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Abstract We propose a phantom crossing Dvali–Gabadadze–Porrati (DGP)
model. In our model, the effective equation of state of the DGP gravity crosses
the phantom divide line. We demonstrate crossing of the phantom divide does not
occur within the framework of the original DGP model or the DGP model devel-
oped by Dvali and Turner. By extending their model, we construct a model that
realizes crossing of the phantom divide. We find that the smaller the value of the
new introduced parameter β is, the older epoch crossing of the phantom divide
occurs in. Our model can account for late-time acceleration of the universe with-
out dark energy. We investigate and show the property of Phantom crossing DGP
model.

Keywords Modified gravity, Extra dimensions, Equation of state,
Phantom crossing, Cosmic acceleration, Cosmological model

1 Introduction

Late time accelerated expansion of the universe was indicated by measurements
of distant Type Ia supernovae (SNe Ia) [1; 2; 3; 4; 5; 6; 7; 8; 9]. This was con-
firmed by observations of cosmic microwave background (CMB) anisotropies by
the Wilkinson Microwave Anisotropy Probe (WMAP) [10; 11], and the large-scale
structure in the distribution of galaxies observed in the Sloan Digital Sky Survey
(SDSS) [12; 13].

It is not possible to account for this phenomenon within the framework of gen-
eral relativity containing only matter. Therefore, a number of models containing
“dark energy” have been proposed as the mechanism for the acceleration. There

K. Hirano Department of General Education Ichinoseki National College of Technology, Ichi-
noseki 021-8511, Japan hirano@ichinoseki.ac.jp · Z. Komiya Department of Physics Tokyo
University of Science Tokyo 162-8601, Japan · Z. Komiya Shinjuku College of Information
Technology Tokyo 164-0001, Japan



2 K. Hirano, Z. Komiya

are currently many dark energy models, including cosmological constant, scalar
field, quintessence, and phantom models [14; 15; 16; 17; 18; 19; 20; 21; 22]. How-
ever, dark energy, the nature of which remains unknown, has not been detected yet.
The cosmological constant, which is the standard candidate for dark energy, can-
not be explained by current particle physics due to its very small value, and it is
plagued with fine-tuning problems and the coincidence problem.

An alternative method for explaining the current accelerated expansion of the
universe is to extend general relativity to more general theories on cosmological
scales. Instead of adding an exotic component such as a cosmological constant to
the right-hand side (i.e., the energy-momentum tensor) of Einstein’s field equation,
the left-hand side (i.e., the Einstein tensor, which is represented by pure geometry)
can be modified. Typical models based on this modified gravity approach are f (R)
models [23; 24; 25] and the Dvali–Gabadadze–Porrati (DGP) model [26; 27; 28]
(for reviews, see [29]).

In f (R) models, the scalar curvature R in the standard Einstein–Hilbert gravita-
tional Lagrangian is replaced by a general function f (R). By adopting appropriate
function phenomenologically, f (R) models can account for late-time acceleration
without postulating dark energy.

The DGP model is an extra dimension scenario. In this model, the universe is
considered to be a brane; i.e., a four-dimensional (4D) hypersurface, embedded in
a five-dimensional (5D) Minkowski bulk. On large scales, the late-time accelera-
tion is driven by leakage of gravity from the 4D brane into 5D spacetime. Natu-
rally, there is no need to introduce dark energy. On small scales, gravity is bound
to the 4D brane and general relativity is recovered to a good approximation.

According to various recent observational data including that of Type Ia super-
novae [30; 31; 32; 33], it is possible that the effective equation of state parameter
weff, which is the ratio of the effective pressure peff to the effective energy density
ρeff, evolves from being larger than −1 (non-phantom phase) to being less than
−1 (phantom phase [16; 34]); namely, it has currently crossed −1 (the phantom
divide).

f (R) models that realize the crossing of the phantom divide have been stud-
ied [35; 36]. On the other hand, in the original DGP model [26; 27; 28] and a
phenomenological extension of the DGP model described by the modified Fried-
mann equation proposed by Dvali and Turner [37], the effective equation of state
parameter never crosses the weff =−1 line.1

In this paper, we develop the “Phantom Crossing DGP model” by further ex-
tending the modified Friedmann equation by Dvali and Turner [37]. In our model,
the effective equation of state parameter of DGP gravity crosses the phantom di-
vide line, as indicated by recent observations.

This paper is organized as follows. In the next section, we summarize the orig-
inal DGP model, and check the behavior of the effective equation of state. In
Sect. 3, we describe the modified Friedmann equation by Dvali and Turner [37],
and we also demonstrate that the effective equation of state does not cross the
weff =−1 line in this framework. In Sect. 4, we construct “the Phantom Crossing

1 Some models realize phantom crossing by adding an exotic component such as the scalar
field to the DGP model [38; 39]. In these models, the equation of state of the additional compo-
nent crosses the phantom divide, but the effective equation of state of DGP gravity itself does
not.
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DGP model” by extending the modified Friedmann equation proposed by Dvali
and Turner. We show that the effective equation of state parameter of our model
crosses the phantom divide line, and investigate the properties of our model. Fi-
nally, a summary is given in Sect. 5.

2 The DGP model

The DGP model [26] assumes that we live on a 4D brane embedded in a 5D
Minkowski bulk. Matter is trapped on the 4D brane and only gravity experiences
the 5D bulk.

The action is

S =
1

16π
M3

(5)

∫
bulk

d5x
√
−g(5)R(5)

+
1

16π
M2

(4)

∫
brane

d4x
√
−g(4)(R(4) +Lm), (1)

where the subscripts (4) and (5) denote quantities on the brane and in the bulk,
respectively. M(5) (M(4)) is the 5D (4D) Planck mass, and Lm represents the matter
Lagrangian confined on the brane. The transition from 4D gravity to 5D gravity is
governed by a crossover scale rc.

rc =
M2

(4)

2M3
(5)

. (2)

On scales larger than rc, gravity appears 5D. On scales smaller than rc, gravity is
effectively bound to the brane and 4D Newtonian dynamics is recovered to a good
approximation. rc is the single parameter in this model.

Assuming spatial homogeneity and isotropy, a Friedmann-like equation on the
brane is obtained as [27; 28]

H2 =
8πG

3
ρ + ε

H
rc

, (3)

where ρ is the total cosmic fluid energy density on the brane. ε =±1 represents the
two branches of the DGP model. The solution with ε = +1 is known as the self-
accelerating branch. In this branch, the expansion of the universe accelerates
even without dark energy because the Hubble parameter approaches a constant,
H = 1/rc, at late times. On the other hand, ε = −1 corresponds to the normal
branch. This branch cannot undergo acceleration without an additional dark en-
ergy component. Hence in what follows we consider the self-accelerating branch
(ε = +1) only.

For the second term on the right-hand side of Eq. (3), which represents the
effect of DGP gravity, the effective energy density is

ρrc =
3

8πG
H
rc

, (4)
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Fig. 1 Effective equation of state of the DGP model wrc versus redshift z. The solid (red), dashed
(green), dotted (blue) lines represent the cases for rcH0 = 1.04,1.43, and 2.00, respectively
(corresponding to Ωm,0 = 0.04,0.30, and 0.50, respectively)

and the effective pressure is

Prc =− 1
8πG

(
Ḣ

rcH
+3

H
rc

)
, (5)

where Ḣ = dH/dt, the differential of the Hubble parameter with respect to the
cosmological time t. Using Eqs. (4) and (5), the effective equation of state param-
eter of DGP gravity is given by

wrc =
Prc

ρrc

. (6)

Figure 1 shows the behavior of the effective equation of state of DGP gravity
wrc versus the redshift z for rcH0 = 1.04,1.43, and 2.00. Assuming that the to-
tal cosmic fluid energy density ρ of Eq. (3) contains matter and radiation, from
Eq. (7), these values of rcH0 correspond to Ωm,0 = 0.04,0.30, and 0.50, respec-
tively.

Ωm,0 = 1−Ωr,0− (rcH0)−1, (7)

where Ωm is the normalized energy density of matter and Ωr is the radiation on the
brane; i.e., Ωm = (8πG/3H2)ρm and Ωr = (8πG/3H2)ρr. (ρm ∝ a−3,ρr ∝ a−4).
The subscripts 0 designate the present value.

The effective equation of state of DGP wrc can also be exactly expressed in
terms of the energy densities of matter and radiation, Ωm and Ωr [40; 41].

wrc =− 1
1+Ωm +Ωr

. (8)

In realistic ranges of the energy density, Ωm > 0 and Ωr ≥ 0, the value of the
effective equation of state cannot be less than or equal to −1. That is, the effective
equation of state never crosses the phantom divide line in the original DGP model.

3 DGP model extended by Dvali and Turner

Dvali and Turner [37] phenomenologically extended the Friedmann-like equation
(Eq. 3) of the DGP model. This model interpolates between the original DGP
model and the pure ΛCDM model with an additional parameter α . The modified
Friedmann-like equation is [37]

H2 =
8πG

3
ρ +

Hα

rc2−α
. (9)

For α = 1, this agrees with the original DGP Friedmann-like equation, while α = 0
leads to an expansion history identical to that of ΛCDM cosmology.
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Fig. 2 Effective equation of state wα versus redshift z of the DGP model extended by Dvali and
Turner for α = 1.50,1.00,0.50,0.00,−0.50, and −1.00 (top to bottom) assuming Ωm,0 = 0.30

Differentiating both sides of Eq. (9) with respect to the cosmological time t,
we obtain the following differential equation.

2Ḣ =−8πG(ρ +P)+
αḢ

(rcH)2−α
, (10)

where a dot indicates the derivative respect to the cosmological time. The quantity
P is the total cosmic fluid pressure on the brane.

For the second term on the right-hand side of Eq. (9), which represents the
effect of DGP gravity, the effective energy density is

ρα =
3

8πG
Hα

rc2−α
, (11)

and from Eq. (10) the effective pressure is

Pα =− 1
8πG

[
αḢ

(rcH)2−α
+3

Hα

rc2−α

]
. (12)

From Eqs. (11) and (12), the effective equation of state parameter of the DGP
model extended by Dvali and Turner is given by

wα =
Pα

ρα

. (13)

Figure 2 shows a plot of the behavior of the effective equation of state
of the DGP model by Dvali and Turner wα versus the redshift z for α =
1.50,1.00,0.50,0.00,
−0.50, and −1.00 (assuming Ωm,0 = 0.30).

In general, for equation of state w, the energy density ρ varies as a−3(1+w).
This leads to the following proportional relation.

ρα ∝ a−3(1+wα ). (14)

At the same time, from Eq. (11), we find ρα ∝ Hα . In the radiation-dominated
epoch, from the proportional relation on Hubble parameter H ∝ a−2, we obtain
the following relation.

ρα ∝ a−2α . (15)

As compared the right-hand side of Eq. (14) to that of Eq. (15), during the earlier
radiation-dominated epoch (z � 104), the effective equation of state can also be
represented with α [37].

wα =−1+
2α

3
. (16)
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In the same way, during the matter-dominated epoch (102 >∼ z � 1), from the
proportional relation on Hubble parameter H ∝ a−

3
2 ,

wα =−1+
α

2
. (17)

At the present time, wα is a stationary value close to −1.
From these results, in the case of α < 1.0, the effective equation of state wα <

− 1
3 in all era, even in the radiation-dominated epoch. That is to say, the component

of the DGP gravity works as the driving force of the accelerated expansion of
the universe in all epochs. On the other hand, for α = 1.0, there is era when the
effective equation of state becomes wα 5 − 1

3 . That is, the DGP gravity does not
drive the accelerated expansion in all epochs.

The case of α = 1.0 corresponds to the original DGP model described in the
previous section. Thus, in the original DGP model, the effective equation of state
wrc = − 1

3 in the radiation-dominated epoch. And after the radiation-dominated
epoch, becomes wrc < − 1

3 . In other words, the DGP gravity acts as the driving
force of the accelerated expansion just after the radiation-dominated epoch.

However, when α is positive, the effective equation of state wα will exceed−1
at all times. For negative α,wα is always less than −1. In the case of α = 0,wα

is −1 constantly. Based on this analysis, crossing of the phantom divide does not
occur in the DGP model extended by Dvali and Turner.

4 Phantom crossing DGP model

We propose the “Phantom Crossing DGP model” that extends the modified Fried-
mann equation (Eq. 9) proposed by Dvali and Turner. Our model can realize cross-
ing of the phantom divide line for the effective equation of state of the DGP grav-
ity.

As mentioned in the previous section, the effective equation of state parameter
of the DGP model by Dvali and Turner wα , takes the value of over −1 for positive
α , and it is less than −1 for negative α . When α = 0,wα becomes −1. On the
basis of these results, we consider a model in which α varies being positive to
being negative. To keep the model as simple as possible, we make the following
assumption,

α = β −a, (18)

where a is the scale factor (normalized such that the present day value is unity).
The quantity β is a constant parameter. In the period when the scale factor a is less
than the parameter β (α > 0), the effective equation of state exceeds −1. At the
point when the scale factor a equals β ,(α = 0), the equation of state’s value will
be −1. In the period when the scale factor a exceeds the parameter β (α < 0), the
equation of state will be less than −1. In this way, crossing of the phantom divide
is realized in our model.

Replacing α by β −a in Eq. (9), the Friedmann-like equation in our model is
given by

H2 =
8πG

3
ρ +

Hβ−a

rc
2−(β−a) . (19)
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Differentiating both sides of Eq. (19) with respect to the cosmological time t, the
following differential equation is obtained.
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Fig. 3 Effective equation of state of our model wβ versus redshift z. The solid (red), dashed
(green), dotted (blue) lines represent the cases of β = 0.50,0.25, and 0.10, respectively (assum-
ing Ωm,0 = 0.30)

Fig. 4 Detail of the behavior of wβ depicted in Fig. 3 near recent epochs

2Ḣ =−8πG(ρ +P)+
(β −a)Ḣ− ȧH ln(rcH)

(rcH)2−(β−a) . (20)

For the second term on the right-hand side of Eq. (19) representing the effect of
DGP gravity, the effective energy density is

ρβ =
3

8πG
Hβ−a

rc
2−(β−a) , (21)

and from Eq. (20), the effective pressure is

Pβ =− 1
8πG

[
(β −a)Ḣ− ȧH ln(rcH)

(rcH)2−(β−a) +3
Hβ−a

rc
2−(β−a)

]
. (22)

Using Eqs. (21) and (22), the effective equation of state of our model is given by

wβ =
Pβ

ρβ

. (23)

Figure 3 shows a plot of the effective equation of state of our model wβ versus
the redshift z (see also Fig. 4 which shows an enlarged view of this diagram). Our
model is an extension of the DGP model and realizes crossing of the phantom
divide. The effective equation of state wβ of models for β = 0.50,0.25, and 0.10
(assuming Ωm,0 = 0.30) crosses the phantom divide line when the redshift z ∼
0.2,0.8, and 1.6, respectively.

We find that the smaller the parameter β is, the older epoch crossing of the
phantom divide occurs in. β is not necessarily equal to the scale factor at the time
of crossing the phantom divide, even though Eq. (18) is assumed. In the Eq. (19),
the value of β − a that is the power index of H varies with respect to time. As
the power index of the differential equation changes with time, furthermore, in
parallel, the differential equation is solved with respect to time. Hence, the time
lag occurs, the scale factor at the time of crossing the phantom divide is more than
the value of β .

In a way similar to the derivation of Eq. (16), we represent the effective equa-
tion of state of Phantom Crossing DGP model with β . In the radiation-dominated
epoch, the scale factor a is taken to be 0 in comparison with the value of β . There-
fore, as α ≈ β in Eq. (18), during the radiation-dominated epoch (z � 104), the
effective equation of state is approximately

wβ ≈−1+
2β

3
. (24)
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Fig. 5 The solid (red) and dotted (pink) lines respectively represent the effective energy density
ρβ and absolute value of the effective pressure |Pβ | (note that Pβ < 0) of our model versus
redshift z, for (β ,Ωm,0) = (0.50,0.30)

Fig. 6 The distance modulus µ relative to that of a constant expansion cosmology µc versus the
redshift z. Models and parameters are (from top to bottom): (1) ΛCDM model, Ωm,0 = 0.30; (2)
Phantom Crossing DGP model, β = 0.50, Ωm,0 = 0.30; (3) DGP model by Dvali and Turner,
α = 0.50,Ωm,0 = 0.30; (4) Original DGP model, Ωm,0 = 0.30

That is, in the case of β < 1.0, the effective equation of state wβ <− 1
3 in all era,

including the radiation-dominated epoch. On the other hand, for β = 1.0, there is
era when the effective equation of state becomes wβ =− 1

3 .
Figure 5 shows the effective energy density ρβ and absolute value of the ef-

fective pressure |Pβ | (note that Pβ < 0) of our model for (β ,Ωm,0) = (0.50,0.30)
versus the redshift z, normalized such that the effective energy density is unity
at the time of phantom crossing. It shows that the absolute value of the effective
pressure |Pβ | exceeds the effective energy density ρβ at the time of crossing of the
phantom divide.

The recent observational data for Type Ia supernovae [5] show that crossing of
the phantom divide line occurs at a redshift z∼ 0.2 [30; 31; 32].2 In our model, for
β = 0.50 (when Ωm,0 = 0.30), crossing of the phantom divide occurs at z ∼ 0.2.

In a proposed model in which the phantom divide is crossed at z ∼
0.2,(β ,Ωm,0) = (0.50,0.30), we investigate and show the property of Phantom
crossing DGP model.

Figure 6 shows the distance modulus µ relative to that of a constant expan-
sion cosmology µc, versus the redshift z. That is, when µ/µc is positive, cosmic
expansion is accelerating. The distance modulus is defined by

µ(z) = 5log10 DL +42.38−5log10 h, (25)

where DL is the Hubble free luminosity distance given by

DL = (1+ z)
z∫

0

H0

H(z′)
dz′, (26)

h being the Hubble constant H0 in units of 100 km s−1 Mpc−1. We adopt h =
0.72 [42]. In Fig. 6, Models and parameters are (from top to bottom): (1) ΛCDM
model, Ωm,0 = 0.30; (2) Phantom Crossing DGP model, β = 0.50, Ωm,0 = 0.30; (3)
DGP model by Dvali and Turner, α = 0.50,Ωm,0 = 0.30; (4) Original DGP model,
Ωm,0 = 0.30. Phantom Crossing DGP model can realize late-time acceleration of
the universe very similar to that for ΛCDM model, without dark energy.

Figure 7 shows the normalized energy density of radiation Ωr, matter Ωm, and
DGP gravity ΩDGP versus the redshift z in the Phantom Crossing DGP model with
the proposed parameter (β ,Ωm,0) = (0.50,0.30). Where, ΩDGP = (8πG/3H2)ρβ .
ρβ is the effective energy density of DGP gravity defined by Eq. (21). We find

2 This is a model-dependent value. We will investigate in detail the allowed parameter region
based on recent observational data in future work.
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Fig. 7 The normalized energy density of radiation Ωr, matter Ωm, and DGP gravity ΩDGP, ver-
sus the redshift z in the Phantom Crossing DGP model with the proposed parameter (β ,Ωm,0) =
(0.50,0.30)

Fig. 8 The effective equation of state weff versus the redshift z. Models and parameters are same
as Fig. 6

that the universe is DGP gravity-dominated near recent epochs. Therefore, In the
Phantom Crossing DGP model, the late-time acceleration is driven by the effect
of DGP gravity.

Figure 8 shows the effective equation of state weff versus the redshift z. Mod-
els and parameters are same as Fig. 6. Only our Phantom Crossing DGP model
can realize crossing of the phantom divide line at z ∼ 0.2 as indicated by recent
observations.

5 Summary

− We confirmed that the effective equation of state does not cross the phantom
divide line in the original DGP model.

− We also demonstrated that crossing of the phantom divide does not occur in
the DGP model by Dvali and Turner.

− We constructed the Phantom Crossing DGP model. This model realizes cross-
ing of the phantom divide. We found that the smaller the value of the new
introduced parameter β is, the older epoch crossing of the phantom divide
occurs in. Our model can realize late-time acceleration of the universe very
similar to that of ΛCDM model, without dark energy, due to the effect of
DGP gravity. In the proposed model ((β ,Ωm,0) = (0.50,0.30)), crossing of
the phantom divide occurs at z ∼ 0.2 as indicated by recent observations.

Acknowledgments The authors would like to thank the anonymous reviewer for their helpful
comments and discussions.
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