to calculate several deep 

exclusive hadronic reactions. Its application to inclusive processes 

is presented in Ref. 6. It is amusing to note that our calculation of 

the interchange force is analogous to the computation of atom-atom scattering 

via electron interchange (rearrangement collision) with the neglect of higher 

order electron-electron interactions. 
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It should be emphasized that constituent or parton interchange will occur, 

regardless of whether or not free asymptotic parton states exist. K. Johnson 

has argued that the absence of free asymptotic states may be consistent with 

certain field theories. 12 For our purposes, the noninteracting and virtual 

parton states that are used may correspond simply to a combination of physical 

states with unit form factor. Thus, physical parton production need not actually 

be implied for inclusive processes. However, the identification of the basic 

constituents as the carriers of the electromagnetic current is necessary in 

order to relate deep scattering to the asymptotic behavior of the E and M form 

factors. Conversely, deep scattering may be used to predict the form factors 

of particles such as the 7r and K mesons. 

If the choice of the quantum numbers of the constituents is made as in the 

valence quark model, then in some ways, one may regard the interchange theory 

as a dynamical realization. of the duality diagrams of Harari and Rosner. 13 

However, in the dynamical calculations presented here, we have no difficulty 

in treating p-p and 6-p scattering and have no problems introducing spin into 

the theory. Interpolating formulae between the deep scattering and Regge regions 

are easily constructed and lead to asymptotic relations between Regge param- 

eters which are a priori unrelated. 14 Our treatment of the deep region, and 

Feynman’s picture of Regge behavior which arises from the interchange of wee 

partonsl’ can form a unified and simple treatment of hadron-hadron scattering. 

In the remainder of the introduction, we will outline the main features of 

our theory which are then discussed in detail in the listed sections. In order to 

be able to calculate scattering in the deep region, an approach must be developed 

which will allow a convenient characterization of composite systems and a 

simple evaluation of their mutual scattering amplitude. In Section II, we shall 
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discuss in detail a natural formalism for covariant bound-state computations 

which was briefly (and evidently inadequately) described and utilized in our 

recent papers. 596 The formalism uses time-ordered perturbation theory in an 

infinite momentum frame of reference. In this formalism, pair creation by the 

current can be suppressed and the calculation of the electromagnetic form 

factor can be performed as illustrated in the time-ordered diagram of Fig. 2, 

where the photon interacts directly with the carriers of the electromagnetic 

current within the hadrons. All of the complications of the hadronic interactions 

reside in the multiparticle wave functions. The asymptotic behavior of the 

form factor F(q2) is then controlled by the asymptotic behavior in transverse 

momentum of one of the wave functions as illustrated in Fig. 3a. The other 

wave function provides the convergence for the loop integral. Hence the form 

factor and the wave function have essentially the same asymptotic power law 

behavior. In Section III the details of the form factor calculation are given in 

the spinless case and then in the more involved nucleon and pion cases that 

require the correct treatment of spin. 

In Section IV, the basic interchange contribution to exclusive scattering, 

illustrated by the topologies shown in Fig. 3b, is discussed in detail. This 

process can be computed in terms of the same wave functions used in the form 

factor discussion. In the deep scattering domain, one wave function again 

supplies the convergence for the single loop integration and each of the other 

three supply the asymptotic behavior of a form factor with an appropriate 

argument. The approximate structure of the (u, t) term in the invariant scat- 

tering amplitude for large s, t, and u turns out to be 

M(s, t,u) - s F(s) F(t) F(u) . (1.1) 
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Besides presenting the basic interchange calculation, in Section IV we also 

discuss a channel Hamiltonian formulation of rearrangement collisions which 

can considerably simplify certain calculations in time-ordered perturbation 

theory. In Section V, details are given on the additional effects of spin and 

crossing symmetry for a number of physical cases, including kaon-nucleon 

scattering, pion-nucleon scattering, nucleon-nucleon, and quasi two-body 

reactions. In Section VI, the extension and continuation to nucleon-antinucleon 

elastic scattering and their annihilation to two mesons is discussed. In all 

cases, the interchange theory predicts an asymptotic fixed angle cross section 

of the form 

d.u 
dtNS -N R(cos 19) 

where 8 is the center-of-mass scattering angle. 16,17 The value of N and the 

function R are determined by the asymptotic fall-off of the form factors of the 

hadrons involved in the reaction. Our theory then predicts a factorized form 

for the differential cross section in the deep region which provides a smooth 

interpolation between the structured forward and backward peaks. 
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II. RELATMSTIC DESCRIPTION OF COMPOSITE STATES 

As mentioned in the Introduction, the simplicity and elegance of the inter- 

change theory discussed here rest in large part on the fact that a composite 

state is simply and concisely described in time-ordered perturbation theory in 

the infinite momentum frame. As a preliminary to the true bound state discus- 

sion let us first consider the form factor of a spin-zero hadron which is coupled 

to order g to a charged and neutral scalar constituent. The vertex can be 

computed from simple time-ordered perturbation theory (a la Heitler) to order 

eg2 from 3! time-ordered graphs. However, if we follow Weinberg8 and 

Drell, Levy, and Yan,8 and choose the reference frame such that 

P = CL i 
-, SL, P)- (P +g , $, p) 

(2.1) 

with 

and 

(p+q)2 = M2 = M2 + 2p.q + q2 , 

q2 = -q; + 0 (l/P2) , 

then, in fact, only the single time ordering of Fig. 3a contributes in the limit 

P - 03. (The other’ five diagrams are suppressed by two powers of P due to the 

presence of backward-moving particles in an intermediate state.) The vertex 

contribution to the form factor from Fig. 3a is 

<pl-q I J’(O) Ip> G (2~q)’ F(q2) 

A!- J d3p @i + PIP 

@703 2E.I 2E2 2E(1 [Ep-E1-E2][Ep+q-Ei-E2]' 

(2.2) 
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Parameterizing the intermediate (on-shell) momenta as 

m2+k2 
1 

2lxlP , -Q xp 

(2.3) 

k2+h2 
Il-xl P+ 1 211-XIP ’ x1, (1-x)P , 

leads to energy denominators of the simple form 

EP-E1-E2 = 
“‘:“’ -k’;;]+[M2-S@$x)j, O<x<l 

t 
= O(P) otherwise 

and 

1 Ep+q-Ei-E2 = 2~ 
(rL+<L)2+m2 kT+A2 

X ----E- 

(2.4a) 

- S(FL+(l-x)G, x )I 
otherwise . 

Thus taking P -00, we obtain the covariant result 

F(q2) = 1 
1 

2(27r)3 s s 
d2k 

0 
where we have defined a two-particle wave function as 

li;(rr,,x) = g [M2 - S (x,,x) +ie]-’ . (2.6) 

Note that the effective current (for p= 0 or 3) is simply 2Px . 

o<x< 1 

(2.4b) 

(2.5) 

Despite the simplicity of this example, we shall show in Section II that the 

form of the result (2.5) is correct in general for a two-component wave function 

(spinless case), and is readily generalizable to the higher particle components 

of the state. 
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For the calculation of the asymptotic dependence of the form factor 

q -9, one charged component is at large transverse momentum relative 

to the rest of the constituents. This is the important configuration that con- 

tributes to the asymptotic dependence of the form factor if the general n-point 

wave function has asymptotic inverse power law dependence. (In the case of 

exponential fall-off, the large transverse momentum tends to divide among the 

constituents. ) In this asymptotic region, we shall assume that after summing 

over all higher particle number states, the net effect is that the parton sees 

an effective “core” which acts as a single particle state. It is evident that for 

a general bound system of two particles, a and c, 

$(rl, x) = $I ($,x) [M2- S(rL,x) + it]-’ . 

This displays the bound state pole at 

k2+M2 
s = - = (pa+pd2 => M2 x(1-x) 

(2.7) 

(2.8) 

where 

Mf = (l-x) 111; I- xM; 

while allowing for additional fall-off dependence in the momentum~L transverse 

to the bound state direction 5 Most generally, the dependence of the vertex 

factor $(rL, x) can be expressed in terms of the covariant variables 

M; - (P-P,)~ = 
k;+ M;-x(1-x)M2 

X 
= (l-x)jS$,x) - M2)) 

(2.9a) 

and 

M;- @-pd2 = x(S(El, x) - M2) . (2.9b) 
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The utilization of wave functions of the type (2.7) for the calculation of form 

factors and the interchange force is discussed in the next chapters. For these 

purposes, we must first discuss the manner in which the vertex function @ de- 

pends on the off-shell variables of Eq. (2.9). A simple example which exhibits 

the salient features is the case of spinless particles with a spinless gluon pro- 

viding the binding force. 

The equations for the vertex functions $I and the associated wave function $ 

are depicted in Fig. 4. The dashed lines are the gluons, and the vertical dotted 

lines mark the time-ordered energy denominators. We choose a Lorentz 

reference frame such that 

?Y=( 
M2 

p+zp, q, p 

k2 + rnz 

xP + “;xP ,F XP 
1’ 

(2.10) 

pc” = 
k2+mz 

C 
(1-x)P + 1 2(1-x)P ’ x1, (l-x) P . 

Since the z1 and x integrations are uniformly convergent, P can be taken to 

infinity after the matrix elements are written down. The four-vectors are chosen 

to conserve three-momentum, and the energy component is computed by applying 

the mass shell condition as is required in time-ordered perturbation theory. 

The exchanged gluon of mass p and coupling g, which is responsible for the 

binding, has its four-momentum parameterized as 

Jp = 
i 

(y-x)P+ 
(2.- - q2 + p2 

2(Y-x)P , qq 1 (Y-x)P (2. 11) 

for y>x, corresponding to the first diagram on the right of Fig. 4, and a 

similar form holds for the second diagram with y < x. The equation for $ (k 1 , x) 
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I’ 

takes the form 

q(Gl,x) =+ h!- Gl YY) 

Y (1-Y) 
V(d 

wm 
l x-;x~Y) 2 

(2.12a) 

where 

T2+ m2 X2+ m2 1 
-1 

ly-XIV = g2 - ’ l-yc - lx a - + ie 
Y-X 

r2+m2 X2 +m2 
- ’ y a - 11-X ’ - 

(2.12b) 

Note that the normally complicated square-root phase .space is linearized in the 

infinite momentum frame limit. Thus the equation for $ is 

$(kl,x) = [M2 - S($,x) + ie] $(q,x) 
(2.13) ‘( 

1 =- 
/ 

hlL 
2(27r;3 

d2Q, y(l-y) vq 9 rl; Y9X) $tq ,Y) ’ 
0 

This is a fully relativistic description of the bound state within the calculational 

rules of time-ordered perturbation theory; if V is given, then in principle # is 

completely determined. 18 

For the applications in this paper, we shall need to know that $ is normaliz- 

able and to study its asymptotic form. A discussion of the nonrelativistic limit 

will be given elsewhere. 

There are three limits of interest: k: large, x- 1, and x-0. In each of 

these cases, it is easy to see that the right-hand side of Eq. (2.13) vanishes like 

s-4 Thus the two covariant off-shell variables enter into the asymptotic 

dependence of $ in a symmetric fashion. This unified limiting behavior then 
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allows us to write the effective form for $ in any of the above limits as 

(2.14) 

where N(x) is a relatively slowly varying function of x which does not vanish at 

the end points of x. Note that this discussion is appropriate to applications such 

as the form factors and parton-interchange exclusive scattering contributions 

where neither particle appears in the initial or final state. When one of the 

particles appears in the final state, the dependence for x N 1 and x- 0 may differ. 

See Ref. 6 for further discussions. 

The inverse square dependence in Eq. (2.14) is specific to the potential of 

Eq. (2.12). Since we will not need to commit ourselves to a specific binding 

interaction and indeed wish to avoid tying our results to a definite potential, our 

procedure will be to determine the power fall-off of $ in the variable S from the 

asymptotic form of the electromagnetic form factors. Then knowledge of the 

form factors will be sufficient to describe the asymptotic behavior of the exclu- 

sive cross section in the large t, u region. 

If one wishes to normalize the wave function and to compute the relative 

normalizations of different reactions, then the wave function $ must be described 

in more detail. The simplicity of Eq. (2.13) and its close resemblance to the 

nonrelativistic problem where one’s intuition has already been developed, suggests 

many straightforward phenomenological models for the wave function. Perhaps 

the simplest is to set zc) equal to a relativistic “Hulthen” form, 

# = (S - M2)-l (S - M;)-1 N(x) (2.15) 

where Mt > M2 is a parameter characterizing the range of the force, and N(x) is 

a smooth nonvanishing function of x. 
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Finally, we state the rule for establishing the correct wave function argu- 

ments in the more general case in which the bound state momentum is zF+y 
1’ 

coupling to constituents with momentum 

pp= x!zP+ 
c 

(k1+ql)2+mz 
a 2x!zP , ~-+z--, xzp ) 

kf+rnz 

2(1-x)z P ’ x1, (1-x)i . 

(2. 16) 

The wave function in this case is 

ZCI = 
z F+< 

[V12-S(~L+(l-x)~L,x~-1 $(x--+(1-x)$,x) * 
(2.17) 

This expresses the general rotation and translation properties of $ . Note that 

the transverse momentum argument i;;+ (l-x) TL is that component of particle 

a’s transverse momentum which is perpendicular to the direction of the incoming 

bound state, 

If the constituents and bound state have spin, which definitely must be con- 

sidered if one wishes to compare with experiment, then we shall assume that the 

leading term for large S factors in its spatial and spin dependence. Thus, for 

example, a pion coupling to two fermions can be described by a wave function 

which is the direct product of the standard Dirac spinors multiplied by the type 

of momentum space wave function discussed above. 

In a complete description of a composite hadron, all the multiparticle 

components of the wave function must be specified. As mentioned earlier, it 

will be assumed that at high transverse momentum, a given constituent sees a 

combined coherent effect resulting from all of the other constituents; the latter 

can thus be treated dynamically as a single effective system or “core” of limited 

mass. This assumption allows us to describe the main features of the constituent 
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wave functions in the regions of interest, and to readily link the interchange 

amplitude for elastic scattering to the asymptotic behavior of the form factor. 

In fact, the form (5.4) for the interchange amplitude is probably independent 

of the core assumption and is approximately true in a wide class of multi- 

particle models in which the wave function has approximately a power-law 

asymptotic dependence. 

It is an interesting question as to whether the asymptotic behavior of the 

wave function is simply related to the most basic number of constituents. For 

example, the nucleon wave function will be shown to fall faster than that of the 

pion; this may be a reflection of the fact that (for x N 1) in the simplest models, 

the nucleon is a bound state of three quarks, whereas the pion is composed of a 

quark pair. In any case, we can proceed by using effective two-body wave func- 

tions and defer until later, after more is known about their behavior and properties 

by comparing with experiment, a more unified treatment of the basic binding 

mechanism. Let us turn now to a discussion of the form factors of a composite 

system. 
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III. FORM FACTORS 

In this section, we will give a detailed discussion of the electromagnetic 

form factors of the nucleons and mesons within the framework of the constituent 

and core approximation. Experimental knowledge of the asymptotic behavior of 

the form factors will yield information on the asymptotic behavior of the hadronic 

wave functions and vice versa. This discussion will also allow us to develop the 

type of analysis which is required in order to extract the leading asymptotic 

dependence in more complicated reactions. Many of the results which have been 

obtained from Bethe-Salpeter analyses will be immediately apparent here. 

A. Scalar Particles 

Recall that the matrix element of the current in the interaction picture is: 

(2p-Wp F(q2) = < $ptq BP(O) I +p> = 4,, 1 f’%) I$,> 

c Aam 
-3 = 

f 
d3p 

do 
a 2Ea2Ec2Ea, ( 2Ep+q p+q j (Pa+p;P (2EpGp) 

+ (pair-creation states) . (3.1) 

For P -+co, and the frame choice (2.1) for q’, the pair-creation states corre- 

spond to backward-moving particles in the wave functions and are suppressed 

by two powers of P in the amplitude. We thus obtain 

F(q2) = c haFatq2) 
a 

Fah2) = - 13/d2kLl& ~aj~~+(l-x)~~,x)~a(~~,X) (3*2) 
ww 

by using the parameterization (2.3) and the rotation property (2.17). Note that 

the sum over (a) requires summation over both particles and antiparticles. 
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One should note that there are two central assumptions made in deriving 

Eq. (3. 1): 

(1) The identification of the carriers of free electromagnetic current 

in 

(3.3) 

with the constituents of the hadrons, and 

(2) The assumption that a sum over (parton + core) two-particle 

states, in effect, saturates the free particle intermediate state 

sum required in (3.2). 

The normalization condition on the wave functions from (3.2) is 

s 
1 

dx f,(x) = 1 (all a) (3.4) 
0 

where 

f,(x) = -L 
2(2Tr)3 s &) 1~,op2 - (3.5) 

This is also the condition that Z2 = 0 for a composite state. The function fa(x) 

is the normalized fractional longitudinal momentum distribution function, which 

appears in deep inelastic electron-proton scattering in the Bjorken limit where 

x = Q2/2mv and 

VW,@) = c AZxfa(x) . 
a 

(3.6) 

We can easily check that the bound state calculations are gauge-invariant: 

-1 
(0)Iz+bp>=-l- 

2(27r)3 JJ d2k 

0 

(3.7) 
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This vanishes since 

q. (pa-l-p;) = -q; (l-x) - 2’;1. * T- A -q* (Pa+P;) (3.8) 

vanishes upon symmett-ization in ‘i-; e -x1 - (l-x) c . The proof for the case 
1 1 

of spin is just as simple. 

Let us now determine the behavior of the form factor as the momentum 

transfer becomes asymptotic. Assuming that the wave function has power law 

behavior for large S, $ - SWn N(x) (see Eq. (2.14)), then for q: large for fixed 

x, there are two regions of thexL integral which contribute: i? I-O and 

k 
1 

- -(l-x) G=. These yield equal contributions to F,: 

1-O(m/lql I) 

Fa(s2) s Aa tc-)+f- 
0 

dx ~~~-‘(l-x)-l Nl(x) , (3.9) 

where 

Nl(x) = T ’ d2k 
(27r) - l 

$(k l ,x) [xtl-x)]-n (3.10) 

is a finite and nonvanishing function of x since $- [x(1-x)]” at the end points. 

Thus we have immediately 

Fa(s2) - (TTY log Gf/m2) (3.11) 

in the asymptotic region. Note that the Drell-Yan relation’ 

VW,(X) - (l-x)2n-l (3.12a) 

for x - 1 if 

F(s2) - qrn tq; -03) (3.12b) 

is automatically satisfied (up to logarithmic modifications) when the wave function 

depends asymptotically on the symmetric variable S. 
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B. The Nucleon Form Factor 

For the calculation of the nucleon electromagnetic form factors, one must 

include the full complexities of spin. We will assume that the carriers of the 

electromagnetic current are fermions. The matrix element of the electro- 

magnetic vertex of the nucleon has the form (a sum over constituent charges is 

to be understood) 

Jv = &/d2$-$& $ (EL + b-x) ql,x) @$A$, , (3.13) 

where 

jzJ = i&+9) r’(mb+$,)?v fma+tiajr u@) - (3.14) 

We have used summation over internal spin to replace 

where 

c uA(Pa) u h a (P )=ma+Id a 
h 

pz = rnz = rn; . 

(3. 15) 

(3.16) 

The spinor matrix operators, r’ and I’, define the coupling of the core, c, and 

charged constituents, a or b, to the nucleon. Two cases will be of interest to 

us: 

(1) Spin 0 core: rf=r=l (3.17a) 

r 
P”?PP 

(2) Spin 1 core: rf . . . r = y, . . . yp -gap + -22 

L m2 1 (3.17b) 

C 

These are perhaps the simplest choices for the spin coupling consistent with the 

quark model. The vector propagator for case (2) arises from the internal sum 

over spin states; by definition p, is on the mass shell: p: = rnz . 
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For the case of bound states, the backward-moving fermion states do not 

contribute to the current (3.13) - even for the case of so-called “bad” trans- 

verse current components. This is in contrast to perturbation theory 

(e. g. , QED and y5 coupling) in which the matrix elements of the bad currents 

(connecting oppositely-moving fermions) grow in P at the same rate as the 

backward-moving energy denominators. 15 For bound states, the extra suppres- 

sion of the vertex functions C#I eliminates all such contributions in the P-- ~0 

limit. The absence of backward moving fermion contributions leads automatically 

to the absence of certain types of fixed pole behavior in hadronic and photopro- 

duction processes. (See Section IV. ) 

The absence of the backward-moving contributions permits Eq. (3.14) to 

be used for all components V, and thus we may use the following projection 

operations to isolate the standard nucleon form factors, GE(q2) and GM(q2): 

qE=-q 
8M2 

+)mLu@+q) cL-J (3.18a) 
spins 

where 

t;:=(p++q)’ (M2+<;,4)-1’2, e;=+l , (3.18b) 

and 

where 

(3.19a) 

(3.19b) 

Thus GE and GM are given by integrals over rL , and x of the type of Eq. (3.2) 

with the integrand multiplied by the projection operators applied to jV . 

For a scalar core, c, it turns out that the leading terms in the spin projec- 

tions for large q: cancel for GM but not for GE. Hence GE is larger by a 
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factor of (-q2) in the asymptotic region. The experimental evidence is that 

GM and GE scale, that is, they are proportional to one another, and that 

GM - l/(-q2)2 for large (-q2), at least for (-q2) < 4 GeV2. Since it seems 

unreasonable to suppose that GE falls more slowly than GM, we will assume 

that the scaling property - at least up to logarithms - is valid asymptotically. 

The simplest spin choice for the core spin which reproduces GE cc GM 

scaling is spin one. Using the helicity conserving form given by Eq. (3.17b) 

for the coupling of the core, we obtain to leading order: 

where 

j, = i q: )I + w.Q 

1 

(3.21a) 

(3.2lb) 

The full nucleon form factor is then given by a sum over the charged spin l/2 

constituents. BothxL small and gL+ (1-x)yL small contribute equally to the 

asymptotic behavior. Using the above equations and the standard form for 

zl, - SNN(x) , we obtain: 

GE, M - (-q2yn+’ log (-q2/m2) . (3.22) 

This relation only holds asymptotically; the nonleading terms are not in the 

same ratio, so the scaling law is only an approximate relation. 

In order to yield dipole-like behavior at large q2, the value of n should be 

near 3. Notice that the strong convergence of the zf integration allows the 

above type of asymptotic analysis. Note also that for n=3, an additional con- 

tribution from spin zero core exchange would modify only GE to leading order, 
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so that this freedom can be used to obtain the observed experimental ratio 

G$.$/GE@’ - pp. 

If there were an intermediate or elementary vector particle which-mediates 

the electromagnetic interaction such as in a vector dominance theory, then the 

wave function $ would fall off with at least one less power of S (n 5 2). Later, 

when deep elastic pp scattering is discussed and compared with experiment, it 

will be shown that such small values of n are ruled out. 

C. The Pion Form Factor 

Needless to say, unlike the nucleon case, the large cf behavior of the 

pion form factor is completely unknown. We shall show that the large angle 

data for pion-nucleon elastic scattering, in fact, demand that the pion form 

factor be close to that of a monopole, F,(q2) - (-4 2-l ) . Anticipating this 

prediction, we shall choose the pion wave function so as to produce this 

behavior . It will be interesting to see if pion-nucleon experiments at higher 

energies continue to be consistent with the simple monopole behavior. 

We shall take the pion as a bound state of a spin l/2 elementary con- 

stituent bound to a spin l/2 core. The matrix element of the current is thus 

(2p+qjV Fn(q2) = A3 ld”kJ’ + 
2&d 0 x (l-x) 

(3.23) 

where 

T” = +Tr 
C 
(mb+tib) yV ( ma+Pa) Y5 (“c-tic) Yg] ’ (3.24) 

The form factor is easy to extract by choosing the I, = 0 component and allowing _ 

P--+03; 

g = (I-XT’ [~~+m~)+((~l+ (I-x)cl)2+mz)+ 4xMrmc- (l-x) q:] . 

(3.25) 
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Again the two regions of the xl integration contribute equally. Unfortunately, 

the leading terms in 2 
1 

of To cancel and the asumptotic behavior of Fn must 

be extracted with some care. We shall see that the required pion wave function 

must fall as S -312 . Using such a wave function and the identity 

(AB)-3/2 = : f- dz z112 (A+Bz)-~ , 
0 

(3.26) 

the rl integration is easily carried out by combining denominators. Then 

(setting ma= mc for convenience) the form factor becomes 

-2 03 
dz z112 (l+z)-3 , 

(3.27) 

The symmetry of the integrand under the transformation z - z -1 can be used to 

show that the contribution for z > 1 is equal to the contribution from z < 1. 

After defining w = z (l-~)~ <f/M2 
7r’ 

and interchanging the w and x integrations, 

2 -1 one then obtains the expected result, F,(q2) - (-q ) . 

D. Transition Form Factors 

It is an interesting matter at this juncture to discuss transition form factors 

for processes such as y+ N --L N*, which are defined as the nondiagonal matrix 

elements of the current operator: 

2 
+ ’ +M2-M*2 

‘I2 
SC” 1 . (3.28) 

The scalar case will be treated here, but the extension to the spinor problem 

does not change any of the conclusions. The form factor is given by 

FN’-N(q2) = --& /d2$’ $&j $p(El + (l-x)~-~x)~N(rl~x~ * 
(3.29) 
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If the excited state has nonzero angular momentum, the appropriate spin 

labels must be included, and the appropriate spherical harmonic dependence 

in $N” must be taken into account. 

The asymptotic dependence of FN*-N depends on the behavior of the N* 

wave function. However, if this wave function falls off with the same power of 

S or faster than that of the nucleon, then the q2 falloff-of FN*-N is the same as -- 

that of the elastic form factor FN . Note however, that for qN.+ - S-“*, zc) - SBn, 

with n* > n, the factor log (-q2) present in Eq. (3.11) for FN(q2) is absent in 

FN*-N(q2). In the latter case, this is due to the fact that the large momentum 

transfer prefers not to be routed through the N* vertex: The leading behavior 

comes from the region 2 - -(l-x)c 
1 1’ 

and is determined by the nucleon wave 

function; the convergence ‘of the $ integration is controlled by the P wave 

function. It would seem very unnatural to expect that the wave functions of the 

excited states would fall slower than that of the nucleon. This would be the 

only way to break scaling between FN*-N and FN. 

The prediction that the transition form factors should scale at large 

momentum transfers with the nucleon form factor is quite striking. It is con- 

sistent with the data, but a definitive test at large momentum transfer is needed. 

This would be a simple yet crucial test of the composite theory. Now scattering 

processes will be discussed using this formalism. 
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IV. SCATTERING AND CHANNEL HAMILTONIANS 

We now turn to the problem of calculating the elastic scattering of two 

composite systems. 19 We focus our attention on a covariant treatment of 

rearrangement collisions - the scattering due to the interchange of common 

constituents within the hadrons. The main assumption of our theory is that 

in the deep elastic region, asymptotic s, t, and u, the time of interaction is 

insufficient for the interchange of more than one constituent. The problem 

then becomes analogous to that of electron rearrangement in atom-atom colli- 

sions, with the neglect of binding interactions between the interchanged 

electrons - and the neglect of corrections higher order in OL from higher 

particle (photon, pair states) components of the atoms. In general, the hadronic 

problem requires a full multiparticle formulation. However, since in the deep 

scattering region, the wave function of the interchanged constituent is required 

in the region of high transverse momentum relative to the remaining constituents, 

it is reasonable to treat the latter system as a single particle or core, as was 

cbne in the infinite-momentum frame form factor calculations. Thus a two- 

particle approximation to the bound state is again relevant in this process. 

Note that the reference to a state of definite particle number applies specifically 

to an infinite momentum reference frame. This is crucial if we are to relate 

the wave functions used in the interchange calculation to those used in the cal- 

culation of the form factor. This is because it is only in an infinite momentum 

frame that the current interaction can be defined (for all q2 5 0) in such a way 

as to not change particle number. 

In the two-particle approximation, the calculation of a rearrangement 

collision is easily formulated within the framework of a multichannel Hamiltonian 

formalism. We recall first the infinite momentum wave function equation 
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describing the breakup of a bound state of mass MB into its two constituents, 

a and c. (For definitions of the momenta, see Eq. (2. lo).) 

[I M; - s’$ ,x) I +B’kl. ,x) = 
(4-l) 

[ M~-K~-K~]~~~~,x)=v~~~~ 9 

where V ac is an integral operator over k 
1 

and x, and Ka and Kc are the infinite 

momentum frame “kinetic energies” 

Ka = (‘E;” + mi)/x , 

In general, 

-1 Ki = (rfi + rnf) xi ; 

Kc = (c;I” + mz)/(l-x) . 

&xi=1 . 

(4.2) 

(4.3) 

We will consider the rearrangement collision defined by 

(a + c) + (b + d) -+ (a + d) + (b + c) (4.4) 
(B) (4 F) 0 

For convenience, we define the external four vectors as (see Fig. 3b): 

‘B = P 

PA=p +q+r 

pC =p+q 

PD=p +r 

sothatt=q2, 2 u=r . The mass shell conditions are 

2q.p=M; - M; - q2 

2r.p=Mi-Mi-r2 

and 

2q*r=Mi+Mk- M; - M; 

V-5) 

(4.6) 
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The most convenient infinite momentum frame for this problem is defined by 

( M2 
pt”= P+g ,8 P 

) 1’ 

4c”= v, c ( 1’ 0 ) 
rp= -, j? ( P 1’ 

0 
) 

Thus we have the simple relations 

t=q2z--~2 2 -2 
1’ 

u=r z-r 
1 

(4.7) 

(4.8) 

and the convenient orthogonality relation for elastic scattering 

241 *i? l=o . (4.9) 

The initial noninteracting state is the direct product state, $I = qAeB , which 

satisfies 

tEI - K) $1 = VIP1 (4.10) 

where VI = Vat + Vbd is the sum of the two binding potentials, and 

K = Ka+Kb+ Kc+Kd is the total kinetic energy. The initial infinite momentum 

“energy” is 

EI=M;+ M;+ ($ + F-,” 

=s- M;-M; 
(4.11) 

A similar equation holds for the final state zjF where only the potential 

VF = Vad + Vbc is present. 

The full interaction between the composite systems can be written in the 

form 

v=vI+vF+w (4.12) 
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where W contains terms such as V ab’ Vcd, intrinsic multiparticle interactions, 

and the “optical” potentials which incorporate the effects such as absorption 

from higher multiparticle channels. The full wave function ++ satisfies the 

equation: 

and 

[E - K]++ = Vq+ (4.13) 

Q+=$,+ (E-K-VI)-’ (v-vp+ 
(4. 14) 

= +I + (E - K - VF)-’ TFI$I 

The transition operator is given by 

TFI=(V-VI)+(V-VF)(E-K-V)-+VI) . (4. 15) 

The required matrix element of the transition operator for the rearrangement 

process of interest is then 

MFI = <$FITFIIGJI> (4.16) 

withE -EI=EF=s-M;-M;. Proceeding in the same manner, but 

constructing the full incoming wave function that is equal to GF in the infinite 

future yields the alternative equation: 

TFI=(V-VF)+(V-VF)(E-K-V)-‘(V-VI) . (4.17) 

In the lowest order Born approximation, one therefore has the two alternative 

forms 

MFI = <$FIV-VII#I> = <$FIV-VFI$I> (4.18) 

which are indeed equal on the energy shell by virtue of the equations for $I 

and zJF . 

We now make the physical assumption that the main contribution to deep 

scattering from V - VI = VF + W is due to the VF term; that is, there are no 
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explicit extraneous gluons present. The two terms W and VF correspond 

precisely to the two contributions (A) and (B) discussed in the introduction. 

Except for possible energy-independent absorption corrections contained in 

W, the higher Born contributions in Eq. (4.17) fall off more rapidly in s than 

the first Born contributions and will be neglected. The Pomeron-dominated 

absorption corrections - while changing the normalization of the interchange 

contribution - do not change the energy or angular dependence obtained 

from the first Born calculation. 

Thus, the appropriate form for the interchange transition amplitude is 

MFI = @FIVII$> = +FIVFI+I> . (4.19) 

Using the equations obeyed by $I and $F, we obtain 

MFI = <~FIE-KlgOI>~<~FIAl~I> (4.20) 

1 f1 dx =- 
2(2Q3 

d2k 
0 x2(l-x)2 

A @+~“A $D ( 
F + (l-x$ ,x . l 1 

* #A& -xTl + (1-x)$l ,x) $,(‘- ,x) > (4.21) 

where 

A=s-M;-M;-Ka-Kb- Kc - Kd 

2 2 = MA + MB - SA r-+ (l-x)TL -x’fi. ,x - ‘BtF- ,x) 

= M; -!- M; - SC&-x7 ,x - SD r-+(l-~)<~,xj . 
1 1 ( 

(4.22) 

This derivation makes it clear that in keeping only the interchange contribution, 

one is neglecting the parton-parton interaction relative to the parton-core, or 

binding, interaction. 
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It is interesting to see how this result arises in lowest order perturbation 

theory. There are four surviving time-ordered contributions to the interchange 

amplitude which are illustrated in Fig. 5. 

Defining the point-like wave functions from the appropriate energy denomi- 

nators, e.g., $B=g as in Section II, we have immediately 

’ @$-s-Kd) + (KB -Ka-Kc) I[ $D-s-Kc) + pc-Kd-Ka) 1 
(4.23) 

which, if Eq. (4.22) for A is used, is precisely Eq. (4.21) for the point-like 

case. Note that the common energy denominator A appears finally in the 

numerator. One can see from a comparison of this derivation with the channel 

Hamiltonian approach that Eq. (4.21) is in fact valid when $ represents the 

wave function of a general two-component bound state. From the time-ordered 

perturbation approach, this is equivalent to treating the vertex functions 

@=CM-sle as single time operators. 

The generalization needed for the inclusion of spin is similar to that dis- 

cussed for the electromagnetic form factors; detailed examples are given in the 

next section. We emphasize again the general feature that the bound states 

cannot couple to particles moving oppositely along P, as P -L 00. This is 

because the spin couplings of the numerator which grow with P cannot compen- 

sate for the “bad” denominator as well as the extra suppression of the vertex 

functions, $(P2) -L 0. In the case of the Compton amplitude in which photons 

couple pointwise to the Fermion constituents, a z-graph’ is certain 

to be present for the transverse currents. The resulting P2/P2 contribution 
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has a local form similar to that of the “seagull” $‘$A2 coupling in scalar 

electrodynamics, and leads to a term independent of energy and photon masses 

at fixed t in the Compton amplitude Tpu . Such a term corresponds to a oJo 

right-signature fixed singularity in Tl@, q2). Further implications of this 

contribution have been discussed in Ref. 11. 

The distinction between Compton scattering and photoproduction of com- 

posite hadrons (e.g., r+p - p”+p) is thus clear: The additional vertex 

suppression associated with the composite hadrons prevents any such “z- 

graph” contributions from surviving for P - 00, and the corresponding fixed 

singularity, i.e. , energy-independent behavior, is not present. Thus, despite 

the fact that unitarity alone for lowest order electromagnetic amplitudes does 

not rule out the presence of fixed poles of such fundamental origin, they are, 

in fact, excluded by the composite nature of the hadrons. 
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V. ELASTIC SCATTERING IN THE DEEP REGION 

This section will be concerned with extracting the asymptotic behavior in 

the deep scattering region (large s, t, and u) of the covariant scattering ampli- 

tude given in Eq. (4.21)) resulting from the interchange of common constituents. 

Comparisons with experiment will also be presented. 20,21 

At fixed (c.m.) angle, one can readily show that aJ.l but absorptive correc- 

tions to the single interchange process are either incorporated into the defini- 

tion of the wave functions or give nonleading contributions in s. As discussed 

earlier, the absorptive corrections affect only the normalization of the inter- 

change process since only the small b - 0 of the impact parameter profile 

F(b) is probed - in this region F(b) is slowly varying compared with that of 

the interchange contribution. A precise definition of the region of validity of 

the fully asymptotic form given below depends on masses and couplings, and 

can only be determined at this stage by comparison with experiment. 

The behavior of the interchange amplitude, Eq. (4.21), is readily deter- 

-2 mined for asymptotic t= - q -2 
1’ 

and u=-r 
1’ 

Let us assume for convenience 

that hadron B has the most rapidly decreasing wave function at asymptotic 

transverse momenta. Then in the deep region, +,(zl ,x) supplies the con- 

vergence of the transverse loop interaction, and only F - 0 contributes in 
1 

leading order in s. (If eA has the same convergence as zcIB, then there will be 

an equal contribution from the integration regions F l- -(l-~)c~+xl, etc. 

In the case of pp - pp, the four distinct regions of the k-integration contribute 

equally. ) 
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The asymptotic result can be expressed in the form 

1 
M(t,u) = - dx 

x2(l-x)2 I $A [(1-x)z- - x”11,x] 

where 

GB(X) =----L-- 
2(27r)3 

d2k #B (kl , x) [x(1-@] -B 

(5.1) 

(5.2) 

is a smooth, finite function of x, and the quantity B is defined from the asymp- 

totic form of the electromagnetic form factor of hadron B: FB(t) - (-t)B 

(logarithmic factors in FI(t) are ignored). More generally, one could allow 

B to have a logarithmic dependence on t with obvious modifications of the final 

results . Using the asymptotic forms 

$y- s-LNL@) , L = A, C, D 

discussed in Section II, we immediately obtain 

W, U) g s FA@) FD(t) FC(U) I(Z) 

= ,1-A-C-D l-z -D 
(7) (3y 

where 

l-z t z = cos ecm , - = -- 1+z - 2 s ’ 2 

and we have defined 

(5.3) 

(5.4) 

I@) 

U ZZ -- 
s ’ (5.5) 

I(z) = - 
ll& 

‘B tx) NA tx) NC (8 ND(X) 
klmx7 (l-zj + x2 (I+zj]A-1 [xt~?$+~cD+D-3 

(5.6) 
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In most of the applications, I(z) is a relatively slowly-varying function of z , 

the x integrations being adequately protected for all values of z. If A, B, C, 

and D are such that the x integration is divergent, then logarithmic or stronger 

modifications in z” 
1 

or 7’ will be present in M(t,u). 

The asymptotic form (5.4) can be contrasted with the Wu-Yang conjecture 

which involves only two form factors, both of which are functions of t (or u). .- 

The 90’ (c. m.) cross section in our theory has the simple power-law 

behavior 

lim do rtoo) = 16>s2 lM12 = s -2(A*C+D) I(0)/16a2 , (5.7) 
S--W 

which is completely determined by the power falloff of the form factors. For 

the case of p-p scattering, C=D=ArZ, and 

&(goo) 1 
dt ccp (5.8) 

for large s. This prediction is not altered by spin effects (see Eq. (5. 36)), and 

is in agreement with experiment (see Fig. 8 ). 

Similarly in the case of w elastic scattering, A=Czl, Dg2, and 

(5.9) 

which is again unaffected by the inclusion of spin. This is in excellent agree- 

ment with the data (see Fig. 6 ) for (s > 10 GeV2), and is the basis for our 

prediction that Fn(t) - (-t)-’ for -t > 5 GeV2. 

Thus far we have simplified the interchange analysis by neglecting quantum 

number considerations. In actual fact, one must choose constituent models 

for the mesons and baryons which satisfy the required symmetry and conser- 

vation laws. For instance, the interchange contribution to pp scattering takes 
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its simplest form in those models in which the proton wave function contains 

no antiquarks at high transverse momenta. In this case, only the interchange 

or (u t)topology (or(t u)by crossing symmetry) of Fig. 3b contributes. .If anti- 

quarks or more complicated core states were present in the region of interest, 

then rrboxlt graphs of the (s t)and(s u) topology also must be included in the 

amplitude. 

The contribution of the (s t)topology is readily ob<ined from the real (u t) 

interchange amplitude by applying (s u) crossing (after the angular part of the 

d2 ki integration has been performed). For example, applying (s u) crossing 

to the results given in Eq. (5.2)) one obtains for large s and t 

M(t, S) = - (-t)-D (-s-ie) -c [x(l;;$;;l;;-3 . 

(5.10) 

The small x region of the integrand will, in general, contribute an imaginary 

part to the amplitude. However, in the physical cases of interest that will be 

discussed in detail, it is quite small in comparison to the real part. 

B. Meson-Nucleon Scattering 

The inclusion of the effects of spin in the interchange calculations is as 

straightforward as it is tedious. The nucleon will be taken as a composite 

state of a spin l/2 (quark current) constituent bound to a core whose dominant 

spin is one. Of course, spin 0 plus spin 1 would be the natural choices if the 

core is composed of two remaining quarks. The spin of the core is chosen to 

guarantee asymptotic GE/GM scaling (see Section III). The pion will be taken 

as a composite state of a spin l/2 (quark current constituent) bound to a spin 

l/2 core with quantum numbers of an antiquark. Thus both (u t) and (s t) 
I 

diagrams contribute to this process (see Fig. 3b). 
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The pion-nucleon amplitude is written in the canonical form 

M=$p+q)[-A + y.QB]u(p) , (5.11) 

where 

Qp = (p+r)p -k @+q+r)’ . 

Projection operators which can be used to extract the invariant functions A 

and B are as follows. Define 

P,=;c Mi$p)u(p+q) 
spins 

and 

P,=;c M$p)y.eu(p+q) 
spins 

where 

E * (2p+q) = 0 . 

A suitable vector (in the infinite momentum frame) is E p=(o, T-2 0) 

(5.12a) 

(5.12b) 

Then 

(5.13a) 

(5.13b) 

Since the vector core c is coupled to the proton by a y-matrix, helicity should 

be conserved asymptotically and one expects and finds A/sB -0 as s -co . 

The necessary traces for the (u t) diagram in the deep scattering region 

are 

(5.14a) 

and 

p2 = i Tr [r@y5 @y5 $ rQ’+W f (~+yt+&J (5.14b) 

where I? . . . I? is the vector projection operator given in Eq. (3.17b). Mass 

terms in md, ma, and mb are neglected. If the traces in P2 are performed, 
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one obtains the leading order result 

1 
p2=2 q1 r -’ -2 [-2qf (l- IC;2/(kxmEi)l . (5.15) 

By performing the trace for Pl, one discovers that A and B have the same 

asymptotic dependence (at fixed angle); this means that helicity is conserved 

and B dominates the differential cross section, i.e., 

where 

(5.16) 

B(t,u) = -+ / d2k(x2t;x12 A @N [‘-+ ‘1-x)!i--, x] +N[‘-Y x] 
ww 

O Qcl+ (l-x) ?.&-xqx] $,[qxF-, x]. [-2q;$ &)] ’ 

(5.17) 

The asymptotic behavior of this amplitude in the deep scattering region, 

assuming a dipole nucleon behavior ( N s-3) ZCiN and a monopole pion form 

factor $, - S-3/2 , is 

B(t,u) z (-t)-2 (-u)-~/~ 
f 

1 -l/2 

0 
(5.18) 

where 

i?(x) = NN(x) N;(x) --&f d”$ ZCI kl s+WGj-3 c-s,) l 

(5.19) 

The (s t) graph is achieved by continuing the variable u to -k (s + i C) . The result 

is 1 

B(t,s) z (-tr2 (s+ie)-3/2 
-l/2 

ie 1 (5 0 20) 

which has a small imaginary part for physical t < 0. 

- 37 - 



If we adopt a definite quark wave function model for the pion and nucleon, 

then the required weightings of the (s t) and (u t) amplitudes are determined. 

In general, the amplitudes which describe elastic and charge exchange scat- 

tering are of the form 

(5.21) 

B(r+p -f r+p) = + ozB (t, u) + PB(t, s) 

B(n p - r--p) = - PB(t, u) - crB(t, s) 

B (T--P - Ton) = y (B(t,u) + B(t, s)) . 

The (s u) topology would contribute in the simplest quark model but the core 

routing should make it a small contribution. It will be neglected here. The 

asymptotic amplitude is then 

B(r+p)Ss 3 

’ 

i 
4cY (l+zF312 [x2(&z)+ (l-x)2 (l-z)]-1’2 -I- /+x2 - (l-x,2 (q)] -l/2i. 

(5.22) 

Let us now approximate this simple result to get even a simpler form. The p 

integral is almost independent of z for small z, and has a negligible imaginary 

part. The a! integral is real, and its dependence on z is very close to (l+z) -l/2 . 

Furthermore, the coefficients of (+4a) and (p) are almost equal at z=O, as one 

can check by numerical integration. Thus a convenient form is 

B(l;tp) 2 NB s 

which results in the differential cross sections 

$(n+p) = 00 (l-tz) [40(ltz)-2 f p 2 
s8 (l-z)4 3 

(5.23) 

(5.24) 
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I 

and 

L!!&-p) = - Go (l+z) 4p(l+z)-2 + 01 
2 

s8 (l-z)4 [ I (5.25) 

-Ton) = - go (It-z) (o!+@)2 2 

s8 (l-Q4 2 
, (5.26) 

where co is a constant. A comparison of the energy-dependence at 90’ is made 

with the data of Owen et al. , 22,23 in Fig. 6. The angular dependence of the 

7r-p -c n-p reaction is compared with the same data for (r=2, j+l in Fig. 7. 

(This corresponds to simple quark counting - two p quarks plus one n quark 

interchange.-24) The agreement is quite good even quite far from 90’ but 

clearly better data throughout the high energy region is desired for a more 

crucial test. A search for the best values of a! and /3 has not been made. 

The ratios of the differential cross sections at 90’ for these three 

processes are predicted in this leading approximation at large s to be 

do(*+p-7?p) : do(n-p- n-p) : do(T-p- Ton) = (4rr+$ : (o*4P) 2:%(cY+py . (5.27) 

A particularly striking feature of this prediction is that once the ratio of I=0 

and I=1 exchange is fixed, then the angular dependence in the deep region of all 

three processes is precisely’determined. 25 

C. Kaon-Nucleon Scattering 

If the valence quark assignments are assumed for the quantum numbers of 

the kaon and the nucleon, then their scattering amplitudes in the deep scattering 

region are extremely simple. Since the K’ wave function only contains p 

quarks and h quarks in the high transverse momentum region, then only the 

p quark (u t) interchange diagram contributes. This assumes that there are 

no high momentum % quarks in the proton wave function. Note that this does 
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not exclude the presence of strange quarks and/or antiquarks in the quark sea 

at low-momentum transfer. It then follows from crossing that K-p -. K-p 

scattering in the deep region proceeds by p quark transfer - only the (s t) 

diagram can contribute. Furthermore 

WKLP - Ksp, = ; [WKop - KOp) - MFOp - K,P) 1 (5.26) 

and clearly 
.- 

M (K,P - KOp) = 0 , (5.27) 

where KOp - KOp proceeds by the (u t) interchange of an n-quark and K,p -ifop 

requires n-quark (s t) transfer. If the K-meson form factor scales with the pion 

form factor, one finds the deep scattering predictions 

B(K+P - K+p) = aB(t, u) 
- 

B W-P - K-p) = -oB(t, s) 

WLP - Ksp) = ; [B(t,u) + B(t, s)! 

which, using the approximations of Eq. (5.23)) become 

-L K+p 

- K-p 

--Ksp 

(5.28) 

The normalization constant go is the same as that of the TN reaction in the 

SU(3) limit. 

The cleanest prediction is the s -8 behavior at fixed angle. However, the 

predicted angular dependences based on simple quark assignments are also 

very interesting. Except for the no-helicity flip factor (l+z), deep elastic 

scattering of K+p should be approximately symmetric about 90’ rising towards 
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small t and small u. The process K-p - K-p, which depends on B(s) t) only, 

should not have a backward peak, but should possess the same forward peaking 

as K+p. Note that the odd-charge conjugation exchange reactions ~-p - Ton 

and KLp - Kg are predicted to have the same angular distributions and both 

should reach a minimum just beyond 90'. 

Thepredictedratioof 16/l/6.25 (p/cr)2f or d~(K’p-K’p)/~(K-p-K-p)/d~~Lp- 

at 90’ is in qualitative agreement with the Plab = 5 &V/c data 26 (although Regge 

exchange may still be important at this low energy). The steep asymmetric 

behavior of the 5 GeV/c K-p -K-p data and the relatively symmetric behavior 

of the 5 GeV/c K’ data are in qualitative agreement with our theoretical 

predictions. 

One sees that the parton interchange model together with the valence quark 

assignments, perhaps not surprisingly, connects smoothly with any possible 

forward or backward nonexotic Regge exchanges. The interchange force thus 

provides a smooth extrapolation between these peaks, falling as a power in s 

as the distance between the peaks increases. This is very suggestive that the 

interchange mechanism may provide the basic strong interaction. Then,if it 

is present in an amplitude, it can be built up at small t or u by virtual hadronic 

bremsstrahlung and gluon forces into a coherent Regge exchange. The impli- 

cation of this picture would then be that Regge trajectories and residues at 

large momentum transfer must be such that they approach the amplitudes 

computed here. This possibility will be discussed in detail elsewhere. 

It is interesting to note that the 5 GeV/c data of Chabaud et al. suggest -- 

that K+p scattering has more striking interference minima that K-p. This is 

probably consistent with an interfering K+p Regge contribution that is purely 

real, as suggested by exchange degeneracy which also predicts that K-p would 

,Ksp) 
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have a pure rotating Regge phase. This rotation can change the interference 

from destructive to constructive and vice versa. A thorough amplitude analysis 

of the data at large angles, and more data at larger energies, would clarify 

this situation and would be an interesting check of the interchange theory. 

D. Nucleon-Nucleon Scattering 

The calculation of nucleon-nucleon deep scattering is, in at least one 
.- 

respect, simpler than that of pion-nucleon deep scattering. If we assume 

that the proton wave function contains no antiquarks at high transverse 

momentum, then only the (u t)and(t u) topology contributes. The actual compu- 

tation, however, is markedly more difficult. This is due to the necessity of 

including not only the half-unit spins of the nucleons and constituents, but also 

the unit spins of the nucleon cores (see Section III). The calculations are 

aP especially difficult since the leading terms involve the p p part of the spin- 

one projection operators. 

Fortunately, the couplings of the cores conserve spin l/2 helicity, and 

we can focus our attention on only two of the five invariant amplitudes (vector- 

vector and axial-axial) for the asymptotic calculations. Note that the helicities 

of nucleons in Fig. 3b, A and D, and those of B and C are the same. Thus we 

write the resulting asymptotic amplitude in the form 

&Z= V(z) G(p+q)yP u(p+q+r) U@+r) p u(p) 

+ A(Z) u (ptq) y5yP u @+q+r) u @+r) r,? u (P) . (5.30) 

- 42 - 



The contribution arising from the symmetrization of the initial or final nucleon 

is then easily obtained as 

dif = -q-z) U@+q) yp U(P) ii(p+r) P u@+q+r) 

-A(-z) GO?+q).Y5YP U(P) U(p+r) Y5?j* u(p+q+r) . 

The total amplitude is Jl+ Jz. The differential cros_s section is then pro- 

p ortional to 

1 T== c (-4i!-f- dzT)(d&t!+o@f 
spins 

= + s2 IV(z) + A(z) -t V(-z) + A(-z) I2 

+ ; t2 IV(z) - A(z) I 2 + $ u2 IV(-z) - A(G) I 2 . (5.31) 

Isolation of the invariant amplitudes V and A may be achieved using the 

projection operators 

1 
rV=iE c 

spins 
d2 G@) Yv u @+r) h+q+r) Y’ u@+r) 

= ; (s2+ t2) V(z) + 4 (s2 - t2) A(z) (5.32) 

and 

1 
rA=iZ c 

spins 
dhf U W Y5Y, u@+r) %+q-tr) y5yv u @+r) 

Thus 

= + (s2 + t2) A(z) + + (s2 - t2, V(z) . (5.33) 

v= 1 2 trv + rA) + + tr 
2s 2t V - rA) 
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and 

A=1 
2s2 

+-A) * 

The interchange contribution is then written as 

(5.34) 

with 

9 = ii wr) Y,(ma++Pa) Yg u b?) ii @+s) Yp t”b+%) 7, u @-tq+r) 

and 

ma = m b’ mc=md ’ 

The projections (5.32) and (5.34) were performed using the algebraic 

computation program REDUCE. We checked explicitly that the four possible 

origin shifts of the rL integration yield the same answer in the asymptotic 

region. The gLYE gP6 terms do not contribute to the leading asymptotic 

behavior (by one power of s). The remaining terms have the same asymptotic 

behavior. For simplicity, we present the representative contribution from 

the pp p6 pa! pE/m4 ccdd c term from which we obtain 

rVoA =--L- / 
d2k k2 qN [r- , x] N; W (1-x) 3 x3 

2(27r)3 1 x3(1-x)3 t3u3[x2U+(1-x)2 t]” I* ’ 
(5.35) 
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where 

I+ = t3u - x-2(1-x)2 - x-2(l-x) + x-2 + x-1(1-x)2 - x-$1-x) -I- 1 1 
+ t2u2 C x(1-x) -2 2x(1-x) -1 - - f x 2x-2(1-x) -1 x-2(1-x)3 -I- 

- 3x-2(1-x)2 + x-2(1-x) -t -2 -2 3x -I- x-$1-x) x-l(l-x)-l - 

+ 3x-1(1-x)2 - 6x-1(1-x)+ 3x -l --9(1-x)-1 + (l-x) + 1 

-tu3 
[ 
x(l-x)-2 - 2x(1-x)-l I- x + x-$x) -2 - x-+x)-l - 2x-1(1-x)2 

and 

+ 5x-l(l-x) - 3x-l - (l-x)-l - (l-x) + 21 

I =t2u2 
[ 
x(1-x)-2 - 2x(&x)-l +x-t x-l(l-x)-2 -x-l (l-x)-l 

-2x-+1-x)2 + 5x-1(1-x) - 3x-l - (l-x)-l - (l-x) + 23 

-I- t3u 
C 
x-2(l-x)3 -x -2(1-x)2 -x-2(1-x)+x-2 

+ x-1(l-x)2 -x -l&x) + 1 3 . 

The integral 

1 

2(27r)3 J- 
d2k k; $, c'z ,x-j [x(1-x)]-~ N;(x) 

is a smooth function of x. Thus we obtain an asymptotic differential cross 

section of the form (z = cos 0 cm ) 

du 2 2 2 
dt = F1@) FIO FIW I(z) = s -12(l-z2)-4 I(z) . (5.36) 

A numerical fit to I(z) for small z yields 

(1-z2)-4 I(z) N (1-z2)-5.2 I(0) . (5.37) 
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Thus the effect of spin is to increase the z dependence but not the overall fixed 

angle energy dependence. Note that we have chosen the asymptotic dependence 

of $ - S3 to agree with an asymptotic dipole falloff of the nucleon form factors. 

. . 

As mentioned before mass corrections within the dipole formula should be 

taken into account in any comparison with the data at nonasymptotic energies. 

In Fig. 8, we note that the energy dependence of the 90’ cross section 27 
.- 

changes from s -10 to s-l2 as t z -s/2 varies between t = -6 GeV2 to -20 GeV2. 

This shift in the power dependence cross section is consistent with a change 

from (-t)-l’ 7 to (-t)-2*o . m the power dependence of the F 1 form factor in this 

same region. Thus the asymptotic dependence of the 90’ cross section is an 

extremely sensitive indicator of the rate of falloff of the elastic form factor. 

The consistency between six powers of the form factor and the 90’ data seems 

to be remarkably good. 28 

Equation (5.35) also predicts an energy-independent form for the angular 

dependence of 

= (1-z)-4 I(z)/I(O) - (1-z2)-5*2 (5.38) 

in the deep asymptotic region. Our prediction is compared with experiment in 

Fig. 9. The angular dependence does seem to be nearly energy-independent, 

and the predicted form seems to agree with experiment for It I, lu I > 5 GeV2. 

Note that the interchange theory gives a complete asymptotic prediction of both 

the energy and angular dependence; only the overall normalization constant is 

undetermined. 

We have carried out a fit to pp scattering data above 5 GeV/c. Only 

representative points were included for It I < . 1 GeV’. The results are shown 

in Fig. 10. Although the data of Cocconi et al. is not included, the fit agrees -- 
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with this data as well. In order to describe the low t region, we have included 

a Pomeranchuk-type description of the Regge region and dipole mass correc- 

tions to the ultimate constrained asymptotic interchange prediction of. 

do/dt - s-l2 (l-~~)-~’ 2 I(0). We have fit 431 data points with an X2/paint of 

1.5. The fit involves 8 parameters, 3 of which are associated with the nor- 

malization and dipole corrections to the interchange contribution and 5 of which 

are associated with the Pomeranchuk contribution. (?lhe latter contribution is 

negligible for It 1 > 4 GeV’, and pLab < 30 GeV.) Since the interchange con- 

tribution falls so rapidly in s at fixed t (like s-‘), it is of course extremely 

small and completely negligible at small t/s compared to the contribution of the 

Pomeron at ISR energies (s 2 900 GeV2). The parameterization of the Pomeron 

contribution, which is determined from the low energy data (s < 50 GeV2) turns 

out to be consistent with the ISR measurements of do/dt. Details will be pre- 

sented elsewhere, but it should be remarked that since the interchange force 

will develop Regge behavior at small t, it will not vanish as rapidly as the 

zeroth order theory used above. The fit can then be improved at intermediate t. 

Also, if the elastic form factor of the proton should fall more rapidly than (-ty2, 

then the predictions and the fit will need to be modified in the higher s and t range. 

E. Annihilation Processes 

Since the interchange theory is in principle a complete dynamical theory in the 

deep scattering region, and hence has analytic crossing behavior, it is possible to 

continue the invariant amplitudes for the previously discussed processes in order 

to obtain predictions for a variety of annihilation reactions. For example, the 

process pp - pp can be crossed to the process pi - pp. Similarly the meson- 

nucleon scattering amplitudes can be crossed to yield predictions for pi - ~T+T-, 
$1’ 

K+K-, etc. , in the deep scattering region where one again only needs to know the 

wave functions in the asymptotic region. 

- 47 - 



We begin by discussing the process pp - n-71’ which we obtain by s - t 

crossing from r-p - n-p. Technically, one should begin with the exact 

description given by Eq. (5.22) for the invariant amplitude. By direct calcula- 

tion, we have found that for I z I 5 .5, one may equally well use the approximate 
. 

expression (5.23). The invariant amplitude becomes 

where t = (p-p - P,)~, etc. Using this, one obtains the prediction 

s2 %@p - *-*+) = 
mo(l-z2) 

2s6 
II oL( l-z) -2 + p(l+z) -2 2 

I . 

(5.39) 

(5.40) 

Note that this can be obtained directly from s - t crossing of the approxi- 

mate form of s2 do/dt given in Eq. (5.25). Thus spin does not complicate the 

crossing of these reactions, and the approximate expressions may be used 

reliably. Note that Eq. (5.40) predicts a fixed angle cross section proportional 

to s-8 which is a characteristic of all the meson-baryon processes. Using 

CI! - 2p as found in r-p - r- p scattering, one expects a minimum in du/dt just 

beyond 90’. The data3’ at 5 GeV/c is in good qualitative agreement with the 

interchange predictions, except, of course, for the very forward and backward 

direction where one expects baryon trajectory exchange to be important. 

Proceeding in a similar manner, one can obtain a prediction for pp --L K-K’ 

bY s - t crossing from K-p e K-p. Using Eq. (5.29)) we obtain 

s2 g@p- K-K+) =- uo”2 (l+z) 

2s6 (l-z) 3 

and the ratio 

- K-p)/* @p dt - K-K+) = 2(1-2)-l . 

(5.41) 

(5.42) 
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The data3’ for pp - K-K+ does indeed indicate a sharp forward peaking and a 

very small, probably exotic, backward peak. The 90’ ratio given above is 

in agreement with the ratio observed at 5 GeV/c. 

Since continuation of our approximate forms for s2 do/dt should be quite 

reliable, we can obtain a prediction for pp --c cp from the approximate deep 

scattering formula for pp - pp (Eq. (5.38): 
-- 

s2 g (pp - pp) = I(0) sa(4tu)-L 

implies 

s2$p -l?Jp) = I(0) IlIla (41tls)-L , 

where we expect that a - 0.4 and L - 5.2 in the lower energy ranges. Thus pp 

is symmetric about 90’ while pp should have only the forward peak. The ratio 

of the cross sections is 

(5.43) 

which at 90’ is - 2 5.6 - 49. 

Experimentally, the 90’ ratio at 5 GeV/c is near 100, 31 but of course the 

energy is too low to make a quantitative comparison meaningful. It is inter- 

esting , however, that such large ratios are predicted by the interchange theory - 

in simple Regge theories and Wu-Yang type theories, the ratio is of order unity. 

F. Resonance Production 

Once one has a basic understanding of elastic processes in the deep scat- 

tering region and thus of the meson and nucleon wave functions at large 

momentum transfer, useful information about the wave function of excited 

states and resonances may be obtained from their production cross sections. 

We also note that measurements of polarization in such processes as pp - A*n 
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can lead to a check on the interchange prediction (for the simple valence quark 

model) that the amplitude is purely real. 

In the case of mesonic resonance production, e.g., tip-p+p, a compari- 

son of the fixed angle energy dependence of the cross section in the deep region 

with that for 7r+p - n+p, is a sensitive probe of the asymptotic behavior of the 

rho form factor. Since the o is presumably not elementary, n+p --, p+p should -- 
fall faster with energy than y+p -7r+p. The u dependence of the (u t) contribu- 

tion to the n+p - p+p amplitude also reflects the asymptotic behavior of the wave 

function of the rho. A systematic comparison of the above three processes 

and their analogues for other resonances would be of particular interest. 

In the case of baryon-resonance production, such as r+p - r+N*, 

K+p --x+(A*,Z*), and p-i-p - p+N*, it would be very surprising if the fixed 

angle asymptotic energy dependence differed from that of the corresponding 

elastic processes, ~+p - r+p, K+p, and p+p - p+p. Since presumably the 

yN*N* spin-averaged form factor (we phrase these results in terms of this 

form factor in order to make a statement independent of spins) falls at least 

as fast as the nucleon form factor, the situation is similar to that of the 

transition form factor (see Section III. D); the extra convergence factors are 

simply absorbed in performing F 
1 

integrations. 

The data of Amaldi et al. 32 for pp -- -. pN* suggests that this process has 

the same energy and (large) angle dependence as does elastic scattering and 

supports the above predictions from the interchange model. 
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VI. CONCLUSION 

In this paper we have proposed a unified treatment of scaling behavior 

in virtual electromagnetic processes, the asymptotic behavior of elastic form 

factors, and hadron reactions in the deep scattering region (s large, t/s, u/s 

fixed). The essential physical assumption which links these processes is the 

existence of charged constituent states within the campsite hadron which 

have minimal electromagnetic interactions and elementary propagation properties 

at short distances. We should emphasize that the existence of free states for 

the constituents is not required. In physical terms, even if the constituents 

are bound by virtue of energy thresholds or selection rules, the interchange 

of common constituents still occurs in hadron-hadron scattering when the bound 

state wave functions overlap. This is explicitly true for the (u t) (crossed) graph 

contribution (Fig. 3b) to the interchange process, since the amplitude is real 

and particle production is not implied. The absorptive contributions of the box 

graph (s t) and(s u) amplitudes are generally negligible in the calculation of exclu- 

sive cross sections in the large angle region, and thus the results are essentially 

unchanged if there is some dynamical final state modification of these absorptive 

parts. 

Although our results are more general, it is of course appealing and 

probably compelling to identify the fundamental constituents of the hadrons, 

i.e., the structureless carriers of the electromagnetic current, with the quark 

representation of current algebra on the light cone. In its description of virtual 

electromagnetic processes, our theory shares features with the field- 

theoretic parton models of DLY, LPS, and Drell and Lee. 8 In these models 

scaling is guaranteed if the parton-proton amplitude has convergent off-shell 

behavior. In our model this condition is guaranteed by the convergence 
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properties of the bound state wavefunction. [This softening condition also 

guarantees the existence of fixed pole behavior in the Compton amplitude as 

discussed in Ref. (11) .] 

Our theory is consistent with the general picture of Feynman in which 

hadronic scattering is a consequence of parton exchange. The theory developed 

here is based on the dominance of the interchange of only two basic constituents 

in exclusive scattering at fixed angle. In contrast, the-Regge description of 

large angle scattering requires an infinite coherent sum of Regge cut and pole 

contributions. In some models, this requires the exchange of an infinite number 

of dual model quarks. 17 If these different theories were to be equivalent, it 

would require that one of our exchanged (current) quarks be a superposition 

state involving an arbitrary number of dual model quarks. 

One somewhat model-dependent assumption of our theory is the simplified 

treatment of the hadronic bound state wavefunction. We have assumed that 

(1) when one constituent is at large momentum transfer relative to the rest, that 

the state can be approximated as a two particle state (for P -m), and (2) when- 

ever it is safe, we have taken this two-component wavefunction to be an inverse 

power-law function of the total energy variable S = (pa + pb)2 only, rather than 

remaining the dependence in the individual f70ffshell’Y variables (p -pa)’ and 

tP -Pbj2. This is analogous to suppressing the relative energy dependence of 

the Bethe-Salpeter wavefunction, and is justified for our applications to exclusive 

scattering, where it yields an invariant scattering amplitude. In cases in which 

one of the constituents appear formally in an asymptotic state, the appropriate 

offshell variable must be used for the dependence of the vertex function. 

We have also made an additional important conjecture: the dominant con- 

stituents appearing at large transverse momentum in the P -03 hadronic wave 
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function are the simplest quark representation states (e.g., qq for the mesons 

and qqq for the baryons). This conjecture becomes reasonable if one notes that 

the complications of multiparticle states due to prior (virtual) hadronic.brems- 

strahlung (see Fig. 11) vanish rapidly in pT. At low momentum transfer, this 

bremsstrahlung process yields states of arbitrary number and type and may be 

regarded as one origin of the wee parton or Regge spectrum in the structure 

function VW,(U) at large W. 6 As pointed out by LPS’ %e scaling Regge behavior 

OfVW “W ~2-l 2 for w -co reflects the Regge behavior of the forward antiparton 

(quark) amplitude M- - so. 
w 

In fact, Regge behavior of this amplitude inevitably 

arises from the same type of hadronic bremsstrahlung process depicted in 

Fig. 11. 33 Thus Regge behavior and duality in vW2 and MsP actually reflects 

the Regge behavior and duality of normal hadron-proton scattering amplitudes. 

For W- 1, the bremsstrahlung is suppressed and only the simplest quark states 

of the proton wavefunction at infinite momentum contribute. However, at 

large u, the bremsstrahlung picture implies that the target hadron (with 

momentum P - co) in inelastic e-p scattering is usually another hadron of lower 

momentum ZP (1 >z > l/w) than the target proton itself. Thus sum rules involving 

vW2 are only valid when the bremsstrahlung effects cancel - i. e.: when the 

measured current commutator corresponds to a conserved charge. Examples 

of legitimate sum rules are those of Adler, 34 Gross-Llewellyn Smith, 35 and 

Brodsky-Gunion- Jaffe . 36 

In the calculations of the interchange amplitude at large t and u, three of 

the four wavefunctions are evaluated at large relative transverse momentum, 

and thus only the simplest common quark interchange diagrams need to be 

considered. In the case of pp scattering only the crossed diagrams contribute. 

In the case of the &argedKp amplitudes only a single quark diagram contributes 
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in each of the two cases. In pion-nucleon scattering both quark interchange (t u) 

and antiquark transfer diagrams (s t) are required. As we have seen, all of our 

predictions with these simplest of quark models are consistent with experiment, 

but one cannot rule out some admixture of more complicated quark states in the 

large transverse momentum hadronic wave function, 

In the calculations presented here, we have obtained the results for the (s t) 
-- 

and s u amplitudes from the appropriate analytic continuation of the simpler (t u) 

amplitude. We have checked, using the P - 03 method, that this crossing is 

valid for the case of point couplings in perturbation theory. In the case of bound 

state wavefunctions, one must note that the assumption that the wavefunctions 

are determined by the single variable S is not valid for the direct computation 

of amplitudes with absorptive parts. Thus further development and the relaxation 

of the single variable S assumption will be required before one has a completely 

crossing symmetric theory. 

It would be useful to develop other calculational approaches to the interchange 

theory, especially within the explicit covariant formalism of Drell and Lee,8 or 

the covariant Sudakov variable analysis of Landshoff, Polkinghorne, and Short. 37 

We can also anticipate that many of our results can be obtained from a light-cone 

approach. 

One important step in the interchange theory is to prove that the impulse 

approximation, as defined in the Introduction, is valid at large t and u. In fact 

this is guaranteed by the approximately power-law behavior of the constituent 

wavefunctions. The exchange or interchange of a higher number of constituents 

is not important in the asymptotic region, since large momentum transfer is 

preferentially carried by the minimum number of exchanged particles. (This is 

not the case if the wavefunctions have exponential falloff.) Diagrams such as 
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those of Fig. 12 correspond to absorptive corrections and because of their 

range in impact space, they essentially change only the overall normalization, 

and not the energy or angular dependence of the basic interchange amplitude. 

Diagrams such as Fig. 11 corresponding to hadronic bremsstrahlung corrections 

contribute to the Reggeization of the amplitude at small t and u but vanish 

exponentially away from the forward or backward direction. Thus despite the 
-A 

large magnitude of hadronic couplings, it is justifiable to compute the lowest 

order interchange amplitude in the deep scattering region, and to obtain the 

asymptotic result (1.2) for the cross section at fixed angles. 

It should be emphasized that only the asymptotic form of the cross section 

for s - ~0 at fixed t/s, u/s is determined by the simple interchange amplitude. 

Higher order diagrams and finite mass corrections lead to modification of order 

m2/t and m2/u, Thus the measured large angle cross sections are expected to 

gradually approach the predicted asymptotic result in a manner similar to the 

approach of the elastic proton form factors to their true asymptotic behavior, 

but not to exhibit the quick onset of Bjorken scaling found in deep inelastic 

electron-proton scattering. Fits to data must allow for these mass corrections. 

The next stage in the development of this theory must involve more precise 

determination of the properties of the binding interaction (Is it due to vector 

gluons, the physical states themselves, or other ?) and calculations of the 

corrections to the asymptotic formulae given here. Although power-law forms 

have been used in our examples, other similar analytic forms, e. g. , 

Qn F(t) N (a -b Qn t) Qn t , are allowed with obvious modifications of the final results. 

A simple and dramatic consequence of the interchange theory is a prediction 

for the asymptotic behavior of the effective trajectory at large t for an elastic 

process A + B - C + D. Using the simplest model, the contribution of the (u t) 
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amplitude at fixed, large t = (PA-PC)2, is 

lim MA+B -C+D (yAC(t) p(t) 
- (4 

u- -co 

where, for consistency, the effective alpha must satisfy 

-3 for pp - pp 
cuAC(t--“o) = 1-A-C G . 

-lfor 7rp--q 

We have defined the values of A and C from the asymptotic behavior of the 

elastic form factors 

FAtt) - (4)-A , FCtt) - (-t)-c . 
t-m t- --co 

The power law dependence of p(t) at large t may also be determined from the 

form factors of the particles involved in the reaction. Further consequences 

and comparisons with data are given in Ref. 14. We have also shown that this 

result for the effective trajectory also applies to the triple Regge region of 

single particle inclusive processes at large transverse momenta. 6 

A complete discussion of photon-induced (real and virtual) exclusive 

processes will be given elsewhere. Here we shall simply emphasize that, in 

general, the s-dependence at fixed angle is always less steep than the corre- 

sponding vector-meson induced processes because of the direct electromagnetic 

coupling of the photon the elementary constituents. (All of the observed hadrons 

are assumed to be composite. ) As we have discussed, a J=O fixed singularity - 

i.e.: an ET. e2 amplitude independent of energy and photon mass of fixed t 

with form factor dependence in t - is predicted in the Compton amplitude, but 

not in p-photoproduction. Thus a dramatic breakdown of vector dominance is 
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predicted in the deep scattering region. In general, the composite nature of the 

hadrons will eliminate the P -+CO contributions due to z-graphs, and hence fixed 

poles, from purely hadronic processes and photoproduction of hadrons. 

The recent measurements of large angle pion photoproduction of Anderson 

et al. 38 -- generally confirm our predictions for this process : The energy 

dependence at 90’ is approximately s -7 as expected, and also the existence of 
-\ 

a flat central region in the angular distribution is clear. A similar confir- 
++ mation is provided by their measurements of the transition process m + n-A . 

Since a detailed discussion of the features of exclusive and inclusive photopro- 

duction and electroproduction processes will be given elsewhere, let us simply 

note that the spinless predictions for photomeson production yield the value 

aeff(-m) = -l/2. Th is would then provide a natural explanation for the rather 

strange behavior of the empirically observed effective alpha for this process 

which lies near zero. Thus the interchange contribution could easily be confused 

with a fixed pole (which has oeff = 0), particularly in the nonasymptotic t region. 

All of the above processes should demonstrate the unity of the underlying 

physics of high transverse momentum and virtual photon processes. 

The simple physical picture of large angle scattering afforded by the theory 

of the interchange force allows one to unify such diverse reactions as photon- 

and hadron-induced exclusive and inclusive processes. The general properties 

of the central angular distributions, their approximately power law falloff in 

energy, and the relation between their general shape and the quantum numbers 

of the interacting hadrons deserve further theoretical and experimental studies. 

Large angle data covering a wide range of energies is particularly important for 

testing the interchange theory and for determining the details of the hadronic 

wavefunctions and the properties of their constituents. 
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FIGURE CAPTIONS 

1. The two basic types of interactions between hadrons (a) gluon interchange 

@) constituent interchange. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

The relevant time ordered diagram for the form factor in a constituent 

model. Pair creation by the current is suppressed in the P&EC) limit for 

the frame (2.1). 

The basic graph topologies for (a) the form factor-and (b) hadron-hadron 

scattering. 

An example of the lowest order binding potential and the equation satisfied 

by the vertex function. 

The four time orderings that contribute to hadron-hadron scattering from 

constituent inter change. 

The energy dependence of the 90’ cross section for r-p scattering. 

The dependence of the n-p differential cross section on z (cos 0) in the 

center-of-mass. The lack of any strong energy dependence of the ratio 

should be noted. The solid line is our prediction given in Eq. (5.25) with 

a=zp. 

The energy dependence of the 90’ cross section for pp scattering. 

The dependence of the pp differential cross section on z (cos 0) in the 

center-of-mass. The lack of energy dependence is quite clear. The 

solid line is our asymptotic prediction given by Eq. (5.38). The data at 

8.1 GeV/c has been omitted but it would agree with this curve if the 90’ 

point is not used for normalization. 

A fit to the pp differential cross section when the forward Pomeron 

exchange is included. The fit is constrained at large t, u to the asymptotic 

interchange prediction &/dt - C s-l2 (l-~~)-~’ 2. 
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11. A typical bremsstiahlung graph which leads to a Regge-type behavior at 

small momentum transfers. 

12. Graph of a typical absorption correction which modifies the magnitude of 

the scattering amplitude. 

! 

- 
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