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The in-medium properties of 𝐷
𝑆
mesons are investigated within the framework of an effective hadronic model, which is a

generalization of a chiral 𝑆𝑈(3)model, to 𝑆𝑈(4), in order to study the interactions of the charmed hadrons. In the present work, the
𝐷

𝑆
mesons are observed to experience net attractive interactions in a dense hadronic medium, hence reducing themasses of the𝐷+

𝑆

and 𝐷−

𝑆
mesons from the vacuum values. While this conclusion holds in both nuclear and hyperonic media, the magnitude of the

mass drop is observed to intensify with the inclusion of strangeness in the medium. Additionally, in hyperonic medium, the mass
degeneracy of the 𝐷

𝑆
mesons is observed to be broken, due to opposite signs of the Weinberg-Tomozawa interaction term in the

Lagrangian density. Along with the magnitude of the mass drops, the mass splitting between𝐷+

𝑆
and𝐷−

𝑆
mesons is also observed to

grow with an increase in baryonic density and strangeness content of the medium. However, all medium effects analyzed are found
to be weakly dependent on isospin asymmetry and temperature.We discuss the possible implications emanating from this analysis,
which are all expected to make a significant difference to observables in heavy ion collision experiments, especially the upcoming
Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR), GSI, where matter
at high baryonic densities is planned to be produced.

1. Introduction

An effective description of hadronic matter is fairly common
in low-energyQCD [1–3]. Realizing that baryons andmesons
constitute the effective degrees of freedom in this regime,
it is quite sensible to treat QCD at low-energies as an
effective theory of these quark bound states [1].This approach
has been vigorously pursued in various incarnations over
the years, with the different adopted strategies representing
merely different manifestations of the same underlying phi-
losophy. The actual manifestations range from the quark-
meson coupling model [4, 5], phenomenological, relativistic
mean-field theories based on the Walecka model [6], along
with their subsequent extensions, the method of QCD sum
rules [7–9], as well as the coupled channel approach [10, 11]
for treating dynamically generated resonances, which has
further evolved into more specialized forms, namely, the
local hidden gauge theory [12, 13], and formalisms based on
incorporating heavy-quark spin symmetry (HQSS) [14, 15]
into the coupled channel framework [16–20]. Additionally,

the method of chiral-invariant Lagrangians [1] (which will
also be embraced in this work) has developed over the
years into a very successful strategy. This method uses an
effective field theoretical model in which the specific form
of hadronic interactions is dictated by symmetry principles
and the physics governed predominantly by the dynamics
of chiral symmetry—its spontaneous breakdown implying
a nonvanishing scalar condensate ⟨𝑞𝑞⟩ in vacuum. One
naturally expects then that the hadrons composed of these
quarks would also be modified in accordance with these
condensates [2, 3]. But while all hadrons would be subject
tomediummodifications from this perspective, pseudoscalar
mesons have a special role in this context. In accordance
with Goldstone’s theorem [1], spontaneous breaking of chiral
symmetry leads to the occurrence of massless pseudoscalar
modes, the so-called Goldstone bosons, which are generally
identified with the spectrum of light pseudoscalar mesons,
like the pions or kaons and antikaons [2, 3]. In a strict sense,
however, none of these physical mesons is a true Goldstone
mode, since they are all massive, while Goldstone modes
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are supposed to be massless [21]. The origin of the masses
of these mesons is related to the nonzero masses of light
quarks, as can be easily discerned from the Gell-Mann-
Oakes-Renner (GOR) relations and, hence, from explicit
symmetry breaking terms (or explicit mass terms) in the
chiral effective framework [1]. In fact, if one considers the
limiting situation of vanishing quark masses (𝑚𝑞

→ 0), the
masses of these pseudoscalar mesons would also vanish,
so that the perfect Goldstone modes are indeed recovered.
For this reason, the physically observed light pseudoscalar
mesons are dubbed pseudo-Goldstone bosons [21]. In purely
this sense, therefore, there is an inherent similarity between
all these classes of pseudoscalar mesons; masses are acquired
through explicit quarkmass terms, and only themagnitude of
these mass terms differs between these cases, being small for
the pions (since 𝑚

𝑢
, 𝑚

𝑑
< 10MeV), comparatively larger for

the kaons and antikaons (since 𝑚
𝑠
∼ 150MeV), and appre-

ciably larger for the charmed pseudoscalar mesons. Thus,
as we advance from the pions to the strange pseudoscalar
mesons, with increasing mass, these mesons depart more
from the ideal Goldstone mode character pertaining to the
theorem and there is considerable departure of the charmed
pseudoscalar mesons from Goldstone mode behaviour due
to the explicit chiral symmetry breaking arising from the
large charm quark mass (𝑚

𝑐
≃ 1.3GeV). An understanding

of the in-medium properties of the pseudoscalar mesons
has been an important topic of research, both theoretically
and experimentally. Within the chiral effective approach,
the pseudoscalar mesons are modified in the medium
due to the modifications of the quark condensates in the
hadronic medium. For pions, it is observed, however, that
medium effects for them are weakened by the smallness
of explicit symmetry breaking terms [2, 3]. Considerably
detailed analysis of medium effects has been performed
over the years, particularly in a chiral 𝑆𝑈(3) approach, for
strange pseudoscalar mesons (kaons and antikaons) [22–25].
For studying the charmed mesons, one needs to generalize
the 𝑆𝑈(3) model to 𝑆𝑈(4), in order to incorporate the
interactions of the charmedmesons to the light hadrons. Such
a generalization from 𝑆𝑈(3) to 𝑆𝑈(4) was initially done in
[26], where the interaction Lagrangian was constructed for
the pseudoscalar mesons for 𝑆𝑈(4) from a generalization of
the lowest order chiral 𝑆𝑈(3) Lagrangian. Since the chiral
symmetry is explicitly broken for the 𝑆𝑈(4) case due to the
largemass of the charmquark (𝑚

𝑐
≃ 1.3GeV), which ismuch

larger than the masses of the light quarks, for the study of
the charmed (𝐷) pseudoscalar mesons [27–29], we adopt the
philosophy of generalizing the chiral 𝑆𝑈(3)model to 𝑆𝑈(4) to
derive the interactions of thesemesons with the light hadrons
but use the observed masses of these heavy hadrons as well
as empirical/observed values of their decay constants [30].
With all these studies proving to be informative, the most
natural direction of extension of this approach would be to
analyze these medium effects for a strange-charmed system
(the 𝐷𝑆 mesons). Apart from pure theoretical interest, an
understanding of the medium modifications of 𝐷𝑆 mesons
is important, since these can make a considerable difference
to experimental observables in the (ongoing and future)
relativistic heavy ion collision experiments, besides being

significant in questions concerning their production and
transport in such experimental situations. For instance, in a
recent work, He et al. [31] have shown that the modifications
of the 𝐷

𝑆
meson spectrum can serve as a useful probe for

understanding key issues regarding hadronization in heavy
ion collisions. It is suggested that, by comparing observables
for𝐷 and𝐷𝑆

mesons, it is possible to constrain the hadronic
transport coefficient.This comparison is useful since it allows
for a clear distinction between hadronic and quark-gluon
plasma behavior.

However, as far as the existing literature on this strange-
charmed system of mesons is concerned, we observe that
only the excited states of 𝐷𝑆 mesons have received con-
siderable attention, predominantly as dynamically generated
resonances in various coupled channel frameworks [32,
33]. One must bear in mind that, in certain situations, a
molecular interpretation of these excited states (resonances)
is more appropriate [34] for an explanation of their observed,
larger than expected lifetimes. From this perspective, a
whole plethora of possibilities have been entertained for the
excited𝐷

𝑆
states, the standard quark-antiquark picture aside.

These include their description as molecular states, borne
out of two mesons, four-quark states, or the still further
exotic possibilities—as two-diquark states and as a mixture
of quark-antiquark and tetraquark states [32]. Prominent
among these is a treatment of𝐷∗

𝑆0
(2317) as a𝐷𝐾 bound state

[35, 36], 𝐷
𝑆1
(2460) as a dynamically generated 𝐷∗

𝐾 reso-
nance [37], and 𝐷∗

𝑆2
(2573) being treated within the hidden

local gauge formalism in coupled channel unitary approach
[38, 39], as well as the vector 𝐷∗

𝑆
states and the 𝐷+

𝑆
(2632)

resonance treated in a multichannel approach [40]. The
former three have also been covered consistently under the
four-quark picture [41]. So, while considerable attention has
been paid towards dynamically generating the higher excited
states of the 𝐷𝑆 mesons, there is a conspicuous dearth [42]
of available information about the medium modifications of
the lightest pseudoscalar 𝐷𝑆 mesons, 𝐷𝑆(1968.5), the one
that we know surely is well described within the quark-
antiquark picture. In fact, to the best of our knowledge, the
entire existing literature about the (𝐽

𝑃
= 0

−
)𝐷

𝑆
mesons

in a hadronic medium is limited to the assessment of their
spectral distributions andmedium effects on the dynamically
generated resonances borne out of the interaction of these
𝐷

𝑆
mesons with other hadron species, in the coupled channel

analyses of [42–45]. This situation is quite unlike their open-
charm, non-strange counterparts, the𝐷mesons, which boast
of a sizeable amount of literature having been extensively
investigated using a multitude of approaches over the years.
In stark contrast, the available literature concerning the in-
medium behavior of pseudoscalar 𝐷

𝑆
mesons can at best be

described as scanty, and there is need for more work on this
subject. If one considers this problem from the point of view
of the (extended) chiral effective approach, this scantiness
is most of all because of the lack of a proper framework
where the relevant form of the interactions for the𝐷𝑆 mesons
with the light hadrons (or in more generic terms, of meson-
baryon interactions with the charm sector covered), based
on arguments of symmetry and invariance, could be written
down. Clearly, such interactions would have to be based on
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𝑆𝑈(4) symmetry and bear all these pseudoscalar mesons and
baryons in 15-plet and 20-plet representations, respectively,
withmeson-baryon interaction terms still in accordance with
the general framework for writing chiral-invariant structures,
as well as bearing appropriate symmetry breaking terms
obeying the requisite transformation behavior under chiral
transformations [1], which is quite a nontrivial problem. Of
late, such formalisms have been proposed in [43, 46], as an
extension of the frameworks based on chiral Lagrangians,
where 𝑆𝑈(4) symmetry forms the basis for writing down
the relevant interaction terms. However, since the mass of
the charm quark is approximately 1.3 GeV [47], which is
considerably larger than that of the up, down, and strange
quarks, the 𝑆𝑈(4) symmetry is explicitly broken by this large
charm quark mass. Hence, this formalism only uses the
symmetry to derive the form of the interactions, whereas
an explicit symmetry breaking term accounts for the large
quark mass through the introduction of mass terms of the
relevant (𝐷 or 𝐷

𝑆
) mesons. Also, 𝑆𝑈(4) symmetry being

badly broken implies that any symmetry and order in the
masses and decay constants, as predicted on the basis of
𝑆𝑈(4) symmetry, would not hold in reality. The same is
acknowledged in this approach [46] and, as has been already
mentioned, one does not use the masses and decay constants
as expected on the basis of 𝑆𝑈(4) symmetry but rather their
observed Particle Data Group (PDG) [47] values. Overall,
therefore, 𝑆𝑈(4) symmetry is treated (appropriately) as being
broken in this approach. Also, it is quite well-known, through
both model-independent [48] and model-dependent [29]
calculations, that the light quark condensates (⟨𝑢𝑢⟩, ⟨𝑑𝑑⟩) are
modified significantly in a hadronic medium with medium
parameters like density and temperature; the strange quark
condensate ⟨𝑠𝑠⟩ is comparatively stolid and its variation is
significantly more subdued, while upon advancing to the
charm sector the variation in the charmed quark condensate
⟨𝑐𝑐⟩ is altogether negligible in the entire hadronic phase [48].
These observations form the basis for treating the charm
degrees of freedom of open-charm pseudoscalar mesons as
frozen in the medium, as was the case in the treatments of
[28, 29, 46].Thus, as we advance from pions and kaons to the
charmed pseudoscalar mesons, the generalization is perfectly
natural but with the aforementioned caveats. Provided all
these aspects are taken into account, a generalization of
this chiral effective framework to open-charm pseudoscalar
mesons is quite reasonable and sane, and the predictions from
such an extended chiral effective approach bode very well
[28] with alternative calculations based on the QCD sum rule
approach, quark-meson coupling model, coupled channel
approach, and studies of quarkonium dissociation using
heavy-quark potentials from lattice QCD at finite tempera-
tures. Additionally, it is interesting to note that this approach,
followed in [28, 29, 46] for the charmedpseudoscalarmesons,
has recently been extended to the bottom sector and used to
study the medium behavior of the open bottom pseudoscalar
𝐵, 𝐵, and 𝐵

𝑆
mesons [49, 50]. The inherent philosophy

beneath this extension continues to be the same; the dynam-
ics of the heavy quark/antiquark is treated as frozen, and the
interactions of the light quark (or antiquark) of the meson,
with the particles constituting the medium, are responsible

for the medium modifications. With this subsequent gener-
alization as well, the physics of the medium behavior that
follows from this approach is in agreement [49] with works
based on alternative, independent approaches, like the heavy
meson effective theory, quark-meson coupling model, and
the QCD sum rule approach. Thus, these aforementioned,
prior works based on the generalization of the original chiral
effective approach to include heavy flavored mesons, are
totally concordant with results from alternative approaches
followed in the literature, which lends an aura of credibility
to this strategy. Given this backdrop, it is clear that these
formalisms wipe out the reason why such an investigation for
the𝐷𝑆 mesons within the effective hadronic model, obtained
by generalizing the chiral 𝑆𝑈(3)model to 𝑆𝑈(4), has not been
undertaken till date and permit this attempt to fill the void.

We organize this paper as follows. In Section 2, we outline
the chiral 𝑆𝑈(3)

𝐿
× 𝑆𝑈(3)

𝑅
model (and its generalization

to the 𝑆𝑈(4) case) used in this investigation. In Section 3,
the Lagrangian density for the 𝐷

𝑆
mesons, within this

extended framework, is explicitly written down and is used
to derive their in-medium dispersion relations. In Section 4,
we describe and discuss our results for the in-medium
properties of 𝐷

𝑆
mesons, first in the nuclear matter case and

then in the hyperonic matter situation, following which we
briefly discuss the possible implications of these medium
modifications. Finally, we summarize the entire investigation
in Section 5.

2. The Effective Hadronic Model

As mentioned previously, this study is based on a general-
ization of the chiral 𝑆𝑈(3)𝐿 × 𝑆𝑈(3)𝑅 model [51], to 𝑆𝑈(4).
We summarize briefly the rudiments of the model, while
referring the reader to [51, 52] for the details. This is an
effective hadronic model of interacting baryons and mesons,
based on a nonlinear realization of chiral symmetry [53, 54],
where chiral invariance is used as a guiding principle, in
deciding the form of the interactions [55–57]. Additionally,
the model incorporates a scalar dilaton field, 𝜒, to mimic the
broken scale invariance of QCD [52]. Once these invariance
arguments determine the form of the interaction terms, one
resorts to a phenomenological fitting of the free parameters
of the model, to arrive at the desired effective Lagrangian
density for these hadron-hadron interactions. The general
expression for the chiral model Lagrangian density reads

L =Lkin +∑
𝑊

LBW +Lvec +L0
+Lscale break

+LSB.

(1)

In (1),Lkin is the kinetic energy term, whileLBW denotes the
baryon-meson interaction term. Here, baryon-pseudoscalar
meson interactions generate the baryon masses. Lvec treats
the dynamical mass generation of the vector mesons through
couplings with scalar mesons. The self-interaction terms of
these mesons are also included in this term.L

0
contains the

meson-meson interaction terms, which induce spontaneous
breaking of chiral symmetry. Lscale break introduces scale
invariance breaking, via a logarithmic potential term in the
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scalar dilaton field, 𝜒. Finally, LSB refers to the explicit
symmetry breaking term. This approach has been employed
extensively to study the in-medium properties of hadrons,
particularly pseudoscalar mesons [22–25]. As was observed
in Section 1 as well, this would be most naturally extended to
the charmed (nonstrange and strange) pseudoscalar mesons.
However, that calls for this chiral 𝑆𝑈(3) formalism to be
generalized to 𝑆𝑈(4), which has been addressed in [43,
46]. For studying the in-medium behavior of pseudoscalar
mesons, the following contributions need to be analyzed
[28, 29, 46]:

L =LWT +L1st Range +L𝑑
1

+L
𝑑
2

+LSME. (2)

In (2),LWT denotes theWeinberg-Tomozawa term, given by
the expression [46]

LWT = −
1

2
[𝐵

𝑖𝑗𝑘
𝛾

𝜇
((Γ

𝜇
)

𝑙

𝑘

𝐵
𝑖𝑗𝑙
+ 2(Γ

𝜇
)

𝑙

𝑗

𝐵
𝑖𝑙𝑘
)] , (3)

with repeated indices summed over. Baryons are represented
by the tensor 𝐵𝑖𝑗𝑘, which is antisymmetric in its first two
indices [43]. The indices 𝑖, 𝑗, and 𝑘 run from 1 to 4, and one
can directly read the quark content of a baryon state, with
the following identification: 1 ↔ 𝑢, 2 ↔ 𝑑, 3 ↔ 𝑠, 4 ↔ 𝑐.
However, the heavier, charmed baryons are discounted from
this analysis. In (3), Γ

𝜇
is defined as

Γ
𝜇

= −
𝑖

4
(𝑢

†
(𝜕𝜇𝑢) − (𝜕𝜇𝑢

†
) 𝑢 + 𝑢 (𝜕𝜇𝑢

†
) − (𝜕𝜇𝑢) 𝑢

†
) ,

(4)

where the unitary transformation operator, 𝑢 = exp(𝑖𝑀𝛾5/
√2𝜎0), is defined in terms of the matrix of pseudoscalar
mesons, 𝑀 = (𝑀

𝑎
𝜆𝑎/
√2), 𝜆𝑎 representing the generalized

Gell-Mann matrices. Further, LSME is the scalar meson
exchange term, which is obtained from the explicit symmetry
breaking term

LSB = −
1

2
Tr (𝐴

𝑝
(𝑢𝑋𝑢 + 𝑢

†
𝑋𝑢

†
)) , (5)

where 𝐴
𝑝 = (1/√2) diag[𝑚2

𝜋
𝑓𝜋, 𝑚

2

𝜋
𝑓𝜋, (2𝑚

2

𝐾
𝑓𝐾 − 𝑚

2

𝜋
𝑓𝜋),

(2𝑚
2

𝐷
𝑓

𝐷
−𝑚

2

𝜋
𝑓

𝜋
)] and𝑋 refers to the scalar meson multiplet

[28]. Also, the first range term is obtained from the kinetic
energy term of the pseudoscalar mesons and is given by the
expression

L
1st Range = Tr (𝑢

𝜇
𝑋𝑢

𝜇
𝑋 + 𝑋𝑢

𝜇
𝑢

𝜇
𝑋) , (6)

where 𝑢
𝜇
= −𝑖((𝑢

†
(𝜕

𝜇
𝑢) − (𝜕

𝜇
𝑢

†
)𝑢) − (𝑢(𝜕

𝜇
𝑢

†
) − (𝜕

𝜇
𝑢)𝑢

†
))/4.

Lastly, the 𝑑
1
and 𝑑

2
range terms are

L
𝑑
1

=
𝑑

1

4
(𝐵𝑖𝑗𝑘

𝐵
𝑖𝑗𝑘
(𝑢𝜇)

𝑙

𝑚

(𝑢
𝜇
)

𝑚

𝑙
) , (7)

L𝑑
2

=
𝑑

2

2
[𝐵𝑖𝑗𝑘(𝑢𝜇)

𝑙

𝑚

((𝑢
𝜇
)

𝑚

𝑘
𝐵

𝑖𝑗𝑙
+ 2(𝑢

𝜇
)

𝑚

𝑗
𝐵

𝑖𝑙𝑘
)] . (8)

Adopting the mean-field approximation [6, 52], the effective
Lagrangian density for scalar and vector mesons simplifies;

the same is used subsequently to derive the equations of
motion for the nonstrange scalar-isoscalar meson 𝜎, scalar-
isovector meson 𝛿, and strange scalar meson 𝜁 and for the
vector-isovector meson 𝜌, nonstrange vector meson 𝜔, and
strange vector meson 𝜙, within this model.

The 𝐷
𝑆
meson interaction Lagrangian density and in-

medium dispersion relations, as they follow from the above
general formulation, are described next.

3. 𝐷
𝑆

Mesons in Hadronic Matter

The Lagrangian density for the 𝐷𝑆 mesons in isospin-asym-
metric, strange, hadronic medium is given as

Ltotal =Lfree +Lint. (9)

ThisLfree is the free Lagrangian density for a complex scalar
field (which corresponds to the 𝐷

𝑆
mesons in this case) and

reads

Lfree = (𝜕
𝜇
𝐷

+

𝑆
) (𝜕𝜇
𝐷

−

𝑆
) − 𝑚

2

𝐷
𝑆

(𝐷
+

𝑆
𝐷

−

𝑆
) . (10)

On the other hand,Lint is determined to be

Lint = −
𝑖

4𝑓
2

𝐷
𝑆

[(2 (Ξ
0

𝛾
𝜇
Ξ

0
+ Ξ

−

𝛾
𝜇
Ξ

−
) + Λ

0

𝛾
𝜇
Λ

0

+ Σ
+

𝛾
𝜇
Σ

+
+ Σ

0

𝛾
𝜇
Σ

0
+ Σ

−

𝛾
𝜇
Σ

−
) (𝐷

+

𝑆
(𝜕

𝜇
𝐷

−

𝑆
)

− (𝜕
𝜇
𝐷

+

𝑆
)𝐷

−

𝑆
)] +

𝑚
2

𝐷
𝑆

√2𝑓
𝐷
𝑆

[(𝜁

+ 𝜁



𝑐
) (𝐷

+

𝑆
𝐷

−

𝑆
)]

−
√2

𝑓𝐷
𝑆

[(𝜁

+ 𝜁



𝑐
) ((𝜕

𝜇
𝐷

+

𝑆
) (𝜕

𝜇
𝐷

−

𝑆
))] +

𝑑1

2𝑓
2

𝐷
𝑆

[(𝑝𝑝

+ 𝑛𝑛 + Λ
0

Λ
0
+ Σ

+

Σ
+
+ Σ

0

Σ
0
+ Σ

−

Σ
−
+ Ξ

0

Ξ
0

+ Ξ
−

Ξ
−
) ((𝜕

𝜇
𝐷

+

𝑆
) (𝜕

𝜇
𝐷

−

𝑆
))]

+
𝑑

2

2𝑓
2

𝐷
𝑆

[(2 (Ξ
0

Ξ
0
+ Ξ

−

Ξ
−
) + Λ

0

Λ
0
+ Σ

+

Σ
+

+ Σ
0

Σ
0
+ Σ

−

Σ
−
) ((𝜕

𝜇
𝐷

+

𝑆
) (𝜕

𝜇
𝐷

−

𝑆
))] .

(11)

In this expression, the first term (with coefficient −𝑖/4𝑓2

𝐷
𝑆

)
is the Weinberg-Tomozawa term, obtained from (3), the
second term (with coefficient 𝑚2

𝐷
𝑆

/√2𝑓
𝐷
𝑆

) is the scalar
meson exchange term, obtained from the explicit symmetry
breaking term of the Lagrangian (see (5)), the third term
(with coefficient −√2/𝑓

𝐷
𝑆

) is the first range term (see (6)),
and the fourth and fifth terms (with coefficients (𝑑

1
/𝑓

2

𝐷
𝑆

) and
(𝑑

2/𝑓
2

𝐷
𝑆

), resp.) are the 𝑑1 and 𝑑2 terms, calculated from (7)
and (8), respectively. Also, 𝜁

= 𝜁 − 𝜁
0
is the fluctuation of

the strange scalar field from its vacuum value.Themean-field
approximation, mentioned earlier, is a useful, simplifying
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measure in this context, since it permits us to have the fol-
lowing replacements:

𝐵
𝑖
𝐵

𝑗
→ ⟨𝐵

𝑖
𝐵

𝑗
⟩ ≡ 𝛿

𝑖𝑗
𝜌

𝑠

𝑖
,

𝐵
𝑖
𝛾

𝜇
𝐵

𝑗
→ ⟨𝐵

𝑖
𝛾

𝜇
𝐵

𝑗
⟩ = 𝛿

𝑖𝑗
(𝛿

0

𝜇
(𝐵

𝑖
𝛾

𝜇
𝐵

𝑗
)) ≡ 𝛿

𝑖𝑗
𝜌

𝑖
.

(12)

Thus, the interaction Lagrangian density can be recast in
terms of the baryonic number densities and scalar densities,
given by the following expressions:

𝜌
𝑖
=
𝛾

𝑠

(2𝜋)
3
∫𝑑

3
𝑘(

1

exp ((𝐸∗

𝑖
(𝑘) − 𝜇

∗

𝑖
) /𝑇) + 1

−
1

exp ((𝐸∗

𝑖
(𝑘) + 𝜇

∗

𝑖
) /𝑇) + 1

) ,

(13)

𝜌
s
𝑖
=
𝛾

𝑠

(2𝜋)
3
∫𝑑

3
𝑘
𝑚

∗

𝑖

𝐸
∗

𝑖
(𝑘)
(

1

exp ((𝐸∗

𝑖
(𝑘) − 𝜇

∗

𝑖
) /𝑇) + 1

+
1

exp ((𝐸∗

𝑖
(𝑘) + 𝜇

∗

𝑖
) /𝑇) + 1

) .

(14)

In the above, 𝑚∗

𝑖
and 𝜇∗

𝑖
are the effective mass and effective

chemical potential of the 𝑖th baryon, given as𝑚∗

𝑖
= −(𝑔

𝜎𝑖
𝜎 +

𝑔
𝜁𝑖
𝜁 + 𝑔

𝛿𝑖
𝛿), 𝜇∗

𝑖
= 𝜇

𝑖
− (𝑔

𝜌𝑖
𝜏

3
𝜌 + 𝑔

𝜔𝑖
𝜔 + 𝑔

𝜙𝑖
𝜙), 𝐸∗

𝑖
(𝑘) =

(𝑘
2
+ 𝑚

∗

𝑖

2
)

1/2, and 𝛾
𝑠
= 2 is the spin degeneracy factor. One

can find the equations of motion for the 𝐷+

𝑆
and 𝐷−

𝑆
mesons,

by the use of Euler-Lagrange equations on this Lagrangian
density. The linearity of these equations follows from (11),
which allows us to assume plane wave solutions (∼𝑒𝑖(�⃗�⋅ ⃗𝑟−𝜔𝑡)),
and hence, “Fourier transform” these equations, to arrive at
the in-medium dispersion relations for the𝐷𝑆

mesons.These
have the general form

−𝜔
2
+ �⃗�

2
+ 𝑚

2

𝐷
𝑆

− Π (𝜔,

�⃗�

) = 0, (15)

where𝑚
𝐷
𝑆

is the vacuummass of the𝐷
𝑆
mesons andΠ(𝜔, |�⃗�|)

is the self-energy of the𝐷
𝑆
mesons in the medium. Explicitly,

the latter reads

Π(𝜔,

�⃗�

) = [(

𝑑
1

2𝑓
2

𝐷
𝑆

(𝜌
𝑠

𝑝
+ 𝜌

𝑠

𝑛
+ 𝜌

𝑠

Λ
+ 𝜌

𝑠

Σ
+ + 𝜌

𝑠

Σ
0 + 𝜌

𝑠

Σ
−

+ 𝜌
𝑠

Ξ
0 + 𝜌

𝑠

Ξ
−)) + (

𝑑2

2𝑓
2

𝐷
𝑆

(2 (𝜌
𝑠

Ξ
0 + 𝜌

𝑠

Ξ
−) + 𝜌

𝑠

Λ
+ 𝜌

𝑠

Σ
+

+ 𝜌
𝑠

Σ
0 + 𝜌

𝑠

Σ
−)) − (

√2

𝑓𝐷
𝑆

(𝜁

+ 𝜁



𝑐
))] (𝜔

2
− �⃗�

2
)

± [
1

2𝑓
2

𝐷
𝑆

(2 (𝜌
Ξ
0 + 𝜌

Ξ
−) + 𝜌

Λ
+ 𝜌

Σ
+ + 𝜌

Σ
0 + 𝜌

Σ
−)]𝜔

+ [

𝑚
2

𝐷
𝑆

√2𝑓
𝐷
𝑆

(𝜁

+ 𝜁



𝑐
)] ,

(16)

where the + and − signs in the coefficient of 𝜔 refer to 𝐷+

𝑆

and 𝐷−

𝑆
, respectively, and we have used (12) to simplify the

bilinears. In the rest frame of these mesons (i.e., setting |�⃗�| =
0), these dispersion relations reduce to

−𝜔
2
+ 𝑚

2

𝐷
𝑆

− Π (𝜔, 0) = 0, (17)

which is a quadratic equation in 𝜔, that is, of the form 𝐴𝜔2
+

𝐵𝜔 + 𝐶 = 0, where the coefficients 𝐴, 𝐵, and 𝐶 depend on
various interaction terms in (15) and read

𝐴 = [1 + (
𝑑

1

2𝑓
2

𝐷
𝑆

∑

(𝑁+𝐻)

𝜌
𝑠

𝑖
)

+ (
𝑑

2

2𝑓
2

𝐷
𝑆

(2∑

Ξ

𝜌
𝑠

𝑖
+ ∑

(𝐻−Ξ)

𝜌
𝑠

𝑖
))

− (
√2

𝑓
𝐷
𝑆

(𝜁

+ 𝜁



𝑐
))] ,

(18)

𝐵 = ±[
1

2𝑓
2

𝐷
𝑆

(2∑

Ξ

𝜌𝑖 + ∑

(𝐻−Ξ)

𝜌𝑖
)] , (19)

𝐶 = [−𝑚
2

𝐷
𝑆

+

𝑚
2

𝐷
𝑆

√2𝑓
𝐷
𝑆

(𝜁

+ 𝜁



𝑐
)] . (20)

As before, the “+” and “−” signs in 𝐵 correspond to 𝐷+

𝑆
and

𝐷
−

𝑆
, respectively. In writing the above summations, we have

used the following notation:𝐻denotes the set of all hyperons,
𝑁 is the set of nucleons, Ξ represents the Xi hyperons (Ξ−,0

),
and (𝐻−Ξ) denotes all hyperons other than Xi hyperons, that
is, the set of baryons (Λ, Σ+,−,0

) which all carry one strange
quark. This form is particularly convenient for later analysis.
Also, the optical potential of𝐷𝑆

mesons is defined as

𝑈 (𝑘) = 𝜔 (𝑘) − √𝑘2 + 𝑚
2

𝐷
𝑆

, (21)

where 𝑘 (=|�⃗�|) refers to the momentum of the respective 𝐷
𝑆

meson, and 𝜔(𝑘) represents its momentum-dependent in-
medium energy.

In the next section, we study the sensitivity of the 𝐷
𝑆

meson effective mass on various characteristic parameters of
hadronic matter, namely, baryonic density (𝜌

𝐵
), temperature

(𝑇), isospin asymmetry parameter 𝜂 = −∑
𝑖
𝐼

3𝑖
𝜌

𝑖
/𝜌

𝐵
, and the

strangeness fraction𝑓
𝑠
= ∑

𝑖
|𝑆

𝑖
|𝜌

𝑖
/𝜌

𝐵
, where 𝑆

𝑖
and 𝐼

3𝑖
denote

the strangeness quantum number and the third component
of isospin of the 𝑖th baryon, respectively.

4. Results and Discussion

Before describing the results of our analysis of 𝐷𝑆 mesons
in a hadronic medium, we first discuss our parameter choice
and the various simplifying approximations employed in this
investigation.The parameters of the effective hadronic model
are fitted to the vacuummasses of baryons, nuclear saturation
properties, and other vacuum characteristics in the mean-
field approximation [51, 52]. In this investigation, we have
used the same parameter set that has earlier been used to
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study charmed (𝐷) mesons within this effective hadronic
model [46]. In particular, we use the same values of the
parameters 𝑑

1
and 𝑑

2
of the range terms (𝑑

1
= 2.56/𝑚

𝐾
and

𝑑
2
= 0.73/𝑚

𝐾
), fitted to empirical values of kaon-nucleon

scattering lengths for the 𝐼 = 0 and 𝐼 = 1 channels, as
employed in earlier treatments [22, 23, 28, 46]. For an exten-
sion to the strange-charmed system, the only extra parameter
that needs to be fitted is the 𝐷𝑆 meson decay constant, 𝑓𝐷

𝑆

,
which is treated as follows. By extrapolating the results of [57],
we arrive at the following expression for 𝑓𝐷

𝑆

in terms of the
vacuum values of the strange and charmed scalar fields:

𝑓
𝐷
𝑆

=
− (𝜁

0
+ 𝜁

𝑐0
)

√2
. (22)

For fitting the value of 𝑓
𝐷
𝑆

, we retain the same values of 𝜎0

and 𝜁
0
as in the earlier treatments of this chiral effectivemodel

[23, 51] and determine 𝜁
𝑐0
from the expression for𝑓

𝐷
in terms

of 𝜎
0
and 𝜁

𝑐0
[28], using the Particle Data Group (PDG) value

of𝑓
𝐷
= 206MeV. Substituting these in (22), our fitted value of

𝑓
𝐷
𝑆

comes out to be 235MeV, which is close to its PDG value
of 260MeV and, particularly, is of the same order as typical
lattice QCD calculations for the same [47]. We therefore per-
sist with this fitted value 𝑓

𝐷
𝑆

= 235MeV in this investigation.
Also, we treat the charmed scalar field (𝜁

𝑐
) as being arrested at

its vacuum value (𝜁
𝑐0
) in this investigation, as has been con-

sidered in other treatments of charmedmesons in a hadronic
context [28, 46]. This neglect of charm dynamics appears
natural from a physical viewpoint, owing to the large mass
of a charm quark (𝑚𝑐 ∼ 1.3GeV) [47]. The same was verified
in an explicit calculation in [48], where the charm condensate
was observed to vary very weakly in the temperature range of
interest to us in this regime [58–60]. As our last approxima-
tion, we point out that, in the current investigation, we work
within the “frozen glueball limit” [52], where the scalar dilaton
field (𝜒) is regarded as being frozen at its vacuum value (𝜒

0
).

This approximation was relaxed in a preceding work [29]
within this effective hadronic model, where the in-medium
modifications of this dilaton field were found to be quite
meager. We conclude, therefore, that this weak dependence
only serves to justify the validity of this assumption.

Wenext describe our analysis for the in-mediumbehavior
of𝐷

𝑆
mesons, beginning first with the nuclearmatter (𝑓

𝑠
= 0)

situation and including the hyperonic degrees of freedom
only later.This approach has the advantage thatmany features
of the 𝐷

𝑆
meson in-medium behavior, common between

these regimes, are discussed in detail in a more simplified
context, and the effect of strangeness becomes a lot clearer.

In nuclear matter, the Weinberg-Tomozawa term and the
𝑑

2
range term vanish, since they depend on the number

densities and scalar densities of the hyperons, and have no
contribution from the nucleons. It follows from the self-
energy expression that only the Weinberg-Tomozawa term
differs between 𝐷+

𝑆
and 𝐷−

𝑆
; all other interaction terms are

absolutely identical for them. Thus, a direct consequence of
the vanishing of Weinberg-Tomozawa contribution is that
𝐷

+

𝑆
and 𝐷−

𝑆
are degenerate in nuclear matter. As mentioned

earlier, the𝐷
𝑆
meson dispersion relations, with |�⃗�| = 0, takes

the quadratic equation form (𝐴𝜔2
+ 𝐵𝜔 + 𝐶 = 0), where

the coefficients (given by (18)–(20)) reduce to the following
expressions in nuclear matter:

𝐴
(𝑁)

= [1 + (
𝑑

1

2𝑓
2

𝐷
𝑆

(𝜌
𝑠

𝑝
+ 𝜌

𝑠

𝑛
)) − (

√2

𝑓
𝐷
𝑆

(𝜁

+ 𝜁



𝑐
))] ,

(23)

𝐵
(𝑁)
= 0, (24)

𝐶
(𝑁)
= [−𝑚

2

𝐷
𝑆

+

𝑚
2

𝐷
𝑆

√2𝑓𝐷
𝑆

(𝜁

+ 𝜁



𝑐
)] , (25)

where the subscript (𝑁) emphasizes the nuclear matter
context. For solving this quadratic equation, we require the
values of 𝜁, as well as the scalar densities of protons and
neutrons, which are obtained from a simultaneous solution
of coupled equations of motion for the scalar fields, subject
to constraints of fixed values of 𝜌

𝐵
and 𝜂. The behavior

of the scalar fields, thus obtained, has been discussed in
detail in [29]. Here, we build upon these scalar fields and
proceed to discuss the behavior of solutions of the in-medium
dispersion relations of 𝐷

𝑆
mesons, given by (23) to (25). The

variation of the 𝐷
𝑆 meson in-medium mass, 𝜔(�⃗� = 0), with

baryonic density in nuclear matter, along with the individual
contributions to this net variation, is shown in Figure 1 for
both zero and finite temperature value (𝑇 = 100MeV). It is
observed that the in-medium mass of 𝐷

𝑆
mesons decreases

with density, while being weakly dependent on temperature
and isospin asymmetry parameter. We can understand the
observed behavior through the following analysis. From (23)
to (25), we arrive at the following closed-form solution for the
𝐷

𝑆
meson effective mass in nuclear matter:

𝜔

= 𝑚
𝐷
𝑆

[

[

1 − (𝜁

+ 𝜁



𝑐
) /√2𝑓

𝐷
𝑆

1 + (𝑑1/2𝑓
2

𝐷
𝑆

) (𝜌𝑠

𝑝
+ 𝜌𝑠

𝑛
) − (√2/𝑓𝐷

𝑆

) (𝜁 + 𝜁

𝑐
)

]

]

1/2

.

(26)

From this exact closed-form solution, several general con-
clusions regarding the in-medium behavior of 𝐷

𝑆
mesons in

nuclear matter can be drawn. On the basis of this expression,
the 𝑑

1
range term appearing in the denominator will lead to a

decrease in themediummass with increase in density.The in-
medium mass is, additionally, also modified by the medium
dependence of 𝜁 (we assume the value of 𝜁𝑐 to be frozen at
its vacuum value and hence 𝜁

𝑐
= 0). However, the density

dependence of 𝜁 is observed to be quite subdued in nuclear
matter. The total change in the value of 𝜁 from its vacuum
value is observed; that is, (𝜁

)max.
≈ 15MeV. This value is

acquired at a baryonic density of 𝜌𝐵 ≈ 3𝜌0 and thereafter it
appears to saturate. This behavior of the strange scalar field,
though ubiquitous in this chiral model [29, 51], is not just
limited to it. Even in calculations employing the relativistic
Hartree approximation to determine the variation of these
scalar fields [61, 62], a behavior similar to this mean-field
treatment is observed. We also point out that the saturation
of the scalar meson exchange and first range term follows
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(b) 𝑇 = 100MeV

Figure 1:The various contributions to the𝐷
𝑆
meson energies, 𝜔(�⃗� = 0), in nuclear matter, plotted as functions of baryonic density in units of

the nuclear saturation density (𝜌
𝐵
/𝜌

0
). In each case, the isospin asymmetric situation (𝜂 = 0.5), as described in the legend, is also compared

against the symmetric situation (𝜂 = 0), represented by dotted lines.

as a direct consequence of the saturation of 𝜁, as is implied
by their proportionality in (11) and (25). At larger densities,
while the terms having 𝜁 saturate, the contribution from the
𝑑

1
range term continues to rise. With 𝜁 saturating at a value

of around 15MeV and the value of 𝑓
𝐷
𝑆

chosen to be 235MeV
in the present investigation, the last term in the numerator
as well as the denominator in (26) turns out to be much
smaller as compared to unity. Moreover, the 𝑑

1
term in the

denominator in the expression for the in-mediummass of𝐷
𝑆

given by (26) also turns out to be much smaller as compared
to unity, with (𝑑

1
(𝜌

𝑠

𝑝
+ 𝜌

𝑠

𝑛
)/2𝑓

2

𝐷
𝑆

) ≃ 0.05 at a density of
𝜌

𝐵
= 6𝜌

0
. Hence the smallness of this term as compared

to unity is justified for the entire range of densities we are
concerned with, in the present investigation. In order to read
more into our solution, we expand the argument of the square
root, in a binomial series (assuming (𝜁

+𝜁


𝑐
)/√2𝑓𝐷

𝑆

≪ 1 and
(𝑑

1
(𝜌

𝑠

𝑝
+𝜌

𝑠

𝑛
)/2𝑓

2

𝐷
𝑆

) ≪ 1), and retain up to only the first-order
terms. This gives, as the approximate solution,

𝜔 ≈ 𝑚
𝐷
𝑆

[1 +

(𝜁

+ 𝜁



𝑐
)

2√2𝑓
𝐷
𝑆

−
𝑑

1

4𝑓
2

𝐷
𝑆

(𝜌
𝑠

𝑝
+ 𝜌

𝑠

𝑛
)] . (27)

Moreover, since 𝜌𝑠

𝑖
≈ 𝜌𝑖 at small densities, the 𝑑1 range term

contribution in the above equation approximately equals
(𝑑

1
/4𝑓

2

𝐷
𝑆

)𝜌
𝐵

at low densities. The first of the terms in
the approximate expression given by (27) is an increasing
function while the second one is a decreasing function of
density. Their interplay generates the observed curve shape,
the repulsive contribution being responsible for the small
hump in an otherwise linear fall, at small densities (0 < 𝜌

𝐵
<

0.5𝜌0). While the attractive 𝑑1 term would have produced a
linear decrease right away, the role of repulsive contribution
is to impede this decrease, hence producing the hump. At
moderately higher densities, however, the contribution from
the second term outweighs the first, which is why we see a
linear drop with density. This is observed to be the case, till
around 𝜌

𝐵
≈ 2𝜌

0
. At still larger densities, the approximation

(𝜌𝑠

𝑖
≈ 𝜌

𝑖
) breaks down, though our binomial expansion

is still valid. Since scalar density falls slower than number
density, the term [−(𝑑

1
/4𝑓

2

𝐷
𝑆

)(𝜌
𝑠

𝑝
+ 𝜌

𝑠

𝑛
)] will fall faster than

[−(𝑑
1
/4𝑓

2

𝐷
𝑆

)𝜌
𝐵
]. This is responsible for the change in slope

of the curve at intermediate densities, where a linear fall
with density is no longer obeyed. So, at intermediate and
large densities, the manner of the variation is dictated by
the scalar densities, in the 𝑑1 range term. From (18) to (20),
one would expect the mass modifications of 𝐷𝑆 mesons to
be insensitive to isospin asymmetry, since, for example, in
this nuclear matter case, the dispersion relation bears isospin
symmetric terms like (𝜌𝑠

𝑝
+ 𝜌

𝑠

𝑛
). (This is in stark contrast with

earlier treatments of kaons and antikaons [22, 23] as well
as the 𝐷 mesons [28] within this effective model, where the
dispersion relations had terms like (𝜌𝑠

𝑝
−𝜌

𝑠

𝑛
) or (𝜌

𝑝
−𝜌

𝑛
), which

contributed to asymmetry.) However, the𝐷
𝑆
meson effective

mass is observed to depend on asymmetry in Figure 1, though
the dependence is weak. For example, the values of 𝜔(𝑘 =
0), for the isospin symmetric situation (𝜂 = 0), are 1913,
1865, and 1834MeV, respectively, at 𝜌

𝐵
= 2𝜌

0
, 4𝜌

0
, and

6𝜌
0
, while the corresponding numbers for the (completely)

asymmetric (𝜂 = 0.5) situation are 1917, 1875, and 1849MeV,
respectively, at 𝑇 = 0. Since the 𝜂-dependence of LSME and
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L
1st Range contributions must be identical, one can reason

from Figure 1 that this isospin dependence of 𝐷
𝑆
meson

effective mass is almost entirely due to the 𝑑
1
range term

(∼(𝜌𝑠

𝑝
+ 𝜌

𝑠

𝑛
)), which was expected to be isospin symmetric.

This apparently counterintuitive behavior has been observed
earlier in [29], in the context of𝐷mesons.This is because the
value of (𝜌𝑠

𝑝
+ 𝜌

𝑠

𝑛
) turns out to be different for symmetric and

asymmetric situations, contrary to naive expectations. Since
the scalar-isovector 𝛿 meson (𝛿 ∼ ⟨𝑢𝑢 − 𝑑𝑑⟩) is responsible
for introducing isospin asymmetry in this effective hadronic
model [51], owing to the equations of motion of the scalar
fields being coupled, the values of the other scalar fields turn
out to be different in the symmetric (𝛿 = 0) and asymmetric
(𝛿 ̸= 0) cases. The same is also reflected in the values of
the scalar densities calculated from these scalar fields, which
leads to the observed behavior.

Additionally, we observe from a comparison of Figures
1(a) and 1(b) that the magnitude of the 𝐷

𝑆
meson mass drop

decreases with an increase in temperature from 𝑇 = 0 to
𝑇 = 100MeV. For example, in the symmetric (𝜂 = 0)
situation, at 𝑇 = 0, the 𝐷

𝑆
meson mass values, at 𝜌

𝐵
=

2𝜌
0
, 4𝜌

0
, and 6𝜌

0
, are 1913, 1865, and 1834MeV, respectively,

which grow to 1925, 1879, and 1848MeV, respectively, at 𝑇 =
100MeV. Likewise, with 𝜂 = 0.5, the corresponding values
read 1917, 1875, and 1849MeV at 𝑇 = 0, while the same
numbers, at 𝑇 = 100MeV, are 1925, 1883, and 1855MeV.
Thus, though small, there is a definite reduction in the
magnitude of the mass drops, as we go from 𝑇 = 0 to
𝑇 = 100MeV, in each of these cases. This behavior can
be understood, from the point of view of the temperature
variation of scalar condensates, in the following manner. It
is observed that the scalar fields decrease with an increase
in temperature from 𝑇 = 0 to 100MeV [27, 29]. In [27],
the same effect was understood as an increase in the nucleon
mass with temperature. The equity of the two arguments
can be seen by invoking the expression relating the baryon
mass to the scalar fields’ magnitude, 𝑚∗

𝑖
= −(𝑔

𝜎𝑖
𝜎 + 𝑔

𝜁𝑖
𝜁 +

𝑔
𝛿𝑖
𝛿) [51]. The temperature dependence of the scalar fields

(𝜎, 𝜁, 𝛿) has been studied within the model in [29], which
are observed to be different for the zero and finite baryon
densities. At zero baryon density, themagnitudes of the scalar
fields 𝜎 and 𝜁 are observed to remain almost constant up
to a temperature of about 125MeV, above which these are
observed to decrease with temperature. This behaviour can
be understood from the expression of 𝜌𝑖

𝑠
given by (14) for the

situation of zero density, that is, for 𝜇∗

𝑖
= 0, which decreases

with increase in temperature. The temperature dependence
of the scalar density in turn determines the behaviour of the
scalar fields. The scalar fields which are solved from their
equations of motion behave in a similar manner as the scalar
density. At finite densities, that is, for nonzero values of the
effective chemical potential, 𝜇∗

𝑖
, however, the temperature

dependence of the scalar density is quite different from
the zero density situation. For finite baryon density, with
increase in temperature, there are contributions also from
higher momenta, thereby increasing the denominator of the
integrand on the right-hand side of the baryon scalar density
given by (14). This leads to a decrease in the scalar density. At
finite baryon densities, the competing effects of the thermal

distribution functions and the contributions from the higher
momentum states give rise to the temperature dependence
of the scalar density, which in turn determine the behaviour
of the 𝜎 and 𝜁 fields with temperature. These scalar fields
are observed to have an initial increase in their magnitudes
up to a temperature of around 125–150MeV, followed by a
decrease as the temperature is further raised [29].This kind of
behavior of the scalar 𝜎 field on temperature at finite densities
has also been observed in the Walecka model in [63]. In fact,
we point out that a decrease in the scalar condensates with an
increase in temperature, though small in the hadronic regime
(<170MeV), is well-known in general model-independent
terms [64] and was also observed to be a consistent feature
of all 𝑈(𝑁𝑓)𝐿 × 𝑈(𝑁𝑓)𝑅 linear sigma models in the model-
independent work of Röder et al. [48]. Since these scalar
fields serve as an input in calculating the scalar densities
[51], a decrease in the magnitude of the latter accompanies a
decrease in the former, at larger temperatures. From the point
of view of the dispersion relations, this results in a decrease
in the coefficient 𝐴 and, owing to the inverse dependence
of 𝜔 on 𝐴, increases the value of 𝜔(𝑘 = 0) in the finite
temperature case, as compared to the 𝑇 = 0 situation. Or
stating it differently, the difference of this 𝜔(𝑘 = 0), from the
vacuum value, that is, the mass drop, decreases. Thus, from
a physical viewpoint, since the origin of these mass drops is
the attractive in-medium interactions, one can say that the
reduction in the mass dropmagnitudes is due to a weakening
of the attractive strength of these in-medium interactions,
represented in these models by a reduction in the quark
condensates with increasing temperatures. Additionally, it
is also observed from Figure 1 that isospin dependence of
the 𝐷𝑆 meson mass, feeble anyways, weakens further with
temperature. For example, as mentioned earlier, mass of the
𝐷𝑆 mesons at 𝜌𝐵 = 6𝜌0, for the 𝜂 = 0 and 𝜂 = 0.5 cases, is 1834
and 1849MeV, respectively (a difference of 15MeV), when
𝑇 = 0, which changes to 1848 and 1855MeV at 𝑇 = 100MeV
(a 7MeV difference). This is, once again, due to a decrease
in the magnitude of 𝛿, with temperature, at any fixed value of
the parameters 𝜂 and 𝜌

𝐵
. In particular, the difference between

the values of 𝛿 for the 𝜂 = 0 and 𝜂 = 0.5 cases is observed
to decrease with temperature (as was shown explicitly in
[29]). Since asymmetry is introduced through 𝛿, a decrease
in the difference of the values of 𝜔, between symmetric and
asymmetric situations, with temperature, follows naturally.

Next, we generalize our analysis by including hyper-
onic degrees of freedom as well, in the medium. However,
as mentioned previously, in the ensuing discussion of 𝐷

𝑆

mesons in hyperonic matter, we focus predominantly on the
new physics arising via the introduction of strangeness in
the medium, since, for example, the weak dependence on
isospin asymmetry, or a weak reduction in the mass drop
magnitudes at higher temperatures, has, in principle, the
same explanation that stood in the nuclear matter context.

Figure 2 shows the variation of the in-mediummass of the
𝐷𝑆 mesons, along with the various individual contributions,
in hyperonic medium as a function of baryonic density, for
typical values of temperature, isospin asymmetry parameter,
and strangeness fraction. The most drastic consequence of
the inclusion of hyperons in the medium is that the mass
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Figure 2: The various contributions to the effective mass of 𝐷+

𝑆
and 𝐷−

𝑆
mesons, as a function of baryonic density, for typical values of

temperature (𝑇 = 100MeV) and strangeness fraction (𝑓
𝑠
= 0.5). In each case, the asymmetric situation (𝜂 = 0.5), as described in the legend,

is also compared against the symmetric situation (𝜂 = 0), represented by dotted lines.

degeneracy of 𝐷+

𝑆
and 𝐷−

𝑆
now stands broken. For example,

the values of (𝑚
𝐷
+

𝑆

, 𝑚
𝐷
−

𝑆

) at 𝜌
𝐵
= 𝜌

0
, 2𝜌

0
, 4𝜌

0
, and 6𝜌

0

are observed to be (1948, 1953), (1918, 1928), (1859, 1879),
and (1808, 1838)MeV, respectively, as can be seen from the
figure. Thus, except at vacuum (𝜌

𝐵
= 0), mass difference of

𝐷
+

𝑆
and 𝐷−

𝑆
is nonzero at finite 𝜌

𝐵
, growing in magnitude

with density. This mass degeneracy breaking is a direct
consequence of nonzero contributions from the Weinberg-
Tomozawa term, which follows from (11), (16), and (19). The
same may be reconciled with Figure 2, from which it follows
that, except for this Weinberg-Tomozawa term acquiring
equal and opposite values for these mesons, all other terms
are absolutely identical for them. Once again, on the basis of
the following analysis of the 𝐷

𝑆
meson dispersion relations

at zero momentum, we insist that this observed behavior is
perfectly consistent with expectations.

The general solution of the equivalent quadratic equation
(17) is

𝜔 =

(−𝐵 + √𝐵2 − 4𝐴𝐶)

2𝐴

≈ −
𝐵

2𝐴
+ √
𝐶

1

𝐴
+

𝐵
2

8𝐴√𝐴𝐶
1

+ ⋅ ⋅ ⋅ ,

(28)

where we have disregarded the negative root and have
performed a binomial expansion of (1 + 𝐵2

/4𝐴𝐶
1
)

1/2, with
𝐶

1
= −𝐶. Upon feeding numerical values, we observe that the

expansion parameter (𝐵2
/4𝐴𝐶

1
) is much smaller than unity

for our entire density variation, which justifies the validity of
this expansion for our analysis. The same exercise also allows
us to safely disregard higher-order terms and simply write

𝜔hyp ≈ √
𝐶

1

𝐴
−
𝐵

2𝐴
. (29)

Further, with the same justification as in the nuclear matter
case, both (𝐶1/𝐴)

1/2 and (1/𝐴) can also be expanded bino-
mially. For example, for the second term, this gives

|𝐵|

2𝐴
=
|𝐵|

2
+ O(

𝜌𝑖𝜌
𝑠

𝑖

𝑓
4

𝐷
𝑆

) , (30)

where the contribution from these higher-order terms is
smaller owing to the large denominator, prompting us to
retain only the first-order terms. Here, we point out that since
𝐵 = ±|𝐵| (+ sign for 𝐷+

𝑆
and − sign for 𝐷−

𝑆
), this term,

which represents the Weinberg-Tomozawa contribution to
the dispersion relations, breaks the degeneracy of the 𝐷

𝑆

mesons. On the other hand, the first term in (29) is common
between 𝐷+

𝑆
and 𝐷−

𝑆
mesons. Thus, the general solution of

the 𝐷
𝑆
meson dispersion relations in the hyperonic matter

context can be written as

𝜔hyp = 𝜔com ∓ 𝜔brk, (31)
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where

𝜔com = √
𝐶1

𝐴
≈ 𝑚

𝐷
𝑆

[1 − (
𝑑1

4𝑓
2

𝐷
𝑆

∑

(𝑁+𝐻)

𝜌
𝑠

𝑖
)

− (
𝑑

2

4𝑓
2

𝐷
𝑆

(2∑

Ξ

𝜌
𝑠

𝑖
+ ∑

(𝐻−Ξ)

𝜌
𝑠

𝑖
)) + (

(𝜁

+ 𝜁



𝑐
)

2√2𝑓𝐷
𝑆

)] ,

(32)

𝜔brk =
|𝐵|

2𝐴
≈
|𝐵|

2
= [

1

4𝑓
2

𝐷
𝑆

(2∑

Ξ

𝜌𝑖 + ∑

(𝐻−Ξ)

𝜌𝑖
)] . (33)

Thus, 𝜔
𝐷
+

𝑆

= 𝜔com − 𝜔brk and 𝜔
𝐷
−

𝑆

= 𝜔com + 𝜔brk
(where 𝜔brk is necessarily positive), which readily explains
why the mass of𝐷+

𝑆
drops more than that of𝐷−

𝑆
, with density.

Also, this formulation readily accounts for symmetric fall
of the medium masses of 𝐷+

𝑆
and 𝐷−

𝑆
mesons, about 𝜔com

in Figure 3. Trivially, it may also be deduced that 𝜔brk is
extinguished in nuclear matter, so that the mass degeneracy
of 𝐷+

𝑆
and 𝐷−

𝑆
is recovered from these equations. However,

we observe that though the curve corresponding to 𝜔com is
exactly bisecting the masses of 𝐷+

𝑆
and 𝐷−

𝑆
at small densities,

this bisection is no longer perfect at high densities. This can
be understood in the following manner. In essence, we are
comparing the density dependence of a function 𝑓(𝜌𝑠

𝑖
), with

the functions 𝑓(𝜌𝑠

𝑖
) ± 𝑔(𝜌

𝑖
). Since scalar densities fall sublin-

early with the number density, it follows that the fall can not
be absolutely symmetric at any arbitrary density. In fact, since
a decreasing function of scalar density will fall faster than that
of a number density, one expects 𝜔com to lean away from the
curve for𝐷−

𝑆
meson and towards the curve corresponding to

𝐷
+

𝑆
, which is exactly what is observed in Figure 3.
Since this disparity between 𝐷+

𝑆
and 𝐷−

𝑆
originates from

the Weinberg-Tomozawa term, whose magnitude is directly
proportional to the hyperonic number densities, one expects
this disparity to grow with an increase in the strangeness
content of the medium.The same also follows from the above
formulation, since the mass splitting between the two, Δ𝑚 =
(𝑚𝐷

−

𝑆

− 𝑚𝐷
+

𝑆

) ≡ (𝜔𝐷
−

𝑆

− 𝜔𝐷
+

𝑆

) = −2𝜔brk, should grow with
both 𝑓

𝑠
at fixed 𝜌

𝐵
(i.e., a larger proportion of hyperons) and

𝜌
𝐵
at fixed (nonzero) 𝑓

𝑠
(i.e., a larger hyperonic density), in

accordancewith (33). Naively, one expects this𝑓
𝑠
dependence

to be shared by the two 𝐷
𝑆
mesons; however, closer analysis

reveals that this is not the case, as shown in Figure 4 where we
consider the 𝑓

𝑠
dependence of the 𝐷

𝑆
meson medium mass.

It is observed that while the 𝑓
𝑠
dependence for 𝐷+

𝑆
meson is

quite pronounced, the same for the𝐷−

𝑆
is conspicuously sub-

dued. Counterintuitive as it may apparently be, this observed
behavior follows from the above formulation. Since 𝜔𝐷

−

𝑆

=

𝜔com +𝜔brk, at any fixed density, the first of these is a decreas-
ing function of 𝑓

𝑠
, while the second increases with 𝑓

𝑠
. These

opposite tendencies are responsible for the weak 𝑓
𝑠
depen-

dence of𝐷−

𝑆
meson.On the other hand, because𝜔

𝐷
+

𝑆

= 𝜔com−

𝜔brk, the two effects add up to produce a heightened overall
decreasewith𝑓

𝑠
for the𝐷+

𝑆
meson, aswe observe in the figure.

A comparison of these hyperonic matter (𝑓
𝑠
̸= 0) solu-

tions with the nuclear matter (𝑓
𝑠
= 0) solutions is shown in

Figure 5 for typical values of the parameters. It is observed
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Figure 3:𝐷

𝑆
mesonmass degeneracy breaking in hyperonic matter,

as a function of baryonic density, for typical values of the other
parameters (𝑇 = 100MeV, 𝑓

𝑠
= 0.5, and 𝜂 = 0.5). The medium

masses of 𝐷+

𝑆
and 𝐷−

𝑆
are observed to fall symmetrically about 𝜔com

(see text).

from Figure 5(a) that, at small densities, the nuclear matter
curve, which represents both 𝐷+

𝑆
and 𝐷−

𝑆
, bisects the mass

degeneracy breaking curve, akin to 𝜔com in Figure 3. How-
ever, at larger densities, both of these 𝑓

𝑠
̸= 0 curves drop

further than the 𝑓
𝑠
= 0 curve. From a casual comparison of

expressions, it appears that the nuclear matter solution, given
by (27), also enters the hyperonic matter solution, (32), albeit
as a subset of 𝜔com. It is tempting to rearrange the latter then,
such that this nuclear matter part is separated out, generating
an expression of the type 𝜔hyp = 𝜔nucl + 𝑓(𝜌𝑖

, 𝜌
𝑠

𝑖
)|

𝑖=𝐻
, which

would also entail the segregation of the entire 𝑓
𝑠
dependence.

However, careful analysis reveals that it is impossible to
achieve this kind of a relation, since, in spite of an identical
expression, in hyperonic matter, the RHS of (27) does not
give the nuclear matter solution. This is because the nuclear
matter solution involves the scalar fields (and scalar densities
computed using these scalar fields) obtained as a solution of
coupled equations in the 𝑓𝑠 = 0 situation, which are radically
different from the solutions obtained in the 𝑓𝑠 ̸= 0 case. (This
has been observed to be the case, in almost every treatment
of hyperonic matter within this effective model but perhaps
most explicitly in [46].)Thus, one can not retrieve the nuclear
matter solution from the scalar fields obtained as solutions
in the 𝑓𝑠 ̸= 0 case; moreover, due to the complexity of the
concerned equations, it is impossible to achieve a closed-form
relation between the values of the scalar fields (and hence also
the scalar densities) obtained in the two cases. In fact, the
low-density similarity between Figures 3 and 5(a) might lead
one to presume that 𝜔com reduces to 𝜔nucl at small densities.
This expectation is fueled further by their comparison in
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Figure 4: The sensitivity of the medium mass of (a) 𝐷+

𝑆
and (b) 𝐷−

𝑆
mesons, to the strangeness fraction 𝑓

𝑠
, at typical values of temperature

(𝑇 = 100MeV) and isospin asymmetry parameter (𝜂 = 0.5).
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Figure 5: (a) A comparison of medium mass of 𝐷
𝑆
mesons, in nuclear and hyperonic matter, maintaining the same values of parameters as

before. (b) Comparison of the nuclear matter solution, 𝜔nucl, with the 𝜔com in hyperonic matter, as observed in Figure 3.
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Figure 6:The optical potentials of the (a)𝐷+

𝑆
and (b)𝐷−

𝑆
mesons, as a function of momentum 𝑘 (≡|�⃗�|), in cold (𝑇 = 0), asymmetric (𝜂 = 0.5)

matter, at different values of 𝜌
𝐵
. In each case, the hyperonic matter situation (𝑓

𝑠
= 0.5), as described in the legend, is also compared against

the nuclear matter (𝑓
𝑠
= 0) situation, represented by dotted lines.

Figure 5(b), which shows clearly that they coincide at small
densities. However, in light of the above argument, it follows
that they are absolutely unrelated. Their coincidence at small
densities can be explained by invoking the relation 𝜌𝑠

𝑖
≈ 𝜌𝑖 in

this regime, using which (32) reduces to

𝜔com ≈ 𝑚𝐷
𝑆

(1 +

(𝜁

+ 𝜁



𝑐
)

2√2𝑓
𝐷
𝑆

−
𝜅1

4𝑓
2

𝐷
𝑆

𝜌
𝐵
)

− 𝑚
𝐷
𝑆

(
𝜅2Δ

4𝑓
2

𝐷
𝑆

) ,

(34)

with 𝜅1
= (𝑑

1
+ 𝑑

2
) ≈ 1.28𝑑

1
, with our choice of parameters,

𝜅2 (≡𝑑2) = 0.22𝜅1, and with the difference term, Δ = (𝜌𝑠

Ξ
0 +

𝜌
𝑠

Ξ
− −𝜌

𝑠

𝑝
−𝜌

𝑠

𝑛
).The contribution from this second term in (34)

is significantly smaller than the first term at small densities,
owing to the smaller coefficient, as well as the fact that this
depends on the difference of densities rather than on their
sum (like the first term). This first part of (34) can be likened
to the approximate nuclear matter solution at small 𝜌𝐵, as we
concluded from (27). The marginal increase of 𝜅 above 𝑑1

is compensated by a marginal increase in 𝜁 for the 𝑓
𝑠
̸= 0

case, as compared to the 𝑓𝑠 = 0 situation, and hence the
two curves look approximately the same at small densities in
Figure 5(b). At larger densities, however, this simple picture
breaks down, and the fact that they are unrelated becomes
evident. Nevertheless, we may conclude in general from
this comparison that the inclusion of hyperonic degrees of
freedom in the hadronic medium makes it more attractive,
regarding 𝐷

𝑆
mesons’ in-medium interactions, especially at

large 𝜌𝐵. From the point of view of the 𝐷𝑆 meson dispersion
relations, this is conclusively because of the contributions
from the extra, hyperonic terms, which result in an overall
increase of the coefficient 𝐴hyp significantly above 𝐴nucl,
particularly at large 𝑓𝑠.

Finally, we consider momentum-dependent effects by
investigating the behavior of the in-medium optical poten-
tials for the 𝐷

𝑆
mesons. These are shown in Figure 6, where

we consider them in the context of both asymmetric nuclear
(𝑓

𝑠
= 0) and hyperonic matter (𝑓

𝑠
= 0.5), as a function of

momentum 𝑘 (=|�⃗�|) at fixed values of the parameters 𝜌
𝐵, 𝜂,

and 𝑇. As with the rest of the investigation, the dependence
of the in-medium optical potentials on the parameters 𝑇
and 𝜂 is quite weak; hence, we neglect their variation in this
context. In order to appreciate the observed behavior of these
optical potentials, we observe that as per its definition, (21),
at zero momentum, optical potential is just the negative of
the mass drop of the respective meson (i.e., 𝑈(𝑘 = 0) =
−Δ𝑚(𝑘 = 0) ≡ Δ𝑚(𝜌

𝐵
, 𝑇, 𝜂, 𝑓

𝑠
)). It follows then that, at

𝑘 = 0, the two 𝐷
𝑆
mesons are degenerate in nuclear matter;

moreover, it is observed that this degeneracy extends to the
finite momentum regime.This is because, from (15) and (16),
the finite momentum contribution is also common for 𝐷+

𝑆

and 𝐷−

𝑆
in nuclear matter. In hyperonic matter, however,

nonzero contribution from these terms breaks the degeneracy
in the 𝑘 = 0 limit (as was already discussed before), and finite
momentum preserves this nondegeneracy. Consequently, at
any fixed density, the curves for different values of 𝑓

𝑠
differ

in terms of their 𝑦-intercept but otherwise appear to run
parallel. Further, as we had reasoned earlier for the 𝑘 = 0
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case, the effect of increasing 𝑓
𝑠
on the mass drops of 𝐷+

𝑆
and

𝐷
−

𝑆
is equal and opposite about the nuclear matter situation at

small densities, which readily explains the behavior of optical
potentials for these mesons at 𝜌

𝐵
= 𝜌

0
. At larger densities,

for example, the 𝜌
𝐵
= 4𝜌

0
case shown in Figure 6, the lower

values of optical potentials for both𝐷+

𝑆
and𝐷−

𝑆
, as compared

to the 𝑓𝑠
= 0 case, can be immediately reconciled with the

behavior observed in Figure 5. In fact, the large difference
between the𝐷+

𝑆
optical potentials for the 𝑓𝑠 = 0 and 𝑓𝑠 = 0.5

cases, as compared to that for 𝐷−

𝑆
, is a by-product of their

zero-momentum behavior, preserved at nonzeromomenta as
a consequence of (15) and (16).

We next discuss the possible implications of these
medium effects. In the present investigation, we have
observed a reduction in the mass of the 𝐷

𝑆
mesons, with

an increase in baryonic density. This decrease in 𝐷
𝑆
meson

mass can result in the opening up of extra reaction channels
of the type 𝐴 → 𝐷

+

𝑆
𝐷

−

𝑆
in the hadronic medium. In fact,

a comparison with the spectrum of known charmonium
states [47, 65] sheds light on the possible decay channels,
as shown in Figure 7. As a starting approximation, we have
neglected the variation of energy levels of these charmonia
with density, since we intuitively expect medium effects to
be larger for 𝑠𝑐 (or 𝑐𝑠) system, as compared to 𝑐𝑐 system.
However, this approximation can be conveniently relaxed,
for example, as was done in [46, 66] for charmonia and
bottomonia states, respectively. It follows from Figure 7
that above certain threshold density, which is given by the
intersection of the 𝐷

𝑆
meson curve with the respective

energy level, the mass of the 𝐷+

𝑆
𝐷

−

𝑆
pair is smaller than

that of the excited charmonium state. Hence, this decay
channel opens up above this threshold density. The most
immediate experimental consequence of this effect would
be a decrease in the production yields for these excited
charmonia in collision experiments. Additionally, since an
extra decay mode will lower the lifetime of the state, one
expects the decay widths of these excited charmonia to be
modified as a result of these extra channels. Though it can be
reasoned right away that reduction in lifetime would cause
a broadening of the resonance curve, more exotic effects can
also result from these level crossings. For example, it has been
suggested in [67] that if the internal structure of the hadrons
is also accounted for, there is even a possibility for these
in-medium widths to become narrow. This counterintuitive
result originates from the node structure of the charmonium
wavefunction, which can even create a possibility for the
decay widths to vanish completely at certain momenta of the
daughter particles. Also, if the medium modifications of the
charmonium states are accounted for, the decay widths will
be modified accordingly (as was observed in the context of
the𝐷mesons, in [46]).

Apart from this, one expects signatures of these medium
effects to be reflected in the particle ratio (𝐷+

𝑆
/𝐷

−

𝑆
). A produc-

tion asymmetry between𝐷+

𝑆
and𝐷−

𝑆
mesons might be antici-

pated owing to their unequal mediummasses, as observed in
the current investigation. Also, due to the semileptonic and
leptonic decaymodes of the𝐷𝑆 mesons [47], one also expects
that, accompanying an increased production of 𝐷𝑆 mesons
due to a lowered mass, there would be an enhancement
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Figure 7: Mass of the 𝐷+

𝑆
𝐷

−

𝑆
pair, compared against the (vacuum)

masses of the excited charmonia states, at typical values of temper-
ature (𝑇 = 100MeV) and asymmetry (𝜂 = 0.5), for both nuclear
matter (𝑓

𝑠
= 0) and hyperonic matter (𝑓

𝑠
= 0.2, 0.3, and 0.5)

situations. The respective threshold density (see text) is given by the
point of intersection of the two concerned curves.

in dilepton production as well. Further, we expect these
medium modifications of the 𝐷

𝑆
mesons to be reflected in

the observed dilepton spectra, due to the well-known fact
that dileptons, with their small interaction cross section in
hadronic matter, can serve as probes of medium effects in
collision experiments [68, 69]. The attractive interaction of
the𝐷

𝑆
mesons with the hadronic medium might also lead to

the possibility of formation of𝐷
𝑆
-nucleus bound state, which

can be explored at the CBM experiment at FAIR in the future
facility at GSI [70].

We now discuss how the results of the present investi-
gation compare with the available literature on the medium
effects for pseudoscalar 𝐷

𝑆
(1968.5) mesons. As has already

been mentioned, [42–45] have treated the medium behavior
of 𝐷𝑆 mesons, using the coupled channel framework. The
broad perspective that emerges from all these analyses is that
of an attractive interaction in the medium [44, 45] between
𝐷𝑆

mesons and baryon species like the nucleons or theΛ, Σ, Ξ
hyperons [42–45], which is consistent with what we have
observed in this work. Additionally, one observes in these
approaches an attractive medium interaction even with the
charmed baryons [43]. Some of these interaction channels
also feature resonances, which is reflected in the relevant
scattering amplitudes picking up imaginary parts as well, for
example, the 𝑁

𝑐𝑠
(2892) state in the 𝐷+

𝑆
𝑁 channel [42, 43].

Treating such resonances comes naturally to the coupled
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channel framework, since, by default, the strategy is aimed
at considering the scattering of various hadron species off
one another and assessing scattering amplitudes and cross
sections, and so forth [10, 11]. In the present work, we have
investigated the in-medium masses of the𝐷

𝑆
mesons arising

due to their interactions with the baryons and scalar mesons
in the nuclear (hyperonic) medium and have not studied the
decays of these mesons. As has already been mentioned the
mass modifications of the 𝐷𝑆 mesons can lead to opening
up of the new channels for the charmonium states decaying
to 𝐷+

𝑆
𝐷

−

𝑆
at certain densities as can be seen from Figure 7.

In fact, even if one contemplates working along the lines
of [46] for calculating these decay widths, the situation is a
bit more complicated for these 𝐷𝑆 mesons, since the states
𝑋(3872),𝑋(3915), and𝑋(3940), which are highly relevant in
this context (as one can see from Figure 7), are not classified
as having clear, definite quantum numbers in the spectrum of
excited charmonium states [47]. This makes the assessment
of medium effects for these states more difficult in com-
parison, since the identification of the relevant charmonium
states with definite quantum numbers in the charmonium
spectrum, such as 1𝑆 for 𝐽/𝜓, 2𝑆 for 𝜓(3686), and 1𝐷 for
𝜓(3770), was a crucial requirement for evaluating their mass
shifts in the medium in the QCD second-order Stark effect
study in [46]. For some of these unconventional states, for
example,𝑋(3872), this absence of definite identification with
states in the spectrum has led to alternative possibilities
being explored for these states. A prominent example is the
possibility of amolecular structure for this𝑋(3872) state [65],
borne out of contributions from the (𝐷+

𝐷
∗−
+ 𝐷

−
𝐷

∗+
) and

(𝐷
0
𝐷

∗0

+ 𝐷
0

𝐷
∗0
) components in the 𝑠-wave.

Lastly, we point out that the medium effects described
in this paper, and the possible experimental consequences
entailed by these, are especially interesting in wake of the
upcoming CBM [70] experiment at FAIR, GSI, where high
baryonic densities are expected to be reached. Due to the
strong density dependence of thesemediumeffects, we expect
that each of these mentioned experimental consequences
would intensify at higher densities and should be palpable in
the aforementioned future experiment.

5. Summary

To summarize, we have explored the properties of𝐷
𝑆
mesons

in a hot and dense hadronic environment, within the frame-
work of the chiral 𝑆𝑈(3)

𝐿
× 𝑆𝑈(3)

𝑅
model, generalized to

𝑆𝑈(4). The generalization of chiral 𝑆𝑈(3) model to 𝑆𝑈(4)
is done in order to derive the interactions of the charmed
mesons with the light hadrons, needed for the study of the
in-medium properties of the𝐷𝑆 mesons in the present work.
However, realizing that the chiral symmetry is badly broken
for the 𝑆𝑈(4) case due to the large mass of the charm quark,
we use the interactions derived from 𝑆𝑈(4) for the𝐷𝑆 meson
but use the observed masses of these heavy pseudoscalar
mesons as well as empirical/observed values of their decay
constants [30]. The𝐷

𝑆
mesons have been considered in both

(symmetric and asymmetric) nuclear and hyperonic matter,
at finite densities that extend slightly beyond what can be
achieved with the existing and known future facilities and

at both zero and finite temperatures. Due to net attractive
interactions in the medium, 𝐷

𝑆
mesons are observed to

undergo a drop in their effective mass. These mass drops are
found to intensify with an increase in the baryonic density
of the medium, while being largely insensitive to changes
in temperature as well as the isospin asymmetry parameter.
However, upon adding hyperonic degrees of freedom, the
mass degeneracy of 𝐷+

𝑆
and 𝐷−

𝑆
is observed to be broken.

The mass splitting between 𝐷+

𝑆
and 𝐷−

𝑆
is found to grow

significantly with an increase in baryonic density as well as
the strangeness content of the medium. Through a detailed
analysis of the in-medium dispersion relations for the 𝐷𝑆

mesons, we have shown that the observed behavior follows
precisely from the interplay of contributions from various
interaction terms in the Lagrangian density. We have briefly
discussed the possible experimental consequences of these
medium effects, for example, in the 𝐷+

𝑆
/𝐷

−

𝑆
ratio, dilepton

spectra, possibility of formation of exotic 𝐷
𝑆
-nucleus bound

states, and modifications of the decays of charmonium states
𝐷

+

𝑆
𝐷

−

𝑆
pair in the hadronic medium. The medium modifi-

cations of the 𝐷
𝑆
mesons are expected to be considerably

enhanced at large densities and hence the experimental
consequences may be accessible in the upcoming CBM
experiment, at the future facilities of FAIR, GSI [70].
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