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INTRODUCTION 

Hitherto there were no reasons to suggest 
the existence of moving singularities other 
than poles in the /-plane. Recently, however, 
Mandelstam [ 1 ] presented arguments in favor 
of the possibility that in the relativistic theory 
moving branch points may arise from singular­
ities for integral negative l[2] and their dis­
placement [3] in the case of particles with 
spin. These singularities correspond to the for­
mation thresholds of several resonant states 
(reggeons) with integral negative orbital mom­
enta L = - 1 , - 2 , . . . They can be regarded as 
the continuation of branch points to the com­
plex /-plane which for integral physical / are 
located on nonphysical sheets of the f-plane 
and which correspond to the formation thresh­
olds of several resonances with physical values 
of I . 

The branch points were obtained by Mandel­
stam on the basis of an analysis of the asymp­
totic behaviors of a certain class of diagrams 
of the perturbation theory. From his study 

This analytic continuation involves consider­
able difficulties and as yet has not been achieved 

We used a definite assumption regarding the 
form of his analytic continuation only near 
those values of / which are singular for the am­
plitude. 

To understand the structure of this analytic 
continuation, we consider the terms of the unit­
arity condition, which correspond to the forma­
tion in an intermediate state of two particles, 
one of which has a nonzero spin o (and a mass 
M). They can be written in the form 

where fjm (t) is the helical partial amplitude of 
the formation of the two particles; p = p(t, 
M2, p2) is their relative momentum. As point­
ed out by Ya. I. Azimov [3 ] , this expression 
has a pole for m = / + 1 , and in particular for 
/ = o - 1 (due to the pole of the T-function). 
Near the pole / = a - 1 it has the form 

[ 1 ] it follows that they are related to many-
particle intermediate states. The study of these At the same time, the contribution from the 
singularities therefore requires analysis of the branch point found by Mandelstam to the 
many-particle unitarity conditions, analytically unitarity condition can be represented [ 1 ] in 
continued to the complex /-plane. the form 
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where p(t, tx, J U 2 ) is the relative momentum 
in the intermediate state of a particle and a 
pair of particles, having a Regge pole for / = 
a ( f i ) . 

Comparing the last two expressions, we see 
that a branch point results from integrating 
over the mass Af2 =t2 of the state of a pair of 
particles having a variable spin o = a(tx ) . 

This may be due to the presence of an Azi-
mov singularity along the whole Regge trajec­
tory. 

From the above comparison it can be under­
stood that the unitarity conditions are impor­
tant for the investigation of the branch points 
in many -particle terms. It is necessary to 
know that part of these terms which contains 
the formation amplitudes of three particles 
for m close to / + 1 and for an orbital momen­
tum / of the pair, which is equal or close to its 
pole value / = oc(tl ) . 

A similar situation is possible in the forma­
tion not of three, but of a larger number of 
particles. 

Accordingly, here we proposed and used in 
studying the singularities in the /-plane a me­
thod of analytic continuation of the unitarity 
conditions to complex /, which corresponds 
to the form (1) of the answer. We do not 
claim that this method is exact in general, but 
apparently, it correctly reflects the formation 
mechanism of branch points of the amplitude 
fj(t), observed by Mandelstam. 

With the aid of the proposed method of 
analytic continuation the position of branch 
points and their character can be found. 

Let us consider for simplicity only those 
branch points which arise from a vacuum pole. 

Moving branch points in the /-plane lead to 
the fact that the partial amplitude f-(t) for 

fixed / as a function of t has on the physical 
sheet besides the ordinary threshold singular­
ities also branch points t = tn(j), whose posi­
tion depends on /. Each of them is the forma­
tion threshold of a certain number n of reg-
geons. The unitarity conditions determining 
the discontinuities of f}{t) at these singularities 
were found. These Regge terms of the unitar­
ity condition are similar in form to the usual 
one in the sense that they are determined by 
integrals of the product of the formation am­
plitude of several reggeons above the cut and 
the value of this amplitude below the cut (re­
lated to the given singularity). 

In the present report we give only a brief 
account of the results, without discussing the 
analytic continuation problem. 

We will start directly from expressions, sim­
ilar to equation (1), for the singular part of 
the contribution of many -particle states to 
the unitarity condition. 

MOVING BRANCH POINTS AND MANY-
PARTICLE INTERMEDIATE STATES 

The simplest branch point, observed by 
Mandelstam, which arises from the integral 
(1) has the form 

In the r-plane, when / varies along the real axis 
from large to small values, this branch point 
emerges onto the physical sheet at the forma­
tion threshold of three particles [t = (3ju)2 ] 
for / =a(4 ju 2 ) - 1 and then moves along the 
real axis (Fig. 1), 

To study this branch point it is therefore 
natural to consider a three-particle intermedi­
ate state. In the case of four-particle states, 
new branch points appear due to the forma­
tion of two reggeons. Thus, the discontinuity 
of the partial amplitude f-(t) — A4fj(t) at the 
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threshold t= (4ju)2 has a singular part of the 
form 

where Njaa is the formation amplitude of 
two reggeons. It appeared in equation (3), 
since the transformation amplitude fjixmii2m2 

(Fig. 2) of two particles with momentum / 
into four particles with momenta, helicities, 

and masses of the p a i r s / 1 ? mlf tx a n d / 2 , m 2 , 
t2, was written for the vicinity of the singular­
ity for /j = mx = a(ti) and l2 = rn2- Oi(t2) 
in the form (Fig. 3) 

(4) 

The contours Cx and C2 are given in Fig. 4. 
Expression (3) has singularities for 

If with the aid of the dispersion integral we 
pass from A 4 / / ( 0 to f}-(t), it is found that for 
t < 16ju2, fj(t) has only the last branch point. 
All the other singularities are located on other 
sheets with respect to the singularity (6) if for 
/ <2a(4ju 2 ) - 1 we draw a cut in the f-plane as 
shown in Fig. 5 [t2 is defined as the solution 
of the equation / = 2a(- |) - 1 ]. 

Fig.4. 

When/ varies along the real axis, t2(j) 
moves on to the nonphysical sheet at the 
point t= 16ju2 for/ = 2a(4ju2 ) - 1. 

Many-particle states with a number larger 
than four can be considered in similar fashion. 
The singular part of the discontinuity of the 
partial wave at the formation threshold of n 
particles can be written in the form 

where Nk^t ? a is the formation amplitude 
of n reggeons. The index k has the following 
meaning. If more than two reggeons form, 
then the state of these reggeons is no longer 
characterized only by their spins / and helicities 
m (which are assumed equal to /). 

In order to characterize the state, for exam­
ple of three reggeons, we must assign a mo-
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mentum lX2 of any pair of reggeons and an 
energy tx 2 . The formation amplitude of three 
reggeons in reality is equal to ^V r

/ 7 1 2 a 1 a 2 a3 ^' 
tn) (Fig- 6). It can be shown that the ampli­
t u d e ^ (f, tX2) appears in the singular 
part À 6// only for lx 2 = ot{tx ) + a(t2 ) - 1 and 
therefore Nn^lWlU he depends only on t, 
tx 2 , and tx t213. Since all reggeons are identi­
cal, it is immaterial which pair of reggeons is 
ascribed a definite momentum. States, for 
example, of four reggeons can be character­
ized in two different ways (Fig. 7). 

One can define the momenta and energies 
of two reggeon paris or the momentum and 
energy of one pair and then the momentum 
and energy of three reggeons. Contributing 
to the singular part Asfj(t) are transitions 
both to states with definite lX2, tX2, / 3 4 , t 3 4 , 
and to states with definite lX2, tX2 and / 1 2 3 , 
t x 2 3 . The index k, which takes on two values 
in this case, distinguishes the transition am­
plitudes in the two states. In equation (7) we 

me case oi iormanon oi more man iour reg­
geons, the number of different amplitudes will 
be larger and the index k takes on a larger 
number of values. The factor 1/2P k is defined 
by the number of ways in which a given type 
of transition can be obtained by permutation 
of the reggeons. 

Fig. 6. 

Fig. 7. 

For example, in the case of four reggeons it 
is necessary, owing to the indistinguishability 
of the reggeons, to substitute a factor 1/4 ! 
into equation (7). The first type of transition 
(Fig. 7a), however, can be realized in three 
ways (one can define lX2 ; /34; /13, l24; lX4; 
/ 2 3 ) . Multiplying 1/4! by three, we obtain 
1/8, and consequently ^ = 3 . The second 
type of transition can be realized in twelve 
ways and, consequently, vk~ 12. The quan­
tity \jlvk coincides with the coefficient 
which corresponds to a Feynman diagram for 
the proper energy, containing only simple 
loops. F(^-, tik) is the phase volume of n par­
ticles with the masses and energies t^of pairs, 
triplets, etc., of particles. The integral of 
formula (7), like expression (3), has a singular­
ity depending only on the trajectory a(t). This 
singularity is determined from the extremum 
condition for the denominator 

subject to the additional condition 

It can be easily shown that such an extremum 
is attained for 

and, consequently, a singularity exists for 

In the f-plane this singularity is located at t = 
tn(j)9 which is the solution of equation (8), 
and moves to the nonphysical sheet for / = 
na(Aix2 ) - n + 1 at the point t = (2np)2. 
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Fig. 8. 

Other singularities of the integral (7), as in 
the two-reggeon case, do not lead to singulari­
ties of fj(t) for t < (2ftju)2 • Thus, the partial 
amplitude f}{t) has in the /-plane for fairly 
small /, in addition to the usual threshold sin­
gularities t = tn (/") corresponding the the reg-
geon formation thresholds (Fig. 8). 

REGGE UNITARITY CONDITION 

Let us now consider the discontinuity of 
fj{t) at these singularities. Equations (3) and 
(7) enable us to calculate the discontinuity 
bfn)fj{t) at a given singularity t = tn (/), or 
the discontinuity d^fj(t) at a singularity / = 
jn{t) in the /-plane. It can be easily shown 
that Of fj (t) = — ô f fj (t). When calcu­
lating a discontinuity with the aid of expres­
sions (3) and (7) it should be taken into ac-

only fj{t) has a given singulari / = na — 

— n + 1 . f*j{t) has a singularity at the 
complex-conjugate point. Therefore 

In addition it should be taken into account 
that the quantity ^jaxa2... °f the right-hand 
side of expression (3) or (7) has singularities 
at the same values of / as jj-(f), since these quan­
tities are related by the unitarity conditions. 
As a result, the discontinuity of fj{t) at a regge 
singularity is determined by the sum of the 

discontinuity resulting from integrating the 
denominator and the discontinuity of A ^ 

an • If we use the unitarity condition for J}0Ll 

...<xn> writing its singular part in a form similar 
to expressions (3) and (7), it will contain trans­
formation amplitudes of reggeons into reg-
geons. If then we write the unitarity condi­
tion for the transformation amplitudes of reg­
geons into reggeons, the resultant system of 
equations makes it possible to calculate the 
discontinuities of all the introduced ampli­
tudes at the given Regge singularity. As a re­
sult we obtain for the discontinuity 6 / 2 ) fj{t) 
the straightforward result 

Here ± i e in Njaa2 and N*-^^ refer to paths 
going round the given Regge singularity t -

tn<n-
The ô-function on the right-hand side of 

(9) is symbolic, since the integration is gener­
ally performed over the complex region of tx 

and t2. Similarly, the discontinuity at an n-
reggeon singularity can be written in the form 

where N* has the same meaning as in the two-
reggeon case. Expression (10) represents the 
Regge unitarity condition. It is almost com­
pletely similar to the usual unitarity condition, 
defining the partial wave discontinuity at the 
formation threshold of n particles. 

Reggeon formation amplitudes satisfy a 
unitarity condition of similar form 
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where Hh$ „*.„ „ is the transformation 
ai ... an, ai...a.p 

amplitude of reggeons into reggeons, satisfying 
the unitarity condition 

BEHAVIOR OF BRANCH POINTS 

Expression (10) for the discontinuity at an 
w-reggeon singularity enables us to determine 
its behavior. Near the singularity, i.e., for 

, all the internal 
energies tt tend to the value t/n2. In this case 
the relative energies of pairs, triplets, e t c , tend 

reggeons are at rest. 
In order to find out the character of the 

singularity, it is necessary to know the thresh­
old behavior of the formation amplitudes of 
the reggeons for reggeon momenta tending to 
zero. 

First we consider the formation amplitude 
of two reggeons. If each reggeon is regarded 
as a group of particles with momenta ax and 
a2 and masses tx and t 2 , then the amplitude 
^jaxa2 should have a threshold behavior corre­
sponding to 

i.e., m our case 

Expression (13) corresponds to reggeons in a 
state with an orbital momentum L = - 1 . 

According to expression (13), the amplitude 

ty<*i<*i~* 0 0 f ° r P 0- If the reggeons were 
true particles with fixed masses, then such an 
amplitude increase would contradict the unit­
arity condition. The true threshold behavior 
of the formation amplitude of two particles 
with an orbital momentum has the form 

This threshold behavior arises from summa­
tion of the diagrams given in Fig. 9. For L = 
-l,fL-> const. In the case of the formation 
amplitude of two groups of particles with 
masses tx and t2, the summation of diagrams 
similar to Fig. 9 does not result in the occur­
rence of p(t, tx, t2) in the denominator, since 
one performs the integration over t\, t\ in an 
intermediate state. As a result, the denomina­
tor does not at all depend on tx and t2 but 
depends only on / and the masses of the real 
particles. 

Consequently, it may be assumed that the 
Regge amplitudes of interest have the thresh­
old behavior (14). In the initial version of the 
investigation this threshold behavior was not 
allowed for, so that the physical results ob­
tained on the basis of this behavior [4] are 
probably incorrect. 

Fig. 9 . 

If we substitute expression (14) into the 
Regge unitarity condition (9), we obtain 

(16) 
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and, consequently, 

We obtained ffit) -> <*> for / j 2 , if c(j, f ) =É 0 

f o r / = / 2 . 
In fact, the tending of to infinity for 

j ~* h contradicts the Regge unitarity condi­
tion (11), (12) for w = 2. Using these unitar­
ity conditions, it can be easily shown that 
c(j, t)-*0 for / -> / 2 and that near the singular­
ity the amplitudes of interest have the form 

In the ft-reggeon case the pairs, triplets, etc., 
of reggeons should be assumed to be in states 
with orbital momentum L = - 1 . Therefore, 
for example, the formation amplitudes of 
three reggeons, N k

j 0 i i 0 i ^ , have the threshold 
behavior 

Using this, it can be shown that near an rc-reg-
geon singularity 
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DISCUSSION 

A. P. C o n t o g o u r i s 

In your considerations you have been restricted, I think, 
to moving branch points in complex / of the Mandelstam 
type. However, Polkinghorne, in a Physics Letters, has 
shown that there is also another class of diagrams which 
produces moving branch points at the same position but with 
different discontinuity. Is there any motivation in neglecting 
these diagrams? 

V . N . G r i b o v 

We did not consider definite diagrams. Our consideration, 
if it is correct, includes diagrams of the Mandelstam and of 
the Polkinghorne types. 

E. S. F r a d k i n 

In dynamic models there is a definite relationship between 
the asymptotic behavior of the matrix elements on the ener­
gy and the extra-energy surfaces, and therefore the asymptotic 
behavior in the physical region dictates a definite behavior 
for the p-function in the spectral representations for one-par­
ticle Green's functions. Does the reporter have any considera­
tions in connection with the values of the renormalization 
constants Z = \ p(x) dx when allowance is made for the 
asymptotic behaviors, found in the work, in the physical do­
main of the momenta? 

V . N . G r i b o v 

In the work I mentioned the asymptotic behaviors in the 
physical domain were not found. If reference is made to the 
asymptotic behavior due to branch points, then I do not 
know to which renormalization constants they lead, if this 
behavior is related to them. 
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