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Abstract

Understanding the existence of a mass gap in pure Yang-Mills theory is one of the out-

standing problems of theoretical physics. This is necessary to explain the short range

nature of strong interactions despite the fact that gluons are massless. The spectrum

of pure Yang-Mills theory consists of glueballs and the mass of the lightest glueball is

supposed to give the mass gap in pure Yang-Mills theory. Using lattice gauge theory

calculations one can infer the masses of the glueballs from the long distance behaviour

of correlation functions between the states which interact by exchanging glueballs.

However, computation of these correlation functions are notoriously difficult in Monte-

Carlo simulations. The Signal-to-Noise ratio for correlation functions is very low at

large distances and there are contamination due to excited states at small distances.

For that reason, it is important to construct efficient methods to compute large dis-

tance correlation functions. In this thesis we present an error reduction method based

on the multilevel technique for obtaining glueball correlators from Monte Carlo simu-

lations. We consider pure SU(3) gauge theory in (3+1) dimensions with the standard

Wilson action. For the update procedure we use three over-relaxation steps for each

Cabibbo-Marinari heatbath step. The multi-level along with the multi-hit technique is

applied on large loop glueball operators for the scalar and tensor channels. We com-

pare the performance of our method with the ordinary method, and find significant

improvement. For the heavier channel we found a greater improvement. For the scalar

channel we calculate glueball masses for six different lattice spacings, while for the

tensor channels we perform our calculations for five different lattice spacings. Using

this method we can follow glueball correlators to temporal separations even up to 1

fermi.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is expected to be the fundamental theory of strong

interactions. QCD provides a model of quarks interacting through the exchange of

gauge bosons charged under a SU(3) gauge group. In this theory each quark car-

ries one of the three possible fundamental SU(3) charges (say red, green or blue)

commonly known as color charges. The gauge bosons belonging to the adjoint repre-

sentation of SU(3) are known as gluons (Ga
µ). The quarks can change color by emitting

gluons. The quark model provides for substructure within hadrons and describes the

properties of hadrons in terms of quarks and gluons.

In QCD the coupling strength for exchange of a gluon between two quarks is given

by
( C1√

2

)(C2√
2

)

αs (1.1)

where C1 and C2 are color coefficients associated with the two vertices for the gluon

exchange [2] and αs =
g2s
4π

with gs being the strong coupling coefficient.

The lagrangian density of QCD which describes the properties, symmetries and inter-

actions between the fundamental constituents of the theory can be written as,

L = ψ
(

iγµDµ −m
)

ψ − 1

2
Tr
[

F µνFµν

]

(1.2)

where Dµ = ∂µ + igAµ and Fµν(x) = ∂µAν(x) − ∂νAµ(x) + ig
[

Aµ(x), Aν(x)
]

with

Aµ(x) = Aa
µt

a, ta being the generators of the SU(3) algebra.

In QCD the effective coupling constant behaves differently than quantum electro-

dynamics. The reason behind that is the gluons carry color charges and they interact

with each other. In the one-loop approximation, the QCD coupling varies with the
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renormalization scale µ as,

αs(µ) =
4π

β0 ln
(

µ2

Λ2
QCD

) (1.3)

where ΛQCD is a QCD scale and β0 is the one loop beta function. So, the coupling

becomes small at large µ or short distances. This phenomena is known as asymptotic

freedom.

The unique feature of the underlying quantum field theory which makes the per-

turbative approach useful in QCD is asymptotic freedom. Experimental verifications

of these features signify the success of the perturbative QCD.

The deep inelastic scattering (DIS) of leptons on hadrons played a crucial role in

the development of the parton model and QCD. DIS of charged and neutral lepton on

hadrons with exchange of a vector boson can be expressed as

l1(k) + A(p) → l2(k
′) +X (1.4)

where A is a hadron, l1,2 are leptons, and X represents the summed-over final state

hadronic particles. The scale dependence of the partonic distribution function (PDF)

can be calculated using perturbative QCD. This dependence has been verified experi-

mentally with a very high degree of accuracy. The neutral current structure function

F2(x,Q) measured in fixed target experiments SLAC, BCDMS, NMC and collider ex-

periments H1, ZEUS [17] is given Fig. 1.1 along with corresponding NLO QCD results.

Despite of the success of QCD as a field theory with color degrees of freedom an

isolated quark never appears as a free particle emerging from an experiment, which

suggests that a colored particle cannot appear as an isolated particle in final states.

This phenomena is known as color confinement.

For momenta of the order of 1 GeV the QCD coupling becomes too large for pertur-

bation theory to work see Fig. 1.2. Due to the strong coupling, a quantitative descrip-

tion of the confinement problem and computation of the hadron spectrum are difficult

in QCD. The description of long distance strong color forces require non-perturbative

techniques. Lattice gauge theory formulation is a systematic non-perturbative tech-

nique for QCD calculations. Prediction of the non-perturbative evolution of QCD

coupling has been a major success of lattice gauge theory and currently the most ac-

curate determination of αs at the Zmass is from calculation in lattice gauge theory [1].

Lattice gauge theory was formulated by K. G. Wilson [1]. In this formulation the the-

ory is defined on a Euclidean space-time lattice. The lattice provides a cutoff removing
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Figure 1.1: F2(x,Q) from pure γ exchange, from HERA and fixed target experiments

compared with NLO QCD. Figure taken from [17].

ultraviolet divergences of the underlying Quantum Field Theory by directly eliminating

all wavelengths less than twice the lattice spacing. As with any other regulator, the

lattice cutoff must be removed after renormalization. While the confinement property

of QCD can be demonstrated in the strong coupling limit of lattice gauge theory, the

region of physical interest i.e. the continuum limit lies in the weak coupling region.
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Figure 1.2: QCD running coupling [1].

Gauge invariance forbids a mass term for the gauge boson and in QCD as well as

in pure Yang-Mills theory (gauge part of QCD) the gluon propagator remains mass

less to all orders in perturbation theory. Nevertheless the strong force is short ranged.

This means that the lowest eigenstate of the Hamiltonian above the vacuum has a mass

m. Gluon self-coupling in Yang-Mills theory suggests the existence of bound states of

gluons. Stable low-lying states in pure Yang-Mills theory are called glueballs, which

are characterised by their spin J , parity P and charge conjugation C. In QCD quarks

allow glueballs to decay but their signature is expected to remain in the QCD spectrum.

Glueball masses can be computed in lattice quantum chromodynamics and a lot of

effort has been directed towards this computation. However there is still no consensus

regarding the mass spectrum. It is a difficult computation in lattice QCD with dynam-

ical fermions due to the high masses of the glueballs (>1 GeV) and their mixing with

mesonic operators involving quark fields in the same symmetry channels. In recent

times computations of glueball masses in lattice QCD with dynamical fermions have

been attempted in Refs. [4–6]

Glueball masses are often computed in pure Yang-Mills theory. Advantages are

that there is no mixing with mesonic operators and the glueballs are stable as they

cannot decay. Thus it is much easier to extract the glueball masses from Monte Carlo

simulations of pure Yang-Mills theory than lattice QCD with dynamical fermions. Nev-

ertheless, even in this theory, glueball correlation functions are dominated by statistical

noise at large temporal separations and contribution from excited states at short sepa-

rations. Global fits become difficult and one often computes the “effective mass” which

is the logarithm of the ratio of the values of the correlation function between successive

time slices. If the effective mass does not vary over a significant temporal range then

4



one assumes that the effective mass is the same as the globally fitted mass.

To remove the effect of excited states, conventional methods involve computing cor-

relation matrices with matrix elements between a large set of interpolating operators

constructed from smeared or fuzzed links [7] in the relevant symmetry channel. The

ground state is obtained by diagonalizing the correlation matrix in each channel [8].

As it is difficult to follow the correlator signal to large physical distances, even using

the above techniques, one often uses asymmetric lattices with a significantly smaller

temporal spacing compared to the spatial lattice spacing with the expectation to ob-

serve a flat behaviour of the effective masses [9, 10] over several time slices.

A different approach is to use noise reduction algorithms. Such algorithms have

been used in the past for computing the glueball spectrum for U(1), SU(2) and SU(3)

lattice gauge theories [11–16].

In this thesis we follow the latter approach. We restrict ourselves to pure Yang-

Mills theory with gauge group SU(3) and employ only the standard operators in each

JPC channel (scalar and tensor) but try to follow the correlator to large temporal

separations using a new noise reduction algorithm. Since the contamination due to

excited states falls off exponentially, we expect correlators at distances beyond 0.5

fermi to be dominated by the ground state.
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Chapter 2

Lattice Gauge Theory

Lattice gauge theory is gauge theory formulated on an Euclidean space-time lattice.

The Euclidean path integral on the lattice is used as a tool to quantize the fields. The

lattice formulation emphasizes a close connection of Quantum Field Theory with sta-

tistical mechanics. The path-integral on an Euclidean space-time lattice is equivalent

to a partition function of an analogous statistical system. This chapter is concerned

with this connection and a short introduction to lattice discretization technique of

continuum Yang-Mills theory.

2.1 Feynman Path Integral on Lattice

In Feynman’s functional approach [1] of Quantum Mechanics the path integral is de-

fined as a limit of a finite dimensional integral resulting from a discretization of time.

( x a , ta )

(xb , t b )

t

x

t1 t2 . . .

In this approach the probability that a system will be at xb at time tb which was

7



initially at xa at time ta, is given by

〈xb, tb|xa, ta〉 = 〈xb| exp[−iH(tb − ta)]|xa〉 =
∫ x(tb)

x(ta)

Dx(t) exp(−iS[x(t)]) (2.1)

where Dx is a measure on the set of paths with starting point xa at ta and end point

xb at tb and the integral is over all such paths. For each path considered, S is classical

action computed along that path. Thus each possible path contributes to the transition

amplitude weighted by a factor exp(iS[x]). (Here we set ~ = 1, otherwise the weight

factor is exp(iS[x]/~).)

Analogously, in the functional integral approach of Quantum Field Theory, the

functional integral for a free scalar field theory is defined as,

Z =

∫

Dφ exp(iS[φ]) (2.2)

S[φ] being the scalar field action

S[φ] =
1

2

∫

dtd3x[∂µφ∂µφ−m2φ2] (2.3)

The integral measure Dφ implies that the integral is taken over the fields at every point

in space-time lattice.

After a Wick rotation to imaginary time,

t→ −iτ (2.4)

iS[φ] → −SE [φ] (2.5)

The Euclidean functional integral now becomes

ZE =

∫

Dφ exp(−SE [φ]) (2.6)

where

SE[φ] =
1

2

∫

d4x[(∂µφ)
2 +m2φ2]. (2.7)

To formulate the lattice version of the Euclidean functional we introduce four di-

mensional hypercubic lattice Λ such that,

Λ = aZ4 = n|nµ

a
∈ Z (2.8)

8



where a is the lattice constant. The scalar fields φ(n) are defined on the lattice points

n, where n ∈ Λ. On the lattice
∫

d4x → a4
∑

n

(2.9)

which implies that the fields are now summed over discrete lattice points and the

derivative ∂µφ(x) is replaced by the finite difference. In symmetric derivative definition

∂µφ(n) =
1

2a
[φ(n+ aµ̂)− φ(n− aµ̂)]. (2.10)

There exist other definitions for these derivatives which will produce same continuum

limit. In this thesis we will consider the symmetric definition of the derivative.

The Euclidean path integral plays the role of partition function of an equivalent

statistical system, where the Euclidean action plays the role of Hamiltonian of the

statistical system.

In lattice discretization of QCD, fermionic fields are placed on the lattice sites n.

Under the local gauge transformations the fermionic fields transform as

ψ′(n) = V (n)ψ(n) (2.11)

ψ
′
(n) = ψ(n)V †(n) (2.12)

where V (n) is an element of SU(3) for each lattice site n. The discretized version

of continuum Dirac action is

SF [ψ, ψ] = a4
∑

m,n∈Λ

∑

µ

ψ(n)(Dlat
µ (m,n) +mδm,n)ψ(m) (2.13)

where Dlat
µ (m,n) can be one of the various lattice Dirac operators such as the the

Wilson Dirac operator, the staggered Dirac operator, the domain wall operator or the

overlap Dirac operator to name a few.

Gauge invariance of the fermion action requires a gauge field Uµ(n) which transforms

under local gauge transformation as

Uµ
′(n) = V (n)Uµ(n)V

†(n+ µ). (2.14)

The gauge field Uµ(n) is defined on the bond between the sites n and n + µ and are

commonly called link variables. The link variable can be associated with the continuum

gauge field by identifying Uµ(n) with the parallel transporter U(Cxy).

9



U(Cxy) = P exp[−i
∫

Cxy

dzµAµ(z)] (2.15)

where P denotes the path ordering and the Aµ(z) denotes the continuum gauge

fields. On the lattice, the gauge fields Aµ(n) are held constant along the link and the

variable can be written as

Uµ(n) = exp(iaAµ(n)), (2.16)

where Aµ(n) belongs to the SU(3) algebra, as long as Uµ(n) is continuously connected

to identity.

2.2 Lattice Gluon Action

In the last section we introduced the gluonic field variables Uµ(n). In order to construct

the pure-gauge part of the QCD action on the lattice we need gauge invariant objects

made entirely out of link variables.

Using the gauge transformation properties of the link variables we can construct

gauge invariant objects by using path ordered product of link variables along closed

loops. Let W [U ] be the path ordered product of link variables on a closed path C on

the lattice.

W [U ] = tr[
∏

(n,µ)∈C

Uµ(n)]. (2.17)

From eq. 2.14 it is clear that the gauge rotations at the end points of the link variables

are cancelled by the gauge rotations of neighbouring link variables around a loop.

These loops are known as Wilson loops. The simplest such Wilson loop, consisting

of four links is known as the plaquette

Uµν(n) = Uµ(n)Uν(n+ µ)U †
µ(n+ ν)U †

ν (n). (2.18)

For small a we can expand the link variable (2.16) as,

Uµ(n) = 1 + iaAµ(n) +O(a2). (2.19)

Using expansion (2.19) and the Baker-Campbell-Hausdorf formula one can get the

expansion for the plaquette,

Uµν(n) = exp
(

ia2(∂µAν(n)− ∂νAµ(n) + i[Aµ(n), Aν(n)]) +O(a3)
)

. (2.20)

10



In Wilson’s formulation, gauge action on the lattice is defined as

SG[U ] =
2

g2

∑

n∈Λ

∑

µ<ν

Re tr[1− Uµν(n)]. (2.21)

It immediately follows from (2.21) that for small a

2

g2

∑

n∈Λ

∑

µ<ν

Re tr[1− Uµν(n)] =
a4

2g2

∑

n∈Λ

∑

µ,ν

(tr[F 2
µν(n)] +O(a2)), (2.22)

where the O(a2) term in the expansion of exponential (2.20) cancels out when taking

the real part.

After having defined lattice field variables and the Wilson gauge action the next step

to quantize gauge fields is to specify the functional integral. On lattice the expectation

value of some observable O is given by

〈O〉 = 1

Z

∫

D[U ] exp(−SG[U ])O[U ] (2.23)

where the partition function Z is defined as

Z =

∫

D[U ] exp(−SG[U ]). (2.24)

The integration measure for the link variable is a product measure

∫

D[U ] =
∏

n∈Λ

4
∏

µ=1

∫

dUµ(n). (2.25)

∫

dUµ(n) for each link is a volume in group space. The total volume of the group space

is finite for a compact group and therefore the partition function Z, for a finite lattice

is well defined.

If the fermionic fields are present, the corresponding measure has to be included in

the integral

〈O〉 = 1

Z

∫

D[ψ, ψ]D[U ] exp(−SF [ψ, ψ, U ]− SG[U ])O[ψ, ψ, U ]. (2.26)

Restricting ourselves to the pure-gauge sector of the theory we will consider only

the (2.23) for the definition of observables on the lattice.

The Wilson gauge action SG[U ] is invariant under the gauge rotations of the link

variables

SG[U
′] = SG[U ]. (2.27)

11



The partition function Z should remain gauge invariant as the theory remains

invariant under gauge transformations and as for any integral, the resulting functional

integral should also remain invariant under the change of variables. This implies

Z =

∫

D[U ] exp(−SG[U ]) =

∫

D[U ′] exp(−SG[U
′]) =

∫

D[U ′] exp(−SG[U ]) (2.28)

therefore the gauge field measure must be gauge invariant

D[U ] = D[U ′]. (2.29)

As D[U ] is a product measure we get, for the integration over the individual gauge link

dUµ(n) = dU ′
µ(n) = d(V (n)Uµ(n)V

†(n+ µ)) (2.30)

where the group valued matrices V (n) can be chosen independently at each lattice

site. The gauge transformations of the link variables can be written as left and right

translation in group space,

U ′ = V U, left, (2.31)

U ′ = UV, right. (2.32)

The Haar measure is invariant under such translations in group space. Using the

coordinates α in group space U = exp(iαata) the Haar measure can be written as [3],

dU = ν
√

det g
∏

k

dαk, (2.33)

where the metric g in coordinate space, is of the form

gkl =
1

ρ
tr

(

∂U

∂αk

∂U †

∂αl

)

, ρ =
1

2
, (2.34)

The normalization factor ν is chosen in such a way that
∫

dU = 1. (2.35)

The metric (2.34) is covariant under the transformation αk = fk(α′),

gkl = gmn
∂α′m

∂αk

∂α′n

∂αl
(2.36)

The Jacobian factors cancels out and one gets dU ′ = dU . Since the left and right

translations are special cases of coordinate transformations, the measure is invariant

under these translations,

dU = d(V U) = d(UV ). (2.37)

12



Bibliography

[1] R. P. Feynman, Rev. Mod. Phys. 20 (1948) 367.

[2] K. G. Wilson, Phys. Rev. D10 (1974) 2445.

[3] R. Gilmore, “Lie Groups, Lie Algebras and Some of Their Applications”, (John

Wiley & Sons, New York).

13



Chapter 3

Glueball Spectrum

Physical states in the Hilbert space of lattice gauge theory are gauge invariant. They

can be obtained by applying gauge invariant operators on the lattice gauge theory

vacuum. Let θi be a set of gauge invariant operators, the generic wave function is

obtained as a linear combination

|ψ〉 =
∑

i

ciθi|0〉 (3.1)

where ci ∈ C. The gauge invariant operators are functions of the basic variables

of the theory. Restricting ourselves to pure gauge theory without fermionic fields, the

operators are gauge invariant functions of the link variables only. Particular candidates

can be constructed using traces of parallel transporter around closed loops

Oi(x, t) = tr(
∏

Ci

U) (3.2)

Here tr implies trace over some representation and Ci implies ith closed loop. The

product of link variables around closed paths are known as Wilson loops. As discussed

earlier, the simplest among them are known as plaquettes. One can construct zero

momentum operators on different time slices by taking sum over all spatial Wilson

loops in a time slice. We will show in this chapter that glueball masses can be extracted

from the correlators of these operators.

3.1 Transfer Matrix

Using the fact that the transfer matrix [1–3] of a lattice model provides the relation

between the functional integral and the Hamiltonian we will use the the transfer ma-

trix formulation of lattice gauge theory to extract glueball masses from the connected

14



correlators of the operators.

Let us first denote the set of links that are completely contained in time slice x4 = t

by Ut and those links which connect the time slices x4 = t and x4 = t + 1 by Ut+1,t.

Using this notation the action can be written as

S =
∑

t

L[Ut+1,Ut+1,t,Ut] (3.3)

The transfer matrix can be defined with matrix elements

T [Ut+1,Ut] =

∫

D[U ]U∈Ut+1,t exp{−L[Ut+1,Ut+1,t,Ut]} (3.4)

The transfer matrix acts on the square integrable wave functions ψt at a fixed time t

and takes it to the time t + 1

|ψt+1〉 = T|ψt〉. (3.5)

In terms of the transfer matrix the partition function for a lattice which extends

over Nt units in the time direction with periodic boundary condition, is given by

Z = tr
(

T
Nt
)

. (3.6)

The correlation functions of the operators in terms of T can be written as

〈O2(t)O1(0)〉 = lim
T→∞

tr
(

TNt−ntÔ2T
ntÔ1

)

tr(TNt)
, (3.7)

where T = aNt and t = ant. The Hamiltonian H on lattice is defined by

T = exp(−aH) (3.8)

Inserting complete set of eigenstates of the lattice Hamiltonian in (3.7) yields [8]

〈O2(t)O1(0)〉 =
∑

m,n〈m|e−(T−t)HÔ2|n〉〈n|e−tHÔ1|m〉
∑

n〈n|e−TH |n〉 (3.9)

=

∑

m,n e
−(T−t)Em〈m|Ô2|n〉e−tEn〈n|Ô1|m〉

∑

n e
−TEn

(3.10)

=

∑

m,n〈m|Ô2|n〉〈n|Ô1|m〉e−t∆Ene−(T−t)∆Em

1 + e−T∆E1 + e−T∆E2 + ...
, (3.11)

where ∆En = En − E0. The Euclidean correlator 〈O2(t)O1(0)〉 depends only on the

energies normalized relative to the energy E0 of the vacuum. From now on we denote
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Mn as the energy differences relative to the vacuum. In the T → ∞ limit the denomi-

nator in (3.11) becomes 1 and in the numerator the only contribution comes from the

term ∆Em = 0 corresponding to |m〉 = |0〉. Thus we obtain

lim
T→∞

〈O2(t)O1(0)〉 =
∑

n

〈0|Ô2|n〉〈n|Ô1|0〉e−Mnt (3.12)

In large distance the term which has the lowest Mn dominates. Consequently the

correlator decays as

〈O2(t)O1(0)〉 ∼ exp(−M1t). (3.13)

Analogous to the high temperature expansion in statistical mechanics, one can use

strong coupling expansion in lattice gauge theory for small lattice coupling β (large

g2). In this method one merely expands the Boltzman factor exp(−S[U ]) in powers of

β, to determine the expectation values of observable on the lattice. Let us first consider

the expectation value of a rectangular Wilson loop traversed in a clockwise direction

on the lattice. Following the group integral identity

∫

SU(3)

dU Uab = 0, (3.14)

the contribution to the expectation value from the first term of the expansion is zero.

Non vanishing contributions comes from the higher order terms of the expansion.

The first non-vanishing contribution comes from the term with plaquettes oriented

in counter clockwise direction filling the Wilson loop since

∫

SU(3)

dU UabUcd = 0, (3.15)

∫

SU(3)

dU UabU
†
cd =

1

3
δadδbc. (3.16)

The higher order contribution to the expectation value comes from the bumps of pla-

quettes on the tiling surface filling the Wilson loops. Following this method one can

easily find the Wilson loop expectation value, in the strong coupling limit to be

〈Wc〉 = 3

(

β

18

)nA

(1 +O(β)) (3.17)

where nA is the number of the plaquettes filling the Wilson loop. Following a similar

technique the connected correlators of Wilson loop operators can be easily calculated

for large lattice couplings. For the plaquette-plaquette correlator relevant diagrams for

the strong coupling expansion consists of tubes of plaquettes. The leading order strong
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Figure 3.1: Leading order diagram for strong coupling expansion of the plaquette-

plaquette correlator.

coupling diagram is shown in Fig. 3.1, where the tube connecting the source and sink

plaquettes is tiled with fundamental plaquettes. From this diagram one can easily find

that in the leading order the plaquette-plaquette connected correlator behaves as,

C(∆t) ∼
(

β

6

)4nt

, (3.18)

where ∆t = ant is the temporal separations between the two plaquettes. So the glueball

mass from the strong coupling expansion can be obtained as,

mg ∼ −4 ln

(

β

6

)

(1 +O(β)) . (3.19)

The higher order contribution comes from the deformations on the surface of the tube

of plaquettes connecting the source and sink plaquettes.

3.2 Glueball Operator Methodology

We have seen in the last section that the spectrum of glueballs can be extracted from

(3.13) using correlators of certain operators. In this section we will discuss methods for

choosing glueball operators. In the continuum limit, unitary irreducible representation

of the rotation group SO(3) characterizes the spin of a bosonic state. In lattice dis-

cretization, rotation symmetry is broken down to the symmetry group of the cube. In
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the continuum limit rotation invariance is expected to be restored and the eigenstates

of the transfer matrix can be classified according to the irreducible representations of

the 3d rotation group.

3.2.1 The symmetry group of the cube

The symmetry group of a cube is the cubic or octahedral group O, an exact symmetry

group for theory on lattice. The rotation around an uniquely determined symmetry

axis of a cube can be identified with non-identity elements of the cubic group O. The

number of different rotations which can be performed around the axes, defines it’s

order. We fix our notation by means of Fig. 3.2.

C 4

C 3

C2

Figure 3.2: Symmetry axes of rotations for the group Oh.

If a rotation by an angle φ = 2π
n
(n integer) makes a cube coincident with itself, then

the rotation axis is known as n-fold axis or axis of order n. There are three 4-fold axes,

four 3-fold axes and six 2-fold axes for the cube. Including the identity (n=1) there

are 24 elements altogether. The group elements are divided in five conjugacy classes

E = {E}, C4 = {C(i)
4 , (C

(i)
4

3
)} (with i = 1, 2, 3), C2

4 = {(C(i)
4 )2} (with i = 1, 2, 3.),

C3 = {C(i)
3 , (C

(i)
3 )

2} (with i = 1, ..., 4) and C2 = C
(i)
2 (with i = 1, ..., 6). Hence there are

five inequivalent irreducible representations A1(1), A2(1), E(2), T1(3) and T2(3). The

quantities in the parenthesis are dimensions of the irreducible representations satisfying

∑

µ

n2
µ = dim(G) (3.20)

18



where nµ is the dimension of the irreducible representation µ and dim(G) is the order

of the group G. The character table for these irreducible representations is given in

table 3.1.

R E C2(6) C3(8) C4(6) C2
4 (3)

A1 1 1 1 1 1

A2 1 -1 1 -1 1

E 2 0 -1 0 2

T1 3 -1 0 1 -1

T2 3 1 0 -1 -1

Table 3.1: Character table for different conjugacy classes.

There are two discrete symmetries in addition to the transformation of the cubic

group. They are total space reflection and charge conjugation. The eigenvalues of

the space reflection are the parity P = ±1. The direct product of the octahedral and

parity forms 48 elements group Oh = O ⊗ Z2 whose representations are labelled by

RP . The charge conjugation is equivalent to the complex conjugation of Wilson loops.

The eigenvalues of the charge conjugation are C-parity C = ±1. The states belonging

to an irreducible representation of the lattice symmetry group are therefore labelled

by RPC .

3.2.2 Spin on the Lattice

In this section we will construct irreducible representations of the symmetry group

of the cube on Wilson loop operators and hence will explain the relationship between

those representations and the spin states in the continuum limit for lattice gauge theory.

In the continuum limit of lattice gauge theory rotation invariance is expected to be

restored. Let DJ be the irreducible representation in the continuum limit for spin J

and denote the corresponding states by |ψ〉J (β = ∞) [5] for integer spin J = 0, 1, ... .

For all finite values of β i.e., for finite lattice spacing the irreducible representations of

the symmetry group of the lattice are R = A1, A2, E, T1, T2 and let the corresponding

states be |ψ〉R. In the continuum limit these states can be expanded in terms of spin
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R A1 A2 E T1 T2

J 0 3 2 1 2

Table 3.2: Lowest spin content for the irreducible representation of O

states

|ψ〉R =
∑

J,m

cRJ,m|ψ〉J,m. (3.21)

Spin J can only contribute to the right hand side of (3.21) if DO

J ⊃ R. Where DO

J

is the subduced representation [6] of DJ , which is obtained by embedding the cubic

group O into the rotation group SO(3). Up to J = 4 one finds

DO

0 = A1, (3.22)

DO

1 = T1, (3.23)

DO

2 = E ⊕ T2, (3.24)

DO

3 = A2 ⊕ T1 ⊕ T2, (3.25)

DO

4 = A1 ⊕ E ⊕ T1 ⊕ T2. (3.26)

Let OR be a lattice operator which transform under irreducible representation R. An

application of OR on the vacuum creates a state which is a superposition of various

eigenstates of the Hamiltonian

ψR =
∑

α

cRαψα (3.27)

In the continuum limit, the states ψα belong to spin J multiplets. In this sense ψR

contains various spin states. Spin J states can occur in right hand side of (3.21) only

if DO

J ⊃ R. The representation of the cubic group and their lowest spin content are

given in table (3.2).

3.2.3 Irreducible representations of Oh on Wilson loops

A representation of the group G can be obtained by applying the transformation of the

group G on any function ψ [7]. Then either the function ψ can be expressed linearly

in terms of base functions or ψ itself can be a base function. This statement remains

true if we split the representation into its irreducible constituents. So any function

ψ is expressible as a sum of functions which can act as base functions in the various

irreducible representation

ψ =
∑

ν

dν
∑

i=1

ψ
(ν)
i . (3.28)
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Consider a set of functions
(

ψ
(ν)
1 , ψ

(ν)
2 , ..., ψ

(ν)
dν

)

that form a dν dimensional basis for ir-

reducible representation D(ν). The effect of any symmetry operation on a basis function

can be represented as

Rψ
(ν)
i =

∑

j

ψ
(ν)
j D

(ν)
ji (R). (3.29)

The function ψ
(ν)
i belongs to i th row of the ν th irreducible representation. Multiplying

both side of ( 3.29) by D
(µ)∗
lm and taking the sum over group elements we get

∑

R

D
(µ)∗
lm (R)Rψ

(ν)
i =

∑

j

ψ
(ν)
j

∑

R

D
(µ)∗
lm (R)D

(ν)
ji (R) (3.30)

=
g

dν

∑

j

ψ
(ν)
j δljδmiδµν =

g

dν
ψ

(ν)
l δmiδµν (3.31)

where g is the order of the group. In particular for l = m we can write

∑

R

D
(µ)∗
ll (R)Rψ

(ν)
i =

g

dν
ψ

(ν)
l δliδµν (3.32)

In eq. (3.32) and for the rest of this chapter we drop the summation convention. Let

us define a projection operator

P
(µ)
i =

dµ
g

∑

i

D
(µ)∗
ii (R)R. (3.33)

Thus the effect of projection operator on a basis function

P
(µ)
i ψ

(ν)
j = ψ

(µ)
i δµνδij . (3.34)

Applying the operator P
(µ)
i on (3.28), we obtain the result

ψi
(µ) =

dµ
g

∑

R

D
(µ)∗
ii (R)Rψ. (3.35)

In analogy to the above, we can write a function ψ(ν) belonging to the νth irreps. as

a sum of functions belonging to the various rows of that representation i.e.,
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ψ(ν) =
dν
∑

i=1

ψ
(ν)
i . (3.36)

Now taking sum over i in Eq. (3.35) we get

ψ(µ) =
dµ
g

∑

R

χ(µ)∗(R)Rψ. (3.37)

Thus

ψ(µ) = P (µ)ψ. (3.38)

On lattices the arbitrary function ψ is replaced by Wilson loops. In the following,

we will define wilson loop of length L by L-tuple
(

f̂1, f̂2, ..., f̂L

)

with
∑L

i=1 fi = 0,

where f̂i ∈ {±êj |j = 1, 2, 3}, ej being unit vectors corresponding to the space like co-

ordinates of our lattice. The L-tuples which are identical upto cyclic permutations are

known as equivalent. The equivalence class corresponding to
(

f̂1, f̂2, ..., f̂L

)

is denoted

by [f̂1, f̂2, ..., f̂L].

Since, under C-parity the gauge field Aµ transforms as

Aµ →C −AT
µ (3.39)

It follows that the real part of the Wilson loop operators have C-parity C = +1 and

the imaginary parts have C-parity C = −1. So, the C-parity on the Wilson loops in

terms of the L tuple can be defined as

C[f̂1, f̂2, ..., f̂L] = [−f̂L,− ˆfL−1, ...,−f̂1] (3.40)

Operators with definite C-parity C = ±1 is defined as the combination

[f̂1, f̂2, ..., f̂L]± =
[f̂1, f̂2, ..., f̂L]± [−f̂L,− ˆfL−1, ...,−f̂1]

2
(3.41)

the parity operation on the operators are defined as

P [f̂1, f̂2, ..., f̂L] = [−f̂1,−f̂2, ...,−f̂L] (3.42)
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and the operators with defined parity P = ±1 are

[f̂1, f̂2, ..., f̂L]
± =

[f̂1, f̂2, ..., f̂L]± [−f̂1,−f̂2, ...,−f̂L]
2

(3.43)

Symmetry operations on the loops are represented as

R[f̂1, f̂2, ..., f̂L] = [Mgf̂1,Mgf̂2, ...,Mgf̂L] (3.44)

for g ∈ Oh andMg being the three dimensional rotation matrix corresponding to group

element g in vector representation on the basis êi (i = 1, 2, 3).

Alternatively one can use following protocol [9] for the loops on the lattice

Index Name Prototype path No. of links (ls, lt)

1 S-Plaquette [X,Y,-X,-Y] (4,0)

2 S-Rectangle [X,X,Y,-X,-X,-Y] (6,0)

3 T-Plaquette [X,T,-X,T] (2,2)

4 T-Rectangle [X,X,T,-X,-X,-T] (4,2)

5 S-Chair [X,Y,-X,Z,-Y,-Z] (6,0)

6 S-Butterfly [X,Y,-X,Y,Z,-Y,-Z,Y] (8,0)

7 S-Sunbed [X,X,Y,-X,-X,Z,-Y,-Z] (8,0)

8 T-Chair [X,T,-X,Z,-T,-Z] (4,2)

9 T-Sunbed [X,X,T,-X,-X,Z,-T,-Z] (6,2)

10 Knot [X,T,-X,-T,Z,-Y,-Z,Y] (6,2)

11 LS-Knot [X,T,-X,-T,Z,Z,-Y,-Z,-Z,Y] (8,2)

12 LT-Knot [X,X,T,-X,-X,-T,Z,-Y,-Z,Y] (8,2)

Table 3.3: Wilson loop prototype
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The 24 symmetric operations on those loops are described in table 3.4

Index Operations Index Operations

1 (x, y, z) → (x, y, z) 13 (x, y, z) → (−z, y, x)
2 (x, y, z) → (−z,−y,−x) 14 (x, y, z) → (−x,−y, z)
3 (x, y, z) → (z, x, y) 15 (x, y, z) → (−y, x, z)
4 (x, y, z) → (−y,−x,−z) 16 (x, y, z) → (−z,−x, y)
5 (x, y, z) → (y, z, x) 17 (x, y, z) → (−x, z, y)
6 (x, y, z) → (−x,−z,−y) 18 (x, y, z) → (−y,−z, x)
7 (x, y, z) → (z, y,−x) 19 (x, y, z) → (−x, y,−z)
8 (x, y, z) → (x,−y,−z) 20 (x, y, z) → (z,−y, x)
9 (x, y, z) → (y, x,−z) 21 (x, y, z) → (−z, x,−y)
10 (x, y, z) → (z,−x,−y) 22 (x, y, z) → (y,−x, z)
11 (x, y, z) → (x, z,−y) 23 (x, y, z) → (−y, z,−x)
12 (x, y, z) → (y,−z,−x) 24 (x, y, z) → (x,−z, y)

Table 3.4: Symmetry operations on Wilson loops.

Using symmetry operations on any Wilson loop from table 3.4 and characters of the

irreps from table 3.1 one can easily construct operators for all the symmetry channels.

In our calculation we used only square wilson loops to construct glueball operators.

Using square wilson loops, glueball operators for the scalar and tensor channel can be

constructed in following way

A = Re(Pxy + Pxz + Pyz) (3.45)

E1 = Re(Pxz − Pyz), E2 = Re(Pxz + Pyz − 2Pxy), (3.46)

where Pab is the square Wilson loop in plane ab ∈ x, y, z. A is the glueball operator for

the scalar channel, while E1 and E2 are the glueball operators for the tensor channel.
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Chapter 4

Algorithm

The vacuum expectation value of an observable in quantized lattice gauge theory can

be obtained using following ensemble average

〈O〉 =
∫

DUO[U ] exp(−S[U ])
∫

DU exp(−S[U ]) (4.1)

Analytical computation of this ensemble average on lattice is practically impossible as

it poses a problem of performing tremendously large number of integrals for a consid-

erable lattice volume.

The ensemble average 〈O〉 in eq.( 4.1) can be efficiently computed by generating

a sequence of link variable configurations with a probability distribution given by the

Boltzman factor exp(−S[U ]). The ensemble average can be given approximately by

〈O〉 ≈ 1

N

N
∑

n=1

O[Un] (4.2)

where Un sampled according to the probability distribution

dP (U) =
exp(−S[U ])

∫

DU exp(−S[U ]) (4.3)

which is known as the Gibbs measure. We approximate the integral by N gauge con-

figurations {Un}. The exact expectation value of the observable can be obtained in the

limit N → ∞.
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The main task for simulating pure SU(3) gauge theory on lattice is to generate

configurations {Un} according to probability distribution given by (4.3). The standard

procedure for simulating gauge fields is to generate a stochastic sequence of configura-

tions following an equilibrium distribution P (U) starting from an arbitrary configura-

tion. This method is known as Markov process where the Markov chain configurations

Un are generated subsequently

U0 → U1 → U2 → ... (4.4)

The index n for a field configuration represents the sequential order in which it is

generated. This index are often referred to as computation time. Update to a new

configuration from an existing one is known as a Monte Carlo step.

In the Markov process the transition probability from the configuration Un−1 to the

configuration Un is denoted by

T (Un = U ′|Un−1 = U) ≡ T (U ′|U) (4.5)

The transition probability depends only on the configuration Un−1 and the configura-

tion Un but is independent of the initial value of the index. The probability of any

configuration Un is represented by P (Un) and the criterion followed by any probability

distribution are the following

(i) P (U) > 0 for all U

(ii)
∑

U P (U) = 1.

The transition probability for the Markov process obeys following requirements

(i)T (U ′|U) > 0 for all U, U ′

(ii)
∑

U ′ T (U ′|U) = 1 for all U .

The probability to hop into a configuration U ′ at any step is equal to the probability

to hop out of U ′ in a Markov process. The corresponding balance equation is the

following
∑

U

T (U ′|U)P (U) =
∑

U

T (U |U ′)P (U ′) (4.6)
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where the left hand side represents the total probability to hop into the configuration

U ′ and the right hand side represents the total probability to hop out of U ′. Using the

normalization property the sum on the right hand side of (4.6) can be written as

∑

U

T (U ′|U)P (U) = P (U ′) (4.7)

This equation implies that the equilibrium distribution P (U) is a fixed point of the

Markov process. Applying the transition matrix repeatedly on an arbitrary gauge

configuration U0 with occurence probability P (0)(U) one obtains the equilibrium con-

figuration U distributed according to P (U).

P (0) → P (1) → P (2) → ...→ P (= equilibrium distribution) (4.8)

The strong ergodicity of a Markov process can be obtained when all the configurations

of the Markov chain are accessible, which can be obtained for strictly positive transition

matrix elements T (U ′|U) for all pairs of U and U ′. A solution of the balance eqn(4.6)

can be obtained when equality holds for each term

T (U ′|U)P (U) = T (U |U ′)P (U ′) (4.9)

This equality is known as the detailed balance condition. Most Monte Carlo algorithms

follow the detailed balance condition.

4.1 Metropolis Algorithm

The metropolis algorithm was originally proposed by Metropolis et al. [1]. It advances

the Markov chain from from an initial configuration Un−1 to a new configuration Un.

One applies the Metropolis algorithm to update a given configuration using the follow-

ing steps

(i) Use some a-priori transition probability T0(U
′|U) to choose some candidate

configuration U ′.

(ii) Accept the candidate configuration U ′ with acceptance probability

TA(U
′|U) = min

(

1,
T0(U |U ′) exp(−S[U ′])

T0(U ′|U) exp(−S[U ])

)

(4.10)
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when the selected configuration U ′ is not accepted, the old configuration U is

considered again in the Markov chain.

(iii) Repeat the steps (i) and (ii).

The total transition probability T = T0TA satisfies the detailed balance condition.

For the symmetric selection probability

T0(U |U ′) = T0(U
′|U) (4.11)

(4.10) simplifies to

TA(U
′|U) = min (1, exp(−∆S)) with ∆S = S[U ′]− S[U ]. (4.12)

So the new configuration is always accepted when the action gets lowered for new

configuration and accepted with probability exp(−∆S) when the action increased by

∆S.

4.2 Metropolis Algorithm for Wilson Gauge Action

The locality property of the Wilson gauge action makes it convenient to use Metropolis

algorithm for Wilson’s gauge action. Calculation of action difference ∆S in (4.12)

involves a single link variable Uµ(n). As a result of that, the computer time required

per link update is quite small. The candidate configuration U ′ for the Metropolis

update differs from the configuration U by the value of single link variable Uµ(n). In

four dimensions this link U ′
µ(n) is shared by six plaquettes, which are affected when

changing Uµ(n) → U ′
µ(n). Using this locality the change in the action ∆S can be

written as

∆S = − β

N
Re tr[(U ′

µ(n)− Uµ(n))A], (4.13)

where

A =

6
∑

i=1

Pi =
∑

ν 6=µ

(Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν(n)

+U †
ν(n + µ̂− ν̂)U †

µ(n− ν̂)Uν(n− ν̂)) (4.14)

and N corresponds to the SU(N) gauge theory under consideration. Here β is known

as the inverse lattice coupling which is related to the coupling g2 of eq. 2.21 by β = 2N
g2
.
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The products Pi of the link variables of the plaquettes are known as staples. A

represents the sum of all staples for a link variable, which are affected by the change

of Uµ(n).

One should choose the candidate SU(N) link variables U ′
µ(n) in such a way that it is

not too far from old link variable Uµ(n) so that and the average acceptance probability

for U ′
µ(n) does not become too small. One possibility is to take product of a random

SU(N) matrix X in vicinity of 1 with the old link Uµ(n)

U ′
µ(n) = X · Uµ(n) (4.15)

Construction of the matrices X is discussed in next section. The Metropolis algorithm

for SU(N) gauge theory can be described in following steps:

(i) Given a starting configuration choose a candidate link variable U ′
µ(n) accord-

ing to some selection probability T0.

(ii) Compute the change in action ∆S using the sum of staples. Accept the new

variable U ′
µ(n) when exp(−∆S) > r and reject otherwise. Where r is random

number distributed uniformly in the interval [0, 1).

(iii) Repeat these steps from beginning for all the lattice sites n and directions

µ.

In step 2 the candidate link is always accepted with decreased action in addition

due to the random number r the configurations with increased action is also accepted

randomly. This feature reproduces quantum fluctuations of the system.

4.3 Heat Bath Algorithm

In the last section we discussed the single link Metropolis update algorithm. In this

section we will describe a more efficient algorithm namely the heat bath algorithm.

In the heat bath method the first two steps of the single link Metropolis update are

combined into a single step and the new link variable U ′
µ(n) is chosen according to the

local probability distribution

dP (U) = dU exp

(

β

N
Re tr[UA]

)

(4.16)
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where A is the sum of staples calculated according to (4.14). In this algorithm all the

links except for U = Uµ(n), are held fixed when updating a link at site n and in µ

direction. dU denotes the Haar measure for the gauge group. The heat bath algorithm

is not directly applicable for updating SU(3) link variables, however one can use a

pseudo heat bath algorithm by updating SU(2) subgroups of SU(3).

By updating two different SU(2) subgroups of SU(3) in turn, one can cover the

whole of SU(3). However for efficiency reasons, it is better to update all the three

different SU(2) subgroups of SU(3). This procedure can be generalized to SU(N)

where SU(N) is updated by updating N-different SU(2) subgroups of SU(N).

To update a SU(2) matrix we use the property that the sum of SU(2) matrices is

proportional to another SU(2) matrix. Let us construct an SU(2) matrix V = A√
det[A]

.

Where det[A] > 0. If det[A] = 0 one chooses a random SU(2) matrix for U . The

probability distribution (4.16) can now be written as

dP (U) = dU exp

(

1

2
aβRe tr[UV ]

)

. (4.17)

Where a =
√

det[A]. Let us define a matrix X by the product X = UV . Since the

Haar measure is invariant under gauge transformation we can write the local probability

distribution of X as

dP (X) = dX exp

(

1

2
aβRe tr[X ]

)

. (4.18)

The candidate link can be obtained from the matrix X distributed according to (4.18)

U ′
µ(n) = U = XV † = X

A†

√

det[A]
. (4.19)

We use the following representation for the SU(2) matrix X

X = x0 + ix · σ (4.20)

where σ denotes the vector of three Pauli matrices and

det[X ] = x20 + |x|2 = 1. (4.21)

Using this representation one can write the distribution for X in the form

dP (X) ∝ dx0

√

1− x20 d
3n δ(n2 − 1) exp(aβx0) (4.22)
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Figure 4.1: Distribution of x0.

with d3n δ(n2 − 1) ≡ d2Ω and xi =
√

1− x20 ni. Determination of the SU(2) matrices

according to (4.18) is now reduced to generation of a random variable x0 with proba-

bility P (x0) ∝ eaβx0 and generation of a unit vector ni for i = 1, 2, 3 such that n2 = 1.

Fabricius & Haan [3] and Kennedy & Pendleton [2] observed that if one generates

P ′(x0) ∝ eaβx0
√
1− x0 θ(1− x0) (4.23)

then one would have to correct only for
√
1 + x0 θ(1 + x0). This correction is

implemented by an accept/reject test. If u2 is a flat random number between [0, 1),

then accept x0 if 2u22 ≤ 1 + x0.
√
1 + x0 varies from 0 to

√
2. So our random variable

is normalized to
√
2. s0 is accepted if the random variable is below the curve (shaded

area). The shaded area is the region
√
2 ≤

√
1 + x0.

For SU(3), one can construct updating matrices X from SU(2) matrices embedded

in 3× 3 matrices according to

R =







r11 r12 0

r21 r22 0

0 0 1






, S =







s11 0 s12

0 1 0

s21 0 s22






, T =







1 0 0

0 t11 t12

0 t21 t22






(4.24)

This pseudo heat bath update for the SU(2) subgroups may also be combined with

overrelaxation steps as discussed in the next section.

4.4 Overrelaxation Algorithm

Overrelaxation algorithm [4] replaces each link on the lattice with another group ele-

ment (SU(3) in our case) in such a way that the action remains the same but the new

link is as far as possible in the group space from the original element. To perform the

overrelaxation method one uses the fact that in the Metropolis algorithm new configu-

rations are always accepted if they do not change the action. The starting point is the
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probability distribution (4.16) of a single link variable Uµ(n) = U , in the background

of its neighbors which we hold fixed, with the sum of staples A calculated according to

(4.14). The matrix A can be decomposed as:

A = A
1

(A†A)1/2
(A†A)1/2 ≡ O(A†A)1/2 ≡ OH (4.25)

where H is a hermitian matrix. The U(3) matrix O can be reduced to SU(3) matrix by

multiplying with matrix I(α) proportional to identity matrix with det[I(α)] = det[O†].

Therefore,

A = ÕI†(α)H (4.26)

where Õ = OI(α) is a SU(3) matrix. Diagonalising the matrix H by the unitary

matrix V ,

H = V †DV (4.27)

we obtain

tr[UA] = tr[V UÕV †I†(α)D] ≡ tr[U ′I†(α)D] (4.28)

The action depends upon the diagonal elements of U ′ only and the non-diagonal el-

ements of U ′ can be suitably reflected. Indeed, the measure and the exponential are

invariant under three reflections of non-diagonal elements. Reflections of the non-

diagonal elements of U are represented as.

Reflection (1)

U r
12 = −U12, U

r
21 = −U21, (4.29)

U r
13 = −U13, U

r
31 = −U31 (4.30)

Reflection (2)

U r
12 = −U12, U

r
21 = −U21, (4.31)

U r
23 = −U23, U

r
32 = −U32 (4.32)

Reflection (3)

U r
23 = −U23, U

r
32 = −U32, (4.33)

U r
13 = −U13, U

r
31 = −U31 (4.34)
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The reflection operations leads to a new group element having the same energy as the

original one. The reflected link finally reads,

UR = V †[V OUV †]rV O
† (4.35)

where the subscript r implies that the reflection operation applied to the matrix in the

bracket. The overrelaxation algorithm alone is not ergodic. It samples the configuration

space on the subspace of constant action. This is called the microcanonical ensemble.

Since one wants to determine configurations according to the canonical ensemble, i.e.,

distributed according to the Boltzmann weight, one has to combine the overrelaxation

steps with other updating algorithms, in our case we combined overrelaxation with the

heat bath algorithm.

4.5 Initialisation

To start the simulation one can choose any field configuration. After sufficient com-

puter time, configurations distributed according to the equilibrium distribution will be

produced due to the Markov chain property (4.8). The cold start and the hot start are

two typical starting configurations.

In cold start all the link variables are set as 3×3 unit matrices (Uµ = 1). This con-

figuration corresponds to minimal action, situation approximately expected for small g

(large β). The weak coupling regime corresponds to low temperature of corresponding

statistical system, hence the name.

In hot start random matrices are chosen as starting configuration. One can also

start with mixed configuration, where one half of the field variables are chosen cold

and the other half are chosen hot.

The equilibrium distribution can be obtained after a certain number of sweeps

through the lattice. A sweep through the lattice is referred to visiting all the links

at least once. One determines the sufficient number of equilibriation sweeps for any

observable by studying that observable started with cold and hot starts separately. For

example we look at the value of the bare plaquette at β = 6.1 in fig. 4.2. As soon as

the curves for the observables from the hot and the cold start approach each other, the

system is nearing equilibrium. In general the number of sweeps required to obtain the

equilibrium distribution depends on the updating algorithm, the type of action used,

the lattice gauge coupling β, and the size of the lattice.
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Figure 4.2: The bare plaquette measured at β = 6.10 starting with hot and cold start.

The data points with circles are obtained from cold start and the boxes are obtained

from hot start.

4.6 Statistical Analysis of Data

Monte Carlo simulations generate configuration samples [Un], (n = 1, 2, ..., N) for a

Markov sequence. This allows one to determine different observables A[U ]. An estima-

tor for the expectation values of those observables is given by the sample average A.

Averaging over infinitely large number of sample gives the ensemble average equal to

the expectation value A = 〈A〉. In ideal case where the configurations in each sample

are uncorrelated, the sample average A is normally distributed around A with variance

σ2
A
=

1

N − 1
(A2 −A

2
) (4.36)

In this case the error on the sample average is quoted as,

A = A± σA. (4.37)

In Monte Carlo simulations the data sample is the result of a (computer-)time series

and in most of cases the generated configurations are in fact correlated. As a result the

observables are not statistically independent. The correlation in the sequence of the

generated configurations is known as autocorrelation. The autocorrelation function for

the observable A is defined as,

CA(t) = 〈(Ai − 〈Ai〉)(Ai+t − 〈Ai+t〉)〉. (4.38)
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In a typical situation the normalized autocorrelation function ΓA(t) for the observable

A exhibits exponential behaviour for asymptotically large t:

ΓA(t) ≡
ΓA(t)

ΓA(0)
∼ exp

(

− t

τA,exp

)

, (4.39)

and τA,exp is known as the exponential autocorrelation time for the observable A.

And the integrated autocorrelation time is defined as

τA,int =
1

2
+

N
∑

t=1

ΓA(t). (4.40)

One can obtain corrected error estimates from an updating sequence with autocor-

relations using binning analysis. For a long enough sequence of configurations one can

build blocks of subsequent observables, called bins, and average the observables first

in the bins. The obtained bin averages themselves can then be considered as results of

single measurements, and can be used to estimate the variance according to (4.36). If

the bin sizes are larger than the autocorrelation time, then the average values in the

bins are practically uncorrelated, and the obtained error estimate is unbiased.

One can use the jackknife analysis [5] when a long enough sequence of configura-

tions is not available. Consider a not very large sample of independent measurements

(binned) of an primary observable A. Let the measured values be A1, A2, ...., AN with

the sample average A. One can obtain the jackknife average of the observable by

omitting a single measurement from the sample in all possible ways:

A(J)s =
1

N − 1

∑

r 6=s

Ar (4.41)

The variance of the jackknife estimator of the primary observable is defined as,

σ2
(J)A

=
N − 1

N

N
∑

s=1

(A(J)s − A(J))
2 (4.42)

where A(J) =
1
N

∑N
s=1A(J)s.

Let y be secondary quantity, which is a function of primary quantity A. Corre-

sponding jackknife estimator for the secondary quantity is y(J)s = y(A(J)s) with an

average

y(J) =
1

N

N
∑

s=1

y(J)s. (4.43)
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The variance of the jackknife estimator for the secondary quantity is defined as

σ2
(J)y =

N − 1

N

N
∑

s=1

(y(J)s − y(J))
2. (4.44)

The jackknife analysis for the secondary quantity gives error estimates y = y ± σ(J)y.
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Chapter 5

Noise Reduction Algorithm

In chapter 3 we have seen that the Euclidean expectation values of Wilson loops and

their products are the most natural quantities to consider for calculation of the glueball

spectrum in non-abelian gauge theory. Numerical computation of loop expectation val-

ues and it’s correlators in lattice gauge theory is in principle straightforward. The main

difficulty in computing large Wilson loops and their correlators is the exponentially de-

creasing signal-to-noise ratio. Fig. 5.1 shows the temporal separation dependence of

the Signal-to-Noise ratio for scalar glueball correlator using bare plaquette.
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Figure 5.1: Signal-to-Noise ratio for scalar channel glueball using bare plaquette.

Using plaquettes for measuring glueball masses suffers from two problems. First,

the overlap of plaquettes with the glueball wave function is poor and this makes the
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signal for the correlators weak. Second, they couple strongly to ultraviolet fluctuations,

increasing the noise in the correlators. When approaching towards the continuum limit,

these problems get worse as the lattice spacing decreases. In [5] it was observed that

Wilson loops of size of about 0.5 fm had the strongest overlap with the glueball wave

function. Also a large loop is less sensitive to ultraviolet fluctuations.

Better algorithms and computational strategies are needed to handle such problems.

A significant improvement is achieved using link blocking techniques and variational

methods. In order to get better estimate for ground state glueball masses we need

operators which maximise the overlap with the ground state. Operators having ex-

tended structure can give better approximation for glueball wave functions even at

small lattice spacings. Smearing and Blocking techniques are well developed methods

to construct operators with an extended structure. In addition to these methods varia-

tional techniques can be used to construct glueball operators with better ground state

overlap.

Multilevel algorithms provide a different approach to reduce the statistical noise in

glueball correlators. Such algorithms have been used in the past for computing the

glueball spectrum for U(1), SU(2) and SU(3) lattice gauge theories. In this chapter

we outline this approach. We restrict ourselves to pure Yang-Mills theory with gauge

group SU(3) and employ only the standard operators in each JPC channel (scalar and

tensor) but try to follow the correlator to large temporal separations using a new noise

reduction algorithm. Since the contamination due to excited states falls off exponen-

tially, we expect correlators at distances beyond 0.5 fermi to be dominated by the

ground state. Our strategy is to measure glueball correlators at distances beyond 0.5

fm using operators of physical size about 0.5 fm and use the Multilevel algorithm to

get signals at large temporal separations.

5.1 Variational Technique

In variational techniques a whole set of operators with different shapes and sizes are

used. Let N0 be the number of such operators φ
(R)
α (t), which transform under same

representation R. Using linear combination of these basic operators Φ(R)(t) can be

formed,

Φ(R)(t) =
∑N

α=1
v(R)
α φ(R)

α (t) (5.1)

The coefficients v
(R)
α can be determined by a variational technique [1,2] by minimis-
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ing effective mass

m̃(t) = −1

t
ln

∑

αβv
(R)
α v

(R)
β C̃αβ(t)

∑

αβv
(R)
α v

(R)
β C̃αβ(0)

(5.2)

where C̃αβ(t) is the connected correlator

C̃αβ(t) =
∑

τ

〈0|φ̃(R)
α (τ)φ̃

(R)
β (t+ τ)|0〉 (5.3)

and φ̃
(R)
α (τ) = φ

(R)
α (t)− 〈0|φ(R)

α (t)|0〉.

5.2 Anisotropic Lattices

As it is difficult to follow the correlator signal to large physical distances, even using

the above techniques, one often uses anisotropic lattices [5] which have a significantly

smaller temporal spacing compared to the spatial lattice spacing with the expectation

to observe a flat behaviour of the effective mass over several time slices. Improved

lattice gauge actions are used to suppress the lattice artifacts from spatially coarse lat-

tices [7] These techniques has been verified to be efficient in calculation of the glueball

spectrum [7], and are often adopted. The Glueball mass spectrum using this technique

is shown in fig. 5.2

5.3 Multilevel Algorithm

The noise reduction scheme we implement follows the philosophy of the multilevel algo-

rithm [6]. It is a noise reduction method which exploits the local nature of the Wilson

gauge action and the existence of a positive definite transfer matrix. This method was

used for exponential noise reduction for measuring Polyakov loop correlators and an

impressive improvement with respect to the ordinary 1-level algorithm was achieved.

However the principle is general and can be applied to other observables as well. In

addition to Polyakov loop correlators, it has been used to measure observables such

as the Polyakov loop [13], Wilson loop [14], components of the energy-momentum ten-

sor [15] as well as the glueball mass spectrum [4, 5, 7, 9, 11].

The locality property of the Wilson gauge action allows one to quasi-factorise the

functional integral for the expectation values and correlators of local observables. In
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Figure 5.2: The mass spectrum of glueballs in the pure SU(3) gauge theory [7]. The
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−1
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colored box indicates the statistical uncertainty of the mass.

this technique averaging out UV fluctuations separately for each factor makes it effi-

cient. The main principle of the multilevel algorithm is to compute expectation values

in a nested manner. Intermediate values are first constructed by averaging over sub-

lattices with boundaries and then the full expectation values are obtained by averaging

over the intermediate values with different boundaries. This technique is discussed in

some detail in section 5.3.2.
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5.3.1 Multihit technique

Our first noise reduction step is a semi-analytic multihit on the SU(3) links [16] with

which the Wilson loops are constructed. The multihit technique is a variance reduction

technique in which a link is replaced by its expectation value (integral over the group) in

a constant background. We elaborate a little on this as this provides a very significant

error reduction for us.

In a numerical simulation one can minimize the statistical noise by improved choice

of measured quantities. In order to measure the expectation value 〈O〉, one can choose

another quantity O′ with the same mean value

〈O′〉 = 〈O〉 (5.4)

but with smaller variance

σ2
O′ < σ2

O (5.5)

where σ2
O is the variance for the observable O

σ2
O =

1

N − 1
[〈O2〉 − 〈O〉2] (5.6)

Let us consider an observable O[U ], which depends linearly on the SU(3) link

variable Ui and has the form

O[U ] ≡ tr[UiR[Ûi]] (5.7)

where Ûi implies all other links except Ui. One can write the Wilson action with the

term depending on the link variable Ui as

S[U ] ≡ −
(

2

g2

)

Re tr[UiAi] + Ŝ(Ûi) (5.8)

Ai being the sum of staples for the link variable Ui. The expectation value of the

observable O can now be written as

〈O〉 =
∫

[dÛi] exp(−Ŝ(Ûi))
∫

dUi exp[
(

2
g2

)

Re tr[UiAi]] tr[UiR[Ûi]]

∫

[dÛi] exp(−Ŝ(Ûi))
∫

dUi exp[
(

2
g2

)

Re tr[UiAi]]
, (5.9)

〈O〉 = 〈O′〉 ≡
∫

[dÛ ] exp(−S[Û ]) tr{UiR[Ûi]}
∫

[dÛ ] exp(−S[Û ])
(5.10)

where Ui is the averaged link

Ui ≡
∫

dUi exp[
(

2
g2

)

Re tr (UiAi)] Ui

∫

dUi exp[
(

2
g2

)

Re tr (UiAi)]
(5.11)
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Replacing link variable Ui with averaged links Ui gives smaller variance. In case of

SU(2) the group integration (5.11) can be easily performed using the Bessel function

I1,2 [18]

Ui = KiS
−1
i

I2(βKi)

I1(βKi)
. (5.12)

For SU(3) gauge theory no analytic method exists for evaluation of group integration

(5.11). It must be estimated numerically. A Monte-Carlo with about 10 hits gives

acceptable results for Ui. There exist a semi-analytic method [16] which is about 10

times faster. In this method the one-link integral which depends on the neighbouring

links through the source R is defined by

Z(R) =

∫

dU exp[−tr(RU † + UR†)], (5.13)

where the integration is done over one SU(3) matrix. This one link integral can be

expressed as a contour integral of Bessel functions:

Z(R) =

∮

dx

2πi
exQ

(

x

P (x)

)
1
2

I1

(

2

(

P (x)

x

)
1
2

)

(5.14)

where

Q = det R + det R†, (5.15)

P (x) = det(1 + xRR†). (5.16)

The averaged link can be calculated from the one link integral (5.13) as

U =
∂

∂R
logZ(R). (5.17)

The contour integral (5.14) can be evaluated by performing a gaussian quadrature

along a circle centred at the origin with a radius chosen so that one can use the

asymptotic expansions of the Bessel functions:

Iν(Z) = (
eZ√
2πZ

)[1− (4ν2 − 1)

8Z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
− · · ·] (5.18)

One needs to compromise for the radius which minimizes both the length of the asymp-

totic expansion and the round-off errors to avoid the conflicting limiting behaviours of

the argument [P (x)/x]1/2 of the Bessel functions for |x| → 0 and |x| → ∞.
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5.3.2 2-level algorithm for glueballs

For our implementation, we slice the lattice along the temporal direction by fixing the

spatial links and compute the intermediate expectation values of the glueball operators

by performing several sub-lattice updates. Individual correlators are created using

products of the averaged operators at different time slices. The scheme is depicted in

Fig. 5.3.

time

A B C

sub−lattice

Figure 5.3: Multilevel scheme for computing glueball correlators. The time slices

marked A, B and C are held fixed during the sub-lattice updates. The thick links are

the ones which are replaced by their multihit averages.

The glueball operators between which we compute our correlation function (source

and sink) are extended Wilson loops denoted by Pab where a, b go over the three spatial

directions x, y, z. The operators are projected to zero momentum states. We denote the

temporal separation between the source and the sink operator by ∆t. Our lattices are

of size Nx×Ny ×Nz ×Nt. For each set of sub-lattice updates, Nt

∆t
time slices separated

by distance ∆t are kept fixed. Average values of the operators 〈P(t)〉bc are calculated

for all time-slices between the fixed time-slices. After each set of sub-lattice updates,

nsp number of sweeps over the entire lattice was performed to remove auto-correlation

between consecutive compound measurements. After nmeas number of these compound

measurements the correlators are computed as

〈P(ti)P(tj)〉 =
1

nmeas

∑

bc

〈P(ti)〉bc〈P(tj)〉bc (5.19)
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Correlation functions between large loops have the advantage that they have much

less contamination from the higher excited states compared to those between elemen-

tary plaquettes. Such an approach was reported in [5]. There, however, single expo-

nential fits to the correlators were not possible as the data was too noisy. Nevertheless

it was observed that glueballs seemed to have the largest overlap with loops of spatial

extent 0.5 fermi in each direction. We therefore choose [17] loops of roughly of the

same extent to construct our glueball operators.

The parameters for our simulations are the lattice size, the lattice scale r0/a, size

of the Wilson loops and the number of sub-lattice updates. These parameters along

with the number of compound measurements are given in Table 5.1.

Lattice Size β (r0/a)
sub−lattice
thickness iupd loop size # meas.

A 103 × 18 5.70 2.922(9) 3 30 2× 2 1000000

B 123 × 18 5.80 3.673(5) 3 25 3× 3 1248000

C 163 × 20 5.95 4.898(12) 4 50 5× 5 1024000

D‡ 183 × 30 6.07 6.033(17) 6 60 5× 5 225000

E‡ 243 × 32 6.20 7.380(26) 8 65 8× 8 309000

F‡ 303 × 40 6.40 9.74(5) 10 70 10× 10 256300

D 123 × 18 5.80 3.673(5) 3 70 3× 3 5760000

E 123 × 20 5.95 4.898(12) 5 100 5× 5 3456000

F 123 × 20 6.07 6.033(17) 5 100 5× 5 1536000

G 183 × 30 6.07 6.033(17) 6 500 6× 6 425120

H 243 × 32 6.20 7.380(26) 8 400 8× 8 184000

I 303 × 40 6.40 9.74(5) 10 400 10× 10 121600

Table 5.1: Simulation parameters for all the lattices. Lattices A, B, C, D‡, E‡ and F‡
were used for the scalar channel while D, E, F, G, H and I were for the tensor channel.

The choice of the number of sub-lattice updates “iupd” is an important parameter

of this algorithm. For the tensor channel, the rule of the thumb we follow is that the

operator expectation value over the sub-lattice updates should be the same order as

the square root of the correlator at a large value of ∆t. For the scalar channel the same

holds but for the connected parts.

The multilevel algorithm is very efficient for calculating quantities with very small

expectation values. While the operators in the tensor channel viz. E1 = Re(Pxz −Pyz)

and E2 = Re(Pxz + Pyz − 2Pxy) have zero expectation values and are therefore ideal
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for direct evaluation using the multilevel scheme, the scalar operator A = Re(Pxy +

Pxz + Pyz) has a non-zero expectation value which has to be subtracted to obtain the

connected correlator. For the scalar channel, we therefore do the simulation in two

steps. The first step is to determine the expectation value of the glueball operator.

This has to be determined very accurately so that the error in the expectation value

has negligible contribution to the error on the correlator. Otherwise the error on

the expectation value of the operator will dominate the total error and further error

reduction on the correlator would be impossible. We use multi-hit on the links to

determine the expectation value of the glueball operator. While this was sufficient for

our loop size and coupling, if necessary a multi-level scheme can also be used for this

estimate. Then we directly computed the connected correlator using (A− 〈A〉) as the
operator with a zero expectation value. Where the expectation value 〈A〉 is determined

by taking average over the operator expectation values on all the time-slices.

〈A〉 = 1

Nt

Nt
∑

t=1

〈A(t)〉 (5.20)

The choice of “iupd” was done in the same way as in the tensor channel.

For the scalar channel there exists an alternative method [9] to avoid that two step

process by taking the derivative of the correlator. Taking derivative of the correlator

Cconn(t, t0) at both t and t0 one obtains,

∂t∂
∗
t0 (Cconn(t, t0)) ≈ −α[e−m(t−t0)(1− e−m)2 + e−m(Nt−(t−t0))(em − 1)2] (5.21)

where ∂t be the forward derivative and ∂t0 be the backward derivative. On the lattice

we measure,

∂t∂
∗
t0
(Cconn(t, t0)) = 〈Re

∑

n,i<j

[Pij(n, t+ 1)− Pij(n, t)]×

Re
∑

n,i<j

[Pij(n, t0)− Pij(n, t0 − 1)]〉 (5.22)

where Pij(n, t) denotes the plaquette in ij plane at lattice site n on time-slice t and

[· · ·] denotes sublattice average of a quantity. The derivatives are estimated in the sub-

lattice updates by taking the difference of the value of the operator on the updated

slice with the value of the operator on the boundary. As shown in Fig. 5.4, to get the

forward derivative at t, we used the fixed boundary at (t + 1) and for the backward

derivative, the boundary at (t − 1). To get the correlators one has to use two such

slices (e.g., t and t0 in Fig. 5.4). In practice we hold every alternate layer of spatial

links fixed and estimate the correlators for various time separations at the same time.
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Figure 5.4: Evaluation of the derivative of the glueball correlator. The thick lines are

held fixed during the sub-lattice averaging.

We observed one more phenomenon which is particular to this algorithm. For the

smaller values of t where most contributions come from slices which are within the

same sub-lattice, there are strong effects due to the short temporal extent of the sub-

lattice itself. In such cases we were forced to take into account only correlators between

those time slices which lay in different sub-lattices. We found this effect to be significant

only in the tensor channel (probably because of the larger value of iupd in those cases).
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Chapter 6

Results

In this chapter we describe the results for glueball masses obtained using the 2-level

algorithm. We also discuss methods to extract glueball masses from the measured

correlators and the efficiency of our algorithm.

6.1 Algorithmic Gain

Lattice Size β th iupd loop size

A1 63 × 16 5.7 2 20 2× 2

B1 63 × 18 5.8 3 25 3× 3

C1 83 × 24 5.95 4 50 5× 5

D1 63 × 18 5.8 3 50 3× 3

E1 83 × 30 5.95 5 100 5× 5

F1 103 × 30 6.07 6 130 6× 6

Table 6.1: Simulation parameters for additional lattices on which comparisons with

the naive method were carried out. Lattices A1,B1 and C1 were used for the scalar

channel while D1,E1 and F1 were for the tensor channel. (th denotes the sub-lattice

thickness)

To investigate the advantage of the current algorithm over the naive method, we

did a few runs for the same computer time using both methods. Since it is not clear

a-priori how the algorithm behaves as either ∆t or β changes we report our experience

for different values of ∆t and β (see Table 6.2). The lattice parameters we used for

this test are summarized in table 6.1.
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For the lattice D1 , we carried out runs for 200 hours. The multilevel algorithm

had an error of 3% at ∆t = 3 which is just below r0 (see Table 6.2), while the naive

algorithm had an error of 81%. It would be interesting to compare the performance

at a value of ∆t between r0 and 2r0. So we choose points around 1.5r0 (in this case

∆t = 6). Even after 200 hours of runtime we did not have a signal at that distance

for the naive method. So to estimate the % error we multiply the naive correlator

at the largest value of ∆t where we have a signal (i.e. ∆t = 3) by corrmultilevel(∆t=6)
corrmultilevel(∆t=3)

.

Doing this, we get the % error to be 850% for the naive method while it is 29% for

the multilevel scheme. Thus for the tensor channel at β = 5.8 we estimate that the

error reduction algorithm produces an error which is between 27 times smaller than

the naive method at both t = 3 and 6. Since the error ∝ time2 we estimate the new

method is more efficient by at least a factor of 729 or so.

Scalar channel Tensor channel

# time errn gain # time errn gain
(min) errml (min) errml

A 3850 5.7 32 D1 12000 27 729

B1 1000 5.5 30 E1 5775 20 400

C1 1100 18 324 F1 15000 − −

Table 6.2: Comparison of error bars between the naive and error reduction methods.

errn stands for error in the naive method while errml denotes error in the multilevel

scheme. gain is in terms of time and is given by (errn/errml)
2.

At β = 5.95 (lattice E1 ), the runs were for about 100 hours. There at ∆t = 3 the

multilevel algorithm produced an error of about 4% while the naive algorithm had an

error of 75%. Doing a similar estimate as β = 5.8 we estimate that at 1.5r0 ( ∆t = 8)

the errors are 150% for the multilevel algorithm while it is about 3000% for the naive

method. At this β value therefore, the gains in terms of % error is about a factor

20. At β = 6.07, we did not get a signal for the naive algorithm for any t other than

∆t = 1 even after about 300 hours of runs. Thus we see that the gain has very little

dependence on t but does depend on β.

For the scalar channel using lattice A, runs were carried out for about 3850 min.

Comparing the errors around 1.4r0 , we got a gain of about 5.7 in terms of errors or 32

in terms of time. At β = 5.8 (lattice B1 ) the runs were carried out for about 1000 min.
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In this case we have a signal at 1.5r0 for both methods and we get an error of 13%

for the multilevel scheme while it is about 70% for the naive method. Thus the gain in

terms of % error is about 5.5 or in terms of time about 30. At β = 5.95 in the scalar

channel, again we do not have a signal at 1.5r0 using the naive method and are forced

to use the same method as in the tensor channel to estimate the errors. At ∆t = 3 we

obtain the errors to be 2% and 37% for the multilevel and the naive methods respec-

tively while at 1.5r0 they are 29% and 500% (estimated) respectively. Thus the ratio

of errors is about 18 or gain in terms of time 324.

In addition to the above, at β = 5.7 we have one more comparison using the lattice

A1. There we obtain a gain of 2.5 in terms of errors or 6 in terms of time. Thus the

gain seems to increase with increase in volume. We expect this will help us go to larger

lattices.

6.2 Fitting Strategy and Masses

For most of our lattices we extracted the glueball masses using the standard correlators

and fitting them to the form

C(∆t) = A[exp(−m∆t) + exp(−m(T −∆t))] (6.1)

where m is the glueball mass and T is the full temporal extent of the lattice. Since the

correlator is symmetric about T/2 we folded the data about T/2 and used only one

half of the temporal range for the fits.

In this section we describe our fitting procedures and the masses we obtain. In addi-

tion, for β = 5.7 we computed the derivative of the correlator using eqn. (5.22). We ex-

tracted the mass by fitting the derivative of the correlator to the form (5.21). From this

fitting we obtained the scalar glueball mass m0++a = 0.924(033) with χ2/d.o.f = 1.18.

We did not include this mass for the scalar channel, as this calculation was done for a

smaller lattice volume.

For fitting we used the “non-linear model fit” of Mathematica and the fit range was

decided on the following two criteria: (i) the range should extend to as large a value of

∆t as possible and (ii) the fit to the form in Eq. (1) should have a p-value < 0.01 for

both m and A. We found that the p-value for A gave the most stringent criterion for

accepting the fit. The fit range for all the different channels and couplings along with
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the χ2/d.o.f . are indicated in Tables 6.3, 6.4 , 6.5 and 6.6.

We took 〈C(∆t)〉 in eq. (6.1) to be a jackknife average over 20 bins and checked that

this data set was independent of autocorrelation. However there is another correlation

in the fitting procedure viz. that the different values of ∆t are correlated as they are

drawn from a single sample. The correlation between different temporal separations is

characterized by the covariance matrix

CovN (∆t,∆t
′) =

1

N
〈(C(∆t)− 〈C(∆t)〉N)(C(∆t′)− 〈C(∆t′)〉N)〉N (6.2)

where N is the number of bins. The central limit theorem suggests that the distribution

of independent random variables are Gaussian. The best fit is defined as maximum

likelihood corresponding to minimum of χ2 defined as

χ2 =
∆tmax
∑

∆t,∆t′=∆tmin

(C(∆t)− 〈C(∆t)〉N)ω(∆t,∆t′)(C(∆t′)− 〈C(∆t′)〉N), (6.3)

where ω(∆t,∆t′) = Cov−1
N (∆t,∆t′). If the bins are jackknife samples the covariance

matrix is

Cov(J)n(∆t,∆t
′) =

n− 1

n
〈(C(∆t)− C(∆t))(C(∆t′)− C(∆t′))〉n (6.4)

where C(∆t) is the jackknife bin average of the correlator for each bin, C(∆t) is the

jackknife average over n bins. The “non-linear model fit” of Mathematica cannot handle

correlated fits directly. Therefore for our correlated fits we minimized the corelated χ2

for each jackknife bin using NMinimize of Mathematica. This gave us a set of values

for the mass and we computed the mean value and jackknife error from this set. While

our primary results are from uncorrelated fits, we performed correlated fits wherever

possible to check that the uncorrelated fits do not grossly underestimate the error

on the fit parameters. In most cases we found the error on the fit parameters to be

comparable for the correlated and uncorrelated fits. Our correlated fits are reported in

tables 6.4 and 6.6. Sometimes statistical fluctuations can generate small eigenvalues of

CovN(∆t,∆t
′). These can destabilize the fit. In such cases we used the diagonal part

of the covariance matrix. The latter gives rise to ω(∆t,∆t′) = δ∆t,∆t′/σ(∆t)
2 and the

χ2 functional reduces to the form familiar from uncorrelated fits.
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Global fit for the Scalar Channel

global fit effective mass

# range ma χ2

d.o.f
t-slice ma

2-9 0.981(3) 1.8 2/3 0.991(2)

3-9 0.961(2) 0.05 3/4 0.977(6)

A 4-9 0.962(5) 0.06 4/5 0.966(22)

5-9 0.952(11)∗ 0.066 5/6 0.957(41)

6/7 0.89(12)

2-9 0.936(4) 5.7 2/3 0.944(1)

3-9 0.915(2) 0.3 3/4 0.919(4)

B 4-9 0.904(2) 0.05 4/5 0.899(8)

5-9 0.911(3) 0.025 5/6 0.909(21)

6-9 0.906(8)∗ 0.03 6/7 0.899(53)

3-10 0.765(3) 1.3 2/3 0.822(1)

C 4-10 0.7537(9) 0.04 3/4 0.773(2)

5-10 0.7510(15)∗ 0.02 4/5 0.755(4)

6-10 0.7499(38) 0.03 5/6 0.751(9)

6/7 0.734(20)

7/8 0.723(39)

4-9 0.640(7) 1.317 2/3 0.692(3)

D‡ 5-9 0.618(7) 0.734 3/4 0.667(5)

6-10 0.596(5)∗ 0.11 4/5 0.655(7)

6-9 0.598(5) 0.104 5/6 0.634(12)

5-10 0.617(7) 0.702 6/7 0.606(26)

7/8 0.569(73)

6-11 0.538(13) 1.734 2/3 0.618(3)

6-12 0.537(11)∗ 1.424 3/4 0.575(5)

E‡ 7-11 0.502(10) 0.332 4/5 0.554(7)

7-12 0.503(8) 0.256 5/6 0.528(9)

6/7 0.579(23)

7/8 0.503(26)

7-15 0.4157(47) 0.42 2/3 0.560(4)

8-16 0.4091(77)∗ 0.49 3/4 0.467(6)

F‡ 8-15 0.4108(74) 0.44 4/5 0.444(8)

9-15 0.414(12) 0.67 5/6 0.418(8)

9-16 0.411(13) 0.56 6/7 0.418(15)

Continued on next page
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Continued from previous page

global fit effective mass

# range ma χ2

d.o.f
t-slice ma

10-16 0.416(21) 0.49 7/8 0.427(18)

8/9 0.408(33)

Table 6.3: Glueball masses for the scalar channel in lat-

tice units (a denotes the lattice spacing) for all lattices

along with the fit parameters. A ∗ on the mass denotes

our best estimate for a particular coupling and channel.

Correlated fit for the Scalar Channel

correlated fit effective mass

# range ma χ2

d.o.f
t-slice ma

3-9 0.9172(1) 1.15-1.87 2/3 0.944(1)

4-9 0.8969(4) 0.08-0.52 3/4 0.919(4)

B 5-9 0.9115(10) 0.016-0.19 4/5 0.899(8)

6-9 0.9193(22) 0.04-0.27 5/6 0.909(21)

7-9 0.8851(48) 0.01-0.19 6/7 0.899(53)

4-10 0.75584(14) 0.07-0.49 2/3 0.822(1)

5-10 0.75172(42) 0.06-0.45 3/4 0.773(2)

C 6-10 0.74579(70) 0.03-0.34 4/5 0.755(4)

7-10 0.74854(90) 0.06-0.46 5/6 0.751(9)

6/7 0.734(20)

7/8 0.723(39)

4-10 0.6598(3) 0.85-1.56 2/3 0.692(3)

D‡ 5-10 0.6426(6) 0.38-0.97 3/4 0.667(5)

6-10 0.6052(12) 0.05-0.3 4/5 0.655(7)

7-10 0.5907(20) 0.015-0.176 5/6 0.634(12)

6/7 0.606(26)

7/8 0.569(73)

6-12 0.5555(7) 1.18-1.89 2/3 0.618(3)

7-12 0.5121(11) 0.39-0.937 3/4 0.575(5)

E‡ 8-12 0.5005(21) 0.48-1.14 4/5 0.554(7)

Continued on next page
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Continued from previous page

correlated fit effective mass

# range ma χ2

d.o.f
t-slice ma

9-12 0.4697(27) 0.31-1.23 5/6 0.528(9)

10-12 0.4312(38) 0.35-1.41 6/7 0.579(23)

7/8 0.503(26)

7-16 0.4280(6) 0.71-1.87 2/3 0.560(4)

8-16 0.4045(99) 0.65-1.29 3/4 0.467(6)

F‡ 9-16 0.4087(18) 0.71-1.12 4/5 0.444(8)

10-15 0.4165(26) 0.82-1.69 5/6 0.418(8)

10-16 0.4112(27) 0.83-1.63 6/7 0.418(15)

7/8 0.427(18)

8/9 0.408(33)

Table 6.4: Glueball masses for the scalar channel in lat-

tice units (a denotes the lattice spacing) for all lattices

along with the fit parameters.

Global fit for the Tensor Channel

global fit effective mass

# range ma χ2

d.o.f
t-slice ma

2-7 1.758(9) 32.2 2/3 1.763(2)

D 3-7 1.656(12) 1.98 3/4 1.661(14)

4-7 1.585(54)∗ 1.64 4/5 1.605(49)

5/6 1.39(19)

4-10 1.166(13) 3 2/3 1.311(1)

E 5-10 1.115(39) 2.4 3/4 1.223(3)

6-10 0.938(17)∗ 0.12 4/5 1.177(8)

5/6 1.152(20)

6/7 0.951(52)

4-10 0.988(10) 3.3 2/3 1.177(1)

F 5-10 0.929(10) 0.44 3/4 1.070(2)

6-10 0.885(16)∗ 0.16 4/5 1.004(7)

Continued on next page
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Continued from previous page

global fit effective mass

# range ma χ2

d.o.f
t-slice ma

5/6 0.939(10)

6/7 0.899(46)

7/8 0.869(89)

6-9 0.967(19)∗ 1.15 2/3 1.139(1)

7-9 0.885(8) 0.02 3/4 1.044(2)

G 7-10 0.873(32) 0.38 4/5 1.006(6)

5/6 0.984(26)

6/7 1.008(20)

7/8 0.842(180)

8/9 0.842(192)

6-10 0.744(9)∗ 0.69 2/3 1.015(2)

7-10 0.763(17) 0.58 3/4 0.885(3)

8-10 0.746(57) 1.05 4/5 0.840(5)

H 8-11 0.728(46) 0.83 5/6 0.802(12)

6/7 0.760(20)

7/8 0.719(87)

8/9 0.857(121)

8-12 0.600(7) 0.19 2/3 0.911(2)

8-13 0.600(6) 0.14 3/4 0.742(3)

9-13 0.602(12) 0.19 4/5 0.673(6)

10-13 0.574(18)∗ 0.19 5/6 0.649(9)

I 11-13 0.620(3) 0.0006 6/7 0.638(16)

7/8 0.625(26)

8/9 0.643(59)

9/10 0.722(153)

Table 6.5: Glueball masses for the tensor channel in lat-

tice units (a denotes the lattice spacing) for all lattices

along with the fit parameters. A ∗ on the mass denotes

our best estimate for a particular coupling and channel.

In addition to masses from global fits, we also compute the effective masses from
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the correlators as

ameff = − ln
〈C(∆t+ 1)〉
〈C(∆t)〉 (6.5)

where a is the lattice spacing. To estimate the error on the effective masses we take

〈C(∆t)〉 to be a jackknife bin and we compute masses for 20 such bins. The error on

the effective mass is the jackknife error computed from the spread of the masses from

the different bins. The effective masses are also reported in Tables 6.3, 6.4, 6.5 and

6.6.
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Figure 6.1: Derivative of the scalar glueball correlator ∂∂∗C(∆t) against ∆t for β = 5.7

In Fig. 6.1 we plot the derivative of the scalar correlator for β = 5.7. In Fig. 6.2 to

Fig. 6.13 we plot the standard correlators along with the respective fits for each channel

and coupling. Even though the fits were done on the folded data, in the figures we plot

the fitted correlator over the full range. It can be clearly seen, especially in the tensor

channel that the correlators have contamination from the excited states for the smaller

values of ∆t. The same thing is seen for the effective masses. The masses fall at first

and then stabilize to a plateau albeit with increasing error bars for larger values of ∆t.

We cross-check our data by comparing them with results in [1, 3–5, 7]. The com-

parison is given in Table 6.7 and Table 6.8. In [1] scalar and tensor glueball masses
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were computed on a symmetric lattice with the Wilson action in the β range 5.6925

to 6.3380 and we compared mostly with the data presented there using exponential

interpolation wherever necessary. To interpolate the data between two values of β we

used the formula 1

y = c(
d

c
)(

x−a
b−a

). (6.6)

Here c and d are known values of the data for the β values of a and b respectively.

Then at x (a ≤ x ≤ b) the interpolated value of the data is given by y.
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Figure 6.2: The correlator along with it’s fit (fit range : 5-9) and the effective mass

plot at the β = 5.7 for the scalar channel.

In the scalar channel at β = 5.6925 & 5.6993 the masses obtained were 0.941(25)

and 0.969(18) respectively. In [4] the same mass at β = 5.7 was computed to be

0.929(49) and in [7], from the ratio of partition functions, as 0.935(42). These compare

quite well with our global fit value of 0.952(11) at β = 5.7. The effective masses we

obtain are also consistent with this value.

1
Glueball masses in lattice unit scales near continuum limit as am = Cm exp

(

−
1

2β0g2

)

(β0g
2)

−

β1

2β2
0 (1 + O(g2)) [3], where β0, β1

are coefficients of the power series expansion of the β-function, which is different from the lattice inverse coupling β ∼
1

g2
. This scaling

behaviour justifies the use of exponential interpolation formula instead of the linear one.
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Figure 6.3: The correlator along with it’s fit (fit range : 6-9) and the effective mass

plot at β = 5.8 for the scalar channel.

For the scalar channel at β = 5.8 we compared our data with [1]. At β =

5.7995 & 5.8, [1] reports values for scalar masses as 0.909(15) and 0.945(21). For

β = 5.8 we obtain from the global fit 0.906(8) which is in good agreement with [1].

Our effective mass plot indicates significant contribution from excited states are present

till ∆t = 4.
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Figure 6.4: The correlator along with it’s fit (fit range : 5-10) and the effective mass

plot at the β = 5.95 for the scalar channel.

At β = 5.95 we obtain, using interpolation, a value of 0.743(12) from the results

in [1]. Our global fit to the correlator gives us a value of 0.7510(15) and our effective

mass values are also consistent with this estimate. Excited state contamination seems

to be present till ∆t = 4.
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Figure 6.5: The correlator along with it’s fit (fit range : 6-10) and the effective mass

plot at the β = 6.07 for the scalar channel.

The scalar glueball mass was computed at β = 6.00 and β = 6.10 in [3]. At β = 6.07

we obtain, using interpolation, a value of 0.6301(77) from the results in [3]. The scalar

glueball mass obtained from global fit of our calculation was ma = 0.596(5). Again

effective masses indicate significant contribution of excited states till ∆t = 5.
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Figure 6.6: The correlator along with it’s fit (fit range : 6-12) and the effective mass

plot at the β = 6.2 for the scalar channel.

For β = 6.2 we compared our data with table 1 of [3]. At β = 6.2 [3] reports the

value of scalar glueball mass ma = 0.5197(51). From the global fit of the correlator we

obtain the value of scalar glueball mass ma = 0.503(8). Contamination from excited

states seems to persist till ∆t = 6.
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Figure 6.7: The correlator along with it’s fit (fit range: 8-16) and the effective mass

plot at the β = 6.4 for the scalar channel.

For β = 6.4 we compared our data with table 1 of [3]. At β = 6.4 [3] reports the

value of scalar glueball mass ma = 0.3960(93). From the global fit of the correlator we

obtain the value of scalar glueball mass ma = 0.4091(77). Excited state effects seem

to be present till about ∆t = 5

.
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Figure 6.8: The correlator along with it’s fit (fit range : 4-7) and the effective mass

plot at the β = 5.8 for the tensor channel.

In the tensor channel at β = 5.8, we look at two lattices (83 × 18 and 123 × 18)

with different spatial volumes. Unfortunately the data was noisy and we did not get a

signal for correlators beyond ∆t of 7. At this β, we report the results from the operator

E2 as the corresponding correlators were less noisy. For the 83 × 18 lattice we obtain

ma = 1.525(35) and for the 123 × 18 lattice we get ma = 1.585(54). This is in the

same ball park as the values reported in [1] viz. ma = 1.52(5) at β = 5.7995 and

ma = 1.57(6) at β = 5.8 both at spatial volumes of 103.
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Figure 6.9: The correlator along with it’s fit (fit range : 6-10) and the effective mass

plot at the β = 5.95 for the tensor channel.

At β = 5.95, interpolating the data in [1] between β = 5.8945 and β = 6.0625 we

get ma = 1.148(19) for the tensor mass. Our best estimate gives ma = 0.938(17) for

the fit range between ∆t = 6 and ∆t = 10. However if we include the point ∆t = 5 in

our fit, the mass changes to ma = 1.115(39). The same trend is there in the effective

masses as well. Between ∆t = 5 & 6, ameff jumps from around 1.15 to 0.95.
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Figure 6.10: The correlator along with it’s fit (fit range : 6-10) and the effective mass

plot at the β = 6.07 (L = 12)for the tensor channel.

At β = 6.07, we have results from two different lattices viz. F and G. This therefore

serves as a check on finite volume effects. From the smaller lattice with volume 123×20

we obtain ma = 0.885(16) and the effective masses are consistent with that. The value

reported in [1] is 0.922(13) at β = 6.0625 and interpolation gives ma = 0.913(13) at

β = 6.07, consistent within errorbars with our value. At β = 6.07 our results are from

the operator E1. Contamination from excited states seems to persist till ∆t = 6.
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Figure 6.11: The correlator along with it’s fit (fit range : 7-9) and the effective mass

plot at the β = 6.07 (L = 18)for the tensor channel.

From our larger lattice with volume 183 × 30, we obtain ma = 0.967(19), which is

in complete agreement with calculation at L = 12 but with only half the error. On this

lattice the effective mass plots indicate significant contamination from excited states

till ∆t = 7.
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Figure 6.12: The correlator along with it’s fit (fit range : 6-10) and the effective mass

plot at the β = 6.20 for the tensor channel.

For β = 6.2 we compared our data with table 1 of [3]. At β = 6.2 [3] reports the

value of tensor glueball mass ma = 0.7784(74). From the global fit of the correlator

(using operator E2) we obtain the value of scalar glueball mass ma = 0.744(9). Con-

tamination due to excited states seem to persist till ∆t = 6.
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Figure 6.13: The correlator along with it’s fit (fit range : 10-13) and the effective mass

plot at the β = 6.4 for the tensor channel.

For the tensor channel at β = 6.4 we obtained (using operator E2) from global fit

ma = 0.574(18). While [3] reports the tensor glueball mass ma = 0.5758(32) at the

same value of β. Excited state contribution seem to persist till ∆t = 8 in this case.
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Correlated fit for the Tensor Channel

correlated fit effective mass

# range ma χ2

d.o.f
t-slice ma

5-9 0.988(5) 0.1-0.74 2/3 1.139(1)

6-9 0.985(10) 0.16-1.0 3/4 1.044(2)

G 0.38 4/5 1.006(6)

5/6 0.984(26)

6/7 1.008(20)

7/8 0.842(180)

8/9 0.842(192)

6-10 0.721(9) 1.6-3.1 2/3 1.015(2)

7-10 0.810(46) 0.35-1.6 3/4 0.885(3)

8-10 0.780(70) 0.37-2.3 4/5 0.840(5)

H 8-11 0.796(53) 0.25-1.37 5/6 0.802(12)

6/7 0.760(20)

7/8 0.719(87)

8/9 0.857(121)

0.19 2/3 0.911(2)

8-13 0.603(22) 0.15-0.55 3/4 0.742(3)

9-13 0.598(51) 0.2-0.69 4/5 0.673(6)

10-13 0.543(69) 0.001-0.36 5/6 0.649(9)

I 11-13 0.624(240) 0.006-0.35 6/7 0.638(16)

7/8 0.625(26)

8/9 0.643(59)

9/10 0.722(153)

Table 6.6: Glueball masses for the tensor channel in lattice units (a denotes the lattice

spacing) for all lattices along with the fit parameters.
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β ma L mL mr0

5.7* 0.952(11) 10 9.52(11) 2.78(4)

5.6993 0.969(18) 8 7.75(14) 2.83(6)

5.6925 0.941(25) 8 7.53(20) 2.70(8)

5.8* 0.906(8) 12 10.87(10) 3.328(34)

5.8 0.945(21) 10 9.45(10) 3.471(82)

5.7995 0.909(15) 10 9.09(15) 3.335(60)

5.95∗ 0.7510(15) 16 12.016(24) 3.678(16)

5.95† 0.743(12) - - 3.639(68)

6.07∗ 0.596(5) 18 10.73(9) 3.597(40)

6.07† 0.6301(77) - - 3.801(57)

6.2∗ 0.503(8) 24 12.07(19) 3.712(72)

6.2 0.5197(51) 20 10.39(10) 3.835(38)

6.4∗ 0.4091(77) 30 12.27(23) 3.985(95)

6.4 0.3960(93) 28 11.09(26) 3.857(91)

Table 6.7: Comparison of scalar glueball masses. A ∗ on the β indicates that it

is from this work. Other entries are from [1]. A † on the β indicates that the

corresponding mass was obtained by exponential interpolation between neighbouring

β values reported in [1]. r0 for β values in [1] were obtained by interpolating and ex-

trapolating the values presented in [9]. For β = 6.2 and 6.4 we compared with table

1 of [3].
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β ma L mL mr0

5.8* 1.525(35) 8 12.20(28) 5.60(14)

5.8* 1.585(54) 12 19.02(65) 5.82(21)

5.8 1.57(6) 10 15.7(6) 5.77(23)

5.7995 1.52(5) 10 15.2(5) 5.58(19)

5.95* 1.115(39) 12 11.26(20) 5.46(21)

5.95† 1.148(19) - - 5.62(11)

6.07* 0.967(19) 18 17.41(34) 5.83(13)

6.07† 0.913(13) - - 5.51(9)

6.0625 0.922(13) 16 14.75(21) 5.56(9)

6.2∗ 0.744(9) 24 17.86(22) 5.49(9)

6.2 0.7784(74) 20 15.57(16) 5.745(58)

6.4∗ 0.574(18) 30 17.22(54) 5.59(20)

6.4 0.5758(32) 28 16.12(9) 5.608(80)

Table 6.8: Comparison of tensor glueball masses. Labelling convention is identical to

6.7. For β = 6.2 and 6.4 we compared with table 1 of [3].
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Chapter 7

Finite Volume Effects

Error reduction techniques only reduce statistical errors. There are systematic errors

as well and the most important among that are finite volume effects. In our lattices

with small physical volumes (B1 to F1), we encounter them.

In lattice gauge theory simulations the number of lattice points Nx, Ny, Nz, Nt are

restricted by available computer resources. In order to extrapolate to the continuum

limit of lattice calculations, one needs to consider lattice spacings small relative to the

correlation length so that scaling behaviour is at least approximately realized. The

ratio of correlation length ξ to the lattice spacing a, and the ratio of the linear size of

the lattice L to the correlation length ξ are two important geometrical characteristics

of the lattice simulations. The finite size of the lattice has strong effects on the mea-

surable quantities for ξ ∼ L. These are called finite volume effects.

The nature of finite-volume effects depends very much on the theory under considera-

tion. In the case of asymptotically free theories in a finite volume, like pure non-Abelian

gauge theories in four dimensions, it is known [1] that for small volumes the relevant

parameter is a running coupling g(1/L) associated with the scale 1/L. Owing to

asymptotic freedom, this coupling becomes small for very small volumes, which makes

it possible to calculate volume dependent quantities by means of perturbation theory

in the small-volume limit [2, 3].

In [2] M. Lüscher proposed a method for the universal expansion for the masses of the

low-lying stable particles in asymptotically free theories. The method is based on the

observation that the energy spectrum of field theories in a box is discrete and petur-

batively computable. In another work [3] Lüscher showed that the expansions for the

lowest-lying energies of SU(N) theory are given by

E =
1

L

∞
∑

k=0

εkλ
k
, λ = [g(ΛMS)]

2/3 (7.1)
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and these energies are exactly equal to a quantum mechanical effective Hamiltonian H ′.

The effective Hamiltonian H ′ acts on the wave function of constant gauge potentials

Aa
k, k = 1, 2, 3; a = 1, ..., N2 − 1. (7.2)

The expansion for the H ′ is that

H ′ =
λ

L

∞
∑

ν=0

λ
ν
H ′

ν (7.3)

with

H ′
0 =

1

2

∂2

∂Aa
k∂A

a
k

+
1

4
(fabcAb

kA
c
l )(f

adeAd
kA

e
l ), (7.4)

H ′
1 = a1A

a
kA

a
k, (7.5)

H ′
2 = 0, (7.6)

H ′
3 = a2H

′
0 + a3s

abcdAa
kA

b
kA

c
lA

d
l + a4[5A

a
kA

b
kA

c
kA

d
k − 3Aa

kA
b
kA

c
lA

d
l ]. (7.7)

The numerical constants ai are given by

a1 = −N

4π
× 1.89153165, (7.8)

a2 = − 11N

9(4π)2
× 0.409052802, (7.9)

a3 =
2

15(4π)2
, (7.10)

a4 = − 1

5(4π)2
× 0.619331710. (7.11)

fabc are the SU(N) structure constants and sabcd are totally symmetric invariant

tensors defined by,

sabcd =
1

12
N(dabcdecd + dacedebd + dadedebc) +

2

3
(δabδcd + δacδbd + δadδbc) (7.12)

Following the method of Lüscher and Münster, P. Weisz and Zeiman [4] calculated

the eigenvalues of this effective Hamiltonian by using the Rayleigh-Ritz variational

principle. A basic harmonic function of the form

ψ(A) = Q(A) exp(−1

2
ωAa

kA
a
k), (7.13)

was used as trial wave function, where Q(A) is a polynomial in the A’s having appropri-

ate transformations for a given JPC and ω is a variational parameter. In a second step

the perturbations H ′
ν , ν ≥ 1 are treated according to standard Rayleigh-Schrödinger
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perturbation theory.

An interesting result found from the diagonalisation of the Hamiltonian was that, at

very small volumes the lowest state is the 2++ followed by the state 0++. This feature

was first seen by the Monte Carlo study of finite size effects by C. Michael and M.

Teper [2]. We also see this feature in our studies for smaller lattices. As it can be

seen from table 7.1 and table 7.2 that at β = 5.8 the mass in the tensor channel is

smaller than the mass in the scalar channel which is the expected behaviour at small

volumes [3, 6, 7]. The lattice calculations show very different finite size behaviour for

the A++
1 and E++ glueball masses. The results [2] for the A++

1 glueballs are rather

independent of the size L of the lattice , while the E++ data show an abrupt change

around L = 9.

Information about the finite size effects can be extracted from the plot of the di-

mensionles mass ratios (e.g. ratio of glueball mass in any channel to the glueball mass

in the A++
1 channel) versus z = mL. Such a plot obtained by C. Michael and M.

Teper [2] is depicted in Fig. 7.1.

Figure 7.1: Ratios of glueball masses to the A++
1 mass plotted against the dimensionless

spatial size variable z = mL. The E++ glueball was lightest for z < 5.

Findings from [2] was that for z > 9 there appear to be no finite-size effects for the

glueball mass estimation. For a more recent study of finite volume effects in glueball

masses see [8].
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Lattice β z ma χ2/dof

63 × 16 5.7 5.54 0.924(33) 1.41

63 × 18 5.8 3.63 0.605(12) 0.36

83 × 24 5.95 3.11 0.389(17) 1.8

Table 7.1: Scalar glueball masses from very small volume calculations.

Lattice β z ma χ2/dof

63 × 18 5.8 3.63 0.476(31) 0.49

83 × 30 5.95 3.11 0.444(25) 0.22

Table 7.2: Tensor glueball masses from very small volume calculations.

In our work we therefore kept mL > 9 in all cases.
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Chapter 8

Continuum Limit Extrapolation

As the space-time lattice introduces an UV cut off to the theory, it is important to get

a continuum extrapolation of lattice observables. As the regulator is removed, observ-

able quantities should approach their physical values.

8.1 Continuum Limit of Lattice Gauge Theory

In chapter 2 we have seen that Wilson’s gauge action has a naive Continuum limit.

There are various possibilities of formulating gauge actions with the same continuum

limit. One can also use different definitions of derivatives for the lattice actions. How-

ever the physical observables in different formulations should agree with experimentally

measured values in a → 0 limit. This implies that the bare coupling should depend

non-trivially on a. On the lattice, dimensionless quantities such as masses in lattice

unit m̂ = am are convenient to calculate. The physical mass m of the continuum field

theory should remain finite, which implies that the mass m̂ measured in lattice units of

the corresponding lattice field theory must vanish in continuum limit. The correlation

length in lattice units is defined as,

ξ =
1

am
. (8.1)

Therefore correlation lengths in lattice units must diverge in the continuum limit. In

pure gauge theory the bare coupling g0 is the only free parameter of the action. The

study of the lattice system near the continuum limit requires a tuning parameter, in

this case g0 = g0(a).

Let Θ(g0(a), a) be a physical observable in pure lattice gauge theory. The bare

parameter g0(a) should depend on a in such a way that Θ should agree with the
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experimental value of the observable Θ0 in the limit

lim
a→0

Θ(g0(a), a) = Θ0. (8.2)

The continuum theory is independent of the regularization parameter; this leads to

renormalization group equation

d

d(ln a)
Θ(g0(a), a) = 0 (8.3)

or, equivalently
∂

∂(ln a)
Θ(g0(a), a) +

∂g

∂(ln a)

∂

∂g
Θ(g0(a), a) = 0 (8.4)

The renormalization group function (β-function) is defined as

β(g0) = − ∂g0
∂(ln a)

. (8.5)

Knowledge of the β-function determines the cut-off dependence of the bare parameter

g0(a). For small g0 the expansion of the β-function around g0 is the following

β(g0) = −β0g30 − β1g
5
0 +O(g70). (8.6)

Where the coefficients β0, β1, ... are determined by perturbative calculations. In general

the precise form of β-function is dependent on the renormalization scheme. For SU(Nc)

pure gauge theory the first two coefficients are given by

β0 =
11

3(4π)2
Nc (8.7)

β1 =
34

3(4π)4
N2

c (8.8)

Solving eq. 8.5 and eq. 8.6 in this approximation one obtains

a(g0) =
1

ΛL
(β0g

2
0)

−
β1
2β2

0 exp(− 1

2β0g20
)(1 +O(g20)) (8.9)

where ΛL is an integration constant, which depends on the renormalization scheme.

Inverting the previous relation one obtains

g0(a)
−2 = β0 ln(a

−2Λ−2
L ) +

β1
β0

ln(ln(a−2Λ−2
L )) +O(1/ ln(a2Λ2

L)). (8.10)

Eq. 8.9 and eq. 8.10 show that the limit a → 0 corresponds to vanishing coupling g0,

which shows that the critical point is reached at g0 = 0. The point g0 = 0 is also

the fixed point of the renormalization group equation. This is consistent with the fact
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that the zeros of the β-function, representing ultraviolet-attractive fixed points, must

be universal if the continuum limit is unique.

The dependence of bare coupling on the lattice constant suggests that, to obtain

continuum limit a→ 0, we have to study the limit

β → ∞ (8.11)

where β is the lattice coupling. One needs additionally to take the so-called thermo-

dynamic limit

N → ∞, NT → ∞, (8.12)

to obtain the limit (8.11). Since taking this limit is not practical, one often calculates

physical observables for a few values of β, corresponding to different values of a. The

numbers of lattice points N,NT can be chosen in such a way that, physical volumes

remain fixed for different values of a. One can analyse the scale dependence of the

observables and extrapolate to the limit a → 0, by studying the results for different a

at a fixed physical volume. The study of a-dependence of the observables is known as

scaling analysis.

8.2 Setting the Scale

In order to perform the continuum extrapolation presented in section 8.1 and to assess

the size of lattice artifacts present in different discretizations one needs a gluonic refer-

ence scale. In the lattice formalism all observables are dimensionless. Only by relating

them to physical quantities may we introduce such a reference scale. The product of

the lattice spacing a and some mass M is an example of such dimensionless quantities

on the lattice. Identifying the mass M with a physical mass, one can determine the

lattice constant a in physical units.

An alternative method for scale setting [9] uses a reference scale tied to the static

quark potential. This reference scale often denoted by r0 is known as the Sommer

parameter. This is the preferred method to set the scale in pure Yang-Mills theory and

we follow this scale setting.

8.2.1 Determination of r0

Determination of the Sommer scale r0 is not based directly on the potential V (r), but

instead on the force F (r) = −dV (r)
dr

between two static quarks. Let us consider the
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planar Wilson loop of size r × t. The spatial distance r and the Euclidean time t are

related to integer numbers n and nt through the lattice spacing a,

r = na, t = nta (8.13)

The static potential V (r) can be determined from the vacuum expectation values

of the Wilson loop in the confined phase using,

〈Wc〉 = C exp(−tV (r)) = C exp(−ntaV (na)). (8.14)

The dimensionless quantity aV (an) at different n can be determined from the numerical

data for 〈Wc〉. In practice this is done via a two-parameter fit to the data for different

nt (but fixed n) according to ( 8.14). The fit parameters are C and aV (an). Repeating

this procedure for different values of n, one can get a set of numerical data for aV (an)

as a function of n.

In terms of the static potential the Sommer parameter is defined by,

r20F (r0) = 1.65, (8.15)

which corresponds to r0 ≃ 0.5 fm. One can determine the value r = r0 by calculat-

ing the dimensionless product r2F (r) where this product assumes the value 1.65.

In [9] the lattice spacing a was determined for several values of β and the dependence

of a on β was parametrized for 5.7 ≤ β ≤ 6.57 as

ln(a/r0) = −1.6805− 1.7139(β − 6) + 0.8155(β − 6)2 − 0.6667(β − 6)3. (8.16)

The form of the parametrization in eq. 8.16 is inspired by the renormalization group

equation. We used the values in [9] to set the scale in this work.

8.3 Towards the Continuum Limit of Glueball Masses

In this section we will discuss continuum extrapolations of the glueball masses. Lattice

spacings in numerical simulations may be so small that the lattice artifacts are numeri-

cally negligible. However the computational resources available at present for numerical

simulations are not sufficient to produce negligible lattice artifacts. The knowledge of

lattice artifacts have practical and theoretical importance. In lattice calculations we

usually make extrapolations of the ratios of the masses of the form

m1(a)

m2(a)
→ m1(0)

m2(0)
+O(ap) (8.17)
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assuming leading artifacts are predominantly polynomial in the lattice spacing. The

lattice artifacts are non-universal i.e., the exponent p depends on the lattice action.

Most of our analytical knowledge of lattice artifacts stems from investigations in the

framework of perturbation theory. Using the knowledge of lattice artifacts for a par-

ticular lattice action one can get continuum limit extrapolations of lattice observables.

The continuum extrapolations of the scalar and tensor glueball masses prior to our

work is depicted in Figs. 8.1 and 8.2.
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Figure 8.1: Continuum scalar glueball masses over the years [1–3, 3–7].

β r0/a fit range ma mr0

5.7 2.922(9) 1.71r0-3.08r0 0.952(11) 2.78(4)

5.8 3.673(5) 1.63r0-2.45r0 0.906(8) 3.328(34)

5.95 4.898(12) 1.02r0-2.04r0 0.7510(15) 3.678(16)

6.07 6.033(17) 0.83r0-1.65r0 0.617(7) 3.722(52)

6.2 7.380(26) 0.81r0-1.63r0 0.537(11) 3.963(95)

6.4 9.74(5) 0.82r0-1.64r0 0.4091(77) 3.985(95)

Table 8.1: Scalar glueball masses considered for the continuum extrapolation.

We computed the glueball masses for the scalar channel for β = 5.7, 5.8, 5.95, 6.07, 6.2

and 6.4. For the tensor channel the glueball correlator was too noisy for a reliable ex-

traction of the glueball mass for β = 5.7. So we extracted tensor glueball masses
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Figure 8.2: Continuum tensor glueball masses over the years [2, 3, 3, 5–7].

β r0/a fit range ma mr0

5.8 3.673(5) 1.09r0-1.91r0 1.585(54) 5.82(21)

5.95 4.898(12) 1.22r0-2.04r0 1.115(39) 5.46(21)

6.07 6.033(17) 0.99r0-1.65r0 0.967(19) 5.83(13)

6.2 7.380(26) 0.81r0-1.36r0 0.744(9) 5.49(9)

6.4 9.74(5) 0.82r0-1.64r0 0.574(18) 5.59(20)

Table 8.2: Tensor glueball masses considered for the continuum extrapolation.

for β = 5.8, 5.95, 6.07, 6.2 and 6.4. We have seen in ch. 6 that the extracted glueball

masses varies with the fit range. The effective mass plots in ch. 6 give an estimate for

the fit range to extract glueball masses. We have tried as much as possible to extract

glueball mass from same fit range in physical units for all the lattice spacings. For the

scalar channel we extracted the masses from fit range 0.85r0 − 1.65r0. For the tensor

glueballs we were not able to fix a uniform range. While for β =6.07 and 6.4 we could

extend the fit range to about 1.6r0, for β =6.2 our largest distance was 1.3r0. The

best estimates for the glueball masses and corresponding fit ranges in physical units

are given in table. 8.1 and 8.2. Our plots for the best estimates of scalar and tensor

glueball masses are illustrated in figure 8.3. We compared these calculations with two

recent works by Harvey Meyer [8] and Harindranath et al. [10]. To get an idea about

the continuum limit for the glueball masses we plotted(fig. 8.4 and 8.5) our results
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Figure 8.3: Scalar and tensor glueball masses plotted against (a/r0)
2. The figure at

the top is for scalar channel while the bottom figure is for tensor channel.

together with results from [8] and [10].

The combined plot for the scalar masses seem to indicate a rise in the masses

upto β = 6.07 while the finer lattices seem to indicate a flat behaviour with mr0

extrapolating to a value between 3.8 and 4. The errorbars on the results for tensor

masses from our results and [8] show a more scattered behaviour over the range of β

explored. The complicated lattice spacing dependence of the measured glueball masses

makes extrapolation to the continuum limit difficult. If however one combines the

masses from our results and [8], the variation of masses with β seems quite flat with

mr0 varying between 5.5 and 5.7.
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Figure 8.4: Scalar glueball masses plotted against (a/r0)
2 together with results from [8]

and [10]. Filled triangles are from our calculation and open triangles are from [8],

squares are from calculations with open boundary conditions [10], circles are from

calculations with periodic boundary conditions [10]
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Figure 8.5: Tensor glueball masses plotted against (a/r0)
2 together with results

from [8]. Filled triangles are from our calculation and open triangles are from [8].
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Chapter 9

Conclusion

Extraction of glueball masses from correlators is a difficult problem in lattice QCD due

to a very low signal to noise ratio at large Euclidean times. In this thesis we present

a new method, based on the multilevel scheme, to enhance the signal to noise ratio in

glueball correators.

The multilevel algorithm is very efficient for calculating quantities with very small

expectation values. Operators in the tensor channel have zero expectation values and

are therefore ideal for direct evaluation. For scalar operators we have subtracted the

non-zero vacuum expectation values from the operators to get the connected correlators

directly.

Correlation functions between large loops have the advantage that they have much

less contamination from excited states compared to those between elementary plaque-

ttes and the large loops are less sensitive to UV fluctuations compared to the elementary

plaquettes. Multilevel schemes allow us to estimate the expectation values of the large

loops with very high precision.

The efficiency of the algorithm depends crucially on choosing the optimal param-

eters for the algorithm such as the sub-lattice thickness and updates. These depend

on β quite strongly. In the range of β we explored it seems that 0.5 fermi seems to be

close to optimal for both the loop size and the thickness of the sub-lattice.

We observe that this error reduction technique works quite well at least in pure

gauge theories. For a given computational cost, the improvement over the naive method

in the signal to noise ratio is several times to more than an order of magnitude. We are

able to follow the correlator to temporal separations of about 1 fermi and can perform

global fits to the correlators between 0.5 and 1 fermi. Our effective masses also show

a plateau in the same range obtained from the global fits.

It is of course of interest to reach the continuum limit. To get an idea about the

estimate of continuum limit of glueball masses we performed our calculations for finer
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lattices (up to a = 0.051 fm). For the scalar channel our results are in good agreement

with two recent glueball mass calculations [3] and [4].

Although lattice discretization of Quantum Chromodynamics predicts glueballs, no

glueballs have yet been discovered experimentally 1. The particle data group (PDG)

has listed following resonance states as glueball candidates

f0(500), f0(980), f0(1370), f0(1500), f0(1710) and fJ(2220)

where the last resonance states are candidate for the tensor channel glueball and the

rests are candidates for the scalar channel glueball. The known spectra and multiplet

assignment of the scalar and tensor states are listed in 9.1

Name Mass[MeV/c2] Width[MeV/c2] Decays

f0(600) 400-1200 600-1000 ππ, γγ

f0(980) 980± 10 40-100 ππ,KK, γγ

f0(1370) 1200-1500 200-500 ππ, ρρ, σσ, a1π, ηη,KK

f0(1500) 1507±5 109±7 ππ, σσ, ρρ, a1π, ηη, ηη
′, KK, γγ

f0(1710) 1718±6 137±8 ππ,KK, ηη, ωω, γγ

f2(1950) 1944±12 472±18 K∗K∗, ππ, 4π, a2π, f2ππ, ηη,KK, γγ

fJ(2220) 2225-2235 15-30 γππ, ηη′

Table 9.1: Scalar and Tensor mesons as listed by the Particle Data Group [2].

A dedicated glueball search experiment is scheduled to begin shortly in GSI Darm-

stadt and we hope that the results from our calculation may help narrow the energy

range for experimental search of scalar and tensor glueballs.

1For a recent review see [1]
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List of Corrections

Sourav Mondal

1 Corrections

First, Considering the first comment of the examiner, I have added a statement
mentioning the difficulty in an attempt to continuum extrapolation due to com-
plicated lattice spacing dependence of measured glueball masses. Also the title
of that section is modified as no continuum limit extrapolation attempted.

Second, Regarding the second comment of the examiner, we would like to
point out that in section 6.1 it was mentioned that “Since it is not clear a-priori
how the algorithm behaves as either ∆t or β changes we report our experience
for different values of ∆t and β (see Table 6.2)”. Generally it is known that
the multilevel algorithm works better at stronger couplings (smaller values of
β) than close to the continuum limit. We expect the same pattern to hold here
as well.

Third, Taking into account the examiners comment, we have revised the
value for the tensor channel glueball mass at β = 6.07 and L = 18. Originally
for lattice G (Table 6.5) the result was quoted for the fit range 7 − 9. In the
corrected version the result is quoted for the fit range 6 − 9, which has better
χ2/d.o.f . The corresponding mass plateau is changed in the effective mass plot
( Fig. 6.11). In the present form the error of the quoted result is compatible
with the error of the effective mass. Corresponding changes in Tables 6.8, 8.2
and in Figs. 8.3, 8.5 are incorporated.

Two additional corrections are done in (i)Table 6.8 and (ii) Table 8.2.

(i) In Table 6.8 the value of mr0 should be 5.56(9) instead of 5.49(9).

(ii)In Table 8.2 the value of r0/a for β = 5.8 should be 3.673(5) instead of
2.922(9).

Fourth, Clarification for the exponential interpolation eq.(6.6) is added in
a footnote. A reference is also added for that clarification.

We have added a sentence to show how eq.(8.3) follows from eq.(8.2). In ad-
dition to that another minor correction have been made. In eq. 8.9 a minus sign
was missing from the power of (β0g

2
0), that correction have been incorporated.
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Fifth, The corrections in the citations as suggested by the examiner have
been incorporated as follows

1.) The reference of M. Lüscher and U. Wolff is added in chapter 5.

2.) In Chapter 4 the citation for jackknife should be [5] instead of [17],
that error is corrected.

3.) In Fig. 8.4 comparison was with [8] and [10] instead of [3] and [4], that
correction is done.

4.) In Fig 8.5 the comparison was only with [8] instead of [3] and [4], that
error is corrected.

5.) In the bibliography of Chapter 8, ref. 3 the author D. Weingarten is
added and in ref. 8 “hep-lat” is removed as suggested by the examiner.

Other minor corrections :

1.)Definition of C1 and C2 is changed and a citation added for that definition.

2.)Eq.(2.13) is corrected according to the examiner’s suggestion i.e., the sum-
mation over m and µ is added.

3.)The statement below eq.(4.5) as pointed out by the examiner is modified.
It is stated that those two criterion are for any probability distributions.

In addition to that another typographical error is corrected in Chapter 4. Be-
low the eq.(4.3) the reference for the probability distribution should be eq.(4.3)
instead of eq.(5.4).

4.)Definition of N is given and the relation between inverse coupling β and
the coupling g2(used in Eq. (2.21) is given. That notation is used for the
convenience of that chapter. Also the definition of staple A is corrected. In the
second term of Eq.(4.14) U†

ν (n+ ν̂ − µ̂) is replaced by U†
ν (n+ µ̂− ν̂)

.
5.) We agree with the examiner’s observation that a SU(2) matrix always

has determinant 1 and we have dropped the word “normalized” when referring
to an SU(2) matrix.

6.) In eq.(4.20) and (4.21) the SU(2) matrix should be X instead of U , that
corrections are incorporated.

7.) In eq.(7.1) the summation index should be k instead of ν, that error is
corrected.

8.)In the caption of Fig. 7.1 L < 8 is replaced by z < 5 as suggested by the
referee.
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