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Abstract

In recent years many discoveries have been made that reveal a close relation be-
tween quantum information and geometry in the context of the AdS/CFT corre-
spondence. In this duality between a conformal quantum field theory (CFT) and
a theory of gravity on Anti-de Sitter spaces (AdS) quantum information quantities
in CFT are associated with geometric objects in AdS. Subject of this thesis is the
examination of this intriguing property of AdS/CFT. We study two central ele-
ments of quantum information: subregion complexity – which is a measure for the
effort required to construct a given reduced state – and the modular Hamiltonian
– which is given by the logarithm of a considered reduced state.

While a clear definition for subregion complexity in terms of unitary gates
exists for discrete systems, a rigorous formulation for quantum field theories is not
known. In AdS/CFT, subregion complexity is proposed to be related to certain
codimension one regions on the AdS side. The main focus of this thesis lies on the
examination of such candidates for gravitational duals of subregion complexity.

We introduce the concept of topological complexity, which considers subregion
complexity to be given by the integral over the Ricci scalar of codimension one
regions in AdS. The Gauss-Bonnet theorem provides very general expressions for
the topological complexity of CFT2 states dual to global AdS3, BTZ black holes
and conical defects. In particular, our calculations show that the topology of
the considered codimension one bulk region plays an essential role for topological
complexity.

Moreover, we study holographic subregion complexity (HSRC), which asso-
ciates the volume of a particular codimension one bulk region with subregion
complexity. We derive an explicit field theory expression for the HSRC of vacuum
states. The formulation of HSRC in terms of field theory quantities may allow
to investigate whether this bulk object indeed provides a concept of subregion
complexity on the CFT side. In particular, if this turns out to be the case, our ex-
pression for HSRC may be seen as a field theory definition of subregion complexity.
We extend our expression to states dual to BTZ black holes and conical defects.

A further focus of this thesis is the modular Hamiltonian of a family of states
ρλ depending on a continuous parameter λ. Here λ may be associated with the
energy density or the temperature, for instance. The importance of the modular
Hamiltonian for quantum information is due to its contribution to relative entropy
– one of the very few objects in quantum information with a rigorous definition
for quantum field theories. The first order contribution in λ̃ = λ − λ0 of the mo-
dular Hamiltonian to the relative entropy between ρλ and a reference state ρλ0 is
provided by the first law of entanglement. We study under which circumstances
higher order contributions in λ̃ are to be expected. We show that for states re-
duced to two entangling regions A, B the modular Hamiltonian of at least one of
these regions is expected to provide higher order contributions in λ̃ to the relative
entropy if A and B saturate the Araki-Lieb inequality. The statement of the Araki-
Lieb inequality is that the difference between the entanglement entropies of A and
B is always smaller or equal to the entanglement entropy of the union of A and
B. Regions for which this inequality is saturated are referred to as entanglement
plateaux. In AdS/CFT the relation between geometry and quantum information
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provides many examples for entanglement plateaux. We apply our result to several
of them, including large intervals for states dual to BTZ black holes and annuli for
states dual to black brane geometries.

The content of this thesis is based on research projects I was involved in during
my time as a doctoral student under the supervision of Prof. Dr. J. Erdmenger
at the Fakultät für Physik und Astronomie of the Julius-Maximilians-Universität
Würzburg, starting in October 2016. The corresponding publications are:

[1] R. Abt, J. Erdmenger, H. Hinrichsen, C. M. Melby-Thompson, R. Meyer,
C. Northe and I. A. Reyes, Topological Complexity in AdS3/CFT2, Fortschr.
Phys. 66 (2018) 1800034, [arXiv:1710.01327].

[2] R. Abt, J. Erdmenger, M. Gerbershagen, C. M. Melby-Thompson and C. Northe,
Holographic Subregion Complexity from Kinematic Space, JHEP 01 (2019)
012, [arXiv:1805.10298].

[3] R. Abt and J. Erdmenger, Properties of Modular Hamiltonians on Entangle-
ment Plateaux, JHEP 11 (2018) 002, [arXiv:1809.03516].

https://doi.org/10.1002/prop.201800034
https://doi.org/10.1002/prop.201800034
https://arxiv.org/abs/1710.01327
https://doi.org/10.1007/JHEP01(2019)012
https://doi.org/10.1007/JHEP01(2019)012
https://arxiv.org/abs/1805.10298
https://doi.org/10.1007/JHEP11(2018)002
https://arxiv.org/abs/1809.03516
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Zusammenfassung

In den letzten Jahren wurden viele Entdeckungen gemacht, welche eine enge
Beziehung zwischen Quanteninformation und Geometrie im Kontext der AdS/CFT-
Korrespondenz aufzeigen. In dieser Dualität zwischen einer konformen Quan-
tenfeldtheorie (CFT) und einer Gravitationstheorie auf Anti-de-Sitter-Räumen
(AdS) werden Quanteninformationsgrößen der CFT mit geometrischen Objekten
in AdS assoziiert. In der vorliegenden Arbeit wird dieser faszinierende Aspekt von
AdS/CFT untersucht. Wir studieren zwei Objekte welche eine zentrale Rolle in der
Quanteninformation spielen: Die Teilregionkomplexität (subregion complexity) –
welche ein Maß für den nötigen Aufwand zur Konstruktion eines vorgegebenen
reduzierten Zustandes ist – und den modularen Hamiltonoperator – welcher durch
den Logarithmus eines reduzierten Zustandes gegeben ist.

Während eine klare Definition der Teilregionkomplexität mittels unitärer Gat-
ter für diskrete Systeme angegeben werden kann, ist eine präzise Formulierung
für Quantenfeldtheorien nicht bekannt. In der AdS/CFT-Korrespondenz wird
angenommen, dass die Teilregionkomplexität mit bestimmten Regionen der Kodi-
mension eins in AdS-Räumen in Beziehung stehen. Der Hauptfokus der vorliegen-
den Arbeit ist die Untersuchung derartiger Kandidaten für Gravitationsduale der
Teilregionkomplexität.

Wir führen das Konzept der topologischen Komplexität (topological complexity)
ein, welches das Integral über den Ricci-Skalar bestimmter Teilregionen von AdS-
Räumen als das Gravitationsdual der Teilregionkomplexität ansieht. Der Satz von
Gauss-Bonnet erlaubt es uns sehr allgemeine Ausdrücke für die Teilregionkomple-
xität von CFT2-Zuständen mit globalem AdS3, BTZ-Schwarzen-Löchern oder koni-
schen Defekten als Gravitationsdual zu konstruieren. Unsere Berechnungen zeigen
insbesondere, dass die Topologie der betrachteten Kodimension-Eins-Regionen eine
große Rolle für die topologische Komplexität spielt.

Weiterhin befassen wir uns mit der holographischen Teilregionkomplexität (holo-
graphic subregion complexity, HSRC), welche annimmt, dass die Teilregionkomple-
xität durch das Volumen bestimmter Kodimension-Eins-Regionen in AdS-Räumen
gegeben ist. Wir leiten einen expliziten Ausdruck für die HSRC von Vakuumzustän-
den in Größen der Feldtheorie her. Die Formulierung der HSRC in Feldtheo-
riegrößen könnte es ermöglichen zu untersuchen ob diese Größe tatsächlich als die
Teilregionkomplexität der CFT interpretiert werden kann. Sollte sich dies bestäti-
gen, kann unser Feldtheorieausdruck für HSRC als Definition für die Teilregionkom-
plexität der CFT angesehen werden. Wir verallgemeinern unseren Ausdruck für
HSRC dahingehend, dass er auch für Zustände dual zu BTZ-Schwarzen-Löchern
und konischen Defekten gültig ist.

Ein weiterer Fokus der vorliegenden Arbeit ist der modulare Hamiltonoperator
einer Familie von Zuständen ρλ, welche von einem kontinuierlichen Parameter λ
abhängen. Hierbei kann λ beispielsweise der Energiedichte oder der Temperatur
entsprechen. Die Bedeutung des modularen Hamiltonoperator für die Quanten-
information ist auf seinen Beitrag zur relativen Entropie zurückzuführen – eine
der wenigen Größen der Quanteninformation für welche eine formale Definition
für Quantenfeldtheorien bekannt ist. Der Beitrag erster Ordnung in λ̃ = λ − λ0
des modularen Hamiltonoperators zur relativen Entropie zwischen ρλ und einem
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Referenzzustand ρλ0 ist gegeben durch den ersten Hauptsatz der Verschränkung
(first law of entanglement). Wir untersuchen unter welchen Umständen Beiträge
höherer Ordnung in λ̃ zu erwarten sind. Wir zeigen, dass für Zustände die auf
zwei Teilregionen A, B reduziert wurden in der Regel mindestens einer dieser
Beiträge höherer Ordnung in λ̃ zur relativen Entropie liefert, wenn A und B die
Araki-Lieb-Ungleichung saturieren. Die Araki-Lieb-Ungleichung besagt, dass die
Differenz der Verschränkungsentropien von A und B stets kleiner oder gleich der
Verschränkungsentropie der Vereinigung von A und B ist. Regionen für welche die
Araki-Lieb-Ungleichung saturiert ist werden als Verschränkungsplateaus (entangle-
ment plateaux) bezeichnet. In der AdS/CFT-Korrespondenz gibt es aufgrund der
Beziehung zwischen Quanteninformation und Geometrie viele Beispiele für derar-
tige Plateaus. Wir wenden unser Resultat auf einige dieser an. Unter anderem
diskutieren wir große Intervalle für Zustände dual zu BTZ-Schwarzen-Löchern und
Annuli für Zustände dual zu schwarzen Branen.

Der Inhalt der vorliegenden Arbeit basiert auf Projekten an denen ich während
meiner Zeit als Doktorand unter der Aufsicht von Prof. Dr. J. K. Erdmenger an der
Fakultät für Physik und Astronomie der Julius-Maximilians-Universität Würzburg
seit Oktober 2016 beteiligt war. Die entsprechenden Veröffentlichungen sind:

[1] R. Abt, J. Erdmenger, H. Hinrichsen, C. M. Melby-Thompson, R. Meyer,
C. Northe and I. A. Reyes, Topological Complexity in AdS3/CFT2, Fortschr.
Phys. 66 (2018) 1800034, [arXiv:1710.01327].

[2] R. Abt, J. Erdmenger, M. Gerbershagen, C. M. Melby-Thompson and C. Northe,
Holographic Subregion Complexity from Kinematic Space, JHEP 01 (2019)
012, [arXiv:1805.10298].

[3] R. Abt and J. Erdmenger, Properties of Modular Hamiltonians on Entangle-
ment Plateaux, JHEP 11 (2018) 002, [arXiv:1809.03516].
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Chapter 1

Introduction

The realization that the laws of nature may be formulated in the language of
mathematics is one of the greatest achievements of mankind. Providing clear pre-
dictions for the behavior of physical systems that may be tested by experiments,
this approach substantially shaped our understanding of the cosmos as well as our
technological progress. Over the last centuries the mathematical models for phy-
sical systems became sufficiently advanced that they allowed the study of aspects
of physics inaccessible to the experimental capabilities of their time. A seminal
example for this impressive accomplishment of theoretical physics is the Higgs
mechanism, whose theoretical postulation [4–6] (1964) outran the experimental
discovery of the Higgs particle [7, 8] (2012) by several decades.

Also many conclusions of Einstein’s theory of general relativity [9] were veryfied
by experiments only a long time after their theoretical formulation. For instance,
the gravitational waves postulated by Einstein [10, 11] (1916) were detected di-
rectly for the first time a century after their prediction [12,13] (2015). This shows
the great impact general relativity has to experimental physics even today, so
many years after its formulation in theoretical physics. In fact, we presently find
ourselves at the beginning of a new era of experimental research regarding general
relativity, as many new experimental setups – such as LISA [14] or LIGO-India [15]
– are currently in preparation. Thus, we may look forward to new exciting experi-
mental results for general relativity in the future. As the most recent experimental
accomplishment regarding general relativity, we mention the first image of a black
hole [16–21], which was taken by the Event Horizon Telescope and presented to
the public in April 2019.

In theoretical physics there are many cases in which several mathematical for-
mulations for the behavior of a given physical system exist. This is a well estab-
lished fact which can even be witnessed in very common fields such as classical
mechanics. Here we have two very different but equivalent methods for describ-
ing the dynamics of a physical system: the Lagrange and the Hamilton formalism.
Further well known examples include the formulation of quantum mechanics in po-
sition and momentum space, the Schrödinger, Heisenberg and interaction picture
and the path integral and Hamilton formalism in quantum field theory. Usually
the different mathematical formulations highlight different properties of the physi-
cal system under consideration. A certain aspect of the system may be naturally
studied in one formulation, while it is particularly hard to access in another. The

1
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Lagrange and Hamilton formalism provide a good example for such a situation:
while the time evolution of observables is naturally provided by the canonical equa-
tions of motion in the Hamilton formalism, it cannot be studied that easily in the
Lagrange formalism. On the other hand, the Lagrange formalism is ideal for the
construction of conserved quantities, due to Noether’s theorem.

The subject of this thesis is a further, however more advanced, example for a
physical system that can be described mathematically in two different ways: the
AdS/CFT correspondence. Proposed by Maldacena in 1997 [22], the AdS/CFT
correspondence states a duality between a theory of gravity on asymptotic (d+ 1)-
dimensional Anti-de Sitter space (AdS) and a conformal quantum field theory
(CFT) in d dimensions (AdSd+1/CFTd). To be more precise, AdS/CFT suggests
that these two theories actually describe the same physics, i.e. they are dynamically
equivalent. This is a remarkable result, as it relates general relativity and quantum
field theory in a very surprising way. These two pillars of modern physics describe
two very different aspects of our reality and their unification is one of the most
prominent unsolved problems of our time. The AdS/CFT correspondence states
that some quantum field theories are actually equivalent to theories of gravity. We
need to note however that even though AdS/CFT has passed many non-trivial
tests (see e.g. [23, 24]), it is still a proposal for which no formal proof has been
constructed so far. The interpretation of a CFT as a theory of gravity on AdS offers
new ways for studying the CFT. Many aspects of the CFT which are particularly
hard to grasp turn out to have a relatively easy access on the AdS side. Especially
for the study of quantum information aspects of the CFT this strategy has proven
to be very successful. In this thesis, we provide further results about quantum
information in the context of AdS/CFT.

1.1 Quantum Information in Modern Physics
One of the most fundamental differences between classical and quantum physics
is the concept of entanglement. Describing a new type of correlations with no clas-
sical analogue, entanglement was not easily accepted in the physics community in
the early years of quantum mechanics. Most famously, Albert Einstein referred to
it as spooky action at a distance1 and considered it a powerful argument against
quantum theory.2 Later experiments however confirmed the existence of entangle-
ment3 which is today an integral part of modern physics.

Describing a certain type of correlations between different subsystems of a
given quantum system, entanglement is most successfully studied in the context of
quantum information.4 This field is a generalization of classical information theory
to quantum systems. In analogy to the classical case, the purpose of the notion of
quantum information is to quantify diverse properties of the inner structure of a
given quantum state, such as correlations or the information content. In particular,

1Einstein used this phrase in a letter to M. Born on March 3rd, 1947.
2For the context of the discussion about the counterintuitive properties of quantum systems

we refer to the famous paper by Einstein, Podolski and Rosen (EPR) [25] from 1935.
3For a recent experiment we refer to [26].
4For an introduction to the subject see [27–31].
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quantum information offers methods for comparing different states in context of
these aspects. For this purpose several quantities were introduced which are meant
to grasp different quantum information aspects of a system. For instance, the
entanglement entropy (see e.g. [27–30, 32, 33]) is used to study the entanglement
between a subsystem and its complement for pure states. It can be generalized
to quantities like the (conditional) mutual information (see e.g. [27–30]) which
capture general correlations between different subsystems. Moreover, concepts
like the relative entropy (see e.g. [31, 34, 35]) or Fisher information (see e.g. [36])
allow to compare different states with each other. This method of comparing two
states is closely related to the concept of hypothesis testing in statistics: for a
system in a given state ρ1 which is mistakenly assumed to be in a state ρ0, it is
examined how strongly our expectations deviate from the actual behavior of the
system (see Section 3.3.3 for more details). An alternative approach for comparing
two states provides complexity (see e.g. [37, 38]). Here the goal is to determine
how hard it is to construct a state from a given reference state by applying only
certain allowed quantum operations. Usually the reference state is taken to be very
simple in the sense that it does not have any inner correlations. So in particular,
complexity captures the inner structure of a state. We discuss complexity in more
detail in Section 3.2.

Many of the quantities introduced for quantum information have their origin in
classical information theory. The generalization of their classical counterparts to
quantum systems is mostly done in a straightforward way, as long as the quantum
system is discrete. An example for such a discrete system is given by a chain of
atoms. By only considering their spin, for each atom two discrete settings (spin
up, spin down) may be distinguished. Due to the similarity of this situation to
bits in classical information theory, such systems are referred to as quantum-bits
(q-bits). Even at this very simple example we see a clear difference between the
classical and the quantum situation. Unlike classical bits, q-bits may not only be
in one of the two possible states but generic superpositions of them are possible.

In recent years – in particular motivated by AdS/CFT – quantum informa-
tion for quantum field theories (QFT) became a subject of intense study (see
e.g. [35,39–42]). The mathematical rigorous introduction of quantum information
measures to QFTs however, is in general a very challenging task. In particular,
measures of quantum information – such as entanglement entropy – tend to be UV
divergent in QFTs (see e.g. [33,35]). Nevertheless, the study of quantum informa-
tion is essential for gaining a deeper understanding about the inner structure of
Hilbert spaces in QFT. For instance, the algebraic structure in QFTs leads to the
intriguing conclusion that QFT states are usually strongly entangled. To make
this statement more accessible, we present an argument showing that the vacuum
state |0〉 in QFTs is allways entangled. This is a direct conclusion of the Reeh-
Schlieder theorem [43], as we now discuss.5 The Reeh-Schlieder theorem states
that given any open subset A of a Cauchy slice, the vacuum sector of a QFT can
be generated by operators localized in a small neighborhood NA of A. This state-
ment implies that the region NA is correlated – and therefore entangled – with

5The following discussion is motivated by [35].
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any other space-time region. To see this we may consider an operator O 6= 0 in
the vacuum sector, localized in a region N′ far away from NA and with vanishing
vacuum expectation value. Due to the Reeh-Schlieder theorem we can find an
operator a localized in NA such that 〈0| a†Oa |0〉 6= 0 holds. Since a is localized
in NA and O in some other region N′ far away from NA, we conclude that O and
a commute. This allows us to deduce that the expectation value of the operator
a†aO does not factorize, i.e.

〈0| a†aO |0〉 6= 〈0| a†a |0〉 〈0| O |0〉 , (1.1)

as O has a vanishing vacuum expectation value. Since a†a and O are localized
in NA and N′ respectively, we see that the vacuum state contains correlations
between NA and N′ and is thus an entangled state.6

The above discussion demonstrates that correlations such as entanglement are
a fundamental part of QFT states and therefore deserve a deeper analysis. In par-
ticular, the entanglement in QFT states tends to be so strong that it leads to UV
divergences in the entanglement entropy (see e.g. [33,35]). In practice, these issues
are approached by putting the QFT on a lattice for the computation of quantum
information quantities – such as entanglement entropy (see Section 3.1.4).

A further reason for the study of quantum information for QFTs is its role in
general relativity. The formulation of a quantum theory for gravity is one of the
most prominent unsolved problems of modern physics whose importance for un-
derstanding the nature of our reality cannot be overstated. Quantum information
is a very powerful tool for establishing connections between a QFT and the theory
of general relativity describing the space-time it is defined on. In particular in the
presence of a horizon this is an evident observation. A horizon naturally separates
space-time into two regions, which immediately leads to the question about the
quantum correlations between the two regions (see e.g. [44, 45]). We stress that a
horizon not only plays a role for exotic objects like black holes but also appears for
very simple configurations. One of the most prominent examples for such a situa-
tion is the space-time seen by a constantly accelerating observer [46]. As we depict
in Figure 1.1, an observer accelerating in x1 direction in flat Minkowski space is
restricted to the so-called Rindler wedge [47], i.e. the region with x1 ≥ |x0|, where
x0 is the time coordinate. Consequently, the observer is separated from the rest of
space-time by a horizon at x1 = |x0| known as the Rindler horizon. This example
shows that even in very simple geometries – like flat space-time – situations may be
considered where an observer cannot see all of space-time but is restricted to a sub-
region. We emphasize that this restriction is not introduced artificially by adding
some kind of barrier by hand to the system but emerges very naturally from basic
concepts of general relativity. Due to the isolation from the rest of space-time, the
accelerating observer experiences the state of the system as thermal [46].7 This
observation establishes the physical importance of quantum information. We see

6We note that in this motivation for entanglement in the vacuum state we ignored some
mathematical caveats. For instance, it is not possible to generate the full vacuum sector out of
NA but only a dense subset. For a more detailed discussion of the subject, we refer to [35].

7For recent reviews of this setup we refer to [30,35]. See also [45].
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Figure 1.1: A constantly accelerating observer in Minkowski space. Due to their
acceleration in x1 direction, the observer is restricted to the Rindler wedge (grey)
x1 > |x0|. All events outside that region are inaccessible for them. Thus the
observer sees a horizon – the Rindler horizon – at the boundary of the Rindler
wedge, x1 = |x0|.

that it is not just an information theoretic construct for quantifying correlations
but provides a deeper understanding for the origins of observable aspects of the
system, such as temperature.

So far we have only discussed entanglement in order to clarify the role of
quantum information in QFTs. However, the study of entanglement is not sufficient
for understanding the full quantum information content of a given state. The
aspect of quantum information we focus on in this thesis is complexity (see e.g.
[37, 38]). For discrete systems, the basic idea behind complexity is very easily
understood. We consider a reference state |ψr〉 and a set of unitary operations
which are referred to as gates. The complexity of a given target state |ψt〉 is the
minimal number of gates that needs to be applied to |ψr〉 in order to approximate
|ψt〉 up to a given tolerance. The generalization of complexity to QFTs however
is not very well understood and a subject of current research (see e.g. [48–51]).
The reason for the growing interest in complexity, especially in the AdS/CFT
community (see e.g. [52–55]), can be traced back to the work of Susskind and his
collaborators [56–59]. Susskind considered the eternal two-sided AdS black hole
and argued that the effort it takes to send a signal along an Einstein-Rosen bridge
from one side of the black hole to the other may be associated with complexity.
In the context of AdS/CFT this led him to the conclusion that the growth of
the Einstein-Rosen bridge in time is related to the complexity of the dual CFT
state. This example was also used to justify the importance of complexity for
field theories (see e.g. [57]): the two sided eternal AdS black hole is dual to the
thermofield double state of two identical CFTs [60,61]. This state reaches thermal
equilibrium very fast, so that many aspects of the state stop evolving in time. In



6 CHAPTER 1. INTRODUCTION

particular, the evolution of entanglement entropy stagnates [62]. Therefore, a new
quantity is required to study the evolution of quantum information aspects of the
state beyond thermal equilibrium. Complexity turns out to be a good candidate
for such a quantity, as it keeps evolving in time, even after thermal equilibrium
has been reached [57, 58]. So we see that complexity is a measure for quantum
information which grasps aspects of a given state that cannot be studied solely by
considering entanglement entropy.

The AdS/CFT correspondence provides a distinct approach towards a formal
definition of complexity for QFTs: instead of working directly with the CFT,
possible candidates for complexity can be constructed on the AdS side. We briefly
review the most popular of these candidates in Section 3.2.3. In this thesis a
proposal by Alishahiha [63] for the dual description of the complexity of reduced
CFT states on the AdS side is studied in great detail. Alishahiha’s proposal
relates the complexity of reduced states – the so-called subregion complexity – to
the volumes of certain codimension one regions on the AdS side.

We contribute the following two new insights to the study of complexity in the
context of AdS/CFT:

1. In Chapter 4 we present a novel proposal for a dual of complexity on the
AdS side in AdS3/CFT2 which my collaborators and I published in [1]. This
proposal reveals a clear relation between complexity on the CFT side and
certain topological aspects of the gravity dual. Moreover, for the examples
considered in this thesis it differs from Alishahiha’s proposal only by a pro-
portionality factor and thus establishes a relation between topology and this
proposal as well.

2. We investigate Alishahiha’s proposal for subregion complexity in Chapter
5. This chapter is based on results my collaborators and I published in [1]
and [2]. We construct an explicit CFT expression for Alishahiha’s proposal
for vacuum states. This provides new insights to the meaning of Alishahiha’s
proposal on the CFT side and thus is an important first step towards testing
whether the proposed AdS quantity is actually a good measure for com-
plexity.

Besides complexity, we study a further quantum information object in this
thesis that currently gains a lot of attention (see e.g. [41, 64–72]), the modular
Hamiltonian [73]. For a given state ρ, 8 the modular Hamiltonian K is defined via

ρ = e−K

tr(e−K) . (1.2)

In particular, we examine its contribution to the relative entropy for a family of
states depending on a continuous parameter λ. The relative entropy (see Section
3.3.3) is of particular interest for QFTs, as it is one of the very few quantum
information quantities for which a rigorous definition for QFTs is known.9 The
modular Hamiltonian plays a crucial role in computing the relative entropy for

8Note that we treat the terms “state” and “density matrix” as synonymous in this thesis.
9See e.g. [34] and [35] for a review.
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Figure 1.2: The AdS/CFT correspondence. The AdS/CFT correspondence states
a duality between a theory of gravity on asymptotic AdS space and a conformal
field theory (CFT) residing on the conformal boundary of this space. The Ryu-
Takayanagi proposal relates the entanglement entropy of a CFT region A on a
constant time slice with a surface γA in AdS, homologous to A. In the geometries
we consider in this thesis, γA lies in the same constant time slice as A. The volume
of the region BA enclosed by A and γA (green) is conjectured to be a measure for
the complexity of the reduced CFT state on A.

explicit examples. However, despite intense investigation it was only possible to
construct an explicit expression for the modular Hamiltonian in a few cases (see
e.g. [74–78]), some of which we present in Section 3.3.2. This makes the modular
Hamiltonian a challenging object to work with.

In Chapter 6 we present an observation I published in [3] regarding the λ-
dependence of the contribution of K to relative entropy. In particular, this ob-
servation establishes an intriguing relation between the modular Hamiltonian and
entanglement entropy. We note that even though my result regarding modular
Hamiltonians may be applied to many examples in AdS/CFT, it is not restricted
to such situations but holds for any quantum theory.

1.2 Application of AdS/CFT to Quantum Infor-
mation

The AdS/CFT correspondence states a duality between a theory of gravity on
asymptotic AdS space and a conformal field theory. Here the conformal field theory
is considered to be defined on the conformal boundary of the AdS space (see Figure
1.2). In this picture we find AdS/CFT to describe a system on asymptotic AdS
whose physical content is also contained on its boundary. This makes AdS/CFT
an explicit example for the holographic principle [79–81]. Already at this point we
can see that information theory appears in an natural way in AdS/CFT. Thus it
should not be surprising that AdS/CFT provides a very elegant approach towards
quantum information.
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The attention of the AdS/CFT community was drawn towards quantum in-
formation by a celebrated paper by Ryu and Takayanagi [82]. In this paper the
authors argue that the entanglement entropy of a given subregion A on a constant
time slice of the CFT corresponds to the area of the minimal surface on the AdS
side, homologous to A. In this picture, A is seen as a subset of the conformal
boundary of AdS. This proposal established a clear relation between the quantum
information content of the CFT and geometric aspects of the gravity dual. This
intruiging realization was further explored in the following years (see e.g. [83–86]).
In particular, in [87, 88] it was argued that the connectedness of space-time on
the AdS side is intimately related to entanglement on the CFT side. Moreover,
in [89] it was even shown that Einstein’s equations may be derived from entan-
glement to linear order. The proposal by Ryu and Takayanagi is also related to
work associating the reconstruction of field excitations in AdS on the CFT side
with quantum error correcting codes [39, 90, 91]. These concepts are of particular
interest for discrete versions of AdS/CFT involving tensor networks [92,93].

In AdS3/CFT2 the Ryu-Takayanagi formula provides an exceptionally rigorous
approach for the study of the relation between entanglement and geometry. Here
it identifies the entanglement entropy of a given interval A on a constant time
slice of the CFT with the length of the geodesic γA in AdS3 lying on the same
constant time slice and ending on the conformal boundary at the endpoints of
A (see Figure 1.2). This leads to a one-to-one correspondence between intervals
A on the CFT side and the corresponding geodesics γA in AdS3. Therefore, the
space K of all these geodesics (intervals) is a valuable auxiliary construction which
can be interpreted both from the AdS side and the CFT side. The space K is
known as kinematic space and has been established in AdS/CFT by Czech and his
collaborators in [94–97]. The value of kinematic space lies in the fact that it offers
a systematic way for expressing geometric quantities on the AdS side in terms
of entanglement entropy of the CFT and therefore reveals the immense depth of
the relation between entanglement and geometry. For instance, an early version
of the kinematic space formalism was used to derive an integral expression over
entanglement entropies for the length of curves on the constant time slice of the
AdS side [94]. The results we present in Chapter 5 may be seen as an extension
of this method. We show how the kinematic space formalism can be applied to
express the volume of an arbitrary codimension-one surface lying in the constant
time slice of AdS3 as an integral over entanglement entropies. The fact that it is
possible to express such volumes in terms of entanglement entropies is of particular
importance for the concept of holographic subregion complexity (HSRC) introduced
by Alishahiha [63]. As we depict in Figure 1.2, HSRC is given by the volume of the
codimension one region BA enclosed by γA and A. This volume is proposed to be a
measure for the subregion complexity of the reduced state on A. Our formulation
of volumes in terms of entanglement entropies provides a field theory expression
for vol(BA) and therefore for HSRC. The knowledge about the field theory dual
of HSRC is of particular importance for investigating whether vol(BA) actually
encodes subregion complexity.
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1.3 Outline of this Thesis
The main results of this thesis are based on [1–3] and presented in Chapters 4, 5 and
6. In Chapter 4 we discuss topological complexity, which associates the integral
over the Ricci scalar of BA (see Figure 1.2) with the subregion complexity of
the corresponding entangling interval A. We compute the topological complexity
for examples involving global AdS3, BTZ black holes and conical defects. For
these geometries we find that the topology of BA and A is of integral importance
for topological complexity. The focus of Chapter 5 is the construction of a field
theory expression for HSRC in AdS3/CFT2. We derive a formulation of HSRC
in terms of entanglement entropies for CFT vacuum states using the kinematic
space formalism. Moreover, we generalize this expression to states dual to BTZ
black holes and conical defects. Our results regarding modular Hamiltonians are
presented in Chapter 6. We consider a one-parameter family of states reduced to
two entangling regions A, B for which the Araki-Lieb inequality is saturated (see
(1.3) below). For this setup we argue that the relative entropy of at least one of
the regions A, B is expected to contain contributions of the modular Hamiltonian
that are of quadratic or higher order in the parameter of the family of states.

The purpose of the preceding Chapters 2 and 3 is to establish the theoretical
background required for understanding these results. In Chapter 2 we provide a
brief introduction to AdS/CFT, including a review of conformal field theories, Anti-
de Sitter spaces and Maldacena’s original argument for AdS5/CFT4 in Sections
2.1.1, 2.1.2 and 2.2, respectively. Moreover, we discuss AdS3/CFT2, which is of
particular importance for this thesis, in Section 2.3 and present further aspects
of AdS/CFT in Sections 2.4 and 2.5 which establish how AdS/CFT is applied in
practice.

The focus of Chapter 3 is quantum information and the way it is handled in
the context of AdS/CFT. The quantum information concepts we require for this
thesis are entanglement entropy, complexity and modular Hamiltonians, which we
introduce in Sections 3.1, 3.2 and 3.3, respectively.

Even though we discuss many of the physical concepts this thesis is based on in
Chapters 2 and 3, some preliminary knowledge about quantum information, quan-
tum field theories, general relativity and differential geometry is required. For an
introduction to quantum information we refer to [27–29, 98]. Standard textbooks
regarding quantum field theory are [99–101]. Reviews of general relativity and dif-
ferential geometry can be found in [102–105]. Moreover, Maldacena’s motivation
for AdS5/CFT4, as presented in Section 2.2, presumes some basic knowledge about
string theory, which is provided by e.g. [106–112].

Chapter 4: Topological Complexity

In [1] Johanna Erdmenger, Haye Hinrichsen, Charles M. Melby-Thompson, René
Meyer, Christian Northe, Ignacio A. Reyes and I introduced the concept of topo-
logical complexity for AdS3/CFT2. This is a new proposal for a gravity dual of
the subregion complexity of a reduced state on a subregion A on the CFT side.
Just as Alishahiha’s HSRC [63], we consider the region BA enclosed by A and γA
(see Figure 1.2). However, instead of the volume vol(BA), we propose the integral
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over BA of the Ricci scalar of the considered constant time slice to correspond
to complexity. The advantage of this approach is the fact that this integral is
dimensionless by construction; a property which it shares with complexity. In the
case of HSRC an additional scaling factor needs to be introduced by hand in order
to obtain dimensionlessness. Moreover, we can use the Gauss-Bonnet theorem to
show that the topology of A and BA play a crucial role for our proposal (see Sec-
tion 4.1). This justifies the name “topological complexity”. This dependence on
topology allows us to formulate a closed expression for the topological complexity
of a generic region A in the case where the gravity dual has the geometry of global
AdS3 or the BTZ black hole. If A is not just a single interval but the union of
several intervals, γA assumes different phases depending on the position of the in-
tervals relative to each other. When γA undergoes a phase transition, the topology
of BA changes, leading to discrete jumps in topological complexity. In Section 4.2
we compute topological complexity for the geometries of global AdS3, BTZ black
holes and conical defects. In all these cases, topological complexity and HSRC
differ only by a scaling factor. Therefore, we conclude that the topology of BA and
A are also essential for HSRC in these geometries.

Chapter 5: Holographic Subregion Complexity from Kinematic Space

In addition to topological complexity, my collaborators and I also introduced a
method for expressing volumes of codimension one regions Q in AdS3 lying on
a constant time slice in terms of entanglement entropy in [1]. This method was
discussed in detail and further developed in [2] by Johanna Erdmenger, Marius
Gerbershagen, Charles M. Melby-Thompson, Christian Northe and me. We use
the kinematic space formalism – which we introduce in Section 5.1 – to express the
volume of Q as an integral over the length of geodesics. We prove the validity of
this expression in Section 5.2. The Ryu-Takayanagi formula allows us interpret the
appearing lengths as entanglement entropies and thus provides a CFT formulation
for vol(Q). By setting Q = BA, this result offers a CFT construction of HSRC,
which we discuss in great detail in Section 5.3. We generalize our findings to
the geometries of BTZ black holes and conical defects in Section 5.4. The CFT
formulation of HSRC is a very important step towards a CFT interpretation of
HSRC. In Section 5.5 we discuss the conclusions to which we come for the role of
HSRC on the CFT side. In particular, we examine what lessons can be learned if
HSRC is actually a measure for complexity – as conjectured.

Chapter 6: Modular Hamiltonians on Entanglement Plateaux

In [3] Johanna Erdmenger and I published a result regarding the modular Hamil-
tonians of two reduced states on regions A, B for which the Araki-Lieb inequal-
ity [113] is saturated, i.e.

S(AB) = |S(A)− S(B)| , (1.3)

where S is the entanglement entropy of the respective regions. Regions which
satisfy (1.3) are referred to as entanglement plateaux [114] (see Section 6.1). We
consider a one-parameter family of states ρλ on an entanglement plateau, i.e. we
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assume the reduced states ρAλ , ρBλ , ρABλ to satisfy (1.3) for all values of the parameter
λ. Here λ may be chosen to be the energy density or the temperature of ρλ,
for instance. Moreover, we assume the entanglement plateau to be stable under
variations of the size of A and B that keep AB invariant. For this setup, we study
the λ-dependence of the object ∆ 〈K0〉 (A, λ) (6.1), which is the contribution of the
modular Hamiltonian K0(A) of a reference state ρAλ0

to the relative entropy of ρAλ
and ρAλ0

. In particular, we are interested in the case where ∆ 〈K0〉 (A, λ) is linear in
λ̃ = λ− λ0. In this situation, the first law of entanglement [115] allows to express
∆ 〈K0〉 (A, λ) in terms of entanglement entropy without explicit knowledge of the
modular Hamiltonian K0(A) (see Section 6.2). We show that on entanglement
plateaux, ∆ 〈K0〉 takes this simple form only in special cases. The statement of
our result, which we present and prove in Section 6.3, goes as follows. If A and
B form an entanglement plateau which is stable under variations of the size of A
and B that keep AB invariant and ∆ 〈K0〉 is linear in λ̃ for A, B and variations
of their size, then ∂2

λS is invariant under variations of the size of A and B.
This result is of particular interest in the context of the first law of entan-

glement: the first law states a relation between entanglement and the first order
contribution in λ̃ to ∆ 〈K0〉. We establish a relation between higher order contri-
butions in λ̃ and entanglement entropy.

Entanglement plateaux are very common in AdS/CFT. This allows us to apply
our result to several examples from AdS/CFT in Section 6.4. These include disjoint
intervals for thermal states dual to black string geometries and large intervals for
states dual to BTZ black holes. We note that our result is not restricted to
holographic situations but holds for any quantum system.
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Chapter 2

AdS/CFT Correspondence

We start our discussion by reviewing the aspects of the AdS/CFT correspondence
relevant for this thesis.1 The AdS/CFT correspondence, which we also refer to
simply as AdS/CFT in this thesis, is a conjectured duality between a conformal
quantum field theory (CFT) and a theory of gravity involving asymptotic Anti-
de Sitter spaces (AdS). We note that the theory of gravity in general not only
considers Anti-de Sitter spaces but also an additional compact manifold M. So
the geometries we are working with on the gravity side take the form AdS×M.

The fields in a CFT transform covariantly under suitable representations of
conformal transformations, i.e. local rescalings of space-time. This provides the
theory with a very powerful algebraic structure for observables which allows to
derive many general expressions for expectation values simply from the conformal
symmetry without explicit path integral computations.

Anti-de Sitter spaces are solutions of the vacuum Einstein equations for a
negative cosmological constant. The hyperbolic structure of AdS allows light rays
to reach radial infinity at finite times and thus provides the concept of a conformal
boundary. The boundary has codimension one and is considered to be the domain
of the dual CFT (see Figure 1.2).

Throughout this thesis we use the terms AdS side, AdS, gravity side, gravity
dual, gravitational dual, bulk (dual) and holographic (dual) for references regard-
ing the theory of gravity on AdS. For the conformal field theory the terms field
theory side, field theory dual, CFT (side), CFT dual or boundary are used.

We may distinguish three different versions of the theory of gravity involving
asymptotic AdS, depending on the considered form of AdS/CFT. In its strongest
form, the gravity dual is considered to be a theory of quantum strings. Moreover,
it may also be taken to be a classical string theory, which is referred to as the
strong form of AdS/CFT. The weak form of AdS/CFT – on which we focus here
– considers a classical theory of supergravity (SUGRA) for point-like particles as
dual of the CFT. Many non-trivial tests have been performed for the weak form
of AdS/CFT (see e.g. [23, 24]), which provide strong evidence for the validity of
the AdS/CFT correspondence.

AdSd+1/CFTd was originally introduced by J. Maldacena [22] as a duality be-
tween a CFT in d space-time dimensions (CFTd) and a theory of gravity involving

1Reviews of AdS/CFT can also be found in [106,109,110,116–119].

13
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(d + 1)-dimensional asymptotic AdS spaces (AdSd+1). The best understood ex-
ample is the case d = 4, i.e. AdS5/CFT4, which is the main focus of [22]. An
important property of AdSd+1/CFTd is the fact that the conformal field theory is
defined on a space-time which has one spatial dimension less than the correspond-
ing AdS space. This allows the previously mentioned association of the conformal
boundary of AdSd+1 with the domain of the CFTd.

We provide an introduction to the foundations and basic concepts necessary
for AdS/CFT in Section 2.1. Moreover, we present Maldacena’s original motiva-
tion for AdS5/CFT4 in Section 2.2. In Section 2.3 we briefly review AdS3/CFT2,
which is the example we work with the most in this thesis. The remaining two
sections (i.e. Sections 2.4 and 2.5) focus on the application of AdS/CFT to explicit
computations.

2.1 Foundations of AdS/CFT
In this section we review the most important aspects of conformal field theories
and Anti-de Sitter spaces. Since AdS/CFT is a conjecture for a duality between a
conformal field theory and a theory of gravity on asymptotic AdS spaces, these two
subjects may be seen as the foundation necessary to properly formulate AdS/CFT.

2.1.1 Conformal Field Theories (CFT)
We begin by giving an introduction to CFTs. Since the AdS/CFT correspon-
dence states a duality between a theory of gravity and a CFT, some basic knowl-
edge about CFTs is required in order to understand the actual statement of
AdS/CFT. However, the main focus of this thesis is the theory of gravity in
AdS/CFT. Therefore, we do not provide an extended discussion of CFTs in this
section but just present the basic aspects of the field. There is a vast amount
of literature where CFTs are discussed in great detail. In particular, we recom-
mend [109,110,120–122].

A CFT is by definition a field theory that is invariant under conformal trans-
formations. In simple terms, a conformal transformation is a local rescaling of the
space the field theory is defined on. In particular, this rescaling leaves angles in-
variant. A field theory with a conformal symmetry therefore has no natural length
scale associated with it. Moreover, the conformal symmetry provides the theory
with a very powerful algebraic structure. In particular for two-dimensional CFTs
this structure may be used to obtain many non-trivial results for CFTs without
even specifying a Lagrangian. The introduction to CFTs presented in this section
is based on [109,120–122].

Conformal Transformations

In the following we introduce the concept of conformal transformations. Note that
we only discuss conformal transformations for flat space. However, the concept
can be generalized to curved spaces. Consider the d-dimensional Minkowski space
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Rd−1,1 with metric
η = diag(−1, 1, . . . , 1) . (2.1)

A conformal transformation xµ 7−→ yµ of Rd−1,1 leaves the metric invariant, up to
a local scaling factor Ω(x) > 0,

ηλσ
∂yλ

∂xµ
∂yσ

∂xν
= Ω(x)ηµν . (2.2)

Evidently, this definition in particular includes Poincaré transformations, for which
Ω(x) = 1 holds.

In order to make the concept of conformal transformations more accessible, we
now consider an infinitesimal conformal transformation

xµ 7−→ xµ + vµ(x) . (2.3)

As we show below, this allows us to identify certain types of conformal transfor-
mations and in particular determine their generators. By doing so we are able
to determine the conformal group, i.e. the group of all invertible globally defined
finite conformal transformations.

We now derive several equations vµ has to satisfy in order to correspond to an
infinitesimal conformal transformation. Applying (2.3) to (2.2) and expanding to
first order in vµ, we find

∂µvν + ∂νvµ = s(x)ηµν , (2.4)
where s(x) = Ω(x)− 1. Contracting (2.4) with ηµν leads to

s(x) = 2
d
∂λv

λ . (2.5)

Therefore, in order for (2.3) to be an infinitesimal conformal transformation, vµ is
required to satisfy the equation

∂µvν + ∂νvµ = 2
d
∂λv

ληµν . (2.6)

From (2.6) the relations(
ηµν∂

σ∂σ + (d− 2)∂µ∂ν
)
∂λv

λ = 0 (2.7)

2∂µ∂νvρ = 2
d

(
ηρµ∂ν + ηρν∂µ − ηµν∂ρ

)
∂λv

λ (2.8)

may be derived (see e.g. [121]). Here we see that the case of d = 2 is special, since
(2.7) simplifies to ∂σ∂σ∂λvλ = 0. Therefore, we need to treat the cases d > 2 and
d = 2 separately in our analysis of CFTs.

Conformal Transformations for d > 2

We may now deduce the general expression for vµ for d > 0 by studying (2.7) and
(2.8). By contracting (2.7) with ηµν , we find

∂σ∂
σ∂λv

λ = 0 . (2.9)
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Applying this result to (2.7) leads to

∂µ∂ν∂λv
λ = 0 , (2.10)

i.e. ∂λvλ is at most linear in xµ,

∂λv
λ = A+Bµx

µ , (2.11)

where A and Bµ are constant. By inserting this result into (2.8) we find that vµ is
at most quadratic in xµ,

vµ = aµ + bµνx
ν + cµνρx

νxρ . (2.12)

Here aµ, bµν and cµνρ = cµρν are constant. We can determine the form of the
coefficients bµν and cµνρ by inserting (2.12) into (2.6) and (2.8) and perform a
coefficient comparison. This allows us to conclude that bµν and cµνρ are of the
form

bµν = αηµν +mµν , cµνρ = ηµρbν + ηµνbρ − ηνρbµ , (2.13)
where the constant coefficients α, bµ and mµν = −mνµ may be chosen arbitrarily.
By applying (2.13) to (2.3) we are now able to write down the general form of an
infinitesimal conformal transformation,

xµ 7−→ (1 + α)xµ + aµ +mµ
νx

ν + 2bλxλxµ − xλxλbµ . (2.14)

This result now allows us to classify the conformal transformations and the com-
mutation relations of their respective generators.

Scale Transformations (D). From the first term in (2.14) it is easy to see
that the parameter α corresponds to an infinitesimal rescaling of xµ. The corre-
sponding generator is denoted by D.

Poincaré Transformations (Pµ, Jµν). The terms aµ and mµ
νx

ν in (2.14)
correspond to infinitesimal translations and Lorentz transformations, respectively.
We denote their generators by Pµ and Jµν , respectively.

Special Conformal Transformations (Kµ). The remaining terms in (2.14)
– proportional to bµ – are referred to as special conformal transformation. The
corresponding generator is called Kµ. The finite version of a special conformal
transformation,

xµ 7−→ yµ = xµ − xλxλbµ

1− 2bλxλ + bλbλxσxσ
, (2.15)

may be interpreted as a combination of inversions of xµ and a shift by bµ. This is
evident by considering the relation

yµ

yλyλ
= xµ

xλxλ
− bµ , (2.16)

which is an immediate consequence of (2.15).
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The commutation relations of the generators D, Pµ, Jµν , Kµ are given by

[D,Pµ] = iPµ , [D, Jµν ] = 0 , [D,Kµ] = −iKµ ,

[Pµ, Pν ] = 0 , [Pµ, Jαβ] = i
(
ηµαPβ − ηµβPα

)
,

[Pµ, Kν ] = −2i
(
ηµνD + Jµν

)
[Jµν , Jαβ] = i

(
ηµβJνα + ηναJµβ − ηµαJνβ − ηνβJµα

)
,

[Jµν , Kα] = −i
(
ηµαKν − ηναKµ

)
, [Kµ, Kν ] = 0 .

(2.17)

We note that the special conformal transformations are not globally defined
since the xµ with

1− 2bλxλ + bλb
λxσx

σ = 0 (2.18)

are mapped to infinity via (2.15). In order to establish (2.15) globally, we have to
perform a conformal compactification of Rd−1,1 (see [121] for more details).

Conformal Group for d > 2

Having established the commutation relations (2.17), we may now motivate the
form of the conformal group for d > 2. The conformal group turns out to be
SO(d, 2) as may be seen as follows. We arrange the generators D, Pµ, Jµν , Kµ in
a matrix J̄UV with U, V = 0, 1, . . . , d+ 1 via

J̄µν = Jµν , J̄dµ = 1
2(Pµ +Kµ) , J̄(d+1)µ = 1

2(Pµ −Kµ) , J̄(d+1)d = D , (2.19)

where µ, ν = 0, 1, . . . , d− 1 and J̄UV = −J̄V U . This allows us to write the commu-
tation relations (2.17) as

[J̄UV , J̄AB] = i
(
η̄UBJ̄V A + η̄V AJ̄UB − η̄UAJ̄V B − η̄V BJ̄UA

)
, (2.20)

were η̄UV is defined to be the metric of Rd,2,

η̄ = diag(−1, 1, . . . , 1,−1) . (2.21)

The commutation relations (2.20) are associated with the Lie algebra so(d, 2) of
SO(d, 2). Thus, we conclude that the conformal group for d > 2 is SO(d, 2).

We note that the above discussion of conformal transformations may be per-
formed analogously in Euclidean signature, i.e. when the Minkowski metric ηµν is
replaced by the Euclidean δµν . In particular, in this case the conformal group is
SO(d+ 1, 1).

Conformal Transformations for d = 2

The equation (2.6) describing infinitesimal conformal transformations takes the
form

∂µvν + ∂νvµ = ∂λv
ληµν (2.22)
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for d = 2. For our discussion of two-dimensional CFTs we consider Euclidean
signature, i.e. we replace ηµν by δµν . This allows us to uncover an intriguing rela-
tion between conformal transformations and holomorphic functions. From (2.22)
in Euclidean signature we obtain

∂0v0 = ∂1v1 and ∂0v1 = −∂1v0 . (2.23)

These are the well-known Cauchy-Riemann equations. We may use these equa-
tions to identify conformal transformations with holomorphic functions. For this
purpose, we introduce complex variables and functions together with their complex
conjugates,

z = x0 + ix1 , v = v0 + iv1 ,

z̄ = x0 − ix1 , v̄ = v0 − iv1 .
(2.24)

The Cauchy-Riemann equations (2.23) now imply that v and therefore

z 7−→ w = f(z) , (2.25)

where f(z) = z+v(z), are holomorphic in some open set. Since (2.25) corresponds
to the conformal transformation xµ 7−→ yµ – where w = y0 + iy1 – in complex
variables, we conclude that every holomorphic function f induces an infinitesimal
conformal transformation. In particular, a given f transforms the metric as

ds2 = δµνdy
µdyν = dwdw̄ = ∂f

∂z

∂f̄

∂z̄
dzdz̄ . (2.26)

We now derive the general expression for an infinitesimal conformal transfor-
mation, similar to the expression (2.14) for d > 2. Note that even though f is
holomorphic on some open set, we allow it to have isolated singularities on C, i.e.
f is considered to be meromorphic. Therefore, we may use the Laurent expansion
of v and v̄ to obtain the general form of an infinitesimal conformal transformation,

z 7−→ w = z +
∑
n∈Z

vn(−zn+1) , z̄ 7−→ w̄ = z̄ +
∑
n∈Z

v̄n(−z̄n+1) . (2.27)

The parameters vn, v̄n are complex constants. From (2.27) we see that the struc-
ture of infinitesimal conformal transformations in two dimensions fundamentally
differs from the higher-dimensional case, as it involves infinitely many terms – un-
like its higher dimensional counterpart (2.14). The resulting generator algebra of
infinitesimal conformal transformations is infinite dimensional. The generators ln,
l̄n associated with the vn, v̄n term in (2.27) obey the commutation relations

[lm, ln] = (m− n)lm+n , (2.28)
[l̄m, l̄n] = (m− n)l̄m+n , (2.29)
[lm, l̄n] = 0 . (2.30)

The relations (2.28) and (2.29) each define one copy of the so-called Witt algebra,
while (2.30) implies that these two copies commute. Consequently, the two copies
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of the Witt algebra are independent from each other, which allows us to treat z
and z̄ as two independent variables.

We now restrict our analysis to z, i.e. the copy of the Witt algebra generated
by the ln, n ∈ Z. Of course, the same discussion may be performed for z̄ as well.
As for d > 2, it is necessary to conformally compactify the complex plane in order
to globally define the conformal transformations. We do that by adding a point
at infinity to the complex plane,

C −→ S2 ' C ∪ {∞} , (2.31)

turning C into the Riemann sphere. However, even on the Riemann sphere only
l−1, l0 and l1 are globally defined. All other ln have a singularity either at z = 0 or
z =∞. 2 So we conclude that conformal transformations on the Riemann sphere
that are globally defined are generated only by l−1, l0 and l1. In particular, these
conformal transformations may be seen as the two-dimensional analogue of the
transformations (2.14) obtained for d > 2. For instance, l−1 generates translations

z 7−→ z + b , (2.32)

where b ∈ C is constant. Moreover, l0 generates scale transformations of the form

z 7−→ az , (2.33)

for constant a ∈ C and may be combined with l̄0 to the generators of two-
dimensional scale transformations (l0 + l̄0) and rotations (l0 − l̄0). The latter are
the Euclidean analogue of the Lorentz transformations we encountered for d > 0.
The remaining generator l1 corresponds to special conformal transformations

z 7−→ z

ez + 1 , (2.34)

where e ∈ C is constant. We refer to [120–122] for more details regarding l−1, l0,
l1.

Conformal Group for d = 2

From our above discussion of global conformal transformations we may now derive
the conformal group for d = 2. The transformations (2.32), (2.33), (2.34) generated
by l−1, l0 and l1 allow us to deduce that a general global conformal transformation
is of the form

z 7−→ az + b

ez + d
, (2.35)

where a, b, e, d ∈ C are constant. The transformations (2.35) are referred to as
Möbius transformations. The corresponding group is theMöbius group SL(2,C)/Z2,
where the quotient w.r.t. Z2 is due to the fact that a, b, e, d and −a,−b,−e,−d
correspond to the same Möbius transformation.

2See e.g. [121,122] for more details.
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Virasoro Algebra and Central Charge

In two-dimensional conformally invariant quantum field theories it can be shown
that the Witt algebra (2.28) needs to be modified by a central extension. To be
more precise, a quantum CFT does not carry a representation of the Witt algebra
but the so-called Virasoro algebra,3

[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n,0 , (2.36)

where n,m ∈ Z. The parameter c is the so-called central charge.
The emergence of the Virasoro algebra in a conformal quantum field theory may

be motivated by considering a Laurent expansion of the energy momentum tensor
in operator modes. From the operator product of the energy momentum tensor
with itself it can be deduced that these operator modes obey the commutation
relations (2.36). In this procedure, the central charge c appears as a coefficient in
the operator product of the energy momentum tensor with itself (see [122]). So
every conformal quantum field theory determines a representation of the Virasoro
algebra (2.36).

We note that the operators L−1, L0 and L1 obey the same commutation rela-
tions as l−1, l0 and l1 (see (2.28) and (2.36)). Therefore, they are the generators
of globally defined conformal transformations.

(Quasi-)Primary Fields

In conformal field theories (of any dimension d) there exists a distinct class of
fields φ, so-called quasi-primary fields. From these fields, all other fields of the
theory can be obtained by repeatedly acting with Pµ on φ. The resulting fields are
referred to as conformal descendants. Quasi-primary fields are defined via their
behavior under infinitesimal conformal transformations,

[D,φ(x)] = −i
(
xλ∂λ + ∆

)
φ(x)

[Pµ, φ(x)] = −i∂µφ(x)
[Jµν , φ(x)] = i

(
xµ∂ν − xν∂µ

)
φ(x) + Jµνφ(x)

[Kµ, φ(x)] =
(
− i
(
2xµ∆ + 2xµxλ∂λ − xλxλ∂µ

)
− xνJµν

)
φ(x) ,

(2.37)

where Jµν corresponds to a finite-dimensional representation of the Lorentz group
which determines the spin of φ. Moreover, ∆ is the scaling dimension of φ. The
relations (2.37) allow us to determine the behavior of φ under a conformal trans-
formation xµ 7−→ yµ. For instance, if φ is a scalar (spin=0) field, it follows

φ(x) 7−→ φ′(y) =
∣∣∣∂y
∂x

∣∣∣−∆/d
φ(x) , (2.38)

where |∂y/∂x| denotes the Jacobian of the transformation xµ 7−→ yµ.

3We present the Virasoro algebra for z here. In analogy to the two copies of the Witt algebra
(2.28), (2.29), there is a further copy of the Virasoro algebra in quantum CFTs, corresponding
to z̄.



2.1. FOUNDATIONS OF AdS/CFT 21

In the CFT formalism with complex variables z, z̄, introduced above for d = 2,
quasi-primary fields transform as

φ(z, z̄) 7−→ φ′(w, w̄) =
(∂f
∂z

)−h(∂f̄
∂z̄

)−h̄
φ(z, z̄) . (2.39)

Here f(z) is the holomorphic function associated with the conformal transforma-
tion z 7−→ w = f(z). The transformation z 7−→ w is assumed to be globally
defined, i.e. generated by L−1, L0, L1. The parameters (h, h̄) are referred to as
the conformal dimension of φ. We emphasize that h and h̄ are real valued. In
particular, h̄ is not the complex conjugate of h. A field with conformal dimension
(h, h̄) has scaling dimension ∆ = h + h̄ and spin h − h̄. If (2.39) also holds for
local conformal transformations, i.e. transformations generated by the Ln with
n 6= −1, 0, 1, φ is called primary. Evidently, all primary field are quasi-primary
fields as well.

Note that in AdS/CFT it is common practice to drop the term “quasi” for
quasi-primari fields and simply refer to them as “primary fields”. We adopt this
convention for the rest of this thesis. In particular for d = 2 it is important to keep
this convention in mind, since the term “primary” usually refers to a special class
of quasi-primary fields, as pointed out above. Moreover, the scaling dimension
∆ is often referred to as the conformal dimension.4 This notation is used in this
thesis as well.

N = 4 SU(N) Super Yang-Mills Theory

We conclude our review of conformal field theories by presenting an explicit exam-
ple for such a theory. The example we consider is the Super Yang-Mills (SYM)
gauge theory with gauge group SU(N) and N = 4 supersymmetry generators in
d = 4 dimensions. Note that there are much simpler examples for CFTs – such
as the free boson. However, N = 4 SU(N) SYM plays a distinct role for the
AdS5/CFT4 correspondence (see Section 2.2), which is why we present this partic-
ular CFT. Since we do not work with this theory in this thesis but just need it to
properly formulate AdS5/CFT4 in Section 2.2, we restrict our review to presenting
the corresponding Lagrangian LN=4 and the field content.

The Lagrangian of N = 4 SU(N) SYM is given by (see e.g. [109,123])

LN=4 = tr
(
− 1

2g2
YM

FµνF
µν − iλ̄aσ̄µDµλa −

6∑
i=1

Dµφ
iDµφi

+ gYM

4∑
a,b=1

6∑
i=1

Cab
iλa[φi, λb] + gYM

4∑
a,b=1

6∑
i=1

C̄abiλ̄
a[φi, λ̄b]

+ g2
YM

2

6∑
i,j=1

[φi, φj]2
)
,

(2.40)

4Note that the term “conformal dimension” usually refers to (h, h̄) for d = 2.
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where gYM is the coupling constant,Dµ is the covariant derivative, Cab
i are Clebsch-

Gordan coefficients. Moreover, σ̄µ is given by σ̄0 = −1 and σ̄r = −σr, r = 1, 2, 3,
where σr is the r-th Pauli matrix. The fields contained in LN=4 are the gauge
field Aµ with field strength Fµν , four Weyl fermions λaα, a = 1, 2, 3, 4, α = 1, 2
and six real scalars φi, i = 1, 2, . . . , 6. Regarding the SU(4)R R-symmetry of
the theory, the fields transform as follows. The gauge field Aµ transforms as 1
(singlet), the Weyl fermions λaα as 4 (fundamental) and the six scalar fields φi as
6 (antisymmetric).

2.1.2 Anti-de Sitter Spaces (AdS)
The concept of Anti-de Sitter spaces is very well established in general relativ-
ity and discussed extensively in the literature (e.g. [109, 110, 116, 117, 119]). The
introduction we present here is based on [109].

Anti-de Sitter spaces play a distinct role in general relativity as they come with
a maximal number of symmetries. In fact, the symmetries of D-dimensional AdSD
allow to locally determine it by the space-time dimension D and the value of the
Ricci scalar R. In the following, we first introduce AdSD as a space-time with
a maximal amount of symmetries and second present an explicit construction of
AdSD as a submanifold of RD−1,2. Moreover, we present several sets of coordinates
and discuss the concept of the conformal boundary for AdSD.

Maximally Symmetric Spaces

We now introduce AdSD as a space with a maximal number of symmetries. To
be more precise, we define AdSD to be a space for which the number of inde-
pendent coordinate transformations that keep its metric invariant is maximal, i.e.
we demand that there is no D-dimensional metric with more of such coordinate
transformations.

We begin our construction of AdSD by examining what coordinate transforma-
tions keep a given D-dimensional metric

ds2 = gMN(x)dxMdxN (2.41)

invariant. For this purpose we apply an infinitesimal coordinate transformation

xM 7−→ yM = xM + V M(x) , (2.42)

where V M(x) is a given vector field, to (2.41). By demanding this coordinate
transformation to keep ds2 invariant, we find

gMN(x) = gPR(y) ∂y
P

∂xM
∂yR

∂xN
∼ gMN(x) +∇MVN +∇NVM , (2.43)

where we have expanded to leading order in V M and∇M is the covariant derivative
w.r.t. ∂/∂xM . From (2.43) we deduce that the vector field V M is required to satisfy
the Killing equation

∇MVN +∇NVM = 0 . (2.44)
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The solutions of the Killing equation are called Killing vector fields or simply
Killing vectors.

For a D-dimensional manifold there are at most D(D + 1)/2 linearly indepen-
dent Killing vector fields. Consequently, the number of independent coordinate
transformations keeping ds2 invariant is bounded by D(D + 1)/2. Spaces with
exactly D(D+1)/2 linearly independent Killing vectors are called maximally sym-
metric.

We define AdSD to be such a maximally symmetric space. However, this
property is not sufficient to locally determine the AdSD geometry. For instance,
(D = d + 1)-dimensional Minkowski space Rd,1 is maximally symmetric as well.
This may be seen by counting the number of symmetries of Rd,1: as it is well
known, Rd,1 is invariant under Poincaré transformations, i.e. d + 1 translations
and (d+ 1)d/2 Lorentz transformations, which add up to

(d+ 1)(d+ 2)
2 = D(D + 1)

2 (2.45)

transformations and consequently lead to D(D+1)/2 linearly independent Killing
vectors, as required for a maximally symmetric space.

The additional property which – together with maximal symmetry and dimen-
sion D – determines AdSD is the value of the Ricci scalar R. This is due to the
fact that maximally symmetric spaces can be classified by their dimension D and
their Ricci scalar R. 5 In particular, the Ricci scalar of a maximally symmetric
space is constant.

This classification via R allows us to distinguish three different types of maxi-
mally symmetric spaces: spaces with R = 0, R > 0 and R < 0. The first (R = 0)
is obviously given by Rd,1. Spaces in the second class (R > 0) are called de Sitter
spaces. The spaces we are interested in, i.e. Anti-de Sitter spaces, correspond to
the third class (R < 0).

We may introduce a length scale L > 0 for an AdSD with given Ricci scalar
RAdSD via

RAdSD = −D(D − 1)
L2 . (2.46)

The length scale L is known as AdS radius. The above discussion of maximally
symmetric spaces allows us to introduce Anti-de Sitter spaces in the following way.

The D-dimensional Anti-de Sitter space AdSD with AdS radius L is a
maximally symmetric space with Ricci scalar RAdSD = −D(D − 1)/L2.

5Note that in order to classify a maximally symmetric space it is also necessary to state
whether the considered manifold is Riemannian or Lorentzian. Since we are working exclusively
with Lorentzian space-times here, we drop this additional property.



24 CHAPTER 2. AdS/CFT CORRESPONDENCE

We conclude our discussion of maximally symmetric spaces by noting that their
symmetry leads to a Riemann tensor of the form

RMNPR = R
D(D − 1)

(
gNRgMP − gNPgMR

)
. (2.47)

In particular, they are solutions to Einstein’s field equations in the vacuum

RMN −
1
2RgMN + ΛgMN = 0 , (2.48)

for the value
Λ = D − 2

2D R (2.49)

of the cosmological constant Λ. This particularly implies that Anti-de Sitter spaces
have a negative cosmological constant, as may be seen by considering (2.46).

Construction of Anti-de Sitter Spaces

The introduction of AdSD presented above, though very elegant, does not pro-
vide any explicit coordinate representation for the metric of AdSD. A coordinate
representation may be obtained by introducing AdSD as a submanifold of a sur-
rounding space whose metric may be pulled back to AdSD. We now present such a
construction for AdSD, where we consider the surrounding space to be ((D−1)+2)-
dimensional Minkowski space RD−1,2. We introduce the notation D = d + 1 for
the space-time dimensions, since this is the convention most commonly used in
AdS/CFT.

The (d+ 2)-dimensional Minkowski space Rd,2 comes with the metric

ds2
d,2 = η̄UV dX

UdXV = −
(
dX0)2 +

d∑
i=1

(
dX i

)2 −
(
dXd+1)2

. (2.50)

We may identify the (d + 1)-dimensional Anti-de Sitter space with AdS radius L
with the submanifold of Rd,2 given by

η̄UVX
UXV = −L2 . (2.51)

We depict this construction of AdSd+1 in Figure 2.1 for d = 1.

In order to verify that the submanifold defined by (2.51)is in agreement with
the introduction of AdSd+1 presented below (2.46), we need to show that it is max-
imally symmetric and has the correct Ricci scalar (2.46). We postpone the latter
to the following section where we present explicit coordinates for AdSd+1. Given
these coordinates, the verification of (2.46) may be performed straightforwardly.

The fact that the hypersurface (2.51) is maximally symmetric is a consequence
of the evident fact that (2.51) is invariant under O(d, 2). This group has (d+1)(d+
2)/2 generators which leads to the same number of linearly independent Killing
vectors, i.e. the maximal number of Killing vectors a (d + 1)-dimensional space
can have. This shows that (2.51) indeed defines a maximally symmetric space.
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Figure 2.1: AdS2 embedded into R1,2. We depict the submanifold (2.51) of R1,2

corresponding to AdS2. The coordinates ω (cyan) and τ (green) are given by
(2.52). Note that for AdS2 we have S0 = {−1, 1}. This subtlety is dealt with by
considering ω ∈ R instead of ω > 0.

Coordinates for AdS

Using the definition (2.51) of AdSd+1 as hypersurface of Rd,2, we may now introduce
various sets of coordinates for AdSd+1. We start by constructing the so-called global
coordinates of AdSd+1 by considering

(
X0, Xd+1) and (X1, · · · , Xd

)
(see (2.50)) in

spherical coordinates respectively,
X0 = w̃ cos(τ) ,

Xd+1 = w̃ sin(τ) ,
X i = L sinh(ω)Ωi for i = 1, · · · , d .

(2.52)

Here, we have written the radial coordinate of
(
X1, · · · , Xd

)
w.l.o.g. as L sinh(ω)

for ω > 0. The coordinates Ωi parametrize the sphere Sd−1, i.e. they satisfy
d∑
i=1

(Ωi)2 = 1 . (2.53)

Moreover, we have τ ∼ τ+2π and w̃ > 0. By inserting (2.52) into (2.51) we obtain

w̃ = L cosh(ω) . (2.54)

We depict the coordinates (τ, ω,Ωi) in Figure 2.1 for d = 1. Using (τ, ω,Ωi) to
pull the metric (2.50) back to the hypersurface defined via (2.51), we obtain the
metric of AdSd+1 in global coordinates,

ds2
AdS = L2(− cosh2(ω)dτ 2 + dω2 + sinh2(ω)dΩ2

d−1
)
, (2.55)

where dΩ2
d−1 is the standard metric for Sd−1. Note that we have used∑

i

ΩidΩi = 1
2d
[∑

i

(
Ωi
)2
]

= 1
2d1 = 0 (2.56)
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in the derivation of (2.55).

Given the metric (2.55), the corresponding Ricci scalar may be straightfor-
wardly computed. It agrees with (2.46). This confirms that the hypersurface
(2.51) – which is already known to be maximally symmetric (see discussion below
(2.51)) – is indeed AdSd+1 with AdS radius L.

As can be seen in Figure 2.1, the time coordinate τ is periodic. This leads to
closed time-like curves. Thus, in order to maintain causality, the time coordinate
needs to be unwrapped by considering τ ∈ R instead of τ ∈ [0, 2π]. The resulting
manifold is the universal covering of AdSd+1.

We may introduce an alternative version of the global coordinates (2.55) by
using the coordinate r̃ = L sinh(ω) > 0 instead of ω. This leads to

ds2
AdS = −

(
1 + r̃2

L2

)
dt̃2 + 1

1 + r̃2

L2

dr̃2 + r̃2dΩ2
d−1 , (2.57)

where t̃ = Lτ . Moreover, by introducing the coordinate θ ∈ [0, π/2) via tan(θ) =
sinh(ω), we can bring the metric (2.55) into the form

ds2
AdS = L2

cos2(θ)
(
− dτ 2 + dθ2 + sin2(θ)dΩ2

d−1
)
. (2.58)

Another set of coordinates that we use in this thesis are the Poincaré patch
coordinates

t ∈ R, ~x = (x1, · · · , xd−1) ∈ Rd−1, r > 0 , (2.59)
which parametrize AdSd+1 via

X0 = L2

2r

(
1 + r2

L4

(
~x2 − t2 + L2))

X i = rxi

L
for i = 1, · · · , d− 1 ,

Xd = L2

2r

(
1 + r2

L4

(
~x2 − t2 − L2))

Xd+1 = rt

L
.

(2.60)

Since 0 < r = X0 −Xd, these coordinates only cover the part of the hypersurface
(2.51) where X0−Xd > 0 holds, i.e. half of AdSd+1. This part of AdSd+1 is referred
to as Poincaré patch.

The metric of the Poincaré patch is given by

ds2
PP = r2

L2ηµνdx
µdxν + L2

r2 dr
2 = L2

z2

(
ηµνdx

µdxν + dz2) , (2.61)

where x0 = t and z = L2/r. This metric has a coordinate singularity at r = 0
(z = 0).
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Figure 2.2: The X2 = 0 slice of R1,2. It is evident that AdS2 (blue) approaches
the light cone (orange) for large absolute values of X1, or equivalently large abso-
lute values of ω (see Figure 2.1). This motivates the definition of the conformal
boundary of AdS2 as the set of all light rays in R1,2 (2.63).

The Conformal Boundary of AdS

Remarkably, the Anti-de Sitter space turns out to have a boundary. We motivate
this by the following physical argument. Consider the AdSd+1 metric in the form
(2.58). The coordinate θ ∈ [0, π/2) takes the role of a radial direction. By using
the time coordinate τ to parametrize a light ray γ pointing radially outwards (see
e.g. [117]),

γ(τ) =
(
γτ (τ), γθ(τ)

)
= (τ, τ) , (2.62)

where we dropped the angular coordinates corresponding to Sd−1, we see that
the light ray approaches θ = π/2 at τ = π/2. So from a physical point of view,
AdSd+1 has a boundary at θ = π/2 that can be reached in finite time. However, this
boundary may not be interpreted as the boundary of a manifold in the conventional
sense, as the metric (2.58) diverges for θ −→ π/2. All points in AdSd+1 are interior
points, which is evident by considering the original construction of AdSd+1 as a
hypersurface of Rd,2 (2.51). Moreover, in Figure 2.1 we see that AdSd+1 is a
hypersurface that expands infinitely, which gives further support to the fact that
AdSd+1 has no boundary in the conventional sense. The boundary at θ = π/2 in
AdSd+1 is a conformal boundary, i.e. it is an equivalence class of d-dimensional
Lorentzian manifolds that are related to each other via conformal transformations.

We may motivate a formal definition for the conformal boundary by considering
the AdSd+1 metric in the coordinates (2.55). As depicted in Figure 2.2, AdSd+1
approaches the light cone η̄UVXUXV = 0 of the surrounding Rd,2 for large ω.
Therefore, the conformal boundary ∂AdSd+1 of AdSd+1 is defined to be the set of
all light rays,

∂AdSd+1 = {[X]|X ∈ Rd,2, X 6= 0, η̄UVXUXV = 0} , (2.63)
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where X ′ ∈ [X] iff X ′ = aX for some a ∈ R. We can make this definition of
∂AdSd+1 more accessible by considering a representative X with

d∑
i=1

(
X i
)2 = 1 (2.64)

for each equivalence class [X] ∈ ∂AdSd+1. From (2.63) it follows that X satisfies(
X0)2 +

(
Xd+1)2 = 1 (2.65)

and therefore conclude, by associating each [X] ∈ ∂AdSd+1 with its representative
X,

∂AdSd+1 =
(
S1 × Sd−1)/Z2. (2.66)

The division by Z2 is due to the fact that X and −X are both representatives with
the property (2.64) that belong to the same equivalence class, i.e. [X] = [−X].

The conformal boundary of AdSd+1 may be interpreted as a conformal com-
pactification of d-dimensional Minkowski space.6 To see this explicitly, we now
construct the metric of ∂AdSd+1 by using the coordinates (2.58). For this purpose,
we multiply the metric (2.58) by a positive smooth function G(τ, θ, αi) – where
the αi parametrize Sd−1 – that keeps Gds2

AdS finite in the limit θ −→ π/2. Such a
function G is called defining function. This procedure leads to a boundary metric
of the form

ds2
∂AdS = lim

θ→π/2

L2G(τ, θ, αi)
cos2(θ)

(
− dτ 2 + sin2(θ)dΩ2

d−1
)

= Ω(τ, αi)
(
− dτ 2 + dΩ2

d−1
)
,

(2.67)

where Ω(τ, αi) is some smooth positive function. The metric (2.67) is a conformal
compactification of Rd−1,1. 7 We see that the metric of ∂AdSd+1 is defined only
up to conformal equivalence, since the prefactor Ω(τ, αi) in (2.67) is not unique.
As ∂AdSd+1 is a conformal boundary, this result was to be expected.

The above method of obtaining a metric for the boundary by multiplying ds2
AdS

with a defining function also works in other coordinates. In Poincaré patch coor-
dinates (2.61) for instance, the boundary is located at r = ∞. So we need to
multiply ds2

PP by a defining function GPP(xµ, r) that keeps the metric finite for
r −→∞. This leads to

ds2
∂AdS = lim

r→∞
GPP(xµ, r) r

2

L2ηµνdx
µdxν = ΩPP(xµ)ηµνdxµdxν , (2.68)

where ΩPP(xµ) is a smooth positive function. So in Poincaré patch coordinates
we see that the metric of ∂AdSd+1 is conformally equivalent to Rd−1,1 and may
therefore be conformally transformed to a conformal compactification of Rd−1,1 to
get in touch with the boundary constructed from global coordinates (2.67).

6For more details see e.g. [109].
7We note that (2.67) is strictly speaking a conformally compactified extension of Minkowski

space. We do not discuss this subtlety here but refer to [110] instead.
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2.2 AdS5/CFT4 Correspondence
We now present the original version of AdS/CFT introduced by Maldacena in [22].
In this paper, Maldacena conjectured a duality between N = 4 Super Yang-Mills
theory with gauge group SU(N) in four space-time dimensions (2.40) and a theory
of gravity on AdS5 × S5, i.e. AdS5/CFT4. For the motivation of AdS5/CFT4
presented in this section, some basic knowledge of string theory is required. We
refer to [106–112] for an introduction to the subject. The review of the basic
concepts of AdS5/CFT4 we present here is a combination of the discussions of the
subject provided in [106, 109, 110]. Further introductions to AdS5/CFT4 can be
found in [116–119].

2.2.1 Three Forms of AdS5/CFT4

Strongest Form. We begin by presenting the explicit statement of AdS5/CFT4
in its strongest form.

The N = 4 Super Yang-Mills (SYM) SU(N) gauge theory (2.40) is

dynamically equivalent (2.69)

to type IIB string theory (ST) on AdS5×S5 with N units of F(5) flux on S5.

In this proposed duality the coupling constant gYM of the SYM theory is related
to the string coupling gs, the string length ls =

√
α′ and the AdS radius L via

g2
YM = 2πgs and 2g2

YMN = L4

α′2
. (2.70)

As pointed out in Section 2.1.1, N = 4 SYM is a conformal field theory. Therefore
we see that the AdS/CFT correspondence states that a certain quantum string
theory on AdS5 × S5 may be understood as a conformal QFT.

Though very intriguing, this statement is hard to test since very little is known
about the full quantum version of string theory on curved space-time backgrounds.
Therefore, two further forms of AdS/CFT with more accessible gravity duals may
be considered. These two forms – which are implications of the strongest form
(2.69) – are referred to as strong and weak form of AdS/CFT.

Strong Form. In its strong form, AdS/CFT states that (2.69) holds in the
so-called ’t Hooft or large N limit, where we take N −→ ∞ for fixed ’t Hooft
coupling λH = g2

YMN . In this limit N = 4 SYM becomes an effective theory with
coupling constant λH [124].8 By considering the relation (2.70) we see that in this

8We do not discuss the large N limit in detail here as this is unnecessary for the content of
this thesis. Reviews of this subject may be found in e.g. [106,109,110,116]. We note however that
this limit may also be taken in other SU(N) Yang-Mills theories. For the versions of AdS/CFT
studied in this thesis, the corresponding CFT is always considered in the large N limit.



30 CHAPTER 2. AdS/CFT CORRESPONDENCE

Form of CFT side: AdS side:
AdS5/CFT4 N = 4 SYM SU(N) gauge theory IIB theory on AdS5 × S5

Strongest any N and λH
Quantum ST

for any gs and α′/L2

Strong N →∞ for fixed λH
Classical ST

with gs → 0 for α′/L2 > 0

Weak N →∞ for large λH
Classical SUGRA

with gs → 0 and α′/L2 → 0

Table 2.1: The three forms of AdS5/CFT4. Depending on the choice of N and
λH = g2

YMN , AdS5/CFT4 proposes a duality between N = 4 SYM and a IIB
theory on AdS5×S5. The free parameters on the AdS side are related to the ones
on the CFT side via (2.70).

limit the string coupling gs becomes very small and L4/α′2 stays finite. In partic-
ular, the quantum string theory on AdS5 × S5 reduces to a classical string theory.
Consequently, the strong form of AdS/CFT states a duality between a conformal
field theory and a classical string theory.

Weak Form. If we – in addition to the ’t Hooft limit of the strong form –
consider λH to be large, we recover the weak form of AdS/CFT. In this form
we find the string length ls =

√
α′ to be very small compared to the AdS radius

L, as can be seen from (2.70). Consequently, the strings are approximated to be
point particles. This means that the type IIB string theory is reduced to classical
type IIB supergravity. Therefore, the weak form of AdS/CFT states that a certain
conformal field theory with strong ’t Hooft coupling is dual to a classical theory
of supergravity.

We list the strongest, strong and weak form of AdS/CFT discussed above in
Table 2.1. In this thesis we focus on the weak form of AdS/CFT, for which we
present a motivation in Section 2.2.3.

2.2.2 Dp-Branes
The motivation for AdS5/CFT4 is based on superstring theory, where a certain low
energy limit is considered for a stack of N D3-branes. This limit allows to derive
both the AdS side and the CFT side from the dynamics of this setup. In order to
make the motivation of AdS5/CFT4 more accessible, we now discuss the concept of
Dp-branes.9 They are non-perturbative extended objects of dimension p+1 which
interact with strings. For low energies, depending on the strength of the string
coupling, a stack of N branes may be viewed from two different perspectives, the
open (weak coupling) and the closed string picture (strong coupling).

The open string picture considersDp-branes to be (p+1)-dimensional Lorentzian
hypersurfaces on which open strings end while in the closed string picture they are

9The following introduction to Dp-branes is based on [106–112].
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interpreted as very massive objects that curve the ten-dimensional space-time in
which they are embedded.

In the Maldacena argument (Section 2.2.3) the open string picture motivates
the CFT side, while the closed string picture gives the AdS side of AdS/CFT.

Dp-Branes as Hypersurfaces (Open String Picture)

We now discuss the open string picture, where Dp-branes are seen as hypersurfaces
on which open strings end.

Consider an open string XM(τ, σ) (M = 0, . . . , 9) in ten-dimensional space-
time, parametrized by the worldsheet coordinates τ and σ, where τ refers to the
time and σ to the space direction. Since a string is an extended object, we may
impose boundary conditions for the endpoints σ = 0, π of the string for every
direction, i.e. every M . We distinguish between Neumann

∂σX
µ(τ, σ)|σ=0 = ∂σX

µ(τ, σ)|σ=π = 0 , (2.71)

for µ = 0, . . . , p, and Dirichlet boundary conditions,

X i(τ, 0) = X i(τ, π) = 0 , (2.72)

for i = p+ 1, . . . , 9. The conditions (2.71) and (2.72) imply that the endpoints of
the string can move freely in the xµ directions but are fixed along the xi coordinates
of space-time. As we depict on the l.h.s. of Figure 2.3, this suggests that the string
is attached to aDp-brane, i.e. a (p+1)-dimensional hypersurface, located at xi = 0
and expanding along the directions xµ.

A more detailed analysis (see e.g. [106,107,111,112]) reveals that Dp-branes are
not just a mathematical construction to impose boundary conditions but actual
physical objects with energy and charge. In particular, Dp-branes are dynamical
and interact with closed strings. In this picture, the excitations of the Dp-branes
are given by the dynamics of the attached open strings (see Figure 2.3). These
excitations include fluctuations of the brane in the xi directions, i.e. transverse
to the brane. To examine these deformations of the brane we use the worldsheet
coordinates ξµ to parametrize the brane via(

ξ0, . . . , ξp
)
7−→

(
x0(ξµ), . . . xp(ξµ),Φp+1(ξµ), . . . ,Φ9(ξµ)) . (2.73)

The 9− p functions Φi correspond to the transverse fluctuations, as we depict on
the r.h.s. of Figure 2.3. The low energy effective action for one Dp-brane is given
by

Sopen = −τp
∫
dp+1ξe−φ

√
− det

(
P [g] + P [B] + 2πα′F

)
+ SWZ , (2.74)

where the first term is known as the Dirac-Born-Infeld (DBI) action SDBI and
SWZ is the Wess-Zumino action

SWZ = τp
gs

∫ ∑
q

P [C(q+1)] ∧ eP[B]+2πα′F . (2.75)
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Figure 2.3: Dp-branes in the open string picture. By imposing Neumann (2.71) and
Dirichlet (2.72) boundary conditions for open strings we introduce a Dp-brane on
which open strings end (l.h.s.). These Dp-branes are dynamical objects themselves.
The excitations of the branes may be viewed as the dynamics of the attached
strings. These excitations include deformations of the shape of the brane (r.h.s.),
which may be parametrized by Φi, i = p+ 1, . . . , 9 (see (2.73)).

In (2.74) τp is given by
τp = (2π)−pα′−(p+1)/2 , (2.76)

and

P [g]µν = ∂xλ

∂ξµ
∂xσ

∂ξν
gλσ + ∂Φi

∂ξµ
∂xσ

∂ξν
giσ + ∂xλ

∂ξµ
∂Φj

∂ξν
gλj + ∂Φi

∂ξµ
∂Φj

∂ξν
gij (2.77)

is the pull-back of the ten-dimensional metric gMN of the surrounding space-time
to the brane. The pull-back P [B]µν of the Kalb-Ramond field BMN is defined in
an analogous way. Moreover, φ is the dilaton and Fµν is the field strength of a U(1)
gauge field residing on the brane. In the Wess-Zumino action (2.75) gs is the string
coupling, P [C(q+1)] is the pull-back of the Ramond-Ramond (R-R) (q + 1)-form
C(q+1) and the exponential of the two-form P [B] + 2πα′F is defined via the wedge
product.

The action (2.74) only contains massless fields, which is a consequence of the of
the fact that we only consider low energies. We note that the full action describing
the dynamics of a Dp-brane also contains a term for the fermionic excitations of
the brane. We do not discuss this term here, which is why we do not include it in
Sopen.

To make the DBI action more accessible we consider the special case eφ = gs =
const., F = 0 and B = 0,

SDBI = −τp
gs

∫
dp+1ξ

√
− det

(
P [g]

)
. (2.78)
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Figure 2.4: A stack of N coincident Dp-branes. When we consider N branes
instead of just one, open strings can be attached to two different branes. Here we
depict a string stretching from the r-th to the s-th brane. Such a string is labeled
by a Chan-Paton factor λrs. We need to emphasize that the Dp-branes in this
graphic coincide, i.e. they all lie on top of each other. The spatial distance of
the branes is only introduced here to facilitate the graphical representation of the
setup.

We see that in this simple situation the DBI action reduces to the area of the
Dp-brane. Consequently, the corresponding equations of motion imply that Dp-
branes are minimal surfaces. The prefactor τp/gs in (2.78) may be interpreted as
the tension of the brane.

Since the field F in Sopen (2.74) can be interpreted as a U(1) gauge field, Sopen
describes a U(1) gauge theory that is defined on the Dp-brane. It is possible to
extend this concept to introduce U(N) gauge theories for generic N by considering
a stack of N coincident Dp-branes instead of just one. As we depict in Figure 2.4,
a stack of N branes introduces an additional pair of indices r, s = 1, . . . , N to
open strings in a natural way: the indices refer to the branes the two endpoints of
the string are attached to. In practice, these indices appear in form of so-called
Chan-Paton factors λrs which label an oriented string stretching from the r-th to
the s-th Dp-brane. The N × N matrix with entries λrs is an element of the Lie
algebra u(N). This is how the gauge group U(N) emerges for a stack of N branes.
The fields on the branes then carry representations of U(N), i.e.

Φi = ΦiaT a , Aµ = AaµT
a , (2.79)

where Aµ is the gauge field corresponding to Fµν and T a are the generators of
U(N). Consequently, Φi and Aµ are fields in the adjoint representation of U(N).
The action Sopen for the stack of Dp-branes is an adapted version of (2.74). For
instance, it includes traces to ensure gauge invariance. By taking the appropriate
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limits, the field theory described by Sopen for a stack of D3 branes motivates the
CFT side of AdS5/CFT4, as we explain in Section 2.2.3.

In addition to the effective action (2.74), we need to include the action Sclosed
of closed strings propagating through space-time. This is necessary in order to
obtain a complete description of Dp-branes as dynamical objects embedded in a
ten-dimensional space-time. The closed string action is given by

Sclosed = 1
(2π)7α′4

∫
d10x

√
− det(g)

(
e−2φR+ · · ·

)
, (2.80)

where the dots refer to terms including fields like the dilaton or the Kalb-Ramond
field. Note that these fields, as well as the metric gMN , also appear in Sopen (2.74).
Therefore, the Dp-branes and closed strings interact with each other. The action
describing both branes and closed strings is given by

S = Sopen + Sclosed . (2.81)

Dp-Branes as Massive Objects (Closed String Picture)

In the previous section we pointed out that closed strings couple to Dp-branes.
When this coupling becomes very strong, Dp-branes may be interpreted as very
massive objects that curve the surrounding space-time, so-called extremal p-branes.

This perspective is referred to as closed string picture.10 In the Maldacena
argument the closed string picture provides the AdS side of AdS/CFT. p-branes
are very massive (p+ 1)-dimensional objects which usually come with a curvature
singularity and a horizon. If the position of the horizon and the singularity coincide,
the branes are referred to as extremal, which is the situation we consider here.
Since it is not known how a full quantum field theory describing this setup can
be constructed, it is common to restrict further discussions to the classical limit,
i.e. Dp-branes are introduced as classical solutions of type II supergravity. This
provides the weak form of AdS/CFT (see Table 2.1).

The solutions of type II SUGRA associated with Dp-branes are of the form
[125–127]

ds2
Dp = gDpMNdx

MdxN = 1√
Hp(r)

ηµνdx
µdxν +

√
Hp(r)δijdyidyj , (2.82)

eφ = gsHp(r)(3−p)/4 , (2.83)
C(p+1) =

(
Hp(r)−1 − 1

)
dx0 ∧ · · · ∧ dxp , (2.84)

BMN = 0 , (2.85)

where
Hp(r) = 1 +

(Lp
r

)7−p
and r2 =

∑
i

(
yi
)2
. (2.86)

The Greek indices µ, ν run over 0, . . . , p and denote the coordinates parallel to the
brane. Moreover, we have i = p + 1, . . . , 9 and the coordinates yi correspond to
the directions transverse to the brane.

10The following introduction to the closed string picture is based on [109,110].
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The extremal p-brane solutions of supergravity (2.82) are a special case of a
certain class of geometries with a curvature singularity surrounded by a horizon.
They correspond to the situation when the positions of the singularity and the
horizon coincide. In the coordinates chosen in (2.82) the horizon/singularity is
located at r = 0, as may be deduced from the behavior of the Ricci scalar

RDp = (p− 7)2(3− p)(1 + p)
4r2
√

(1 + (L/r)7−p)(1 + (r/L)7−p)2
(2.87)

in the limit r −→ 0. Note that for p = 3 the geometry is well behaved at r = 0.
We discuss this case in greater detail in Section 2.2.3.

Starting from the explicit form (2.82) – (2.86) of the supergravity solution, we
may now discuss when this is a valid approximation for string theory. One very
intuitive criterion is that the string length needs to be very small compared to
a typical length of space-time. Since the only length scale in (2.82) is Lp, this
implies

√
α′ � Lp. In addition, the space-time curvature is required to be very

small compared to the string scale. In (2.87) we see that for p 6= 3 there is a
singularity at r = 0, so in these cases the supergravity solution is only valid in a
region sufficiently far away from r = 0. Moreover, the effective string coupling eφ
needs to be small for the supergravity approximation since string loop corrections
may not be ignored otherwise. From (2.83) we see that eφ diverges at r = 0
for p < 3 which gives further support to the statement that the supergravity
approximation is not valid for p < 3 at r = 0.

For p = 3 the Ricci scalar vanishes and eφ = gs is constant (see (2.87) and
(2.83)). So we find the supergravity approximation to be valid at any point for
p = 3 if we choose gs < 1 and

√
α′ � L3. We further discuss the p = 3 case in

Section 2.2.3, where we use it to recover the AdS side of AdS/CFT from the closed
string picture.

We may associate the supergravity solution (2.82) – (2.86) in the closed string
picture with a stack of N Dp-branes in the open string picture via the relation

L7−p
p = (4π)(5−p)/2Γ

(7− p
2

)
gsNα

′(7−p)/2 (2.88)

between Lp (2.86) and N . This relation is obtained as follows (see e.g. [109]).
Consider the R-R charge Q, which – in terms of N – is given by

Q = N

(2π)pα′(p+1)/2gs
. (2.89)

In the supergravity solution (2.82) – (2.86), Q may be computed via the R-R flux
through the (8− p)-sphere surrounding the singularity at r = 0, as we visualize in
Figure 2.5, i.e.

Q = 1
2κ2

10

∫
S8−p
∗F(p+2) , (2.90)

where
F(p+2) = dC(p+1) =

(7− p)L7−p
p

r8−pH2
p (r) dr ∧ dx

0 ∧ · · · ∧ dxp , (2.91)
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Figure 2.5: The R-R charge of the Dp-brane geometry. The Dp-brane metric is
given by (2.82). In analogy to the electric charge of a point particle, the R-R
charge of the Dp-brane may be determined by the flux through the (8− p)-sphere
around r = 0.

and 2κ2
10 = (2π)7α′4g2

s . The Hodge dual of F(p+2) is given by

∗F(p+2) =
(7− p)L7−p

p

r8−pH2
p (r)

√
− det(gDp)
(8− p)!

× grN1
Dp g

0N2
Dp · · · g

pNp+2
Dp εM1···M8−pN1···Np+2dx

M1 ∧ · · · ∧ dxM8−p

=(7− p)L7−p
p ωS8−p ,

(2.92)

where ωS8−p is the standard volume form of S8−p. By comparing (2.89) with (2.90)
we obtain (2.88). So we see that a stack of N Dp-branes in the open string picture
may be interpreted in the closed string picture as a supergravity solution of the
form (2.82) – (2.86) with Lp given by (2.88).

2.2.3 The Maldacena Argument
We now reviewMaldacena’s original motivation [22] for the weak form of AdS5/CFT4
(see Table 2.1). 11 The basis of Maldacena’s argument are the two pictures for
a stack of N D3-branes discussed in Section 2.2.2. When we only consider low
energies and reduce the strings to point particles, i.e. α′ −→ 0, we obtain the CFT
side from the open and the AdS side from the closed string picture. Since both
pictures describe the same physical object, we conclude that the AdS side and the
CFT side describe the same physics and therefore recover AdS5/CFT4.

We begin our review of this motivation for AdS5/CFT4 by presenting the exact
limits we consider. First, we only work with low energies, i.e. E � 1/

√
α′ to avoid

any stringy excitations. Second, we take the point-particle limit

α′ −→ 0 , for fixed r

α′
, (2.93)

where r is any length scale. This limit is known as the Maldacena limit. By
keeping r/α′ fixed we ensure that the expectation values of the theory stay fixed
for α′ −→ 0, as we show below.

11This section is based on [106,109,110].
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By applying these two limits we recover the CFT side from the open string
picture and the AdS side from the closed string picture.

Open String Picture (CFT Side)

We first consider the stack of N D3-branes in the open string picture. As already
pointed out at the beginning of Section 2.2.2, this picture is only reliable if the
coupling between open and closed strings is weak. For a stack of N D3-branes
this coupling is effectively given by gsN . So we implicitly assume gsN � 1 in
this section. We mentioned in Section 2.2.2 that for low energies the action for
the fields in the open string picture is a sum of two terms (2.81). A term Sopen
(2.74) describing a U(N) gauge theory on the branes and a term Sclosed (2.80)
corresponding to the closed string modes propagating through ten-dimensional
space-time. By construction of Sopen, the excitations of the branes couple to the
closed strings.

To obtain the CFT side from this setup we consider the rescalings

eφ = gse
κ10φ̃ , Φi = 2πα′φi , gMN = ηMN + κ10hMN , (2.94)

where 2κ2
10 = (2π)7α′4g2

s , which ensure the canonical normalization of the fields.
Note that the redefinition of the metric gMN implies that we only consider small
excitations of space-time, which is in agreement with the low energy limit.

By taking the Maldacena limit (2.93) we ensure that the expectation values of
the theory are fixed for α′ −→ 0. To see this we consider the following example:
we add an additional D3-brane parallel to the stack of N branes at x9 = r. In the
low energy limit – where only massless modes are considered – this implies that
the corresponding gauge group U(N + 1) is broken to U(N)×U(1) and φ9 has the
vacuum expectation value 〈φ9〉 = r/(2πα′). In the Maldacena limit α′ −→ 0 for
r/α′ fixed, this vacuum expectation value does not change.

We now apply the Maldacena limit to Sopen (2.74). Since a detailed discussion
for a stack of N D3-branes for generic N would exceed the requirements for this
thesis, we restrict our discussion to the bosonic part of just one D3-brane with
vanishing Kalb-Ramond field. Moreover, we ignore the contribution of the Wess-
Zumino action SWZ . Considering these simplifications, Sopen takes the form

Sopen = − 1
(2π)3α′2

∫
d4xe−φ

√
− det

(
P [g] + 2πα′F

)
. (2.95)

Here we used (2.76) for p = 3 and chose the xµ space-time coordinates as worldsheet
coordinates, i.e. xµ = ξµ. By applying (2.94) to (2.95) and expanding in α′, we
find

Sopen = − 1
2πgs

∫
d4x
(1

4FµνF
µν + 1

2η
µνδij∂µφ

i∂νφ
j +O(α′)

)
. (2.96)

So we recover the typical terms expected in the action of a U(1) gauge theory. It
is possible to generalize this discussion to a stack of N D3-branes. By doing so
we find that in the limit α′ −→ 0, Sopen becomes the action of N = 4 SYM with
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gauge group SU(N) (see (2.40)), i.e. the CFT side.12 In particular, the coupling
constant gYM turns out to be

g2
YM = 2πgs . (2.97)

Having established the derivation of the CFT side from Sopen, we now discuss
the remaining part Sclosed of the action (2.81). By applying (2.94) to the expression
(2.80) for Sclosed we obtain

Sclosed = −1
2

∫
d10x

(
(∂h)2 + · · ·+O(κ10)

)
. (2.98)

Here (∂h)2 refers to the leading order contribution of
√
− det(g)R in κ10. It turns

out to be the action describing free gravitons in ten-dimensional Minkowski space.
The dots in (2.98) refer to the leading order contributions of the other terms in
(2.80). They correspond to fields defined on ten-dimensional Minkowski space as
well. In total, Sclosed turns out to be the action for type IIB supergravity on R9,1.

Summing up the results of this section, we find that the action (2.81) for the
open string picture contains the action SN=4 of N = 4 SYM SU(N) and the action
SIIB of type IIB SUGRA. The coupling terms between SN=4 and SIIB – provided
by Sopen (2.74) – turn out to be of order α′2 and may therefore be ignored in the
limit α′ −→ 0. Consequently, the resulting action describes a N = 4 SYM theory
and a theory of supergravity which completely decouple from each other,

Sopen + Sclosed −→ SN=4 + SIIB . (2.99)

Closed String Picture (AdS Side)

The AdS side may be obtained from the closed string picture of a stack of N
D3-branes in the following way. In contrast to the open string picture, we first
consider the Maldacena limit (2.93) here and afterwards take the low energy limit.
By performing the limit α′ −→ 0 we in particular impose

√
α′ � L3. In this

situation the classical supergravity limit is a good approximation if we in addition
choose gs < 1, as discussed in Section 2.2.2. From (2.82) – (2.86) we obtain

ds2
D3 = 1√

H3(r)
ηµνdx

µdxν +
√
H3(r)

(
dr2 + r2dΩ5

)
, (2.100)

eφ = gs = const. , (2.101)
C(4) =

(
H3(r)−1 − 1

)
dx0 ∧ · · · ∧ dx3 , (2.102)

BMN = 0 , (2.103)

where
H3(r) = 1 +

(L3

r

)4
. (2.104)

12Note that in Section 2.2.2 we stated that a stack of N Dp-branes provides a U(N) gauge
theory. The reason why we only consider a SU(N) gauge symmetry here is due to the fact that
the U(N) gauge theory contains decoupling U(1) degrees of freedom. In AdS/CFT only the
remaining SU(N) degrees of freedom are considered. For more details we refer to [110].
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Figure 2.6: The geometry induced by a stack of N D3-branes. (This figure is
inspired by a similar graphic in [106].) By considering the metric (2.100) it is easy
to see that the radius of the S5 sphere surrounding r = 0 asymptotes to L3 > 0 in
the limit r −→ 0. So the geometry may be interpreted as a throat.

Note that we have used spherical coordinates for the directions transverse to the
brane. These transverse coordinates form the geometry of a throat, since the S5

sphere surrounding the horizon at r = 0 has a finite radius L3, as depicted in
Figure 2.6.

The deeper an object is located in the throat, the more it is red-shifted, as we
now discuss. For an observer at infinity an object with energy Er located at a
finite r has a red-shifted energy

E = H
−1/4
3 (r)Er . (2.105)

So the energy E measured at r = ∞ decreases the closer the object is moved to
the horizon at r = 0. We may consider objects at r = 0 with arbitrary energy E
– which is the energy measured in the field theory – by keeping

√
α′Er fixed while

taking the Maldacena limit, i.e. α′ −→ 0 for r/α′ fixed. This is easy to be seen by
approximating

H3(r) ∼ L4
3
r4 (2.106)

for r � L3 and inserting (2.88) for p = 3 into (2.105).

The next essential step is to take the low energy limit. We may distinguish
two different types of excitations that have low energy for an observer at infinity:
massless modes with very large wave-lengths propagating through space-time far
away from the throat, and excitations located very close to r = 0 which have low
energy due to the red-shift (2.105). We depict these two types in Figure 2.7.

By taking the low energy limit, these two types of low energy excitations are
decoupled from each other. This may be seen as follows: We choose the wave-
lengths of the massless excitations far away from the horizon to be much larger
than the radius L3 of the S5 sphere surrounding it. Consequently, the length scale
L3 of the horizon cannot be approached by the considered low-energy particles.
Moreover, the horizon has an infinite radial distance from any other point on the
geometry. Therefore, the excitations very close to r = 0 are trapped inside the
throat.
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Figure 2.7: The two types of low energies in the brane geometry (2.100). We
can distinguish two types of excitations that have low energy E for an observer
at infinity. Excitations with long wave-lengths far away from the throat (A) and
excitations that are trapped inside the throat (B). The latter are red-shifted for
an observer at infinity. In the low energy limit these two types decouple.

In this decoupling limit, the massless large-wave-length modes form IIB su-
pergravity on flat ten-dimensional Minkowski space, since the metric (2.100) is
asymptotically flat for r � L3. For the excitations near r = 0 we may apply
(2.106). This allows us to recover the metric of AdS5 × S5 from (2.100) by identi-
fying L3 with the AdS radius L (see (2.61) for the AdS part of the metric),

ds2
D3 ∼

r2

L2ηµνdx
µdxν + L2

r2 dr
2 + L2dΩ2

5 . (2.107)

So we find the near horizon excitations to describe a theory of supergravity on
AdS5 × S5, which is the AdS side of AdS/CFT (2.69).

Furthermore, we recover a relation between the AdS radius and the parameters
N , gs and α′ by setting L3 = L in (2.88) for p = 3,

4πgsN = L4

α′2
. (2.108)

This relation implies that the limit α′ −→ 0 – which is necessary for the classical
supergravity approximation to be reliable – is consistent only when gsN � 1. This
is in agreement with the statement made at the beginning of Section 2.2.2: the
coupling between open and closed strings (which is given by gsN) has to be strong
in order for the interpretation of branes as massive objects to be trusted.

As a final comment we mention that since the radius of the S5 sphere in (2.107)
is equal to the AdS radius L, we find the Ricci scalar of the sphere to be

RS5 = 20
L2 = −RAdS5 , (2.109)

where the second equality is a consequence of (2.46). So we find the Ricci scalar
of (2.107) to vanish, which is in agreement with (2.87) for p = 3. Therefore, the
divergence of the metric (2.107) at r = 0 is merely due to a coordinate singularity.
We can avoid this singularity by using global coordinates – e.g. (2.57) – for the
AdS part of the metric instead of Poincaré patch coordinates (2.61).
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Figure 2.8: A visualization of the Maldacena argument. We start with a stack of
N D3-branes. By taking the low energy and the Maldacena limit we recover in the
open string picture (gsN � 1) type IIB supergravity on R9,1 and the N = 4 SYM
theory with gauge group SU(N). In the closed string picture (gsN � 1) we obtain
type IIB supergravity on R9,1 and type IIB supergravity on AdS5 × S5. Since in
both pictures a type IIB supergravity on R9,1 is present that decouples from the
rest of the theory we may conclude that the N = 4 SYM theory is dynamically
equivalent to type IIB supergravity on AdS5 × S5.

Combining the Open and Closed String Picture

Combining the CFT and AdS side derived from the open and closed string picture
respectively, we may now to motivate AdS5/CFT4. In the open string picture we
saw that by considering the low energy and Maldacena limits, the action (2.81) for
D3-branes decouples into the action of N = 4 SU(N) SYM (2.40) and the action
for type IIB supergravity on R9,1. In the closed string picture on the other hand,
we found that in the low energy and Maldacena limits the theory describes two
different types of excitations that decouple from each other, type IIB supergravity
modes on AdS5 × S5 and R9,1.

So we see that in both the open and the closed string picture the theory of
type IIB supergravity on R9,1 is present and decouples from the rest the theory.
Since both pictures describe the same physical situation, we may conclude that the
remaining parts, i.e. N = 4 SU(N) SYM and type IIB supergravity on AdS5×S5,
describe the same physics as well – which is the statement of AdS5/CFT4. We
depict this train of thought in Figure 2.8. In particular, by combining the formula
(2.97) for the coupling constant gYM with the relation between the string coupling
gs and the AdS radius (2.108), we recover the relation (2.70) between the free
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parameters of the AdS and CFT side.
A point to note is that the open string picture is only reliable for gsN � 1,

while the closed string picture requires gsN � 1, as we discuss in the corresponding
sections. The above conclusion that N = 4 SU(N) SYM is dual to type IIB on
AdS5 × S5 does not consider this subtlety and is therefore just a motivation for
AdS5/CFT4, not a formal proof.

2.3 AdS3/CFT2 Correspondence
In this section we review the AdS3/CFT2 correspondence, which is of particular
importance for this thesis as most of our results concern this setup.

Similar to AdS5/CFT4 (see Section 2.2), the AdS3/CFT2 correspondence may
be motivated by a particular configuration of D-branes. However, unlike in the
AdS5/CFT4 case, these branes are not embedded in ten-dimensional Minkowski
space R9,1 but in

R4,1 × S1 × T 4 , (2.110)
where T 4 is the four-torus. The following motivation of AdS3/CFT2 is taken from
[109]. Further reviews can be found in [22,110,128–130]. The brane configuration
we consider here consists of N1 D1-branes wrapping the S1 in (2.110) and N5 D5-
branes wrapping S1 × T 4. We depict this setup together with the coordinates we
use in Table 2.2.

Geometry R4,1 S1 T 4

Coordinates x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D1 × · · · · × · · · ·
D5 × · · · · × × × × ×

Table 2.2: Embedding of the D1 and D5 branes. The brane configuration moti-
vating AdS3/CFT2 considers N1 D1-branes wrapping the S1 in x5 direction and
N5 D5-branes wrapping the S1 × T 4 along x5, . . . , x9.

The low energy dynamics of this configuration – which provides the CFT side
– is located at the (1 + 1)-dimensional intersection of the D1 and D5-branes. Note
that we assume the characteristic length scales of T 4 to be small compared to S1. In
order to motivate the corresponding gravity dual, we consider the IIB supergravity
solution of the D1/D5 system – analogous to the derivation of AdS5 × S5 in
AdS5/CFT4 (see Section 2.2). The metric of this solution – in Euclidean signature
– is given by

1√
H1(r)H5(r)

(
(dx0)2 +(dx5)2)+

√
H1(r)H5(r)δijdxidxj +

√
H1(r)
H5(r)ds

2
T 4 , (2.111)

where i, j = 1, . . . , 4, ds2
T 4 is the metric of the four-torus T 4 and

H1(r) = 1 + Q1

r2 , H5(r) = 1 + Q5

r2 with r2 =
4∑
i=1

(xi)2 . (2.112)
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Moreover, we have

Q1 = (2π)4gsN1α
′3

V4
and Q5 = gsN5α

′ , (2.113)

where V4 is the volume of T 4. Just as for AdS5/CFT4 (see Section 2.2) we take
the Maldacena limit α′ −→ 0 for r/α′ fixed. We obtain the geometry

r2

L2

(
(dx0)2 + (dx5)2)+ L2

r2 dr
2 + L2dΩ3 +

√
Q1

Q5
ds2

T 4 (2.114)

of AdS3×S3×T 4 (in Euclidean signature) on which the gravity dual of the CFT is
defined. Note that we chose spherical coordinates for the directions xi, i = 1, . . . , 4.
The AdS radius L is given by

L4 = Q1Q5 . (2.115)
The metric (2.114) contains the Poincaré patch of AdS3 (2.61), which may be
extended to global AdS3 (2.57), 13

ds2
AdS = −

(
1 + r̃2

L2

)
dt̃2 + 1

1 + r̃2

L2

dr̃2 + r̃2dφ2 , (2.116)

where φ ∼ φ+ 2π. The CFT is defined on the conformal boundary of AdS3, whose
constant time slice is given by a circle (see (2.67) for d = 2). Moreover, the central
charge c of the CFT is related to Newton’s constant G3 in 3 dimensions and the
AdS radius via the formula

c = 3L
2G3

, (2.117)

which was derived by Brown and Henneaux [132].

2.4 Dictionary
In order to make practical use of AdS/CFT, a one-to-one correspondence between
field theory and gravity quantities is required. To be more precise, we need to know
how a given field theory quantity is represented on the gravity side, i.e. what is
its gravitational dual. This one-to-one correspondence between field theory and
gravity quantities is referred to as the dictionary.

The dictionary allows to perform field theory calculations on the gravity side
and therefore provides many non-trivial tests of AdS/CFT. As an explicit example
for an entry of the dictionary, we mention the duality between chiral primary
operators (CFT side) and certain fluctuations of the metric and the R-R five form
(AdS side) in AdS5/CFT4 [23]. A further entry of the dictionary is the Ryu-
Takayanagi formula, which relates entanglement entropies (CFT side) to minimal
surfaces (AdS side) [82]. We discuss the Ryu-Takayanagi formula in Section 3.1.6.

13We note that the x5 direction in (2.114) parametrizes S1 (see Table 2.2). The corresponding
direction for the Poincaré patch (2.61) however, is non-compact. Therefore, following the con-
struction presented in this section, we may obtain (2.116) only locally. As pointed out in [129], in
order to obtain (2.116) globally, a rotating version of the D1-D5 brane configuration is required
(see e.g. [131]).
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2.4.1 Field-Operator Map
A very concrete realization of the dictionary is the field-operator map [133,134]. It
relates bulk fields with boundary operators via the asymptotic behavior of the bulk
fields at the conformal boundary of AdSd+1. In particular, the field operator map
makes the statement that the considered field theory is defined on the boundary
of the respective AdSd+1 space, more explicit. Moreover, the field-operator map
provides an explicit expression for n-point functions of boundary operators in terms
of bulk quantities.

Kaluza-Klein Reduction

The field operator map associates fields on AdSd+1 with operators on the CFT side.
However, in AdS/CFT we usually consider a theory of gravity on AdSd+1 ×M
– where M is a compact manifold – to be dual to a conformal field theory. For
instance, the additional manifold M is S5 in AdS5/CFT4 (see Section 2.2) and
S3×T 4 in AdS3/CFT2 (see Section 2.3). In order to understand the field operator
map, we first need to examine how the fields on the gravity side, which are defined
on AdSd+1 ×M, are related to the AdSd+1 fields dual to CFT operators.

The fields on AdSd+1 are obtained by considering a mode expansion in the
harmonic functions onM, i.e. a Kaluza-Klein reduction [135]. By this procedure,
from each field on AdSd+1 ×M an infinite tower of fields on AdSd+1 is obtained.
Each of these fields corresponds to one mode on M. Since M is compact, the
spectrum of these modes is discrete.

To see how the Kaluza-Klein reduction works in practice, we perfom it for a
massless scalar field Φ(xM , θi) on AdS5 × S5. 14 Here, we use xM , M = 0, . . . , 5
and θi, i = 1, . . . , 5 to parametrize AdS5 and S5 respectively. The equation of
motion for Φ is given by the Klein-Gordon equation on AdS5 × S5,

∇2
AdS5×S5Φ(xM , θi) = 0 , (2.118)

where ∇2
AdS5×S5 is the d’Alembert operator of AdS5×S5. It is easy to see that the

d’Alembert operator on AdS5×S5 is given by the sum of the respective operators
on AdS5 and S5, i.e.

∇2
AdS5×S5 = ∇2

AdS5 +∇2
S5 . (2.119)

Therefore, (2.118) may be solved by the mode expansion

Φ(xM , θi) =
∑
l

ϕl(xM)Y l(θi) , (2.120)

where the ϕl, l ∈ N0, are scalar fields on AdS5 and the Y l are the spherical
harmonics on S5 satisfying the equation

∇2
S5Y l = − l(l + 4)

L2 Y l . (2.121)

14The following discussion is based on [116].
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Here the L2 in the denominator comes from the fact that the S5 sphere in AdS5×S5

has radius L (see (2.107)). By inserting the mode expansion (2.120) together with
(2.119) and (2.121) into (2.118), we find the equation of motion for each ϕl,

∇2
AdS5ϕl −m

2
lϕl = 0 , (2.122)

where
m2
l = l(l + 4)

L2 . (2.123)

The equation (2.122) is the Klein-Gordon equation for a scalar field of mass ml on
AdS5.

So we see that the Kaluza-Klein reduction of a single scalar field Φ on AdS5×S5

provides an entire tower of massive scalar fields ϕl on AdS5. Each of these fields
may now be associated with a particular operator on the CFT side. As we show
below, the mass ml (2.123) governs the asymptotic behavior of ϕl at the conformal
boundary and is related to the conformal dimension of the dual CFT operator.
Note thatml is completely determined by the eigenvalues of∇2

S5 (2.121). Following
the above arguments for the derivation of the mass spectrum ml, it is easy to see
that the same procedure may be performed in the general case of AdSd+1 ×M.
Evidently, the mass spectrum of the resulting scalar fields on AdSd+1 is determined
by the eigenvalues of ∇2

M. Since the masses of the bulk fields determine the
conformal dimension of the dual operators, we see that the operator spectrum on
the CFT side is encoded in the shape ofM on the gravity side.

A Toy Model: Scalar Fields Dual to Primary Operators

In order to explain the basic concept of the field-operator map, we consider the
following toy model,15 which is taken from [109]. 16 Consider a scalar field ϕ
of mass m in AdSd+1 – obtained by a Kaluza-Klein reduction – with a primary
operator O as CFTd dual. The conformal dimension of O is denoted as ∆. The
action on AdSd+1 for ϕ is given by

SAdS[ϕ] = −C2

∫
dzddx

√
det(gPP)

(
gMN

PP ∂Mϕ∂Nϕ+m2ϕ2) , (2.124)

where gPP is the AdSd+1 metric in Poincaré patch coordinates (2.61) and C is a
constant proportional to N2. Note that we work in Euclidean signature here, i.e.
we replace ηµν by δµν in (2.61).

We now present how the asymptotic behavior (i.e. z −→ 0) of the solutions
of the equation of motion corresponding to (2.124) is related to the conformal
dimension ∆ of O via the field operator map. The equation of motion for ϕ is
given by

z2∂2
zϕ− (d− 1)z∂zϕ+ z2δµν∂µ∂νϕ−m2L2ϕ = 0 , (2.125)

15For more explicit examples, we refer to [23].
16Note that this example is also discussed in [110,116], where more details are provided.
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which follows from (2.124) and is in agreement with (2.122). By making the plane
wave ansatz ϕ(z, x) = exp(ipµxµ)ϕp(z), we find

z2∂2
zϕp − (d− 1)z∂zϕp − (z2p2 +m2L2)ϕp = 0 , (2.126)

where p2 = δµνpµpν . The two independent solutions of (2.126) have a near bound-
ary behavior of the form

ϕp ∼ z∆± , (2.127)

where

∆± = d

2 ±
√
d2

4 +m2L2 , (2.128)

i.e.
∆±(∆± − d) = m2L2. (2.129)

Thus, we find that ϕ(z, x) has the asymptotic behavior

ϕ(z, x) ∼ ϕ(0)(x)z∆− + ϕ(+)(x)z∆+ + · · · (2.130)

near the conformal boundary at z = 0.

If the conformal dimension ∆ of the operator O dual to ϕ satisfies ∆ ≥ d/2,
the relation between m and ∆ is given by ∆ = ∆+ via (2.128). The corresponding
prefactor ϕ(+)(x) in the series (2.130) of ϕ is then associated with the vacuum
expectation value of O. Moreover, (2.128) implies

∆− = d−∆ . (2.131)

The prefactor ϕ(0) corresponding to ∆− in (2.130) is interpreted as a source of O.
We note that the above procedure may also be performed for primary operators

with conformal dimension d/2− 1 ≤ ∆ < d/2 if the interpretation of ϕ(0) and ϕ(+)
as vacuum expectation value and source is interchanged. For more details we refer
to [109].

This example shows nicely that it is appropriate to consider the CFT to be
defined on the conformal boundary: the asymptotic behavior of fields in the bulk
encode properties of the corresponding operator duals in the CFT.

2.4.2 Generating Functionals
The field-operator map allows to construct a bulk expression for the generating
functional of connected Green’s functions for a given operator O [133, 134]. This
very powerful property of AdS/CFT provides a method for computing generic
n-point functions of O from the gravity side.

To see how this construction of the gravity dual of the generating functional
works, we consider once more the toy model of a scalar field ϕ in AdSd+1 corre-
sponding to a primary CFTd operator O with conformal dimension ∆ (see Section
2.4.1). The following discussion is taken from [109]. The generating functional
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W [ϕ(0)] for connected Green’s functions of O may be introduced by adding a
source term to the action SCFT describing the dynamics of the CFT,

SCFT −→ S ′CFT = SCFT −
∫
ddxϕ(0)(x)O(x) , (2.132)

where ϕ(0) is the source of O. The partition function Z[ϕ(0)] for S ′CFT in euclidean
signature is then given by

Z[ϕ(0)] = e−W [ϕ(0)] =
〈

exp
(∫

ddxϕ(0)(x)O(x)
)〉

CFT
, (2.133)

which in particular defines the generating functional for connected Green’s func-
tions W [ϕ(0)].

The relation between W [ϕ(0)] and the gravity dual ϕ of O is introduced as
follows. We associate the source ϕ(0) in (2.132) with the prefactor of the zd−∆

term in the series expansion of the field ϕ (2.130), i.e.

ϕ(0)(x) = lim
z→0

ϕ(z, x)z∆−d . (2.134)

With this identification, the bulk formulation of W [ϕ(0)] is given by [133,134]

W [ϕ(0)] = SAdS[ϕ]
∣∣∣
limz→0 ϕ(z,x)z∆−d=ϕ(0)(x)

, (2.135)

i.e. the generating functional W [ϕ(0)] corresponds to the bulk action (2.124)
evaluated at the solution ϕ of the respective equation of motion (2.125). Therefore,
connected correlation functions 〈O(x1)O(x2) · · · O(xn)〉 may be obtained by a bulk
calculation via

〈O(x1)O(x2) · · · O(xn)〉 = − δnW

δϕ(0)(x1)δϕ(0)(x2) · · · δϕ(0)(xn)

∣∣∣
ϕ(0)=0

(2.136)

and the identification (2.135) of W [ϕ(0)] with the on-shell action (2.124) on the
gravity side.

This approach for one operator O may be straightforwardly generalized to more
complicated setups, such as several operators Oi i = 1, 2, . . . . The action SAdS
on the gravity side then describes the dynamics of the duals ϕi of the operators Oi.

The association of the generating functional W of connected Green’s functions
with the on-shell action SAdS is a central result of AdS/CFT. It offers a precise
formulation of the AdS/CFT correspondence for operators and provides a clear
procedure for how to apply AdS/CFT for computing correlation functions.

2.5 Generalizations of AdS/CFT
We conclude our introduction to AdS/CFT by reviewing how CFT states may
be treated on the gravity side. So far we have restricted our discussion to the
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situation where the bulk geometry is pure AdSd+1. This geometry is associated
with the vacuum state of the CFT. Considering the statements made in Section
2.4.2 this is evident. Bulk geometries different from pure AdSd+1 may be used as
gravity duals for other CFT states.17 The considered geometries are asymptotic
AdSd+1 spaces (AAdSd+1), i.e. a geometries which asymptote to AdSd+1 when –
for instance – a suitable radial coordinate is taken to infinity. This emergence
of AdSd+1 is necessary in order to ensure the existence of a conformal boundary,
where the CFT is defined on.

2.5.1 Thermal States in AdS/CFT
Black holes in AdSd+1 are an example for asymptotic AdSd+1 spaces that has
been studied extensively in the literature [61, 136–138]. These geometries are the
holographic duals of thermal states on the field theory side [136]. The study of
thermal CFT states in AdS/CFT is a very vast field that requires some discussion
of thermal states in field theories in order to work with it properly. For instance,
we need to distinguish between the case of Lorentzian and Euclidean signature of
the metric. In the latter, the time direction is compactified to a circle, i.e. made
periodic. The circumference of this circle is then associated with the temperature
of the field theory side. The introduction of this additional length scale, i.e. the
circumference, leads to non-trivial effects in the bulk, such as the Hawking-Page
phase transition [136,139]. As we do not require a detailed knowledge of the aspects
of thermal states in AdS/CFT for this thesis, we do not present an extended review
of the subject here but refer to [109]. Instead, we restrict ourselves to discussing
the black D3-brane geometry in the context of AdS5/CFT4 in order to give a
motivation for the association of thermal states on the boundary with black holes
in the bulk.18

The Metric of Black D3-Branes

Black D3-branes [127,140] are a generalization of the extremal D3-branes consid-
ered in the motivation of the gravity side of AdS5/CFT4 (see Section 2.2). Em-
ploying the same near horizon limit to the black D3-brane geometry as in Section
2.2 for the extremal D3-branes leads to the metric

ds2
BB = r2

L2

(
−
(
1− r4

h/r
4)dt2 + d~x2

3

)
+ L2

r2
1

1− r4
h/r

4dr
2 + L2dΩ2

5 , (2.137)

where rh < r and d~x2
3 corresponds to the three spatial directions along which

the black brane expands. The final term in (2.137) corresponds to a five-sphere of
radius L, just as for the vacuum case (see (2.107)). The remaining terms in (2.137)
form the metric of an asymptotic AdS5 space in Poincaré patch coordinates (2.61),
as may be easily seen by considering the limit r � rh and comparing (2.137) with
(2.61). Therefore, the bulk geometry (2.137) corresponds to a CFT4 state defined
on (3 + 1)-dimensional Minkowski space, as this is the conformal boundary for the

17For a discussion of this subject, we refer to [118].
18The following discussion is motivated by [109]. See also [110].
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Poincaré patch (2.68). In the following discussion we focus on the AAdS5 part of
(2.137),

ds2
AAdS = r2

L2

(
−
(
1− r4

h/r
4)dt2 + d~x2

3

)
+ L2

r2
1

1− r4
h/r

4dr
2 , (2.138)

as the fields defined on the geometry (2.137) may be reduced to fields on (2.138)
via a Kaluza-Klein reduction (see Section 2.4.1). We see that (2.138) has an event
horizon at r = rh. Thus we may interpret (2.138) as an extended version of a black
hole, expanding along the three spatial directions corresponding to d~x2

3.

Thermal States Dual to Black D3-Branes

We now present a simple argument that motivates the identification of the black
D3-brane geometry (2.137) in the bulk with a thermal state on the boundary. For
this we consider (2.138) for imaginary times, i.e. t = itE, in order to establish
Euclidean signature for (2.138),

ds2
AAdS = L2

z2

((
1− z4/z4

h

)
dt2E + d~x2

3 + 1
1− z4/z4

h

dz2
)
. (2.139)

Here we have performed the coordinate transformation r = L2/z, which brings the
conformal boundary to z = 0 and the horizon to z = zh = L2/rh.

The strategy for motivating the association of the black brane with a thermal
CFT state goes as follows. We show that the time direction tE has to be periodic
in order to guarantee that the metric (2.139) is regular at the horizon. This pe-
riodicity in the bulk is then also present at the boundary. Consequently, we find
that in Euclidean signature the CFT has a periodic time direction. Since such
periodic times are associated with thermal states in field theories, this completes
our motivation for the interpretation of the black D3-brane geometry as gravity
dual of a thermal state.

The motivation for the periodicity of tE in (2.139) goes as follows. By perform-
ing the coordinate transformation

z = zh

(
1− %2

L2

)
, (2.140)

where 0 < % < L, we obtain

ds2
AAdS =L

2

z2
h

1−
(
1− %2/L2)4(

1− %2/L2
)2 dt2E + L2

z2
h

1
(1− %2/L2)d~x

2
3

+ 4%2/L2(
1− %2/L2

)2(1− (1− %2/L2
)4)d%2

(2.141)

from (2.139). Close to the horizon, i.e. %� L, (2.141) asymptotes to

4%2

z2
h

dt2E + L2

z2
h

d~x2
3 + d%2 . (2.142)
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From this result we may now deduce that the coordinate tE is required to be
periodic in order to avoid a conical singularity at the horizon, % = 0. By considering
the coordinate transformation

tE = zhϑ/2 , (2.143)
we find that the metric on the %ϑ-plane of (2.142) is given by

d%2 + %2dϑ2 . (2.144)

Evidently, this is the metric of R2 in polar coordinates. Consequently, we have to
make ϑ 2π-periodic in order to avoid a conical singularity at % = 0. Using (2.143)
we obtain the wanted periodicity of tE,

tE ∼ tE + πzh . (2.145)

This periodicity of the time coordinate tE allows us to conclude that the dual
CFT state is thermal, as we now show. The relation (2.145) in the bulk implies
that the CFT side has the same periodicity. This is an evident conclusion, as the
CFT is defined on the conformal boundary of the bulk. It is a well known fact
that in field theories periodic times in Euclidean signature may be used to describe
thermal states. A periodicity of the form

tE ∼ tE + β (2.146)

is associated with a thermal state of temperature T = 1/β, where we have set
the Boltzmann constant to one, kB = 1. This completes our justification of the
association of (2.137) with a thermal CFT state. Comparing (2.145) with (2.146)
shows that the inverse temperature β on the CFT side is given by

β = πzh . (2.147)

We note that the above argumentation for the association of thermal states
with black brane geometries may be generalized to further examples of black holes.
This justifies the interpretation of other types of black holes as thermal states. For
a review of this generalization we refer to [116].

2.5.2 Excited States in AdS3/CFT2

In this section we introduce two types of asymptotic AdS3 geometries which we
use extensively in this thesis. These geometries are the Bañados-Teitelboim-Zanelli
(BTZ) black hole [141,142] and the conical defect [143,144].

BTZ Black Hole

The BTZ black hole is the asymptotic AdS black hole in 2 + 1 dimensions. Its
metric is given by [141]

ds2
BTZ = − r̃

2 − r̃2
h

L2 dt̃2 + L2

r̃2 − r̃2
h

dr̃2 + r̃2dφ2 , (2.148)
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Figure 2.9: A constant time slice of the BTZ black hole. The metric of the BTZ
black hole in terms of the coordinates r̃, φ and t̃ is given by (2.148). The geometry
has an horizon at r̃ = r̃h. The conformal boundary – on which the dual CFT is
defined – is located at r̃ =∞.

where t̃ ∈ R, 0 < r̃h < r̃ and φ ∼ φ+ 2π. Moreover, r̃h is the horizon of the black
hole. It is related to the mass of the black hole via [141]

r̃h =
√

8G3ML . (2.149)

In Figure 2.9 we depict a visualization of a constant time slice of the BTZ black
hole which we use extensively in this thesis. By considering r̃ � r̃h we find

ds2
BTZ ∼ −

r̃2

L2dt̃
2 + L2

r̃2 dr̃
2 + r̃2dφ2 , (2.150)

which agrees with the AdS3 metric (2.116) for r̃ � L. Thus, the BTZ black
hole is an asymptotic AdS space, which allows us to consider it in the context of
AdS/CFT.

We note that the coordinates (2.148) may also be considered for r̃ < r̃h. By
doing so, we see that the BTZ black hole does not have a metric singularity at
r̃ = 0, unlike other types of black holes. However, r̃ = 0 is still a region in the
geometry that is not well behaved, since the Hausdorff manifold structure vanishes
there. We do not require these aspects of the BTZ black hole, as our analysis will
focus on the exterior of the black hole, i.e. r̃ > r̃h. Therefore we do not discuss
them here and refer to [142] instead.

The BTZ black hole may be constructed as a quotient of the Poincaré patch
(2.61) [142]. We present the quotienting procedure providing the BTZ black hole
in Section 5.4.2 as an intermediate step in the construction of the kinematic space
of the BTZ black hole.

In the context of AdS/CFT, the BTZ black hole corresponds to a thermal
state of the CFT. As the conformal boundary of the BTZ geometry is a cylinder,
the constant time slices of the CFT are circles. The relation between the inverse
temperature β on the field theory side and the horizon radius is given by [137]

r̃h
L

= 2π`CFT
β

, (2.151)
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where `CFT is the radius of the circle corresponding to a constant time slice on the
CFT side.

Conical Defects

The conical defect is a further asymptotic AdS3 space of particular importance for
this thesis. In the context of AdS/CFT conical defects are associated with primary
excitations on the field theory side [131,145].19 The corresponding metric is given
by (see e.g. [145])

ds2
CD = −

( r̃2

L2 + N̂−2
)
dt̃2 + 1

r̃2

L2 + N̂−2
dr̃2 + r̃2dφ2 , (2.152)

where t̃ ∈ R, φ ∼ φ+ 2π, r̃ > 0 and 1 < N̂ <∞. In analogy to (2.150) we see that
(2.152) asymptotes to global AdS3 (2.116) for r̃2/L2 � 1/N̂2. The name “conical
defect” originates from the fact that the metric (2.152) may be obtained from a
slice of global AdS3 with angular size 2π/N̂ (see e.g. [146]). By identifying the
edges of the slice with each other, the geometry (2.152) is exposed to have a coni-
cal singularity at r̃ = 0. We discuss this construction in greater detail in Section
5.4.1, where we use it to construct the kinematic space of the conical defect. Since
there is no horizon surrounding it, the singularity of the conical defect is naked.
We note however that by taking quantum corrections into account, the geometry
develops a horizon surrounding the conical singularity in the semiclassical approx-
imation [149].

From the physical point of view, the conical defect may be interpreted as a
static particle of mass

MCD = N̂ − 1
4G3N̂

. (2.153)

This is due to the fact the (2.152) is not a solution of the vacuum Einstein equations
but comes with a point-like source at r̃ = 0 [144] (see also [150]).

Furthermore, we note that conical defects may be seen as extension of the BTZ
metric (2.148) to negative masses M (2.149) via the identification [141]

N̂2 = 1
8G3|M |

. (2.154)

This observation plays a crucial role in Section 4.2.2, where we study the behavior
of topological complexity as a function of 8G3M ∈ [−1,∞).

19Reviews of the conical defect in the context of AdS/CFT can be found in [146–148].



Chapter 3

Quantum Information in
AdS/CFT

One aspect of AdS/CFT that was studied intensively in recent years is its relation
to quantum information. The field of quantum information focuses on the ques-
tion how the structure of a quantum system encodes the information about its
specific state. For an introduction to quantum information we refer to [27–29,98].
Many quantities, such as entanglement entropy, (conditional) mutual information,
relative entropy and complexity were defined in order to make the concept of the
information of a system more accessible.

In discrete quantum systems, such as spin-chains, these quantities are mostly
well understood. However, their generalization to quantum field theories has
proven to be a challenging task as the corresponding calculations are in general
very involved. The AdS/CFT correspondence allows to study the quantum infor-
mation aspects of the boundary field theory from the gravity side. The conclusions
drawn from this approach suggest a close relation between the geometry of the bulk
and quantum information on the boundary.

The most prominent example for this relation is the seminal Ryu-Takayanagi
(RT) proposal [82] which relates entanglement entropy to the area of extremal
surfaces in the bulk. The RT proposal was the starting point for further approaches
relating quantum information and geometry. For instance, in [89] it was shown
that entanglement entropy may be used to derive Einstein’s field equations to linear
order. Furthermore, complexity was suggested to be related to bulk volumes or
the action corresponding to a certain bulk region [57–59, 63] (see Section 3.2.3
for more details). Other concepts of quantum information that were studied in
the context of AdS/CFT are entanglement of purification [151, 152], quantum
error correcting codes [90], the Fisher information metric [40, 153] and fidelity
susceptibility [154–156].

In this thesis we make extensive use of entanglement entropy, which is why we
review this concept in Section 3.1, including its formulation in field theories and
AdS/CFT. In particular, we require the RT formula for entanglement entropy for
formulating our results for complexity, which we present in the following chapters.
We provide an introduction to complexity and the bulk quantities proposed to
be holographic duals for it in Section 3.2. Furthermore, we review the modular

53
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Hamiltonian, which is essentially the logarithm of a given density matrix, in Section
3.3. This object is further studied in Chapter 6.

3.1 Entanglement Entropy
Entanglement describes non-classical correlations between two subsystems A and
B belonging to the same total system Σ. 1 The pure states of such a system
are considered to be the normalized vectors in a Hilbert space that is the tensor
product of the Hilbert spaces corresponding to the subsystems A and B,

HΣ = HA ⊗HB . (3.1)

Formally, a pure state |Ψ〉Σ ∈ HΣ is referred to as entangled if it does not factorize,
i.e. if it is not possible to write it in the form

|Ψ〉Σ = |ψ1〉A ⊗ |ψ2〉B , (3.2)

where |ψ1〉A ∈ HA and |ψ2〉B ∈ HB. In practice, this definition implies that the
results of independent measurements on both subsystems of an entangled state are
correlated. To be more precise, there are observables of the form A ⊗B whose
expectation values do not factorize,

〈A ⊗B〉Σ 6= 〈A 〉A 〈B〉B . (3.3)

This is easy to see since a factorization of the expectation value for all observables
of the form A ⊗B obviously requires |Ψ〉Σ to be of the form (3.2).

The definition of entanglement may be generalized to mixed states ρΣ in the
following way. A mixed state is referred to as entangled when it is not a classical
ensemble of factorizing states, i.e. when it is not of the form

ρΣ =
∑
i

pi ρ
A
i ⊗ ρBi , (3.4)

where 0 ≤ pi ≤ 1 with
∑

i pi = 1 and ρA,Bi are states on A and B respectively.

Entanglement is of fundamental importance for many physical concepts. As
an example for a very well known system, where entanglement is present, we may
consider the hydrogen atom. An electron which is bounded to a proton to form a
hydrogen atom is quantum-mechanically described as a state where it is most likely
to observe the electron very close to the proton. This means that the expected
positions of the proton and the electron are correlated. So the state describing the
hydrogen atom is an entangled state for the two subsystems corresponding to the
electron and the proton.

1For reviews regarding entanglement we refer to [27–29,32].
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3.1.1 Definition of Entanglement Entropy
Entanglement entropy is a quantity introduced to quantify the amount of entan-
glement between the subsystems A and B. 2 From the definition of entanglement
for pure states in the paragraph of (3.2) it is easy to see that the reduced state
corresponding to the subsystem A

ρA = trB
(
|Ψ〉 〈Ψ|Σ

)
(3.5)

is not pure, i.e. mixed, iff |Ψ〉Σ is entangled. Here trB refers to the partial trace
over the subsystem B. The idea behind entanglement entropy is to quantify how
mixed ρA is. To be more precise, entanglement entropy measures the amount
of information required to describe ρA. The von Neumann entropy is known to
be a measure for the information contained in a state. Thus it is reasonable to
define the entanglement entropy S(A) of a state w.r.t. the subsystem A as the von
Neumann entropy of the reduced state ρA,

S(A) = − trA
(
ρA log

(
ρA
))
. (3.6)

In particular, we see that for a disentangled pure state (3.2) the entanglement en-
tropy vanishes, which is a reasonable property a measure for entanglement should
have. This definition also applies to mixed states ρΣ. However, we need to stress
that for mixed states the entanglement entropy does not only measure the entan-
glement of the state but also takes the mixedness of ρΣ into account. For instance,
a disentangled state of the form

ρΣ =
∑
i

pi |ψi〉 〈ψi|A ⊗ |ψi〉 〈ψi|B , (3.7)

where 0 ≤ pi ≤ 1,
∑

i pi = 1 and 〈ψi| ψj〉A,B = δij, has the entanglement entropy

S(A) = −
∑
i

pi log pi , (3.8)

which is the von Neumann entropy of ρΣ. So even though the state ρΣ corresponds
to a classical ensemble of disentangled states |ψi〉A⊗|ψi〉B, its entanglement entropy
is not zero.

3.1.2 Properties of Entanglement Entropy
We list some of the most important properties of entanglement entropy which are
particularly relevant for this thesis.

Non-Negativity. Entanglement entropy is known to be a non-negative quan-
tity,

S(A) ≥ 0 , (3.9)
2Reviews of entanglement entropy are [27–30,32,33].
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where S(A) = 0 holds iff the reduced state ρA is pure.

Araki-Lieb Inequality. [113] For any state on a Hilbert spaceHΣ = HA⊗HB

the Araki-Lieb inequality,

S(Σ) ≥ |S(A)− S(B)| , (3.10)

holds.3

Symmetry for Pure States. Consider a pure state |Ψ〉Σ on the Hilbert space
HΣ = HA⊗HB. Then the entanglement entropies of the subsystems A and B are
equal, i.e.

S(A) = S(B) . (3.11)
This is an immediate consequence of the Araki-Lieb inequality (3.10) and the fact
that the entanglement entropy is zero for pure states.

(Strong) Subadditivity. [158,159] For three independent subsystems A,B,C
of a quantum system, the strong subadditivity of entanglement entropy states

S(AC) + S(BC) ≥ S(ABC) + S(C) . (3.12)

In particular, we recover the subadditivity of entanglement entropy,

S(A) + S(B) ≥ S(AB) , (3.13)

from (3.12) by setting C = ∅. Moreover, if the state on AB factorizes, i.e. ρAB =
ρA ⊗ ρB, we find the above inequality to be saturated,

S(AB) = S(A) + S(B) , (3.14)

as may be easily deduced from the definition of entanglement entropy (3.6).

3.1.3 (Conditional) Mutual Information
Entanglement entropy is the starting point for many other quantum information
quantities. In particular, it may be used to introduce two new measures for informa-
tion shared by different subsystems, the mutual information (see e.g. [27–29]) and
its generalization, the conditional mutual information (see e.g. [28]). We require
the concept of conditional mutual information in Chapter 5 in order to provide
a physical interpretation for the volume form of kinematic space. Therefore, we
review (conditional) mutual information here.

Mutual Information

Given two subsystems A,B of a quantum system, the mutual information between
these two systems is given by

I(A : B) = S(A) + S(B)− S(AB) . (3.15)
3In [157] a proof of the Araki-Lieb inequality in the context of AdS/CFT was presented.



3.1. ENTANGLEMENT ENTROPY 57

Figure 3.1: Interpretation of (conditional) mutual information. On the l.h.s. we
depict the interpretation of mutual information (3.15). Given two subsystems A,B,
I(A : B) is a measure for the information that is stored in both A and B. For
the conditional mutual information (3.18) we introduce an additional subsystem
C. I(A : B|C) gives the amount of information that is contained in both A and
B, but not in C (r.h.s.).

Due to the subadditivity of the entanglement entropy (3.13), the mutual infor-
mation is non-negative,

I(A : B) ≥ 0 . (3.16)
The mutual information may be interpreted as the ammount of information shared
by A and B or the correlations between A and B (see e.g. [27, 28]). This can be
motivated as follows. In Section 3.1.1 we established that entanglement entropy
S(A) quantifies the information contained in A. We may identify two classes of
information contained in A: information that is contained in A and not in B and
information that is contained in A and B. In an analogous way we find that S(B)
describes the information contained exclusively in B and the information contained
in A and B. Moreover, S(AB) gives the information contained exclusively in A
and B, respectively and the information contained in both A and B. Applying this
interpretation of S(A), S(B) and S(AB) as sums of amounts of information, it is
easy to see that (3.15) gives the information contained in A and B. We present a
visualization of this interpretation in Figure 3.1.

Evidently, the information shared by A and B corresponds to correlations be-
tween the two subsystems. As a consistency check of this interpretation, we note
that the mutual information of a state of the form ρA⊗ρB vanishes. Since there are
no correlations between A and B in such a state, this agrees with the interpretation
of I(A : B) as measure for correlations.

Furthermore, we note that for a pure state I(A : B) is given by

I(A : B) = S(A) + S(B) = 2S(A) , (3.17)

as can be easily seen by applying the properties of entanglement entropy presented
in Section 3.1.2. For pure states the correlations between A and B come from en-
tanglement. Therefore, the fact that I(A : B) essentially reduces to entanglement
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entropy for pure states provides further support for the interpretation of I(A : B)
as measure for correlations between A and B.

Conditional Mutual Information

The mutual information quantifies the information shared by two subsystems A
and B. It can be straightforwardly generalized to the conditional mutual informa-
tion,

I(A : B|C) = S(AC) + S(BC)− S(ABC)− S(C) , (3.18)

where C is a further subsystem. In particular, we find

I(A : B|C = ∅) = I(A : B) . (3.19)

Moreover, the strong subadditivity of entanglement entropy (3.12) implies I(A :
B|C) to be non-negative,

I(A : B|C) ≥ 0 . (3.20)

Conditional mutual information is a measure for the information shared by A
and B but not C (see e.g. [28]).4 We visualize this in Figure 3.1. The motivation
for this interpretation of (3.18) works in an analogous way as the motivation of
the interpretation of mutual information presented below (3.15). In particular,
the conditional mutual information quantifies the correlations between A and B
that are not related to correlations with C. In order to justify this statement,
we compute the conditional mutual information for the following example. We
consider A and B to split into two parts A1, A2 and B1, B2, respectively, i.e. the
Hilbert space for ABC is of the form

HABC = HA ⊗HB ⊗HC ,

where HA = HA1 ⊗HA2 , HB = HB1 ⊗HB2 .
(3.21)

The state on ABC we work with in this example is given by

ρABC = ρA1B1 ⊗ ρA2B2C , with ρA2B2C =
∑
i

pi |iA2iB2iC〉 〈iA2iB2iC | . (3.22)

Here we choose the states |iA2,B2,C〉 to be orthonormal inHA2,B2,C , respectively and
set pi > 0 with

∑
i pi = 1. The state ρABC is constructed in such a way that the

correlations between A and B are separated into two parts: correlations between
A1 and B1, which are independent of C, and correlations between A2 and B2. The
latter are inseparable from correlations with C. This is easy to be seen by

S(A2B2C) = S(A2B2) = S(A2C) = S(B2C) = S(A2) = S(B2) = S(C) , (3.23)

i.e. the entanglement entropy of all subsystems of A2B2C is the same. By interpret-
ing entanglement entropy as the amount of information contained in a subsystem

4We note that this interpretation of conditional mutual information is based on classical
considerations. An operational interpretation for quantum systems is given in [160].
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Figure 3.2: A constant time slice for a quantum field theory. We split the constant
time slice into two entangling regions A and B. The entanglement entropy S(A)
is the von Neumann entropy of the reduced density matrix ρA, which encodes the
expectation values of observables located in A.

(see Section 3.1.1), we see that all subsystems contain the same amount of in-
formation. Consequently, there are no correlations between A2 and B2 that are
independent from correlations with C.

So we see that the only correlations between A and B that are not related
to correlations with C come from A1 and B1. If the interpretation of conditional
mutual information as measure for these correlations is correct, we should find

I(A : B|C) = I(A1 : B1) , (3.24)

since the mutual information I(A1 : B1) (3.15) measures the correlations between
A1 and B1. By applying (3.23) to (3.18) we can indeed verify (3.24) and thus
justify the interpretation of conditional mutual information presented above.

3.1.4 Entanglement Entropy for Quantum Field Theories
For systems Σ consisting of a discrete set of subsystems A1, . . . , An, i.e. for Hilbert
spaces of the form

HΣ = HA1 ⊗ · · · ⊗ HAn , (3.25)

the definition of the entanglement entropy (3.6) is easily applied to any subsystem
A = Ai1 · · ·Aik . The state of interest is traced over the complement Ac = B to
obtain the reduced density matrix ρA which allows to compute S(A) via (3.6).
However, for continuous systems, such as quantum field theories, the computation
of entanglement entropies is in general very involved and was performed only in a
few cases (see e.g. [161]).5 In quantum field theories the subsystems A and B are
identified with complementary regions on a constant time slice of the space-time
the field theory is defined on (see Figure 3.2). These regions are referred to as
entangling regions. This approach may be interpreted as a continuum limit of the
discrete setup.

The most straightforward approach for calculating entanglement entropies for
field theories is to discretize the system by putting it on a lattice and send the
lattice spacing to zero after directly computing the entanglement entropy via (3.6).

5Reviews for entanglement entropy in quantum field theories are [162–164].
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For instance, this strategy has been pursued in [165] to determine the entanglement
entropy of the ground state of a massless scalar field for a region outside a sphere.

A further method for determining entanglement entropies which is particularly
successful for CFTs is the so-called replica trick [161,162,166]. Here an n-sheeted
Riemann surface is used to compute

trA
((
ρA
)n) (3.26)

for the quantum theory on the lattice. The result is then analytically continued
to complex n, which allows to determine S(A) via

S(A) = − lim
n→1

∂

∂n
trA
((
ρA
)n)

. (3.27)

For reviews regarding the replica trick we refer to [33, 163, 164]. In field theories
the entanglement is in general UV divergent but expected to contain universal
terms, i.e. terms that are independent of the chosen UV cut-off scheme. To clarify
this statement, we consider the entanglement entropy regarding the vacuum state
of a quantum field theory with d spatial dimensions. S(A) is assumed to be of the
form [164]

S(A) = gd−1(∂A)
εd−1 + · · ·+ g1(∂A)

ε
+ g0(∂A) log(ε) + S0(A) , (3.28)

where ε is the UV cut-off. The term S0(A) is finite in the UV and the gi(∂A)
are extensive functions on the boundary ∂A. The coefficient g0 in front of the
logarithmical divergent term is considered to be universal. A simple motivation
for this is the fact that g0 does not change under rescalings of the UV cut-off
ε −→ aε, i.e.

S(A) −→ gd−1(∂A)/ad−1

εd−1 + · · ·+ g1(∂A)/a
ε

+ g0(∂A) log(ε)

+ g0(∂A) log(a) + S0(A) .
(3.29)

Moreover, (3.29) shows that the gi for i > 0 are not universal.

3.1.5 Entanglement Entropy for Gauge Theories
In gauge theories the definition of entanglement entropy is somewhat ambiguous
due to the fact that a factorization of the form (3.1) of the Hilbert space of physical
states HΣ is not possible. We justify this subtlety following the arguments made
in [167]. Gauge theories come with constraints the physical states have to satisfy.
For instance, in quantum electrodynamics physical states have to obey Gauss’ law

∇ · E = 0 . (3.30)

By splitting HΣ into two parts for A and B we generate two subsystems separated
by a boundary. However, the boundary electrical field on the A side may not be
chosen independently from the boundary electrical field on the B side. They have
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Figure 3.3: Issues with the definition of entanglement entropy in lattice gauge the-
ories. In order to compute the entanglement entropy in a gauge theory, the system
is discretized to a gauge theory on a lattice. The gauge field is not associated
with the lattice sites but with the edges. Physical excitations of the gauge field
correspond to loops on the lattice (green). When introducing the subregions A
and B, the loops crossing the boundary between A and B are separated into a
part lying in A and a part lying in B. Neither of them is gauge invariant. Only
their combination has this property. This argument shows that it is not possible
to find a factorization of the form HA⊗HB of the Hilbert space of physical states.

to be chosen in such a way that Gauss’ law holds on the boundary. Thus, the
degrees of freedom in A and B are not completely independent from each other,
as required for a factorization of the form (3.1) for HΣ.

The issues caused by the introduction of two composite regions A and B may
also be seen when considering the lattice gauge approach. As we depict in Figure
3.3, the gauge field is defined on the edges of the lattice, not on the lattice sites as
it is the case for other fields (see Section 3.1.4). Physical excitations of the gauge
field are not associated with its value on single edges but with closed loops of the
edges. The boundary between A and B cuts the edges linking these two regions.
Thus, loops crossing the boundary are split into two parts, one lying in A and
one lying in B. Taken separately these two parts are not invariant under gauge
transformations. Only together they are gauge invariant.

Without a factorization (3.1) of HΣ, it is not clear how to expand the concept
of entanglement entropy to gauge theories. This is a topic of current research
for which no unique solution was found so far. In the following we present the
approach pursued in [167–169].6 For an alternative approach, see e.g. [170].

In the lattice gauge approach, the Hilbert spaceHΣ of physical states is given by
the states satisfying the constraints imposed by the gauge group. It is considered
to be a subspace of the space HA ⊗ HB including gauge dependent, unphysical
states,

HΣ ⊂ HA ⊗HB . (3.31)

6For the setup considered in [167], this procedure leads to the same result as the replica trick.
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Figure 3.4: Introducing additional degrees of freedom. The Hilbert space of phy-
sical states is embedded into a space of the form HA ⊗ HB that also contains
states that are not invariant under gauge transformations. The edges crossing the
boundary between the regions A and B are cut into two pieces, one belonging to
A and one belonging to B. On the boundary, where they meet, new degrees of
freedom are introduced (white). These correspond to surface charges located at
the boundary between A and B.

For HA ⊗HB it is known how to define entanglement entropy (see Section 3.1.1,
3.1.4). The edges crossing the boundary between A and B are split into two parts,
one belonging to A and one belonging to B. At the boundary, where these two
parts meet, new degrees of freedom are introduced. These may be interpreted as
surface charges attached to the boundary. This setup is depicted in Figure 3.4.

The entanglement entropy of physical states is defined to be the entanglement
entropy of the states when interpreted as elements of the expanded Hilbert space
described above.

3.1.6 The Ryu-Takayanagi Formula

Even though it is possible to formally define entanglement entropy for gauge theo-
ries, its calculation for explicit examples is mathematically very challenging. How-
ever, in AdSd+1/CFTd the entanglement entropy of a CFT state with a classical
gravitational dual has a very elegant and easy to calculate representation in the
bulk. We restrict ourselves to static bulk geometries in this thesis. For a general-
ization of the bulk representation of entanglement entropy to a broader variety of
geometries, we refer to [84]. A review of entanglement entropy in AdS/CFT can
be found in [33].

The Gravity Dual of Entanglement Entropy

For an entangling region A on a constant time slice of the CFT side, Ryu and
Takayanagi proposed that in the large N limit the entanglement entropy of a state
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Figure 3.5: A Ryu-Takayanagi (RT) surface. For a given entangling region A of
the CFT defined on the conformal boundary the RT formula (3.32) states that the
entanglement entropy S(A) is given by the area of the minimal (d−1)-dimensional
bulk surface γA that is attached to the boundary of A and is homologous to A.
This surface is referred to as RT surface. Due to the hyperbolic structure of the
bulk geometry, γA stretches into the bulk.

with classical and static gravitational dual is given by [82,171]

S(A) = area(γA)
4Gd+1

, (3.32)

which is known as the Ryu-Takayanagi (RT) formula. Here Gd+1 is Newton’s
constant for the bulk (i.e. Newton’s constant in d+ 1 dimensions for AdSd+1) and
γA is the static minimal (d−1)-dimensional bulk surface attached to the boundary
∂A and homologous to A. Note that we see A as part of the conformal boundary
in this construction. The surface γA is referred to as Ryu-Takayanagi (RT) surface.
We depict a typical example for a RT surface in Figure 3.5.

We emphasize that the RT formula is proposed to hold in the large N limit.
For finite N bulk quantum effects will lead to 1/N corrections to (3.32) (see e.g.
[172]). In this thesis we restrict our discussions to the large N limit, where these
corrections are suppressed.

The RT formula states that the computation of entanglement entropies, which
is very challenging on the field theory side, reduces to determining the area of a
minimal surface on the gravity side. Being a proposal which has been confirmed
for several examples [82] at first, the RT formula was later verified in [86, 173]
by extending the replica trick for the boundary to the bulk. We note that the
RT formula implies additional properties for entanglement entropy which do not
hold for generic quantum systems. As an example, we mention the monogamy of
mutual information [85]. Moreover, we refer to [157] for various implications of
the RT formula.

Since the RT surface is a bulk surface that stretches out to the conformal
boundary of the considered asymptotic AdS space, its area is divergent. This di-
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Figure 3.6: A constant time slice of the (2 + 1)-dimensional Poincaré patch (3.33).
We consider the vacuum state of a CFT2 defined on the real axis with the Poincaré
patch as gravity dual. For an entangling interval A = [−σ, σ] on the conformal
boundary of the geometry, the RT surface γA is the geodesic connecting the two
endpoints of A. This geodesic lies in the same constant time slice as A. The
entanglement entropy of A is given by area(γA) (3.32), i.e. the length of γA. Since
this length is divergent we introduce a radial cut-off at z = ε. The resulting
entanglement entropy is given by (3.39).

vergence requires the introduction of a radial cut-off which is identified with the
UV cut-off of the entanglement entropy on the field theory side.

We note that in most of the examples studied in this thesis we consider d = 2,
i.e. AdS3/CFT2. Here the RT surface has dimension one and is therefore not an
actual surface but a curve. Nevertheless, we refer to this curve as RT “surface”
and to its length as “area” in order to maintain a consistent notation throughout
this thesis.

A Simple Example: Entangling Intervals for the Poincaré Patch

As a simple example to show how the RT formula (3.32) is applied, we consider
the vacuum state of a CFT defined on the real axis in AdS3/CFT2. The dual
geometry is the Poincaré patch (2.61),

ds2
PP = L2

z2

(
− dt2 + dx2 + dz2) (3.33)

in 2 + 1 dimensions. The conformal boundary, on which the CFT is defined, is
located at z = 0. As entangling region A we consider the interval [−σ, σ] – where
σ > 0 – on a constant time slice t = const. on the conformal boundary. Since the
bulk is (2 + 1)-dimensional, the RT surface γA is simply the geodesic connecting
the two endpoints of the boundary interval A. We depict this setup in Figure 3.6.

The following computation of S(A) via (3.32) is taken from [82]. For symmetry
reasons we assume γA to lie in the same constant time slice as A. We choose a
parametrization of the form

γA(s) =
(
t = const., x = −σ cos(s), z(s)

)
, where s ∈ [0, π] , (3.34)
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for the RT surface. The area of γA, i.e. the length of the geodesic (3.34), is given
by

area(γA) = L

∫ π

0
ds

√
(z′)2 + σ2 sin2(s)

z
, (3.35)

where the ′ refers to a derivative w.r.t. s. This integral is minimized by the solution
of the Euler-Lagrange equation

d

ds

( z′

z
√

(z′)2 + σ2 sin2(s)

)
+
√

(z′)2 + σ2 sin2(s)
z2 = 0 . (3.36)

It is easy to verify that
z(s) = σ sin(s) (3.37)

is the solution of (3.36) that starts and ends on the conformal boundary, i.e. sat-
isfies z(0) = z(π) = 0. Since the length of γA is divergent we need to introduce a
radial cut-off z = ε (see Figure 3.6). We obtain

area(γA) = L

∫ π−ε

ε

ds
1

sin(s) = 2 log
(

cot(ε/2)
)

= 2 log
(2σ
ε

)
+O(ε2) , (3.38)

where ε = arcsin(ε/σ) is the value of s where γA(s) approaches the radial cut-off
at z = ε. By inserting (3.38) into the RT formula (3.32) and applying c = 3L/2G3
(2.117), we find

S(A) = c

3 log
(2σ
ε

)
, (3.39)

which is the well known formula for the entanglement entropy of an entangling
interval in CFT2 [174].

3.1.7 Phase Transitions of the Ryu-Takayanagi Surface
In many cases there are several competing candidates for RT surfaces with different
topologies. Which one is realized depends on the scales of the entangling region
A. By changing these it is possible for the minimality condition to cause a phase
transition of the RT surface γA from one candidate to another (see e.g. [83,114,115,
175,176]). This transition was studied from the field theory side in e.g. [177,178].

Two Entangling Intervals for the Poincaré Patch

To see this for a concrete example, we consider the entangling region A to be the
union of two entangling intervals (see e.g. [176]),

A = A1A2 , (3.40)

where A1 = [−a,−σ] and A2 = [σ, a] for 0 < σ < a, for a CFT defined on the
real axis. The dual geometry is the Poincaré patch (3.33). The interval between
A1 and A2 is denoted by B, i.e. B = [−σ, σ]. There are two candidates for γA
which we depict in Figure 3.7, γAB ∪ γB and γA1 ∪ γA2 . Both these candidates
are homologous to A. The RT surface γA is the surface with the minimal area.
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Figure 3.7: The two competing candidates for RT surfaces of two intervals A1A2.
We consider the vacuum state of a two-dimensional CFT on the real axis with
the Poincaré patch (3.33) as gravity dual. For an entangling interval A = A1A2

consisting of two intervals A1 = [−a,−σ] and A2 = [a, σ] there are two competing
candidates for the RT surface γA: γA1 ∪ γA2 and γAB ∪ γB, where B = [−σ, σ] is
the interval between A1 and A2. Both these candidates are homologous to A; the
surface with the minimal area is γA. For σ sufficiently large we find γA = γA1 ∪γA2

whereas for σ sufficiently small γA = γAB ∪ γB holds. So we see that γA undergoes
a phase transition when σ decreases.

Therefore, the entanglement entropy is given by

S(A) = 1
4G3

min{area(γAB ∪ γB), area(γA1 ∪ γA2)} , (3.41)

via the RT formula (3.32). Which one of the surfaces γA1 ∪ γA2 and γAB ∪ γB
has the minimal area changes with the value of σ as we now show. By using the
formula (3.39) for the entanglement entropy of one interval, we find

area(γAB ∪ γB) = c

3 log
(2a
ε

)
+ c

3 log
(2σ
ε

)
(3.42)

and
area(γA1 ∪ γA2) = 2 c3 log

(a− σ
ε

)
. (3.43)

By examining the behavior of

area(γAB ∪ γB)− area(γA1 ∪ γA2) = c

3 log
( 4s

(1− s)2

)
(3.44)

in w.r.t. s = σ/a, it is easy to verify that

area(γAB ∪ γB) < area(γA1 ∪ γA2) for σ < (3− 2
√

2)a (3.45)

and
area(γAB ∪ γB) > area(γA1 ∪ γA2) for σ > (3− 2

√
2)a (3.46)

hold. Consequently, γA undergoes a phase transition when σ becomes smaller
than (3 − 2

√
2)a, i.e. it changes from γA1 ∪ γA2 to γAB ∪ γB. The corresponding

entanglement entropy is thus given by

S(A) =


c
3 log

(
2a
ε

)
+ c

3 log
(

2σ
ε

)
for σ < (3− 2

√
2)a,

2 c3 log
(
a−σ
ε

)
else

, (3.47)
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Figure 3.8: Two candidates for the RT surface of an interval in BTZ black hole
(2.148) and conical defect (2.152) geometry. Given an entangling interval A (red)
on the boundary of a constant time slice of a BTZ black hole (l.h.s.), there are two
competing candidates for the RT surface γA. One is the geodesic γa (blue) lying
on the same side of the black hole as A connecting the two endpoints of A. The
other is the union γb (orange) of the black hole horizon and the geodesic lying on
the other side of the black hole and connecting the endpoints of A. Which one of
γa and γb is the RT surface of A depends on the angular size 2σ of A. We make an
analogous observation for the conical defect (r.h.s.). Here one of the two competing
candidates for γA is given by the geodesic γ∗c (blue) lying on the same side of the
conical defect as A and connecting the endpoints of A. The other γc (orange) is
the union of the geodesic lying on the opposite side of the defect connecting the
endpoints of A and an infinitesimal circle surrounding the defect. If 2σ ≤ π, we
have γA = γ∗c and γA = γc otherwise.

where we have used (3.42) and (3.43). We note that S(A), written as in (3.47)
and interpreted as a function of σ, has an non-analytic point at σ = (3 − 2

√
2)a.

This non-analyticity is a large N effect: The RT formula (3.32) only applies in the
limit of large N . For finite N , S(A) will become smooth at σ = (3− 2

√
2)a.

One Entangling Interval for the BTZ Black Hole

As a further example for a phase transition in the RT surface, we consider one
entangling interval for a thermal CFT2 state of inverse temperature β dual to
the BTZ black hole (2.148). 7 This example is of particular importance for the
Chapters 4, 5 and 6. Given an entangling interval A of angular size 2σ, there are
two candidates for the RT surface γA (see Figure 3.8): the geodesic γa connecting
the two endpoints of A which lies on the same side of the BTZ black hole as A and
the union of the respective geodesic lying on the opposite side of the black hole
and the black hole horizon, γb [175]. Note that it is necessary to include the black
hole horizon in γb to ensure that it is homologous to A.

For sufficiently small angular size 2σ of A, the RT surface is given by γa, which

7The phase transition of the RT surface in this setup was discussed e.g. in [83,114,115,175].
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Figure 3.9: The transition angle σ∗ (3.50) in terms of M̃ = 8G3M . Here M is the
mass of the black hole. It is easy to verify that σ∗ grows monotonically with M̃
and π/2 ≤ σ∗ ≤ π holds. For a given entangling interval A with angular size 2σ,
the corresponding RT surface is given by γa if σ < σ∗ and γb if σ > σ∗ (see Figure
3.8).

leads to the entanglement entropy [82]

S(A) = c

3 log
( β
πε

sinh
(2π`CFTσ

β

))
, (3.48)

via the RT formula (3.32). Here, `CFT is the radius of the circle the CFT is defined
on and ε is a UV cut-off. However, if A is very large, the length of γb turns out to
be smaller than the length of γa, i.e. γA undergoes a phase transition from γa to
γb. After that transition, the entanglement entropy is given by [175]

S(A) = c

3
2π2`CFT

β
+ c

3 log
( β
πε

sinh
(2π`CFT (π − σ)

β

))
. (3.49)

The first term in (3.49) corresponds to the circumference of the horizon, whereas
the second is associated with the length of γa for the complement of A (see Figure
3.8).

The transition of the RT surface takes place for the σ = σ∗ where γa and γb
have equal length. Applying the RT formula (3.32), we find that for σ = σ∗ (3.48)
and (3.49) are equal. This leads to [114]

σ∗ = β

4π`CFT
log
(exp

(
4π2`CFT/β

)
+ 1

2

)
. (3.50)

It is easy to verify that σ∗ ≥ π/2 holds. Therefore, the transition from γa to γb
may only occur for A with angular size 2σ > π. In preparation for our discussion
of topological complexity in Chapter 4 we plot σ∗ in terms of M̃ = 8G3M in Figure
3.9, where M is the mass of the black hole (2.149), (2.151).

One Entangling Interval for the Conical Defect

We conclude our discussion of phase transitions of the RT surface by presenting
a further example for such a transition occurring for an entangling interval A of



3.2. COMPLEXITY 69

a state dual to a conical defect geometry (2.152). Similar to the case of the BTZ
black hole discussed above, the RT surface of A undergoes a phase transition if
the angular size 2σ of A is sufficiently large (see e.g. [146]). Again we have two
competing candidates for RT surfaces. One is the geodesic γ∗c connecting the two
endpoints of A which lies on the same side of the conical singularity as A. The other
γc is the union of an infinitesimally small circle surrounding the conical singularity
and the geodesic lying on the opposite side of the singularity, connecting the two
endpoints of A. We depict γ∗c and γc in Figure 3.8.

Note that the infinitesimal circle in γc does not contribute to the length of
γc and may therefore be ignored when computing the entanglement entropy of A.
However, it is necessary to make γc homologous to A and in particular plays a
crucial role for topological complexity, as we discuss in Section 4.2.2.

Due to the symmetry of the setup, it is evident that γ∗c is the minimal geodesic
if A has angular size 2σ ≤ π and γc is minimal otherwise. Therefore, the entan-
glement entropy of A is given by the length of γ∗c via the RT formula (3.32) (see
e.g. [146]),

S(A) = c

3 log
(2N̂`CFT

ε
sin(σ/N̂)

)
, (3.51)

if 2σ ≤ π. For 2σ ≥ π, the entanglement entropy is given by the length of γc,

S(A) = c

3 log
(2N̂`CFT

ε
sin
(
(π − σ)/N̂

))
. (3.52)

3.2 Complexity
Complexity (see e.g. [37]) is a quantity that was originally introduced in computer
science to determine the minimal number of operations required to perform a given
task. For instance, such a task could be to transform a set of n bits from an initial
state, such as (0, 0, . . . , 0), to another configuration, e.g. (1, 1, 1, 0, 0, 0, 1, 0, . . . ).
For performing this task we are only allowed to apply certain fundamental opera-
tions to the initial state. These allowed operations are referred to as gates. Com-
plexity is the minimal number of gates that are necessary to transform (0, 0, . . . , 0)
into (1, 1, 1, 0, 0, 0, 1, 0, . . . ).

This concept of mapping an initial configuration to a target configuration can
be formulated for quantum systems as well.8 Here the task is to map a reference
state |ψr〉 to a target state |ψt〉 by applying unitary operators to |ψr〉. The unitary
operators that are allowed to be applied are the (unitary) gates.

3.2.1 Complexity for Q-Bits
We now review the concept of complexity for a system consisting of a chain of
n q-bits.9 In this setup complexity is best understood – which is why we use
it here to introduce the basic idea of the concept. As we show in the following,

8For a review of complexity for quantum systems we refer to [38].
9The following introduction to the concept of complexity for q-bits is motivated by [27], [38]

and [179].
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complexity essentially requires three ingredients: a set of gates, a reference state
and a tolerance. The complexity of a given target state is the minimal number
of gates required to transform the reference state into the target state, up to the
tolerance.

Complexity for Pure States

First we focus on the complexity for a pure target state |ψt〉. For a set of n q-bits
the reference state is usually taken to be

|ψr〉 = |00 · · · 0〉 . (3.53)

This reference state is very simple in the sense that it does not have any correlations
between the q-bits. To be more precise, no subset of q-bits is entangled with the
rest of the system as |ψr〉 is a product state.

In preparation of our analysis of holographic subregion complexity in Section
5.5 we now discuss the implications of this choice for |ψr〉. If we choose a target
state with a lot of correlations between the q-bits, the gates transforming |ψr〉 into
|ψt〉 necessarily have to build up all these correlations. Consequently, the choice
of a product state as |ψr〉 implies that the correlations between subsystems of |ψt〉
play an important role for complexity. However, we need to stress that the corre-
lations between subsystems is not the only thing complexity captures, as there are
also product states to be expected that require many gates to generate, i.e. have
a high complexity.

One possible choice for the set of unitary gates consists of the following four
fundamental operations which act on one and two q-bits of the chain of n q-bits,
respectively.

Hadamard Gate. This gate acts on a single q-bit of the n q-bit chain and is
given by the matrix

H = 1√
2

(
1 1
1 −1

)
, (3.54)

where we use the standard column vector representation of |0〉 and |1〉, i.e.

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (3.55)

In particular, we find that H maps |0〉 to |+〉 = (|0〉 + |1〉)/
√

2 and |1〉 to |−〉 =
(|0〉 − |1〉)/

√
2.

Phase Gate. As the Hadamard gate, the Phase gate S acts on a single q-bit.
It introduces a relative complex phase between the |0〉 and |1〉 part of the q-bit,

S =
(

1 0
0 i

)
, (3.56)

where we again use (3.55).
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π/8 Gate. Also the π/8 gate T acts on a single q-bit. As the phase gate, it
introduces a relative complex phase between |0〉 and |1〉,

T =
(

1 0
0 eiπ/4

)
. (3.57)

Controlled-NOT Gate. Unlike the Hadamard, Phase and π/8 gate, the
controlled-NOT gate CNOT acts on two q-bits of the chain of n q-bits,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (3.58)

where we use
1∑

i,j=0

aij |ij〉 =


a00
a01
a10
a11

 . (3.59)

The gates H, S, T, CNOT may be applied to any q-bits of the considered chain
of n q-bits. As an example we consider the target state

|ψt〉 = 1√
2
(
|000 . . . 0〉+ |110 . . . 0〉

)
. (3.60)

In order to transform |ψr〉 into |ψt〉 we need to apply the Hadamard gate to the
first q-bit and the CNOT gate to the first two q-bits:

|00 . . . 0〉 7−→
(

CNOT⊗1n−2
)(

H⊗1n−1
)
|00 . . . 0〉

= 1√
2
(
|000 . . . 0〉+ |110 . . . 0〉

)
.

(3.61)

This application of gates is visualized in Figure 3.10.

The set of gates {H, S,T,CNOT} is universal, which means that it is possible
to approximate any target state arbitrarily well by applying these gates to the ref-
erence state.10 This universality is a necessary condition a set of gates is required
to have. Otherwise, there would be states that cannot be reached from the target
state by applying the gates and thus complexity could not be defined for these
states.

It is not possible to map |ψr〉 to any target state by applying only a finite
number of gates. This is evident since the number of states that can be generated
by acting with a finite number of gates on |ψr〉 is countable but the number of

10A proof for this can be found [27].
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Figure 3.10: Hadamard and CNOT gate applied to the reference state |ψr〉 =
|00 · · · 0〉. When applying the Hadamard (3.54) and CNOT (3.58) gate to the first
two q-bits as depicted above, we obtain the target state |ψt〉 given in (3.60).

all states is of course uncountable. It is only possible to approximate any state
arbitrarily well with a finite set of gates. So in order to define the complexity of
a state |ψt〉 as the minimal number of gates that need to be applied to |ψr〉, a
tolerance ε̃ is required. To be more precise, we define the complexity Cε̃(|ψt〉) as
the minimal number of gates that need to be applied to |ψr〉 in order to generate
a state |ψε̃t〉 sufficiently close to |ψt〉 in trace norm, i.e.

|| |ψt〉 〈ψt| −
∣∣ψε̃t〉 〈ψε̃t ∣∣ ||tr ≤ ε̃ . (3.62)

This number of gates is finite.11 So we see that the definition of complexity for
q-bits requires three ingredients: the reference state |ψr〉, a set of universal unitary
gates, e.g. {H, S,T,CNOT}, and a tolerance ε̃. In (3.62) we have defined the
tolerance to refer to the trace-norm-induced distance between the target state |ψt〉
and the state generated by the gates. In principle other concepts of tolerance, such
as the difference between expectation values of certain operators, are possible, as
pointed out in [179].

Complexity for Mixed States

So far we have only considered the complexity for pure states. It is a non-trivial
problem to generalize this concept to mixed states. This is due to the fact that
it is not possible to generate any mixed state from the reference state |ψr〉 (3.53)
by applying unitary gates to it.12 In [179] several generalizations of complexity to
mixed states were discussed, which we now review.

11We note that in the definition of complexity via (3.62) additional ancilla q-bits may be
considered (see e.g. [38]). In our discussion of complexity for mixed states (see below) we discuss
this concept in more detail.

12We note that there exist formulations of complexity that involve non-unitary gates that
resolve this issue [180]. However, in this thesis we only consider unitary gates.
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Purification Complexity. This generalization of complexity to mixed states
adds additional q-bits to the chain of n q-bits. These additional q-bits are referred
to as ancilla q-bits. The reference state of the resulting extended Hilbert space is

|Ψr〉 = |ψr〉 ⊗ |00 · · · 0〉ancilla , (3.63)

i.e. the ancilla q-bits are all set to |0〉, just as the q-bits in |ψr〉. The number of
ancilla q-bits is kept arbitrary. The purification complexity CP of a mixed state
ρt on the n q-bits of interest is defined as the minimal number of gates required
to transform |Ψr〉 – up to a tolerance – into a purification |Ψt〉 of ρt for some
number of ancilla q-bits. To ensure that this concept of complexity reduces to the
complexity for pure states discussed above if ρt is pure, the gates are only allowed
to act on ancilla q-bits if these are entangled with the n q-bits in |Ψt〉. Note that
the purification |Ψt〉 of a target state |ψt〉 that is already pure is always of the form

|Ψt〉 = |ψt〉 ⊗ |φ〉ancilla , (3.64)

where |φ〉ancilla is some state on the ancilla q-bits. States like this obviously de-
scribe no entanglement between the n q-bits and the ancilla q-bits. Therefore the
restriction stated above ensures that only the original n q-bits are allowed to be
used when applying the gates to the reference state. Consequently, we recover the
concept of pure state complexity discussed above if ρt is pure.13

Spectrum and Basis Complexity. The concepts of spectrum and basis com-
plexity are results of the so-called spectrum approach [179]. This approach pursues
the idea to separate the effort it takes to generate a state with the same spectrum
ρ̃t as the target state ρt from the effort to transform the basis of eigenstates of ρ̃t
into the one of ρt. We consider the same setup as for purification complexity: We
add an arbitrary amount of ancilla q-bits to the system of n q-bits. The spectrum
complexity CS is defined to be the minimal number of gates that are required to
transform the reference state |Ψr〉 – up to tolerance – into a purification of a state
ρ̃t with the same spectrum as ρt. Analogous to the definition of purification com-
plexity, the gates may only act on the ancilla q-bits if they are entangled with the
n q-bits in the purification of ρ̃t. It is easy to see that the spectrum complexity is
in general smaller than the purification complexity, i.e.

CS ≤ CP , (3.65)

as the purifications of ρt considered for CP are included in the set of purifications
of all states with the same spectrum as ρt, which is required for CS. The spectrum
complexity may be interpreted as the effort it takes to generate the spectrum of
ρt.

Having generated a state ρ̃t with the correct spectrum, we now need to trans-
form the eigenvectors of ρ̃t into the corresponding ones of ρt in order to map ρ̃t to

13We note that the original formulation of purification complexity in [179] slightly differs from
the one we present here. In this paper the gates are also allowed to act on the ancilla if these
are entangled with the n q-bits in the approximation of |Ψt〉 they generate. This may cause the
purification complexity of pure states to differ from the pure state complexity discussed above.
I brought this subtlety to the attention of the authors of [179].
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ρt. The effort it takes to perform this task is referred to as basis complexity. The
easiest way to define this quantity is via

CB = CP − CS . (3.66)

The inequality (3.65) guaranties that CB is always non-negative. We note that this
definition of basis complexity suggests that the purification complexity splits into
two independent pieces: the effort it takes to generate the spectrum of ρt (CS) and
the effort to generate the correct basis (CB),

CP = CS + CB . (3.67)

Whether these two tasks may really be considered to be independent from each
other in CP is not clear, as already pointed out in [179].

An alternative definition C̃B of basis complexity is the number of unitary gates
that need to be applied to ρ̃t in order to transform it into ρt – up to tolerance.
Since ρ̃t has per definicionem the same spectrum as ρt, there exists a unitary
transformation that maps ρ̃t to ρt. Thus this procedure is well defined.

It is easy to see that both CB and C̃B are equal to CP if ρt is pure. Moreover,
CS is zero for pure ρt, since the reference state |ψr〉 〈ψr| has the same spectrum as
a pure target state |ψt〉 〈ψt|. So we see that the spectrum approach to complexity
reduces to the pure state complexity discussed above for pure target states. In the
spectrum approach we see that new ingredient for the complexity of mixed states
is the effort it takes to generate the spectrum.

The concepts of complexity for mixed states are particularly interesting in
view of the complexity of reduced states, the so-called subregion complexity. If we
consider a pure entangled state of a system Σ consisting of two subsystems A, B,
the results of Section 3.1 imply that the reduced state on A is mixed. So, a concept
of complexity that measures the effort it takes to generate the reduced state on A
necessarily needs to be applicable to mixed states. Here it is important to mention
that the purification, spectrum and basis complexity do not take into account if
a state is reduced, i.e. part of a bigger system. It is not clear whether a concept
of complexity for reduced states should ignore this property.14 In particular, in
my discussion about holographic subregion complexity in Section 5.5, I argue that
there is evidence for the bulk quantity, which is suggested to be related to the
complexity of reduced CFT states, to take the fact that the state is part of a
larger system into account.

3.2.2 Complexity for Quantum Field Theories
For a quantum system that is described by a finite dimensional Hilbert space –
such as q-bits – the concept of complexity is easily defined (see Section 3.2.1).
However, for a system on an infinite dimensional Hilbert space, such as quantum
field theories, it is a highly non-trivial task to introduce a notion of complexity.
According to [48] there are four main challenges that need to be addressed for a

14This has already been pointed out in [179].
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definition of complexity in field theories:

Choice of the Reference State. In order to follow the motivation for com-
plexity as a measure for the correlations of a state (see Section 3.2.1), we require
the reference state to be the field theory analogue of a product state in position
space, i.e. there should be no spatial correlations present in the reference state,
as it was the case for q-bits (3.53). For generic quantum field theories there is no
clear or natural choice for such a state. We emphasize that the vacuum state is in
general highly entangled as can be seen from the entanglement entropy (3.39) for
a CFT2 vacuum state, for instance. Thus the vacuum state is not a good choice
for the reference state.

Set of Gates. It is not clear at all how to choose a suitable set of unitary
gates for field theories. A discrete set of gates – as in the case of q-bits – is not
expected to be able to generate all possible states. Approaches for field theory
complexities usually consider a continuum of gates (see e.g. [48, 49]).

Measure for Gates. In the q-bit system discussed in Section 3.2.1 complexity
simply counted the number of gates required to map the reference state |ψr〉 to
the target state |ψt〉. For field theories we expect the number of gates required to
approximate a generic |ψt〉 to be divergent. So we need to introduce a measure
function to the set of gates and a concept of minimality for the gates. A very
popular approach for this problem was given in [181, 182], where a Finsler metric
was on the set of all unitary operators was considered.

UV Divergencies. In Section 3.1.4 we saw that the entanglement entropy is
UV divergent in field theories. We expect a similar effect for complexity. So we
require a concept of regulating these UV divergencies.

Even though the concept of complexity has been studied intensively for field
theories in recent years and some progress has been made (see e.g. [48–51, 183]),
a rigorous and formal definition for complexity in field theories is still subject of
current research.

3.2.3 Complexity in AdS/CFT
The AdS/CFT correspondence allows us to approach complexity for field theories
from a new perspective. Since a formal definition of complexity is not known
in field theories, we may ask if it is possible to find a proper definition in the
bulk. To be more precise, the aim of this approach is to introduce bulk quantities
that appear to be good candidates for encoding a concept of complexity of the
boundary state. This allows us to work with the complexity of the boundary state
on the gravity side. We need to stress that – since a field theory formulation for
complexity is not available – this method does not introduce a gravity dual of a
known boundary quantity, as it is the case for the RT formula (see Section 3.1.6).
It may rather be seen as a strategy for defining complexity via the bulk. The main



76 CHAPTER 3. QUANTUM INFORMATION IN AdS/CFT

Figure 3.11: The Penrose diagram of the two sided eternal AdS black hole. (This
graphic is inspired by a similar visualization in [49].) This geometry is dual to
the thermofield double state (3.68) which describes two copies of the same CFT
state on the asymptotic boundaries of the two sides of the black hole. We denote
these two states by ρL and ρR. The two sides of the black hole are connected
via an Einstein-Rosen bridge. There are two proposals for the bulk dual of the
complexity of the boundary state. The CV conjecture (3.69) considers the maximal
codimension one bulk surface B stretching from the left boundary at time tL to the
right at time tR (l.h.s.). The complexity at times tL, tR is proposed to be given by
the volume of B. The CA conjecture (3.70) evaluates the gravitational action over
the Wheeler-DeWitt (WDW) patch to compute complexity at times tL, tR. The
WDW patch is defined as the union of all spatial slices connecting the conformal
boundaries on the two sides of the black hole at times tL, tR (r.h.s.).

challenge in this approach is to test whether a given bulk quantity actually is a
suitable bulk dual for complexity.

Complexity Equals Volume and Complexity Equals Action

Susskind was the first who pursued an holographic approach to complexity [56–59,
184,185].15 Together with his collaborators, he introduced two new bulk quantities
– proposed to correspond to complexity – for the thermofield double state,

|TFD(tL, tR)〉 = 1√
Zβ

∑
i

e−βEi/2e−iEi(tL+tR) |i〉L |i〉R . (3.68)

This state describes an entangled state between two copies of the same CFT at
times tL and tR on the two copies. The holographic dual of |TFD(tL, tR)〉 is the
two sided eternal AdS black hole [60, 61]. The two copies of the CFT defined on
the asymptotic boundaries of the two sides of the black hole are connected by an
Einstein-Rosen bridge. We depict this geometry in Figure 3.11. Susskind and his
collaborators made the following two proposals for a bulk dual of complexity on
the field theory side:

15We also mention [186] here for related work.
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Complexity Equals Volume (CV). [57, 58] We consider the maximal codi-
mension one bulk surface B connecting the constant time slices at tL and tR of
the two CFT copies on the asymptotic boundaries of the two-sided black hole (see
l.h.s. of Figure 3.11). The complexity = volume (CV) conjecture proposes the
complexity of the boundary state to be proportional to the volume of B,

CV = vol(B)
Gd+1s

, (3.69)

where s is a characteristic length scale in the bulk geometry, e.g. it may chosen to
be the AdS radius or the radius of the black hole.

Complexity Equals Action (CA). [59, 187] Alternatively to CV, the com-
plexity = action (CA) conjecture proposes complexity to be given by the gravita-
tional action evaluated over the Wheeler-DeWitt patch,

CA = SWDW

π~
. (3.70)

The Wheeler-DeWitt patch is given by the union of all spatial slices connecting
the constant time slices at tL and tR on the conformal boundaries of the black hole
(see r.h.s. of Figure 3.11).

The motivation for these two proposals for complexity goes as follows.16 The
boundary reaches thermal equilibrium very fast in time, i.e. in tL + tR, but both
CV and CA keep growing in tL + tR even after this thermalization [57, 59, 187].
So CV and CA capture aspects of the field theory state that continue to evolve
after thermal equilibrium has been reached. These aspects were associated with
complexity in [57] and [59]. Moreover, CV and CA turn out to grow linearly in tL+tR
for large tL + tR [57,59,187]. This property is to be expected from complexity, as
argued in [57,58].

Holographic Subregion Complexity (HSRC)

Inspired by the CV proposal, Alishahiha introduced a bulk quantity known as
holographic subregion complexity (HSRC) for reduced states on entangling regions
A on the CFT side [63]. We only consider static bulk geometries, where the RT
surface γA lies in the same constant time slice as A. A generalization of HSRC
to non-static space-times can be found in [52]. For a given entangling region A
on the CFT side, the HSRC for static bulk geometries is given by the volume of
the codimension one bulk region BA bounded by γA and A on the constant time
slice [63],

CHSRC(A) = vol(BA)
8πLGd+1

, (3.71)

where L is the AdS radius. We depict this construction in Figure 3.12. HSRC was
studied in various papers, e.g. [53, 54,188–191].

16This motivation is based on [49,57].
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Figure 3.12: Alishahiha’s proposal for holographic subregion complexity (HSRC)
[63]. Given an entangling region A on a constant time slice, HSRC is given by the
volume of the codimension one bulk region BA on that time slice, bounded by A
and the corresponding RT surface γA (3.71). Here A is interpreted as a region on
the conformal boundary of the bulk.

One possible motivation for this proposal goes as follows [52]. The AdS/CFT
correspondence implies that it is possible to reconstruct the whole bulk space-time
from the dual CFT state on the conformal boundary of the considered geometry.
This fact raises the question what bulk region is encoded in the reduced density
matrix ρA corresponding to an entangling region A on the CFT side, i.e. which
bulk region can be reconstructed from ρA? In [192, 193] it was argued that the
bulk region associated with ρA is the so-called entanglement wedge WA.

Given an entangling region A and the corresponding RT surface γA, WA is
defined to be the domain of dependence of BA. So WA is the set of all bulk
points p for which any inextensible causal curve that passes through p necessarily
intersects BA. We depict the typical form of WA in Figure 3.13.

Following the above discussion, it is reasonable for the bulk dual of the subre-
gion complexity of ρA to be related to WA. Combining this observation with the
CV conjecture, which essentially states that complexity is related to volumes of
codimension one bulk surfaces, motivates the proposal (3.71) for HSRC.

As a simple example we compute CHSRC(A) for A = [−σ, σ], where we consider
a CFT2 on the real axis with the Poincaré patch (3.33) as holographic dual.17 As
pointed out in Section 3.1.6, the RT surface for A is given by

γA = (t = const., x = −σ cos(s), z = σ sin(s)) , where s ∈ [0, π] . (3.72)

Thus we find the volume of the bulk region BA enclosed by A and γA to be given
by

vol(BA) =
∫ σ

−σ
dx

∫ √σ2−x2

ε

dz
L2

z2 = 2σL2

ε
− L2π , (3.73)

where we have introduced a cut-off at z = ε, analogous to the computation of the
entanglement entropy (3.38). We find

CHSRC(A) = cσ

6πε −
c

12 , (3.74)

17The HSRC for this setup was computed in [63].
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Figure 3.13: The entanglement wedge WA. For an entangling region A on a
constant time slice of the conformal boundary of the bulk space-time, WA (blue)
is given by the domain of dependence of BA (green). Here BA is the codimension
one bulk region lying in the same constant time slice as A and bounded by A and
the corresponding RT surface γA. The domain of dependence of BA is the set of all
bulk points p for which any inextensible causal curve intersecting p passes through
BA.

where we have applied G3 = 3L/2c in (3.71) . In (3.74) we see that the second
term, i.e. -c/12, does not change under rescalings of the cut-off. In [63] it was
suggested that this term is universal, i.e. independent of the cut-off scheme.

3.3 Modular Hamiltonian
A further object in quantum information that we study in this thesis (see Chapter
6) is the modular Hamiltonian [73]. Given a subregion A on a constant time slice
of a quantum field theory, the modular Hamiltonian K(A) of a reduced state ρA
on A is defined via

ρA = e−K(A)

trA(e−K(A)) . (3.75)

The hermiticity and positive-definiteness of ρA imply that K is hermitian as well.
The modular Hamiltonian is an important ingredient for quantum information
measures such as the relative entropy,18 which we introduce in Section 3.3.3). It
has been studied intensively in recent years [41,64–72]. However, the explicit form
of K is only known for a few cases, some of which we present in Section 3.3.2.

18see e.g. [31] for a review and [194–196] for work involving the relative entropy.
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3.3.1 Aspects of Modular Hamiltonians
We begin our review of the modular Hamiltonian K (3.75) by presenting some
properies of this object. The modular Hamiltonian has been studied in great detail
and many non-trivial results have been obtained for it. For instance, in [197,198] a
quantum version of the Bekenstein bound involving K has been derived. Moreover,
in [66] the authors presented a method for determining the matrix elements of K
for excited CFT states in terms of correlation functions. In [65,194] bulk duals of
the modular Hamiltonian were studied in the context of AdS/CFT.

Here we present two aspects of modular Hamiltonians we consider particu-
larly interesting: a symmetry which is naturally induced by the modular Hamil-
tonian and a general statement about the form of modular Hamiltonians for two-
dimensional CFTs.

A Symmetry Induced by the Modular Hamiltonian

The modular Hamiltonian provides a particular symmetry which leaves the expec-
tation values of operators O located in the region A invariant.19 The transfor-
mation associated with this symmetry is induced by the one-parameter family of
unitary operators

UK(s) =
(
ρA
)is = e−isK , (3.76)

where s ∈ R. Considering the definition of K (3.75), it is evident that the expec-
tation value of an operator located in A does not change under UK ,

tr
(
ρAO(s)

)
= tr

(
ρAO

)
, (3.77)

where O(s) = UK(s)OUK(−s). Moreover, we note that UK(s) maps the operator
algebra of the domain of dependence DA of A into itself.20 Therefore, the UK(s)
form a one-parameter group of transformations for the operator algebra of DA,
the so-called modular group [73]. We need to emphasize that the modular flow,
i.e. the flow generated by UK(s) on DA, is usually not local. This is due to the
fact that K is usually not a local operator. Only in a few cases K turns out to be
local and therefore provides a local modular flow. We present some of these cases
in Section 3.3.2.

Modular Hamiltonians for Two-Dimensional CFTs

In [200] a topological criterion for a local modular Hamiltonian in two-dimensional
CFTs was introduced. In particular, when fulfilled, this criterion provides a modu-
lar Hamiltonian which is a local integral over the energy momentum tensor. The
basic statement of [200] goes as follows. Consider a state in a two-dimensional CFT
in Euclidean signature and an entangling region A on a constant time slice. Re-
move a small circle around every boundary point of A from the space-time region.
If the resulting space-time M is conformally equivalent to an annulus, then K is a
local integral over the energy momentum tensor. In topological terms this means

19The following discussion of the symmetry is based on [199].
20The domain of dependence DA is defined analogously to WA in Section 3.2.3.
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that the prerequisites of the above statement are fulfilled if M may be mapped to
a sphere with two holes in such a way that A becomes a simple curve connecting
these two holes.

In a couple of simple cases, the integral over the energy momentum tensor
providing the modular Hamiltonian is given by

K(A) =
∫
A

dx
2π
f ′(x)T00(x) . (3.78)

Here z 7−→ w = f(z) is the conformal transformation that maps M to an annulus
in form of a rectangle with 2π periodic Im(w). The term f ′(x) in (3.78) is the first
derivative of the (real) restriction of f(z) to the constant time slice. For instance,
the expression (3.78) holds for a CFT defined on flat space, where the considered
state is either thermal or the vacuum and A is a single interval. Moreover, (3.78)
is also true for the vacuum and an interval A when the spatial direction is taken
to be a circle. For more complicated configurations, such as quantum quenches,
where K has a different form than (3.78), we refer to [200].

We emphasize that even though the result of [200] applies for the ground state
of a CFT defined on a circle, it is not applicable to a thermal state on the circle.
As already pointed out in [200], the space-time of such a state has the shape of
a torus in Euclidean signature, since both the spatial and the time direction are
periodic. Therefore, the resultingM for an interval A is not conformally equivalent
to an annulus and thus the prerequisites of the statement are not fulfilled. In the
context of AdS/CFT, the BTZ black hole (see Section 2.5.2) is the gravity dual of
such a thermal state on the circle. We discuss the modular Hamiltonian for this
setup in more detail in Section 6.4.3.

3.3.2 Explicit Examples for Modular Hamiltonians
An explicit expression for the modular Hamiltonian was only derived in a few cases.
Here we present two prominent examples. Further examples are given in Chapter
6 and [74–78].

Half Space in d Dimensions. Consider the ground state of a generic quan-
tum field theory in d-dimensional Minkowski space Rd−1,1. The modular Hamilto-
nian of the half-space

H = {xi ∈ Rd−1|x1 > 0} (3.79)

of a constant time slice is given by the boost generator in x1 direction [201, 202]
(see also [115]),

K(H ) = 2π
∫

H

dd−1xx1T00(x) . (3.80)

We note that in [67] the behavior of the modular Hamiltonian under variations of
the half space was studied.

Sphere in d Dimensions. For the vacuum of a CFT on d-dimensional
Minkowski space the modular Hamiltonian for a ball shaped region BR of radius
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R on a constant time slice takes the form [199,203]

K(BR) =
∫
BR

dd−1x
R2 − r2

2R T00(x) , (3.81)

where r =
∑d−1

i=1
(
xi
)2. The center of the ball is set to the origin. The expression

(3.81) for K(BR) may be derived from the modular Hamiltonian (3.80) of half
space (3.79) via a conformal transformation (see e.g. [199]).

3.3.3 Relative Entropy
Studying the modular Hamiltonian directly is in general a very challenging task.
A very popular approach for obtaining results for the modular Hamiltonian is
to work with quantities that are better understood and for which the modular
Hamiltonian plays a non-trivial role. One such quantity is the relative entropy,21

which has been studied extensively in the context of modular Hamiltonians [41,67,
68,115,197,198,204].

Given two reduced states ρA0 , ρA1 on an entangling region A, the relative entropy
of them is defined via

Srel(A) = trA(ρA1 log ρA1 )− trA(ρA1 log ρA0 ) = ∆ 〈K0〉 (A)−∆S(A) , (3.82)

where K0(A) is the modular Hamiltonian of ρA0 and

∆ 〈K0〉 (A) = trA(ρA1 K0(A))− trA(ρA0 K0(A)) . (3.83)

Moreover, ∆S(A) denotes the difference of the entanglement entropies of ρA1 and
ρA0 . The second equality in (3.82) is an immediate consequence of the definition
of the modular Hamiltonian (3.75). The presence of the modular Hamiltonian
in (3.82) allows us to use Srel as a tool to obtain non-trivial results for K0. For
instance, Srel has been used to derive the first law of entanglement [115] (see
Section 6.2) and a quantum version of the Beckenstein bound [197,198] for K0.

Relative Entropy in Terms of Surprise

The relative entropy allows us to compare the two states ρA0 and ρA1 with each other.
To provide some intuition for the physical meaning of relative entropy, we review
the interpretation of Srel in terms of surprise as presented in [31]. For simplicity
we restrict our discussion to the classical case, where the relative entropy of two
discrete probability distributions {pi}i, {qi}i is given by

Srel =
∑
i

pi(log(pi)− log(qi)) . (3.84)

Evidently, this corresponds to the quantum case, where both density matrices ρA0
and ρA1 are diagonal.

21For an introduction to the concept of relative entropy we refer to [31]. The mathematical
rigorous definition of relative entropy for quantum field theories is reviewed e.g. in [34,35].
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The concept of surprise, mentioned above, pursues the idea of quantifying how
unexpected a given event is. Consider an event that may happen with probability
p. As pointed out in [31], the quantity − log(p) is a good measure for the amount
of surprise the event would cause. We may use this concept of surprise for mo-
tivating relative entropy as follows. We consider a system which we mistakenly
assume to come with a probability distribution {qi}i whereas the actual probabil-
ity distribution is {pi}i. The average amount of surprise we would obtain from a
measurement is therefore given by

−
∑
i

pi log(qi) . (3.85)

The relative entropy (3.84) thus is the difference between the average of surprise
we experience due to our false assumption and the actual average of surprise,

−
∑
i

pi log(pi) , (3.86)

provided by the correct probability distribution. So in a sense, Srel measures
how much our assumed probability distribution {qi}i deviates from the actual
probability distribution {pi}i of the system. We note that this motivation of
Srel via the average of surprise can be made mathematically more concrete. For
this we refer to e.g. [31, 98]. For quantum systems the above interpretation may
be straightforwardly adopted: given an quantum system in a state ρA1 which is
mistakenly assumed to be ρA0 , the relative entropy measures the deviation of ρA0
from ρA1 .

Properties of Relative Entropy

We conclude our introduction to relative entropy (3.82) by presenting two proper-
ties of Srel which are of particular importance for our results presented in Chapter
6.

Non-Negativity. The relative entropy of two states ρA0 , ρA1 is non-negative
[34],

Srel(A) ≥ 0 . (3.87)

In particular, Srel(A) is zero if and only if ρA0 = ρA1 .

Monotonicity. The relative entropy is monotonous, i.e.

Srel(A) ≤ Srel(A′) , (3.88)

for two entangling regions A, A′ with A ⊂ A′ [34, 205].
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Chapter 4

Topological Complexity

In this chapter we present the results of [1], where my collaborators and I intro-
duced the concept of topological complexity for AdS3/CFT2. This is a further
proposal for a gravity dual of the subregion complexity corresponding to an en-
tangling region A, next to Alishahiha’s proposal [63] presented in Section 3.2.3.
Alishahiha considers the subregion complexity of A for a CFT state with static
gravitational dual to be proportional to the volume of the codimension one bulk
region BA enclosed by the boundary interval A and the corresponding RT surface
γA (see Figure 3.12). This proposal – as Susskind’s volume proposal (3.69) – re-
quires to introduce the length scale L in (3.71) by hand in order for the complexity
to be dimensionless. Our concept of topological complexity avoids this subtlety:
for a CFT state with static gravitational dual we define the topological complexity
of an entangling region A to be

CT (A) = −1
2

∫
BA
Rctda , (4.1)

where Rct is the Ricci scalar of the induced metric on the constant time slice in
the bulk and da is the corresponding area element. By construction, CT is dimen-
sionless and therefore no additional scale needs to be introduced. The prefactor
−1/2 ensures the non-negativity of CT as Rct is negative for the examples consid-
ered here. As we show in the following section, the topology of BA and A is of
significant importance for CT (A), which justifies the term “topological complexity”.
In particular, if the topology of BA changes due to a phase transition in γA (see
Section 3.1.7), we find that CT changes by a discrete, finite jump.1 Moreover, we
see that our concept of complexity (4.1) allows us to interpret Rct in a natural
way as a complexity density in the bulk.

Note that we only consider geometries with constant Rct. In these cases, CT (A)
is obviously proportional to vol(BA) and thus agrees with Alishahiha’s proposal
(3.71) up to a multiplicative prefactor.2 However, interpreting vol(BA) in the
context of topological complexity reveals a clear relation between the terms in

1We refer to [188] for related work.
2We note that in [188] some of the examples we discuss in this chapter have been studied in

the context of holographic subregion complexity. Since topological complexity and holographic
subregion complexity differ only by a constant prefactor in these examples, the results we present
in (4.11), (4.13), (4.21), (4.23) effectively have already been computed in [188]. However, the
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Alishahiha’s holographic subregion complexity and the topology of BA and A, as
we discuss below. Therefore, our topological approach to complexity provides new
insight to the interpretation of the terms appearing in Alishahiha’s formula (3.71).
Moreover, our topological approach allows us to formulate a general expression for
the complexity3 of an arbitrary entangling region A for CFT2 states with static
gravity dual.

We present our results regarding topological complexity in the following way.
In Section 4.1 we show how to express topological complexity in terms of the
geodesic curvature and the Euler characteristic using the Gauss-Bonnet theorem.
In particular, we show how this result may be used to determine the form of topo-
logical complexity for static asymptotic AdS3 spaces. We apply the expression for
topological complexity obtained in Section 4.1 to CFT2 states dual to global AdS3,
BTZ black holes and conical defects in Section 4.2. In particular, we present an
explicit expression for the topological complexity of an arbitrary entangling region
for the CFT2 vacuum state – which is dual to global AdS3. Moreover, we show
how the topological complexity changes with the mass of BTZ black holes and con-
tinue this analysis to conical defects by allowing the mass of the BTZ black hole
to become negative (see Section 2.5.2). We conclude this chapter by discussing
the obtained results in Section 4.3.

Note that [1] not only considers the study of topological complexity via the
Gauss-Bonnet theorem. Also subregion complexity for tensor networks and a field
theory expression for subregion complexity are discussed. The latter is presented
in Chapter 5. Since I did not participate in the study of subregion complexity for
tensor networks, I do not include it in this thesis.

4.1 Topological Complexity from the
Gauss-Bonnet Theorem

The topological complexity (4.1) may be reformulated in terms of the geodesic
curvature of ∂BA and the Euler characteristic of BA via the Gauss-Bonnet theorem.
This observation allows us to conclude that for static asymptotic AdS3 space-times
many aspects of topological complexity are determined by the topology of the
considered entangling region A and the topology of BA.

approach we present in the following sections provides a topological interpretation of the results.
Moreover, we find that they all may be obtained from the same, general expression (4.10).

3The term complexity may refer to both our topological and Alishahiha’s holographic sub-
region complexity as they only differ by a multiplicative prefactor in the examples we consider
here.
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4.1.1 Application of the Gauss-Bonnet Theorem to Topo-
logical Complexity

Using the Gauss-Bonnet theorem (see e.g. [103]), we find that the topological
complexity (4.1) of an entangling region A can be rewritten as4

CT (A) =
∫
∂BA

kgds− 2πχ(BA) , (4.2)

where χ(BA) is the Euler characteristic of BA, kg the geodesic curvature (see e.g.
[103]) of ∂BA on the constant time slice and ds the corresponding line element.5

For a given curve γ, the geodesic curvature may be interpreted as a measure
for the deviation of γ from a geodesic. In particular, kg vanishes if γ is a geodesic.
Moreover, if γ is only piecewise differentiable, the integral over kg along γ includes
angular contributions from the points where γ is not differentiable.

4.1.2 Topological Complexity for Asymptotic AdS3

We now discuss topological complexity (4.2) for static asymptotic AdS3 geometries.
In particular, we focus on asymptotic AdS3 geometries of the form

ds2
AAdS3 = −f(r̃)dt̃2 + 1

f(r̃)dr̃
2 + r̃2dφ2 , (4.3)

where 0 < r̃, t̃ ∈ R, φ ∼ φ + 2π and f is a positive function with f(r̃) −→ r̃2/L2

for r̃ −→ ∞. Considering (2.116), it is easy to see that such geometries in fact
asymptote to AdS3 for large r̃. For geometries of the form (4.3) we may use
(4.2) to construct a general expression for the topological complexity of a generic
entangling region, as we now show. We introduce a radial cut-off at

r̃ = r̃ε = L`CFT

ε
, (4.4)

where `CFT is the radius of the circle the CFT is defined on. In order to determine
the topological complexity for a given boundary region A, we replace the region
BA in (4.2) by the subset BεA lying above the cut-off (see Figure 4.1),

CT (A) =
∫
∂BεA

kgds− 2πχ(BA) . (4.5)

Here we assume ε to be sufficiently small for the topologies of BεA and BA to
agree. Note that RT surfaces for (2 + 1)-dimensional bulk geometries are mostly

4We note that the Gauss-Bonnet theorem was also used in [155] in the context of holographic
subregion complexity. The authors applied it to hyperbolic polygons corresponding to the differ-
ence of the holographic subregion complexities of certain boundary intervals. Our formula (4.2)
may be used to reproduce their findings as a special case.

5Note that the Gauss-Bonnet theorem is usually formulated in terms of the Gaussian curva-
ture, not the Ricci scalar. However, in two dimensions the Ricci scalar is given by the Gaussian
curvature times two (see e.g. [103]). This allows us to apply the Gauss-Bonnet theorem to (4.1)
to obtain (4.2).
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Figure 4.1: Visualization of the terms appearing in the expression (4.6) for topolo-
gical complexity. We may compute topological complexity for an entangling region
A (red) via the Gauss-Bonnet theorem. The resulting formula is (4.2). In order to
obtain a finite result we need to introduce a cut-off r̃ε (4.4) (dashed circle). The in-
tegral in (4.2) then goes in direction of the arrows along the boundary of the green
region BεA enclosed by the cut-off and the RT surface γA. This region is by con-
struction the part of BA lying above the cut-off. Note that the angles between the
RT surface and the cut-off contribute additively to the integral in (4.2). Evidently,
there are as many angular contributions as endpoints of A. Since the RT surfaces
are geodesics, they do not contribute to the integral over the geodesic curvature in
(4.2). These considerations result in the formula (4.6) for topological complexity,
where the total angular size 2σεA is the sum of the angular sizes of all segments of
∂BεA on the cut-off (in the depicted example we have 2σεA = 2(σε1 + σε2 + σε3)).

geodesics.6 Consequently, they do not contribute to the integral over the geodesic
curvature in (4.5). This allows us to conclude that in the integral over the geodesic
curvature in (4.5) only the part of ∂BεA lying on the cut-off circle r̃ = r̃ε and the
intersection angles between γA and this circle contribute. Consequently, we find
the topological complexity of A to be given by

CT (A) = 2
√
f(r̃ε)σεA − 2πχ(BA) + angular contributions . (4.6)

Here 2σεA is the total angular size of the part of ∂BεA on the cut-off and the
angular contributions are given by the angles between the RT surface γA and
the cut-off (see Figure 4.1). Moreover, we have used the fact that along the cut-
off, i.e. the circle of radius r̃ε, the geodesic curvature is given by

kg =
√
f(r̃ε)
r̃ε

, (4.7)

which is easy to verify.

6We use the term “mostly” here since this statement is not correct for conical defects (2.152).
These geometries have a naked singularity, which leads to RT surfaces that not only consist of
geodesics. We discuss this situation in Section 4.2.2.
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4.2 Examples for Topological Complexity
In this section we compute topological complexity for explicit examples. We con-
sider the geometries of global AdS3 (2.116), the BTZ black hole (2.148) and the
conical defect (2.152). All these geometries can be written in the form (4.3), how-
ever only for global AdS3 and the BTZ geometry may (4.6) be applied for the
computation of topological complexity. The reason for that is the naked singular-
ity of the conical defect geometry. As we discuss in Section 3.1.7, this causes the
RT surface for sufficiently large entangling intervals to include an infinitesimally
small circle around the singularity. This circle happens to be no geodesic. Since
the derivation of (4.6) included the assumption that the RT surface is a geodesic,
we conclude that it is not applicable for conical defects. We discuss topological
complexity for conical defects in Section 4.2.2.

Before we present the explicit calculations, we simplify (4.6) for global AdS3
and the BTZ black hole by sending ε to zero and only considering the constant
and divergent part of CT . Since the remaining parts of CT are of order ε, they may
be neglected. We pursue as follows. It is easy to verify that

√
f(r̃ε) behaves as

√
f(r̃ε) = `CFT

ε
+O(ε) , (4.8)

for the considered geometries (see (2.116) and (2.148)). Moreover, the angles under
which the RT surface intersects the cut-off at r̃ = r̃ε asymptote to π/2, as this is
the angle under which geodesics asymptote to the conformal boundary in global
AdS3 (see e.g. [33]). Since the RT surface is attached to the endpoints of the
entangling region A, there are as many angular contributions to CT as endpoints
of A (see Figure 4.1). By denoting the number of endpoints as n, we find

CT (A) = 2`CFTσA
ε

+ π

2n− 2πχ(BA) +O(ε) , (4.9)

where σA is the total angular size of A. 7 We also note that an entangling region
A for a (1 + 1)-dimensional CFT is always the disjoint union of a given number
q ∈ N of intervals Ai, i = 1, . . . , q. By setting the angular size of Ai to 2σi, we
conclude8

CT (A) = 2`CFT

ε

q∑
i=1

σi + π

2n− 2πχ(BA) +O(ε) . (4.10)

Here we see that the constant – i.e. ε0 – term of topological complexity is com-
pletely determined by topological quantities. This term is assumed to be universal
(see Section 3.2.3). For any configuration of entangling intervals it is fixed by the
total number of endpoints of the intervals and the Euler characteristic of BA.

7We note that in (4.9) we used σεA = σA +O(ε2). Given the previously mentioned fact that
γA approaches the conformal boundary under the angle π/2, this is easy to verify.

8We note that in [1] we have set n = 2q, since every interval Ai has two boundary points.
However, this is not applicable to the case when A is the complete circle providing the constant
time slice, since this may be seen as one interval with no boundary points.
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4.2.1 Topological Complexity for Global AdS3

We now apply our formula for topological complexity (4.10) to entangling regions
for the CFT2 vacuum state, which is dual to global AdS3 (2.116). We particularly
focus on the behavior of topological complexity under phase transitions of the RT
surface (see Section 3.1.7). As we show below, these phase transitions lead to a
finite jump in complexity which is caused only by the change of the topology of
BA.

Topological Complexity for One Interval

As a first simple application of (4.10) we consider A to be a single interval of
angular size 2σA in global AdS3. The bulk region BA is of the form depicted in
Figure 3.12, which implies χ(BA) = 1. Moreover, the number n of endpoints for
one interval is two. Consequently, we find

CT = 2`CFTσA
ε

− π +O(ε) . (4.11)

Furthermore, we may also consider the special case when the considered en-
tangling region is the whole constant time slice, i.e. the circle of radius `CFT. In
this situation, CT may be computed analogously to the situation with one interval
discussed above. However, since the considered entangling region does not have
any endpoints, we need to set n = 0 in (4.10) which leads to

CT = 2π`CFT

ε
− 2π +O(ε) . (4.12)

Topological Complexity for Two Intervals

For an entangling region A consisting of two intervals A1 and A2, we need to
consider two different phases of the RT surface. As for the analogous setup in
the Poincaré patch, discussed in Section 3.1.7 and depicted in Figure 3.7, the RT
surface γA is given by γA1 ∪ γA2 if the distance between A1 and A2 is sufficiently
large. We denote this phase of the RT surface as Phase I. Moreover, if A1 and A2
are close to each other, γA is given by γAB ∪ γB, where B is the interval between
A1 and A2. We refer to this phase as Phase II.

By denoting the angular size of Ai as 2σi, i = 1, 2, we find via (4.10) that the
topological complexity of two intervals is given by

CT (A1A2) =
{

2`CFT(σ1+σ2)
ε

− 2π +O(ε) Phase I
2`CFT(σ1+σ2)

ε
+O(ε) Phase II

. (4.13)

Here we have used the fact that two intervals have n = 4 endpoints and the
additivity of the Euler characteristic, which implies χ(BA) = 2 in Phase I. Since
the contributions of order ε may be ignored, we find that the complexity (4.13)
changes by a discrete value of 2π at the transition from Phase I to Phase II. In
particular, this jump only concerns the finite, i.e. ε0 part of complexity, which is
proposed to be universal (see Section 3.2.3).9

9We note that this jump has already been determined in [188] in the context of holographic
subregion complexity.
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Figure 4.2: Different phases of the RT surface of several intervals. Given an
entangling region A (red) being the union of q disjoint entangling intervals (here
we visualize q = 3) of angular size 2σ1, . . . , 2σq, we see that the RT surface γA
has different phases, depending on the position of the entangling intervals relative
to each other. When the RT surface changes its phase, the topology of the bulk
region BA enclosed by γA and A changes as well. This causes a discrete jump in
the topological complexity CT (A) (4.17) as the number E of disjoint pieces of BA
changes. We depict the part of BA above the cut-off (dashed circle) in green.

Topological Complexity for an Arbitrary Number of Intervals

Our result for the topological complexity of two intervals (4.13) may be straight-
forwardly generalized to an entangling region A consisting of an arbitrary number
of intervals A1, . . . Aq, q ∈ N. We denote the angular size of Ai by 2σi. When
we neglect the special case where the considered entangling region is the whole
constant time slice (4.12), we find that the number of endpoints is the given by

n = 2q . (4.14)

The RT surface of q intervals has several different phases depending on the position
of the intervals relative to each other (see Figure 4.2). Depending on the phase, we
find different values for the Euler characteristic χ(BA). The quantity determining
χ(BA) is the number of disjoint regions BA consists of: consider BA to consist of E
disjoint regions, each of which is assumed to be connected (see Figure 4.2). Then
χ(BA) is given by the sum of all Euler characteristics of these regions. As we
visualize in Figure 4.2, none of these regions has any holes for any configuration
of entangling intervals. Consequently, their Euler characteristic is always one.
Therefore, we find

χ(BA) = E . (4.15)

In particular, we note
χ(BA) ≤ q , (4.16)

which is an immediate consequence of the above discussion.
Inserting (4.14) and (4.15) into (4.10) we find

CT (A) = 2`CFT

ε

q∑
i=1

σi + π(q − 2E) +O(ε) . (4.17)
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So we see that the different phases of γA correspond to different integer values
of E . Consequently, we find that at the transition point between two phases, the
topological complexity jumps by a multiple of 2π.

4.2.2 Topological Complexity for BTZ Black Holes and
Conical Defects

The behavior of the topological complexity of an arbitrary number of entangling
intervals discussed above also applies for CFT states dual to BTZ black holes and
conical defects. The results presented in Section 4.2.1 regarding the discrete jump
of topological complexity when the RT surface undergoes a phase transition in
global AdS3 evidently may also be found for the geometries discussed here. In
addition to these aspects of topological complexity, there is a further kind of phase
transition for the RT surface that may occur here and is not present for global
AdS3: as discussed in Section 3.1.7 the RT surface for a single interval wraps
around the black hole horizon (or conical defect) if the interval is sufficiently large.
In this section we focus on this type of phase transition.

Topological Complexity for BTZ Black Holes

We now discuss the behavior of topological complexity under the phase transition
of the RT surface mentioned above for thermal CFT states dual BTZ black holes.
For this purpose we write the BTZ metric (2.148) in terms of the black hole mass
(2.149)

M = r̃2
h

8G3L2 , (4.18)

which may be identified with the square of the temperature T on the field theory
side via (2.151)

LM = π2`2
CFT c

3 T 2 , (4.19)

where c = 3L/2G3 (2.117) is the central charge of the CFT. Using the mass M ,
the BTZ metric (2.148) may be written as

ds2
BTZ = −

( r̃2

L2 − M̃
)
dt̃2 + 1

r̃2

L2 − M̃
dr̃2 + r̃2dφ2 , (4.20)

where M̃ = 8G3M .

In order to discuss the behavior of topological complexity under the phase tran-
sition, we consider the following setup. We set the angular size of the boundary
entangling interval A to a fixed value 2σA > π and vary M̃ . Following the discus-
sion in Section 3.1.7, we find that for sufficiently large M̃ the corresponding RT
surface γA is given by the geodesic lying in the same constant time slice and on
the same side of the black hole as A (see Figure 4.3). We refer to this type of RT
surface as Phase a. The corresponding topological complexity is given by (4.10)

CT (A,Phase a) = 2`CFTσA
ε

− π +O(ε) . (4.21)
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Figure 4.3: Change of topology in BA for BTZ black holes. Consider an entangling
interval A (red) with angular size larger than π for a state dual to a BTZ black
hole. If the mass of the black hole is sufficiently large, the RT surface γA lies
on the same side of the BTZ black hole as A (Phase a). The topology of BA is
then trivial (we depict the part BεA of BA lying above the cut-off in green). If
the mass of the black hole becomes too small, the RT surface undergoes a phase
transition and then consists of the geodesic lying on the other side of the black
hole and the black hole horizon (Phase b). In this situation, BA has the topology
of an annulus. Consequently, its Euler characteristic is zero. This change of the
Euler characteristic leads to a discrete jump in topological complexity by 2π (4.21),
(4.23).

By decreasing M̃ , CT does not change until the RT surface undergoes the phase
transition turning it into the union of the black hole horizon and the geodesic
connecting the two endpoints of A and lying on the other side of the black hole
(see Figure 4.3). We refer to this kind of RT surface as Phase b. Evidently, the
bulk region BA enclosed by the RT surface and A now has a different topology
than in Phase a: it surrounds the horizon and consequently has a hole, as depicted
in Figure 4.3. Thus its Euler characteristic is given by

χ(BA) = 0 . (4.22)
Therefore, the topological complexity in Phase b is given by (4.10) 10

CT (A,Phase b) = 2`CFTσA
ε

+ π +O(ε) . (4.23)

So we see once more that the change of topological complexity at the point of the
transition from Phase a to Phase b may be explained purely in topological terms:
at the transition point the topology and therefore the Euler characteristic of BA
changes. This leads to a discrete jump by 2π in CT . 11

We note that from the above analysis we find that topological complexity is
mostly independent of the temperature of the thermal state dual to the BTZ black
hole. 12 This is evident since the temperature is essentially given by M̃ (4.19) and

10For the sake of completeness we note that the black hole horizon – which is part of the
boundary of BA, is a geodesic. Therefore its contribution to the integral over the geodesic
curvature kg in (4.2) vanishes. Consequently (4.10) may be applied in order to compute CT .

11This jump has already been observed in [188] by computing the holographic subregion com-
plexity via a direct integration in the bulk.

12This was also pointed out in [188] in the context of holographic subregion complexity.
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(4.21) and (4.23) are independent of M̃ . Only at the transition point of the RT
surface, i.e. at M̃ = M̃∗, with13

σA = 1
2
√
M̃∗

log
(exp(2π

√
M̃∗) + 1

2

)
, (4.24)

the temperature dependence is present due to the discrete jump in CT .

Topological Complexity for the Conical Defect

As a final example, we now consider topological complexity for conical defects
(2.152). Just as for the BTZ black hole, the RT surface of a single entangling in-
terval A undergoes a phase transition for sufficiently large A (see Section 3.1.7). If
the angular size of A is larger than π, i.e. 2σA > π, the RT surface consists of two
parts: a geodesic connecting the two endpoints of A and lying on the other side of
the defect and an infinitesimally small circle circumventing the conical defect (see
Section 3.1.7). We refer to this configuration of the RT surface as Phase c. Note
that the circle around the defect is usually ignored since its circumference is zero
and therefore does not contribute to the entanglement entropy when computed
via the RT formula (3.32). However, formally the circle is necessary for ensuring
that the RT surface is homologous to A (see Section 3.1.7 for more details). The
circle also plays a crucial role for topological complexity, as we demonstrate in this
section.

The BTZ metric in the form (4.20) may be used for conical defects (2.152) as
well by considering M̃ ∈ [−1, 0). Here, M̃ is associated with N̂ via (2.154). In order
to compute the topological complexity (4.2) for Phase c, we need to determine the
geodesic curvature of the infinitesimal circle surrounding the conical defect. We
do that by considering a circle of finite radius r̃ = r̃∗ and taking the limit r̃∗ −→ 0,∮

r̃=r̃∗
kgds = 2π

√
r̃2
∗
L2 − M̃ −→ 2π

√
−M̃ for r̃∗ −→ 0 . (4.25)

Moreover – in analogy to the computation of CT in Phase b for the BTZ black hole
– we find the Euler characteristic of the bulk region BA to be zero,

χ(BA) = 0 . (4.26)

By inserting (4.25) and (4.26) together with the value of the geodesic curvature at
the cut-off (4.7) and the angular contribution π into (4.2), we find

CT (A,Phase c) = 2`CFTσA
ε

+ π − 2π
√
−M̃ +O(ε) . (4.27)

Note that the contribution (4.25) of the infinitesimal circle around the defect ap-
pears with a minus sign in (4.27) since the circle needs to be integrated over in
mathematically negative direction in order to obtain the correct term for CT (see
Figure 4.4).

13This is a consequence of (3.50).
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For M̃ = −1, which corresponds to global AdS3 (2.116), we find that (4.27)
agrees with the value of CT we obtained in Section 4.2.1 for a single interval in
global AdS3 (4.11).

Behavior of the Universal Part of Topological Complexity

We conclude our analysis of topological complexity for BTZ black holes and conical
defects by discussing the behavior of the term c0

T in CT constant in ε as a function of
M̃ . This term is proposed to be universal (see Section 3.2.3 and [63]). For the BTZ
black hole, we find that c0

T is completely determined by topological quantities, i.e.
the number of endpoints of the considered entangling region A and the topology
of the codimension one bulk region BA. 14 As long as these topological aspects
do not change, c0

T is constant in M̃ . For one entangling interval of angular size
2σA > 2π we see that the value of c0

T jumps by 2π when the corresponding RT
surface changes its phase from Phase a to Phase b (see (4.21) and (4.23)). By
taking M̃ to negative values and therefore considering conical defects, we find that
c0
T (4.27) is now no longer strictly topological, as its value depends on M̃ , i.e. the
geometry we consider. We depict the behavior of c0

T as a function of M̃ in Figure
4.4.

4.3 Discussion
The focus of this chapter was the topological complexity CT (4.1) for CFT2 states
with static asymptotic AdS3 spaces as gravity duals. Topological complexity is a
quantity my collaborators and I introduced in [1] as a candidate for a holographic
dual of subregion complexity. We studied topological complexity for entangling
regions of CFT2 states dual to global AdS3, BTZ black holes and conical defects.
For these static bulk geometries CT agrees with Alishahiha’s holographic subregion
complexity (3.71) – up to a proportionality factor. The reason for this is the
scalar curvature on the constant time slice, which is constant for the considered
geometries. The advantage of our topological approach is the fact that it allows us
to apply the Gauss-Bonnet theorem straightforwardly to compute the topological
complexity. In particular, this provided us with an universal expression (4.10) for
CT for global AdS3 and BTZ black holes. This expression is valid for any entangling
region on the CFT side. Remarkably, our expression (4.10) for CT reveals that the
term c0

T which is of order zero in the cut-off expansion of CT is solely determined
by topological quantities. These quantities are the number of endpoints of the
considered entangling region A and the Euler characteristic of the bulk region BA
bounded by the RT surface γA and A on the conformal boundary of the bulk. This
result allowed us to systematically study the behavior of topological complexity
during phase transitions of the RT surface (see Sections 4.2.1 and 4.2.2). If the
RT surface undergoes a phase transition, the topology and therefore the Euler
characteristic of BA changes. This led us to the conclusion that c0

T performs a
discrete jump by multiples of 2π at the transition point of the RT surface. Such

14We have recovered this behavior for one entangling interval above (see (4.21) and (4.23)). It
is easy to see that it is also valid for an arbitrary set of entangling intervals.
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Figure 4.4: Plot of the cut-off independent part of topological complexity for BTZ
black holes, conical defects and global AdS3. We depict the term c0

T of topological
complexity independent of the cut-off for M̃ ≥ −1. The cut-off corresponds to the
dashed circle in the depicted constant time slices. Since the Ricci scalar is constant
for all M̃ , topological complexity is proportional to the volume of the region BA
(green) enclosed by the considered boundary entangling interval A (red) and the
corresponding RT surface. We assume the angular size of A to be larger than π.
For sufficiently large M̃ , BA lies on the same side of the BTZ black hole as A
(Phase a) and has trivial topology, which leads to c0

T = −π (4.21). If M̃ becomes
smaller than M̃∗ (4.24), BA wraps around the BTZ black hole and assumes the
topology of an annulus. This causes c0

T to jump to π (4.23). When M̃ becomes
negative, the considered geometry corresponds to a conical defect (Phase c). Here
BA still has the topology of an annulus. Moreover, c0

T is now no longer constant
but depends on M̃ via c0

T = π − 2π
√
−M̃ (4.27). For M̃ = −1 the geometry

becomes global AdS3 (red dot).

phase transitions occur when A consists of multiple entangling intervals as the
phase of the RT surface depends on the position of these intervals relative to each
other. Moreover, for thermal states dual to BTZ black holes γA also undergoes
a phase transition if A consists of only one interval. When the angular size of A
becomes sufficiently large, γA changes from a geodesic lying on the same side of the
black hole as A to the union of the respective geodesic on the other side and the
horizon (see Figure 4.3). In Section 4.2.2 we concluded that the only temperature
dependence of c0

T is given by the discrete jump occurring at this transition of the
RT surface.

Furthermore, we studied the topological complexity of CFT states dual to con-
ical defects for large entangling intervals A (see Section 4.2.2). In this case the
RT surface consists of a geodesic connecting the endpoints of A and an infinitesi-
mally small circle circumventing the conical singularity. We found that the circle
wrapping around the singularity is of great importance for the calculation of CT .
In particular, it provides a contribution to c0

T which is not purely topological but
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depends on the specific conical defect under consideration. This fact distinguishes
the topological complexity of the conical defect from the one of global AdS3 and
BTZ black holes.

The results presented in this chapter are easily understood from the bulk per-
spective. However, they raise several non-trivial questions for the interpretation of
topological complexity15 on the field theory side. In the following we assume that
the proposal that topological complexity corresponds to subregion complexity on
the field theory side is true. In this context, we consider the following aspects of
our results of particular interest for future projects. We find that the subregion
complexity jumps by multiples of 2π when the RT surface undergoes a phase tran-
sition. It is a non-trivial question whether this discrete jump actually occurs on
the field theory side. It might well be that it is a large N effect that is replaced
by a rapid change in subregion complexity for finite N . 16 Moreover, even if the
discrete jump turns out to be a large N effect, why this rapid change in subregion
complexity happens is not clear at all and requires further investigation. Also
the fact that the subregion complexity always seems to jump by multiples of 2π
is an intriguing property that should be studied in detail. Furthermore, we only
computed topological complexity for static situations so far. In order to develop
a better understanding for CT and in particular to decide whether it is actually
suitable to describe subregion complexity, time-dependent systems need to be con-
sidered. In particular, this is important in order to investigate the differences
between topological complexity and holographic subregion complexity (3.71). In
the cases we studied so far, these two concepts differed only by a proportionality
factor.

15Note that these questions also play a role for Alishahiha’s holographic subregion complexity
(3.71). This is due to the fact that for the examples we considered here topological complexity
only deviates from holographic subregion complexity by a multiplicative factor.

16An analogous behavior for holographic subregion complexity has been suggested in [188].
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Chapter 5

Holographic Subregion
Complexity from Kinematic
Space

This chapter is devoted to the results about holographic subregion complexity
(HSRC) (3.71) I found together with my collaborators. These results were pub-
lished in [1] and [2]. We developed a method for expressing the volume of codi-
mension one bulk regions lying in constant time slices of AdS3 in terms of CFT2
quantities, namely entanglement entropies.

The concept of kinematic space [96], which is the space of all boundary anchored
geodesics in a constant time slice of AdS3, allowed us to express the volumes of
codimension one bulk regions in terms of lengths of geodesics starting and ending
on the conformal boundary. We refer to this expression as the volume formula.
Since the lengths of boundary anchored geodesics on a constant time slice may be
interpreted as entanglement entropies via the RT formula (3.32) in AdS3/CFT2,
the volume formula can be rewritten in terms of entanglement entropies, leading
to an expression for bulk volumes in terms of entanglement entropies. We may
interpret this result as a new entry to the dictionary as it offers a way to calculate
volumes in the bulk on the CFT side.

This is a particularly exciting result in the context of holographic subregion
complexity (HSRC), i.e. the bulk volume enclosed by an entangling interval on
the boundary and the respective RT surface: we are able to convert the defining
formula (3.71) of HSRC into a field theory expression. To be more explicit, we
managed to find a field theory dual for the HSRC of vacuum states (i.e. states
dual to global AdS3 or the (2 + 1)-dimensional Poincaré patch). This is of signif-
icant importance for testing the proposal that HSRC is related to the complexity
of reduced CFT states. Since we now have a field theory expression for HSRC we
may examine whether it has properties which are to be expected from complexity.
We study HSRC in this context in Section 5.5, where we compare it with the pro-
posals for mixed state complexity of [179] (see Section 3.2.1). Moreover, if HSRC
actually turns out to be a good measure for the complexity of reduced states, our
results provide an explicit field theory expression for this quantity, which does not
require the bulk for constructing it. In particular, it may therefore be generalized
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to field theories with no gravity dual.

This chapter is structured as follows. In Section 5.1 we review the aspects of
kinematic space required for the construction of the volume formula, which we dis-
cuss and prove in Section 5.2 for global AdS3 and the (2+1)-dimensional Poincaré
patch. Section 5.3 focuses on the expression of bulk volumes in terms of entan-
glement entropy resulting from the volume formula. We apply this expression to
several examples for bulk regions associated with HSRC. We generalize the volume
formula to quotient spaces of AdS3 such as conical defects and BTZ black holes
in Section 5.4 and discuss the resulting relation between entanglement entropies
and HSRC for these geometries. In Section 5.5 we study our expression for HSRC
obtained from the volume formula under the assumption that HSRC is in fact a
measure for the complexity of reduced CFT states and provide an outlook and
concluding remarks in Section 5.6.

5.1 Kinematic Space
In this section we introduce the concept of kinematic space K as presented in [96].
We note that there are alternative formulations of kinematic space [206–208] which
we do not discuss here. Moreover, we refer to [94, 95] for early developments
regarding kinematic space and [97] for a discussion of the subject in the context
of tensor networks.

Consider a CFT2 state whose dual geometry is a static asymptotic AdS3 space,
i.e. a static space-time that behaves as global AdS3 (2.116),

ds2
AAdS3 ∼ −

r̃2

L2dt̃
2 + L2

r̃2 dr̃
2 + r̃2dφ2 , (5.1)

for r̃ −→ ∞. Here φ ∈ [0, 2π] is 2π-periodic. Moreover, we assume that for
two boundary points u, v on a constant time slice there is a unique bulk geodesic
running from u to v. In this setup there are two different ways to introduce K. It
can be seen as the space of all oriented boundary anchored geodesics on a constant
time slice but also as the space of all entangling intervals on the boundary of the
constant time slice [96,97]. These two interpretations are referred to as the bulk and
the boundary perspective, respectively. The existence of these two ways to see K is
due to our above assumption that the geodesic running from one boundary point u
to another boundary point v is unique. This implies a one-to-one correspondence
between the geodesic in the bulk and the entangling interval [u, v] lying between
the two endpoints of the geodesic, as we depict in Figure 5.1.

So we see that K has an interpretation that is easy to grasp both on the gravity
and the field theory side, making it a valuable tool for expressing bulk objects in
terms of field theory quantities (see e.g. [95, 206]). In particular, it was shown
in [95] that K comes with a volume form ωK that is naturally constructed in the
bulk perspective. It consists only of derivatives of lengths of boundary anchored
geodesics. Since these lengths may be interpreted as entanglement entropies via
the RT formula (3.32), ωK can also be understood from the boundary perspective.
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Figure 5.1: Coordinates for kinematic space K. Kinematic space is the space of
all boundary anchored geodesics on a constant time slice of the bulk. We can use
the boundary points u, v as coordinates for a geodesic. Alternatively, the position
θ of the center of the corresponding boundary interval [u, v] and the opening angle
α of [u, v] may be used as coordinates (5.2). Each bulk geodesic appears twice in
K, namely with two different orientations, as visualized by the arrows on the l.h.s.
By interpreting K as the space of all entangling intervals on the boundary CFT,
we see that the two orientations of a geodesic correspond to an entangling interval
and its complement (red and blue). Taking the opening angle α to zero shows that
the lower boundary of K corresponds to the points on the conformal boundary of
the bulk.

In [95–97] the authors demonstrated how properties of the bulk geometry may
be computed in K. In particular, the length of an arbitrary bulk curve can be
expressed as an integral over ωK, where each bulk geodesic, i.e. each point in K, is
weighted with the number of its intersections with the curve. The interpretation
of ωK in the boundary perspective then allows us to interpret the integral over
ωK determining the length of the curve as an integral over entanglement entropies.
Thus K offers a way to compute the lengths of arbitrary bulk curves from the field
theory side. This approach is closely related to the concept of differential entropy
(see e.g. [94,95,209,210]).

5.1.1 Kinematic Space from the Bulk Perspective
We now review the bulk perspective of kinematic space K. 1 Here K is defined as
the space of all oriented boundary anchored geodesics. We may use the endpoints
φ = u, v of the geodesic as natural coordinates on K, i.e. the point (u, v) ∈ K
is associated with the geodesic starting at the boundary point u and ending at
the boundary point v (see Figure 5.1). As K is the space of “oriented” geodesics
we may distinguish between the geodesic starting at u and ending at v and the
geodesic starting at v and ending at u, i.e. (u, v) 6= (v, u). A further very useful
set of coordinates – which we frequently use in this chapter – is given by (θ, α) ∈

1This review is based on [96].
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Figure 5.2: Bulk points in kinematic space. A point p in the bulk constant time
slice is identified with the set of all geodesics intersecting p (l.h.s.). This set is a
curve in kinematic space which is referred to as point curve (r.h.s.).

[0, 2π]× [0, π], where
u = θ − α and v = θ + α . (5.2)

As depicted in Figure 5.1, θ may be interpreted as the midpoint of the boundary
interval [u, v] and α as its opening angle. Evidently, the angle θ is 2π-periodic.
The geodesic with the opposite orientation as (θ, α) is given by (θ + π, π − α).
Moreover, using the coordinates θ, α it is easy to see that the line α = 0 in K may
be interpreted as the conformal boundary of the bulk [96,97]: when we consider a
geodesic (θ, α) in the bulk and send α to zero, this geodesic moves closer and closer
to the conformal boundary at r̃ = ∞ (see Figure 5.1). When α reaches zero, the
geodesic is reduced to a point at r̃ = ∞, i.e. a point on the conformal boundary.
Thus we see that the points (θ, 0) ∈ K correspond to the points on the conformal
boundary of the bulk.

Furthermore, there is a very natural way to describe a bulk point p in K. We
identify p with the set of all geodesics that intersect it (see Figure 5.2). This set
turns out to be a curve in K – which is referred to as point curve [95, 96].

Since we aim at using kinematic space as an auxiliary space to associate geo-
metric aspects of the bulk with quantities on the boundary, we require to encode
the bulk geometry in K. This is achieved by defining a volume form ωK for K
that allows us to compute the length ` of an arbitrary bulk curve γ – lying on
the constant time slice – as an integral over K. More specifically, we demand the
following equation to hold,

`(γ)
4G3

= 1
4

∫
K
ωKnγ , (5.3)

where we have introduced Newton’s constant G3 ((2 + 1)-dimensional) as it will
simplify the expressions discussed in the rest of this chapter. Here nγ(u, v) is
the number of intersections the geodesic (u, v) has with γ. So (5.3) essentially
states that the length of a bulk curve γ is given by the integral over all geodesics
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Figure 5.3: Lenghts of bulk curves in the constant time slice from kinematic space.
In order to compute the length of a generic bulk curve γ in K, we consider the set
of all geodesics intersecting γ (l.h.s.). The length of γ is given by an integral over
this set in kinematic space, where each geodesic is weighted with the number of
its intersections with γ (5.3). If γ is a geodesic between two bulk points p, p′, the
number of intersections of each boundary anchored geodesic with γ is either zero
or one. Therefore (5.3) reduces to an integral over the set ∆pp′ of all geodesics
intersecting γ (5.5) (r.h.s.). This set is bounded by the point curves of p and p′.

intersecting γ weighted with the number of intersections. We visualize this concept
in Figure 5.3. It was shown in [96] that the condition (5.3) leads to

ωK = 1
4G3

∂u∂v`(u, v)du ∧ dv = 1
8G3

(∂2
θ − ∂2

α)`(θ, α)dθ ∧ dα , (5.4)

where `(u, v) is the length of the geodesic (u, v). The volume form ωK given in
(5.4) is referred to as Crofton form.

A special case of (5.3) that plays an important role in the following sections
is the integral expression in K for the geodesic distance d(p, p′) between two bulk
points p, p′ [96],

d(p, p′)
4G3

= 1
4

∫
∆pp′

ωK , (5.5)

where ∆pp′ ⊂ K is the set of all boundary anchored geodesics intersecting the
geodesic γpp′ starting at p and ending at p′. Equation (5.5) is a simple consequence
of the fact that any boundary anchored geodesic intersects γpp′ at most once, since
γpp′ is a geodesic itself. We depict ∆pp′ in Figure 5.3. It turns out to be the set
bounded by the point curves of p and p′.

5.1.2 Kinematic Space from the Boundary Perspective
In the boundary perspective, K is interpreted as the space of all entangling intervals
on a constant time slice of the CFT.2 A point (u, v) ∈ K which corresponds to a

2This review is based on [96].
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geodesic stretching from u to v in the bulk perspective is now interpreted as the
entangling interval [u, v]. Using the coordinates θ, α (5.2) it is easy to see that the
point (θ + π, π − α) in K – which refers to the same geodesic as (θ, α) but with
opposite orientation in the bulk perspective – corresponds to the complement of
the entangling interval (θ, α) in the boundary perspective.

The RT formula (3.32) allows us to interpret the Crofton form ωK (5.4) in
terms of quantum information [95,96]. It relates the length `(u, v) of the geodesic
starting at u and ending at v to the entanglement entropy S(u, v) of the interval
[u, v]. This allows us to express ωK in terms of entanglement entropy,

ωK = ∂u∂vSdu ∧ dv = 1
2(∂2

θ − ∂2
α)Sdθ ∧ dα . (5.6)

In this form, ωK may be interpreted as an infinitesimal version of conditional
mutual information (3.18) [96]. By considering the intervals A = [u − du, u],
B = [v, v + dv], C = [u, v] and expanding I(A : B|C) to leading order in du and
dv, we find

I(A : B|C) ∼ ∂u∂vSdudv , (5.7)

which coincides with ωK. So in the boundary perspective ωK measures quantum
information aspects of the CFT. Since ωK was originally constructed to encode
aspects of the bulk geometry in K (see Section 5.1.1) this indicates a close relation-
ship between quantum information on the CFT side and geometry on the AdS side.

Furthermore, we can define a metric ds2
K for K in a very natural way [95, 96].

This is done by demanding the causal structure induced by the metric to encode
the partially ordered structure of the set of all entangling intervals. To be more
precise, (u1, v1) is supposed to lie in the past of (u2, v2) if [u1, v1] ⊂ [u2, v2] and
in the future of (u3, v3) if [u3, v3] ⊂ [u1, v1]. A point (u4, v4) ∈ K is considered
spatially separated from (u1, v1) if [u1, v1] 6⊂ [u4, v4] and [u4, v4] 6⊂ [u1, v1]. These
considerations in particular imply that intervals of the form [u1, v5] and [u5, v1]
correspond to points in K that are light-like separated from (u1, v1), as they lie
in the future/past of (u1, v1) according to the above definition but a slight shift is
sufficient to spatially separate them from (u1, v1). A metric that is supposed to
carry the above causal structure necessarily has to be of the form

ds2
K ∝ dudv . (5.8)

By demanding the volume form induced by ds2
K to be the Crofton form (5.6), we

may fix the prefactor in (5.8) to 2∂u∂vS,

ds2
K = 2∂u∂vSdudv = 1

2(∂2
θ − ∂2

α)S
(
− dα2 + dθ2) . (5.9)

We see that it is possible to introduce the geometry of kinematic space from
the boundary perspective without any reference to the interpretation of K as space
of geodesics in the bulk or the bulk in general. The Crofton form (5.6) has an im-
mediate interpretation as infinitesimal conditional mutual information (5.7) and
the metric (5.9) is motivated by the partially ordered structure of the set of all
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intervals and the Crofton form. The fact that the geometry of K can be defined
directly from the field theory side without referencing the bulk plays an important
role for the construction of a field theory dual of holographic subregion complexity
which we perform in the sections below.

In this chapter we focus on bulk geometries that are invariant under rotations,
i.e. constant shifts of φ (5.1). In these situations the entanglement entropy S(u, v)
only depends on the length v− u = 2α of the corresponding interval [u, v], not its
position, as is easy to see via the RT formula (3.32). Thus ds2

K and ωK simplify in
the following way,

ds2
K = −1

2∂
2
αS
(
− dα2 + dθ2) , (5.10)

ωK = −1
2∂

2
αSdθ ∧ dα . (5.11)

We note that the prefactor −∂2
αS/2 is always non-negative [96]. This is an immedi-

ate consequence of the non-negativity of the conditional mutual information (3.20)
and the interpretation of ωK as infinitesimal version of the conditional mutual in-
formation (5.7).

Point curves have a very natural interpretation in the context of the metric
(5.10) when the bulk is chosen to be global AdS3 (2.116). In [95] it was shown
that in this case point curves are space-like geodesics w.r.t. the metric (5.10). 3

When we consider a bulk point p∗ in the limit where it approaches the conformal
boundary, the respective point curve asymptotes to light rays emitted from a point
on the α = 0 slice of K. This point in K corresponds to p∗ when the α = 0 slice is
associated with the conformal boundary of the bulk (see Figure 5.1). Considering
the causal structure of K introduced above, these conclusions are easy to see.

5.2 Bulk Volumes from Kinematic Space:
the Volume Formula

In [1] my collaborators and I introduced an integral in K computing the volume
of an arbitrary codimension one bulk region Q on a constant time slice,

vol(Q)
4G3

= 1
2π

∫
K
ωKλQ , (5.12)

which we refer to as volume formula.4 Here λQ(θ, α) is the length of the segment
of the geodesic (θ, α) that lies inside of Q (see Figure 5.4). We refer to λQ as
the chord length. The volume formula may be interpreted as an adaptation of the
integral expression of the length of a bulk curve in K (5.3): to obtain the length
of a bulk curve, we need to integrate over kinematic space, where we weight each

3Analogous results were found for conical defects and BTZ black holes [95].
4We note that formulae of the form (5.12) are well established in integral geometry (see

e.g. [211]).
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Figure 5.4: Volumes of codimension one bulk regions from kinematic space. In
order to obtain the volume of an arbitrary bulk region Q (green) in the constant
time slice by a kinematic space computation, we consider the set of all geodesics
intersecting Q. The volume of Q may then be computed by an integral over K
(5.12) where each bulk geodesic (θ, α) is weighted with the length λQ(α, θ) of the
segment it shares with Q (red).

geodesic, i.e. each point in K, with the number of its intersections with the curve.
Analogously, the volume of a bulk region is given by an integral over K where
each geodesic is weighted with the length of the segment that intersects the region
(5.12).

The remainder of this chapter is based on [2], where my collaborators and I
studied the volume formula in great detail.

5.2.1 Proof of the Volume Formula for Global AdS3

Expressions like the volume formula (5.12) are known in integral geometry [211]
but not very well established in the AdS/CFT community. Here we present a
simple proof of the volume formula that I constructed for the special case of global
AdS3. This geometry is dual to the CFT vacuum state. We use the coordinates
(2.116) for AdS3,

ds2
AdS = −

(
1 + r̃2

L2

)
dt̃2 + 1

1 + r̃2

L2

dr̃2 + r̃2dφ2 . (5.13)

The entanglement entropy of an interval with opening angle α is given by [82,161]

S(α) = c

3 log
(2`CFT

ε
sin(α)

)
, (5.14)

where `CFT is the radius of the circle the CFT is defined on and ε is a UV cut-
off. Moreover, c = 3L/2G3 is the central charge (2.117). The metric (5.10) and
Crofton form (5.11) on K corresponding to (5.14) are [96]

ds2
K = c

6
1

sin2(α)
(
− dα2 + dθ2) and ωK = c

6
1

sin2(α)dθ ∧ dα , (5.15)

where we have used the coordinates θ, α (5.2) for K.



5.2. BULK VOLUMES FROM KINEMATIC SPACE: THE VOLUME
FORMULA 107

By defining

V (Q) = 2G3

π

∫
K
ωKλQ = L

2π

∫
K
dθdα

λQ
sin2(α) , (5.16)

the volume formula (5.12) may be written as

vol(Q) = V (Q) . (5.17)

We prove (5.17) as follows. First we show the validity of (5.17) for a disc DR
with radius R lying in the constant time slice of AdS3 and centered around r̃ = 0.
We do this via a direct computation. Second we verify certain properties of V (Q),
such as additivity and non-negativity, which are characteristic for volumes. These
properties together with the validity of (5.17) for discs allow us in the third step
to verify (5.17) for annular arcs. These annular arcs can be used to construct
Riemann sums that approximate the volume of a generic bulk region arbitrarily
well. This completes the proof of the volume formula.

Discs in AdS3

We now show that (5.17) holds for Q = DR, where DR is a disc with radius R
in the constant time slice of AdS3 centered around r̃ = 0. By pulling the metric
ds2

AdS (5.13) back to the constant time slice, it is easy to verify that

vol(DR) = 2πL
∫ R

0
dr̃

r̃√
L2 + r̃2

= 2πL(
√
L2 +R2 − L) (5.18)

holds. We now compute V (DR) to see that it gives the same result. The chord
length λDR(α, θ) associated with the geodesic (θ, α) is given by [82]

λDR(θ, α) =
{
L arcosh(1 + 2R2

L2 sin2(αR)) , if α∗ ≤ α ≤ π − α∗
0 , otherwise.

(5.19)

The angle αR is the opening angle of the geodesic (θ, α) on the boundary of DR
(see Figure 5.5). It is given by (see e.g. [96])

R√
L2 +R2

cos(αR) = cos(α) . (5.20)

Moreover, the angle α = α∗ corresponds to αR = 0 and refers to a geodesic that is
tangent to DR (see Figure 5.5)

cos(α∗) = R√
L2 +R2

. (5.21)

By inserting (5.19) into (5.16) we find

V (DR) = L

∫ 2π

0
dθ

∫ π−α∗

α∗

dα
λDR

sin2(α) = L

∫ 2π

0
dθ

∫ π−α∗

α∗

dα ∂αλDR cot(α) , (5.22)
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Figure 5.5: The volume formula for discs and annular arcs. The first step in the
proof of the volume formula (5.12) is to verify it for a disc DR centered at r̃ = 0
(l.h.s.). The opening angle of a geodesic (θ, α) at the boundary of the disc is
denoted by αR. With (θ, α∗) we refer to geodesics tangent to the boundary of DR.
From the validity of the volume formula for discs we can conclude that it is also
valid for a segment SnR1R2

of an annulus AR1R2 with inner radius R1 and outer
radius R2 (r.h.s.). The opening angle of SnR1R2

is given by (5.33).

where we have used 1/ sin2(α) = −∂α cot(α) to perform a partial integration in
order to obtain the second equality. Performing the coordinate transformation
α = α(αR) and using the fact that λDR (5.19) does not depend on θ, we find

V (DR) =
∫ π

0
dαR

2L2R2 cos2(αR)
L2 +R2 sin2(αR) = 2πL

(√
L2 +R2 − L

)
, (5.23)

which is equal to vol(DR) (5.18). 5 Thus (5.17) holds for discs.

Properties of V (Q) Associated with Volumes

The next step leading to the proof of (5.17) is to verify certain properties of V (Q)
(5.16) which are known to hold for volumes.

Non-Negativity. The integral V (Q) (5.16) obeys

V (Q) ≥ 0 (5.24)

for any region Q, where equality only holds for Q = ∅. This property is an imme-
diate implication of the fact that the integrand in (5.16) is non-negative and only
vanishes if Q = ∅. Note that we define Q to be a codimension one bulk region.
Therefore, we do not consider the cases where Q is a curve, etc. for which V (Q)
would vanish as well.

Additivity. Given two regions Q,Q′ on the constant time slice of AdS3, V
satisfies the additivity relation

V (Q∪Q′) = V (Q) + V (Q′)− V (Q∩Q′) , (5.25)
5The integration in (5.23) was performed via Mathematica.
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which follows from the evident additivity of the chord length λQ,

λQ∪Q′ = λQ + λQ′ − λQ∩Q′ . (5.26)

Monotonicity. Given two regions Q,Q′ with Q ⊂ Q′, we find

V (Q) ≤ V (Q′) . (5.27)

The verification of this monotonicity is a simple application of the non-negativity
and additivity of V .

Rotational Invariance. The value of V (Q) for any region Q in the constant
time slice of AdS3 does not change under rotations of Q around r̃ = 0. This is an
immediate consequence of the invariance of ds2

AdS (5.13) under such rotations.

Construction of Riemann Sums

The properties of V listed above can now be used to verify the validity of (5.17)
first for annuli and then for annular arcs. An arbitrary bulk region Q may then
be approximated arbitrarily well by annular arcs which completes the proof of the
volume formula (5.12).

Consider an annulus AR1R2 of inner radius R1 and outer radius R2 lying in the
constant time slice of AdS3 and centered around r̃ = 0. Evidently, AR1R2 is given
by the difference of the two discs DR1 and DR2 ,

AR1R2 = DR2\DR1 . (5.28)

Consequently, the volume of AR1R2 is given by

vol(AR1R2) = vol(DR2)− vol(DR1) . (5.29)

We now show that V (AR1R2) gives the same result, verifying (5.17) of annuli. The
additivity of V (5.25) implies

V (DR2) = V (DR1) + V (AR1R2) , (5.30)

via (5.28). Since (5.17) is known to be true for discs (5.23), (5.18), we therefore
conclude

V (AR1R2) = vol(DR2)− vol(DR1) . (5.31)
Using (5.29) we find

V (AR1R2) = vol(AR1R2) , (5.32)
i.e. the validity of (5.17) for annuli.

We can conclude the validity of (5.17) for annular arcs from (5.32). Consider
a segment SnR1R2

of the annulus AR1R2 with opening angle

2αn = 2π
n
, n ∈ N , (5.33)
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Figure 5.6: Approximation of an arbitrary codimension one bulk region Q in the
constant time slice. We use disjoint unions of annular arcs A1

Q,A2
Q to approximate

Q. Here we assume A1
Q ⊂ Q ⊂ A2

Q. By taking the limit where A1
Q and A2

Q
converge to Q, we can prove the volume formula (5.12) for an arbitrary Q.

as depicted in Figure 5.5. The rotational invariance and additivity of V , together
with (5.32) imply

V (SnR1R2) = 1
n
V (AR1R2) = 1

n
vol(AR1R2) = vol(SnR1R2) . (5.34)

To conclude the proof of (5.17) we now consider an arbitrary codimension one
bulk region Q lying in the constant time slice of AdS3. We can approximate Q
by disjoint unions of annular arcs, as depicted in Figure 5.6. We choose two such
approximations A1

Q,A2
Q satisfying

A1
Q ⊂ Q ⊂ A2

Q . (5.35)

The monotonicity of V (5.27) implies

V (A1
Q) ≤ V (Q) ≤ V (A2

Q) , (5.36)

which leads to
vol(A1

Q) ≤ V (Q) ≤ vol(A2
Q) , (5.37)

via the additivity of V (5.25) and the validity of (5.17) for annular arcs. By taking
the limit where A1

Q and A2
Q converge to Q, (5.37) leads to

vol(Q) ≤ V (Q) ≤ vol(Q) ⇔ vol(Q) = V (Q) , (5.38)

which completes the proof of (5.17) and thus shows the validity of the volume
formula (5.12) for arbitrary Q.

5.2.2 The Volume Formula for the Poincaré Patch
In addition to the proof of the volume formula for global AdS3 discussed in Section
5.2.1 my collaborators and I also presented a proof for the Poincaré patch in [2],
which we now review.
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Kinematic Space for the Poincaré Patch

The kinematic space K for the Poincaré patch [212] is constructed in an analogous
way as for asymptotic global AdS3 spaces (see Section 5.1). The geodesics may
again be parametrized by their endpoints x = u, v on the boundary, where we use
the coordinates x and z (3.33) for the constant time slice of the Poincaré patch.
In analogy to (5.2) we introduce the coordinates χ ∈ R and σ ∈ R corresponding
to the center and radius of the boundary interval [u, v] via

u = χ− σ , v = χ+ σ . (5.39)

The geodesic with opposite orientation as (χ, σ) is then given by (χ,−σ). Using
(5.11) – where σ takes the role of α – and (3.39), we find

ωK = c

6
1
σ2dχ ∧ dσ (5.40)

for the Crofton form.

Proof of the Volume Formula for the Poincaré Patch

In analogy to the case of global AdS3 (see Section 5.2.1), we introduce

V (Q) = L

2π

∫
K
dχdσ

λQ
σ2 , (5.41)

in order to prove the volume formula (5.12) by showing

vol(Q) = V (Q) (5.42)

for a codimension one bulk region Q lying in the constant time slice of the Poincaré
patch.

As in the case of global AdS3, discussed in Section 5.2.1, V is additive (5.25),
monotonous (5.27) and non-negative (5.24). Moreover, it is invariant under trans-
lations in x direction, i.e. the value of V for a region Q does not change when Q
is shifted in x-direction. This is an easily verified consequence of the invariance of
ds2

PP (3.33) under shifts in x-direction.

For proving (5.42) we pursue the following strategy. First we show that (5.42)
holds for an generic infinitesimal rectangular strip Sx0

z1z2 at x = x0 with width δx
and stretching from z = z1 to z = z2. We then prove (5.42) for an arbitrary bulk
region Q by approximating it by a disjoint union of such strips, as depicted in
Figure 5.7. The properties of V mentioned above then imply that (5.42) holds for
Q. This follows analogously to the case of global AdS3 in Section 5.2.1, where Q
was approximated with annular arcs instead of rectangular strips.

Since Sx0
z1z2 has infinitesimal width, we may only distinguish between geodesics

that enter Sx0
z1z2 on the l.h.s. and exit it on the r.h.s. and geodesics that do not

intersect Sx0
z1z2 (see Figure 5.7). The latter do not contribute to V , as their chord
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Figure 5.7: The strategy for proving the volume formula (5.12) for the Poincaré
patch. We approximate a generic codimension one bulk region Q in the constant
time slice of the Poincaré patch by a disjoint union of rectangular strips with
infinitesimal width δx (l.h.s.). We verify the volume formula for a generic strip
Sx0
z1z2 of this kind, located a x = x0 and stretching from z = z1 to z = z2 (r.h.s.). For

the integral (5.41) appearing in the volume formula we only distinguish between
geodesics entering at one side and exiting at the other side of Sx0

z1z2 and geodesics
that do not intersect Sx0

z1z2 , since the strip has infinitesimal width. The validity of
the volume formula for a generic Sx0

z1z2 then implies that the volume formula holds
for any Q.

length is zero. As may be easily deduced from (3.72), the geodesic (χ, σ) obeys
the equation

z2 = σ2 − (x− χ)2 . (5.43)
So only geodesics which satisfy

z1 ≤ σ2 − (x0 − χ)2 ≤ z2 (5.44)

contribute to V (Sx0
z1z2). By setting σ1,2 =

√
z2

1,2 + (x0 − χ)2 we obtain6

V (Sx0
z1z2) = 2 · L2π

∫ ∞
−∞

dχ

∫ σ2

σ1

dσ

σ2 λS
x0
z1z2

(5.45)

from (5.41). Using (3.33) and (5.43) we find for the contributing geodesics in the
infinitesimal limit

λSx0
z1z2

(χ, σ) = dsPP = L

z

√
δx2 + δz2 = Lδx

z2

√
z2 + (x0 − χ)2

= Lσ

σ2 − (x0 − χ)2 δx ,
(5.46)

and thus conclude

V (Sx0
z1z2) = L2δx

π

∫ ∞
−∞

dχ

∫ σ2

σ1

dσ
1

σ
(
σ2 − (x0 − χ)2

) = L2
( 1
z1
− 1
z2

)
δx . (5.47)

6Note that since we assume σ1,2 > 0, we only consider one orientation of the geodesic. We
compensate this by the multiplicative factor 2 in (5.45).
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It is easy to verify that the volume of Sx0
z1z2 is also given by

vol(Sx0
z1z2) = L2

( 1
z1
− 1
z2

)
δx . (5.48)

Therefore we find that (5.42) is true for Q = Sx0
z1z2 .

We can use this result to show that (5.42) holds for anyQ. By approximatingQ
with a disjoint union of infinitesimal strips we come to this conclusion analogously
to the case of global AdS3, where we used annular arcs instead of infinitesimal
strips (see Section 5.2.1). This completes the proof of the volume formula (5.12)
for the Poincaré patch.

5.3 Holographic Subregion Complexity for
Vacuum States

The holographic subregion complexity (HSRC) (see Section 3.2.3) of an entangling
interval A is given – up to a proportionality factor – by the volume of the codimen-
sion one bulk region BA enclosed by A and the corresponding RT surface γA (3.71).
As we discussed in [1] and [2], the volume formula (5.12) can be used to construct
a field theory expression for HSRC for the CFT states dual to the global AdS3
geometry (5.13) and the (2 + 1)-dimensional Poincaré patch (3.33). These states
are the vacuum states for a CFT defined on a circle and the real axis, respectively.
In the following we use the kinematic space notation for entangling intervals in-
troduced in Section 5.1.2. In particular, we refer to A as (θA, αA). Moreover, we
choose the proportionality factor that relates vol(BA) to HSRC to be 1/L2 and
not (8πLG3)−1 as in (3.71). We make this choice in order stay consistent with
our definition of topological complexity (4.1). For the geometries we consider here,
the Ricci scalar Rct appearing in the formula for topological complexity takes the
constant value −2/L2. Therefore, the topological complexity is given by vol(BA)
multiplied with the same proportionality factor we choose here. So the concept of
complexity we are using in the following is given by

C(θA, αA) = vol(BA)
L2 . (5.49)

Note that we still refer to C as HSRC and not topological complexity. This is due to
the fact that the results we present in this chapter are based on the proportionality
of C to vol(BA) and are therefore closer related to HSRC (3.71) than to topological
complexity (4.1).

5.3.1 Holographic Subregion Complexity in Terms of
Entanglement Entropies

We now construct an integral expression for HSRC (5.49) that only contains entan-
glement entropies by applying the volume formula (5.12) to BA. Since entangle-
ment entropy is a CFT quantity, this integral expression provides a CFT formula
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for HSRC. The volume formula leads to
vol(BA)

4G3
= 1

2π

∫
K
ωKλBA . (5.50)

Note that ωK (5.11) only depends on entanglement entropies. Thus, in order to
derive a field theory expression for HSRC from (5.50), we only need to find a field
theory expression for λBA . The chord length λBA(θ, α) of a geodesic (θ, α) is the
length of the segment of (θ, α) lying inside of BA. By construction, BA is a convex
set, i.e. any geodesic (θ, α) has either no or two intersection points p, p′ with the
boundary of BA. If there are no intersection points, the geodesic does not intersect
BA and the corresponding chord length is zero. If there are two intersection points,
the chord length λBA(θ, α) is simply the geodesic distance between p and p′ (see
Figure 5.8). In (5.5) we presented an expression for the geodesic distance between
two bulk points as an integral in K. Applying this expression to the present
situation yields

λBA(θ, α)
4G3

= 1
4

∫
∆A(θ,α)

ωK , (5.51)

where ∆A(θ, α) ⊂ K is the region in kinematic space bounded by the point curves
corresponding to p and p′ (see Figure 5.9). If p and p′ do not exist, i.e. if (θ, α)
does not intersect BA, we find ∆A(θ, α) to be empty, which implies λBA(θ, α) = 0
via (5.51). Since ωK only contains entanglement entropies, (5.51) is a field theory
expression for λBA .

We can now insert (5.51) into (5.50),
vol(BA)

4G2
3

= 1
2π

∫
K
ωK

(∫
∆A(θ,α)

ωK

)
= 1

8π

∫
K
dθdα

∫
∆A(θ,α)

dθ′dα′∂2
αS(α)∂2

α′S(α′) ,
(5.52)

where we have used (5.11) for ωK. This provides us with the desired expression of
HSRC in terms of entanglement entropy,

C(θA, αA) = 9
8πc2

∫
K
dθ dα

∫
∆A(θ,α)

dθ′dα′∂2
αS(α)∂2

α′S(α′) . (5.53)

By considering the boundary perspective for kinematic space (see Section 5.1.2)
we see that HSRC is given by a double integral over entangling intervals containing
only entanglement entropies. The formula (5.53) is one of the main results of this
chapter. In the following sections we will review the detailed discussion of (5.53)
which my collaborators and I provided in [2].

We emphasize that it is possible to generalize (5.52) to an integral expression
in terms of entanglement entropies for an arbitrary codimension one bulk region
Q on the constant time slice. This expression can be derived analogously to
(5.52). Therefore the volume formula provides a field theory interpretation for any
vol(Q) in terms of entanglement entropies. This observation may be seen as an
extension of the expression of the lengths of bulk curves in terms of entanglement
entropies via (5.3) [96] and the closely related concept of differential entropy (see
e.g. [94, 95,209,210]).



5.3. HOLOGRAPHIC COMPLEXITY FOR VACUUM STATES 115

Figure 5.8: Three different types of geodesics in a constant time slice. When
computing the volume of BA (green) by an integral over kinematic space (5.50),
we may distinguish three types of geodesics. Type (a) geodesics do not intersect
with BA and therefore do not contribute. Geodesics of type (b) lie completely
inside of BA and type (c) geodesics lie only partially inside of BA. For type (b)
and (c) geodesics (θ, α), the chord length λBA is given by the geodesic distance
between the two intersection points p, p′ of (θ, α) with ∂BA.

5.3.2 Regions of Integration in the CFT Formula for
Holographic Subregion Complexity

Even though the expression for subregion complexity (5.53) only contains entan-
glement entropies, it still relies implicitly on the bulk since we require the interpre-
tation of (θ, α) as geodesic in order to construct the region of integration ∆A(θ, α).
We now present a procedure that allows us to construct ∆A(θ, α) directly from the
field theory side. This construction requires extensive use of the geometry (5.10)
imposed on K. Since this geometry can be motivated from the CFT side (see
Section 5.1.2), we effectively only require knowledge about the field theory side
in order to perform this construction. This fact justifies the statement that the
following procedure is a field theory construction of ∆A(θ, α).

We begin by noting that the region of integration ∆A(θ, α) is always bounded
by the point curves corresponding to the intersection points of (θ, α) with the
boundary of BA, as pointed out below (5.51). So if we can find a procedure for
constructing these point curves from the boundary perspective, we accomplish the
same for ∆A(θ, α). As pointed out in Section 5.1.2, point curves are geodesics in
K. So there is a straightforward way for constructing them from the geometry of
kinematic space and thus from the CFT side. Therefore, the only thing left to
do is to find a way for identifying the specific point curves required for ∆A(θ, α).
In order to develop such a procedure, we first study these point curves from the
bulk perspective and then interpret our results from the boundary perspective.
This procedure was developed by me and published in [2]. We present it for the
kinematic space of global AdS3. It can be formulated in an analogous way for the
Poincaré patch.
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We note that in [95] it has only been shown for the kinematic space of global
AdS3 that point curves are geodesics in K. 7 This can also be verified for the
kinematic space of the Poincaré patch via a direct calculation. The computation
is easily done by noting that the point curve of a bulk point (x, z) is given by
(5.43). Since we are only considering the kinematic spaces of global AdS3 and
the Poincaré patch in this section, the assumption that point curves are geodesics
in K is legitimate. We are unaware of the existence of an argument that proves
this statement for arbitrary asymptotic AdS3 spaces. However, we note that in
the appendix of [96] a procedure for constructing point curves from the boundary
perspective for generic bulk geometries was discussed.

∆A from the Bulk Perspective

For studying the shape of ∆A(θ, α), we introduce the following three types of bulk
geodesics (θ, α) (see Figure 5.8).

Type (a) Bulk Geodesics. We refer to a geodesic (θ, α) as type (a) if it
does not intersect BA at all. Consequently, the chord length vanishes for type (a)
geodesics, i.e. λBA(θ, α) = 0, which leads to ∆A(θ, α) = ∅.

Type (b) Bulk Geodesics. If a geodesic (θ, α) lies completely inside of BA,
we denote it to be of type (b). As depicted in Figure 5.8, the intersection points
of type (b) geodesics with the boundary of BA lie on the conformal boundary of
the constant time slice of the bulk. They are the endpoints of the entangling in-
terval corresponding to (θ, α) on the CFT side. As pointed out in Section 5.1.1,
the constant time slice of the CFT may be identified with the lower boundary of
kinematic space, i.e. the points in K with α = 0. The point curves in K associated
with the intersection points of (θ, α) and ∂BA are therefore light rays in K emit-
ted from the points on the boundary of K corresponding to the endpoints of the
entangling interval belonging to (θ, α) (see Section 5.1.2). As we depict in Figure
5.9, these point curves bound a ∆A(θ, α) that is the union of causal diamonds in K.

Type (c) Bulk Geodesics. A bulk geodesic (θ, α) that has one intersection
point with BA located on the conformal boundary of the constant time slice and
one on the RT surface γA is referred to as type (c). As we depict in Figure 5.8,
these geodesics lie only partially in BA. In analogy to the discussion of type (b)
geodesics presented above, the intersection point of (θ, α) on the conformal bound-
ary may be identified with one endpoint of the corresponding entangling interval
on the CFT side. The point curve in K associated with this endpoint again con-
sists of light rays in K emitted form the corresponding boundary point of K. The
intersection point of (θ, α) with γA evidently is the bulk point where the geodesics
(θ, α) and (θA, αA) intersect. The point curve in K associated with this intersection
point is therefore the space-like geodesic in K running through the kinematic space

7In [95] analogous properties have also been shown for the conical defect and the BTZ black
hole. However, as we discuss in Section 5.4, the geodesic connecting two boundary points is not
unique in these geometries. Here however, we assume uniqueness of this geodesic. Therefore the
following discussion does not apply to the conical defect and the BTZ black hole.
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Figure 5.9: The region of integration ∆A(θ, α) for bulk geodesics of type (b) and
(c). L.h.s.: We depict the region of integration ∆A(θ, α) (blue) appearing in (5.53)
for (θ, α) of type (b). It is given by the causal diamonds in K bounded by the
light rays emitted from the points on the lower boundary of K which correspond to
the endpoints of the geodesic (entangling interval) associated with (θ, α). R.h.s.:
We depict ∆A(θ, α) for (θ, α) of type (c). One boundary of ∆A(θ, α) consists
of light rays in K. These light rays are emitted from the kinematic space point
corresponding to the endpoint of the geodesic (entangling interval) (θ, α) lying
inside of the interval associated with (θA, αA). The other boundary of ∆A(θ, α) is
the geodesic in K connecting (θA, αA) and (θ, α) (see discussion in the introduction
of Section 5.3.2).

points (θ, α) and (θA, αA). So we see that ∆A(θ, α) is bounded by a light-like and
a space-like geodesic in K. In Figure 5.9 we depict the typical form of ∆A(θ, α)
for a bulk geodesic of type (c).

The three types of bulk geodesics presented above only consider geodesics that
intersect the RT surface part of ∂BA once (type (c)) or not at all (types (a) and (b)).
For completeness we note that there are no geodesics intersecting the RT surface
γA twice. This is due to the fact that γA is a geodesic itself. Therefore, a geodesic
intersecting γA twice would correspond to a situation where two geodesics intersect
twice, which is not possible in the geometries we consider. Thus, the types (a) –
(c) are sufficient to classify all possible ways a geodesic (θ, α) may intersect BA.

∆A from the Boundary Perspective

We now interpret the three types of bulk geodesics from the boundary perspective
of kinematic space, i.e. we see the points (θ, α) in K as the entangling intervals on
the constant time slice of the CFT (see Section 5.1.2). So the three types of bulk
geodesics give rise to three types of boundary intervals. We note that in the discus-
sion of the different types of geodesics, we constructed the corresponding regions
of integration ∆A solely by using the geometry of K. This allows us to translate
the construction of ∆A to the boundary perspective. The resulting method for
defining ∆A goes as follows.

Type (a) Boundary Intervals. The boundary intervals (θ, α) associated
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Figure 5.10: Three different types of boundary intervals on a constant time slice.
L.h.s.: The bulk geodesics of type (a), (b) and (c) depicted in Figure 5.8 may
be associated with boundary intervals of type (a), (b) and (c) in the boundary
perspective of kinematic space. By doing so we conclude that type (a) intervals
have none of their endpoints lying in the interval (θA, αA), whereas for type (b)
intervals both endpoints lie inside of (θA, αA). Moreover, an interval is of type (c)
if only one of its endpoints lies in (θA, αA). R.h.s: In kinematic space, type (a)
intervals either lie in the future light cone of the interval (θA, αA) or in the past
light cone of the complementary interval, (θA + π, π − αA). Intervals of type (b)
lie in the past of (θA, αA) or the future of (θA + π, π − αA). Type (c) intervals
are causally disconnected from (θA, αA) and (θA + π, π − αA). The set of type (c)
intervals is referred to as causal wings.

with type (a) bulk geodesics are referred to as type (a) as well. It is easy to see
that the defining property of type (a) intervals is the fact that both of its boundary
points do not lie inside of the interval (θA, αA) (see Figure 5.10). The region of
integration ∆A(θ, α) is the empty set in this situation.

Type (b) Boundary Intervals. A bulk geodesic of type (b) corresponds to
a boundary interval (θ, α) with both endpoints located in the interval (θA, αA) (see
Figure 5.10). These boundary intervals are called type (b). The two endpoints of
(θ, α) may be interpreted as points on the lower boundary of K, as pointed out in
Section 5.1.1. The region of integration ∆A(θ, α) is given by the subset of K that
is bounded by the light rays starting at these points (see Figure 5.9).

Type (c) Boundary Intervals. As depicted in Figure 5.10, bulk geodesics
of type (c) correspond to boundary intervals (θ, α) that only partially lie inside of
(θA, αA). We refer to them as type (c) as well. We find that one endpoint of type
(c) intervals lies inside of (θA, αA) and the other lies outside of (θA, αA). The corre-
sponding region of integration ∆A(θ, α) is bounded by the light rays in K starting
at the boundary point of K associated with the endpoint of (θ, α) inside of (θA, αA)
and the space-like geodesic in K that intersects (θ, α) and (θA, αA) (see Figure 5.9).
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The construction rule of ∆A(θ, α) for the three types of entangling intervals only
requires knowledge of the position of the endpoints of (θ, α) relative to (θA, αA)
and the geometry (5.10) of kinematic space. Both these aspects are well under-
stood from the boundary perspective (see Section 5.1.2) and do not require any
reference to the bulk. Thus we see that ∆A(θ, α) can be constructed from the CFT
side, which justifies the statement that (5.53) is a field theory expression for HSRC.

As a side remark we note that only entangling intervals with at least one
endpoint inside of (θA, αA) contribute to the double integral (5.53) over K giving
subregion complexity. For the outer integral over θ and α this is evident since
∆A(θ, α) is empty for all intervals with both endpoints outside of (θA, αA), i.e.
type (a) intervals.

In order to see this for the inner integral over θ′ and α′ we interpret the points in
K as bulk geodesics. In this picture, the inner integral over ∆A(θ, α) computes the
length of the chord of (θ, α) lying inside of BA. Therefore, ∆A(θ, α) only contains
geodesics that intersect this chord (see Section 5.1.1). If there would be such a
geodesic with both endpoints lying outside of BA , it would evidently intersect the
geodesic (θA, αA) twice, which is not possible for the bulk geometries we consider.
Consequently, any geodesic contained in ∆A(θ, α) is of type (b) or (c) and therefore
corresponds to a boundary interval of the same type. Per definicionem, boundary
intervals of type (b) and (c) have at least one endpoint lying inside of the boundary
interval (θA, αA).

Position of the Three Types of Boundary Intervals in Kinematic Space

We conclude our discussion of the regions of integration ∆A appearing in our CFT
expression for HSRC (5.53) by discussing the location of the three types of entan-
gling intervals in kinematic space. As we depict in Figure 5.10, the causal structure
of K (5.10) allows us to identify the intervals of types (a), (b) and (c) in a very
straightforward way in K.

Location of Type (a) Intervals. An interval of type (a) has both its
endpoints lying outside of (θA, αA). Consequently, it either completely contains
(θA, αA) or is completely contained in the complement of (θA, αA). Using the inter-
pretation of the causal structure of K in terms of the partial ordered structure of
entangling intervals presented in Section 5.1.2, we therefore find that type (a) inter-
vals either lie in the future of (θA, αA) or the past of its complement, (θA+π, π−αA)
(see Figure 5.10).

Location of Type (b) Intervals. Intervals of type (b) have both endpoints
contained in (θA, αA) (see Figure 5.10). Consequently, they are either intervals
completely contained in (θA, αA) or the complement of such intervals. Just as
for type (a) intervals, the interpretation of the causal structure of K in terms of
entangling intervals allows us to associate a certain region in K with type (b) in-
tervals: they either lie in the past of (θA, αA) or the future of its complement,
(θA + π, π − αA).
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Location of Type (c) Intervals. The remaining intervals are of type (c).
They are characterized by the fact that they have one endpoint lying in (θA, αA)
and one in its complement (θA + π, π− αA) (see Figure 5.10). Therefore, they are
causally disconnected from (θA, αA) and (θA + π, π − αA), as we may conclude by
interpreting once more the causal structure of K in terms of entangling intervals.
The region in K containing points with this property is bounded by the light
rays emitted from the points on the lower boundary of K that correspond to the
endpoints of (θA, αA). It takes the form of two causal diamonds attached to the
past light cone of (θA, αA) (see Figure 5.10). These squares are referred to as causal
wings [97].

5.3.3 Holographic Subregion Complexity for Global AdS3

We now demonstrate how to apply our CFT formula for HSRC (5.53) to explicit
examples. The CFT state we consider is the vacuum state dual to global AdS3.
First we calculate the HSRC for the whole circle forming the constant time slice
of the CFT and then for half of that circle.

Cut-Off in Kinematic Space

Since our formula (5.53) for the HSRC of an entangling interval (θA, αA) is con-
structed to give the volume of a bulk region BA expanding to the conformal bound-
ary, it is easy to see that (5.53) is divergent and a cut-off procedure is required.
When computing HSRC by determining vol(BA) directly in the bulk, usually a
radial cut-off at r̃ = L`CFT/ε is introduced, where we use the coordinates (5.13)
for global AdS3 and `CFT is the radius of the circle the CFT is defined on (see
Sections 3.2.3, 4.1.2). Here however, we aim at computing HSRC from the field
theory side. Therefore, the use of a radial cut-off would be counter intuitive. In-
stead we introduce a cut-off procedure that is natural for calculations in kinematic
space. By using the coordinates θ and α (5.2) for K, we may introduce a horizon-
tal cut-off at α = ξ and α = π − ξ, where ξ � 1 (see Figure 5.11). Since bulk
geodesics with small opening angle α asymptote to the conformal boundary of the
bulk (see Section 5.1.1), it is easy to see that the integrand in (5.53) diverges for
α −→ 0. This justifies the cut-off at α = ξ. Moreover, the geodesics with opening
angle α −→ π also asymptote to the conformal boundary, which is evident by
considering Figure 5.1. Therefore, a further cut-off is required at α = π − ξ. In
the boundary perspective of kinematic space this cut-off procedure implies that we
only consider entangling intervals with an opening angle larger than ξ and whose
complement also have an opening angle larger than ξ.

We note that this cut-off scheme may not be associated with a radial cut-off
in the bulk. To be more precise, we cannot find a radial cut-off r̃ = L`CFT/ε such
that the kinematic space formula (5.53) with cut-off at α = ξ and α = π − ξ
computes the volume of the part BεA of the bulk region BA above the radial cut-
off for any entangling interval (θA, αA). We can see this by making the following
consideration. Our formula (5.53) is an application of the volume formula (5.12)
to BA. In order for the kinematic space cut-off ξ to correspond to a radial cut-
off ε we would require the cut-off version of the kinematic space integral (5.53)
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Figure 5.11: Comparing the kinematic space cut-off (r.h.s.) with the radial cut-
off in the bulk (l.h.s.). R.h.s.: when working with our field theory expression for
HSRC (5.53), which is based on integrals over kinematic space, it is natural to
introduce a cut-off at α = ξ and α = π − ξ in kinematic space. The resulting
region in K contributing to the integrals in (5.53), i.e. type (b) and (c) geodesics
(intervals) are depicted in blue. L.h.s.: Considering a kinematic space cut-off ξ
is not the same as working with a radial cut-off in the bulk (dashed circle). For
instance, the geodesic (θ∗, α∗) does not contribute to the volume of BεA (green),
which is the volume providing HSRC in the radial cut-off scheme (5.50). The
reason for that is the fact that (θ∗, α∗) does not intersect BεA and therefore does
not contribute to the kinematic space integral (5.12) providing vol(BεA). However,
(θ∗, α∗) does contribute in the kinematic space cut-off scheme, since it is contained
in the blue region in K (r.h.s.).

to correspond to the volume formula applied to BεA. However, as follows from
our discussion of the volume formula in Section 5.2, this would imply that only
geodesics (θ, α) intersecting BεA contribute to the cut-off version of the kinematic
space integral (5.53), which is not the case, as we show in Figure 5.11.

Subregion Complexity for the Whole Constant Time Slice

In order to apply our CFT formula (5.53) to the circle which is the whole constant
time slice of the field theory, we introduce the cut-off at α, α′ = ξ and α, α′ = π−ξ,
as explained above,

C
(
circle

)
= 9

8πc2

∫
K
dθdα

∫
∆A(θ,α)

dθ′dα′∂2
αS(α)∂2

α′S(α′)

−→ 9
8πc2

∫ 2π

0
dθ

∫ π−ξ

ξ

dα ∂2
αS(α)

∫
∆ξ
A(θ,α)

dθ′dα′∂2
α′S(α′) ,

(5.54)

where ∆ξ
A(θ, α) is the part of ∆A(θ, α) containing only points (θ′, α′) in K for which

ξ ≤ α′ ≤ π − ξ holds (see Figure 5.12). Since (θA, αA) is the whole CFT constant
time slice, all entangling intervals (θ, α) are of type (b) (see Section 5.3.2). We
first determine the integral over θ′ and α′ in (5.54). By using the expression (5.14)
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Figure 5.12: The region of integration ∆ξ
A(θ, α) for a type (b) geodesics (intervals).

By introducing the kinematic space cut-off at α′ = ξ and α′ = π− ξ, the region of
integration ∆A(θ, α) (see Figure 5.9) in (5.53) is replaced by ∆ξ

A(θ, α) (blue).

for the entanglement entropy, it is easy to verify that∫
∆ξ
A(θ,α)

dθ′dα′∂2
α′S(α′) = −8c

3

(
log
(sin(α)

sin(ξ)

)
+ ξ cot(ξ)

)
(5.55)

holds. Now we insert this result into (5.54), which leads to

C(circle) = 4
(
ξ cot2(ξ) + cot(ξ) + ξ − π

2

)
= 8
ξ
− 2π +O(ξ2) . (5.56)

In the limit ξ −→ 0 this result for HSRC can be matched to the expression
(4.12) obtained in Section 4.2.1 from the Gauss-Bonnet theorem by setting ξ =
4ε/π`CFT. Note that even though the cut-off scheme for kinematic space does not
correspond to a radial cut-off scheme in the bulk, it is still possible to recover the
same divergent behavior and the same ξ0 term, i.e. −2π, from both schemes. In
particular, this supports the idea that the constant term in HSRC is universal (see
Section 3.2.3).

Subregion Complexity for Half of the Constant Time Slice

We now apply our CFT formula for HSRC (5.53) to the semicircle corresponding
to half of the constant time slice of the CFT, i.e. we set (θA, αA) = (0, π/2). As
for the computation of the HSRC for the whole circle (5.54), we introduce cut-offs
at α, α′ = ξ and α, α′ = π − ξ in K. This leads to the following expression for
HSRC,

C(0, π/2) = 9
8πc2

∫ 2π

0
dθ

∫ π−ξ

ξ

dα Λξ(θ, α)∂2
αS(α) , (5.57)

where
Λξ(θ, α) =

∫
∆ξ
A(θ,α)

dθ′dα′∂2
α′S(α′) . (5.58)

When computing the HSRC for the whole constant time slice, all contributing
entangling intervals (θ, α) were of type (b). Here however, also intervals of type
(c) are present. The location of type (b) and (c) boundary intervals in kinematic
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Figure 5.13: Location of type (b) and (c) intervals for (θA, αA) = (0, π/2). If we
consider the complexity for half of the full constant time slice, i.e. a semicircle,
we find the corresponding type (b) and (c) intervals located in the blue region
in kinematic space. Regions I and II contain type (b) intervals, whereas type (c)
intervals are located in III - VI. The symmetry of the Crofton form (5.15) implies
that the region I contributes in the same way to the integrals in HSRC (5.57) as
II. Moreover, the contributions of regions III - VI are also the same. This allows
us to write (5.57) as an integral over I and III (5.59).

space is depicted in Figure 5.13. Intervals of type (b) are contained in the regions
I and II, while type (c) intervals can be found in regions III – VI. By using the
symmetry of the Crofton form (5.15), it is easy to verify that the regions I and II
give the same contribution to C(0, π/2). The same statement holds for the regions
III – VI. Therefore, we can rewrite (5.57) in terms of integrals over the regions I
and III,

C(0, π/2) = 9
4πc2

(∫ π/2

ξ

dα

∫ π/2−α

α−π/2
dθΛξ(θ, α)∂2

αS(α)

+ 2
∫ π/2

ξ

dα

∫ π/2+α

π/2−α
dθΛξ(θ, α)∂2

αS(α)
)
.

(5.59)

Here, the first term corresponds to region I and computes the contributions of type
(b) intervals, while the second corresponds to region III and is therefore associated
with the type (c) intervals. We already determined Λξ(θ, α) for type (b) intervals
(θ, α) in (5.55). Inserting the corresponding result into (5.59) yields

C(0, π/2) = 9
4πc2

[
− 8c

3

∫ π/2

ξ

dα

∫ π/2−α

α−π/2
dθ

(
log
(

sin(α)
sin(ξ)

)
+ ξ cot(ξ)

)
∂2
αS(α)

+ 2
∫ π/2

ξ

dα

∫ π/2+α

π/2−α
dθΛξ(θ, α)∂2

αS(α)
]
.

(5.60)

Computing Λξ(θ, α) for (θ, α) of type (c) turns out to be a challenging task. In
this case ∆A(θ, α) is not just bounded by light rays – as it is the case for type (b)
intervals – but also by generic point curves. In particular, these point curves cross
the cut-off at α = ξ and α = π − ξ in some cases (see Figure 5.14). This would
require to distinguish several special cases for the shape of the region of integration
∆ξ
A(θ, α) when determining Λξ(θ, α) via the integral given in (5.58).
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Figure 5.14: The region of integration ∆ξ
A for type (c) intervals. When computing

the HSRC of the semicircle, i.e. half of the constant time slice, via (5.53) we
need to distinguish two different cases for the region of integration ∆ξ

A for type
(c) intervals: The space like geodesic bounding ∆ξ

A may lie completely above the
kinematic space cut-off i.e. the dashed line, (l.h.s.) or partially below it (r.h.s.).
The fact that we need to take both these cases into account makes the computation
of HSRC via (5.53) particularly involved.

However, we can avoid this rather technical computation in the special case of
the semicircle by making use of the symmetry of this setup, as we now explain. In
the following we effectively only use symmetries of the Crofton form (5.15) and the
region of integration in K, i.e. ∆ξ

A(θ, α), but since discussing these symmetries is
most easily done in the bulk perspective of kinematic space, we now treat points
(θ, α) in K as bulk geodesics.

Following the derivation of our CFT formula for HSRC (5.53), we see that
Λξ(θ, α) computes, up to a multiplicative factor and differences in the cut-off
scheme, the length of the chord of (θ, α) lying inside of the bulk region BA (5.51).
Having a type (c) bulk geodesic (θ, α) in region III (see Figure 5.13), it is easy
to see that region III also contains a geodesic (θ̃, α) whose chord length is given
by the length of the segment of (θ, α) lying outside of BA. We depict this setup
in Figure 5.15. So we find that the sum of these two chord lengths give the total
length of (θ, α). Moreover, since the cut-off in kinematic space is independent of
θ, it is easy to see that this statement also holds in the kinematic space cut-off
scheme, i.e.

Λξ(θ, α) + Λξ(θ̃, α) = −8c
3

(
log
(sin(α)

sin(ξ)

)
+ ξ cot(ξ)

)
, (5.61)

where the r.h.s. of this equality gives, up to a multiplicative factor, the full length
of (θ, α) when computed by using the kinematic space cut-off scheme, i.e. (5.55).
Thus we can replace the remaining Λξ(θ, α) for type (c) in (5.60) by (5.61) when
we multiply the corresponding term by 1/2. This leads to

C(0, π/2) = − 6
πc

∫ π/2

ξ

dα

∫ α+π/2

α−π/2
dθ

(
log
(

sin(α)
sin(ξ)

)
+ ξ cot(ξ)

)
∂2
αS(α)

= 2ξ cot2(ξ) + 2 cot(ξ) + 2ξ − π = 4
ξ
− π +O(ξ2) .

(5.62)

Just as for the HSRC of the whole constant time slice (5.56), we see that in the
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Figure 5.15: Visualization of the symmetry argument used to compute HSRC for
the semicircle. Consider a geodesic (θ, α) in the constant time slice of the bulk
which we w.l.o.g. assume to correspond to a point in region III in kinematic space
(see Figure 5.13). Using the symmetry of the bulk region BA (green) we may find
a bulk geodesic (θ̃, α) corresponding to a point in region III such that the sum of
the chord lengths of (θ, α) and (θ̃, α) (blue) gives the total length of (θ, α). This
observation allows us to simplify the integral expression (5.60) for the HSRC of
the semicircle to (5.62).

limit ξ −→ 0, we can match this result for HSRC obtained by a computation in
kinematic space with the one presented in (4.11) derived by a computation in the
bulk. This matching is obtained by setting ξ = 4ε/π`CFT. Once more we see that
both the kinematic space cut-off scheme as well as the radial cut-off scheme in the
bulk (4.4) provide the same constant term, i.e. −π, for complexity. This gives
further support to the statement that this term is universal (see Section 3.2.3).

5.3.4 Holographic Subregion Complexity for the Poincaré
Patch

Our CFT formula for HSRC (5.53) provides us with a way to compute the HSRC
for a generic entangling interval (χA, σA) for the Poincaré patch (3.33) in field
theory. We work with the kinematic space coordinates (χ, σ) defined in (5.39).
Here we only consider the σ ≥ 0, i.e. we do not distinguish between different
orientations of bulk geodesics. Evidently, the two orientations of a bulk geodesic
contribute in the same way to the volume formula. Therefore, restricting to one
orientation just requires us to adapt the integrals over K in the volume formula
(5.50) and the chord length (5.51) by a multiplicative factor of two. We therefore
find, by adapting our formula for HSRC (5.53) accordingly,

C(χA, σA) = 9
2πc2

∫ ∞
−∞

dχ

∫ ∞
ξ

dσΛξ(χ, σ)∂2
σS(σ) , (5.63)

where
Λξ(χ, σ) =

∫
∆ξ
A(χ,σ)

dχ′dσ′∂2
σ′S(σ′) . (5.64)
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Here, the entanglement entropy S(σ) is given by (3.39). Moreover, analogously to
our discussion of HSRC for global AdS3, we have introduced the cut-off ξ for the
σ and σ′ coordinate. The region of integration ∆ξ

A is again the part of ∆A lying
above the cut-off. As discussed in Section 5.3.2, we need to distinguish between
entangling intervals (χ, σ) of type (a), (b) and (c) for the construction of ∆A(χ, σ).
The region of integration ∆A(χ, σ) is only non-vanishing if (χ, σ) is of type (b) or
(c).

If (χ, σ) is of type (b), ∆A(χ, σ) is bounded by the light rays

(χ̃, σ̃±(χ̃)) , where σ̃±(χ̃) = |χ± σ − χ̃| . (5.65)

In this case, Λξ(χ, σ) is given by

Λ(b)
ξ (σ) = −4c

3

(
log
(
σ/ξ
)

+ 1
)
. (5.66)

For type (c) intervals (χ, σ), ∆A(χ, σ) is bounded by the point curve in K inter-
secting (χ, σ) and (χA, σA) and the light rays in K corresponding to the boundary
point of the interval (χ, σ) lying inside of (χA, σA). The latter is of the form (5.65),
where the − (+) corresponds to the case where the left (right) endpoint of (χ, σ)
lies inside of (χA, σA).

The point curve intersecting (χ, σ) and (χA, σA) may be constructed as follows.
We consider the bulk perspective of K, i.e. we interpret the elements of K as
geodesics in the bulk. By considering the equation (5.43) for a generic bulk geodesic
on the constant time slice of the Poincaré patch, it is easy to see that the point
curve (χ̃, σ̃(χ̃)), associated with an arbitrary bulk point (x, z) in the constant time
slice, is given by

σ̃(χ̃) =
√

(x− χ̃)2 + z2 . (5.67)
By imposing that this point curve crosses (χ, σ) and (χA, σA), i.e. σ̃(χ) = σ and
σ̃(χA) = σA, we find

x = σ2 − σ2
A − χ2 + χ2

A

2(χ− χA) and z =
√
σ2 − (x− χ)2 . (5.68)

Therefore, the point curve (χ̃, σ̃(χ̃)) bounding ∆A(χ, σ) is given by

σ̃(χ̃) =
√

(x− χ̃)2 + σ2 − (x− χ)2 , (5.69)

where x is given by (5.68).

For an interval (χ, σ) of type (c) we find Λξ(χ, σ) (5.64) to be

Λ(c),±
ξ (χ, σ) = 1

2Λ(b)
ξ (σ) + Ξ±(χ, σ) , (5.70)

where x and Λ(b)
ξ (σ) are given by (5.68) and (5.66) respectively and

Ξ±(χ, σ) = − c3 log
(
σ ± (χ− x)
σ ∓ (χ− x)

)
(5.71)



5.3. HOLOGRAPHIC COMPLEXITY FOR VACUUM STATES 127

Figure 5.16: The five regions of integration in K appearing in (5.72). The region
i (i = 1, . . . , 5) is integrated over in the ith term in (5.72). By identifying the
χ axis of K with the constant time slice of the CFT (see Section 5.1.1) we may
identify the lower edges of the regions of integration with the endpoints uA, vA of
the considered entangling interval A.

holds. Here, Ξ+ (Ξ−) refers to the situation where the right (left) endpoint of the
interval (χ, σ) lies inside of (χA, σA). Note that in the computation of Λ(c),±

ξ we
assumed that the point curve (5.69) stays above the cut-off. The error for C that is
caused by this assumption is of order ξ and therefore irrelevant in the ξ −→ 0 limit.

Separating the type (b) and (c) intervals in (5.63) from each other and inserting
(3.39), we obtain

C(χA, σA) =−3
2πc

[ ∫ σA

ξ

dσ

∫ vA−σ

uA+σ

dχ

σ2 Λ(b)
ξ +

∫ σA

ξ

dσ

∫ vA+σ

vA−σ

dχ

σ2 Λ(c),−
ξ

+
∫ ∞
σA

dσ

∫ vA+σ

uA+σ

dχ

σ2 Λ(c),−
ξ +

∫ σA

ξ

dσ

∫ uA+σ

uA−σ

dχ

σ2 Λ(c),+
ξ

+
∫ ∞
σA

dσ

∫ vA−σ

uA−σ

dχ

σ2 Λ(c),+
ξ

]
,

(5.72)

where uA = χA − σA and vA = χA + σA are the endpoints of the interval (χA, σA).
The five integrals in (5.72) correspond to the five regions in K depicted in Figure
5.16. By using the expression (5.70) for Λ(c),±

ξ , we can bring (5.72) into the form

C(χA, σA) =−3
2πc

[ ∫ ∞
ξ

dσ
2σA
σ2 Λ(b)

ξ +
∫ σA

ξ

dσ

∫ vA+σ

vA−σ

dχ

σ2 Ξ− +
∫ ∞
σA

dσ

∫ vA+σ

uA+σ

dχ

σ2 Ξ−

+
∫ σA

ξ

dσ

∫ uA+σ

uA−σ

dχ

σ2 Ξ+ +
∫ ∞
σA

dσ

∫ vA−σ

uA−σ

dχ

σ2 Ξ+
]
.

(5.73)

The first integral in (5.73) provides the divergent part of C(χA, σA),
−3
2πc

∫ ∞
ξ

dσ
2σA
σ2 Λ(b)

ξ = 8σA
πξ

. (5.74)
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The remaining integrals stay finite in the limit ξ −→ 0 and can be brought into
the form∫ ∞

0
dσ

2
πσ2

[
σA log

∣∣∣∣ σ2
A

σ2
A − σ2

∣∣∣∣+ σ log
∣∣∣∣σA − σσA + σ

∣∣∣∣ ]+O(ξ) = −π +O(ξ) . (5.75)

Combining (5.74) and (5.75), we obtain

C(χA, σA) = 8σA
πξ
− π +O(ξ) . (5.76)

We can match the divergent part of C to the one obtained in (3.74), where the
radial bulk cut-off z = ε was used, by setting ξ = 4ε/π and adapting the convention
for the prefactor of HSRC (see beginning of Section 5.3). As for the HSRC for
global AdS3 (see Section 5.3.3), we find that the constant term, i.e. −π, in C
obtained by the kinematic space cut-off scheme agrees with the constant term
in (3.74) obtained from the radial cut-off scheme in the bulk. This supports the
proposal stating that this term is universal (see Section 3.2.3).

5.3.5 Holographic Subregion Complexity in Terms of
Mutual Information for the Poincaré Patch

As a side remark we present an alternative formulation of our expression (5.50)
for the volume vol(BA) associated with HSRC (5.49) for the Poincaré patch. This
reformulation may be more accessible for physical interpretation than our CFT
expression for HSRC (5.53). It is based on the bulk perspective of kinematic
space, i.e. points (χ, σ) in K will be interpreted as geodesics in the bulk. Just as
in Section 5.3.4 we are only working with one orientation of the geodesics, i.e. we
only consider σ ≥ 0. Therefore, we again adapt the volume formula (5.50) by a
multiplicative factor of two,

vol(BA)
4G3

= 1
π

∫
σ≥0

ωKλBA , (5.77)

where ωK is given by (5.40). Following the discussion of Section 5.3.2, we may
distinguish geodesics lying completely inside of BA (type (b)) and geodesics lying
only partially inside of BA (type (c)). For geodesics of type (b) the chord length
λBA is the total length of the geodesic. The RT formula (3.32) implies that this
chord length may be interpreted as the entanglement entropy of the corresponding
entangling interval. These considerations allow us to rewrite (5.77) as follows,

vol(BA)
4G3

= −2G3

π

∫
type (b)

dχdσS∂2
σS −

1
2π

∫
type (c)

dχdσλBA∂
2
σS , (5.78)

where the regions of integration of the two integrals are the geodesics of type (b)
and (c) respectively. Before we continue with our discussion, we need to stress
that the entanglement entropy S, chord length λBA and the integrals over them
are divergent in (5.78). Thus, a proper cut-off scheme is necessary for applying
(5.78) to explicit examples.
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Figure 5.17: Associating points on a geodesic in the constant time slice of the
Poincaré patch with boundary points. The mapping (5.79) may be used to identify
points (x̄i, z̄i), i = 1, 2 on the bulk geodesic (χ, σ) with points xi on the conformal
boundary at z = 0. The points xi lie in the interval [u, v] (red) associated with
(χ, σ). Assuming (x1 − u)(v − x2) to be sufficiently small, the RT surface of
[x1, x2]∪[u, v]c is given by the dotted curves. This allows us to express the geodesic
distance between (x̄1, z̄1) and (x̄2, z̄2) (length of the blue curve) i.t.o. the mutual
information I([x1, x2] : [u, v]c) (see (5.80), (5.82) and (5.84)).

In (5.78) we see that we can interpret the contribution of type (b) geodesics in
terms of entanglement entropy. In the rest of this section we present an expression
for the remaining integral over type (c) geodesics in terms of mutual information
(3.15). This expression is based on the interpretation of geodesic distances in the
bulk in terms of mutual information introduced in [213]. We first review this in-
terpretation and then apply it to the chord lengths of type (c) geodesics.

Consider two bulk points p1 = (x̄1, z̄1) and p2 = (x̄2, z̄2) on the constant time
slice lying on the same geodesic (χ, σ). 8 In [213] the bulk modular flow was
used to assign boundary points x1, x2 to p1 and p2 respectively which lie inside the
entangling interval associated with (χ, σ),

xi = σ2 −
√
σ4 − (x̄i − χ)2σ2

x̄i − χ
+ χ , i = 1, 2 . (5.79)

We depict this procedure in Figure 5.17. Assuming w.l.o.g. x1 ≤ x2, the length of
the geodesic segment between p1 and p2 is given by [213]

d(p1, p2) = L log
( 2σ(x2 − x1)

(x1 − u)(v − x2) + 1
)

= L log η , (5.80)

where u, v are the boundary points of the entangling interval associated with (χ, σ)
(5.39) and η is the conformal cross-ratio

η = (v − x1)(x2 − u)
(v − x2)(x1 − u) . (5.81)

8We use the coordinates (3.33) for the Poincaré patch.
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By using the formula (3.39) for entanglement entropy, we may express η in terms
of entanglement entropies,

η = e
3
c
κ + 1 , (5.82)

where
κ = S([x1, x2]) + S([u, v])− S([x2, v])− S([u, x1]) . (5.83)

For sufficiently small (x1−u)(v−x2) the RT surface of [x1, x2]∪ [u, v]c is given by
γ[u,x1] ∪ γ[x2,v], as visualized in Figure 5.17. 9 In this case, the RT formula (3.32)
implies that κ is equal to the mutual information (3.15) of [x1, x2] and [u, v]c,

κ = I([x1, x2] : [u, v]c) . (5.84)

Therefore, we see that we may express the geodesic distance (5.80) of the two bulk
points p1 and p2 in terms of mutual information.

We may now apply this result to the chord length λBA(χ, σ) of type (c) geodesics
in order to formulate the corresponding integral in (5.78) in terms of mutual infor-
mation. By doing so, we obtain the alternative expression for subregion complexity
mentioned at the beginning of this section. Evidently, λBA(χ, σ) is the geodesic
distance between the endpoint of (χ, σ) lying inside of BA and the point where
(χ, σ) and (χA, σA) meet.10 Therefore, combining (5.80) and (5.82), we find

λBA(χ, σ) = L log
(
e

3
c
κ + 1

)
. (5.85)

By sending p1 or p2 to one endpoint of the geodesic (χ, σ) – as required for λBA
– x1 or x2 asymptotes to u or v respectively. This is easy to see from (5.79).
Consequently, we find (x1 − u)(v − x2) −→ 0. Therefore, the interpretation of κ
as mutual information (5.84) is valid for (5.85). We find

κ = I([u, x̂] : [u, v]c) , (5.86)

if the endpoint u of (χ, σ) lies inside of BA and

κ = I([x̂, v] : [u, v]c) , (5.87)

if v lies inside of BA. Here x̂ denotes the boundary point associated with the bulk
point where (χ, σ) and (χA, σA) meet (see Figure 5.18 and (5.79)).

By inserting (5.85) into (5.78) we obtain the following expression for subregion
complexity,

C(χA, σA) =− 9
πc2

∫
type (b)

dχdσS∂2
σS

− 3
2πc

∫
type (c)

dχdσ log
(
e

3
c
κ + 1

)
∂2
σS ,

(5.88)

where we used (5.49) and (2.117).
9This may be easily verified by considering our discussion of phase transitions of the RT

surface in Section 3.1.7.
10We note again that this distance is divergent. Thus a proper cut-off procedure is required.
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Figure 5.18: Identification of the intersection point of the bulk geodesics (χA, σA)
and (χ, σ). By associating the intersection point of (χA, σA) and (χ, σ) with a
boundary point x̂ on the entangling interval corresponding to (χ, σ) (red), we may
express the chord length of (χ, σ) (length of the blue curve) in terms of mutual
information (see (5.85) and (5.86))

We see that the expression (5.88) for HSRC is a single integral over kinematic
space not a double integral as (5.53). However, the derivation of (5.88) heavily
relies on the bulk since the bulk modular flow is required to identify x̂ in (5.86) and
(5.87). Thus (5.88) is strictly speaking no CFT expression for HSRC. We never-
theless consider it a valuable result for HSRC which may provide some inspiration
for field theory expressions for HSRC in the future.

5.4 Holographic Subregion Complexity for
Excited States

Until now we have discussed HSRC only for vacuum states. Applying the volume
formula (5.12) we were able to derive a field theory expression for HSRC only
containing entanglement entropies. We now generalize this approach to two types
of geometries that are quotients of pure AdS3: conical defects and BTZ black holes.
These geometries are dual to primary excitations and thermal states of the CFT,
respectively (see Section 2.5.2).

The main difference between the gravity duals of these excited states and the
vacuum states is the fact that the geodesics anchored at the boundary of a constant
time slice are no longer uniquely determined by their endpoints. To be more pre-
cise, given two points on the constant time slice of the conformal boundary, there
are several geodesics running between them. Consequently, the one-to-one corre-
spondence between entangling intervals on the CFT side and boundary anchored
geodesics on the gravity side no longer exists. This one-to-one correspondence al-
lowed us to interpret the kinematic space for the vacuum from both the bulk and
the boundary perspective and thus offered a very natural way to associate bulk
volumes with CFT integrals (see Section 5.3). For excited states this strategy for
constructing CFT expressions for bulk volumes is no longer possible.
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The kinematic space for the geometries we consider here is again defined as the
space of all boundary anchored geodesics on a constant time slice. Both the conical
defect and the BTZ black hole may be defined as a quotient of AdS3. As discussed
below, we may apply the quotienting procedure providing these geometries to
construct their kinematic space as a quotient of the kinematic space of the vacuum
state. This construction makes it evident that the volume formula (5.12) may also
be applied to the quotient geometries, when inheriting the volume form ωK from
the vacuum kinematic space.

Since there are several geodesics attached to the same pair of boundary points,
only the geodesic with minimal length corresponds to a RT surface providing
entanglement entropy. The CFT interpretation of the lengths of the other – so-
called – long geodesics is a subject of current research. There is evidence that
they are related to the entanglement of inner degrees of freedom which are not
spatially organized [146]. This interpretation is referred to as entwinement [146].
Entwinement has been discussed in e.g. [95, 97, 214] and made more concrete in
[215, 216]. We note that in quotient geometries there are regions that cannot be
reached by minimal geodesics but only by non-minimal ones (see Figure 5.19 for
the conical defect geometry). Since these regions are – by construction – not
intersected by RT surfaces, they are called entanglement shadows [146, 217]. The
existence of entanglement shadows makes it clear that a kinematic space which
is supposed to provide a volume formula of the form (5.12) necessarily needs to
include non-minimal geodesics. If it would only contain minimal geodesics, a bulk
region Q lying completely inside of the entanglement shadow could not be reached
by the geodesics associated with such a kinematic space and thus vol(Q) could not
be computed via the volume formula.

Due to the presence of non-minimal geodesics in kinematic space, we may no
longer interpret the volume form ωK in terms of entanglement entropies. This
interpretation only applies to the geodesics of minimal length. Consequently, our
expression for HSRC as an integral over kinematic space no longer consists only
of entanglement entropies, as for the vacuum state (5.53), but also includes en-
twinement. We present a formulation of HSRC as an integral over the space of
entangling intervals below. This expression includes length contributions from
non-minimal geodesics and may be seen as a first approach towards finding a CFT
formula for HSRC.

Furthermore, we find that for thermal states (BTZ black holes) – besides the
minimal and non-minimal geodesics connecting boundary points – there is a third
type of geodesic: these geodesics run between the boundary and the horizon of the
black hole. Consequently, they only have one endpoint at the conformal boundary
and may thus not be associated with any boundary interval. We consider the
contribution of these geodesics to HSRC as related to the fact that the dual CFT
state is thermal.

5.4.1 Conical Defects

In this section we discuss kinematic space and HSRC for conical defects (see Section
2.5.2). We start by reviewing the construction of the conical defect geometry by
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quotienting AdS3. The same procedure may be used to derive the corresponding
kinematic space. The conical defect geometry CDN̂ is obtained from global AdS3
(5.13) by considering the identification

φ ∼ φ+ 2π/N̂ , N̂ ∈ N (5.89)

for the angular coordinate of global AdS3 (5.13) (see e.g. [146, 147]).11 Therefore,
CDN̂ is given by the quotient

CDN̂ = AdS3

ZN̂
. (5.90)

By introducing the coordinates t̂ = N̂ t̃, r̂ = r̃/N̂ and φ̂ = N̂φ, we obtain the
metric of the conical defect (2.152) (see e.g. [146]).12

ds2
CD = −

( r̂2

L2 + N̂−2
)
dt̂2 + 1

r̂2

L2 + N̂−2
dr̂2 + r̂2dφ̂2 , (5.91)

where the dual field theory is defined on the circle φ̂ ∼ φ̂ + 2π at r̂ = ∞. As
we depict in Figure 5.19, the quotienting procedure (5.89) results in a geometry
where the geodesic on a constant time slice connecting two points on the confor-
mal boundary at r̂ = ∞ is not unique. The RT formula (3.32) states that the
entanglement entropy of a boundary interval is then given by the length of the
minimal geodesic connecting the two endpoints of the interval.

Kinematic Space for Conical Defects

In the following we work with the kinematic spaceKCD for CDN̂ introduced in [147],
which is the space of all boundary anchored geodesics on a constant time slice of
CDN̂ , including the non-minimal ones.13

As pointed out in [147], the kinematic space of the conical defect is most easily
obtained from the kinematic space of global AdS3 (5.15). Due to the identification
(5.89) in the φ coordinate of global AdS3 required for the construction of CDN̂ , we
need to introduce the same identification in the θ coordinate (5.2) for the kinematic
space of global AdS3 to obtain KCD,

θ ∼ θ + 2π
N̂
. (5.92)

A point (θ, α) in AdS3 kinematic space refers to a geodesic corresponding to a
boundary interval centered around φ = θ with opening angle α (5.2). Therefore,
(5.92) is an immediate consequence of the identification (5.89) in the φ coordinate

11For simplicity we assume N̂ ∈ N here. In principle it is possible to consider conical defects
for non-integer N̂ as well.

12Note that in (2.152) we use t̃, r̃ and φ to refer to t̂, r̂ and φ̂.
13We mention [95] for related work. For an alternative formulation of kinematic space for

conical defects we refer to [212].
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Figure 5.19: Constant time slice (l.h.s.) and kinematic space (r.h.s.) for the conical
defect. We consider a constant time slice for the conical defect with N̂ = 3 (5.89).
As depicted on the l.h.s. the geodesic connecting two points u, v on the conformal
boundary at r̂ −→∞ is not unique. Besides the geodesic of minimal length there
are further geodesics winding around the conical defect at r̂ = 0. Moreover, there
is a region (grey) surrounding the conical defect that may not be accessed by
the geodesics providing the minimal distance between two boundary points but
only by non-minimal geodesics. This region is called entanglement shadow. The
kinematic space for the conical defect (r.h.s.) – i.e. the space of all boundary
anchored geodesics – is given by a quotient of the kinematic space of global AdS3
(5.92). We depict the corresponding fundamental domain in yellow. The geodesics
in KCD come with an orientation (±) and a winding number n = 0, 1, 2 indicating
how often a geodesic winds around the defect. A geodesic with winding number n
and orientation ± has α ∈ W±n (5.93).

of global AdS3. The opening angle α still runs from 0 to π in KCD. The elements
in KCD with α ∈ W±n , where

W+
n =

( nπ
2N̂

,
(n+ 1)π

2N̂

]
, W−n =

[(2N̂ − n− 1)π
2N̂

,
(2N̂ − n)π

2N̂

)
, (5.93)

refer to bulk geodesics winding n = 0, . . . , N̂ − 1 times around the conical defect
at r̂ = 0 [147] (see Figure 5.19). Here the ± correspond to the two different ori-
entations of each geodesic. In particular, W±0 contain the minimal geodesics, i.e.
the RT surfaces.14

The metric and volume form of KCD are given by

ds2
KCD

= − 1
8G3

∂2
α`
(
− dα2 + dθ2) , ωKCD = − 1

8G3
∂2
α`dθ ∧ dα , (5.94)

where
`(α) = 2L log

(2`CFT

ε
sin(α)

)
(5.95)

14Note that, strictly speaking, some RT surfaces also include an infinitesimal circle around the
conical defect (see Section 3.1.7). Since we are only interested in the length of the RT surface
here, we neglect this circle.
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is the length of the geodesic associated with (θ, α) [147]. 15 Note that ` does not
depend on θ due to the symmetry of the geometry. We note that `(α) may only
be associated with entanglement entropy for α ∈ W±0 , since only these points in
KCD correspond to geodesics with minimal length.

Volume Formula for Conical Defects

Since CDN is a quotient of global AdS3 (5.90), it is easy to see that the volume
formula (5.12) also holds here,

vol(Q)
4G3

= 1
2π

∫
KCD

ωKCDλQ = − 1
16πG3

∫ 2π/N̂

0
dθ

∫ π

0
dαλQ(θ, α)∂2

α`(α) , (5.96)

where Q is an arbitrary codimension one bulk region in the constant time slice
of CDN̂ . The chord length λQ(θ, α) is the length of the segment of the geodesic
associated with (θ, α) lying in Q.

Holographic Subregion Complexity for Conical Defects

In analogy to (5.53) we may use the kinematic space integral (5.5) determining
the distance between two bulk points to derive a double integral expression over
KCD from (5.96) for the volume of the region BA associated with HSRC (5.49). We
obtain the following expression for HSRC,

C(θ̂A, α̂A) = 1
32πL2

∫ 2π/N̂

0
dθ

∫ π

0
dα

∫
∆A(θ,α)

dθ′dα′nA(θ,α)(θ′, α′)∂2
α`∂

2
α′` , (5.97)

where ∆A(θ, α) ⊂ KCD corresponds to the geodesics intersecting the chord of the
geodesic (θ, α) lying inside of BA. We use the coordinates (θ̂A, α̂A) to refer to
an entangling interval on the CFT side with endpoints φ̂ = θ̂A − α̂A and φ̂ =
θ̂A + α̂A. By construction, (5.97) not only includes minimal geodesics connecting
two boundary points but also non-minimal ones. Since non-minimal geodesics may
intersect the chord of (θ, α) more than once we need to weight each (θ′, α′) with
the number nA(θ,α)(θ′, α′) of its intersections (5.3).

Due to the contribution of non-minimal geodesics to (5.97), a field theory in-
terpretation of HSRC not only includes entanglement entropy – as it was the case
for global AdS3 (5.53) – but also entwinement.

As a first step towards a field theory interpretation of (5.97) we conclude our
discussion of HSRC for conical defects by reformulating (5.97) as an integral over
the space of entangling intervals. This reformulation was constructed by me and
published in [2] with less details than presented here. Since KCD is the space of
all boundary anchored geodesics, the one-to-one correspondence between points in
KCD and entangling intervals on the boundary which we had for global AdS3 is not

15Here ε is a radial cut-off and `CFT the radius of the circle the CFT is defined on. We have
chosen the factor in front of sin(α) to be 2`CFT/ε in order to get in touch with the entanglement
entropy (5.14) of global AdS3.
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present here. Nevertheless, we may interpret (5.97) as an integral over entangling
intervals.

We begin by making the following observation. Consider an integral over kine-
matic space of the form ∫

KCD

dθdαf(θ, α)∂2
α` , (5.98)

where f is an arbitrary function on KCD. When using θ̂ ∈ [0, 2π] and α̂ ∈ [0, π]
to parametrize the entangling intervals on the circle corresponding to the CFT
constant time slice,16 it is easy to see that (5.98) can be reformulated as

∫
KCD

dθdαf(θ, α)∂2
α` =

∫ 2π

0
dθ̂

∫ π

0
dα̂

N̂−1∑
n=0

fn(θ̂, α̂)∂2
α̂`n(α̂) , (5.99)

where fn(θ̂, α̂) is the value of f at the point in KCD corresponding to the geodesic
winding n times around the defect and ending at the endpoints of the interval
(θ̂, α̂). Analogously, `n(α̂) is the length of the geodesic with winding number n
attached to (θ̂, α̂) (see Figure 5.19). Applying the reformulation (5.99) to (5.97),
we find that HSRC can be written as an integral over the space of entangling
intervals,

C(θ̂A, α̂A) =
∫
dθ̂dα̂

(
FCD
A (θ̂, α̂) +GCD

A (θ̂, α̂)
)
. (5.100)

Here FCD
A (θ̂, α̂) refers to all contributions of geodesics with winding number n = 0

to the double integral (5.97) and GCD
A (θ̂, α̂) corresponds to the contribution of

geodesics of higher winding, i.e. n > 0. The RT formula (3.32) implies that
the integral over FCD

A in (5.100) can be expressed solely in terms of entanglement
entropies, since geodesics with n = 0 are RT surfaces. In particular, if we set N̂ = 1,
we find that GCD

A vanishes and (5.100) becomes the integral over entanglement
entropies giving HSRC for global AdS3 (5.53). This is easy to be seen, since
CDN̂=1 = AdS3. For N̂ > 1 HSRC not only consists of entanglement entropies
but additional contributions containing the length of non-minimal geodesics are
present, i.e. GCD

A 6= 0. As pointed out in the introduction to this section, the
length of non-minimal geodesics are considered to correspond to inner correlations
of the corresponding CFT state which are referred to as entwinement.

Since FCD
A and GCD

A essentially consist of volume integrals over regions in KCD
(see (5.97)), it is easy to see that they are non-negative. So we find that the integral
over FCD

A provides a lower bound for HSRC,∫
dθ̂dα̂ FCD

A (θ̂, α̂) ≤ C(θ̂A, α̂A) . (5.101)

Consequently, HSRC for conical defects is bounded from below by a term only
depending on entanglement entropies.

16(θ̂, α̂) corresponds to an entangling interval with endpoints φ̂ = θ̂ − α̂ and φ̂ = θ̂ + α̂.
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5.4.2 BTZ Black Holes
We now discuss the kinematic space KBTZ for the non-rotating BTZ black hole
geometry (2.148)

ds2
BTZ = − r̃

2 − r̃2
h

L2 dt̃2 + L2

r̃2 − r̃2
h

dr̃2 + r̃2dφ2 (5.102)

and the resulting expression for subregion complexity.

BTZ Geometry

Similar as for the conical defect (see Section 5.4.1), the quotienting procedure for
AdS3 providing the BTZ geometry (5.102) leads to a method for obtaining KBTZ
from the vacuum kinematic space. We therefore briefly review the quotienting
procedure that allows us to construct the BTZ black hole (5.102) from the Poincaré
patch [141, 142]. Considering the coordinates t, z and x (3.33) for the Poincaré
patch, we may perform the coordinate transformation x± = x± t, leading to

ds2
PP = L2

z2

(
− dt2 + dx2 + dz2) = L2

z2

(
dx+dx− + dz2) . (5.103)

By defining r̃, t̃, φ via

x± = L
(

1− r̃2
h

r̃2

)1/2
er̃h(φ±t̃/L)/L , z = L

r̃h
r̃
er̃hφ/L , (5.104)

and imposing the periodicity φ ∼ φ+ 2π, we obtain the identification
(t, x, z) ∼ e2πr̃h/L(t, x, z) , (5.105)

which turns the Poincaré patch into the BTZ black hole (5.102). In particular,
the constant time slice t = 0 of the Poincaré patch is transformed into the BTZ
constant time slice t̃ = 0. The identification imposed on the constant time slice
resulting from this transformation is

(x, z) ∼ e2πr̃h/L(x, z) . (5.106)
More precisely, the quotient space resulting from the identification (5.106) is glob-
ally equivalent to the constant time slice of the two-sided BTZ black hole, as we
depict in Figure 5.20. 17 In the following we work with this constant time slice of
the BTZ black hole. The identification (5.106) offers the region

L2 ≤ x2 + z2 < L2e4πr̃h/L (5.107)
as fundamental domain of the BTZ constant time slice (see Figure 5.20). The ver-
tical line x = 0 corresponds to the horizon of the black hole, whose circumference
is given by

L

∫ L exp(2πr̃h/L)

L

dz

z
= 2πr̃h , (5.108)

as may be easily deduced from (5.103) and (5.107).
17The emergence of the two-sided BTZ black hole is related to the fact that the identification

(5.105) generates an extended version of the BTZ geometry presented in (5.102). To be more
precise, the coordinates r̃, t̃, φ only cover a part of the space generated by (5.105). This is
evident, since (5.104) is only defined for x± > 0.
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Figure 5.20: Fundamental domain of the constant time slice of the two-sided BTZ
black hole. We depict the constant time slice t = 0 of the Poincaré patch (l.h.s.)
which may be transformed into the constant time slice t̃ = 0 of the two sided
BTZ black hole via (5.106). The z axis separates the corresponding fundamental
domain (red) into two regions R± each providing one side of the BTZ black hole.
Considering one side of the black hole (r.h.s.), there are infinitely many geodesics
(blue) connecting any pair of boundary points u, v. Moreover, there are also
geodesics γ∗ passing through the horizon to the other side of the black hole.

Kinematic Space of the BTZ Black Hole

We consider KBTZ to be the space of all boundary anchored geodesics on the con-
stant time slice t̃ = 0 of the BTZ geometry (5.102). This definition of KBTZ is
considered in [97,218]. 18 As for the conical defect (see Section 5.4.1), the geodesic
connecting two boundary points is not unique. In fact, for any pair of boundary
points φ = u, v there are infinitely many geodesics running from u to v (see Figure
5.20). Moreover, as we show in Figure 5.20, there are also geodesics starting at a
boundary point φ and passing through the horizon to the other side of the black
hole. These geodesics are included in KBTZ as well.

We may define KBTZ as a quotient of the Poincaré patch kinematic space in the
following way.19 Using the kinematic space coordinates (χ, σ) (5.39) to parametrize
a geodesic in the constant time slice of the Poincaré patch with endpoints uPP =
χ − σ and vPP = χ + σ on the boundary, we find that the identification (5.106)
leads to

(χ, σ) ∼ e2πr̃h/L(χ, σ) , (5.109)

which turns the Poincaré kinematic space into KBTZ. The metric and volume form
of KBTZ are inherited from the Poincaré kinematic space,

ds2
KBTZ

= − 1
8G3

∂2
σ`
(
− dσ2 + dχ2) , ωKBTZ = − 1

8G3
∂2
σ`dχ ∧ dσ , (5.110)

18We mention [95] for related work. Note that there are also alternative definitions of KBTZ
as the space of geodesics with minimal length [212].

19Quotient constructions (for the BTZ kinematic space) of the type presented here were also
considered in [97,218].
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Figure 5.21: Kinematic space KBTZ constructed as a quotient of the kinematic
space of the Poincaré patch via (5.109). The fundamental domain (red) may be
separated into six regions by the χ axis and the light rays emitted from the origin
(dashed lines). As may be seen by associating the χ axis with the constant time
slice of the field theory, the regions I±, III± correspond to the geodesics lying
completely on one side of the BTZ black hole, where the sign ± refers to their
orientation. Moreover, the geodesics represented by II± have one endpoint on
each side of the BTZ black hole.

where
`(σ) = 2L log

(2σ
ε

)
(5.111)

is the length of the geodesic associated with (χ, σ) (3.38). Here, ε corresponds to
a cut-off. Due to the symmetry of the system, ` is independent of χ. Using the
coordinates uPP = χ− σ and vPP = χ + σ in the covering space of KBTZ, i.e. the
Poincaré patch kinematic space, we may distinguish the following six sectors of
KBTZ.

Sector I+. Geodesics with 0 < uPP < vPP all have the same orientation and
are restricted to the r.h.s. of the two sided BTZ black hole (see Figure 5.21). Both
their endpoints are attached to the conformal boundary of the BTZ geometry at
r̃ =∞.

Sector II+. The sector with uPP < 0 < vPP corresponds to geodesics which
pass from one side of the black hole to the other, as depicted in Figure 5.21. More-
over, they all have the same orientation.

Sector III+. Complementary to sector I+, sector III+, contains geodesics with
uPP < vPP < 0. They all share the same orientation and all lie on the l.h.s. of the
black hole (see Figure 5.21).

Sectors I−, II−, III−. By exchanging uPP and vPP in the above definitions of
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sectors I+, II+, III+, we obtain the sectors I−, II−, III−, respectively. They share
the same properties as their counterparts but have opposite orientation (see Figure
5.21).

We may parametrize the geodesics corresponding to the points in sector I+ by
their endpoints φ = θ − α and φ = θ + α on the conformal boundary of the BTZ
geometry (5.21) by setting

uPP = Ler̃h(θ−α)/L , vPP = Ler̃h(θ+α)/L , where θ ∼ θ + 2π , α ∈ R . (5.112)

This allows us to identify the geodesics in sector I+ winding n times around the
horizon. They are given by α ∈ Vn, where

Vn = [πn, π(n+ 1)) , n ∈ N0 . (5.113)

Analogous parametrizations can be found for the geodesics in sectors I− and III±.
Moreover, (5.112) – together with (2.117) – provides us with the expression

ωKBTZ = c

6
r̃2
h

L2 sinh2(r̃hα/L)
dθ ∧ dα (5.114)

for the volume form (5.110) in sector I+. By considering the formula (3.48) for the
entanglement entropy for BTZ black holes, we see that (5.114) is of the form

ωKBTZ = −1
2∂

2
αS(α)dθ ∧ dα (5.115)

for

0 < α <
L

2r̃h
log
(e2πr̃h/L + 1

2

)
, (5.116)

since the corresponding geodesics are the RT surfaces of the associated entangling
intervals.20

Volume Formula for BTZ Black Holes

The BTZ black hole is a quotient of the Poincaré patch (5.105). Consequently,
the volume formula (5.12) also holds here, i.e. we may compute the volume of an
arbitrary codimension one bulk region Q lying in the constant time slice of the
BTZ black hole via

vol(Q)
4G3

= 1
2π

∫
KBTZ

ωKBTZλQ = − 1
16πG3

∫
KBTZ

dχdσλQ(χ, σ)∂2
σ`(σ) . (5.117)

Here λQ(χ, σ) is the length of the chord lying inside of Q of the geodesic associated
with (χ, σ).

20For larger α the RT surface undergoes a phase transition (see Section 3.1.7).



5.4. HOLOGRAPHIC COMPLEXITY FOR EXCITED STATES 141

Holographic Subregion Complexity for BTZ Black Holes

Just as for the conical defect (see Section 5.4.1), we may apply the expression for
the geodesic distance between two bulk points (5.5) to derive a double integral
expression over KBTZ for the HSRC,

C(θ̂A, α̂A) = 1
32πL2

∫
KBTZ

dχdσ

∫
∆A(χ,σ)

dχ′dσ′nA(χ,σ)(χ′, σ′)∂2
σ`(σ)∂2

σ′`(σ′) .

(5.118)
Here, we denote the considered entangling interval with endpoints φ = θ̂A−α̂A and
φ = θ̂A + α̂A as (θ̂A, α̂A). Moreover, ∆A(χ, σ) is the region in KBTZ corresponding
to the bulk geodesics which intersect the chord of the geodesic associated with
(χ, σ) lying in BA. The bulk region BA is – as usual – the codimension one re-
gion enclosed by the boundary interval (θ̂A, α̂A) and the corresponding RT surface.
Since geodesics (χ′, σ′) of higher winding may intersect the chord of (χ, σ) more
than once, we need to weight them with their number of intersections nA(χ,σ)(χ′, σ′).

The integrals in (5.118) obviously not only consider the bulk geodesics which
are RT surfaces but all geodesics in the constant time slice of the BTZ geome-
try. Consequently, an interpretation of (5.118) solely in terms of entanglement
entropies is not possible.

We now introduce a reformulation of (5.118) similar to (5.100) for the conical
defect in order to provide a first step towards a field theory interpretation of (5.118).
I contributed this reformulation to [2], where I discussed it with less details than
here. For this reformulation we need to analyze the contribution of the different
sectors (I±, II±, III±) of kinematic space to (5.118). Without loss of generality,
we consider the boundary interval (θ̂A, α̂A) to be located on the r.h.s. of the two
sided BTZ black hole (see Figure 5.20). Since the bulk region BA therefore lies on
the r.h.s. as well, it is easy to see that the geodesics lying completely on the l.h.s.
(sectors III±) do not contribute to HSRC. So only the sectors I± and II± need to
be considered. The geodesics in sector I± have both their endpoints attached to
the conformal boundary on the r.h.s. of the BTZ black hole. Therefore, in analogy
to (5.99), we can reformulate the integral of a function f over I± as an integral
over the space of all entangling intervals,∫

I+∪I−
dχdσf(χ, σ)∂2

σ` =
∫ 2π

0
dθ̂

∫ π

0
dα̂
∑
n

fn(θ̂, α̂)∂2
α̂`n(α̂) . (5.119)

Here fn(θ̂, α̂) and `n(α̂) are the functions f and ` evaluated at the point in I±
corresponding to the geodesic with endpoints φ = θ̂ ± α̂ and winding number n
(see paragraph of (5.113)). We note that these geodesics are considered with two
different orientations – as usual. This guarantees that we may interpret (5.119)
as an integral over all entangling intervals. We may now apply the reformulation
(5.119) to subregion complexity (5.118), which leads to

C(θ̂A, α̂A) =
∫
dθ̂dα̂

(
FBTZ
A (θ̂, α̂)+GBTZ

A (θ̂, α̂)
)

+thermal contributions . (5.120)
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As for the conical defect (5.100), the function FBTZ
A refers to all contributions to

the double integral (5.118) only containing entanglement entropies. The function
GBTZ
A contains all contributions from geodesics in I± that are no RT surfaces. The

remaining thermal contributions in (5.120) refer to contributions involving the
sectors II±. The geodesics corresponding to these sectors cannot be associated with
entangling intervals on the conformal boundary of one side of the black hole, since
they have one endpoint on each side of the black hole. So by only considering one
side of the black hole, they run between the conformal boundary and the horizon.
Since contributions like this may only occur in geometries with an horizon, we refer
to them as thermal. We see that subregion complexity for BTZ black holes not only
consists of entanglement entropies (FBTZ

A ) but also has thermal contributions as
well as contributions from non-minimal geodesics connecting two boundary points
(GBTZ

A ). The latter are proposed to correspond to inner correlations of the dual
CFT state called entwinement, as mentioned at the beginning of this section.

Regarding the contribution of entanglement entropies to subregion complexity,
i.e. FBTZ

A , we note that only the RT surfaces for entangling intervals with opening
angle

α̂ <
L

2r̃h
log
(e2πr̃h/L + 1

2

)
(5.121)

are contained in KBTZ. The reason for that is the fact that the RT surface under-
goes a phase transition for larger α̂ and is no longer just a geodesic attached to
the considered boundary interval but also includes the horizon of the black hole
(see Section 3.1.7). However, there are still terms included in FBTZ

A which may be
associated with the entanglement entropy of large entangling intervals, as we now
show. The length of a geodesic corresponding to a RT surface for large α̂ is given
by (3.49),

`(α̂) = 2πr̃h + 2L log
(2L`CFT

r̃hε
sinh

(
r̃h(π − α̂)/L

))
, (5.122)

where `CFT is the radius of the circle the CFT is defined on and ε is a UV cut-off.21

The first term in (5.122) is the circumference of the horizon, while the second
gives the length `min of the minimal geodesic connecting the two endpoints of the
interval (θ̂, α̂). The length of this minimal geodesic is present in the integral over
sector I− contributing to subregion complexity (5.118). To be more precise, `min
appears in the integral in form of its second derivative with respect to the opening
angle. The circumference of the horizon appearing in (5.122) is independent of the
opening angle and thus the second derivatives of `(α̂) and `min are identical. This
allows us to interpret the contributions of `min to subregion complexity as con-
tributions of the RT surfaces of large entangling intervals. Consequently, we find
that the entanglement entropy of boundary intervals of any size is present in FBTZ

A .

Since FBTZ
A , GBTZ

A as well as the thermal contributions in (5.120) essentially
encode integrals of positive functions over certain regions in KBTZ (see (5.118)), we
find that they are all non-negative. Consequently, we find subregion complexity

21We have defined the cut-off ε in such a way that `CFT is present in (5.122) in order to get in
touch with the entanglement entropy (3.49) of the CFT state dual to the BTZ geometry.
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to be always greater than the integral over FBTZ
A ,∫

dθ̂dα̂ FBTZ
A (θ̂, α̂) ≤ C(θ̂A, α̂A) . (5.123)

Since FBTZ
A is an expression only depending on entanglement entropies, we may

therefore interpret (5.123) as a lower bound for subregion complexity only contain-
ing entanglement entropies.

5.5 Interpretation of Holographic Subregion
Complexity as Complexity for Reduced States

Given our results for HSRC for vacuum states, conical defects and BTZ black holes
(5.53), (5.100), (5.120), we may now study the implications of these results for the
complexity of CFT states. In the following we assume that the volume enclosed
by an entangling region and the corresponding RT surface is indeed a measure for
the complexity of the corresponding reduced CFT state. We examine our formulae
for HSRC obtained from kinematic space in that context. By doing so I made the
following observations.

HSRC Takes Correlations Between Subsystems Into Account. We
find that in our formulae (5.53), (5.100), (5.120) for HSRC the correlations be-
tween subsystems play an important role. To see this we first consider the pure
states dual to AdS3 or the conical defect on the whole constant time slice. In
(5.53), (5.101) we see that our formulae for HSRC are bounded from below by an
integral over entanglement entropies. The entanglement entropy of every possi-
ble entangling interval contributes to this integral. Entanglement entropy for pure
states captures the correlations between an entangling interval and its complement
(see Section 3.1). Therefore, the integral over entanglement entropies, appearing
in our expressions for complexity (5.53), (5.100) and bounding them from below,
seems to summarize the correlations between all entangling intervals and their
complements for the considered state. The appearance of such an integral term
measuring correlations as a lower bound for complexity in field theory is consistent
with our discussion of complexity for q-bits in Section 3.2.1. In this discussion we
state that the gates required to map the reference state to the target state |ψt〉
necessarily need to build up the correlations between the subsystems present in
|ψt〉. Therefore, these correlations should contribute to complexity.

When we combine the fact that the HSRC of global AdS3 (5.53) only contains
contributions involving entanglement entropies and the interpretation of these con-
tributions as lower bound for complexity we conclude: the CFT vacuum satisfies
a minimality condition regarding complexity. This is easy to see since the HSRC
of global AdS3 saturates the corresponding lower bound.

For reduced states – including states dual to BTZ black holes – on an entan-
gling interval A we make analogous observations. We note that for these states
entanglement entropy not only captures correlations between subsystems but also
takes into account that the states are mixed (see Section 3.1.1). However, corre-
lations still contribute to entanglement entropy and consequently play a role for
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HRSC as well. We note that for reduced states the integral over entanglement
entropies in (5.53), (5.100) and (5.120) not only contain entanglement entropies
corresponding to subintervals of A but also entanglement entropies corresponding
to intervals that only partially lie in A, as depicted in Figure 5.10. Despite these
additional contributions, there are contributions of all subintervals of A present in
the integral under consideration. It is easy to see these contributions, which again
may be interpreted in terms of correlations between subintervals of A and their
complements, provide a positive lower bound for complexity.

Further evidence for the importance of correlations for HSRC may be obtained
from the interpretation of the volume form of kinematic space in terms of con-
ditional mutual information (see Section 5.1.2). In Section 3.1.3 we argued that
conditional mutual information captures certain correlations between subsystems.
However, the argument leading to this conclusion was based on classical consider-
ations. Therefore a more careful analysis is required in order to make the relation
between correlations and HSRC more concrete.

HSRC Takes Correlations with the Complement of the Considered
Entangling Interval Into Account. In the previous paragraph we noted that
in our formulae (5.53), (5.100) and (5.120) for the complexity of a reduced state
on an entangling interval A, there are contributions of entanglement entropies
corresponding to intervals that partially lie in A and partially in its complement.
This fact gives strong evidence that a concept of complexity for reduced CFT
states based on HSRC takes into account that the considered state is part of a
larger system. To be more precise, a reduced state is not just interpreted as a
generic mixed state which needs to be generated from a reference state. The fact
that this mixed state is obtained by reducing a state from a larger system to A
plays a role for complexity.

In particular, this result shows that the concept of complexity for mixed states
introduced in [179] and discussed in Section 3.2.1 cannot be straightforwardly ap-
plied to reduced states in order to construct a CFT dual of HSRC. This is due to
the fact that this concept does not consider the subtlety that a given mixed state
might be a reduced state.

The Reference State has the Properties of a Product State. In Section
3.2.1 we used the product state |ψr〉 = |00 · · · 0〉 (3.53) as reference state for q-bits.
This state does not carry any correlations between its subsystems. Our results for
HSRC are in agreement with a CFT reference state that has the same property,
i.e. no interval [u, v] is entangled with its complement [u, v]c in the reference
state. This may be seen as follows. In the previous paragraphs we argued that
our formulae for complexity (5.53), (5.100), (5.120) for the states we considered
always contain an integral term over entanglement entropies that functions as
a lower bound for complexity. Moreover, it is easy to see that any state with
a classical, static space-time as gravitational dual has such an integral term as
lower bound for HSRC.22 This is an immediate consequence of the construction

22For the sake of this paragraph we assume that the volume formula (5.12) holds for these
geometries, even though we have only proven it for global AdS3 and the Poincaré patch (see
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of kinematic space and the RT formula (3.32). We take this observation as a
motivation for the hypothesis that the complexity of any state is bounded from
below by such an integral over entanglement entropies. Given this assumption we
expect that in the reference state no interval is entangled with its complement:
when we consider a state on the whole constant time slice, we find the integral
discussed above to include the entanglement entropies of all possible intervals on
the constant time slice. The complexity of the reference state is per definicionem
zero. Therefore, the integral including entanglement entropies has to be zero, since
it is a lower bound for complexity. This condition is satisfied if the entanglement
entropy of any entangling interval is zero. A state for which the entanglement
entropy vanishes for each entangling interval by construction has no correlations
between any interval and its complement. States with this property may be seen
as the CFT analogue of the factorizing reference state |ψr〉 = |00 · · · 0〉 (3.53)
introduced for q-bits in Section 3.2.1.

Given our discussion of entanglement in QFTs in Section 1.1 this is an intrigu-
ing result, as we stated that states in QFTs are usually entangled. So the reference
state is expected to be a very exotic state of the CFT. We consider the vanishing
of all entanglement entropies for the reference state to be a large N effect. For
finite N corrections to HSRC may allow the reference state have non-vanishing
entanglement entropies. Nevertheless, our observations allow us to conclude that
the entanglement entropies of the reference state are suppressed in the large N
limit. So we see that the reference state is weakly entangled compared to more
common states in the CFT, such as the vacuum.

HSRC Encodes More than Just Spatial Correlations. In our formu-
lae (5.100) and (5.120) for the complexity of conical defect and BTZ black hole
geometries we see that not only entanglement entropy for entangling intervals is
considered. There are also additional contributions associated with entwinement,
which correspond to contributions of non-minimal geodesics to the volume enclosed
by an entangling region and the corresponding RT surface. As stated in the intro-
duction of Section 5.4, entwinement is proposed to be related to the entanglement
of inner degrees of freedom which are not spatially organized. The presence of
these additional contributions is in agreement with the statement that correlation
play an important role for complexity (see Section 3.2.1). In the previous para-
graphs we argued that correlations between spatial regions contribute to HSRC.
In an analogous way we may argue that the contribution of entwinement to HSRC
indicates that correlations between inner degrees of freedom are also present in
complexity.

Moreover, we note that for the BTZ black hole also thermal contributions are
present in HSRC (5.120). We see them as a consequence of the fact that the dual
CFT state is mixed. However, a clear interpretation of these contributions is yet
to be found. A careful analysis of them might provide a strategy for constructing
a formulation of complexity for mixed states which may be compared with the
formulations presented in Section 3.2.

Section 5.2).
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5.6 Discussion

The subject of this chapter was the results regarding a field theory expression
for HSRC my collaborators and I presented in [1] and [2]. We constructed an
expression for the HSRC of states dual to global AdS3 and the Poincaré patch only
containing entanglement entropies (see Section 5.3). Since entanglement entropies
are CFT quantities, this expression may be seen as a field theory formulation for
HSRC.

We obtained this result by making use of the concept of kinematic space, which
we reviewed in Section 5.1. The kinematic spaceK for asymptotic AdS3 is the space
of all boundary anchored geodesics on a constant time slice. For the considered
vacuum states the one-to-one correspondence between such geodesics in the bulk
and entangling intervals on the boundary allows to interpret K in the field theory
perspective as the space of all entangling intervals (see Section 5.1.2). The fact
that K has a very intuitive interpretation both from the bulk and the boundary
point of view makes it a very powerful tool for systematically constructing CFT
duals for given bulk quantities (see e.g. [95,206]).

In Section 5.2 we presented and proved the volume formula, which provides a
way for computing volumes on the constant time slice in the bulk as an integral
over lengths of geodesics. The RT formula (3.32) allowed us to interpret these
lengths appearing in the volume formula as entanglement entropies. We used this
procedure to express the bulk volume vol(BA) associated with HSRC in terms of
entanglement entropies in Section 5.3.1. Consequently, we obtained a formula for
HSRC (5.53) which only depends on entanglement entropies. We see this formula
as the field theory dual of HSRC for vacuum states. In particular, we developed a
strategy for constructing this formula directly from the field theory side in Section
5.3.2. This procedure only requires the geometry (5.10) imposed on kinematic
space, which can be motivated directly from the CFT side without any reference
to the bulk.

Furthermore, we generalized our field theory expression for HSRC of vacuum
states to excited states dual to conical defects and BTZ black holes in Section 5.4.
For these geometries the geodesic attached to two points on the conformal bound-
ary is not unique. Consequently, the CFT interpretation of kinematic space as the
space of all entangling intervals is no longer possible. Therefore, the field theory
interpretation of our formulae (5.97) and (5.118) for the HSRC of excited states is
more involved than for the vacuum states corresponding to global AdS3 and the
Poincaré patch. Similar to the HSRC of vacuum states (5.53), the corresponding
expressions for excited states (5.97), (5.118) contain terms that can be associated
with entanglement entropy. However, they also include contributions for which
this association is not possible. These contributions originate from the presence
of additional (non-minimal) geodesics connecting two boundary points. Moreover,
our expression (5.118) for the HSRC of states dual to BTZ black holes also contains
terms originating from bulk geodesics running from the conformal boundary to the
black hole horizon. These geodesics have only one endpoint attached to the bound-
ary and therefore cannot be associated with entangling intervals. The additional
contributions from non-minimal geodesics appearing in our HSRC formulae for ex-
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cited states may be associated with a quantity called entwinement [146] which is
seen as the field theory dual of the lengths of non-minimal geodesics (see beginning
of Section 5.4).

As a first step towards a field theory interpretation of our formulae (5.97),
(5.118) for HSRC of excited states, we rearranged the terms appearing in them
in such a way that (5.97) and (5.118) may be written as integrals in the space
of entangling intervals (5.100), (5.120). This procedure allowed us to separate
the contributions of entanglement entropies from the additional contributions that
cannot be associated with entanglement entropies. For the conical defect the
resulting expression for HSRC consists of an integral only containing entanglement
entropies and an integral containing contributions from entwinement.

For BTZ black holes we came to a similar conclusion but in addition found
contributions that cannot be written as an integral over the space of entangling
intervals. These contributions originate from the presence of geodesics in the bulk
running from the boundary to the horizon. Due to their relation to the horizon
we refer to them as thermal contributions.

HSRC is conjectured to be a measure for the complexity of subregions on the
CFT side (see Section 3.2.3). Whether this conjecture is true is subject of current
research. Since a satisfactory definition for subregion complexity has not yet been
formulated, this conjecture is difficult to test. The results we presented in this
chapter provide some valuable insights that may help to establish a field theory
interpretation for HSRC. We saw that in all the considered cases (global AdS3,
Poincaré patch, conical defects and BTZ black holes) HSRC contains terms deter-
mined solely by entanglement entropies (5.53), (5.100) and (5.120). For excited
states further terms are present (5.100), (5.120). The terms completely determined
by entanglement entropy work as a lower bound for HSRC which is saturated for
vacuum states, i.e. global AdS3 and the Poincaré patch. In Section 5.5 we studied
the above observations under the assumption that HSRC is indeed a reasonable
measure for subregion complexity on the CFT side. We concluded that in this case,
the reference state may be understood as a field theory analogue of a product state.
Moreover, we found that HSRC seems to take correlations between the considered
subsystem and its complement into account. This led us to the conclusion that
HSRC may not be interpreted as the type of complexity for mixed states discussed
in [179] (see Section 3.2.1), since the corresponding correlations are not considered
there.

Even though the role of HSRC on the field theory side is still under debate, our
observations show that the correlations present in the state under consideration
play a crucial role for HSRC (see Section 5.5). Following our introduction to com-
plexity in Section 3.2, this is a property that is also associated with complexity.
However, to come to a rigorous field theory interpretation of HSRC further inves-
tigations are required. For instance, a generalization of our expressions for HSRC
towards states with non-static gravity dual is required in order to see whether our
interpretation of HSRC in terms of entanglement entropies and entwinement also
holds for these situations. Moreover, the presence of entwinement in our expres-
sion suggest that this quantity and its role on the field theory side should also
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be further examined. Furthermore, we restricted our study of HSRC to (2 + 1)-
dimensional bulk geometries. It is an open question whether our results also apply
for higher dimensional cases.



Chapter 6

Modular Hamiltonians on
Entanglement Plateaux

In [3] I examined the inner structure of modular Hamiltonians (3.75) by using the
relative entropy (3.82). Here we review the corresponding results. We consider a
one-parameter family of states ρΣ

λ on a region Σ. The parameter λ may correspond
to the energy density or the temperature of the system, for instance. For this one-
parameter family we study the λ-dependence of

∆ 〈K0〉 (A, λ) = trA(ρAλK0(A))− trA(ρAλ0K0(A)) , (6.1)

where A is a subregion of Σ and K0(A) is the modular Hamiltonian of a reduced
reference state ρAλ0

. In particular, we focus on the situation where A and B =
Σ\A form an entanglement plateau1 that is stable under variations of the size
of A. My result for this setup provides a relation between the λ-dependence of
∆ 〈K0〉 (A, λ) and the second derivative w.r.t. λ of the entanglement entropies
S(A, λ) and S(B, λ) corresponding to ρAλ and ρBλ , respectively. In simple terms,
my result states that if both ∆ 〈K0〉 (A, λ) and ∆ 〈K0〉 (B, λ) are linear in λ− λ0
for a given A and variations of it, then ∂2

λS(A, λ) and ∂2
λS(B, λ) are constant under

variations of the size of A. We present the exact statement of this result in Section
6.3.1.

This observation for the behavior of ∆ 〈K0〉 (A, λ) and ∆ 〈K0〉 (B, λ) may be
derived from the monotonicity (3.88) of the relative entropy. The relative entropy
is known to be a valuable quantity for the study of modular Hamiltonians and
has been used to obtain many non-trivial results for these (see Section 3.3.3). My
result offers a further application of the relative entropy to modular Hamiltonians
providing deeper insight into their dependence on the parameter λ. It employs
a non-trivial relation between the λ-dependence of modular Hamiltonians and
entanglement entropies for one-parameter families of states. We note that the first
law of entanglement [115], which we discuss in Section 6.2, provides such a relation
as well. However, the first law of entanglement focuses on the linear term in the
series expansion of ∆ 〈K0〉 (A, λ) in terms of λ− λ0, whereas my result is subject
to higher order contributions in λ− λ0.

1The term entanglement plateau is explained and discussed in Section 6.1 in detail. For the
sake of this introduction we state that A and B form an entanglement plateau if they saturate
the Araki-Lieb inequality (3.10).
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In AdS/CFT entangling regions forming an entanglement plateau are very com-
mon. This allows to apply my result to several setups in AdS/CFT. However, we
need to stress that it is not only valid for holographic setups but holds in any
quantum system.

Moreover, my result is of particular interest in the context of [200], where a
topological condition was presented under which the modular Hamiltonian may be
written as a local integral over the energy momentum tensor in two-dimensional
CFTs (see Section 3.3.1). By choosing the parameter λ to be the energy density,
my result offers a strategy for deciding when such an integral expression is not
possible.

This chapter has the following structure. In Section 6.1 we review the concept
of entanglement plateaux. This allows us to present the overall setup for my result
in Section 6.2. We proof the result in Section 6.3 and apply it to several examples
in Section 6.4, including states dual to black strings, black branes and BTZ black
holes. We conclude with a discussion and final remarks in Section 6.5.

6.1 Entanglement Plateaux
As already mentioned at the beginning of this chapter my result is about the
modular Hamiltonians for entangling regions forming entanglement plateaux. In
this section we introduce the concept of entanglement plateaux and discuss some
of their properties we require for my result.

6.1.1 Definition of Entanglement Plateaux
The term “entanglement plateau” was introduced in [114] and refers to a pair of
entangling regions A, B for which

S(Σ) = |S(A)− S(B)| (6.2)

holds. Here Σ is the union of A and B, i.e.

Σ = AB , (6.3)

and S(A) is the entanglement entropy corresponding to the reduced state ρA of the
region A. S(B) and S(Σ) are defined in an analogous way. The defining equation
(6.2) may be seen as the extremal case where the Araki-Lieb inequality (3.10) is
saturated.2

There are many examples for entanglement plateaux. The most prominent is
the situation of a pure state ρΣ on Σ. In this case we find

S(A) = S(B) and S(Σ) = 0 , (6.4)
2We note that holographic situations where the Araki-Lieb inequality is saturated were also

discussed in [157].
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Figure 6.1: A typical example for an entanglement plateau in AdS/CFT. We
consider two entangling regions A (red) and B (blue) on a constant time slice of
the CFT on the conformal boundary of the bulk geometry. Here B is taken to be
completely surrounded by A. Moreover, we assume the RT surfaces γΣ and γB of
Σ = AB and B not to intersect. In this situation we find that the union of γΣ and
γB is homologous to A. If B is sufficiently small, we expect γΣ ∪ γB to be the RT
surface of A.

so (6.2) trivially holds. Another entanglement plateau that is easily constructed
is a state ρΣ of the form

ρΣ = ρA ⊗ ρB , (6.5)

where ρB is assumed to be pure, i.e. S(B) = 0. Due to the additivity of the
entanglement entropy for product states (3.14), we find

S(Σ) = S(A) + S(B) = S(A) = |S(A)− S(B)| (6.6)

for this setup, i.e. (6.2).

6.1.2 Holographic Examples for Entanglement Plateaux
In AdS/CFT entanglement plateaux are very common due to the Ryu-Takayanagi
(RT) formula (3.32) as we now explain. The RT formula – which we discuss
in Section 3.1.6 – states that in the AdS/CFT correspondence the entanglement
entropy of a region Σ is given by the area of the minimal surface γΣ in the bulk
homologous to Σ – the RT surface. We restrict our discussion to static space-times,
where the RT surface lies in the same constant time slice as the entangling region
A at the conformal boundary. If we choose B ⊂ Σ in such a way that it has no
boundary points in common with Σ and γΣ∩γB = ∅ holds, we find that the surface
γΣ ∪ γB is homologous to A = Σ\B, as depicted in Figure 6.1. This may be seen
as follows: by construction γB ∪ B and γΣ ∪ Σ enclose bulk regions RB and RΣ,
respectively. Since γΣ and γB do not intersect we conclude that RΣ\RB is a region
that is enclosed by γΣ ∪ γB and Σ\B = A, i.e. γΣ ∪ γB is homologous to A.

So we see that γΣ ∪ γB is a very natural candidate for the RT surface γA. If
γΣ ∪ γB turns out to be the RT surface of A it is easy to see that

S(A) = S(Σ) + S(B) ⇔ S(Σ) = S(A)− S(B) (6.7)
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Figure 6.2: An entanglement plateau in black string geometry. The graphic shows
a constant time slice of the black string geometry (6.8). The CFT2 state dual to
this geometry is thermal and defined on the real axis. An entangling region A that
is the union of two sufficiently close intervals A1 and A2 forms an entanglement
plateau with the interval B between A1 and A2, since γA = γΣ∪γB, where Σ = AB.

holds, i.e. A and B form an entanglement plateau. We need to emphasize that
there is no guarantee for γΣ ∪ γB = γA to hold since there are explicit counterex-
amples, such as two intervals on the Poincaré patch that are sufficiently far apart
from each other (see Section 3.1.7). However, for a sufficiently small B we expect
it to be true, since in the limit of vanishing B γA should asymptote to γΣ [157]
(see Figure 6.1).

We now present explicit holographic examples for entanglement plateaux.

Two Intervals in Black String Geometry

We consider a thermal state on the real axis in AdS3/CFT2 dual to the geometry
of a black string

ds2
BS = L2

z2

(
− z2

h − z2

z2
h

dt2 + z2
h

z2
h − z2dz

2 + dx2
)
, (6.8)

where 0 < z < zh and x, t ∈ R. 3 The conformal boundary of this geometry
is located at z = 0 and the horizon of the black string corresponds to z = zh.
The entangling region A is defined to be the union of two intervals A1 and A2.
Moreover, B is given by the interval between A1 and A2, i.e. we choose B in such
a way that Σ = AB is an interval. We present this setup in Figure 6.2.

If A1 and A2 are sufficiently close, i.e. if B is sufficiently small, the RT surface
γA is given by γΣ∪γB as depicted in Figure 6.2. This may be seen in an analogous
way as for the corresponding setup for the Poincaré patch geometry presented in
Section 3.1.7. Following the discussion above (6.7), we conclude that A and B
form an entanglement plateau

3This geometry is a planar AdS3 black hole. It may be seen as the 3-dimensional analogue of
the metric (2.139) obtained from black D3-branes (see e.g. [219]).
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Figure 6.3: An entanglement plateau for a thermal state dual to a BTZ black
hole. We depict a constant time slice of the BTZ black hole (6.9). This geometry
is dual to a thermal CFT2 state on a circle. If we choose the entangling region
A to be sufficiently large the corresponding RT surface is given by γA = γh ∪ γB,
where γh is the horizon of the black hole and B = Ac. This choice of B implies
that Σ = AB is the whole circle. Therefore, γh = γΣ holds and consequently A
and B form an entanglement plateau.

One Interval in the BTZ Black Hole Geometry

The BTZ black hole is an asymptotic AdS3 geometry that resembles the gravity
dual of a thermal CFT2 state on a circle (see Section 2.5.2). The corresponding
metric is given by (2.148)

ds2
BTZ = − r̃

2 − r̃2
h

L2 dt̃2 + L2

r̃2 − r̃2
h

dr̃2 + r̃2dφ2 , (6.9)

where t ∈ R, 0 < r̃h < r̃ and φ ∼ φ + 2π. The black hole horizon is located at
r̃ = r̃h and the conformal boundary corresponds to r̃ −→ ∞. If we choose A to
be an interval in φ that is sufficiently large, the RT surface γA is the union of γAc
and the horizon γh (see Section 3.1.7), as we depict in Figure 6.3. The length of
the curve γh circumventing the horizon corresponds to the thermal entropy of the
state. Thus, if we choose B = Ac, i.e. if we set Σ to be the whole circle the CFT
is defined on, we find γh = γΣ and in particular (6.7). Therefore we see that A
and B form an entanglement plateau.4

6.1.3 One-Parameter Families of Entanglement Plateaux
We now introduce a continuous parameter σ to the entangling regions A and B
forming an entanglement plateau, i.e.

A −→ Aσ , B −→ Bσ . (6.10)

This parameter is essential for the formulation of my result for modular Hamilto-
nians presented in Section 6.3. It allows us to continuously vary the size of Aσ

4The BTZ black hole is the original example for an entanglement plateau that was discussed
in [114].
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Figure 6.4: One-parameter families of entangling regions. We consider two one-
parameter families of entangling regions Aσ and Bσ. The dependence of these
regions on the parameter σ is chosen in such a way that Σ = AσBσ is constant in
σ and Aσ2 ⊂ Aσ1 for σ1 < σ2. These two properties imply Bσ1 ⊂ Bσ2 .

and Bσ in a systematic way. The parameter dependency of Aσ and Bσ is chosen
in such a way that the following properties hold,

Aσ2 ⊂ Aσ1 for σ1 < σ2 (6.11)
Σ = const. for all σ , (6.12)

i.e. σ varies the size of Aσ while keeping Σ = AσBσ fixed. In particular, this
implies

Bσ1 ⊂ Bσ2 for σ1 < σ2 . (6.13)
We depict this setup in Figure 6.4. Moreover, we assume Aσ and Bσ to form an
entanglement plateau for all σ. This is a restriction to the amount Aσ is allowed to
vary. To see this, we consider A = [−a,−σ]∪ [σ, a] to be the union of two intervals
for a CFT state with the Poincaré patch as holographic dual (see Section 3.1.7). If
σ is too small, the RT surface γAσ undergoes a phase transition which causes the
defining property (6.2) for entanglement plateaux to no longer hold in this setup
(3.47). So we see that in general the variation of Aσ has to be sufficiently small.

The defining equation (6.2) for entanglement plateaux implies

S(Σ) = ±
(
S(Aσ)− S(Bσ)

)
, (6.14)

where the + is chosen if S(Aσ)− S(Bσ) ≥ 0 and the − if S(Aσ)− S(Bσ) < 0. We
now show that the sign of S(Aσ) − S(Bσ) does not change in σ, i.e. the sign on
the r.h.s. of (6.14) is the same for all σ. This plays an important role for proving
my result for modular Hamiltonians (see Section 6.3.2). First we consider the case
S(Σ) = 0. Here the σ-independence of the sign is obvious. Second we discuss the
situation S(Σ) > 0. If there were values σ+ and σ− for σ such that

S(Aσ+)− S(Bσ+) > 0 and S(Aσ−)− S(Bσ−) < 0 (6.15)

hold, we would find a value σ0 between σ+ and σ− with

S(Aσ0)− S(Bσ0) = 0 , (6.16)

due to the continuity of σ. However, this contradicts (6.14) since S(Σ) is assumed
to be strictly positive. Therefore, either σ+ or σ− cannot exist. This completes
the proof that the sign of S(Aσ)− S(Bσ) is constant in σ.
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6.2 Setup and Motivation
In order to discuss my result for modular Hamiltonians in Section 6.3 we now
introduce the setup necessary for formulating it as well as a motivation. In [3] I
was considering the object

∆ 〈K0〉 (A, λ) = trA(ρAλK0(A))− trA(ρAλ0K0(A)) (6.17)

for a family of states ρλ that depend on a parameter λ. Here K0(A) is the modular
Hamiltonian of the reference state ρλ0 reduced to an entangling region A, i.e.

ρAλ0 = e−K0(A)

trA
(
e−K0(A)

) , where ρAλ0 = trAc(ρλ0) . (6.18)

As can be seen in (3.82) ∆ 〈K0〉 (A, λ) plays a crucial role for the relative entropy
of the reduced states ρAλ and ρAλ0

,

Srel(A, λ) = ∆ 〈K0〉 (A, λ)−∆S(A, λ) , (6.19)

where ∆S(A, λ) is given by

S(A, λ)− S(A, λ0) (6.20)

and S(A, λ) denotes the entanglement entropy of ρAλ . In AdS/CFT a systematic
approach is known for determining ∆S since the entanglement entropies it con-
sist of are given by the RT formula (3.32). However, for ∆ 〈K0〉 there is no such
procedure. Thus, when computing the relative entropy of two states, calculating
∆ 〈K0〉 is the most challenging part. There are only a view cases where ∆ 〈K0〉
known explicitly.5 The importance of ∆ 〈K0〉 for Srel as well as the fact that very
little is known about it motivated me to study ∆ 〈K0〉 in [3].

Even though there are many things about ∆ 〈K0〉 that are yet to be understood,
the first order contribution in λ̃ = λ−λ0

6 is known to be ∂λ∆S(A, λ)|λ=λ0λ̃ [115],
i.e.

∆ 〈K0〉 (A, λ) = ∂λ∆S(A, λ)|λ=λ0λ̃+O(λ̃2) , (6.21)

or equivalently
∂λ∆ 〈K0〉 (A, λ)|λ=λ0 = ∂λ∆S(A, λ)|λ=λ0 . (6.22)

The relation (6.22) is referred to as the first law of entanglement. It is a simple
consequence of the non-negativity of the relative entropy (3.87), as we now show.7

From (6.19) it is easy to see that Srel(A, λ0) = 0 holds. Since Srel is always
non-negative we conclude that Srel has a minimum at λ = λ0. Consequently, we
find

∂λSrel(A, λ)|λ=λ0 = ∂λ
(
∆ 〈K0〉 (A, λ)−∆S(A, λ)

)
|λ=λ0 = 0 (6.23)

5For instance, in the cases where K0 is known (see e.g. (3.80), (3.81)), ∆ 〈K0〉 may be
determined as well.

6Since ∆ 〈K0〉 (A, λ0) = 0, it is reasonable to treat ∆ 〈K0〉 as a function of λ̃ rather than λ.
7The following argument is taken from [115].
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and therefore (6.22).
So we see that if ∆ 〈K0〉 is linear in λ̃, its explicit form is completely determined

by entanglement entropy. We present an explicit example for such a situation in
(6.35). However, in general ∆ 〈K0〉 cannot be expected to be linear in λ̃.

In [3] I was examining how ∆ 〈K0〉 (A, λ) depends on λ̃ for entangling regions
that form an entanglement plateau. To be more precise, I investigated when we
can be sure that ∆ 〈K0〉 (A, λ) or ∆ 〈K0〉 (B, λ) is not linear in λ̃ if A and B form
an entanglement plateau that is stable under variations of the size of A and B for
all states ρλ.

6.3 Non-Linearities of One-Parameter Families
of Modular Hamiltonians

We now formulate the exact statement of the result for one-parameter families of
states on entanglement plateaux I published in [3]. Moreover, we present a proof
for it in this section.

6.3.1 A Result for Modular Hamiltonians on Entanglement
Plateaux

My result considers two entangling regions A and B that form an entanglement
plateau for a family of states ρλ. The plateau is considered to be stable under
variations of the size of A and B that keep AB fixed, i.e. if the sizes of A and B are
varied in this way, the resulting regions are assumed to still form an entanglement
plateau for all ρλ. For this setup I was able to show that the only way how both
∆ 〈K0〉 (A, λ) and ∆ 〈K0〉 (B, λ) may be linear in λ̃ is if ∂2

λS(A, λ) and ∂2
λS(B, λ)

are constant under the considered variations of A and B [3].
This result can be used to check whether an entangling region A is expected

to lead to higher order contributions of λ̃ in ∆ 〈K0〉 (A, λ): If we can find an en-
tangling region B in such a way that A and B form an entanglement plateau
stable under small variations of the size of A and B that keep AB invariant, it
suffices to examine ∂2

λS(A, λ) and ∂2
λS(B, λ). If one of them is not constant under

variations of the respective entangling region, we can conclude that ∆ 〈K0〉 (A, λ),
∆ 〈K0〉 (B, λ) or both are non-linear in λ̃. We demonstrate this method on several
examples in Section 6.4. Furthermore, we emphasize that this result is true for
any quantum system, i.e. it is not restricted to holographic situations.

We conclude this section with presenting the explicit statement of my result in
the form we prove it in Section 6.3.2.
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Let ρλ be a one-parameter family of states and Aσ and Bσ two families
of entangling regions depending on a continuous parameter σ. We assume
Aσ2 ⊂ Aσ1 for σ1 < σ2 and Σ = AσBσ to be constant in σ. Moreover, Aσ
and Bσ are considered to form entanglement plateaux for all σ and all states
ρλ, i.e.

S(Σ, λ) = |S(Aσ, λ)− S(Bσ, λ)| ∀σ, λ . (6.24)

Also, S(Aσ, λ), S(Bσ, λ) and S(Σ, λ) are taken to be differentiable in λ for
all σ and the reference parameter λ0 is assumed to be no boundary point of
the domain of λ.

If there is an interval [ξ, η] such that ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) are
linear in λ̃ = λ− λ0 for all σ ∈ [ξ, η], then both ∂2

λS(Aσ, λ) and ∂2
λS(Bσ, λ)

are constant in σ on [ξ, η] for all λ.

6.3.2 Proof of the Result for Modular Hamiltonians
The proof of the result presented in Section 6.3.1 is based on properties of the
relative entropy Srel (3.82). This quantity is known to be a very powerful tool for
studying modular Hamiltonians (see Section 3.3.3). For instance, the derivation
of the first law of entanglement (6.22) presented in Section 6.2 is an application
of the non-negativity of Srel. For my result we require the monotonicity of Srel
(3.88),

Srel(A) ≤ Srel(A′) , (6.25)
where A and A′ are two entangling regions with A ⊆ A′.

Proof for Black Strings

Before we present the proof for generic entanglement plateaux in Section 6.3.2,
we first consider a special case to demonstrate the basic idea and to make the
statement of the result (see Section 6.3.1) more accessible.

For the one-parameter family of states ρλ we take thermal CFT2 states on the
real axis that are dual to the geometry of black strings (6.8). The parameter λ is
chosen to be the energy density (see e.g. [115,219]),

λ = L

16πG3z2
h

= πc

6β2 . (6.26)

Here c = 3L/2G3 (2.117) is the central charge of the CFT and β is the inverse
temperature of the state ρλ. In Section 6.1.2 we pointed out that an entangling
region A = A1A2 that is the union of two sufficiently close disjoint intervals forms
an entanglement plateau with the interval B lying between A1 and A2. We use this
setup to construct one-parameter families Aσ and Bσ of entanglement plateaux:
consider two real numbers a1 < 0 < a2 as well as a parameter σ satisfying a1 < −σ
and σ < a2. We now define

A1
σ = [a1,−σ] , A2

σ = [σ, a2] , Aσ = A1
σA

2
σ and Bσ = [−σ, σ] , (6.27)



158 CHAPTER 6. MODULAR HAMILTONIANS ON ENTANGLEMENT
PLATEAUX

Figure 6.5: A family entangling regions forming entanglement plateaux. We con-
sider an entangling interval Bσ = [−σ, σ] and the union Aσ of two entangling
intervals A1

σ = [a1,−σ] and A2
σ = [σ, a2] for states dual to black strings (6.8). The

union of Σ = AσBσ is constant in σ. If σ is sufficiently small, Aσ and Bσ form an
entanglement plateau, i.e. the RT surface of γAσ is the union of γBσ and γσ, which
implies (6.2).

where the range of σ is restricted in such a way that Aσ and Bσ form an entangle-
ment plateau for all λ that we consider. We depict this setup in Figure 6.5. Note
that the maximal distance, i.e. the maximal value of σ, A1

σ and A2
σ are allowed

to have so that Aσ and Bσ form an entanglement plateau depends on λ. To be
more precise, if we choose σ too large for a given λ, the RT surface γAσ undergoes
a phase transition and Aσ and Bσ no longer form an entanglement plateau.8 The
critical value of σ where the phase transition occurs depends on λ. So the devi-
ation of λ from a given reference value λ0 and the range of allowed σ has to be
chosen in such a way that γAσ does not undergo the phase transition for all λ and
σ, i.e. Aσ and Bσ have to form an entanglement plateau for all λ and σ.

In this setup we now demonstrate how the monotonicity of the relative entropy
(6.25) may be used to show that ∆ 〈K0〉 (Aσ, λ) is not linear in λ̃ for all σ except
possibly one. We argue that under the assumption that ∆ 〈K0〉 (Aσ, λ) is linear for
more than one particular value of σ the monotonicity of Srel would be violated.

So we now assume ∆ 〈K0〉 (Aσ, λ) to be linear in λ̃ and compute Srel(Aσ, λ).
For Srel(Aσ, λ) we need to determine ∆ 〈K0〉 (Aσ, λ) and ∆S(Aσ, λ) (3.82). Since
Aσ and Bσ form an entanglement plateau, the latter is given by

∆S(Aσ, λ) = ∆S(Σ, λ) + ∆S(Bσ, λ) = ∆S(Σ, λ) + c

3 log
( β sinh(2πσ/β)
β0 sinh(2πσ/β0)

)
,

(6.28)
where Σ = AσBσ = [a1, a2] and β0 = β(λ0) is the inverse temperature (6.26) of
the reference state. In the second equality we used [82,161]

S(Bσ, λ) = c

3 log
( β
πε

sinh
(2πσ
β

))
, (6.29)

8This phase transition is analogous to the situation for the Poincaré patch discussed in Section
3.1.7.
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Figure 6.6: Plot of Drel(Bσ, λ) (6.32) for a = 2πσ/β0 ∈ [0, 10] and b = β0/β =
0, 1, . . . , 7. The global multiplicative factor c/3 is set to 1. We see that for fixed b
Drel grows monotonically with a. Consequently, Drel grows monotonically with σ
for fixed β and β0. For b = 1 we find Drel = 0. This is an immediate consequence
of the fact that b = 1 corresponds to λ = λ0 (6.26).

where ε is a UV cut-off.
Since we assume ∆ 〈K0〉 (Aσ, λ) to be linear in λ̃ we may determine it via the

first law of entanglement (6.22), i.e.

∆ 〈K0〉 (Aσ, λ) = ∆S ′(Aσ, λ0)λ̃ , (6.30)

where the ′ refers to a derivative w.r.t. λ, i.e. ∂λS(Aσ, λ)|λ=λ0 . Combining this
result with (6.28) we obtain

Srel(Aσ, λ) = ∆S ′(Σ, λ0)λ̃−∆S(Σ, λ) +Drel(Bσ, λ) , (6.31)

where

Drel(Bσ, λ) =∆S ′(Bσ, λ0)λ̃−∆S(Bσ, λ)

= c

3

(1
2(1− b2)(1− a coth(a)) + log

(
b

sinh(a)
sinh(b a)

))
,

(6.32)

with a = 2πσ/β0 and b = β0/β.

From (6.31) we see that Srel(Aσ, λ) depends on σ only via Drel(Bσ, λ). In
Figure 6.6 we show that Drel(Bσ, λ) grows monotonically with a for fixed b and
consequently Drel(Bσ, λ) grows with σ for fixed λ and λ0.

If we now assume that there are two values ξ, η of σ, where we w.l.o.g. assume
ξ < η, for which ∆ 〈K0〉 (Aσ, λ) is linear in λ̃, we conclude

Srel(Aξ, λ) < Srel(Aη, λ) . (6.33)

However, this is a contradiction to the monotonicity of Srel (6.25) since Aη ⊂ Aξ.
Thus we conclude that there is at most one value for σ such that ∆ 〈K0〉 (Aσ, λ) is
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linear in λ̃.

We see that in the example presented above the monotonicity of the relative
entropy allows us to argue that ∆ 〈K0〉 (Aσ, λ) cannot be linear in λ̃ except for
possibly one particular σ. This conclusion relies heavily on the fact that an explicit
expression for S(Bσ, λ) is known. This allowed us to compute Drel(Bσ, λ) (6.32)
and conclude that the monotonicity of Srel would be violated if ∆ 〈K0〉 (Aσ, λ) were
linear in λ̃ for more than one value of σ. If we want to expand the discussion of this
section to generic entanglement plateaux we do not have an explicit expression for
Drel(Bσ, λ). We now demonstrate how to conclude that there is a conflict between
the linearity of ∆ 〈K0〉 (Aσ, λ) and the monotonicity of Srel without knowing the
explicit form of Drel(Bσ, λ). The corresponding argument is based on the fact that
Drel(Bσ, λ) is the relative entropy Srel(Bσ, λ) as we now show.

The modular Hamiltonian of the reduced reference state ρBσλ0
on Bσ is given

by [220,221]

K0(Bσ) =
∫ σ

−σ
dx β0

cosh(2πσ
β0

)− cosh(2πx
β0

)
sinh(2πσ

β0
)

T00(x) , (6.34)

where Tµν is the energy momentum tensor of the CFT. The expectation value of
T00 is the energy density, i.e. the parameter λ (6.26). Thus we find

∆ 〈K0〉 (Bσ, λ) = β0

(
2σ coth

(2πσ
β0

)
− β0

π

)
λ̃ = ∆S ′(Bσ, λ0)λ̃ . (6.35)

The second equality is an implication of the first law of entanglement (6.22) but
can also be derived directly using (6.29). So by considering (6.32) we find

Drel(Bσ, λ) = Srel(Bσ, λ) . (6.36)

This observation allows us to rewrite (6.31) as

Srel(Aσ, λ) = ∆S ′(Σ, λ0)λ̃−∆S(Σ, λ) + Srel(Bσ, λ) . (6.37)

Here we see now that the monotonicity of Srel (6.25) is in conflict with the linearity
of ∆ 〈K0〉 (Aσ, λ): If Srel(Bσ, λ) grows with σ as it should since Bσ1 ⊂ Bσ2 for
σ1 < σ2, Srel(Aσ, λ) does the same. But since Aσ2 ⊂ Aσ1 this contradicts the
monotonicity of Srel.

Proof for Generic Entanglement Plateaux

We now present the proof of my result as formulated in Section 6.3.1. In the fol-
lowing we assume that both ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) are linear in λ̃ for
σ ∈ [ξ, η] and show that, given the prerequisites from Section 6.3.1, ∂2

λS(Aσ, λ) and
∂2
λS(Bσ, λ) are constant on [ξ, η]. This result is a consequence of the monotonicity

of Srel.

From (6.24) it is easy to see that

S(Aσ, λ) = S(Bσ, λ)± S(Σ, λ) (6.38)
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holds, where for S(Aσ, λ) ≥ S(Bσ, λ) we have + and − otherwise. In Section 6.1.3
we show that this sign is independent of σ, i.e. only λ determines whether + or −
appears in (6.38). By assuming w.l.o.g. S(Aσ, λ0) ≥ S(Bσ, λ0) we find

∆S ′(Aσ, λ0) = ∆S ′(Bσ, λ0) + ∆S ′(Σ, λ0) , (6.39)

where the ′ corresponds to a derivative w.r.t. λ, as we now show. We need to
distinguish the situations S(Σ, λ0) > 0 and S(Σ, λ0) = 0. First consider S(Σ, λ0) >
0. This inequality also holds in a small neighborhood of λ0. Thus (6.38) reduces
to

S(Aσ, λ) = S(Bσ, λ) + S(Σ, λ) , (6.40)
for λ sufficiently close to λ0. This implies (6.39).

In the second case, S(Σ, λ0) = 0, the non-negativity of the entanglement en-
tropy implies that S(Σ, λ) is minimal for λ = λ0. By assumption S(Σ, λ) is differ-
entiable in λ and λ0 is not a boundary point of the domain of λ. So we conclude
S ′(Σ, λ0) = 0 which implies via (6.24)

0 = S ′(Σ, λ0) = ∂λ|S(Aσ, λ)− S(Bσ, λ)|
∣∣∣
λ=λ0

= ∂λ

√(
S(Aσ, λ)− S(Bσ, λ)

)2
∣∣∣
λ=λ0

= lim
λ→λ0

(
S ′(Aσ, λ)− S ′(Bσ, λ)

) S(Aσ, λ)− S(Bσ, λ)
|S(Aσ, λ)− S(Bσ, λ)|

(6.41)

and therefore (6.39),

∆S ′(Aσ, λ0) = ∆S ′(Bσ, λ0) = ∆S ′(Bσ, λ0) + ∆S ′(Σ, λ0) , (6.42)

where in the second equality we applied ∆S ′(Σ, λ0) = 0.

The relation (6.39) allows us to express Srel(Aσ, λ) in terms of Srel(Bσ, λ): since
both ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) are considered linear in λ̃, (6.39) together
with the first law of entanglement (6.22) gives

∆ 〈K0〉 (Aσ, λ) =
(

∆S ′(Bσ, λ0) + ∆S ′(Σ, λ0)
)
λ̃ = ∆ 〈K0〉 (Bσ, λ) + ∆S ′(Σ, λ0)λ̃ .

(6.43)
By applying (6.38) to ∆S(Aσ, λ) we conclude

Srel(Aσ, λ) = ∆S ′(Σ, λ0)λ̃∓∆S(Σ, λ) + Srel(Bσ, λ) . (6.44)

The monotonicity of the relative entropy (6.25) implies

Srel(Bξ, λ) ≤ Srel(Bη, λ) (6.45)

and
Srel(Aξ, λ) ≥ Srel(Aη, λ) , (6.46)

since Aη ⊂ Aξ and Bξ ⊂ Bη. However, (6.44) together with (6.45) also implies

Srel(Aξ, λ) ≤ Srel(Aη, λ) (6.47)
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and consequently we find

Srel(Aξ, λ) = Srel(Aη, λ) . (6.48)

The monotonicity of Srel then allows us to conclude that Srel(Aσ, λ) is constant in
σ for all σ ∈ [ξ, η]. Since the only σ-dependent term in (6.44) is Srel(Bσ, λ), this
implies that Srel(Bσ, λ) is constant in σ on [ξ, η] as well.

So we see that the monotonicity of the relative entropy leads us to the conclu-
sion that both

Srel(Aσ, λ) = ∆ 〈K0〉 (Aσ, λ)−∆S(Aσ, λ) (6.49)

and
Srel(Bσ, λ) = ∆ 〈K0〉 (Bσ, λ)−∆S(Bσ, λ) (6.50)

are constant in σ on [ξ, η] if ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) are linear in λ̃.
By taking two derivatives w.r.t. λ and considering once more the linearity of
∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ), we find that

− ∂2
λSrel(Aσ, λ) = ∂2

λS(Aσ, λ) and − ∂2
λSrel(Bσ, λ) = ∂2

λS(Bσ, λ) (6.51)

are constant in σ on [ξ, η]. This completes the proof of my result as stated in
Section 6.3.1.

6.3.3 Discussion of the Proof for Generic Entanglement
Plateaux

We now comment on various aspects of the result of Section 6.3.1 including its
prerequisites and possible generalizations.

Continuity of σ

The continuity of the parameter σ controlling the size of the entangling regions
Aσ and Bσ is required in order to guarantee that the sign in (6.38) only depends
on λ but not on σ. The argument leading to the σ-independence of the sign is
presented in Section 6.1.3. We may formulate a version of my result that also
applies to discrete σ when we assume the sign of (6.38) to be constant in σ from
the start. The proof of this version can be formulated in an analogously to the
one presented Section 6.3.2.

A Stronger Statement

We note that in the proof presented in Section 6.3.2 we show the validity of a state-
ment that is stronger than the one presented in Section 6.3.1 as an intermediate
step. In the paragraph above (6.49) we conclude that given the prerequisites for
my result the relative entropies Srel(Aσ, λ) and Srel(Bσ, λ) are constant in σ on
[ξ, η] if ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) are linear in λ̃. Taking two derivatives
of Srel(Aσ, λ) and Srel(Bσ, λ) w.r.t. λ then leads to the conclusion that ∂2

λS(Aσ, λ)
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and ∂2
λS(Bσ, λ) are constant in σ on [ξ, η]. So we see that the fact that ∂2

λS is con-
stant in σ for Aσ and Bσ is a consequence of the stronger result that the respective
relative entropies are constant in σ.

In Section 6.3.1 we present the weaker version with ∂2
λS for practical reasons.

We aim at applying my result for deciding when ∆ 〈K0〉 contains higher order
contributions in λ̃. Determining the relative entropy is in general more complicated
than determining the entanglement entropy. In particular for holographic setups,
where the relative entropy is given via the RT formula, this is evident. So, a result
that only requires the examination of entanglement entropies is easier to apply
than one where relative entropies need to be computed.

Reverse Direction

The statement of the result presented in Section 6.3.1 is that a necessary condition
for both ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) to be linear in λ̃ for all σ ∈ [ξ, η] is that
∂2
λS(Aσ, λ) and ∂2

λS(Bσ, λ) are constant in σ on [ξ, η]. We now demonstrate at an
example that the reverse direction of this statement does not hold, i.e. ∂2

λS(Aσ, λ)
and ∂2

λS(Bσ, λ) being constant in σ is necessary but not sufficient for the linearity
of ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ).

Consider the CFT2 of a free massless bosonic field Φ on a circle with radius
`CFT. We define the following one-parameter family |λ〉 of states with conformal
dimension (λ, 0),

|λ〉 = ei
√

2λΦ |0〉 , (6.52)

where |0〉 is the vacuum state.9 This setup was discussed in [66]. The entangling
regions Aσ and Bσ are chosen to be an interval of angular size 2(π − σ) and its
compliment – which is of angular size 2σ – respectively. This choice of entangling
regions implies that Σ = AσBσ is the whole circle the CFT is defined on and
therefore invariant under changes of σ. Moreover, we note that Aσ and Bσ form
an entanglement plateau for all σ and λ as the states |λ〉 are pure. The reference
state may correspond to any value λ0 > 0 of λ.

According to [66] the entanglement entropies S(Aσ, λ) and S(Bσ, λ) are inde-
pendent of λ. Thus we find

∂2
λS(Aσ, λ) = ∂2

λS(Bσ, λ) = 0 (6.53)

to be constant in σ on any interval [ξ, η]. However, ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ)
are not linear in λ̃: as discussed in [66], the relative entropies of Aσ and Bσ are
given by

Srel(Aσ, λ) = (1 + (π − σ) cot(σ))
(√

2λ−
√

2λ0

)2
, (6.54)

Srel(Bσ, λ) = (1− σ cot(σ))
(√

2λ−
√

2λ0

)2
. (6.55)

9Note that we assume in this section that the parameter λ is continuous. This is neces-
sary in order to discuss this example in view of the result presented in Section 6.3.1 since the
differentiability of the entanglent entropies implicitly assumes λ to be a continuous parameter.
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Since S(Aσ, λ) and S(Bσ, λ) are constant in λ we find

∆S(Aσ, λ) = ∆S(Bσ, λ) = 0 (6.56)

and therefore conclude, by considering (6.19),

∆ 〈K0〉 (Aσ, λ) = (1 + (π − σ) cot(σ))
(√

2λ−
√

2λ0

)2
, (6.57)

∆ 〈K0〉 (Bσ, λ) = (1− σ cot(σ))
(√

2λ−
√

2λ0

)2
. (6.58)

Evidently, the ∆ 〈K0〉 of Aσ and Bσ are not linear in λ̃ for any σ. So we see that
the example we just discussed provides ∂2

λS(Aσ, λ) and ∂2
λS(Bσ, λ) constant in σ

but no ∆ 〈K0〉 linear in λ̃. Therefore we conclude that ∂2
λS(Aσ, λ) and ∂2

λS(Bσ, λ)
being constant in σ is not sufficient for ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) to be
linear in λ̃.

Choice of the Reference State

In Section 6.3.1 we state that the parameter value λ = λ0 of the reference state
is not allowed to be a boundary point of the domain of λ. In other words, λ0 is
assumed to be in the interior of the domain of λ. We use this property in the
following two ways.

First when considering the special case S(Σ, λ0) = 0 below (6.40). We conclude
S ′(Σ, λ0) = 0 to hold since S(Σ, λ) is minimal for λ = λ0. However, the vanishing
of the first derivative at the minimum requires it to lie in the interior of the domain.

Second when using the first law of entanglement (6.22) to express ∆ 〈K0〉 in
terms of entanglement entropies (6.43). The first law of entanglement is a conse-
quence of the minimality of Srel at the reference parameter as we argue in Section
6.2. Since Srel is minimal at λ0 the derivative of Srel w.r.t. λ vanishes at λ0 which
implies the first law of entanglement. Just as for S(Σ, λ), the vanishing of the
derivative may only be concluded if λ0 is in the interior of the domain of λ.

If λ0 is a boundary point, we have no guarantee for the first law of entangle-
ment to hold, as we now show at an explicit example. We consider the setup of
excited states |λ〉 for the CFT2 of a free boson on the circle discussed above in the
paragraph about the reverse direction of my result. From (6.52) it is easy to see
that λ ≥ 0 holds. If we choose λ0 = 0 as reference parameter value we find via
(6.54)

Srel(Aσ, λ) = 2(1 + (π − σ) cot(σ))λ . (6.59)
We see that ∂λSrel(Aσ, λ)|λ=λ0 is not zero. Therefore, the first law of entanglement
does not apply here.

As a final remark regarding this example we note that even though the first law
of entanglement does not hold here, the system behaves just as we would expect
considering the result of Section 6.3.1: both ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) are
linear in λ̃ (see (6.57) and (6.58) for λ0 = 0) and ∂2

λS(Aσ, λ) = ∂2
λS(Bσ, λ) = 0

are constant in σ. However, the prerequisites for my result are not satisfied here
since λ0 is a boundary point and therefore we cannot apply it. In particular, from



6.4. APPLICATIONS 165

(6.59) we see that Srel(Aσ, λ) is not constant in σ. Thus, the stronger version of
my result we discuss above does not hold here.

Generalization to Multi-Parameter Families of States

The result of Section 6.3.1 is formulated for a family of states ρλ that only depends
on one-parameter λ. It can be generalized to a n-parameter family of states ρΛ,
where Λ = (λ1, . . . , λn), in a straightforward way. The result for an n-parameter
family of states may be formulated as follows.

If both ∆ 〈K0〉 (Aσ,Λ) and ∆ 〈K0〉 (Bσ,Λ) are linear in Λ−Λ0 for all σ ∈ [ξ, η],
then

∂

∂λi
∂

∂λj
S(Aσ,Λ) and ∂

∂λi
∂

∂λj
S(Bσ,Λ) (6.60)

are constant in σ on [ξ, η]. Here Λ0 corresponds to the reference state.

The proof of this statement is analogous to the proof presented in Section 6.3.2
for the case of a one-parameter family of states. The n-parameter version of the
first law of entanglement required for the proof is

∂

∂λi
∆ 〈K0〉 (Aσ,Λ)|Λ=Λ0 = ∂

∂λi
∆S(Aσ,Λ)|Λ=Λ0 ,

∂

∂λi
∆ 〈K0〉 (Bσ,Λ)|Λ=Λ0 = ∂

∂λi
∆S(Bσ,Λ)|Λ=Λ0 .

(6.61)

6.4 Applications
We now demonstrate on a series of examples how the result presented in Section
6.3.1 can be applied to show that ∆ 〈K0〉 (Aσ, λ) for given one-parameter families
of states ρλ and entangling regions Aσ is not linear in λ̃ = λ−λ0. The strategy we
pursue goes as follows: for a given Aσ we construct a family of entangling regions
Bσ such that Σ = AσBσ does not change with σ and Aσ forms an entanglement
plateau with Bσ for all σ and λ. If ∂2

λS(Aσ, λ) or ∂2
λS(Bσ, λ) are not constant in

σ on any interval, my result (see Section 6.3.1) implies that there are only single
values of σ where both ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) are linear in λ̃, i.e. there
is no interval [ξ, η] such that the ∆ 〈K0〉 are linear in λ̃ for all σ ∈ [ξ, η].

As can be seen from the above discussion, my result does in general not al-
low us to decide whether ∆ 〈K0〉 (Aσ, λ), ∆ 〈K0〉 (Bσ, λ) or both are non-linear in
λ̃. However, in many cases we are able to make the stronger observation that
∆ 〈K0〉 (Aσ, λ) is non-linear in λ̃ for all σ with possibly one exception. We come
to this conclusion by studying

Drel(Bσ, λ) = ∆S ′(Bσ, λ0)λ̃−∆S(Bσ, λ) , (6.62)

as we did in Section 6.3.2 for the black string geometry. By assuming that
∆ 〈K0〉 (Aσ, λ) is linear in λ̃ we can use the same arguments as presented in the
proof of my result in Section 6.3.2 to obtain

Srel(Aσ, λ) = ∆S ′(Σ, λ0)λ̃∓∆S(Σ, λ) +Drel(Bσ, λ) , (6.63)
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instead of (6.44). 10 If Drel(Bσ, λ) grows strictly monotonically with σ we can
use the same arguments as for the black string geometry (see paragraph of (6.33))
to conclude that there is at most one value of σ where ∆ 〈K0〉 (Aσ, λ) is linear
in λ̃. Otherwise the monotonicity of Srel (6.25) would be violated. Note that in
(6.63) we implicitly assume S(Aσ, λ0) ≥ S(Bσ, λ0), as we do in Section 6.3.2. The
examples we present below all have this property. For S(Aσ, λ0) ≤ S(Bσ, λ0) a
relation similar to (6.63) can be derived in an analogous way.

6.4.1 Multiple Intervals in Black String Geometries
My result may be used to study ∆ 〈K0〉 (Aσ, λ) for thermal CFT2 states with
the black string geometry (6.8) as holographic dual. We first confirm the results
presented in Section 6.3.2 for the case where Aσ is the union of two disjoint intervals
and then generalize it to generic configurations of entangling intervals. Moreover,
we study the corresponding results in the context of [200] (see Section 3.3.1 for a
review.)

Non-Linearity of ∆ 〈K0〉

We apply the strategy presented at the beginning of this section to confirm the
results for the black string geometry (6.8) obtained in Section 6.3.2. The corre-
sponding setup is shown in Figure 6.5: we consider Aσ to be the union of the two
intervals [a1,−σ] and [σ, a2], where σ is chosen sufficiently small so that the RT
surface γAσ has the form depicted in Figure 6.5 for all considered energy densities
λ. To show that ∆ 〈K0〉 (Aσ, λ) is in general not linear in λ̃ we define Bσ = [−σ, σ].
By construction Aσ and Bσ form an entanglement plateau and Σ = AσBσ = [a1, a2]
is constant in σ. Since ∂2

λS(Bσ, λ) is not constant in σ (see (6.29)) we find that
there are only single values of σ where ∆ 〈K0〉 is linear in λ̃ for both Aσ and Bσ.
Furthermore, ∆ 〈K0〉 (Bσ, λ) (6.35) is known to be linear in λ̃ for all σ which brings
us to the conclusion that ∆ 〈K0〉 (Aσ, λ) is linear in λ̃ only for single values of σ.
By studying Drel(Bσ, λ) (6.62) we can narrow the number of these points down
to one: as pointed out in Section 6.3.2 Drel(Bσ, λ) is given by (6.32) and grows
strictly monotonically with σ. Thus, considering the discussion at the beginning
of this section we conclude that ∆ 〈K0〉 (Aσ, λ) is non-linear in λ̃ for all σ with pos-
sibly one exception. We can identify this exception with the asymptotic situation
σ = 0, i.e. when Bσ vanishes and Aσ becomes a single interval, for which ∆ 〈K0〉
is known to be linear in λ̃ (6.35).

The above analysis for Aσ being the union of two intervals can be straightfor-
wardly generalized to a setup where Aσ is the union of an arbitrary number of
intervals. For this we require two neighboring intervals A1

σ, A
2
σ belonging to Aσ to

be sufficiently close so that the RT surface γAσ is of the form depicted in Figure
6.7. We then can choose Bσ to be the interval between A1

σ and A2
σ and define

the σ dependence of Aσ in such a way that it varies the size of Bσ while keeping
10If ∆ 〈K0〉 (Bσ, λ) is considered to be linear in λ̃ we find Drel(Bσ, λ) = Srel(Bσ, λ) due to the

first law of entanglement. This assumption led to (6.44).
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Figure 6.7: An entangling region consisting of multiple intervals. We consider
a family of entangling regions Aσ consisting of intervals for states dual to black
string geometries (6.8). If we choose two neighboring intervals A1

σ, A2
σ belonging

to Aσ to be sufficiently close, the RT surface γAσ includes the RT surface γBσ
corresponding to the interval Bσ between A1

σ and A2
σ. In this setup Aσ and Bσ

form an entanglement plateau. When the parameter σ is defined to vary the size
of Bσ we may apply my result presented in Section 6.3.1 to this configuration.

Σ = AσBσ fixed. As discussed above, ∂2
λS(Bσ, λ) is not constant in σ and further-

more Drel(Bσ, λ) grows strictly monotonically with σ. Consequently, we conclude
that there is at most one value of σ where ∆ 〈K0〉 (Aσ, λ) is linear in λ̃.

Observation Regarding Integral Expressions for K0

The above result, stating that ∆ 〈K0〉 (Aσ, λ) is not linear in λ̃ for the considered
interval configurations Aσ, provides further insight related to the results of [200].
Here the authors introduced a criterion for two-dimensional CFTs under which
the modular Hamiltonian can be written as a local integral over the energy mo-
mentum tensor. We review this criterion in Section 3.3.1. In particular, in [200]
the corresponding result was used to derive the expression (6.34) for the modular
Hamiltonian of one entangling interval. However, for an arbitrary number of in-
tervals the result of [200] cannot be applied as its prerequisites are not satisfied.
Considering our review in Section 3.3.1, this is easy to see. The fact that [200]
cannot be used for an arbitrary set of intervals may be taken as a hint that it is
not possible to write K0(Aσ) as a local integral over the energy momentum tensor
in this case. However, it is certainly no formal proof for that. My result may be
used to construct such a proof, as we now show.11 To be more precise, we present
an argument which implies that K0(Aσ) is not of the form

K0(Aσ) =
∫
Aσ

dxh(x)T00(x) , (6.64)

11Note that in this proof we restrict ourselves to the situation where the thermal CFT2 state
on the real axis has the black string geometry (6.8) as holographic dual. The result of [200]
however, is not just valid in AdS/CFT but applies to any CFT2.
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for the configurations Aσ of entangling intervals considered above – except for
possibly one particular value of σ. 12 Here h is a local scaling function and Tµν
is the energy momentum tensor. For this purpose we assume that K0(Aσ) is of
the form (6.64). Since we consider the parameter λ to be the energy density, we
conclude that ∆ 〈K0〉 (Aσ, λ) is linear in λ̃ in this case,

∆ 〈K0〉 (Aσ, λ) = λ̃

∫
Aσ

dxh(x) . (6.65)

However, as pointed out above, ∆ 〈K0〉 (Aσ, λ) is not linear in λ̃ except for possibly
one particular value of σ. Thus, K0(Aσ) cannot be of the form (6.64) for any but
possibly one particular value of σ.

6.4.2 Annuli in Black Brane Geometries
The discussion of two intervals for states dual to black string geometries can be
generalized to states dual to black branes, i.e. the (d+ 1)-dimensional analogue of
black strings, 13

ds2
BB = L2

z2

(
− zdh − zd

zdh
dt2 + zdh

zdh − zd
dz2 + d~x2

d−1

)
. (6.66)

Just as for black strings, the radial coordinate z runs from z = 0, where the
conformal boundary is located, to zh, which is the position of the black brane
horizon. Moreover, t ∈ R and ~x ∈ Rd−1 with the corresponding Euclidean met-
ric d~x2

d−1. These geometries are the duals of thermal states on d-dimensional
Minkowski space.

We use the energy density (see e.g. [219])

λ = (d− 1)Ld−1

16πGd+1zdh
, (6.67)

to parametrize these states and choose Aσ to be an annulus of inner radius σ and
outer radius R. The parameter σ is assumed to be sufficiently small so that for all
λ we consider, the RT surface γAσ is the union of the RT surface of the inner ball
with radius σ and the outer ball with radius R. 14 We depict this setup in Figure
6.8. The reference state is taken to be the vacuum, i.e. λ0 = 0.

We can show that ∆ 〈K0〉 (Aσ, λ) is in general not linear in λ̃ in the following
way. We choose Bσ to be the ball of radius σ circumvented by Aσ (see Figure
6.8). By construction Aσ and Bσ form an entanglement plateau and Σ = AσBσ is

12We emphasize that the observation that the modular Hamiltonian for multiple intervals is
not given by a local integral is not a new result (see e.g. [74, 76] for related work). The purpose
of the discussion we present here is only to demonstrate how my result for modular Hamiltonians
may be applied to show this.

13The black brane geometry we present here is a planar AdSd+1 black hole. It may be seen as
a generalization of the geometry (2.139) for d = 4 derived from black D3-branes (see e.g. [219]).

14This setup was also studied in [115].
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Figure 6.8: A family of annulus-shaped entangling regions Aσ for states dual to
black brane geometries (6.66). We depict a constant time slice of a black brane
geometry. The black brane horizon is located at z = zh(λ). The conformal bound-
ary – on which the dual CFT is defined – sits at z = 0. We consider the entangling
region Aσ to be an annulus of outer radius R and inner radius σ. If we choose
σ to be sufficiently small, the RT surface γAσ is the union of γBσ and γΣ, where
Σ = AσBσ and Bσ is the ball of radius σ surrounded by Aσ.

invariant under changes of σ. The entanglement entropy S(Bσ, λ) is given by the
area of the RT surface [115],

S(Bσ, λ) = Ld−1Ωd−2

4Gd+1

∫ σ

0
dρ

ρd−2

z(ρ)d−1

√
1 + (∂ρz(ρ))2zdh

zdh − z(ρ)d , (6.68)

where the function z(ρ) minimizes the integral on the r.h.s. of (6.68). We are
not aware of the existence of an analytic, integral free expression for S(Bσ, λ) for
generic d. However, the following expansion in ασdλ for ∆S(Bσ, λ) is presented
in [115],

∆S(Bσ, λ) = Ωd−2L
d−1

4Gd+1

( dα σdλ

2(d2 − 1) −
d3√π Γ(d− 1)α2σ2dλ2

2d+4(d+ 1)Γ
(
d+ 3

2

) +O((ασdλ)3)
)
,

(6.69)
where α = 16πGd+1L

1−d/d and Ωd−2 = 2π(d−1)/2/Γ((d− 1)/2) is the volume of the
unit (d− 2)-sphere.15

Since ∂2
λ∆S = ∂2

λS, we deduce from (6.69) that ∂2
λS(Bσ, λ) is not constant in

σ. Moreover, ∆ 〈K0〉 (Bσ, λ) is known to be linear in λ̃ for all σ [115],

∆ 〈K0〉 (Bσ, λ) = 2πΩd−2

d2 − 1 σ
dλ̃ . (6.70)

15In [196] it was pointed out that there appears to be a typo in equation (3.55) of [115]: The
term Ld−1/`d−1

p needs to be replaced by its inverse.
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So we conclude, in an analogous way as for the black string geometries, that
∆ 〈K0〉 (Aσ, λ) is linear in λ̃ only for single values of σ. 16 Moreover, just as in the
black string case, we are able to show that there is only one such value of σ. Since
∆ 〈K0〉 (Bσ, λ) is linear in λ̃ we conclude Drel(Bσ, λ) = Srel(Bσ, λ) from the first
law of entanglement (6.22). By inserting (6.69) and (6.70) into (6.19) it is easy to
see that Srel(Bσ, λ) is not constant in σ on any interval. The monotonicity of the
relative entropy (6.25) then implies that Srel(Bσ, λ) – or equivalently Drel(Bσ, λ)
– grows strictly monotonically with σ. The discussion at the beginning of this
section then allows us to conclude that ∆ 〈K0〉 (Aσ, λ) is non-linear in λ̃ for all σ
except possibly one. As in the case of the black strings we find this special value
of σ to be 0, i.e. the situation when Bσ vanishes and Aσ becomes a ball of radius
R, for which ∆ 〈K0〉 is known to be linear in λ̃ (6.70).

6.4.3 Large Intervals on BTZ Geometries
A further application of the strategy presented at the beginning of this section are
sufficiently large entangling intervals for thermal states dual to BTZ black holes
(6.9). As parametrization for these states we use the square of their temperature

λ = T 2 , (6.71)

which is proportional to the mass M of the black hole (2.149) (2.151),

LM = π2`2
CFT c

3 λ , (6.72)

and related to the horizon via (2.151)

r̃h = 2πL`CFT
√
λ . (6.73)

Here c = 3L/2G3 (2.117) is the central charge and `CFT the radius of the circle the
CFT is defined on. The reference state corresponds to an arbitrary value λ0 of the
parameter λ. We define Aσ to be an entangling interval of angular size 2(π − σ).
As pointed out in Section 6.1.2, if Aσ is sufficiently large, i.e. if σ is sufficiently
small, the RT surface γAσ is the union of the RT surface of Acσ and the horizon,
leading to (3.49)

S(Aσ, λ) = c

32π2
√
λ`CFT + c

3 log
( 1
π
√
λε

sinh
(
2π`CFT

√
λσ
))
, (6.74)

where ε is a UV cut-off.17 The first term corresponds to the horizon and gives the
thermal entropy of the state. The second term gives the entanglement entropy of

16This conclusion is based on my result as presented in Section 6.3.1. By applying it we
implicitly assume that the first law of entanglent (6.22) holds for Aσ and Bσ. Since the reference
state corresponds to a boundary value of the parameter λ, i.e. λ0 = 0, we have no guarantee for
that, as already pointed out in [115] and Section 6.3.3. In order to proof the first law we would
need to consider negative values for λ – which is unphysical. In this section we assume the first
law to hold for Aσ. For Bσ it can be explicitly verified from (6.69) and (6.70).

17Note that in (3.49) we consider an entangling interval of angular size 2σ, while in this section
Aσ has the angular size 2(π − σ).
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Acσ. We depict this setup in Figure 6.3. By setting Bσ = Acσ we find that Aσ and
Bσ form an entanglement plateau.

In this setup neither ∆ 〈K0〉 (Aσ, λ) nor ∆ 〈K0〉 (Bσ, λ) are known. However,
it is still possible to apply my result presented in Section 6.3.1 to conclude that
there are only singular values of σ where both ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ)
are linear in λ̃, since ∂2

λS(Aσ, λ) is not constant in σ on any interval. This is easy
to verify from (6.74). Moreover, we find

Drel(Bσ, λ) = c

3

(1
2(1− b̃2)

(
1− ã coth(ã)

)
+ log

(
b̃

sinh(ã)
sinh(b̃ ã)

))
, (6.75)

where ã = 2π`CFT
√
λ0σ and b̃ =

√
λ/λ0. We have used the fact that the second

term in (6.74) is S(Bσ, λ) in order to derive (6.75). We see that the structure of
Drel(Bσ, λ) is identical to the one of the corresponding quantity (6.32) for a single
interval in the black string geometry. In an analogous way as for the black string
setup we conclude that Drel(Bσ, λ) grows strictly monotonically with σ. Therefore
– following the arguments made at the beginning of this section – we conclude that
there is at most one value for σ where ∆ 〈K0〉 (Aσ, λ) is linear in λ̃.

6.4.4 Families of Pure States: Primary Excitations in CFTs
Consider an arbitrary family of pure states |λ〉 and an arbitrary family of entangling
regions Aσ with Aσ2 ⊂ Aσ1 for σ1 < σ2. In this setup

S(Aσ, λ) = S(Acσ, λ) (6.76)

and S(AσAcσ, λ) = 0 hold. Therefore we find that Aσ and Bσ = Acσ form an entan-
glement plateau for which Σ = AσBσ is independent of σ. My result presented in
Section 6.3.1 allows us to conclude that if ∂2

λS(Aσ, λ) is not constant in σ on any
interval, there are only isolated values of σ where ∆ 〈K0〉 is linear in λ̃ for both
Aσ and Bσ.

As an explicit example we discuss the following family of pure states.18 We
consider a two-dimensional CFT with large central charge c defined on a circle
with radius `CFT and choose |λ〉 to be a spinless primary excitation with conformal
dimension

(hλ, h̄λ) =
(cλ

24 ,
cλ

24

)
, (6.77)

where we have introduced the factor c/24 to simplify the formulae in this paragraph.
The parameter λ is assumed to be smaller than one, λ < 1 and the corresponding
state |λ〉 is considered to correspond to a heavy operator, i.e. ∆λ = hλ+h̄λ = O(c).
Moreover, the spectrum of light operators, i.e. operators with ∆ = h + h̄ � c, is
taken to be sparse.

The reference value λ0 can be chosen arbitrarily. The entangling region Aσ is
defined to be an interval with angular size 2(π − σ) > π and Bσ is chosen to be

18This family of pure states was studied in [222].
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the complementary interval of size 2σ < π. Consequently, Σ is the whole circle.
The entanglement entropy of Bσ is given by [222]

S(Bσ, λ) = c

3 log
( 2`CFT√

1− λ ε
sin
(√

1− λσ
))

= S(Aσ, λ) , (6.78)

where ε is a UV cut-off. The second equality follows from the fact that |λ〉 is
pure.19 Evidently, ∂2

λS(Bσ, λ) is not constant in σ on any interval and therefore
we conclude that there are only single values of σ where both ∆ 〈K0〉 (Aσ, λ) and
∆ 〈K0〉 (Bσ, λ) are linear in λ̃.

The quantity Drel(Bσ, λ) is given by

Drel(Bσ, λ) = c

3

(1
2(1− b̂2)(1− â cot(â)) + log

(
b̂

sin(â)
sin(b̂ â)

))
, (6.79)

where â =
√

1− λ0 σ and b̂ =
√

1− λ/
√

1− λ0. Analogous to the case of black
strings discussed in Section 6.3.2 we find that Drel(Bσ, λ) grows strictly monoton-
ically with σ and therefore conclude that there is at most one value for σ where
∆ 〈K0〉 (Aσ, λ) is linear in λ̃.

6.4.5 Ground States for CFTs on a Circle
As a comment to my result presented in Section 6.3.1 we discuss it for conformal
field theories defined on a circle with radius `CFT. We present a situation where
both ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) are linear in λ̃. So one might be tempted
to use my result to conclude that ∂2

λS(Aσ, λ) and ∂2
λS(Aσ, λ) are constant in σ.

However, the prerequisites of my result turn out not to be satisfied and thus this
conclusion cannot be made.

We consider the same setup as in Section 6.4.4: Aσ is an interval with an-
gular size 2(π − σ) and Bσ its complement. The family of primary states |λ〉 is
parametrized by the conformal dimension (6.77). However, unlike as in Section
6.4.4 we do not impose any restrictions regarding the spectrum or the central
charge. Moreover, the size of the interval Aσ may be chosen arbitrarily. The
reference state is set to be the vacuum, i.e. λ0 = 0.

For this setup both ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) are known to be linear
in λ̃ as we now show. The modular Hamiltonian K0([−ς, ς]) for an interval [−ς, ς]
of angular size 2ς has the form [64,115]

K0([−ς, ς]) = 2π`2
CFT

∫ ς

−ς
dφ

cos(φ)− cos(ς)
sin(ς) T00 (6.80)

in any CFT defined on a circle. By applying the CFT result20

〈λ|T00 |λ〉 − 〈0|T00 |0〉 = cλ̃

24π`2
CFT

, (6.81)

19Note that the expression for the entanglement entropy presented in (6.78) is not invariant
under σ 7−→ π − σ as the purity of |λ〉 seems to suggest. This is a consequence of the fact that
in the derivation of (6.78) 2σ < π was explicitly used [222].

20This formula has been adopted from [195].
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to (6.80) we find

∆ 〈K0〉 (Aσ, λ) = c

6

(
1 + (π − σ) cot(σ)

)
λ̃ (6.82)

and
∆ 〈K0〉 (Bσ, λ) = c

6

(
1− σ cot(σ)

)
λ̃ (6.83)

to be linear in λ̃.
Applying my result from Section 6.3.1 to this setup requires caution since the

reference parameter value λ0 = 0 is a boundary point of the domain of λ, but
my result requires λ0 to be in the interior of the domain. As explained in Section
6.3.3 this property serves two purposes in the proof of my result: It ensures (6.39)
for S(Σ, λ0) = 0 and the validity of the first law of entanglement. In this specific
setup (6.39) may be verified directly,21 so this part of the proof also works here.
However, it is not possible for the first law of entanglement to hold for both Aσ
and Bσ. This is easily concluded from the fact that |λ〉 is a family of pure states:
from S(Aσ, λ) = S(Bσ, λ) we conclude

∂λ∆S(Aσ, λ)|λ=λ0 = ∂λ∆S(Bσ, λ)|λ=λ0 . (6.84)

If the first law of entanglement would hold for Aσ and Bσ we would conclude from
(6.22) and (6.84)

∂λ∆ 〈K0〉 (Aσ, λ)|λ=λ0 = ∂λ∆ 〈K0〉 (Bσ, λ)|λ=λ0 . (6.85)

However, this is obviously not true as can be seen from (6.82) and (6.83). Therefore
we see that the first law of entanglement does not hold at least for one of the regions
Aσ and Bσ. Consequently my result cannot be applied to this setup.

6.5 Discussion
In this chapter, which is based on [3], we presented a result I derived for the
behavior of ∆ 〈K0〉 on entanglement plateaux (see Section 6.1). We considered a
one-parameter family of states ρλ reduced to two entangling regions A, B which
form an entanglement plateau. This entanglement plateau was assumed to be
stable under variations of the size of A for fixed Σ = AB. In order to present a
precise mathematical formulation for my result, we introduced a parameter σ for
the entangling regions A and B, i.e. A −→ Aσ, B −→ Bσ. This parameter allowed
us to manipulate the size of the entangling regions in a systematic way. We chose
the parameter dependence of Aσ in such a way that Aσ2 ⊂ Aσ1 for σ1 < σ2 holds.
This implies Bσ1 ⊂ Bσ2 , since Σ = AσBσ is considered to be constant in σ. In
this setup we studied how ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) (see (6.1)) depend on
λ̃ = λ− λ0, where λ0 corresponds to a reference state ρλ0 .

My result (see Section 6.3.1) states that ∆ 〈K0〉 (Aσ, λ) and ∆ 〈K0〉 (Bσ, λ) can
only both be linear in λ̃ for all σ in a given interval [ξ, η], if ∂2

λS(Aσ, λ) and
21It is an immediate consequence of S(Aσ, λ) = S(Bσ, λ) and S(Σ, λ) = 0 for all λ and σ.
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∂2
λS(Bσ, λ) are constant in σ on [ξ, η]. The proof of this statement was presented

in Section 6.3.2, first for the special case of thermal states dual to black string
geometries and subsequently for generic entanglement plateaux. The proof is a
simple application of the first law of entanglement (6.22) and the monotonicity of
the relative entropy Srel (6.25).

Since ∆ 〈K0〉 plays a major role in the relative entropy (6.19), my result pro-
vides valuable insight to the behavior of Srel on entanglement plateaux. In par-
ticular, it implies that it is in general to be expected that either Srel(Aσ, λ),
Srel(Bσ, λ) or both contain higher order contributions of λ̃ from ∆ 〈K0〉 (Aσ, λ)
or ∆ 〈K0〉 (Bσ, λ), respectively. In situations where these contributions are not
present, the first law of entanglement (6.22) implies that ∆ 〈K0〉 and therefore Srel
(6.19) are completely determined by entanglement entropies. My result shows that
on entanglement plateaux stable under variations of σ such a simple form of Srel
cannot be expected at least for one of the two regions Aσ, Bσ.

In AdS/CFT entanglement plateaux are a very common phenomenon due to
the RT formula (3.32) (see Section 6.1.2). Therefore, AdS/CFT provides us with
many examples where my result from Section 6.3.1 may be applied. We studied
several of them in Section 6.4. For instance, we considered Aσ to be the union of
two sufficiently close intervals for thermal states dual to black strings in Section
6.4.1. By defining λ to be the energy density of the states, we concluded that
∆ 〈K0〉 (Aσ, λ) is not linear in λ̃ for all σ with possibly one exception. We later
generalized this result to an arbitrary number of entangling intervals.

Furthermore, we also considered thermal states dual to black branes (see Sec-
tion 6.4.2). Here we showed a result analogous to the one for black strings for
annuli Aσ with sufficiently small inner radius σ. Here the reference state was
taken to be the ground state.

As a final holographic example we studied thermal CFT2 states on a circle
which are dual to BTZ black holes in Section 6.4.3. The entangling region Aσ
was taken to be an entangling interval with sufficiently large angular size. The
parameter λ was chosen to be the square of the temperature. By choosing Bσ to
be the complement of Aσ we managed to show that ∆ 〈K0〉 (Aσ, λ) is linear in λ̃
for at most one particular value of σ.

We need to emphasize that in the holographic examples studied in Section
6.4 the appearing entanglement plateaux are a large N effect. We used the RT
formula (3.32) to establish that the Araki-Lieb inequality (3.10) is saturated in the
corresponding setups. This implies by definition that the considered entangling
regions form entanglement plateaux. However, the RT formula only applies in
the large N limit. For finite N bulk quantum effects lead to corrections of the
RT formula which cause the Araki-Lieb inequality to be no longer saturated [172].
Thus, my result only shows that the corresponding ∆ 〈K0〉 are non-linear in λ̃ for
the considered holographic examples in the large N limit. We expect however, by
continuity, that the non-linearity is also true for finite N .

We stress that even though the examples presented above all are based on
AdS/CFT, my result of Section 6.3.1 applies to any quantum system, not just
AdS/CFT. In Section 6.4.4 we also apply my result to primary excitations for a
two-dimensional CFT. In this setup we do not require a holographic dual.
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One intriguing observation that is provided by my result of Section 6.3.1 is the
fact that the non-linearity of ∆ 〈K0〉 in λ̃ found in the examples in Section 6.4 has
the same origin for all of them. All these examples consider states on entanglement
plateaux. This property allowed us to apply my result and show the non-linearity
of the respective ∆ 〈K0〉. We emphasize that it is remarkable that even though
all the considered examples are very different form each other and very little is
known about the respective modular Hamiltonians, it is still possible to deduce
the non-linearity of ∆ 〈K0〉 for all of them from the same principle.

Furthermore, we demonstrated how my result of Section 6.3.1 may be used to
show that the modular Hamiltonian for certain configurations Aσ of entangling
intervals is not a local integral over the energy momentum tensor, when the con-
sidered states are dual to black strings (see Section 6.4.1). This relates my result
to [200], where a topological condition was presented under which the modular
Hamiltonian of a suitable reduced CFT2 state is such a local integral (see Section
3.3.1).

As we discussed in Section 3.3.3, the relative entropy is a powerful tool for
studying modular Hamiltonians that provided many non-trivial results for them.
My result is a further such application of Srel. It establishes a relation between
higher order terms of ∆ 〈K0〉 in λ̃ and entanglement entropies. Possible future
projects could focus on making this relation more concrete. My result as stated in
Section 6.3.1 only considers the existence of higher order contributions in λ̃. It is
worth investigating whether entanglement entropies may be used to determine the
explicit expression of these higher order terms. This could be seen as an extension
of the first law of entanglement, which associates the first order term in λ̃ of
∆ 〈K0〉 with entanglement entropy. Studying these aspects of ∆ 〈K0〉 suggested by
my result may provide a better understanding of modular Hamiltonians in general
quantum field theories.
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Chapter 7

Conclusion

In this thesis we studied the quantum information aspects of complexity and modu-
lar Hamitonians in the context of AdS/CFT. As we discussed in the introduction,
quantum information in quantum field theories is currently a subject of extensive
research, in particular in the AdS/CFT community. The reason for this is the
close relation between quantum information on the CFT side and geometry on
the AdS side (see e.g. [87–89]). On the one hand, this relation makes the bulk ge-
ometry a valuable tool for explicit computations regarding quantum information
(see e.g. [82]), on the other hand, it provides an elegant way for constructing quan-
tum information quantities via bulk objects. The main focus of this thesis was
one such quantity: complexity. Even though a rigorous definition for complexity
in field theories is not known, there are several geometric constructions in the
bulk which are proposed to be the holographic dual of complexity [56–59, 63]. In
Chapter 4 we discussed such a proposal, which my collaborators and I presented
in [1], topological complexity. Moreover, we derived a field theory expression for
holographic subregion complexity [63] in Chapter 5, which was published in [1, 2]
by my collaborators and me.

Furthermore, we analyzed the behavior of modular Hamiltonians for one-parame-
ter families of states on regions which form entanglement plateaux [114] in Chapter
6. The corresponding results were published in [3]. Even though these results are
not restricted to field theories with holographic duals, AdS/CFT provides many
examples where they can be applied.

7.1 Summary and Discussion
In preparation of the presentation and discussion of our findings, we reviewed the
AdS/CFT correspondence in Chapter 2 and the aspects of quantum information
relevant for this thesis in Chapter 3.

Chapter 4 was devoted to the concept of topological complexity my collabora-
tors and I introduced in [1]. For a given entangling region A on a constant time
slice of the CFT, topological complexity (4.1) is given by the integral over the
Ricci scalar over the bulk region BA enclosed by A and the respective RT surface.
We focused on AdS3/CFT2 for our examination of topological complexity. The
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Gauss-Bonnet theorem allowed us in Section 4.1 to derive very general expressions
for topological complexity, which we applied to examples involving global AdS3,
BTZ black holes and conical defects in Section 4.2. Our computations of topo-
logical complexity for states dual to global AdS3 (vacuum) and BTZ black holes
(thermal) show that the part c0

T of topological complexity independent of the con-
sidered radial cut-off (4.4) is completely determined by the topology of BA and
A. This led us to the conclusion that c0

T performs a discrete jump when the RT
surface undergoes a phase transition. In particular, the temperature dependence
of topological complexity for thermal states manifests itself only by such a discrete
jump.1 For primary states dual to conical defect geometries c0

T no longer only de-
pends on topological aspects of the setup but also the particular type of excitation.
We visualized these findings for vacuum, thermal and primary excited states in
Figure 4.4.

For the examples we considered, topological complexity agrees with HSRC up
to a constant proportionality factor. Therefore, the observations we made for to-
pological complexity also apply to HSRC. In particular, we saw a clear relation
between the topologies of BA and A and the cut-off independent part of HSRC.
As this part is proposed to be universal [63], this is of particular interest for the
field theory interpretation of HSRC. We summarized and discussed our findings in
Section 4.3.

In Chapter 5 we presented the main result of this thesis, which was published
in [1] and [2]. We constructed an explicit field theory expression for the HSRC
of an entangling interval A for CFT2 vacuum states dual to global AdS3 and the
(2 + 1)-dimensional Poincaré patch. This construction was based the concept of
Kinematic space K [95, 96], which is the space of all boundary anchored bulk
geodesics on a constant time slice. We reviewed kinematic space in Section 5.1.
In Section 5.2 we presented and proved a formula which expresses the volume
of an arbitrary codimension one bulk region Q on a constant time slice as an
integral over K. This “volume formula” in combination with the RT formula
allows to express the volume of any Q as an integral over entanglement entropies.
It may therefore be seen as a natural extension of the formalisms discussed in
[94–96, 209, 210] which provide similar expressions for the lengths of bulk curves.
We applied the volume formula to BA in Section 5.3, which provided us with an
expression for HSRC in terms of entanglement entropies. As this expression can
be derived from the CFT side, it may be seen as the field theory dual of HSRC. We
introduced a cut-off scheme for our formula for HSRC and applied it to compute
HSRC for several explicit examples. In Section 5.4 we extended our formula to
BTZ black holes and conical defect geometries. In these situations we found that
HSRC is no longer only determined by entanglement entropy but also contributions
related to entwinement [146] are present. Entwinement corresponds to the length
of non-minimal bulk geodesics and is proposed to encode the entanglement of
inner degrees of freedom on the field theory side [146]. Moreover, for BTZ black
holes we found a further type of contribution to HSRC which is related to bulk
geodesics running from the conformal boundary to the black hole horizon. We

1This was also observed in [188].
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denoted them as thermal contributions due to their relation to the horizon. The
appearance of additional contributions to HSRC which cannot be interpreted in
terms of entanglement entropies may be seen as a motivation to further study the
field theory interpretation of the corresponding bulk geodesics.

In Section 5.5 we studied our results regarding HSRC under the assumption
that HSRC is indeed a bulk description of subregion complexity. We found that in
this context the reference state may be seen as a field theory version of a product
state. Moreover, our formulae for HSRC indicate that a concept of complexity
for reduced states based on HSRC takes into account that the considered reduced
state is part of a larger system. This separates HSRC from the complexity con-
structions for mixed states presented in [179] (see Section 3.2.1), which ignore this
fact. Our results for HSRC together with their implications for possible future
projects were discussed in Section 5.6.

The focus of Chapter 6 were the results regarding modular Hamiltonians pub-
lished in [3]. Given a family of states ρλ depending on a continuous parameter λ,
we studied the dependence of ∆ 〈K0〉 (A, λ) (6.1) on λ. Here K0(A) is the modular
Hamiltonian of a reduced reference state ρAλ0

on the entangling region A. The
object ∆ 〈K0〉 is of great importance for the computation of the relative entropy
(6.19), which was the reason for our investigations. Given two entangling regions
A and B, forming an entanglement plateau, we examined when ∆ 〈K0〉 (A, λ) or
∆ 〈K0〉 (B, λ) are not linear in λ − λ0. The result we obtained goes as follows.
Consider an entanglement plateau stable under variations of the size of A and B
that keep AB invariant. Then ∆ 〈K0〉 may only be linear in λ− λ0 for A, B and
variations of their size if ∂2

λS is constant under variations of the size of A and B.
Here S is the entanglement entropy. We reviewed the concept of entanglement
plateaux in Section 6.1 and explained the setup and motivation for our studies in
Section 6.2. In Section 6.3 we presented the exact mathematical statement of our
result which we subsequently proved by a simple argument based on the first law of
entanglement (6.22) and the monotonicity of the relative entropy (6.25). Moreover,
we discussed various aspects of our result, including the role of the prerequisites
in its proof and its generalization to n-parameter families of states.

We applied our result of Section 6.3 to several examples in Section 6.4. As
we pointed out in Section 6.1, entanglement plateaux are easily constructed in
AdS/CFT. This allowed us to study several holographic examples, including
unions of disconnected intervals for thermal CFT2 states dual to black string ge-
ometries. For this case, our result provided a way to show that the modular Hamil-
tonian may not be written as a local integral over the energy momentum tensor.
This observation reveals the importance of our result in the context of [200]. Here
a topological condition was constructed under which the modular Hamiltonian
may be written as a local integral over the energy momentum tensor. The above
example demonstrates that our result may be used to show when such an integral
form does not exist. Furthermore, we applied our result to states dual to black
brane geometries and BTZ black holes.

We emphasize that even though most of the examples we considered in this
chapter are based on AdS/CFT, our result not only applies to field theories with
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holographic duals but to any QFT. It reveals a non-trivial relation between entan-
glement entropy and higher order contributions in λ− λ0 to ∆ 〈K0〉. Therefore, it
may be seen as an extension of the first law of entanglement, which provides such
a relation for the first order terms in λ− λ0. We concluded Chapter 6 with some
final remarks and discussions in Section 6.5.

The results of this thesis further clarify the close relation between bulk geom-
etry and quantum information on the boundary (see Section 1.2). For instance,
in Chapter 4 we saw that the cut-off independent term of topological complexity
performs discrete jumps when the phase of the corresponding RT surface changes.
Under which circumstances such transitions occur is encoded in the bulk geometry.
Moreover, in Chapter 5 we demonstrated how volumes of codimension one bulk re-
gions on a constant time slice may be expressed in terms of entanglement entropies
for global AdS3 and the Poincaré patch. For BTZ black holes and conical defects
we observed additional contributions related to entwinement and the thermality
of the states dual to BTZ black holes. In addition, the examples we studied in
Chapter 6 reveal a connection between geometry and ∆ 〈K0〉. We argued that for a
one-parameter family of states on a stable entanglement plateau ∆ 〈K0〉 is usually
expected to contain second and higher order contributions in the parameter.2 For
the holographic examples we applied this statement to, a particular phase of the
RT surface is required in order to provide an entanglement plateau (see Section
6.4). The phases of the RT surface are determined by the bulk geometry. There-
fore, we see that the bulk geometry has a non-trivial influence on the behavior of
∆ 〈K0〉. 3

7.2 Outlook
Future projects may further investigate and develop our findings. In addition to
the possible projects we discussed in Sections 4.3, 5.6 and 6.5 we consider the
comparison of our results for topological complexity (see Chapter 4) with the field
theory expression for HSRC we presented in Chapter 5 of particular interest. We
note that for the examples we considered in this thesis, topological complexity dif-
fers from HSRC only by a constant prefactor. Therefore, our results regarding the
discrete jumps of topological complexity also hold for HSRC. These jumps may be
studied in the context of our field theory expression for HSRC. For instance, it is
easy to see that the expression (5.53) we derived for one entangling interval on the
boundary of global AdS3 can be generalized to an arbitrary number of entangling
intervals. For this setup, the results of Chapter 4 imply that HSRC jumps by multi-
ples of 2π when the position of the intervals relative to each other is changed. The
study of the contributions to our field theory expression corresponding to these
jumps may provide a physical interpretation for this phenomenon. The physical
interpretation of these jumps may also improve our understanding of the behavior
of ∆ 〈K0〉 on entanglement plateaux. In AdS/CFT these plateaux are usually re-

2For the exact formulation of this result we refer to Section 6.3.
3The behavior of the modular Hamiltonian under phase transitions of the RT surface was also

discussed in e.g. [115]. We refer to [157] for related work.
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lated to a particular phase of the RT surface (see Section 6.4). Since transitions of
this phase cause the jumps in HSRC (see Section 4.2), an interpretation of them
in the context of HSRC may provide deeper insight into the behavior of ∆ 〈K0〉
on entanglement plateaux.

The above discussion shows that the three projects presented in Chapters 4,
5 and 6 are related by a common theme: the phases of the RT surface. We
see that these phases may be studied from several very different perspectives,
providing further insight into the close relation between quantum information on
the field theory side and geometry on the gravity side. The results we presented
in this thesis may be seen as a starting point for future projects expanding our
understanding of the role of the bulk geometry in quantum information on the
boundary.
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Appendix A

Notation and Conventions

Throughout this thesis we use the following notations and conventions.

Synonyms for the AdS Side. In AdS/CFT we refer to the theory of gravity
on AdS as AdS side, AdS, gravity side, gravity dual, gravitational dual, bulk (dual)
or holographic (dual). Moreover, we use analogous terms for objects in the bulk,
in particular when we consider them in the context of their dual description on
the CFT side.

Synonyms for the CFT Side. We use the terms field theory side, field
theory dual, CFT (side), CFT dual or boundary for references regarding the con-
formal field theory in AdS/CFT. Moreover, we use analogous terms to refer to
objects on the CFT side. In particular when we discuss them in the context of
their duals on the AdS side.

Ryu-Takayanagi Surface for AdS3/CFT2. In AdSd+1/CFTd the Ryu-
Takayanagi (RT) surface is a (d − 1)-dimensional hypersurface in the bulk (see
Section 3.1.6). Most of the examples discussed in this thesis consider AdS3/CFT2.
Here the RT surface is one-dimensional, i.e. a curve. In order to maintain a consis-
tent notation throughout this thesis we still refer to this curve as the RT “surface”
and to its length as “area”.

Static Space-Times. In all the examples we consider in this thesis, we work
with static asymptotic AdS spaces. The feature of these spaces that we frequently
use is location of the RT surface on the same constant time slice as the correspond-
ing entangling region on the boundary.

Signature of the Metric. For the space-time metrics we consider in this
thesis we use the signature (−+ + · · ·+).

Einstein’s Sum Convention. We make use of Einstein’s sum convention, i.e.
indices appearing twice in a given term are summed over.
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186 APPENDIX A. NOTATION AND CONVENTIONS

Natural Units. We use units where the speed of light, the reduced Planck
constant and the Boltzmann constant are set to one.

Abbreviation for Symmetric Tensor Products. Throughout this thesis
we discuss several metric tensors. In order to avoid cluttering we use

dxdy = 1
2
(
dx⊗ dy + dy ⊗ dx

)
(A.1)

as an abbreviation for the symmetric tensor product of two one-forms dx, dy.

Abbreviation for Entangling Regions. For two entangling regions (or
subsystems) A, B we use

AB = A ∪B , (A.2)

as an abbreviation.

Newton’s Constant. We refer to Newton’s constant in (d+ 1) dimensions as
Gd+1.

Gamma Function. The Gamma function is denoted by Γ.
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