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Preface and Outline

In this thesis I have tried to emphasize the unique path that crosses the excursions beyond the Standard
Model undertaken during my PhD experience. In a way, I have been helped in this by the phenomeno-
logical scenario which has emerged at LHC. The absence of new signatures has, in fact, strengthen the
importance of the methods evoked and applied in this thesis. The applications of the Renormalization
Group have become one of the few supports used to explore a given model along a large energy span. In
this regard it completes the equipment at the theorist’s disposal, together with the similar roles shared by
cosmological analyses and the exploitation of radiative corrections to flavour observables. The Effective
Potential is the focus of this kind of studies, absorbing the extrapolation of the model via Renormalization
Group and acting as a marker of its phenomenological coherence. I have developed this thesis trying to
stress the bound between the Effective Potential, the Renormalization Group and the delicate quantum
field methods used to create an efficient interplay in a perturbative framework. In particular I have tried
to point out the underestimated role of the matching, both in the Renormalization evolution as in linking
different regimes. This has formed the necessary background to move to the part of the thesis devoted
to the theoretical and phenomenological test of minimal extensions of the Standard Model.

More precisely the structure of this work is the following:

Chapter 1

This introducing chapter starts outlining a formal and operative definition of the vacuum in quantum
field theory. The link between the true vacuum and the Effective Potential is formulated and the func-
tional method of Jackiw, for the computation of the latter, is exploited. Some explicit examples are
illustrated so to cover all the scalar, fermion and vector cases, needed along this work. In particular the
original arena of the Coleman and Weinberg massless scalar electrodynamics is confronted in a functional
language. The Renormalization Group is then introduced by a direct application on the improvement of
the perturbative computation. The change of the classical expectation, induced by radiative corrections,
is firstly met showing explicitly the case of the radiative breaking of symmetry. The control of the per-
turbative expansion is also highlighted in the context of a massless renormalization scheme, as used in
this thesis. The importance of the artificial decoupling of heavy degrees of freedom and the resulting use
of an efficient matching procedure is then illustrated.

Chapter 2

The quantum field definition of tunnelling is introduced, in particular the reduction of such computation
to the research of the bounce solution. The parametrization of finite temperature fluctuations in the

Effective Potential is also illustrated together with the role of quantum and thermal corrections in af-



vi Preface and Outline

fecting the transition from a false to a true vacuum. The fate of a theory, which is candidate to describe
nature all along a given energy span, is linked to the fate of the vacuum in such range. The three possible
phases, unstable, stable and metastable are presented. The use of the Effective Potential, together with
the Renormalization Group, is then exploited for an up-to-date investigation of the fate of the Standard
Model. The coherent inclusion of thermal corrections is strongly dependent on the cosmological history
of the Universe. The precise interplay among the tunnelling (thermal) amplitude and the cosmological
assumptions are deeply discussed.

Chapter 3

In this chapter is presented a first departure from the Standard Model as dictated by pressing evidences
of New Physics from neutrino data. The analysis relates the studies of the model’s phases to the peculiar
signatures of its spectrum. In this way it connects the machinery introduced in the previous chapters
to the research of Physics beyond the Standard Model. In particular an implementation of the Inverse
Seesaw mechanism is deeply inspected. The parameters of the mechanism are tuned in respect of the
experimental bounds and of naturalness. A procedure to randomly generate such parameters and the
corresponding link to the Yukawa coupling, expressed by the Casas-Ibarra formula, is presented. In this
way is challenged the ability of the model to account for the limits on lepton flavour violating decay and
on neutrinoless double beta decay. To compute the phases of the model as affected by the new Yukawa
coupling of the Inverse Seesaw, an extension of the matching to coherently include two-loop g functions
is shown. With the insights from the successive Renormalization Group analysis, the unstable character
of a subgroup of points in the new parameter space is found, leading to a further theoretical bound in
our investigation of the model.

Chapter 4

In the last chapter of this work, a further step is made in the exploration of minimal and testable ex-
tensions of the Standard Model, by exploiting the introduction of an extra Abelian gauge factor. The
theoretical framework is deeply illustrated. In particular is largely analyzed the peculiar appearance of
the kinetic mixing among the two Abelian groups, which furnishes new elements to be taken into account
for a proper phenomenological survey. The model is studied with a general view on the possible charge
assignments, applying stepwise the impact of the kinetic mixing in their parametrization as well as the
constraints from anomaly freedom. The interconnection between the gauge, the scalar and the fermion
sector is highlighted. The new parameter space is put on the verge of present LHC probe of new gauge
and scalar bosons. The bounds coming from LEP2 data are included and extended to the LHC investi-
gations at 8 TeV, both on the scalar sector as in the gauge one. The gauge sector is constrained by a
signal-to-background analysis on the di-lepton channel which represents a strong improvement in respect
to the bounds connected to the electroweak tests. On the parameter space shaped by such bounds, a
stability analysis is developed starting from the necessary matching conditions. These are illustrated
with large detail so to clarify the role of the contribution of new Physics. From the stability analysis a
comparison with the Standard Model case is presented, with emphasis on the impact of the new degrees
of freedom in worsening or ameliorating its metastable scenario. On this ground some benchmark points,
which are shown to be promising to forthcoming test at LHC, are highlighted and characterized with

computation of corresponding branchings and cross sections.
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Appendix

Appendix A forms an extension of chapter 3. The methods are the same of those applied to the Inverse
Seesaw mechanism, but the arena concerns now the Linear and the Double seesaw case. In both cases the
requirement of metastability has produced strong constraints for the new Yukawa sector, affecting the
interpretation that would follow a possible discovery in the research for New Physics processes as lepton
flavour violating muon decay (u — e7y) and the neutrinoless double beta decay (0v20).

In Appendix B and C are shown the complete set of one-loop and two-loop S functions used for the
analysis of chapter 4. At one-loop the two parameters zg, U(1)" charge of the quark doublet, and z,,
U(1)’ charge of the right-handed quark up, are given explicitly to account for the residual freedom to
assign charges in respect to anomaly cancellation. Such freedom can also be elaborated by choosing
directly a B — L charge assignment and a non-zero mixing. With this observation the following two-loop

B functions, where zg and z, are chosen to give B — L, are completely generic for our model.
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Introduction

The hopes to witness a clear evidence of New Physics (NP) at LHC have been shattered by the most
recent inspections of data, now that also the promising diphoton resonance has been reduced to the
status of a statistical fluctuation. Of all the new proposals developed in the last four decades, it is still a
restricted collection of papers published in the sixties, that can perfectly account for the collider outcomes
in 2016. The Standard Model (SM) has triumphed as an extraordinarily efficient effective field theory
along the energies probed. Yet, its arbitrary formal structure, and, more importantly, the amount of data
collected from cosmological measurements and neutrino facilities, are a clear indication that something
new and unknown is hiding not so far from our phenomenological reach.

The approach of the model building industry in respect to this clues of NP is twofold. It is possible to
have a guess for a simpler and more fundamental theory addressing energy scales many order of mag-
nitudes larger than the one reached at current colliders. Then, hopefully, a procedure can be given to
integrate the heavy degrees of freedom and reach a low-energy effective field theory able to include the
SM, but explaining also Dark Matter, neutrino masses, baryogenesis...

This is, for instance, the usual path followed by GUT or String-derived proposals.

At the opposite, the other way adopts a more pragmatic approach, searching the minimal adjustments
to the SM that are sufficient to give a coherent description for, at least, the more pressing requests from
the experiments. In a way, this is the strategy used in this thesis. Still, if we weren’t able to draw some
hints about the above fundamental structure, our pursuit would be reduced to a pure bookkeeping. The
Renormalization Group (RG) may intervene giving us exactly the right instrument to clue the known
low, with the unknown high-energy sector, where new structures are expected to replace the SM. This
is for example the role that the RG plays when inspecting the prospect that the complicate and var-
ied behaviour at Electroweak scale may be just the manifestation of a unique gauge internal symmetry.
Along this implementation has emerged how the RG could also shed light in the same direction, by its
contribution in the analysis of the quantum vacuum structure. As we will illustrate in detail along this
work, the knowledge that we can build around the true vacuum of a model is essentially of perturbative
nature. As an effect of the inclusion of disparate scales in our quantum-field computation, logarithms
of their ratios signal that we have not properly isolated the relevant degrees of freedom, spoiling the
perturbative reliability. An efficient technique must be invoked and the RG, supported by an effective
field theory approach, turned out, as we will illustrate in the first chapters, to be suited for this cause.
These ideas go back to the seminal paper of [4] where a leading order analysis of the vacuum and of the

perturbative regime resulted in bounds on the mass of top and the Higgs, unknown parameters at the

Xi



xii Introduction

time. With many intermediate steps and a considerable gain in the computational precision, since its
first application, the same technology has been developed for the SM post Higgs discovery [25]. In this
case the scenario concerned a model (the SM) with all the relevant parameters experimentally measured,
and the survey of the quantum vacuum has served a plethora of theoretical informations: from its phase
portrait to its cosmological fate, to the critical and suspect role played by the top and Higgs mass.

We will present in this thesis our personal route enjoying both the approaches of [4], when we have to
investigate an unknown sector, and [25], when we will extend their analysis to the inclusion of thermal
fluctuations.

It is this latter survey that inaugurates our original work, in our attempt to organize this thesis in order of
increasing complexity, from the pure SM to the minimal extensions tackled. The conservative approach,
SM and nothing else, also in the light of the evidences of NP presented above, is anything but unrealistic.
It is an interesting possibility that the SM could represent one of the two oasis, the other being a theory
accounting for general relativity, in an energy-desert up to the Planck scale. This is what we expect in
case the NP can be accounted by a mild and decoupled modification of the SM, irrelevant in the RG
extrapolation. Within this scenario we investigated the impact of the most relevant thermal corrections
updating the previous literature [14, 15, 16, 20]. The effects of finite temperature corrections are strongly
dependent from the cosmological history of our Universe. As we will investigate across different cosmo-
logical assumptions, thermal effects will strengthen or dangerously worsen the instability region in the
SM phase portrait, assaulting also values in less than 1-o from the central top mass. Such possibility
would cry even louder for the inclusion of NP to accommodate for the stability of our (until now) stable
246 GeV vacuum.

In presence of a relevant extension of the SM, the vacuum stability analysis has instead to follow more
closely the attitude of [4]. In this case we don’t have a complete knowledge of the parameter space and
the RG extrapolation is explored to draw bounds and constraints over an, otherwise phenomenologically
allowed, new sector. We have taken the discovery of non-zero neutrino masses as the more urgent demand
to model building. The minimal adjustment to account for massive neutrinos is easily provided by the
SM itself, which can envisage the neutrino as a Dirac particle whose mass is due to spontaneous symme-
try breaking of the Higgs, by a new Yukawa interaction with three, promptly introduced, right-handed
neutrinos. The inclusion of such mechanism, efficient as it can be, is completely invisible in a RG analysis
and can be absorbed by our inspection of the high-energy behaviour of the SM. Also, the extraordinarily
small value of the Yukawa needed would add a further source of unnaturalness in the already plagued
hierarchy of the flavour sector. We instead have focused our effort in the direction of testable and RG-
relevant extensions. More natural mechanisms are invoked and the introduction of extra singlet fermions,
in addition to the right-handed neutrinos, lead to a class of seesaw models [47, 48, 49, 50, 51, 52] with a
rich and influential fabric. Such models provide sources of lepton number and flavour violation, the first
a clear hint of a Majorana nature of the neutrino mass eigenstate. Features like these are currently under
the lens of the MEG collaboration [87] and, for the neutrinoless double beta decay, by GERDA [88],
EX0-200 [89, 90], and KamLAND-ZEN [91]. It is in this arena, putting the class of models studied close
to the forthcoming experimental quest, that the stability analysis has shown its extreme effectiveness, by

picturing the possible phases and by selecting the testable points linked to an unstable fate.
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The last part of this work takes our search a step forward by inspecting the consequences and the LHC
discovery potential of a new, massive, neutral vector boson, dubbed Z-prime (Z’). This addition to the
SM spectrum must be coherently supplemented by an extra Abelian gauge factor. Which in turn asks for
new fermionic degrees of freedom, to cancel the induced gauge and gravitational anomalies, and an extra
singlet scalar, to give Z' a mass. The analysis will have a moderate ambition for generality, spanning
among all the class of non-anomalous extra U(1) charge assignment. Also, an extra Abelian factor is
a common presence in many breaking chains for GUTs of rank greater than four, as in the promising
SO(10). Our survey may therefore account for many different unification patterns in the universality
class of our Z’ model.

Although representing the minimal gauge extension, the model reveals a rich collection of collider signa-
tures that can leave distinctive footprints at LHC. The two-loop stability analysis developed around the
(potentially) visible parameter space, will not just furnish a link with the different phases of the model.
That is, in answering, in case of discovery, to what energy extent a given parameter point would supply an
effective description of nature or when, instead, the instability would ask for an urgent UV completion.
The richness of this minimal Z’ class allows also to tackle, by studying the vacuum, a larger class of
physical aspects, that go beyond their application to this model and are of general theoretical interest.
We refer, over all, to the role of new scalar degrees of freedom in mitigating the critical dependence of
the SM’s fate from its relevant parameters. Or, also, to the peculiar presence of the kinetic mixing and
the importance of its RG evolution. That its changing form along the energy scales can enlighten the
structure of the UV completion, which breaks also into U(1)y xU(1)’, is an information that can be read
off only via the RG extrapolation of its low-energy value.

A feature that reaffirms the necessity to sustain the phenomenological quest with the insights of the RG
methods.






Chapter 1

Renormalization Group methods and
the Effective Potential

1.1 Introduction

The inclusion of the implicit dependence of the renormalization scale in the set of parameters of a quan-
tum field theory has led Gell-Mann and Low, back in 1954 [1], to successfully recover the energy-scaling
of the Coulomb potential at high-energy (or small distances, as stated in the paper’s title). This was
probably not the first, but surely one of the most renowned applications of the renormalization group
(RG) used to gain insight towards energy scales far from the one where measurements are realized. The
key of the process Gell-Mann and Low carried was to avoid the extrapolation of the electron scattering
amplitude at high energies still using a coupling defined (and renormalized) at large distance. Instead a
running coupling, renormalized at the scale at which the amplitude is computed, was introduced exploit-
ing the invariance of the complete (and measurable) result from that particular scale.

That this golden rule could also shed light to the real vacuum structure of a quantum field theory was
a concept later developed by Coleman and Weinberg in their seminal paper [2], based on previous work
on the effective potential by Jona Lasinio [3]. Such new perspective in the quantum computation armory
opened a new kind of analysis to draw constraints and investigate the model’s properties. Among count-
less examples, the archetype of these application, at least for our investigation area, is represented by the
use of RG methods and the study of the effective potential in constraining the (yet unknown) top and
Higgs mass for an SU(5)-unified theory in [4].

In this chapter we review the main tools developed along the lines of these past investigations and that

represent the core of our Beyond the Standard Model search.



2 Renormalization Group methods and the Effective Potential

1.2 True vacuum of a quantum field theory

Our world is quantum but our knowledge of its behavior is mostly confined to perturbative approximations
that start from the definition of a classical Lagrangian. As an exciting outcome of this, trivial statements
that can hold for the classical description may completely be replaced by new and unexpected ones. The
source of this change is encoded in the radiative corrections that the quantum model produces. One
of the more dramatic twists brought by radiative corrections was exposed by Coleman and Weinberg’s
study of the quantum version of scalar massless electrodynamics (scalar QED from now on) [2] which,
stated in the words of the authors, does not remain massless nor electrodynamics.
Their study brought to the main audience of quantum field theorists, and adapted, tools already developed
for superconductivity researches (as already done by also [3]), which allowed to efficiently control the role
of the quantum corrections.
The effective potential is the cornerstone of such analysis and, as the effective attribute subtly reveals,
replaces and improve the classical potential which appears in the starting classical Lagrangian.
To illustrate the main ingredients used for the next chapter’s investigation let’s start from the classical
ground. The classical potential V' of a field theory is, by definition, the derivative-independent part of the
Lagrangian. Even when dealing with a quantization of the system described by such classical Lagrangian,
the potential is employed as the first (and usually the only) route to shape the vacuum structure. This
is, for instance, the usual path envisaged for studying the spontaneous symmetry breaking realized by
negative mass terms in the paradigmatic potential:
m2

A
_ e a2
V=g g

Pt (1.1)
Starting from (1.1) the procedure has no detours from the classical process which defines the vacuum
solving for
av d*v
— =0 and —— >0. (1.2)
do dg?
As for every classical statements there is no guarantee that radiative corrections would not spoil such
conclusions. In particular, translated in the quantum language: the vacuum expectation value of the
(quantum) field ¢ may not be represented by the classical solution of (1.2).
The effective potential Vg enters in the scene as a tool to efficiently inherit the classical procedure (1.2)
to define the vacuum but accounting for radiative corrections.
Using functional methods to describe our system it is well known that the vacuum expectation value of
the quantum field é can be obtained differentiating the generator W of the connected diagrams in respect

to an external source:

)
0J (x)

WIT] = ()7, (1.3)
defining a field-related function called the classical field ¢,

b= (D)7 - (1.4)



1.3 The Jackiw’s method and the scalar QED vacuum 3

The effective potential is built as the function of the subclass of constant vacuum expectation values of

¢ that, mimicking (1.2), has an extremum for the real (quantum corrected) vacuum

dVi
o "0 (1.5)

A functional proof of existence is obtained taking the Legendre transform of the generator W

Dl =WIT] - [ 'y T()6e(v). (16)

which defines a new functional generator dubbed effective action. It is easy to show (see for example [5]
for a simple and well readable diagrammatic demonstration) that I'[¢.] realizes the further step in the
family of generator functionals providing the one-particle irreducible diagrams. More important for our

task is that by its definition follows the functional relation:

_9
0¢e(x)

which closely resembles (1.2). The formula (1.7) must be interpreted as a reverse form of the source-field

[¢c] = =T (), (1.7)

relation of (1.4), giving the source able to reproduce a given classical field. To further get a function out
of a functional, only the class of constant classical fields is considered, so to factorize an overall volume

element in the effective action:

r[qbc]=—fdda;VE(¢c)=VE(¢c)(f ddm). (1.8)

The resulting effective potential Vg (¢.), in virtue of (1.7), is the quantum-derived ordinary function of
the variable ¢. which returns the true vacuum value as an extremum. In particular the non-zero solutions

of (1.5) will be the hallmark of the spontaneous breaking of the symmetry.

1.3 The Jackiw’s method and the scalar QED vacuum

The previous analysis has illustrated the link between the effective potential Vg(¢.) and the functional
generator of connected diagrams W[J]. Such relation is the basis of the main methods used to arrive,
given a model, to an explicit form of its effective potential. In [2] a diagrammatic approach was employed
which resummed the infinite class of one-particle irreducible diagrams with zero-momentum in the exter-
nal legs. A different and elegant approach was later developed by Jackiw [6] which is more deeply rooted
to the functional definition of the Legendre transform (1.6). We sketch his derivation to later move to an

explicit application to scalar QED case.

1.3.1 The Jackiw’s Effective Potential

The starting point! is the bare action Sy(¢) of the system extended by a linear coupling to an external

classical source Jp(z). The bare parameters are then expressed in terms of the renormalized ones,

IFor illustrative purposes we limit ourselves in the simpler case of a scalar field. Generalization from this are straight-

forward.



4 Renormalization Group methods and the Effective Potential

producing the usual splitting in a renormalized action and counterterms
SOZSR+§SCt and jOZJR+5\7Ct~ (19)

Jackiw’s idea was to use the linear counterterm generated by the redefinition of the external source to
fulfill a non trivial request on the one-point Green function. To understand this step we make a change

of variable in the path integration expanding the action around ¢ = ¢. + n(x):

Sa(@) + [ dTné() -
:SR(¢C)+ / ddeR¢C]O+[ [t (M;OSRMR)M%)] +

[1 62
- dd.’II dd.’IJ (8) T T ]
5 [ dlerdtan (5o S Sa | atentea)|

= .
3! f &1 d'sa &'y (5¢(m1)6¢(m2)6¢(x3) SR) 77(%1)77(962)77(963)]3 ’

(1.10)

where the functional derivatives have been evaluated at the classical configuration ¢. and the square
bracket symbol refers to the (interaction) order in the quantum field . From the [...]; term in (1.10) it
is clear that such tadpole term can be removed fixing, order by order in perturbation theory, the linear

counterterm properly. Stated differently, we ask for § Jot to renormalize the one-point function so that

(D) gn = b = (i)gr = 0. (1.11)

From basic formulas of quantum field theory the evaluation of the connected diagrams generator W can

be recovered by
W =—i longnexp[ (So[d)chT] /d xJo ( ¢c+77)]

_SR(¢C)+fddij¢c+6SCt(¢c)_Z longn expli ([...]o+[--]3+--)]-
(1.12)

The remaining logarithm of the path integral in (1.12) is performed averaging over a polynomial action
of the quantum field n with quadratic, cubic and quartic terms obtained by derivatives of S(¢. +7). The
diagrammatic result is given by connected (due to logarithm’s action) bubbles with n’s propagator given
by the (inverse of the) quadratic part in (1.10). Similarly the vertices are extracted by cubic and quartic
terms of the starting action in the ¢. background. This observation allow to identify the leading order
correction to the classical action S(¢.) in (1.10) by the evaluation of the free quadratic term of the path
integral. This Gaussian integration can be computed in closed form resulting in the functional definition

of an operator determinant
fD exp| . /ddx d*za (1) > Sr | n(x2)
«p | L %
P ORI S (an)do () ) T

(o[- (sree)])

(1.13)
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with the cubic and quartic terms producing high order (at least two-loop) contributions.
With the help of such considerations it is possible to perform the Legendre transformation of W as in
(1.6). From (1.12) and (1.13) the leading order expression of the effective action I'[¢.] from the Jackiw’s

method is achieved

i 52
T[¢c] = Sr(Pe) +8Sci(de) + 5 log Det [— ((WMSR)] +... (1.14)

where the ellipsis stand for multiloop corrections.

Focusing on constant field configurations we finally arrive to the form of the effective potential:

11 62
VE(¢e) = V(de) +0Vei (o) — (Volume) 3 log Det [— ((WCM)CWM)SR)] 4.

(1.15)

1.3.2 Massive fields in massless Abelian Higgs model

The formalism developed has provided a new quantum-grounded tool to investigate the most fundamental
features of a quantum field system. With no surprise the effective potential has become a standard
technology with countless applications from exotic models to more efficient renormalization schemes for
the Standard Model and the MSSM.

To give a hint of the level of insight that the effective potential may help to reach, we now consider one
of the extreme case scenario regarding the transition from a classical to a quantum description. The
model is the renowned scalar QED theory analyzed by Coleman and Weinberg [2], a (tree-level) massless

Abelian Higgs model:

L= Fu P+ (D,9) (D) - 5 (616)" (1.16)
where the covariant derivative has the form D, ¢ =0, ¢ +ieA,¢ . In the following, with the benefit of
hindsight, we neglect ghosts contribution other than the “side-effect” of a gauge fixing term that, wisely
chosen in the R¢ class, can help to avoid annoying scalar-vector mixing terms. Moreover we exploit the
Abelian symmetry of (1.16) considering only real values for the classical field (¢) 7 .

With these precautions we follow Jackiw’s procedure expanding the gauge fixed version of (1.16) over the

real components:

925:% (¢ +P1 +i2) , (1.17)

so to arrive at

L - iFWFW—i(a-A)2+§((a¢1>2+(6¢2)2)+eAu(¢1a“¢2—¢Qaﬂ¢1)
2
b S0 20000 + B ) - 5 (624 20000+ 62+ 63)° (1.18)

From such expansion the quadratic operators of (1.15) can be extracted directly to define the first quantum

correction to the tree-level potential.
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In the simpler case of the scalar components the operator in configuration space has the form

2 9%+ 1420 0
LS -7 " 20 N (1.19)
dpi(z)o0;(y) 0 D%+ 2
To take the functional and the matrix determinant of this expression we switch to the momentum repre-
sentation
2 —k% + 592N 0
LB g 0 ) 10)
6¢i(k)éd;(p) 0 —k? + 52

Envisioning the continuous variables k& and p as infinite-dimensional indices allows us to exploit the
formula log Det(F) = Tr log(F'), adjusted and extended for our mathematical arena. The logarithm
of the diagonal matrix (in discrete and continuous indices) (1.20) can be taken respect to the diagonal
elements as in usual matrix algebra. To trace we take the diagonal terms k = p and sum over them
obtaining
528 58S
ow Det |5 ) | G

4

(27r)454(0)(f (j&log(—k%;ﬁA%f(j:fyllog(—k2+é¢§x)).

(1.21)
The factor (271')4 has been strategically placed to recover the infinite volume parametrization:
f d'z ¢ = (27)" 6(k) = Volume = f d'z = (27)* 6(0). (1.22)
Before evaluating the formidably divergent integrals of (1.21) we repeat the same analysis for the vector
field A,,.
In general gauge, the quadratic operator that we must analyze is given by
528 2 1
- =5 (k-p) (K - (edr) g“”—(l—f)k”k:”. 1.23
5 A, (k)6 A, (p) ( ) ¢ (1.23)

To better highlight the corresponding momentum/components symmetric matrix we redundantly rewrite

the explicit space-time components of (1.23)

sz(em)?f(y%)koﬁ 7(1%)1@%1, 7(17%)1@%2, 7(17%)1@%3
T () [ S () (129
. K +(ege)-(1-1) k27, -(1-1)RK° )

K+ (ege)?-(1-1 )k

With the same recipe of the scalar case, we can get to a functional form of the logarithm after an explicit
diagonalization of (1.24). Up to a field-independent term, the chained application of trace and logarithms

over our momentum/components space results in the sum:

52S
oDt [_Mu(k)mu(p)] )
W 7d4k (6] —k? (& 2 + 7d4k) (0] —k? € 2
)00 (3 [ s (4 (007) ¢ [ s (4 e0n)) ).

(1.25)
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To arrive at the desired evaluation of the radiative correction the infinite integrals of (1.21) and (1.25) must
be dealt with. As customary we turn to dimensional regularization in d = 4 — € to obtain a manipulable
expression. After a coherent rephrasing in d—dimension of all the previous formulas (in particular the 3

in (1.25) should be replaced by d —1) all our divergences can be accounted by the form [7]

4 T _d d
/dik[l(—k2+m2)—>—i ( 2d) (m?)? (1.26)
(2m) (4m)2
We update to our field content expression (1.15)
Ve(b) = V(de)+6Ver(de) — (Volume)™ “log Det |- (——0—sq)]+
E\Pc = c Ct c 2 g 5¢l(x1)5¢j(x2) R
) 52
~ (Volume)™ *log Det |- Se ||+ 1.27
(Volume) 5 log De |: ((514“(%‘1)514,,(%'2) R)]+ (1.27)
that, within our scenario and considering the Landau gauge limit of (1.25), becomes
Ao, 6\, T[-d/2] 1(>\ 2)3 1()\ 2)3 d=1, 5 o8
V c = - D - 15 al - )
s = goer e o7 (a(3%) 3l§t) T (6D
(1.28)

always not including field independent terms. To renormalize our effective potential we impose a sub-

traction condition asking for J\ to allow for

84VE(¢C)

i\ (1.29)
ad)é ‘qbc:.“'

at an arbitrary field value p. Expanding (1.28) around d = 4 — € with the solution of (1.29) we obtain,

after a bit of algebra, the finite expression for the effective potential

A o 34,92 ¢z 25 4 125,
Ve(pe) = I¢C+ (an)? ((46 +5)\ )log(/ﬁ)—Se —@)\ ) : (1.30)

That this expression can develop a minimum other than the trivial one can be established, relying on
Coleman and Weinberg’s acumen, considering the region in the parameter space with A ~ e*. Rearranging

properly the potential in (1.30) with this new assumption we arrive at the leading order expression

64 2
Ve(¢e) = o (i!+ (;)Q (log(i;)—?)), (1.31)

which clearly shows a minimum for the classical field value:

4_g 2
®2 . = pu? exp(w). (1.32)

min 9t
To close our long and draining computational route we get rid of the explicit subtraction scale p with
the help of (1.32), trading it for the parameter ¢,r,.
The jewel of Coleman and Weinberg is now before our eyes

4 2
Va(oe) = (;”;)2¢3(10g( a)-3). (13
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radiative corrections have therefore dramatically changed the classical character of the theory (1.16).
The unavoidable scale dependence, brought to the arena by renormalization, has broken the Abelian
symmetry shaping the form of the quantum corrected potential so to recover the typical spontaneous

symmetry breaking pattern fig. (1.1). In this case the role of the tachyonic mass in Higgs-like potential,

necessary to ignite the tree-level symmetry breaking, is successfully played by radiative corrections. Our
Yy g y y g, Yy play Y

T
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Figure 1.1: Comparison of classical (dashed blue line) vs effective (red line) potential for the massless
Abelian Higgs model with e ~1/100 and X = (33/87%) e .

final expression (1.33) also reveals a peculiar and most interesting aspect of radiative symmetry breaking,
once the disappearance of the starting dimensionless parameter X is noticed. This phenomenon, called
dimensional transmutation by Coleman and Weinberg, concerns the trade of a dimensionless with a
dimensionful parameter, as ¢,,;, in our case. Its origin can be rooted to the fact that, to keep the theory

fized, the change in the subtraction point i, and consequently in ¢,,;,, must be accompanied by a change
in the values of the dimensionless couplings.

1.3.3 Exploding Logs part I: Renormalization Group improvement

As every perturbative computation the effective potential has been built with awareness of its bounds of

pertinence. The loop/coupling expansion, exploited in the use of the background field method of Jackiw,
has opened a window to closely look to the model’s true vacuum.
But how far can we trust it?

If we stick with our scalar QED example (1.31, 1.33), the potential approximation found seems to involve
not just powers of the expansion coupling but also, as a leftover of quantum loops, of the logarithm of
¢c/p. This is a bad news which seems to add a further limit to the perturbative expansion, given that
the smallness of the coupling is not enough to produce our trust. The presence of the logarithms forces
us to refuse formula (1.31) outside the very narrowed area in which the classic field is of the same order
of the subtraction scale (1.29). No warranty is given that, in the regime ¢. > p, the potential will not

develop new minima or that the found one is the stable ground state.

This would have been a discouraging start for the effective potential role in quantum field theory if the
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cure would not have been presented already in Coleman and Weinberg’s work. To understand the process
that allow to rescue the effective potential from exploding logarithms, we notice that the renormalization
point p has been chosen in complete arbitrariness. As a consequence, for a given ¢. value such that
¢e > 1, the logarithm can be taken completely under control if we redefine the infinite subtraction (1.29)
at the new scale ' ~ ¢.. Of course this is an efficient procedure if we are able to link the parameters,
renormalized at two arbitrary scales p and g, so to maintain the theory fixed. The matching of the
parameters that assures this requirement for a continuous change of the subtraction scale is given by the
renormalization group.

Adopted to our survey, the invariance? of the effective potential (1.30) in respect of different renormal-
ization scales is translated in an implicit dependence of the parameters, so to compensate the explicit
dependence on it. Therefore the dimensionless functions 3, 3. and 4, must exist so to realize the total

W invariance

0 0 0 0
DV 07)‘7 ) = a. ay e ~ WY - a L Vi Ca)‘7 ) .
CICHPNNT (“6u+ﬁ*m+ﬂ 5 ¢7¢La¢c) £ (¢ A€, 1)
(1.34)
The beta and gamma functions account for the parameter change with p
dA de d¢
Br=n=C Be=pom g = =i = (1.35)

e dp

and (for this scale-free model) can only be function of dimensionless couplings. Because of this, the

dp du

equation for ¢. can be immediately solved by separation, the evolution results in a rescaling by a factor

§(u')
bo) = € (1) b (1) with € (i) = exp(— " dr <A<7)7e<7>>) . (1.36)

If, as customary, we introduce the renormalization time ¢ = log (%’), a solution of (1.34) can be envisioned

by the method of characteristics over the (fixed-theory) trajectory

{dl_ dx . de d .
a M

_ﬁ/\a 7_/6€a dt

dt = = —¢)C’Y¢c} s (137)

replacing the fixed with the ¢-running parameters in the effective potential form
Vi =V (¢ A €,0) = Vi ($e(t), A1), e(t), ) (1.38)

At this stage it seems that no progress have been made to gain some knowledge of the true vacuum.
An explicit renormalization time has been introduced and, moreover, its role seems to be completely
redundant because precisely of the renormalization invariance. We can turn this in our advantage noticing
that the invariance in (1.38) is valid for parameters fixed at a given scale, ¢. included. The shape of

the potential for varying ¢. (at a given scale, not along the renormalization evolution) is our real target.

2To avoid confusion we do not delve into the interesting subtleties of the renormalization invariance of the effective
potential. We prefer to stress instead the established way to perform stability analyses. The role of the cosmological

constant for the RG invariance can be found in [8].
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With this observation the freedom in (1.38) is of major help given that, for every choice of ¢., we can
continuously find a corresponding ¢ = ¢(¢.) able to improve the perturbation convergence. In particular
a smart choice of t = ¢(¢.) must be exploited to kill the dangerous logarithms, a procedure formally
acknowledged as leading logarithms resummation. It is with this care that the RG furnishes the best

perturbative approximation to the effective potential by:

VA (¢e) = Vi (9 E(H(0e)), A(t(e)) e(t(de)), t(¢e)) - (1.39)

1.4 The Effective Potential in mass independent renormaliza-

tion schemes

Renormalizability and Lorentz invariance are requirements strong enough to spare us the effort of com-
puting the effective potential, from the ground, most of the times. For renormalizable models the effective
potential can in fact be put in a simple and concise form (at least at one-loop order). This is realized at
the price of confining our computations to mass-independent renormalization schemes, as the MS.

From the previous survey of the scalar QED model, the contribution from loops with scalar and vector
fields have been computed resulting in the peculiar functional determinants. To complete our bookkeep-
ing the case of fermion degrees of freedom must be inspected. Obviously most of the Jackiw’s procedure
that we undertaken in (1.3) would be unchanged by the introduction of fermions, so we jump to the main
differences. The crucial point will be the path integration of the quadratic term in the ¢. background,
which will now concern the anti-commuting fields 1 and 1. From well known properties of Grassmann

integration we take care of the one-loop fermionic contribution with
_ i g od —
/wa exp[2 /d 21 d acgw(xl)(

]
6 (1)1 (x2)

52
—_ S )
50 (1)50 () R)w( )]

(1.40)

which provides the last missing block in our formula (1.27)

Y 5
Volo) = V(o0)+8Ver(or) - (Votume)™ Jog Dt [~ (s |

—_ ) 52
Vol ' 2 log Det |- S
(Volume) o 108 e [ (6AH(J:1)5AV(1‘2) R)]+

+

-1, 52
(Volume) i log Det [— ((W(JM)(W(MSR)] 4o (1.41)
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Following the same routine as for the vector boson case, we can reach the explicit form of (1.40) diago-

nalizing the fermion matrix

5%S
—— 5 (k=p) (—(y- k) + myjz (), .
601 (k)35 (p) ( 20,
mij2 (dc) 0 -po—Pp3s —P1+ip2
_ 0 m1/2 (éc) —-p1—ip2  —po+P3 (1.42)
~po+p3  pr—ip2 M (¢c) 0
p1+ip2  —Po—P3 0 myj2 (Hc)

where my, (¢.) is the fermion mass in the ¢. background. With what should be now a straightforward

sequence of computations we arrive at

528 B 44 y d*k oo (k2 4 m2
Tr log[—m(k)(w]—(?ﬂ) 4 (0)(2 [ (277)41 g( k= + 1/2(¢c)))a

(1.43)

which clarify the multiplicity factor (2) related to the fermion field loop. Luckily also such result ended
over the same family of divergent integrals that we know how to regularize. If we limit our survey to the
(computationally) simple mass-independent M S renormalization scheme, the step to the relevant finite
component of (1.26) is immediate.

Therefore we have now all the instruments to generalize the form of the effective potential to general
renormalizable actions by an educate extrapolation of the previous formulas, covering the particle content
of spin 0, 1/2 and 1. In Landau gauge and considering up to one-loop corrections in M S, we may write

the sum

Ve (60) :V(¢C)+M1)2(V§+V]§/2+Vé)+--- (1.44)

where the contribution from the i-th field of spin s is expressed in terms of its tree-level mass m?ys (¢e):

1 mzz,o (¢c) 3
VEOZ Z;mio (¢c) (loglug—2 )
2
VL}/2 =3 Z m?,1/2 (¢¢) (log 7L2 -5

21(¢c) 5) ) (1.45)

3 m;
Vi = 1 Z m?,l (¢c) (loglﬁ - =

1.4.1 Exploding Logs part II: Decoupling and Thresholds

Consider now the following toy model with two chiral fermions ¢y, and ¥ g, interacting with a scalar field
¢ through the potential:

VW, YR, ¢) =A- émi¢2+%/\¢4+ % (YL ¢¢ppipr + he) + %mR@RTﬁ%

(1.46)
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Over the field vacuum configurations ¢, = (¢) their contribution on the theory’s effective potential can
be easily read off our generic formula (1.45) once the mass eigenvalues are determinate. In the left-
handed basis £ = (¢, ¢%) the Dirac and Majorana bilinears of (1.46) can be recast in the Majorana form
(1/2) €¢ My ¢ with mass terms

( 0 mp(p)

1

M =
J NG

YL, 1.47
mp(¢) mg Lo ( )

) and mp(¢) =

providing two mass eigenstate of values

(e D). o )

Their contribution to the one-loop corrections of the potential can therefore be split in two terms, one

for eigenstate, resulting in

VM (g = -

4 M_lWQ
(LY mrwwryn) i (W et N SR ACRVNNE.

I 2

wfg

4 , lWQ
(R orwrrrve) i [ NI SETACRINE:

I
(1.49)

Then the freedom to choose the renormalization scale g must be exploited to avoid the perturbativity
break-out by tracking the field-dependent masses with p ~ ¢. and replacing the parameters with the
running ones. For ¢, > mpg this procedure has no drawbacks other, of course, then the possible presence
of Landau poles in the RG evolution. The logarithms are resummed efficiently and the perturbative
expansion is reliable. Let’s focus instead on the regime ¢. < mp assuming the two masses at very dif-
ferent energy scales. In our “improved” scenario this corresponds to the low-energy sector and it’s easy
to recognize that we have a new troubling contribution coming from term ~ log (m%z/d)z). Anyway this
should not be cause of discomfort. It is instead the usual message coming from perturbative computations
which alerts us of the inclusion of degrees of freedom which live far away from the scale under our probe.
Something is spoiling the decoupling of the high-energy sector and, as a consequence, our access to the
knowledge of the true vacuum. The cause can be rooted to our choice of the renormalization scheme
which compensate its simplicity with a complete incompetence to include the Appelquist-Carazzone de-
coupling theorem [9]. In particular, the absence of any explicit scale other than p, in mass-independent
renormalization schemes, provide a framework of calculation with all the fields treated as massless and,
therefore, all sources of relevant radiative corrections at any scale.

Of course the decoupling doesn’t cease to be true just because we chose a different way of doing calcu-
lations. It should be possible to absorb into redefinitions of parameters the effect of large logarithms in
the same way as the infinite energy cutoff can be concealed from physical observables®.

To see how this scenario can be realized let’s sharply split the effective potential computation, for our

toy model, in the two sectors of high (1 >mpg) and low (u < mp) energy. In the first case all the fields

3See [10] for illuminating connections among the RG, effective field theory and renormalizability.
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enter in the quantum loops shaping a correction to the classical potential correctly represented by (1.49).
In the low-energy sector instead, let’s explore how far can we pretend to be in the dark of the heavier
eigenstate Ypequy With mass ~ mp (1.48) and still get the right physics. In this forced blindness we would

describe our vacuum using only light degrees of freedom, in the tree-level
~ 1 .95 1+,
V(9) = =5 32+ 1 Ao (1.50)

as in the (spin 1/2) loop correction

VA2 (6e) =

mh (6. (log mp(de) 3) . (1.51)

2 112 2
Where a tilde has been used to discriminate parameters belonging, in principle, to different theories. In
particular in our low-energy description we deal with a light Majorana fermion of mass mp(¢). If we
now expand the heavy field contribution in the full theory (1.49) in powers of ¢./mpg we can reduce the

logarithmic structure in polynomial interactions:

3—2m§10g(%§5) myY}? (210g(%§)+1) o2
647> ) 1672 2"

_3Yf(2log(%§) +5)) ot o

1672 41 (152)

which can be completely accounted, up to subleading non-renormalizable terms, by the parameters and the
degrees of freedom of our low-energy description (1.50). More precisely, the expansion (1.52) establishes
the matching among the low and high-energy parameters to be fulfilled in order to have the same theory
and the same effective potential along the different scales [11]. Expliciting the thresholds, asking for
w=mpg in (1.52), we arrive at:

3 s mRY? _15Y]

AsA+ —— m?P-m?+ L N
6472 1672 1672

(1.53)

which gives the thresholds below the decoupling scale mpg. In bottom-up RG analysis as ours, the reversed
version of (1.53) will assure the correct matching notably improving the precision and reliability of our

perturbative computations.






Chapter 2

The three roads: Stability,
Instability and Metastability.

2.1 Introduction

We have learnt how the RG, together with an effective field theory approach in the guise of thresholds,
has allowed to build a coherent and reliable picture of the quantum potential. The use of such technology
has been, since its first applications in quantum field theory, mostly halved in two areas. Simplifying we
could recognize different uses depending on the assumptions on the parameter space. In case of partial
ignorance of new couplings, for instance, their free variation can strongly affect the potential, leading
to unrealistic scenarios and thus to theoretical bounds on their span. Starting with an assumed perfect
knowledge of the parameters involved we may, instead, face different conclusions. The cosmological
history of the model can be read and a survey of the effective potential can illustrate different phases of
its evolution. Similarly, the RG and the effective field approach will also intervene to declare the model
inherent cutoff scale, above which new physics has to be invoked to avoid an unobserved phase transition
or perturbative break-out.

But what are the possible scenarios?

In the more basic way, just two: stable or unstable. Stable when the deformation induced by the
quantum corrections on the classical potential is not able to create a new minimum with less energy
density. Unstable when a new minimum appears at (usually) higher energies and the initial vacuum
turns out to be a false one. A starting point before a quantum induced transition with energy emission.
Still, an orthodox adherence to phenomenology would allow for a third option: a metastable potential.
Our model will (most likely) supply a description of our universe, which has a finite age, at least from
the time quantum field theory is applicable. So we should be bothered by the presence of new more
energy-convenient minima, only if their destabilizing effect would happen within our cosmic age.

In this chapter we will illustrate the computational schemes developed since the first tunnelling analysis
of Coleman and Callan [12, 13] and their extension to the finite temperature case by [14] and [15]. We will
consider the Standard Model (SM) post Higgs discovery [22, 23] and perform an up-to-date computation

15
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of the related effective potential with particular emphasis on its phase diagram at zero [25, 26] and finite

temperature [36].

Stable configuration Unstable configuration

NS

s s
N N EW
EW
¢ ¢
(a) (b)

Unstable configuration

Ve(9)

EW

¢
(c)

Figure 2.1: Possible stable (a) and unstable (b-c) patterns for the effective potential. EW is the electroweak
vacuum. Depending on the barrier’s features and on external cosmological inputs, both the unstable

patterns could comply for the metastable scenario.

2.2 Tunnelling

From a classical point of view all the patterns in fig. (2.1) are stable, for a system placed in the first
minimum. No matter how convenient the transition could be, without external pushes the future evolu-
tion of a system at rest will be to remain there. Quantum behaviour instead will inherently deal with
the unsettled character of the quantum vacuum. Therefore a realistic analysis will lead to, small as it

can be, a non-zero amplitude for the barrier crossing in fig. (2.1): the tunnel effect. Such amplitude
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represents a main target to be computed in quantum field theory both providing an accurate description
of the effective potential (and the model’s phase diagram) and more precise hints about the validity of

the effective theory extrapolation to high-energy.

2.2.1 Quantum Fluctuations

The recipe to define the tunnel probability in presence of new minima has originally been illustrated
by Coleman and Callan [12, 13], borrowing the language and the formalism of thermodynamic phase
transitions. The picture can be assimilated to the one concerning transition from liquid, in a superheated
state, to vapor. Bubbles of vapor start to be generated and suddenly collapse when the loss in surface
energy is not paid back by the gain in volume energy. When a bubble with enough energy is formed,
the vapor phase starts to expand eventually covering the entire system. Abstracting to our quantum
case, the vapor bubble represents the final state of true vacuum which is intended to dominate the false
(classical) unstable vacuum, analogue to the superheated liquid phase.

The field configuration responsible for this transition is a solution of the classical euclidean equation of
motion which interpolates between the false vacuum at infinite time and distance, and the true vacuum
at the origin'. It has been dubbed as bounce solution by Coleman [12] and is defined mathematically as

the ¢ minimizing the euclidean action Sg(¢)

£¢ 3do_dV(9)

B =0 2.1
dr? rdr do ’ (2.1)
with the radius r2 = 22 + #2 and the boundary conditions:
d
¢ (00) =vEw ~0, dfqb =0. (2.2)
T |r=0

Then the tunnelling probability (for unit of four-dimensional volume) p can be computed considering the

formula

e~ Se(éB)

A 2.3
p Volume (2:3)

so to explore the dangerous case when, integrated for the universe size ~ 7'{4] (tv the universe time
=4.35 x 10'7 sec), results in greater than one values. The quantum character of the computation plays
its role in two different steps, of which only the dominant one will be taken into account, modifying
the potential. We have already seen (1.45) how the quantum corrections affect the form of the classical
potential with new log-type terms and an explicit scale dependence. Giving that our concern on stability
issues addresses energy regions far from the EW one, such radiatively corrected potential can safely
neglect the contribution from field-quadratic terms. In the case of the SM, for instance, we can always
use the form

V(¢) ~ )\eff (/j’) ¢4

1 , (2.4)

ITranslational invariance allow us to choose this point at the origin.
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where Ac¢r(p) is an effective quartic parameter and the scale dependence is driven by the RG evolution.
The second kind of, subdominant, quantum effect is due to the use of a semiclassical approximation in the
computation of the decay amplitude. A complete quantum derivation [13, 37] would lead to a tunnelling
probability (2.3) of the form:

e—SE(aﬁB) e~ 58(¢B)=ALoop

= = 2.5
P= Nolume Volume ’ (2:5)

where now Sg represents the complete (euclidean) quantum action, Sg the tree-level action with a RG-
improved potential, and Ap,ep is the contribution from functional determinants coming from the path
integral computation. In general Ay, is a small quantity and will be neglected from now on.

The bounce ¢p can be numerically computed, via shooting method as illustrated already in [12], and
indeed we will mainly rely on such algorithm for more complicate scenarios. The approximation used
in (2.4) can, although unrealistically missing necessary negative mass terms, be supplied by an analytic
solution which can serve to illustrate very efficiently the main features of the process. The absence of

explicit scale dependence results in a one-parameter family of solutions fig. (2.2)-a), the Fubini instantons

8 R

op(r) = m 2R (2.6)

with R a free positive number which can be easily linked to the value of the bounce at the origin

8 1
fi= V el 6(0)° 27

and provides the size of the bounce. We see now how the approximation used, which successfully served

an analytic description, fails to select the appropriate bounce out of the Fubini family (2.6) because of

scale invariance. All the solutions considered will in fact result in the same action
872

BAessl’

Se(¢B) = (2.8)

independently of their size. To pick the appropriate value for R we must break scale invariance, a
well accepted consequence of the simplest inclusion of quantum corrections. In our case the implicit
renormalization scale dependence of A will be enough to pick, by a numerical evaluation by shooting
method of (2.1), the correct value of the scale R which determines the form of the Fubini instanton
responsible of the most likely tunnelling transition. Choosing the SM with its tree-level potential improved
by one-loop RGE, a numerical evaluation of (2.2) with the appropriate boundary condition results in a
bounce of size (or inverse scale) R = 434.33/Mp (fig. (2.2)). The corresponding tunnelling probability
can be read off inserting the related action value on the instanton Sg(¢p) = 1768.8 in formula (2.3)
and integrating on the four volume of our universe (~ 7). For our purposes is even more interesting
to translate such limit in a lower bound for the effective quartic coupling spanning, by an identification
R ~ 1/u, all the possible bounce configurations and not just the one saturating the path integral. Inserting

the bounce action (2.8) back in formula (2.3) and integrating, our surviving condition will lead to

sx 1

3 log(tup) (29)

Perr(p)] >
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Fubini instantons family SM bounce by shooting method
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Figure 2.2: For an improved tree-level potential of the SM and for Mo, = 173.34GeV, My, = 125.09 GeV'
and ag = 0.1184 different Fubini bounces a), the bounce solution by shooting method b), and a comparison

between the numerical solution and the corresponding analytic one c).

The lower bound (2.9) supplies our analysis with the appropriate tool to investigate in detail the SM
phase diagram and in particular the role of different points in the SM parameter space in shaping its fate.
For illustrative purposes in fig. (2.3) we span different top Yukawa couplings providing a clear pattern of

instability and metastability for the quartic effective (one-loop improved) SM coupling,.
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Metastability and instability regions
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Figure 2.3: Ewolution of the quartic effective (one-loop improved) SM coupling for the point M, =
125.09 GeV and ag = 0.1184 with three different assignments of My,,. We can recognize the role of
the top Yukawa in driving the SM to an unstable fate.

2.2.2 Thermal Fluctuations

Quantum corrections are the main source of vacuum instability in respect to a classical stable model.
However, a theory which is supposed to account for physics under (at most) Planck energy has to deal with
non-zero temperature effect. This is a result of the period in the universe evolution where a high density
of particles would ask for a quantum description based on a statistical ensemble. Finite temperature
effects have been intensively discussed in the past ([14, 16]) and their role in encouraging possible true-
vacuum tunnelling has been highlighted. Intuitively the thermal kinetic energy, borrowed from the heat
bath, may supply a sizable push to overcome the energy barrier and facilitating the transition.

The recipe to deal with finite temperature effects in the framework of vacuum stability can be (almost)
easily modeled upon the rules that allowed us to account for quantum fluctuations. Without having to
delve in the formalism of thermal quantum field theory we can rely on the main results which only ask
for a modification of the effective potential by a new term AgV (¢, T), and a modified bounce equation
that, in respect of (2.1), must be solved in a three dimensional euclidean space.

Starting from the modification of the effective potential we will, for now, limit ourselves to the main
contributions at one-loop order, as usual we will explore the SM case to settle our computations. The
quantum effects have been already computed in a mass-independent renormalization scheme as M S (1.44-
1.45). For completeness we explicitly show the T = 0 terms at one-loop for the SM. In Landau gauge we

recognize the following terms

Vo(6) = - {mA (N6(1) + TAD64 (1) % AN () (2:10)
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‘/i—loop((b) = i z( )4[ 2(t) Cz:| s (2.11)

=W Tt 04T p2(t)

with coefficients n;, C; given by

nw =6, nz =3, ng=-12, n,, =3, ny =1,

Cw = Cz = 5/6, Cy = Oy = Cp = 3/2, (2.12)
and mass parameters
miy(t) = *92(15)(?5 (t), (2.13)
m () = ﬂ%uwguﬂ&ax (214
mA) = RO (2.15)
w2 = -0 amen ~ a0 (2.16)
m() = - Qm FBA(D)E(1) ~ A1) (217)

As illustrated in the opening chapters, the SM parameters must run with the RGE to efficiently resum
the dangerous logarithms. We stress, mostly for future and more precise applications, that an effective
potential at L-loop order, supplied by parameters running with an RGE at L+1-loop order, will resum
the leading, next-to-leading, and L-th-to-leading logarithmic terms [40, 41].

The first thermal modifications are included considering the thermal diagrams [17, 18]

Vicoop(,T) = Y ”iT4JB( 2(t)) ”tT4JF(m3(t)), (2.18)

2 2 2 2
=W, Zx,h 2 T 2w T

with boson and fermion thermal integrals given by

Jp(y) = / da z* ln \/ﬁ], (2.19)
Jr(y) = fo dx x* ln[l-t-e*m] . (2.20)

The plasma effects must also be included in a thermal leading order analysis, and can be described by

one-loop ring resummation of daisy diagrams [19]

(T2 T2 2 3/2
Vs(6.T) =¥ ML {[ O[] } (221)

=Wr,Zr,vL,X;h

in which only the bosonic degrees of freedom are taken into account, in particular, only the longitudinal

component of the vector fields defining the degeneracy coefficients
nw, =2, ng, =1, Ny, =1. (2.22)

The Debye masses are M?(¢) = m?(t) +11;(¢, T), with the following temperature-dependent self-energies

2 2 by
IL,,(6.7) :(wﬁg 2+ﬁ) I(6.7) ,
e, (6T) = T,
HWT(¢7 T) = HZT((b’T) = H'YT((b?T) =0, (223)
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where we omitted the RG-induced t-dependence due to improvement. Finally, mapping (W3, B) into
(Z,7), we find

M2 () = Mm% ge ATy
2L 2|74 6 cos? Oy ’ ’
2 1 2 11 95 2
= = t)+ — T - A(o, T
M'yL (QS) 2 mZ( )+ 6 cos2 0W ((b’ ) )
(2.24)
with
11 ¢2 cos® 20
AN, T) = mi(t)+ 2 =W
3  cos? by
2 11 95 2 | 2
1)+ — T\T . 2.25
[mZ( )+ 12 cos? Oy ( )

We can have a quantitative idea about the impact of the thermal corrections introduced, by a straight-

forward comparison as in fig. 2.4 where the three forms of the potential, met until now, are exposed. We
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Figure 2.4: One-loop improved tree-level (yellow line), complete one-loop (blue line) and thermal corrected
(red line) potential for My =125.09 GeV, M; =173.3GeV, as =0.1184 and T = 105GeV

notice that no EW minimum is present due to our approximation in which we neglected the quadratic
terms. Moreover the tree-level and the complete one-loop effective potential mostly overlap, showing the
ability of the improvement to take care of the leading loop contributions. The T" = 0 absolute instability is
reached at ¢ ~ 10° GeV due to the zero of the quartic coupling fig. 2.3. At T # 0 (we choose T = 10'° GeV/
for illustrative purposes) the thermal corrections dominate over the T' = 0 case until ¢ ~ T, after which
they are exponentially suppressed, as clear by the form of the thermal integrals (2.19, 2.20).

With the effective potential in our hands the computation of the tunnelling amplitude proceeds similarly
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to the T = 0 case with the main deviation represented by the bounce equation. As typical of the finite

temperature case, the configuration space of (2.1) undergoes a dimensional reduction to O(3) [14, 15, 16]

¢ 2d¢ _ dVe(9,T) : d¢
22¥ ’ ;o1 =0, = =0, 2.26
ar? R dr dé Jim ¢(r) dr - (2.26)
with now 7 = |F|. The corresponding euclidean action for the O(3) spherically symmetric solution is
o 1 (dp)?
Sal6()]) = 4x [ ars? [2 (dﬁ) + veff(¢>,T)] . (2.27)
r

As we learned from the T = 0 case the full knowledge of the bounce requires to solve (2.26) by means
of shooting methods. Differently from that case though, at finite temperature a greater care is required
to control and improve the efficiency of the numerical algorithm. With this goal we rescale the field as
(1) = My x ¢(r), with My =10 x T, and the three-dimensional distance according to = = x Mg, with
Mg = /Vaax/émax. Note that throughout our analysis we will always find the relation ¢5(0)/T ~ 10,
corresponding to the value of the field configuration at which the bubble of true vacuum is nucleated.
If we consider the leading-order case (at most one-loop effective potential plus main thermal corrections
and one-loop RG improvement) we can now have a general survey of the bounces at zero and finite
temperature (fig. 2.5).

With the bounce we may compute the vacuum decay rate per unit volume at fixed temperature T
[14, 15, 16]

3/2

I(T) ~T* S[os(MI ™ -safony (2.28)
2nT ’

where Eg = S3[¢5(r)] represents the energy of a bubble of critical size. A crucial quantity is also the

differential decay probability of nucleating a bubble at a given temperature 7" which is given by [20]

dP Mp
AT
dlnT ( )TQ(

Tulo )3

= (2.29)

with Ty ~ 2.35 x 107 eV and 7y the age of the Universe. Notice that this formula is valid only in a
radiation-dominated Universe. The total integrated probability is defined as

Teut—otf dP(T,)
a1’

P(Teuoft) = [0

Teut-ofr 18 the cut-off temperature obtained imposing the condition ¢5(0) = A, where A is the cut-off
scale of the SM, for the moment assumed to be A = 10'? GeV. The cut-off at A = 10'” GeV corresponds

to a maximum cut-off value on the temperature Toyp—of ~ 10'® GeV, as expected since ¢p(0)/T ~ 10.

ar’ . (2.30)

Larger values of ¢5(0) = A would correspond to a Planck-scale dominated tunneling transition. We have
almost all the tools to compute the thermal vacuum stability of the SM. The missing piece is our lack
of precision. To illustrate the interplay among the leading order 7= 0 and T # 0 terms in the effective
potential we did not exceed the one-loop accuracy. This is a setting that can only give a very rough idea
of the phenomena involved and, in particular for the case of the SM, must necessarily be supplied by
next-to-leading contributions. This will obviously include definite two and three-loops derived terms in
the RG-functions and in the effective potential, along with the coherent matching between the precision

of the evolution equations and the initial conditions to by furnished.
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Bounce at T = 0 [GeV] for tree—level and 1-loop potential
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Figure 2.5: Bounce at T =0 (left panel) and T = 10'" GeV (right panel). At zero temperature we show
the bounce solution obtained considering a simple tree-level, RG-improved potential (dashed red line)
and the one-loop expression (solid blue line). The field ¢ and the four-dimensional euclidean distance r
are rescaled using the Planck mass Mp = 1.22 x 1012 GeV. At finite temperature we rescale the field as
(1) = My x (1), with My =10 xT. We rescale the three-dimensional distance according to x =r x Mg,
with Mr = /Vaax/omax. This prescription greatly improves the efficiency of the numerical shooting
method used to solve eq. (2.26). The values of the input SM parameters are the best fit My, = 125.09 GeV,
M,; =173.3GeV and ag =0.1184 .

2.3 The Matching Conditions in the SM

The mismatch of the accuracy between the RG equations and their initial conditions is a point of primary
importance and has to be dealt with to secure the consistency of the computations. To gently get close
to the SM case, and for future applications in beyond the SM analysis in the next chapters, we begin
considering the simpler case where the increase in precision is obtained computing the RGE at two-loop
order in MS. These equations must be supplemented with suitable one-loop boundary conditions defined
in the same scheme. These consist of M S renormalized couplings and masses evaluated at a given energy
scale which correspond to the starting scale of the RG running.

In general, the initial conditions can be unknown free parameters introduced by the specific model which
is under investigation, and are directly associated to some measured observables. In order to determine
the latter, the MS parameters at the starting scale must be related to these physical observables. This
task can be accomplished in two different ways: 1) one can adopt the M.S renormalization from the very

beginning and obtain the needed M .S parameters directly from a set of measured observables or 2) use
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a scheme, as the on-shell (OS) one largely used in the electroweak theory, in which the renormalized
parameters are expressed in terms of the physical quantities, the pole masses and the Fermi constant,
and then translate the on-shell parameters to the corresponding MS expressions through appropriate
matching conditions. We follow the second strategy which is quite common in the literature on the
perturbative corrections in the SM.

The matching conditions are easily extracted from the obvious relation

Qo = aps + daos = agg(p) + dogsg, (2.31)

where ag, aos and agg denote, respectively, the bare, the on-shell and the M.S expressions of a generic
parameter «. From eq. (2.31) one can extract a M.S parameter in terms of its on-shell version obtaining,

at one-loop order,

agpg = @os + 0aos — dagg = @os + 0Q0s| finite (2.32)

where the last expression is simply a consequence of the definition of the M S renormalization scheme, in
which the counterterms only subtract the UV singular parts. It is clear from eq. (2.32) that the matching
conditions between the OS and the M S schemes are defined from the finite part of the OS counterterm.
Notice that, at tree level, the M S parameters coincide with their OS version.

Considering the SM case 2.1, the parameters which enter into the RG study are the quartic coupling A,
the top quark Yukawa Y; and the gauge coupling constants g, go and gs. These are computed in terms of
the pole masses of the Higgs M), of the top My, of the weak gauge bosons Mz and My, and of the Fermi
constant Gr. All these quantities are then translated in the MS scheme using eq. (2.32). Notice that
for the SU(3) strong coupling constant g3 there is no need to introduce matching conditions because it
is directly extracted in the M S renormalization framework as as(Myz).

One of the most important SM parameters needed in the determination of the initial conditions of the

RG is the Fermi constant Gp. Using its definition in the effective Fermi theory

GFr

— = 1+Arg) = 1+Ar 2.33

Ch = () = 51 8r) (233)
we obtain the counterterm of the vev v in the on-shell scheme 51)205 = Aro/ (\/iG r). We recall that Gp

is extracted from the muon lifetime, computed in the Fermi theory augmented by QED corrections. As a

consequence, the computation of the Arg electroweak corrections to the u decay requires the subtraction

of the pure QED contributions. At one-loop order Ary can be decomposed as

Mww V25, 0 (2.34)

M2, Gr

ATOZV

where V' and B denote vertex and box corrections, IIyy is the W boson self-energy evaluated at zero
momentum and F corresponds to the wave-functions contributions. All of them are computed at zero
external momenta and are affected by SM corrections (as possible new-physics effects when considering
beyond the SM theories). Notice also that we have chosen a renormalization prescription in which the
tadpoles are included in the perturbative expansion. This property has the advantage to provide a gauge-

independent definition of the mass counterterms and of Arg. Nevertheless, the dimensionless parameters
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appearing in the Lagrangian, which are the interesting ones for our analysis, are not affected by this choice
and the results are independent of the tadpole corrections. The counterterms of the top Yukawa and of

the SU(2) gauge couplings, needed in the matching procedure, are obtained exploiting the relations

2
U v,
M, =Yiosﬁ, M%/ :ggos%, (2.35)

V2
which lead to

5Mt (SUQS

0Y;0s :YtOS(

6M3V _ 51}05) (2 36)

. dg20s=g208| 578
) g20s = g20s (2M3v Tos

My wos

For the Abelian gauge coupling g the counterterm is slightly more involved being rooted to

V95 + 9%, (2.37)

which concerns the on-shell values of Mz and My :

MZE

|

1 5M§ - 5MI%V B dvos

1) = — . 2.38
gos = gos (2 M2, s ) (2.38)

In the previous equation dvog is obtained from Arg as explained above, while the top, the W and the Z
boson mass counterterms in the on-shell renormalization scheme are computed from the corresponding

self-energies

OM, =ReX(p= M), M7 =Rellyw(p®=M7,), oMz =Rellyz(p®=M32).
(2.39)

It should now be clear how to proceed when we make a further step in the accuracy including, as
mandatory for precision SM studies, three loop RG equations. The details of the corresponding two-loop
matching condition are the subject of [26] and, together with the two-loop order effective potential [109]
with leading thermal corrections [17, 18, 19], will form the up-to-date highest precision approach to
address the investigation of the SM high-energy behavior.

Name ‘ Value ‘ Description
Mw 80.384 GeV W boson pole mass
Mz 91.1876 GeV Z boson pole mass
My, 125.09 GeV Higgs boson pole mass
M 173.34 GeV Top quark pole mass
v=(V2G,) | 246.21971 GeV Higgs vev from the p decay
as(Mz) 0.1184 MS QCD structure constant (5 flavors)

Table 2.1: Physical observables used to extract the SM parameters in the MS scheme through the matching
procedure. For the Higgs mass we used the latest result [24], for all the other parameters we refer to [20].
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2.4 Finite temperature Effective Potential of SM beyond lead-

ing order

With the help of the matching conditions we can now successfully include the two-loop corrections and up
to three-loop RG equations (see [26] and reference therein) for the improvement. Our effective potential

has now the following form

chff((ba T) = %(¢) + Vlfloop(gb) + ‘/2—loop(¢)
+ ‘/1—loop(¢a T) + Vring(¢7T) ) (240)

and will be the new basis to increase in precision the previous survey on the quantum and thermal

corrections.

With 2.40 we can now update fig. 2.4. The effect of moving from one to three-loop RG equations in the

M; = 173.34 GeV, M;, = 125.09 GeV, as = 0.1184
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Figure 2.6: Effective potential and first derivative at zero and finite temperature as a function of the Higgs
field. Blue line: T = 0. Red line: finite temperature T = 1015 GeV. Solid line: effective potential. Dashed

line: first derivative. The values of the input SM parameters are shown in the plot label.

improvement, more than the explicit two-loop terms in the potential, has the visible impact (fig. 2.6) in
shifting the T = 0 instability field configuration to the higher values of ¢ ~ 10*! GeV. In agreement with
the fig. 2.4 the thermal corrections dominate the effective potential until ¢ ~ T', when the exponential
suppression comes in action. The shape of the effective potential at finite temperature can be better
visualized in fig. 2.7 where we show the effective potential, normalized with respect to its maximum
value, as a function of the Higgs field rescaled according to the ratio ¢/T. The effective potential changes

sign at about ¢ ~ 3T to then sink towards the true vacuum of the theory. Notice that the latter turns
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M; = 173.34 GeV, M, = 125.09 GeV, as = 0.1184

T =10 [GeV
20 eV

—40-

V /AN vax

—60-

—80

— 7\\\\\\\\\\\\\\\\\\\\\\\7
1000 2 4 6 8 10 12

¢/T

Figure 2.7:  SM effective potential (normalized with respect to four times its mazimum value) at T = 10
GeV. The field ¢ scales as ¢/T. The values of the input SM parameters are shown in the plot label. In

the insert, we zoom in the region close to the mazimum (azis labels as for the outer plot).

out to lie at extremely large field value, ¢ ~ 1030 GeV [39]. However, this is not a problem as soon as one
assumes the SM to be valid up to the Planck scale: what really matters in terms of tunneling probability,
at finite temperature as well as at T' = 0, is the turning point of the bounce solution rather than the
precise location of the true vacuum. The former, as we shall clarify in the next section, never exceeds in

our analysis Planck-scale values.

2.5 Bounce solution and thermal tunneling

We can now continue from where we left, at the end of section 2.2.2, and compute the new bounce for
the effective potential 2.40 solving eq. 2.26 by shooting method. The results are depicted in the right
panel of fig. 2.8 where we show the SM bounce solution at finite temperature for 7' = 10'7 GeV. Both
left and right panel represent a more accurate version of our previous effort of fig. 2.5. In the left panel
of fig. 2.9 we show the euclidean action of the bounce solution ¢g(r) as a function of the temperature
for the best-fit values of My, M;, and as. In the right panel of fig. 2.9 instead, the differential decay
probability of nucleating a bubble (2.29) is shown as a function of the temperature.

In the insert plot in the right panel of fig. 2.9 the values of ¢5(0) at different temperatures are shown.
We may now come to the main results.
Integrating the differential probability using eq. (2.30), we find P(Teui—of) = 5.22 x 10749 « 1. Conse-

quently, we conclude that the electroweak vacuum of the SM for the present central values of M}, M;, and
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M; = 173.34 GeV, M;, = 125.09 GeV, a5 = 0.1184 M; = 173.34 GeV, M}, = 125.09 GeV, s = 0.1184
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Figure 2.8: Bounce at T =0 (left panel) and T = 10'7 GeV (right panel). At zero temperature we show
the bounce solution obtained considering a simple tree-level, RG-improved potential (dashed red line)
and the full two-loop expression (solid blue line). This plot should be compared with fig. 2.5 (see the
corresponding caption for the details on the numerical computation). The tip of the arrow corresponds to
#5(0) =8.8x 107 GeV. The values of the input SM parameters are shown in the plot label.

a; is unstable but sufficiently long-lived if compared to the age of the Universe, even including thermal
corrections with the highest cut-off scale A = 1019 GeV.

The total probability computed turns out to be much larger than the corresponding one at 7' = 0,
~ 107590 [39]. So, still allowing for an electroweak vacuum in the metastable phase, we can appreciate the
role of the thermal corrections in greatly enhancing the tunneling probability. The thermal corrections
affect the computation so deeply that an excursion in the allowed experimental range for My, M;, and
as would lead to much more stringent instability bounds if compared to the one at T = 0. We will
carry a more comprehensive analysis in the context of the phase diagram of the SM in section 2.6,
for the moment, let us now try to change only the value of M;. In fig. 2.10 we show how the total
probability of thermal tunneling changes as a function of M, for three different values of the Higgs mass,
My, =124.0,125.09,127.0 GeV, with o, = 0.1184. The total probability increases going towards larger
values of M;, and smaller values of Mj. For illustrative purposes, we show the region corresponding to
the best-fit, 1- and 3-0 confidence regions of M; according to M; = 173.34 + 0.8 GeV. For M} = 125.09
GeV, we find that the total probability of thermal tunneling equals one for values of M; extremely close
to the 1-0 confidence region. This is a remarkable result, given that at 7" = 0 the instability bound is
reached only for M; 2 178 GeV. Motivated by this result, we turn attention to the full phase diagram of
the SM.



30 The three roads: Stability, Instability and Metastability.

M; = 173.34 GeV, Mj, = 125.09 GeV, as = 0.1184 M, = 173.34 GeV, Mp = 125.09 GeV, as = 0.1184
T T T TTT0 T T TTTTIT T T TTTTTT T T TTTTIT INLERLLL 8 T T TTTTT T T TTTTmT T T T T T T TTTT T T T
B r 10%¢ " " i i n
32 4 I A = 10% [GeV] E |
i —§ 101 I 1
§ 6-- 10 : N
o
L | % 101 i
— SEEI 10%5¢ : 4
5 ‘i‘ 1014E L L L L 3
E 4 1014 1015 1016 1017 1018 1019 I
T |_o | T [GeV]
= >
%% S r
'Q L
S 2-
24 4 B
Lol Lol Lol Lol 1 \HH; i Ll Ll

104 105 10% 107 10%  10° o 108 10B 107 108 109
T [GeV] T [GeV]

Figure 2.9: Left panel. Euclidean action of the bounce solution ¢p(r) as a function of the temperature.
Right panel. Plot of the differential probability dP/dlog,, T as a function of the temperature. In the
insert, we show the value of ¢p(0) as a function of the temperature. For a given cut-off scale (for
instance, A = 1019 GeV, solid horizontal magenta line) the integration of dP[dlog,o T must be cut-offed
at the temperature satisfying the condition ¢(0) ~ A (in this example Tous—ofr ~ 10*® GeV, vertical dashed

magenta line). The values of the input SM parameters are shown in the plot label.

2.6 The phase diagram of the Standard Model at finite temper-

ature

The phase diagram of the SM is divided in three regions describing absolute stability, metastability, and
instability of the electroweak vacuum depending on the values of the SM parameters. Among them,
the top mass, the Higgs mass, and the strong coupling at weak scale play a dominate role. At finite
temperature, we add a fourth region in order to discriminate between instability at 7' = 0 and thermal

instability. All in all, the four regions are defined as follows.

o The absolute stability region (green) verifies the condition Aeg(¢) > 0 all the way up to the Planck
scale.? The effective potential does not develop a second, deeper minimum, and the electroweak

vacuuin is stable.

o The instability region at finite temperature (red) verifies the condition P > 1, where the thermal

tunneling probability is given in eq. (2.30).

2 Xt is the effective quartic coupling accounting for one- and two-loop corrections which is extracted from the RG-

improved effective potential.
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Figure 2.10: Plot of the log,, of the total probability as a function of the top mass for three different
values of the Higgs mass, My, =124.0,125.09,127.0 GeV. For illustrative purposes, the vertical blue lines
mark the best-fit, 1- and 3-0 values according to My =173.34 +0.8 GeV.

o At T =0, the instability region (marked by the dashed red line) corresponds to a zero-temperature

tunneling probability

where 7y is the age of the Universe and Vy ~ T{‘j.

U
P =maxp—, exp
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(2.41)

o In the metastability region (yellow) Aeg(¢) does become negative below the Planck scale, and the

effective potential develops a second minimum deeper than the electroweak one. However, the decay

probability verifies P < 1.

2.6.1 Instability bound at finite temperature

In fig. 2.11 we show the phase diagram of the SM in terms of the Higgs and top mass. The gray
ellipses refer to the 1-, 2-, and 3-0 confidence regions obtained considering M; = 173.3 + 0.8 GeV and
My, = 125.09 + 0.24 GeV. At T = 0, the instability bound correctly reproduces the known result [26]
according to which, for instance, values M; 2 178 GeV are excluded if M}, ~ 125 GeV.

At finite temperature, the scenario undergoes a drastic change. As expected, the instability bound
is pushed towards lower values of M;. Values of M; 2 174.5 GeV, for instance, are excluded if My, ~ 125
GeV. Including the uncertainties on the strong coupling at the weak scale (dot-dashed lines in fig. 2.11)
the bound becomes even more stringent, and values M; 2 173.6 GeV are excluded if My ~ 125 GeV and

as =0.1163.
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Figure 2.11: SM phase diagram at finite temperature and cut-off scale A = 1012 GeV. Solid (dashed)

red line: instability bound with (without) thermal corrections. We also show the 1-, 2-, and 3-0 ellipses

corresponding to My = 173.3+0.8 GeV and M}, = 125.09+0.24 GeV (assuming a two-dimensional gaussian

distribution without correlations).

At finite temperature, and assuming the highest cut-off scale A = 10'® GeV, the instability bound
excludes, taking into account the present experimental uncertainties on ay, almost one half of the allowed

experimental range for (M}, M;). In terms of M; we extract the following bound

M, (Mﬁ )
< 174.459 +0.4285 x [ 2 _ 195.09
% “\Gev

e
as—0.1184 )
0.0007

(2.42)

+0.283 x (

In fig. 2.12 we show the phase diagram of the SM in terms of the top mass and the strong coupling
at the weak scale, keeping M), fixed at M = 125.09 GeV. As before, the ellipses mark the 1-, 2- and
3-0 confidence regions with M; as in fig. 2.11 and as = 0.1184 + 0.0007. For illustrative purposes, we
also show (dashed ellipses) the effect of a 1 GeV shift in the determination of the top pole mass. Such
shift symbolically represents the systematic error involved in the naive combination of ATLAS, CMS and
TeVatron results used in this thesis work, M; = 173.34 £ 0.8 GeV. Moreover, one should always keep in
mind that the experimentally measured top mass is not the pole mass entering in the computation of the
instability bound but the outcome of a complicated reconstruction of top quark decays (often dubbed the
Monte Carlo mass). This fact amounts to a further source of uncertainty. As well known, and emphasized
in this plot, the measurement of the top quark pole mass plays a crucial role in the determination of
the actual position of the SM in the phase diagram [27]. With the inclusion of thermal corrections,

the situation becomes even more severe if compared with the T' = 0 case, since now a small shift of the
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Figure 2.12: Same as in fig. 2.11 but in the plane (M, as). We also show the effect of a 1 GeV shift in
the determination of the top pole mass (dashed ellipses). The Higgs mass is fized at My = 125.09 GeV.

measured values can drastically change the phase of the electroweak vacuum in both directions, towards

the stability as well as the instability region.

2.6.2 Instability bound and dependence from cosmology

Thermal corrections are computed assuming the Higgs field in equilibrium with a thermal bath at tem-
perature T. The occurrence of this condition strongly depends on the thermal history of the Universe.
During inflation [28] all the energy is stored in the inflaton field, which slowly rolls down towards the
minimum of its effective potential. Once reached, inflation ends, and the inflaton begins to oscillate
near the minimum. SM particles are created because of their interactions with the inflaton field: the
kinetic energy of the oscillating inflaton is gradually transferred into the ultra-relativistic SM particles
produced in the final state of its decay. Eventually, SM particles reach a state of thermal equilibrium at
the temperature Try, dubbed reheating temperature [29]. Thenceforth, the temperature scales according
to T oc a™!, as in the ordinary radiation-dominated phase (as customary, a is the Friedmann-Robertson-
Walker scale factor). Strictly speaking, the applicability of our computation is limited to T' < Try. In

order to further investigate this important point, we have analyzed two possible scenarios.

Instantaneous reheating

In this case the decay probability is given by eq. (2.30), with Tius—off = Tru. In fig. 2.13 we show how
the instability bound changes for different values of Try. As clear from the right panel of fig. 2.9, the

largest contribution to the total probability comes from the high-temperature region, and a decrease in
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the cut-off quickly weakens the instability bound. We show the impact of different reheating temperatures
in fig. 2.13. At Tgry =~ 10'2 GeV the instability bound is pushed towards the border of the 3-o band on
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Figure 2.13: Dependence of the instability bound on the reheating temperature Try, assuming instanta-

neous reheating. The orange dot-dashed lines correspond to different values Try = 10 GeV, with—from

top to bottom—=zx =10,12,14,16.

(My,, My). For smaller values of the reheating temperature, e.g. Try = 10'° GeV, the SM reenters in the

metastability region. The bounds in fig. 2.11 are well described by the following parametric formula

M;
eV

<0.283 x (as - 0.1184)
0.0007

o (2.43)

teorx — 4 x log TRH+
1 2 10
GeV GeV ¢4 x log;q gRT{I/ +c5

with ¢; = 0.4612, ¢y = 1.907, c3 = =1.2x 103, ¢4 = -0.323, ¢5 = -8.738. In concrete, taking M), = 125.09
GeV, a, = 0.1163 (close to the 3-0 lower bound), and Try = 10*® GeV we find M; < 173.65 GeV.

Before proceeding, let us pause for a moment to comment about the current experimental limits on
the reheating temperature. Despite its relevance in our understanding of the early Universe, very little
is known about the actual value of the reheating temperature. An obvious lower bound can be obtained
requiring a successful Big Bang Nucleosynthesis, and it turns out to be Try 2 10 MeV [30]. As far as
the upper bound is concerned, it is possible—assuming instantaneous reheating—to relate the reheating
temperature to the energy scale of the inflationary potential [31]; since the latter can be constrained using
the limit on the tensor-to-scalar ratio of the amplitudes produced during inflation, it is possible to extract
a bound on Try. All in all, one finds Ty $ 10'% GeV [31]. High values of reheating temperature—as

large as the ones considered in fig. 2.13—are therefore experimentally allowed. Moreover, the hypothesis
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of instantaneous reheating is a crude, yet not unrealistic, approximation. More likely, reheating is a

dynamical process. In the next section we will elaborate this point and its consequences in more detail.

Including the dynamics of reheating

Reheating is not an instantaneous process. On the contrary, the radiation-dominated phase at T' < Tgry
follows a stage of matter domination during which the energy density of the Universe is dominated by
the oscillations of the inflaton field [32, 33]. Temperature scales according to T oc a=%/% [32, 33]; in other
words, during the oscillating phase the Universe cools down more slowly—if compared with the scaling
T o< a™! of the radiation-dominated phase—because of the heating effect of the inflaton decay. As shown

in [32, 33] the maximum value of the temperature is

Tviax = (2.44)
3\ (5 \/8 gH/®(Thu)
(g) (*3) 1/47(]V-"Plrl’le%H)l/4 ;

T g+ (Tvax)

where g.(T) is the effective number of degrees of freedom, and Hy is the Hubble parameter at the end

of inflation. The situation is schematically summarized in fig. 2.14. In the region Try < T < Taax we

YTwax Toa ¥ 1fTry A

—
Lt

Oscillating phase

Figure 2.14: Schematic representation of the thermal evolution of the Universe after inflation. At the
end of the reheating process (T < Tru) the temperature scales according to T o< a™, as in the ordinary

radiation-dominated phase. During the oscillating phase of the inflaton, before reheating is completed,
T oca™3/8.

can not compute the decay probability using eq. (2.29), since it relies on the assumption of a radiation-

3/8

dominated Universe. Using the scaling T' o< a™>/°| in the region Try < T < Tnmax the differential decay

probability becomes [20]

3 10
P iy Me (TUTO) (TR—H) . (2.45)
dlnT T2 TRH T
All in all, the total integrated probability is given by
Tru dP(T'
P(Teu, Hy) = f d(T, ) dr’ (2.46)
0 eq. (2.29)
fTMAx dP(T’) o
Tru dT" oy (2.45) 7

and it depends on the reheating temperature and the value of the Hubble parameter at the end of
inflation via eq. (2.44). Notice that, for a given Try, the Hubble parameter is characterized by the lower
bound H}ni“ = [47° g (T )/45]Y2 (T3 ;/Mp); this bound follows from the limit in which the inflaton
energy density equals the energy density of a thermal bath with temperature Try. In fig. 2.15 we

show how the instability bound changes for different values of Try including the dynamics of reheating.
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Figure 2.15:  Dependence of the instability bound on the reheating temperature Try, including the dynam-

ics of reheating. The magenta dot-dashed lines correspond to different values Try = 10 GeV, with—from
top to bottom—a =10,12,14. We take H; = 10'* GeV and g.(T) = 106.75.

For definiteness, we take Hy = 10 GeV. As expected, comparing the same values of the reheating
temperature analyzed in fig. 2.13, the instability bound becomes more stringent including the dynamics
of reheating. As a benchmark example, the value Try = 10'° GeV—outside the experimental ellipses in
fig. 2.13—approaches again the edge of the 3-o region if the oscillating phase is included. In order to
better investigate the role of the interplay between the reheating temperature and the Hubble parameter
at the end of inflation, in fig. 2.16 we recast the instability bound in the plane (Hy,Try) for different
values of the top mass. For each value of My, the values of Try above the corresponding red curve are
excluded. We notice that the instability bound, for a fixed value of My, becomes stronger increasing the
value of Hy; this is expected, since the larger Hy the higher T\iax. However, we also notice that the Hy
dependence is very mild (after all Hy enters only as H}/ Y in Tavax). As for the rest, fig. 2.16 retraces
what already foreseen in fig. 2.15. Stringent bounds on the top mass—close to the present experimentally
measured central value—can be reached only for very high (yet reasonable) reheating temperatures. For
reheating temperatures Try ~ 1019-10'! GeV, the bound on the top mass is M, 2 176 GeV, at the border
of the experimental 3-0 confidence interval.

Let us now conclude this section summarizing in a nutshell our results. Thermal corrections are
relevant for the computation of the instability region in the SM phase diagram, and they can put a very
stringent bound on M; close to the present measured central value if also the uncertainties on ay are
included. However, they crucially depend on the temperature of the early Universe. As already noticed
in [20, 21], therefore, the fate of the SM and its cosmological history are inextricably linked.

A crucial question now seems to be: what was the highest temperature ever recorded in the early
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Figure 2.16: Instability bound in the plane (Hy,Tru), for different values of the top mass. We include the
dynamics of reheating, and we keep fized My, = 125.09 GeV and as = 0.1184. The gray region is excluded

by the condition Hy < H}ni“. For each My, the region above the corresponding red curve is excluded.

Universe after inflation ended? On a general ground, one could be inclined to think that it must have
been very high. Let us provide one example in the context of thermal leptogenesis and neutrino mass
generation via type-I seesaw [20]. On the one hand, in order for baryogengesis to proceed via leptogenesis
the mass scale M of the sterile neutrinos must be of the order of 10° GeV or larger [34, 35]; on the other
one, in order to produce thermally the heavy neutrino states a reheating temperature of the Universe
after inflation of Try > M is required. This simple argument seems to point towards a value of the
order of Try 2 101 GeV, a temperature high enough to generate large thermal corrections, as shown in
fig. 2.15.

Moreover in [21] a large reheating temperature after inflation (from Try =~ 107 GeV up to Try =~ 1017
GeV, the actual value depending on the instability scale of the Higgs potential and the value of the
Hubble constant during inflation) seems to be suggested by inflation itself, since it may tame dangerous

quantum fluctuations of the Higgs field.

2.7 Comments and conclusions

We revisited and updated the computation of the thermal corrections to the stability of the electroweak
vacuum in the SM. We followed the approach of [16], based on i) the computation of the effective potential
at finite temperature, and i) the exact numerical solution of the bounce equation. We performed a full

computation including the most updated expressions for effective potential, 5 functions and matching
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conditions, covering an empty space in the SM research. This effort has lead to the corresponding
SM phase diagram fig. 2.11 (referred to the parameters M, and M;) and fig. 2.12 (referred to the
parameters M; and «y), a fundamental tool to investigate the SM and its criticality prospect, Thermal
corrections turned out to be very important, and they strengthen the constraining power of the instability
bound on the SM parameters if compared with the case at T' = 0. Our results show that the instability
bound at finite temperature excludes values of the top mass M; 2 173.6 GeV, if M; ~ 125 GeV, and
including the uncertainties on the strong coupling constant at the weak scale. Parametrically, our bound
is given by eq. (2.42). Thermal corrections crucially depend on the reheating temperature, hence on the
cosmological history of the early Universe after inflation ended. From this perspective, we studied the
case corresponding to a limit scenario in which Try =~ 10'® GeV. In order to explore the temperature
dependence, we investigated two possible situations. 1) We considered the reheating after inflation as
an instantaneous process. According to this simplified assumption, the Universe experienced a sharp
transition from the inflationary epoch to the radiation-dominated phase. This led to the results shown
in fig. 2.13. The instability bound at finite temperature, now cut-offed at Tiui—og = Tru, weakens.
However, for Try ~ 10! GeV the instability bound still lies at the edge of the 3-o confidence region
for the experimentally measured values of M} and M;. For larger values of Ty, the SM enters in the
instability region. Parametrically, our bound as a function of Try is given by eq. (2.43). 2) We included
in our analysis the dynamics of reheating. The instability bound becomes stronger if compared with the
case of instantaneous reheating since it includes the oscillating phase of the inflaton field in the interval
Tru < T < Tumax, where Tyax is given by eq. (2.44) and depends on the value of the Hubble parameter
at the end of inflation. Our results are shown in fig. 2.15. We find that if Ty 2 10'° GeV the SM starts
to fall in the instability region of the phase diagram.

To conclude, the metastability region of the SM phase diagram considerably shrinks if thermal cor-
rections to the decay of the electroweak vacuum are included. On the quantitative level, the impact of
these corrections depends on the cosmological history of the early Universe, as shown in [20, 21]. From
a more qualitative perspective, unveiling the true nature of near-criticality becomes an even more urgent

question being the big desert hypothesis still not contradict by the more recent LHC quest.



Chapter 3

Vacuum stability in low-scale seesaw

models

3.1 Introduction

The investigation of chapter 2 was inherently conservative, involving the SM and nothing else. No new
degrees of freedom have entered at any energy up to Planck scale, an assumption which has clarified
the possibility to successfully extrapolate the SM up to such high-energy. We have seen that the SM
is an unstable theory but that can hold phenomenologically, given the small probability of a tunnelling
process within cosmic time scale. Also we appreciated how fragile such feature is and how small change
in the parameters can drive the SM beyond such safe scenario. This argument poses a natural question
about how new physics beyond the SM can modify the (meta)stability of the EW vacuum. To address
this question we have to specify which kind of new physics we are referring to and, undeniably, the
most compelling one is provided by the observation of non-zero neutrino masses and related oscillations.
This is a clear evidence that our conservative approach of chapter 2) has to be overcome and the SM
must be supplied with a mechanism responsible for the generation of neutrino masses [42]. This by
no means automatically implies that the SM fate will be affected. For instance, a very economical
choice to provide neutrino masses would be the so-called type-I seesaw mechanism [43, 44, 45, 46], which
asks for an enlarged SM with three heavy right-handed neutrinos with a Majorana mass Mp breaking
lepton number, coupled to the SM Higgs doublet H and leptonic doublets via a Yukawa coupling Y.
Although this framework seems to have all the ingredients to bring an exciting change to the quartic
coupling evolution of the SM Higgs (fermion degrees lead, in general, to instability), unless we embed
this mechanism in a more complex scenario, the large scales involved will totally suppress the influence
of the new degrees of freedom in the RG evolution. The main problem is that to have a sizable effect,
the Yukawa coupling Y,, must be of order one. Also to accommodate a m, ~ 0.1 eV for the light neutrino
mass scale we would find a Majorana mass scale Mg ~ O(10'®) GeV. This means that the right-handed
neutrinos actively participate to the running of A only for values of the RG scale larger than Mpg. So

there is not enough time, in terms of RG evolution, to relevantly alter the SM picture. If instead we

39
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would like to lower the mass scale Mg, then in order to reproduce the correct order of magnitude for the
mass scale of light neutrinos, we would be forced to consider Y, ~ @(107%). A value which is obviously
too small to modify the running of A.

The necessity to overcome such phenomenological boredom led to the introduction of extended seesaw
models with both TeV-scale right-handed neutrinos and sizable Yukawa couplings [47, 48, 49, 50, 51, 52].
The key feature of these models is that lepton number is now softly broken via the introduction of extra
singlet fermions in addition to the usual right-handed neutrinos. The mass Mg can be brought down to
the EW scale without neither causing troubles with low-energy neutrino phenomenology nor lowering the
Yukawa coupling Y,,. As a byproduct of this construction, a very rich low-energy phenomenology emerges.
Potentially interesting signals include, for instance, lepton flavor violating radiative decays, deviations
from EW precision observables, and production at colliders of heavy Majorana fermions. Equally notable,
these class of low-scale seesaw models have large sections of the parameter space capable to alter the
metastability of the EW vacuum with interesting consequences for the extrapolation of the model at

higher scale.

3.2 The inverse seesaw model

In the inverse seesaw (ISS) model the SM field content is extended to incorporate npg right-handed

neutrinos N}é and ng singlet fermionic fields S®. The corresponding Lagrangian is given by
. _ . _ 1—
Liss = iNgy" (8, Ng) + i57"(9,5) - [NRYVHTL + NS + 5558+ h.c.] , (3.1)

where L = (L, L*,L7)7T represents the left-handed lepton doublets with the usual contents L!I=¢#T =
(viz,11)" while H is the Higgs field, with H = ioo H*. Y,, is the ng x 3 Yukawa matrix mediating the
interactions between the SM leptons and the right-handed neutrinos while My and pg are, respectively,
ngrxng and ng xng mass matrices. Both right-handed neutrinos and singlet fermions have lepton number
LL = 1; consequently, the mass term STUSS violates lepton number for two units.
Introducing the left-handed basis Ny, = (v, N Ig ,S)T we have, after EW symmetry breaking, the
following mass matrix
0 mbL o
M=l mp 0 Mg |, (3.2)
0 Mg ps

with mp = vY, /V/2.
The mass matrix in eq. (3.2) can be diagonalized by means of the following unitary transformation

UrMU=Mp = UMMU=ML, N,=UN., (3.3)

where Ma is the diagonal matrix referred to the mass eigenstates Nj. The first three eigenstates
correspond to the standard light active neutrinos while the remaining ng +ng states are additional heavy

sterile neutrinos.
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Following the standard seesaw calculation and assuming the hierarchy Mg > mp > ug, it is possible

to extract the effective light neutrino mass matrix
-1 _
my, & mh (Mg) usMptmp . (3.4)

In the following we consider the case np = ng = 3. Moreover, without loss of generality, we take Mg
to be real and diagonal. We also work in a basis in which the mass matrix of charged SM leptons is
diagonal. Within this framework, in the pug — 0 limit the three light neutrinos are massless while the
six heavy neutrinos can be recast into three pairs of Majorana particles with three (double degenerate)
masses Mpg;, i =1,2,3. On a general ground, from eq. (3.4) it follows that the order of magnitude of the
light neutrino mass is m, ~ O(us x m%/M%). Assuming pg ~ O(1) keV, the model can accommodate
sub-eV light neutrino masses with Y,, ~ O(1) couplings and Mg ~ O(1 - 10) TeV seesaw scale. These
order of magnitude estimates lie at the hearth of the ISS scenario. Small values of ug are expected by
virtue of the ’t Hooft naturalness criterion [54], since the limit pg — 0 increases the symmetry of the
theory. Interestingly, the keV scale nicely fits the typical mass scale characterizing warm dark matter;
in the ISS models with ng # ng the spectrum — in addition to light and heavy neutrinos — also contains
intermediate states with keV mass that are valuable warm dark matter candidates [55]. The estimates
Y, ~ O(1) and Mg ~ O(1 - 10) TeV represent the most relevant phenomenological properties of the
ISS model since they allow for sizable (and, in principle, measurable) mixing effects between light active
and heavy sterile neutrinos. This issue is particularly striking if compared with the typical high-scale
characterizing the minimal type-I seesaw [43, 44, 45, 46] — that is Mg ~ O(10'®) GeV for order one
Yukawa couplings — in which mixing effects, typically of order O(m%/M3), are negligible. As we will
see in section 3.3, the occurrence of both the peculiar conditions Y, ~ O(1) and Mg ~ O(1 - 10) TeV
is of fundamental importance to determine the stability of the EW vacuum in the context of the ISS model.
We will employ, as done in many phenomenological applications, the generalized Casas-Ibarra parametriza-
tion [56]

2 N
Y, = £v*\/MR\/mUIZMNS : (3.5)
v

where \/m, is the diagonal matrix defined by the square roots of the eigenvalues corresponding to the
three light neutrinos, m,; with ¢ = 1,2,3 hereafter, and VM is the diagonal matrix containing the

MY whose diagonalization is defined by means of the

square roots of the eigenvalues of M = Mpg
transformation VT MV = M. R is an arbitrary 3 x 3 complex orthogonal matrix parametrized by three
complex angles which encodes the remaining degrees of freedom. Finally, Upyng corresponds to the
unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) leptonic mixing matrix. Assuming the standard

picture with three neutrino flavors the matrix Upyng can be parametrized as follows

C12€13 512€13 s13e7t0cP
_ 1) 1)
UpmMns = | —s12C23 — €12513523€"°°F  C12C23 — 5125135236 °CF €13523 ) (3.6)
i is
512823 — C12513C23€"°°F  —S12823 — 512513C23€"°CF €13C23

where ¢;; = cosf;; and s;; = sinf;;. In addition to the Dirac CP violation phase dcp there are also two
Majorana CP violation phases (not shown in eq. (3.6)). The latter are physical only if light neutrinos are

Majorana particles, otherwise they can be always rotated away from the Lagrangian in the mass basis.
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In the following we omit the three phases of the PMNS matrix, since the Majorana phases are completely

unknown and there are only preliminary hints about a non-zero Dirac phase.

3.2.1 Bounds from low-energy neutrino data

To be as close as possible to neutrino phenomenology we take into account a global analysis of neu-
trino oscillation data, based on the latest results of the Daya Bay [57], RENO [58, 59], T2K [60, 61]
and MINOS [62, 63] experiments, which allowed to determine the oscillation parameters Am3;, |Am3,]|
(|JAm2,|, depending on the ordering), 612, 623, 613 with unprecedented high precision. In this thesis, we
use the latest results of the Vfit group [64]. As customary, we define Amg; = m?, —mp;, and we adopt
the convention that results for the mass squared differences are reported with respect to the one with the

largest absolute value.

o Neutrino mass squared differences

3-0 C.L. ranges on the mass squared differences

Am3,/107%eV? = (2.317 - 2.607)  NO
Am2, /107%eV? = (7.02 > 8.09) |, i /107 , (2.317 > 2.607) (3.7)
Am3,/1073eV? = (-2.590 - -2.307) 10
where the first (second) possibility refers to the assumption of normal (inverted) ordering.
o Leptonic mixing matrix
3-0 C.L. ranges on the magnitude of the elements of the leptonic mixing matrix in eq. (3.6)
sin? 015 = (0.270 - 0.344) | (3.8)
0.382 — 0.643 0.0186 — 0.0250 NO
sin? B3 = ( ) , sin?6y3 = ( ) (3.9)
(0.389 - 0.644) (0.0188 - 0.0251) IO

o Unitarity

In the basis where the charged lepton mass matrix is diagonal, the leptonic mixing matrix in the
ISS model is given by the rectangular 3 x 9 sub-matrix corresponding to the first three rows of
the matrix U defined in eq. (3.3), with the 3 x 3 block corresponding to the (non-unitary) Upnns.
Bounds on the non-unitarity of the matrix Upyng were derived in [65, 66, 67] using an effective

field theory approach. These bounds can be recast as follows!

9 ~ ~
cap = | UaiUp| = |5a/3 - (UPMNSUE’MNS)Q/B' ) (3.10)
=4
(0.9979 — 0.9998) <107° < 0.0021
[UpninsUlnns| = <107 (0.9996 - 1.0) < 0.0008
< 0.0021 <0.0008  (0.9947 > 1.0)

IStrictly speaking, the bounds in eq. (3.10) are valid only if the masses of the sterile neutrinos lie above the EW scale

(where they can be safely integrated out). This is always the case in our numerical analysis (see section 3.2.2).
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o Additional constraints

The absolute values of neutrino masses m,; are unknown. Cosmology sets the most stringent
upper bounds using data from the Cosmic Microwave Background (CMB) radiation, supernovae
and galaxy clustering. Assuming the validity of the ACDM model [68], the Planck collaboration
placed the upper bound ¥; m,; < 0.66 eV at 95% C.L. [68]; this bound becomes even more stringent
adding data on the Baryon Acoustic Oscillation, ¥, m,; < 0.23 eV at 95% C.L. [68]. In our analysis

we scan over the interval 1074 eV < m,,; < 107! eV for the mass of the lightest neutrino.

3.2.2 Relevant parameter space and setup for the numerical analysis
Target observables

The presence of sterile neutrino states affects the SM charge current interaction via the mixing matrix in

eq. (3.3). Going from gauge to mass eigenstates we have

JR— 9 — .
Loc = _% S A Wi + hee. = —% > NI W UpNyi + hee. | (3.11)
l=e,p, 7 l=e,p,7 =1

where gs is the weak coupling constant. By means of these interactions, and depending on their masses
and mixings with light active neutrinos, the presence of new sterile states can relevantly affect numerous
observables, like for instance leptonic and semi-leptonic decays (with a special focus on flavor violating
processes) [69, 70, 71, 72, 73, 74, 75, 76, 77, 78], invisible Z boson decay width [79], Higgs boson decays [80,
81, 82, 83], direct production in meson decay [84].

In order to investigate the stability of the EW vacuum in a region of the parameter space of particular
interest for present and future experimental prospects, we focus on the lepton flavor violating process
u — ey and the neutrino-less double beta decay (028 hereafter).

As far as the radiative y — ey decay is concerned, the rate induced by the presence of sterile neutrinos

is given by [85, 86]
2

, (3.12)

2 * le/Z
S uivas 552
where « is the electromagnetic fine structure constant and My, the W mass. The loop function is given
by G(x) = (10 - 43z + 7822 - 492° + 42* + 1823 In ) /[3(~1 + x)*]. The present experimental upper bound,
reported by the MEG collaboration, is Br(u — ey) < 5.7 x 10712 at 90% C.L. [87].

The amplitude of the 0v23 process is proportional to the so-called effective neutrino mass, m.;.

Current experiments (among others, GERDA [88], EXO-200 [89, 90], and KamLAND-ZEN [91]), put an

< 140-700 MeV. In the presence of sterile state the effective neutrino mass

3a
Br(p —ey) = 3om

upper limit in the range [m’;;

is given by [92]

9 3
v 2 2 My 2 2(rr2 M4 2 Mys
Mg Z Uei b= 2 - Z Uei My; +p (Ue4 ) 5 T UeB B 2
i=1 pT—my, pT - -

vi =1 myy p

2 mye 2 my7 2 myg 2 my9 )
b

12

+

Ueﬁ 2 +Ue7 2 2 +U€8 2 2 +Ue9

2 2 (3.13)
p _ml/6 p _ml/7 p _ml/8 p _mug
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where p? ~ —(125MeV)? is the momentum of the virtual neutrino. Notice that, since we are considering

the regime m?

vicd,. 9 > p?, heavy neutrinos decouple in eq. (3.13) and the dominant contribution to m/

comes from the light active neutrinos.

Strategy and first numerical results

We now perform a scan over the parameter space of the model. Our procedure goes as follows. First,
we randomly generate i) the light neutrino masses m,;-1 2,3 and the leptonic mixing angles 612, 623, 613
according to the corresponding 1-¢ intervals allowed by the analysis of present experimental data, i) the
entries of the matrices My and pg in the intervals 102 GeV < Mp; < 102 TeV, 1071 keV < (ps)ij < 102 keV
and i) the complex angles defining the arbitrary matrix R in the interval [0, 27]. Second, we reconstruct
the full Yukawa matrix Y, using the generalized Casas-Ibarra parametrization in eq. (3.5). Finally,
plugging back Mg, ps and Y, into eq. (3.2), we diagonalize the mass matrix M in order to find the full
9x9 mixing matrix U. The phases of the mixing matrix are fixed using eq. (3.3), by means of the condition
my; 2 0 for all i. As a consistency test, for each point of the scan we check that the mass matrix M,
randomly generated as discussed above, correctly reproduces after diagonalization light neutrino masses
and mixing angles in agreement with the bounds presented. Equipped by these results we can easily
compute the branching ratio Br(u — ey) in eq. (3.12) and the effective neutrino mass in eq. (3.13). We
show our results in fig. 3.1 for the normal ordering and in fig. 3.2 for the inverted ordering. In the upper
(lower) panels of both figures we show the branching ratio Br(u — ev) (the effective neutrino mass m_g)
as a function of the lightest heavy neutrino mass m,4 (plot on the left) and the trace of the Yukawa

couplings Tr(Y,[Y;,) (plot on the right). Few comments are in order.

1. Normal and inverted ordering produce very similar distributions considering the radiative decay
Br(u — ey). This is caused by the well-known fact that the contribution of light active neutrinos
is strongly suppressed by the extremely small value of light neutrino masses. In the ISS model a
non-zero contribution to Br(u — e7) is entirely generated by the additional heavy neutrinos, and
controlled by the mixings Uy, Ue; ~ mp/Mp (see eq. (3.23) in section 3.3.2). We notice that in our
scan we can obtain a signal close to the present experimental bound even considering m,4 as large
as 10 TeV and Tr(Y,[Y,) as small as 1073, For completeness we show in the left panel of fig. 3.3
the result of our numerical scan in the plane [Tr(Y,[Y,),m,4]. We mark in dark cyan points with
Br(p — ey) > 10712, Points with large Yukawa couplings (e.g. Tr(Y,Y,) 2 0.5) and sizable y — ey

rate are generated in the whole interval of analyzed masses for the right-handed neutrinos.

2. Normal and inverted ordering produce completely different distributions considering the effective
neutrino mass m_g. In this case the contributions of additional heavy neutrinos decouple since
their masses are much larger than the typical momentum scale p? ~ —(125 MeV)2. Therefore, in our
numerical scan the ISS model resembles the typical scenario with only three light active neutrinos.
The situation is well represented by the right panel of fig. 3.3 where we show the effective neutrino
mass for the normal and inverted ordering as a function of minimal neutrino mass. The normal
ordering is suppressed since the largest neutrino mass is multiplied by the small value of si3.

However, in both cases the effective neutrino mass is close to the future sensitivity of the EXO-200
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Figure 3.1: Upper panel. Branching ratio for the decay process p — ey as a function of the mass of the
lightest sterile neutrino (left panel) and the trace of the Yukawa couplings Tr(Y,JY,) (right panel). The
blue horizontal line represents the upper bound set by the MEG collaboration [87]. Lower panel. Effective
neutrino mass as a function of the mass of the lightest sterile neutrino (left panel) and the trace of the
Yukawa couplings Tr(Y,'Y,) (right panel). The blue solid (dashed) line represents the upper bound (future
sensitivity) of the EXO-200 experiment [90]. All points comply with the bounds discussed in section 3.2.1.

experiment.
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Figure 3.2: Same as in fig. 3.1, but considering the inverted ordering.

Additional remarks

Let us close this section summarizing further predictions and constraints on the inverse seesaw scenario.

Collider searches at the LHC. At the LHC right-handed neutrinos with a mass not far above or
below the Higgs mass and with a sizable Yukawa coupling Y,, > O(1072) affect the Higgs decay h — llvp
(see [80] for a recent analysis). Present bounds hold in the range 60 < Mz < 200 GeV with 1072 <Y, < 2.2

2These bound were obtained in [80] considering a simplified setup with only one light flavor of heavy neutrinos. Conse-

quently, here Y, indicates the corresponding Yukawa coupling to the Higgs doublet.
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Figure 3.3: Left panel. Distribution of our numerical scan in the plane [Tr(Y,[Y,),m,4] considering
the normal ordering (the inverted ordering gives an analogue result). All points comply with the bounds
discussed in section 3.2.1. Points with Br(u — ey) > 107! are marked in dark cyan. On the qualitative
level, the plot shows that Yukawas Tr(Yl]LY,,) 2 0.5 arise in the whole range of analyzed masses for the
right-handed neutrinos. Right panel. Effective neutrino mass as a function of the lightest neutrino mass
considering both normal and inverted ordering. Our scan correctly reproduces, as expected if the heavy
neutrinos decouple if compared with the typical virtual momentum p? ~ —(125MeV)?, the well-known

result characterizing the presence of only three light active neutrinos.

Furthermore, the CMS collaboration placed upper limits on the active-sterile neutrino mixings in the same
mass range for Mp considering direct production of heavy neutrinos [93, 94].> These values of masses
and couplings may have an impact on the stability of the EW vacuum, thus providing an additional

motivation for the analysis that we shall perform in the next section.

Fit of LEP data via oblique parameters. The fit of LEP data still provides today an important
constraint on beyond the SM physics. The presence of additional sterile neutrinos modifies the oblique
radiative corrections [96, 97, 98, 99, 100, 101, 102, 103]. In [79] it was shown that right-handed neutrino
masses of the order Mg; ~ O(10) TeV, together with violation of unitarity of the order eyp ~ 1073 +107,
can improve the fit of LEP data with respect to the SM.

Leptogenesis. In the inverse seesaw scenario the decay of (nearly degenerate) heavy Majorana neu-
trinos can realize the so-called resonant leptogenesis [104]. Remarkably, resonant leptogenesis can be
realized with heavy Majorana neutrinos as light as 1 TeV [105] (in contrast with the usual thermal

leptogenesis, realized in the type-I seesaw, in which Mz > 10° GeV [106]).

3See [95] for prospects at future lepton colliders.
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Naturalness. On a general ground, whenever a threshold with particles of mass M coupled to the
Higgs with strength ¢ is present, quantum corrections generate a contribution dm?; ~ £2M? /1672 to the
renormalized Higgs boson mass. If dm?% > v?, an unnatural cancellation between dm?% and the bare
Higgs mass is required in order to reproduce the observed value of the Higgs boson mass. The condition

2 can be used as a criterion to construct natural model of new physics [107, 108]. In the context

dm2 swv
of inverse seesaw models, the scale M is the mass of right-handed heavy neutrinos Mg, and the coupling
¢ is the Yukawa coupling Y,,. TeV-scale values of Mg and O(1) Yukawa couplings satisfy the naturalness
condition.

To sum up, the presence of heavy neutrinos with a mass not far above the EW scale and a sizable
Yukawa coupling with the Higgs boson has extremely rich phenomenological consequences. Motivated
by such results, we are now in the position to tackle the second part of the analysis in which we aim to

investigate the impact of heavy neutrinos on the stability of the EW vacuum.

3.3 Stability of the electroweak vacuum and low-scale seesaw

The key ingredients for the study of the stability of the EW potential have been presented in chapter 2
and will now be adapted to our investigation. The instability scale A is identified with the Higgs field
value for which the potential becomes smaller than its value at the EW minimum. If such scale does
not exist we will declare the vacuum as absolute stable, otherwise the Higgs vacuum is not the global
minimum, and the tunnelling may occur. The decay probability is computed from the bounce solution
(see chapter 2 for details) and the comparison with the universe age defines the condition for a metastable
vacuum. This can be translated into a lower bound on the Higgs effective quartic coupling A.g, reaching

negative values, that at leading order reads as

872 1

Ae —
[Aefr (12)] > 3 Tog(r )

(3.14)

(where, as always, 7 is the age of the Universe 7 = 4.35 x 1017 sec and p is the renormalization scale of
the RG running). The metastable position in the phase space diagram [26] and fig. 2.11 can then be
drastically affected by the inclusion of extra fermionic degrees of freedom, as right-handed neutrinos in
seesaw extensions, driving the model to an unstable phase. Therefore, by requiring the metastability of
the EW vacuum, together with the perturbativity of the gauge, scalar and Yukawa couplings up to the
Planck mass, we are able to constrain the parameter space. In the following sections we will highlight
the theoretical tools needed in our stability analysis, with some inevitable redundancies with chapter 2,
stressing the peculiar adjustments needed to be done in order to adapt that SM oriented analysis to the

requirements of this model.

3.3.1 The Higgs effective quartic coupling

From a preliminary analysis one can show that also in this case we can use the high-energy approximation

V;sff(d)at) N W¢4 ) (315)
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due to the fact that the vacuum instability appears at a scale much bigger than the EW minimum.
The effective quartic coupling A is extracted from the RG-improved effective potential at two-loop
order in the SM [109] and at one-loop for the right-handed neutrino corrections, computed in the MS
renormalization scheme and in the Landau gauge. The effective quartic coupling at one-loop order in the
SM [110] is

Aot (¢, 1) w T D) {A(t) + > Nprp(t) [ln L Cp]} : (3.16)

1672 p=W,Z,h,x,t u(t)?

where the p-coefficients are summarized in table 3.1 and I'(¢) is defined as

I(t) = [O Lty (3.17)

with + the anomalous dimension of the Higgs field.

Ll e[ z [ h [ ]
N, || 12 ] 6 3 1] 2|1
c, || 3/2 ] 5/6 5/6 3/2 | 3/2 ] 3/2
o | w212 | 6314 | (g5+g3)/4 | 3X | A | A

Table 3.1: SM p-coefficients entering in eq. (3.16).

As expected (see chapter 1) the contribution of the heavy neutrinos to the RG-improved effective

potential has the form

1 M2.(p,t) 3
AVY(,t) = - 0,;(t) 2M2 (¢, ) [In =222 _ 2 3.18
eﬁ(¢7 ) 3972 i=;2’3 ( ) Myz(¢ ) [ n ,U/(t)2 92 ( )
where M,,;(¢,t) are the three (double degenerate) non-zero eigenvalues of the 9 x 9 mass matrix
0 Y, ()Te(t)/V2 0
M) = | YVu®)ot) V3 0 Vm | (3.19)

0 Mp; 0

with Mp; = diag(Mpg1, Mo, Mg3) and ¢(t) = e’ ® ¢ meanwhile 0,i(t) =0(t—In Mp;/uo) take in account
the threshold scale [111]. Compared with eq. (3.2), we are considering the pg — 0 limit in which the three
light neutrinos are massless.

The factor of two in eq. (3.18) comes from the fact that each non-zero eigenvalue is double degenerate.

As we know the RG running parameter ¢ must be chosen in such a way that the convergence of
perturbation theory — otherwise spoilt by the presence of large logs — is improved. With no surprise we
follow the prescription u(t) = ¢.

The contribution of heavy neutrinos to the effective potential produces two distinctive effects on the
RG-evolution of the effective quartic coupling in eq. (3.16) which ask for the introduction of thresholds

in the spirit of section 1.4.1.
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o Above each threshold Mpg; and at high values of renormalization scale u(t) > Mpg; it contributes

explicitly to Aeg introducing the correction

v (o,t) = - (3.20)

n,%i(t)eQF(t)ng 3
1672 ’

4kt (1) | P90
where k,;(t) is the coefficient of the ¢-dependent part of M,;(,1).

o Below each threshold Mpg; the corresponding heavy neutrinos are integrated out. The matching

produces the threshold correction to the effective potential

; 1 M2, (p,t) 3
A tllllz(d)?t) = _327'('2 2M32(¢7t) [lny\g) - 2:| ) (321)

which translates into a threshold correction AN to the Higgs quartic coupling at the Mpz; mass

scale which can be extracted from the ¢* term of eq. 3.21 and it is explicitly given by

vi 1 dAV(¢,1)
AN () = = —0—

: ; (3.22)

$=0
3.3.2 The Matching Conditions in the SM plus low-scale seesaw

The RG equations employed in this thesis are computed in the MS renormalization scheme and must be
equipped with suitable initial conditions for the running parameters evaluated in the same scheme. The
main features of the procedure have been illustrated in section 2.3 and here we pause to extend those
results in light of the introduction of new degrees of freedom. The details of the strategy to match at
the highest precision the SM sector can be found in [26] where the SM two-loop (NNLO) corrections
to the matching conditions have been discussed. In particular, in [26] a complete two-loop analysis has
been performed in the EW sector and the N3LO (three-loop) pure QCD effect has been included in
the matching of the top Yukawa coupling and the strong coupling constant. The running of the latter
from Mz to M;, which is the starting scale of our stability analysis, has been performed including the
QCD four-loop B function. In low-scale seesaw extensions, the right-handed neutrino corrections to
the matching conditions can be important and must be taken into account. In our analysis we have
considered all the SM results given in [26], supplemented by new physics contributions computed at one-
loop order from the Lagrangian in eq. (3.1). In particular, the additional neutrinos introduce corrections
to the masses of the gauge bosons My, My, the Higgs M}, the quark top M; and to the muon decay,
from which the Fermi constant G, is extracted. These corrections depend on the masses of the heavy
neutrinos, their interactions with the SM fields mediated by the Yukawa couplings Y,, (obtained from the
parametrization in eq. (3.5)), and the full 9 x 9 mixing matrix U. Due to the mass hierarchy Mg > mp,
and to the smallness of the light neutrino masses — which can be safely neglected in the computation of
the matching conditions at the EW scale — the mixing matrix U can be expanded in the ratio mp/Mg,

with pug — 0, as

1 %mLMél L?mTDM’1 .
U= 0 % - +<9(Mg) : (3.23)
_ i R
_MleD % %
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Notice that the PMNS block has been set to the unit matrix, consistently with the approximation m,,; ~ 0.

Moreover, we have verified the Appelquist-Carazzone theorem in the new physics sector. In particular,
we have checked the decoupling of right-handed neutrino contributions from the matching conditions in
the limit of large Majorana masses. This has to be expected since these masses are not generated by
spontaneous symmetry breaking of the Higgs field.

Concerning the matching conditions of the Yukawa matrix Y,,, computing perturbative corrections to
the matching conditions at the EW scale will not considerably improve the precision on the determination
of Y, in the MS scheme (since in any case Y, turns out to be related to unknown parameters by means
of eq. (3.5)). Therefore, for the sake of simplicity, we decided to match the MS Yukawa matrix Y, to its
OS version at the tree-level, namely Y, (M) ~Y,,.

3.3.3 The renormalization group equations

All the dimensionless couplings (A, v, gi,Y,) are evolved from the top-mass scale, M, up to the Planck
scale using the three-loop (NNLO) RG equations for the SM parameters and the two-loop (NLO) S
functions for the Yukawa matrix Y,. Here g; stands for the three gauge coupling constants and we have
retained only the top-quark contribution in the SM Yukawa sector. The system of coupled RG equations
is then given by

PO ) (329
O RO (3.25)
WD = O ¥) (3.20)
DD = g ) (3.27)

where the 3 functions are computed in perturbation theory in the MS renormalization scheme. Due

to their lengthy expressions, we present only the one-loop corrections to the r.h.s. of egs. (3.24-3.27),

namely

Br = K 24/\2+/\(12yt +4Te (YY) - fgl 995)—6yf—2Tr(YjYy)2

27 9
t it gt 209192] : (3.28)

17 9 3

By, = m- 20 2 4 89§+§yt2+Tr(YJYV)]yt, (3.29)
41 19

Bo = K9ty Bu=-rggs, By =-rTgE, (3.30)

By, = K (—Q%gf—%gz+3y§+Tr(YJYV))YV+gYVYJYV], (3.31)

where x = 1/(167?) and the Abelian gauge coupling is given in the GUT normalization g; = \/5/3¢g. Notice
that the RG equations given above are defined for a renormalization scale p bigger than any particle mass
of the model. For lower scales, heavy degrees of freedom are integrated out and the corresponding coupling

must be removed by hand from the 3 functions. Indeed, in the MS renormalization scheme the decoupling
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of heavy degrees of freedom is not automatic and has to be explicitly implemented at the different particle
thresholds.

As far as the vacuum stability is concerned, the right-handed neutrinos behave like the top-quark and
drive A to negative values faster than the SM case. This is clear from eq. (3.28). On the other hand,
their impact on the top Yukawa coupling — see eq. (3.29) — is to increase y; all along the RG evolution.
Actually, this is another source of vacuum destabilization with respect to the SM picture, because a
bigger value of y; has a bigger decreasing effect on the Higgs quartic coupling. Nevertheless, the overall
behavior of the top-quark Yukawa coupling is dictated by the large and negative QCD corrections which
lead to a decreasing y;. These features can be easily deduced from fig. 3.4, left panel, where the running
of the SM couplings is depicted. Here solid lines represent the evolution in the seesaw extended scenario,
while dashed curves correspond to the pure SM.

Contrary to the top Yukawa case, the QCD contributions are obviously absent — at least in the leading
one-loop approximation — from the evolution of Y,,, and the Tr(Y;Y,) term, which affects 3y e By, s
always increasing. This feature, shown in the right panel of fig. 3.4, has a negative impact both on the
vacuum stability and on the perturbativity of Y,, which can be violated, if [, ;;| > V47, during the RG
evolution for sufficiently big values of the Yukawa coupling at the EW scale. In the same figure the
decoupling of the heavy right-handed neutrinos below their mass thresholds is also manifest. Indeed, for
<< Mp;, the N}é neutrino is integrated out and does not contribute to the RG running: the corresponding
row in the Yukawa matrix Y, is frozen, and enters in the 8 functions only above the threshold scale Mp;

as shown in eq. (3.32) where we mark with a generic x non-zero entries for the Yukawa matrix Y.

SM EFT, EFT, Full theory
0 0 O X X X X X X X X X
Y, = 0 0 O — 0 0 O — X — X X X
0 0 0 0 0 O 0 0 X X X
Mg Mpo Mpg3
threshold threshold threshold
(3.32)

Finally, we show in fig. 3.5 the evolution of the effective quartic coupling Aeg in two different scenarios.
In the left panel the inverse seesaw is realized with Tr(Y,,T Y,) ~ 0.36, while in the right panel the Yukawa
matrix is such that Tr(Y,[Y,) ~ 0.6. In the latter case the effects of Y, which affects the RG running
above the threshold scales, are quite large and Aeg is driven outside the metastability region below the

Planck scale.

3.4 Comments and conclusions

To summarize the results let briefly remind our main strategy. The Yukawa matrices generated following
the prescription outlined in section 3.2.2 enter as initial conditions, together with all the other SM external
parameters, in the solution of the RGEs in egs. (3.24-3.27). From the effective potential, improved by the

running couplings previously computed, we extract the Higgs effective quartic coupling Mg in eq. (3.16).
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Figure 3.4: Left panel. RG evolution of the SM couplings. Solid lines take into account the effects of
right-handed neutrinos in the inverse seesaw model with Tr(Y,/Y,) ~ 0.36 at the EW scale. Dashed lines
represent the running of couplings in the SM. Right panel. Evolution of Tr(Y,fY,,). The heavy right-handed

neutrino thresholds are explicitly shown.

Finally, we use eq. (3.14) to check whether the analyzed points violate the metastability bound on the
EW vacuum.

We show our results in fig. 3.6 for the normal ordering and in fig. 3.7 for the inverted ordering. In order
to make contact with phenomenology, in both cases we present the impact of the metastability bound
with respect to the observables targeted in section 3.2.2, namely the branching ratio Br(u — evy) (left
panel) and the effective neutrino mass (right panel). The red points are excluded by the metastability
bound: the EW vacuum would decay too fast in the true vacuum of the EW potential.

Our numerical analysis clearly indicates that points with Yukawa couplings such that ’IY(YJ Y,)204
are excluded. This bound does not depend on the assumed hierarchy, since light neutrino masses are
irrelevant. Most importantly, the excluded points lie in a region of the parameter space that is close to
the present bounds and future experimental sensitivities for both the analyzed observables. Moreover, as
clear from the left panel of fig. 3.3, the metastability bound applies in the whole range of analyzed masses
for the right-handed neutrinos. This is an interesting piece of information since, for instance, searches
for heavy neutrinos with m,4 ~ O(100) GeV and sizable Yukawa couplings are currently ongoing at the
LHC (see section 3.2.2).

Generalization of this computation to the case of the double and linear seesaw mechanism are presented

in the appendix A.
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Figure 3.5: RG evolution of the effective Higgs quartic coupling in the inverse seesaw model in two
different setup: Tr(Y,]Y,) = 0.36 (left panel) and Tr(Y,]Y,) ~ 0.6 (right panel). In the latter case the

Yukawa couplings have a sizable impact on Aeg and the metastability bound is violated below the Planck

scale.
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Inverse seesaw: Inverted Ordering
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Chapter 4

Non-anomalous U(1)" models, from
LHC to GUT scale.

4.1 Introduction

In chapter 3 the most economical and natural setting to account for neutrino masses and oscillation has
been avoided being defined as untestable! and not capable to affect the SM RG-evolution. It is now
time to rescue the type-I seesaw [43, 44, 45, 46] from this depressing position promoting its role in a
slightly more complex scenario, where the minimal content of right-handed (RH) neutrinos goes along a
likewise minimal gauge extension. In such a case the new fermion, scalar and gauge content all together
participate in giving testable and measurable effects which can, in principle, be uniquely linked to the
model.

In this chapter we will investigate a minimal renormalizable Abelian extension of the SM. Minimal
because of the contained matter content that will be necessary to ensure the consistency of the theory. In
practice, to satisfy the cancellation of the gauge and gravitational anomalies, the fermion spectrum asks
naturally for RH neutrino, one for each generation (we assume universality between the flavour families),
which has B - L = -1 (Baryon minus Lepton number) charge and is singlet under the SM gauge group.
Concerning the scalar sector, in addition to the SM-like Higgs doublet H, a complex scalar field y is
needed to achieve the spontaneous breaking of the extra Abelian symmetry. The new scalar field can be
chosen to be SM singlet with charge B — L = 2 and its vacuum expectation value z, which we choose in
the TeV range, provides the mass to the Z’ gauge boson and to the RH neutrinos. The latter acquire a
Majorana mass through the Yukawa interactions and thus the type-I seesaw mechanism comes naturally

in our framework.

LAt least under the lens of the tools involved in this thesis.
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4.2 The model

4.2.1 Charge assignment in minimal Abelian extension

The gauge extension that we are considering has the same content of the SM augmented by a single extra
U(1) factor, i.e. SU(3)x SU(2)xU(1)y xU(1)". Tt is extremely fascinating that the renormalizability
requirement, in the guise of anomaly cancellation, can strongly shape and constrain the extra-SM content.
To appreciate the consequences of this, apparently formal, request, we start assigning generic charges
2@, z1, for the left-handed (LH) quark and lepton doublets ¢ L', and the charges z,, z4, 2. for the right-
handed (RH) ulé, d}z and e% quarks and leptons. The charges of the RH neutrinos vp ; are denoted as
zx and, for the sake of generality, we will not fix the number n of them.

Notice that we will omit the indices from the definition of the charges since the conditions for anomaly
cancellation will be universal, the same for each fermion generation. Finally, the charges of the two scalars
H and x are denoted as zy and z, respectively.

We have the following cancellation conditions for the non-Abelian SU(2) and SU(3) anomalies

U(1)'SU(2)SU(2): 329 +21=0,
U(1)'SU(3)SU(3): 229 -2y —24=0, (4.1)

which fix 2y, = -3z¢ and z4 = 2zg - 2, in terms of zg and z,. Two other conditions are

U)'U)yUQ)y : 2Q — 82y — 224+ 321, —62. =0,
U)'u)'v)y: zé—2zz+z3—zi+zf =0, (4.2)

for the mixed U(1) anomalies. From the first of the two requirements in eq. (4.2) one can immediately
extract the relation z, = —2z¢ — z,, while the second condition of the same equation is automatically
satisfied using the solutions found from eq. (4.1). We have summarized in Tab.4.1 the spectrum of the
theory that we will be using in our phenomenological study.

The constraints on the charges z; of the SM singlet fermions are obtained from the conditions of can-
cellation of the U(1)” cubic anomalies, together with those from the gravitational anomaly. The latter
involve the U(1) current and two gravitons G (two insertions of the stress-energy tensor of the SM). In
the general case with n singlet fermions one has, respectively

Um'v@)u()y: >z =3[623 - 320 - 323 + 223 — 23] = 3(24 — 420)°, (4.3)
k=1

for the cubic anomaly and
U(1)'GG : Y 2k =3[620 — 32y — 324 + 221 — 2e] = 3(2u — 42q) (4.4)
k=1

for the gravitational anomaly, where we have used the constraints extracted from Egs. (4.1) and (4.2).

Finally, combining together the two conditions in eq. (4.4), one obtains the cubic relation

n 3 n
( zk) =9y z3. (4.5)
k=1 k=1
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SU@B). | SU2)w | UMy | UQ)
QL 3 2 1/6 20
UR 3 1 2/3 Zu
dr 3 1 -1/3 220 — 2y
L 1 2 -1/2 ~32
eRr 1 1 -1 =220 ~ 7y
H 1 2 1/2 2n
VR,k 1 1 0 2k
X 1 1 0 Zy

Table 4.1: Charge assignment of fermions and scalars in the U(1)" SM extension.

For instance, the constraints in eq. (4.4) imply, for n = 0 and n = 1, the condition z, = 4zq, which brings
either to the trivial solution or to a solution which is Y-sequential. In this latter case the U(1)" charge
assignment is proportional to that of U(1)y. In the n = 2 case one obtains, instead, 21 = —2z5. We see
how for n < 3 the only charge assignments are trivial, a copy of the hypercharge or a setting with the
charges of the two fermions compensating each other.

A more interesting solution, which we will use in this thesis, is found for n = 3. In this case each of the
VR, is assigned to a separate generation. For example, the choice z; = 25 = 23 = 2, allows to find the
simple solution z, = 2, —4zg. The cancellation of the gravitational anomalies, can be imposed, in general,
at inter-generational level. In the present analysis we will stick, however, to the completely symmetric
(family independent) assignment of the RH neutrinos charges z; = 2o = z3, which allow to reduce the
corresponding parameter space. With this choice, the U(1)'GG constraint from the gravitational anomaly
reduces to a single equation for just one charge. On the other hand, the cancellation of the analogue
gravitational anomalies in the SM, obtained from the U(1)y GG sector, is a natural consequence of the

hypercharge assignments of the same model, and does not generate any additional constraint.

As we have shown above, the solutions of the anomaly cancellation conditions are defined in terms of
the two free U(1)" charges, zg and z,, of the LH quark doublet @, and of the RH up quark ug. This is
the main information of this section and we restate it again in a more clear way: the charge assignments of
the new matter content under the additional Abelian group are, in the case of a neutrino per generation,
all spanned by just two arbitrary number. Notice also that those numbers can be traded for any other
more convenient choice of independent charges. With this in mind we see how the generators of the U(1)’
gauge group can be re-expressed, in general, as a linear combination of the SM hypercharge, Y, and the

B - L quantum number, Yg_r. Indeed, we have
z :ayY+aB_LYB_L. (46)
In eq. (4.6) the coefficients ay and ap_j, are functions of the two independent charges and are explicitly

given by ay =2z, - 2zg and ap_r, =429 — z,. In the B - L case, we set ay =0 (i.e. z, = 2g).

The charges of the two scalars can be fixed from the requirement of gauge invariance of the Yukawa
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interactions. From the Yukawa coupling of the electron LHeg we have
(32q) + zm + (229 — z4) = 0, (4.7)

which gives zg = 2, — 2@, implying that the ordinary Higgs field is singlet respect to B~ L. Concerning the
charge of the scalar field y, the Majorana mass term X@l/m in the case of family independent (symmetric)
charge assignment z, = 2z, —4z¢, we get the condition z, = -2z,. For a B~ L charge assignment we obtain

Zy =2, 2y =20 = 1/3.

4.2.2 Kinetic Mixing

The inclusion of multiple Abelian factors has dramatic and exciting consequences which are a unique
trait of this class of models. We have seen one: the ability to span the ensemble of anomaly free U (1)’
extensions with just two parameters. Strongly connected with this property is the kinetic mixing between
the Abelian groups, apparently? introducing a new coupling § to the arena. To stress such connection
we will address in this section the formal technicalities to be used in the multiple U(1) framework.
Working in full generality, we consider a theory with two U(1) gauge symmetries (U(1); x U(1)2)

and a single fermion ¥ which couples to the two gauge fields Ali and Ai by the currents
J = axy"y (4.8)

with charges gi. It is a well known fact that for Abelian groups the single field-strength tensor Ffu" =
0, Ak - 8,,Aﬁ are invariants, and not just covariants. Therefore we can write the kinetic term in the

gauge-invariant Lagrangian as
1 41 4t 1 42 42 K Al A2
L2 = _ZF‘“/F W_ZF“”F W_EF’“’F m (4.9)
The corresponding interaction Lagrangian is given by
Line = 911 4) + 92 (G5 A7) (4.10)

where we have denoted with g; and go the couplings of the two Abelian symmetries. The mixing term
in the kinetic Lagrangian can be eliminated performing a rotation by an angle ¢ = w/4 of the two gauge

fields Aﬁ, followed by a rescaling. The rotation is given by

1 o Bl
( Ag ):( C?S(b Sln¢ )( ‘?g ) (411)
A sing  cos¢ B,
which brings eq. (4.9) into the form
— — 1 — —
A T (4.12)

1-k
4

in terms of a kinetically diagonal basis BZ (i =1,2). The rescaling involves the matrix relation

Rl 1 1
BM — 1-k 0 BIL (4 13)
BZ 0 1 32 :

© Vitk o

2«Apparently” in respect to the two other parameters oy and apg_y,.

L =-
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expressed by a new orthogonal basis (B!, B?). The total transformation whence takes the form

A [ B
(4)+(2)

with
1 1 _ 1
RH = ﬁ ( 11_’{' 11+R ) (415)
V1-k V1+k

and allows to re-express eq. (4.9) in the standard form as
1 1 Ly 1 2 2w
Lo = —ZF,ﬁ FB o _ ZF,ﬁ FB (4.16)

Notice that R is a matrix of GI(2, R). After these fields redefinitions, the two gauge currents j; and jo
will mix with the two gauge fields B! and B2.

Having eliminated the kinetic mixing with eq. (4.14), the interaction term in the Lagrangian is

B,
() -

where QT = (q1,¢2) is the charge array and G is a matrix product of the original coupling (g1, g2) with

0
G = g1 R, = g1 912 ' (4.18)
0 9 go1  g22

It is convenient to introduce the rotation matrix

f -—sinéd
On = C(.)s sin _ 1 go2 921 , (4.19)
sinf cos @ V932 + 95 \ —921 a2

and parametrize the coupling matrix G in terms of three independent couplings (g, ¢}, g), directly related

parametrized by the covariant derivative

Dt =0" +iQTGB", B,

the orthogonal matrix R,

to the original couplings g1, g2 and to the mixing parameter <. With the inclusion of this extra rotation,

the coupling matrix G can be set in a triangular form

G-cot=(? 9], (4.20)
0 ¢

where the off-diagonal coupling § parametrizes the mixing between the U(1) Abelian symmetries.
After the triangularization of the Abelian coupling matrix, the complete gauge-covariant derivative is

given by
DF =" +iQTGORB" . (4.21)

The new linear combinations of the gauge fields

Bul_o B, (4.22)
B, | "\ B2 '
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provides the diagonal basis for the kinetic terms of the Lagrangian. This approach is directly applicable
to an original gauge symmetry SU(3) xSU(2)xU(1)y xU(1),, assuming the existence of a kinetic mixing
between the two U(1)’s of the form given by eq. (4.9). If we denote with Y and z the corresponding

charges (¢1 =Y, ¢2 = ), the covariant derivative is taken to be of the non diagonal form
Dy, = 0, +igsT G}, +igat Wy +igY By, +i(gY +g12) B, (4.23)

where g and ¢{ are the coupling constants associated with U(1)y and U (1)’ respectively. Now we notice
an interesting connection. From eq. (4.23), and the previous analysis, the covariant derivative appeared

as
D, =0, +igY B, +i(gY +g12)B,, +. .. (4.24)

From section 4.2.1 we know that, in all generality, our extra generator can be put in the form (4.6). So
by a redefinition of the couplings we can always rewrite our covariant (Abelian) derivative as involving

only the generators of the SM hypercharge and B — L:
D=0, +igY B, +i(gY +¢1 Yp-1)B, +..., (4.25)

where B, and B, are now the gauge fields of the U(1)y and U(1) g, gauge groups, respectively, while g1,
Y and g1, Y-, become the corresponding couplings and charges. The mixing between the two Abelian
groups, described by g, can therefore account, together with the overall strength ¢’, with all the charge
assignments previously spanned by ay and ap_r. For instance the effective coupling and charge, here
introduced as gg Yg = §Y + ¢} Yp_1, can recover specific benchmark models as the pure B — L model,
obtained enforcing § =0 (Yr = Yp_1), or the Sequential SM (SSM), by requiring g1 =0 (Yz =Y). The
U(1)r extension, instead, is realized by the condition § = —2¢{ while the U(1), arising from SO(10)
unification is described by g = -4/5g].

Therefore, a continuous variation of the mixing coupling g allows to span over the entire class of anomaly-
free Abelian extensions of the SM with three RH neutrinos and no loss of generality is present in choosing

the U(1)p_, gauge group to parametrize this class of minimal Z'.

4.2.3 Scalar sector and spontaneous symmetry breaking

Moving to the scalar sector we must accommodate for the new complex SM-singlet degree of freedom .

The potential is given by
V(H, x) =mi HUH + m3x"x + M (HH)? + 2 ()% + A (HH) (xx), (4.26)

which is the most general renormalizable scalar potential of a SU(2) doublet H and a complex scalar x.
To address the stability issues we must ensure that the potential is bounded from below, a requirement

which is achieved by the following conditions

A >0, A>0, 4\ -A2>0, (4.27)
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obtained by requiring the corresponding Hessian matrix to be definite positive at large field values.

After spontaneous EWSB, the mass eigenstates H; 2 of the two scalars are defined by the orthogonal

H; cosa -—sina H
-« , (4.28)
H, sina  cosa X

where the scalar mixing angle « is given by

transformation

A3V
tan2a = ———— 4.29
afea /\1 112 —>\2 .T,Q ( )

and the masses of the physical scalars are

mip, , = Mo? + Aga® F \/()\w2 - 2)? + (Aguz)?, (4.30)

with mpg, > mg, and H; identified with the 125.09 GeV Higgs boson.
Egs. (4.29)-(4.30) can easily be inverted as

2 2

A= mH1(1+0052a)+%(1—0082a),
402 40?2
2 2
_ mH1 . mHZ
Ay = 12 (1—(:052a)+@(1+0082a),
m2 —m2
A3 = sin2a(M), (4.31)
2ux

relations which can be used to define the initial conditions on the quartic couplings through the physical
masses mp, ,, the VEVs v,z and the mixing angle a. Notice that the light (heavy) Higgs boson couples
to SM particles proportionally to cosa (sin«), while the interaction with the Z’' and heavy neutrinos is
provided by the complementary angle sina (cos ).

When the two scalars acquire non-vanishing VEVs, the neutral component of the gauge sector becomes
massive and with mass eigenstates determined by two mixing angles: the usual Weinberg angle 6,, and

a new mixing angle ¢’, for which

tan 26’ = — 20791 * 93 : (4.32)
9°+ (4giz/v)* - g7 - g3

with values in the interval —7/4 < 0’ < w/4. In contrast, the charged gauge bosons are unaffected by the
presence of the extra Abelian factor and their masses remain as in the SM.

The mixing angle is completely defined in terms of the mass of the Z’, through the VEV z of the singlet
scalar, and of its gauge couplings. In general it is always non-vanishing unless § = 0 which corresponds
to the pure B — L model. The EW Precision Tests (EWPTs) have considerably constrained the mixing
angle to small values, namely, || $ 1073 [141, 115], in which case

0~ Mzv/2

. 4.33
313, -3 (433)

This relation can be satisfied provided either § < 1 or Mz/Myz < 1, the latter condition allowing a

generous range of values for g.
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Finally, the Yukawa Lagrangian is
Ly = LM - VI LT H v, - Y (Vh) vk x + hc. (4.34)

where £§M is the SM contribution. Notice that a Majorana mass term for the RH neutrinos, M =
V2 2Yy, is dynamically generated by the VEV z of the complex scalar x and, therefore, the type-I seesaw
mechanism is automatically implemented through spontaneous symmetry breaking. The light physical
neutrinos emerge as a combination of the left-handed SM neutrinos and a highly damped sterile RH
component, while the heavier ones are mostly RH. The damping term in such combinations is proportional

to the ratio of the Dirac and Majorana masses.

4.3 Constraints from EWPTs and LHC searches

The (g, ¢g}) parameter space, in terms of which we are building our analysis, is subjected to well established
bounds coming from EWPTs extracted from LEP2 data. These bounds can be recast into constraints for
a well-defined set of higher-dimensional operators [141] which describe the effects of new physics. For the
Abelian extension under study, these operators have been computed in [115] in terms of the Z’ mass and
gauge couplings g, g7 neglecting, however, the impact of the heavy neutrinos and of the extended scalar
sector. To these constraints we added the one drawn from the more recent data of the first Run of LHC at
8 TeV and £ =20 fb™!, based on a signal-to-background analysis for the di-lepton (electrons and muons)
channel®. Next-to-Next-to-Leading-Order (NNLO) Quantum Chromo-Dynamics (QCD) effects are taken
into account through a k-factor correction. We show in fig. 4.1 the exclusion limit at 95% Confidence
Level (CL) from both EWPTs and DY studies for three values of the My,, namely My = 2,2.5 and 3
TeV. For the masses of the Z’ under our investigation, the LHC studies represent a strong improvement
with respect to the EW related ones, with the only comparable case being the one with Mz = 3 TeV.
Consequently, we will employ all such tight bounds in the following sections.

The sequential (g = 0) and pure B - L (g = 0) models are strongly constrained while the leptophobic
direction in which the Z’ coupling to leptons is minimal (g]/g ~ —-3/4) obviously represents the least
bounded charge assignment. Moreover, we have explicitly verified that the bounds from the DY analysis
are not considerably modified by the values of the heavy neutrino mass and the parameters of the extra
scalar sector, such dependence entering only in the total width of the Z’ boson.

The extra scalar sector is strongly constrained by Higgs searches at LEP, Tevatron and LHC ex-
periments. The present exclusion limits are enforced using HiggsBounds [142, 143, 144, 145, 146] and
the agreement of the model with the signal strength measurements of the discovered 125.09 GeV Higgs
scalar is taken into account via HiggsSignals [147]. The results in the (mp,, ) plane are reported in
fig. 4.2. The most sensitive exclusion channels are depicted with different colours depending on the Hs
mass (fig. 4.2(a)). The most effective exclusion search, covering almost all the mpy, mass interval from
150 GeV to 450 GeV, is of a Higgs boson decaying into a pair of W and Z bosons [148] (blue region). In
particular, the fully leptonic and semileptonic decay channels have been considered for H - W*W~ while

for H - ZZ the final states containing four charged leptons, two charged leptons and two quarks or two

3We are grateful to Juri Fiaschi for this analysis.
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Figure 4.1: EWPTs vs bounds from a significance analysis at the LHC for different Z’ masses.

neutrinos have been studied. Finally, in fig. 4.2(b), we show a x? compatibility fit with the Higgs signal
measurements in the (mpg,,a) plane. We have chosen a fixed reference value for the Hy mass, namely
mp, = 200 GeV, and for the heavy neutrino mass, m,, =95 GeV, so that only SM-like decay channels are
open for the lightest scalar H;. The requirement of a compatibility at 20 results anyway into a weaker

bound with respect to the exclusion limits that we have taken into account in all the following analyses.
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Figure 4.2: (a) Excluded region by LEP+Tevatron+LHC in the (mg2,«) plane for fixed mp, = 125.09
GeV, my, = 95 GeV and Mz = 2 TeV obtained using HiggsBounds. The most sensitive exclusion
channels are the four leptonic decay of two Z bosons [149] (red region), the full leptonic decay of two
W+# bosons [150] (yellow region), the heavy Higgs decays into two Zs or W* s[148] (blue region) and a
combined search in five decay modes: vy, ZZ, W*W~, 77 and bb [151] (green region). (b) Fit results
using HiggsSignals with my, = 200 GeV. The colours indicate levels of Ax? from the best fit point,
X2 /ndf =97.5/89 (red point corresponding to the SM Higgs: mz = 125.09 GeV, a = 0). Solid (dashed)
red line corresponds to 1o (20) contours. The hatched region is excluded at 95% CL.

4.4 The RG analysis

After the investigation of the SM in chapter 2, and of its extension by low-scale seesaw mechanisms in
chapter 3, we continue the exploitation of RG methods in studying their constraining ability over the
parameter space of our anomaly-free U(1)" model. In particular we will require perturbativity of the
couplings and stability of the vacuum. Moving from our experience in building the stability analysis with
increasing accuracy [134, 137], we will use two-loop RG equations and matching condition at one-loop
level. As shown in [137] the step from one to two-loop order is required to avoid spurious instabilities

which disappear at a two-level analysis.

4.4.1 RG equations and the Abelian mixing

Before delving in the complex scenario of the matching conditions let’s pause for a moment to discuss
one of the more interesting feature of these models, which is particularly visible in our approach. From
the previous sections we have learned how anomaly freedom and Abelian invariance force us to consider

the non canonical form of the covariant derivative (4.25) with the mixing establishing, via the ratio g/g1,
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Figure 4.3: Opposite of the vector field (B85, 8,,) in the space (g,g1) with the direction of U(1)p-1, (blue
dotted line), U(1),, (red dotted line) and U(1)g (yellow dotted line) charge assignments. The sign of the
B functions has been reversed to appreciate the evolution from high to low energies. Notice the direction

of U(1)y which is stable under RG [113].

the charge assignment of the particles in respect to the Z’ (actually the corresponding gauge eigenstate).
It is natural to ask if such ratio, that is the charge assignment, is a constant of the RG evolution. The
answer to this question is rooted to the renormalization of theories with multiple Abelian factors, and we
refer to [113] for the proof about the mandatory use of the mixing to absorb radiative corrections.

More prosaically we inspect the one-loop S functions of the mixing and of the g (see Appendix B-C for

the complete one and two-loop order)

S 3032 40 41, ,
By = 2o+ g+ g,
415 32 41 . 32, . 2
57 = o et getis Tt 120 (4.35)

where clearly appears how impossible is to keep §/g} stable under radiative corrections 2.

Stated differently: measurements of a given charge assignment at LHC scale need the support of the RG
analysis to draw conclusions about the corresponding charge assignment at higher energy scales, maybe
directly linked to some GUT embedding (fig. 4.3).

4With one important exception, see caption in fig. 4.3
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4.4.2 The Matching Conditions in the SMxU (1)’

To apply the method of section 2.3 to our model we must recognize the modifications which are introduced
in the one-loop structure of the theory by fields not belonging to the SM spectrum. We will adopt a
mixed renormalization procedure in which the known SM parameters are renormalized in the on-shell
scheme, while the MS is used for the additional couplings and masses introduced by the extended gauge
and neutrino sectors and for the vacuum expectation value x of the extra scalar. On the other hand, for
the sake of simplicity, all the remaining parameters in the scalar sector, containing both the Higgs-like
quartic coupling and the two new quartic interactions, are renormalized in the on-shell scheme. Such a
mixed scheme is not unusual in QFTs as it is already employed, for instance, in the SM, and in particular
for the computation of the strong corrections to electroweak observables.

As shown in [114], one of the interesting features of this hybrid renormalization scheme, besides its
simplicity, is that the Appelquist-Carrazzone decoupling theorem is explicit manifest. Indeed, the SM
limit of measurable quantities is straightforwardly obtained for 2 — oo, with = defined in the MS scheme.
This has been the main motivation for our renormalization setup. The SM-like parameters which enter
into this RG study are linked to the pole masses and to the Fermi constant in the way illustrated in
section 2.3. The unknown dimensionless parameters introduced by the U(1)" extension, with the only
exception of those in the scalar potential, are directly employed in the MS scheme from the very beginning
(or, equivalently, are matched to their counterparts at tree level). These are the Abelian gauge coupling
constants, g7 and g, and the Yukawa of the right-handed neutrinos Y. Instead, the quartic couplings Ay
and Az are matched at one-loop from the on-shell physical mass of the heavy scalar m;, and from the
the mixing angle «.

The matching of the Fermi constant Gp to get the counterterm of the SM Higgs vev v involves the
process of p decay which is generically affected by new physics. This can be appreciated in Fig.4.4
where we show some of the dominant one-loop perturbative contributions clearly not present in the SM.
Corrections proportional to the neutrino mixing angle «;, as the ones depicted in Fig.4.5, can instead
be safely neglected due to the smallness of the ratio between the Dirac and the Majorana masses. The
counterterms of the Abelian gauge coupling g deserves also a special attention because its defining relation
gets modified in the U(1)" extension with respect to the SM case. Nevertheless such departure from the
SM is parametrized by the mixing angle 6" allowing us to use the same form already met for the strict
SM case (2.38)

5 B 1(5M§ - 6MI%V B dvos
gos = gos 5 M% ~ Ma/ vos |

The remaining Abelian coupling, ¢’ and g, could be related, in principle, to the pole mass of the Z’
and to the OS expression of the mixing angle ', but, belonging these two free parameters to the U(1)’

extension, we choose to work directly with their MS expression.
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Figure 4.4: Some of the new-physics diagrams appearing in the one-loop perturbative expansion of
the p decay. These define the radiative corrections to Gr of Eq. (2.34). In particular, the diagrams
in Figs.(a),(b) enter in the computation of B, those in Figs.(c),(d) define V', Figs.(e)-(h) enter in the

calculation of the W self-energy and Figs.(i)-(j) in the external leg corrections E.
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Vhz2

Figure 4.5: Some of the one-loop box diagrams defining the u decay proportional to the neutrino mixing

angle.

The major differences in the matching relations, with respect to the SM case, are found in the scalar

sector due to the presence of new quartic interactions. Using the defining equations in eq. (4.31) we

obtain
2 51)05
oMos = (1 + cos 20405) - 20aos tan apg
4UOS 0S
u 5Uos
+ 2 (1 - cos 20405) 3 —H +20apg cot aos |
4vog My, 0s
2 2
my,
0Xoos = - ( — COs 20405) + 25 os cot apg
vy
2
+ ,2 2 (1 + cos2a0s) ( - 20c0g tan Oéos)
dv Vos
Sm?2, —dm? 5
dAz0s = Asos( ;{2 2H1 - 2vos +26a0g cot 2aos) ) (4.36)
Hy — 777‘H1 VoS
where
Rell 2 = m?2
6m12‘I =Re HH”LH’L (p2 = m%[) ) daos = H12H2 (p 2 Hl) : (437)
' ' My, — My,

Notice that, in the last of the previous equations, the mixed scalar self-energy Il 7, has been evaluated
at p* = m?h. This choice enforces the absence of mixing between the two tree-level mass eigenstates

H,, Hy also at one-loop level and at a particular scale, given by my, .

4.4.3 The stability analysis

After have paid our painful tribute to the matching conditions we can now proceed to the extrapolation
of the model. We identify the regions in which the class of the Abelian extensions under study possesses a
stable vacuum (described by the conditions given in eq. (4.27)) and is characterized by a weakly coupled

regime (couplings are required to be less than \/47%) along the RG evolution, up to some given scales

5The parameters upon which the perturbative expansion is performed are usually in the form of \/a = g/\/4m rather
than g.
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Figure 4.6: Legend of the different regions defined by the maximum scale Quax up to which the model is

stable and perturbative.

which will be specified below. These regions are defined in the space of the new parameters, evaluated
at the EW scale, introduced by these minimal Abelian extensions. We will focus, in particular, on the
impact of the Abelian gauge couplings g, g1, of the scalar mixing angle « and of the masses of the heavy
Higgs Ho and Z’ boson.

For ease of reference, the legend of the stability and perturbativity regions, according to the maximum
scale Qmax up to which the vacuum is stable and the model remains perturbative, is depicted in fig. 4.6.
In the cyan region the new parameters of these Abelian extensions are such that the stability and/or the
perturbativity is lost at a scale Qmax lower than the instability scale of the SM (see chapter 2, fig. 2.6
in particular). A Z’' model with gauge couplings lying in this region of the parameter space worsen the
high-energy behaviour of the SM and clearly calls, with more urgency, for an embedding into a complex
scenario, such as GUT unification, already appearing below the 10® GeV. In the blue region the U(1)’
extensions behave, from the stability point of view, as the SM, whose instability scale Agy ~ 108719
GeV. In contrast, the green and yellow regions delineate portions of the parameter space in which this
class of models is more stable than the SM, up to the GUT scale and above, thus identifying them as
compelling extensions of the EW theory. In fig. 4.7 we show the regions of stability and perturbativity,
up to some given scale Qmax, as a function of the two Abelian couplings g, ¢f and for different values of
the scalar mixing angle o. These results have been obtained for Mz =2 TeV and m,, = 95 GeV which
corresponds to a Yukawa coupling Yy of order 1072, This value is too small to affect the RG evolution
of the quartic scalar couplings, therefore the destabilizing effect of new fermionic degrees of freedom is
completely suppressed. Indeed, a Yy 2 0.3 is, at least, required to appreciate the impact of the heavy
RH neutrinos in the running of the scalar sector [137]. This roughly corresponds to m,, ~0.2(Mz:/g1)
for Mz > M.

The constraints coming from di-lepton searches at the LHC with /s =8 TeV and Mz = 2 TeV strongly
restrict the allowed parameter space in the (g,¢7) plane completely leaving out the cyan regions and
therefore only selecting the configurations in which the model is at least as stable as the SM. The
dashed lines correspond to three particular and very common U(1)’ extensions which can be described,

in our conventions, by straight lines in the (g, ;) plane. These are, in anti-clockwise direction, the pure
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Mz = 2TeV, a = 0, my, = 200GeV, m, = 95GeV

Mz = 2TeV, @ = 0.1, my, = 200GeV, m, = 95GeV Mz = 2TeV, a = 0.2, my, = 200GeV, m, = 95GeV

(d) (e) ()

Figure 4.7: Stability and perturbativity regions in the (g,g7) plane for different values of the scalar
mixing angle a. The coloured regions are defined according to Qumax, the maximum value of the stability

and perturbativity scale reached by the model. The corresponding legend is depicted in fig. 4.6.
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Figure 4.8: Same as fig. 4.7 with Mz =3 TeV.

U(1)p-r, the U(1), and the U(1)r extensions, while the sequential SM lies on the § axis. The black dots
represent the benchmark models usually addressed in the literature in which the Abelian gauge couplings
are fixed to specific values. Notice also that these reference points, although allowed by EWPTSs, are
excluded by LHC data if Mz =2 TeV.
As one can easily notice from fig. 4.7, the effect of the mixing angle « of the two scalars is crucial for
identifying the regions in which the vacuum is stable. Indeed, scalar degrees of freedom, contrary to the
fermionic ones, usually drive the instability scale towards higher values improving the stability of the
potential. In the a = 0 case (which corresponds to A3 = 0), the extra scalar sector is decoupled from
the SM Higgs doublet and the RG evolution of the U(1)" extension shares the same behaviour of the
SM if the new Abelian gauge couplings are sufficiently small. If o moves away from zero, the two scalar
sectors begin to communicate and the stability effect of the complex scalar x becomes quickly significant,
preventing the decay of the vacuum up to the GUT scale and above.

In fig. 4.8 we show the same study for Mz = 3 TeV. The regions defined by the RG analysis are
unchanged with respect to the Mz = 2 TeV case but the LHC bounds become looser. This allows
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Figure 4.9: (a) Stability and perturbativity regions in the (mp,,a) plane according to the colour legend
described in fig. 4.6. (b) Comparison between NLO (yellow region) and LO (region delimited by dashed
line) results for the requirements of stability and perturbativity up to the GUT scale. The hatched area
is excluded by the HiggsBounds analysis.

to explore bigger values of the Abelian gauge couplings which can even fall in a region in which the
perturbativity is spoilt (cyan), although only for a small slice of the parameter space. For these values,
a bigger « is ineffective to increase Qunax because the poor behaviour of the model is due to the loss
of perturbativity in the Abelian sector and not to the instability of the vacuum. For heavier Z's, the
constraints from di-lepton searches at the LHC are overtaken by EWPTs which still enclose this Abelian
extension in a configuration almost as stable as the SM, provided m,, < Mz:.

A similar study is carried out in the (mpg,, «) plane in order to emphasize the impact of the extended
scalar sector. The results are presented in fig. 4.9(a) where the hatched area has been excluded by LHC
data using the HiggsBounds tool. The U(1)" Abelian gauge couplings used for this particular analysis
are g = -0.13 and g7 = 0.11, which have been chosen on the 20 contour line. We have explicitly verified
that different values on the same curve do not lead to any qualitative change. Interestingly, the cyan
region, in which the RG behaviour of these models worsens with respect to the SM case, is completely
disallowed for myg, < 500 GeV. Notice also that, for myg, < 250 GeV, both stability and perturbativity
are satisfied, up to the GUT scale and above, mainly for a highly-mixed scalar sector while, for heavier
H,, the mixing angle is bounded from above and the same regions extend horizontally. These regions
will eventually shrink at bigger values of the heavy Higgs mass due to a loss of perturbativity of the A,
quartic coupling.

To highlight the impact of a NLO analysis we show in fig. 4.9(b) the region of stability and perturbativity
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Figure 4.10: Stability and perturbativity regions in the (a) (o, M;) and (b) (mp,,M;) spaces. The
regions are enclosed by Qmax = 10 GeV with z =7,8,9,11,13,15.

up to the GUT scale at NLO (yellow region) in comparison to a LO only (region enclosed in the dashed
curve) study in which only one-loop S functions and tree-level matching conditions are employed. It is
evident that, in a NLO analysis, the parameter space providing a well-behaved theory up to high energies
broadens towards smaller values of the scalar mixing angle o, which are, quite interestingly, in the region
allowed by Higgs searches at the LHC.

In fig. 4.10 we show regions of stability and perturbativity as a function of the top pole mass M; and
of o (fig. 4.10(a) with mpy, = 200 GeV) or mpys (fig. 4.10(b) with « = 0.1). The bold numbers z on the
boundaries of the different coloured regions represent the maximum scale of stability and perturbativity
Qmax = 10° GeV. The dashed line corresponds to the central value of the top mass M; = 173.34 + 0.76
GeV [152] which is an average from the combined analysis of ATLAS, CMS, CDF and DO, extracted
through Monte Carlo (MC) modeling of production and decay of the top quark in hadronic collisions.
Due to its origin, the measurement leads to the so-called MC mass which does represent neither the pole
mass nor the MS mass. Usually, one assumes that the MC mass is sufficiently close to the pole mass with
differences estimated of the order of 1 GeV [153, 154, 155] and then extracts its MS value using matching
conditions at the EW scale. The corresponding Yukawa coupling Y; is then determined and fed to the
RG equations. Unfortunately, this procedure is plagued by many sources of uncertainty and therefore
it would be much better, due to its critical role [139, 26, 140, 38, 27], if the MC event generators were
defined directly in terms of the MS Yukawa parameter. The analysis presented in fig. 4.10 show us the
critical impact of the top mass, investigated in a window of 1 and 3 ¢ according to [152], and how it

is affected by the parameters of the enlarged scalar potential. As one naively expects, the mixing angle
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a weakens the destabilizing effect of the top (fig. 4.10(a)) and eventually completely overcomes it for
« 2 0.4. The restoration of the vacuum stability, for a fixed value of the top mass, also appears as one
increases the mass my, of the heavy Higgs (fig. 4.10(b)). Contrary to «, the effect of mpy, is softened
and, in the range 150 GeV < myy, < 500 GeV with a = 0.1, only shifts the instability induced by the top

quark to higher values of its mass.

4.5 LHC Phenomenology

A prime reason for our selection of the parameter space to be investigated has been to put the model
at the verge of the more up-to-date LHC quest. Therefore is no surprise that we can encounter a rich
prospect of collider visibility. In this section we will explore the possible experimental signatures that

characterize the class of Z’' models encompassed by our general analysis.

4.5.1 7' production and decay

In fig. 4.11 the different branching ratios of a Z’ decaying in fermions are displayed for the values of
Mz =2,2.5 and 3 TeV and for different § (dashed regions are excluded according to fig. 4.1). The partial
decay width of the Z’ decaying into leptons and quarks is

My 4m3 [CF  +Cip m?2 m2
0(Z - ff)= 127T0f\‘1—M%f ! 5 ! 1—M§ +3Cf,ch,RM—g, (4.38)

where Cy is the colour factor while Cy 1/ are the left /right-handed couplings of the fermion f to the Z’

boson. These are given by

l4

s sw s’

(T?—S%‘/Qf)+§f,L C,7 Cf,pb:e Q.f+§f7RC,, (4.39)

Cf,L = —€
Swew cw

where we have used the short-hand notation sy = sinfy, cyw = cosfw, s’ = sinf’ and ¢’ = cos§’, with

Tf being the third component of the weak isospin, @)y the electric charge in unit of e and gy /g =

9Ys /R +912f,0/r- The hypercharge Y 1 g is normalized as Yy = Qf - TJ? while zy is the U(1)" charge

which we have identified with the B- L quantum number. The decay width of the Z’ into heavy neutrinos
is

2 2

D2 > ) = 2 (e g1 ) (1 . 4;;) -5 (1.40)

It is clear how the favourite channel for the pure B - L is in two charged leptons [117]. This decay mode

provides nearly 40% of the width, the remainder being almost equally shared by the decays into light

quarks, heavy and light neutrinos (note that we considered the branching for charged leptons, light and

heavy neutrino states summed over generations). When we turn our attention to the gauge mixing, the

decay mode hierarchy is drastically changed. In the limit of a sequential Z’, which is recovered for g7 = 0,

a preference for light quark decays reaches the highest value of 60% for the Branching Ratio (BR). The

leptonic decay mode is sub-dominant in this range but starts becoming sizeable with increasing gj. This

is to be expected given the restoration of the pure B — L case in the limit of large g; (equivalent to
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g = 0). The BR in heavy neutrinos shows a variability with ¢g{. Moving from zero in the sequential limit
it reaches the highest contribution at ~ 30% of the BR in the pure B — L case. Indeed, the partial width
Z' - vy, is independent of g and it is solely controlled by the Abelian coupling g7.

The possibility to explore different Z’ model configurations is enabled by gauge mixing, which opens
new decay channels into SM bosons, which are absent in the pure B — L, namely, Z' - W*W~, Z H; and
Z Hy. The corresponding partial decay widths are given by

1 e2c? AMB, [1 M3, Mz, M
N(Z >WW) = —Z W21 QW[ ZE IS
B 52, M2, |aME T Mg, M2,
! 1 / ’— /— / 2 20 2 E%
N(Z - ZH,) = 7967r]\/[%, [cav(cgz—sg)(cg+sgz)+43aavzxg1 S c] Pz —M% +2],
/ 1 ! /-~ /— ! 2 2.1 112 E%
N(Z' - ZH,) = %T]V[%,[sav(cgz—sg)(cg+sgz)—4caxzxg1 s c] Dz M—%+2 ,

(4.41)

where pz and Ez are the momentum and the energy of the Z boson in the Z’ rest frame. Moreover,
in the previous equations, we have defined s, = sina, ¢, = cosa, gz = e/(swew), § = § + 291 zg where
zp and z, are, respectively, the U(1)" charges of the SM SU(2) doublet and singlet scalar which, in our
case, are zg = 0 and 2, = 2.

The interplay between the mixing in the Abelian and scalar sectors is visible in the corresponding BRs as
given in fig. 4.12. The decays into charged gauge bosons and Z H; represent the main patterns regardless
of the value of the scalar mixing angle in the range 0 < o < 0.2 (o = 0.2 is a very conservative choice,
larger values are possible depending on the Hs mass, see fig. 4.2) with kinematics accounting for the
main differences. The non-zero scalar mixing also clears the way for a Z Hs channel but with a highly
dumped BR not exceeding the 0.1% value. To understand these features, it is instructive to study the
partial widths in eq. (4.41) in the Mz > Mz, My, My, , regime taking into account the smallness of
the gauge mixing angle 8’ through eq. (4.33). In this limit we obtain

1 e2s? M,

_— 4.42
1927 S%VC%V M% ’ ( )

D7~ W*W) = C%r(z' S ZHy) = S%r(z’ S ZHy) -
o @

which clearly describes the behaviour depicted in fig. 4.12. We concentrate now on the on-shell produc-
tion of a Z’ gauge boson through DY mode to accommodate the discovery/exclusion opportunities of our
model in LHC Run 2. The computation has been performed using CalcHep [156] and the corresponding
U(1)" model file implementation [121, 123] on the High Energy Physics Model Data-Base (HEPMDB)
[157]. From this perspective, we present in fig. 4.13 the corresponding cross section at 13 TeV as a func-
tion of ¢gf and for different values of § and Z’ mass. We consider the bounds coming from the previous
significance analysis from DY at LHC Run 1 and highlight the excluded g; with dotted lines. The Z’ of
the pure B — L model, which is strongly constrained in terms of g, is characterized by a cross section
up to o =5 fb for Mz =2 TeV and up to o = 10 fb for Mz = 3 TeV. Increasing § may increase the Z’
coupling to quarks and also allow higher values of g; and consequently more sizeable cross sections but

without exceeding the o = 100 fb, a value approached at Mz =3 TeV and g = -0.6.
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Figure 4.11: Z' BRs into fermionic final states as a function of g} for several values of § and for Mz =
2,2.5,3 TeV. The g = 0 case corresponds to the pure B — L. Dashed regions are excluded by LHC Run 1
data at 95% CL. The green, cyan, purple, red and blue lines correspond to the Z’ decay into two charged

leptons, light neutrinos, light quarks, top quarks and heavy neutrinos, respectively.



4.5 LHC Phenomenology 79

Mz =2TeV, g=-0.05(f' = -14x10"%

251

BR(%)
BR(%)

L I L I |
0.00 005 010 015 020

o
°
g

g1
(a) (b)
/|sz =25TeV, g=-01(F"'=-1.8x107%
257 T T T 7
zZ. |
/I 1
z.of% 1
2 2
15- 74 : 1
s ZE
® 1.0—2 ®
Z
o.s—é
e
0.0 /‘: 1
0.00 005 ;.l: 0.15 0.
(c)

Mz =3TeV, g=-03(0'=-3.8x107%)
y d ; ; T

25

BR(%)
BR(%)

]

1
L
03 04 05 06 07

g1

(e) ()
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Figure 4.13: Z' hadro-production cross sections at the LHC as a function of ¢} for different values of g.
The dotted parts of the lines refer to values of gf excluded by LHC Run 1.

Hallmark LHC signatures from a U(1)" Z’

The production of heavy neutrinos from Z’ decay is a smoking-gun signal of the particular minimal
class of models considered, where an extended fermion sector is required to cure the anomalies of the
new gauge boson. The successive decays of the heavy neutrino may result in distinctive multi-lepton
signatures which have been under recent investigation (see, for instance, [158] for the 2-lepton, [117] for
the 3-lepton and [159, 160] for the 4-lepton channel). We explore here the role played, in this process, by
the new Abelian couplings and different assignments of Z’ and v, masses computing the cross section for
the production of heavy neutrinos from a decaying Z’. The results are plotted in fig. 4.14 with contour

plots computed for a Centre-of-Mass (CM) energy of 13 TeV.

4.5.2 Higgs production and decay

In this section we address the collider perspectives for a scalar signal of B — L origin at the LHC. In our
setup the parameter space defining the new scalar sector consists of the mass of the physical heavy scalar
my, and the related scalar mixing angle a. The mixing angle plays, as expected, a central role scaling
all the interactions with SM-like particles by cos(a) (sin(«)) when involving a H; (Hz) and with the
complementary angle when involving particles in the peculiar spectrum of the U(1)" model (as Z’' and
heavy neutrinos). Also, the case with mpy, > 2my, offers the chance to investigate new decay channels
with multi-scalars, an important hallmark of the mechanism responsible for our extended spontaneous

EWSB. Here, we build on the results presented in [120] for a pure B — L scenario taking into account the
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Figure 4.15: Heavy-Higgs production cross sections at the LHC for \/s =8 TeV (a) and /s = 13 TeV (b)

CM energy as a function of the Hy mass for a = 0.2.

new exclusion data from Higgs searches and the impact of the gauge mixing coupling g.

Standard production mechanisms

The most important set of mechanisms exploited to reveal the SM-like 125.09 GeV Higgs boson at LHC
involve gluon-gluon fusion, vector-boson fusion, ¢t associated production and Higgs-strahlung. The cross
sections for these standard production channels of the light scalar Hy, which we assume to coincide with
the 125.09 GeV Higgs boson, can be simply obtained from the SM results by a rescaling with a cos? a
factor. Here, instead, we present in fig. 4.15 the cross sections related to such processes for the case of the
heavy scalar Higgs (H2) production as function of its mass and with the benchmark value of the mixing
angle a = 0.2 for \/s=8 and /s =13 TeV as CM energy at the LHC. The hierarchy of the cross sections
is the same as for the SM Higgs case, the Ha couplings to SM particles being rescaled by a factor of sin a.

Non-standard production mechanisms

The connection of the extended scalar sector with the remaining particles allows for new mechanisms
for heavy Higgs production. Among these, the associated production with the Z’ boson is of great
importance, opening a window towards the U(1)’-specific spectrum. In fig. 4.16 we plot the variation of
the cross section for the process q@ — Z™* — Z'H; 5 with respect to the scalar mixing angle. A fixed value

of the heavy scalar mass has been taken and different benchmarks of Z’ mass and couplings have been
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Figure 4.16: Cross sections for associated production of the light (a) and heavy (b) Higgs boson with
the Z’ as a function of the scalar mixing angle « in the 0 < « < 0.5 range for different values of Mz and

gauge couplings.

considered. Notice that, due the Z — Z’' mixing, the same final state can be obtained with a Z exchanged
in the s-channel. (We have verified that this contribution and its interference with the Z’ diagram are
non-negligible). The influence of the gauge sector in this production mechanism is translated in the
enhancing effect from the Abelian gauge couplings and leads to a maximum value of o = 1 fb. Despite
the small cross section, this is the only accessible production channel for Hy when « = 0. The ensuing
couplings have been chosen appropriately within the 95% CL area of fig. 4.1 and compensate for the

dumping effect in the cross section due to the increasing Z' mass.

BRs and widths of the Higgs bosons

‘We now move to the investigation of the various decay modes of Hs in two particle final states and the role
played by the related unknown parameter space. We begin by studying the variation of the branchings of
H, for a change of its mass in the range 150-500 GeV. Two benchmark points have been considered with
two assignments of the scalar mixing angle, consistent with the bounds extracted from Higgs searches,
and a common value for the heavy neutrino and Z’ masses, as for the Abelian gauge couplings set at
g7 =0.11 and g = —0.13. The resulting BRs are shown in fig. 4.17. With respect to the SM case, new
decay channels are accessible, namely, the Hy — HyH; and Hy — vy, the former almost ubiquitous in
many extensions of the scalar sector, the latter being a hallmark of U(1)" scenarios. For both values of

the mixing considered, o = 0.1 and 0.28, the main channel is represented by the decay into charged gauge
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Figure 4.17: BRs of Hy for (a) a = 0.1 and (b) a = 0.28. The other parameters are chosen as follow:
my, =125.09 GeV, m,, =95 GeV, Mz =2 TeV, ¢g; =0.11 and g =-0.13.

boson, a predominance which is weakly challenged only by the decay in two Zs and, when overcomes the
threshold at mp, = 250 GeV, by the one in two light scalars. Indeed, the hierarchy of the different decay
modes in SM final states is the same as that of the SM Higgs, the partial decay widths being rescaled
by a factor of sin® . The scalar mixing enters critically in the BRs into heavy neutrinos. When the
corresponding kinematical region is allowed, it is evident that a heavy Higgs Hs mainly projecting onto
the SM scalar singlet (for smaller values of «) has, in our model, a stronger interaction with the heavy
neutrinos, and, at the same time, a weaker coupling to SM particles. The corresponding BR endures
a one order of magnitude suppression when « is raised to 0.28. In fig. 4.18 we show the Hy BRs as a
function of the scalar mixing angle for two values of its mass in order to explore different kinematical
regions. Indeed, moving from the mg, = 200 GeV to the mg, = 500 GeV case, the decays in a top quark
pair and in two H; become accessible. As mentioned before, the role of «, for the interaction structure
of our model, is clarified by the interplay between the decay in heavy neutrino and the other modes. In
both cases shown in fig. 4.18 the increase in « causes the dropping of the heavy neutrino decay mode and
a growth of the SM-like decay channels. Notice also that the Ho — H; H; mode does not have a trivial

dependence on a.

In fig. 4.19 the dependence on o and mp, of the heavy Higgs total width is illustrated. In fig. 4.19(a)
the heavy scalar masses were allowed to span in the range 150 GeV < myy, < 500 GeV while three different
assignments « = 0,0.1,0.28 have been considered. The case with zero mixing singles out in showing a
recognizable threshold due to the heavy neutrino decay being the only allowed channel. The values of

the width rapidly grow when such threshold is exceeded reaching the MeV order. Further, with the
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Figure 4.18: BRs of Hs for (a) mpy, = 200 GeV and (b) mpg, = 500 GeV. The other parameters are
chosen as follow: mpg, = 125.09 GeV, m,, = 95 GeV, Mz = 2 TeV, ¢f = 0.11 and § = -0.13. The
corresponding legend is depicted in (c). The regions on the right of the vertical dashed lines are excluded

by HiggsBounds.
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Figure 4.19: The H; total decay width as a function of my, for different values of « (a) and as a function
of « for different values of my, (b). The other parameters are chosen as follow: mp, = 125.09 GeV,
my, =95 GeV, Mz =2 TeV, ¢f =0.11 and g = -0.13. In fig. (b) the dashed parts of the curves are
excluded by the HiggsBounds analysis.

increase of the scalar mixing the width experiences another sizeable growth due to the now open SM
decay channels. Also for such cases the channel Hy — Hi H; is available resulting in a mild threshold
in the width plot. We can appreciate how the non-zero mixing causes a large increment in the width
allowing values of order GeV to be reached for high myy, values. The critical role of the scalar mixing
angle is more visible in fig. 4.19(b) where we considered the variation of the width respect to « in the
range 0 < a <0.8. For the given choices of my,, the constraints coming from Higgs searches at the LHC

have been taken into account excluding a large sector (dashed lines) of the values of « in the plot.

Let us now turn to the decay patterns of the SM-like Higgs state, H;. When mpg, > 2m,, a new
interesting channel become accessible to it, H; — v,v, (into heavy neutrinos), otherwise it behaves as
the SM Higgs boson, with the same BRs and a total width rescaled by a factor of cos? «. We show in
fig. 4.20(a) the light Higgs decay mode into a pair of heavy neutrinos for m,, = 50 GeV and for three
different benchmark points. For comparison we also show the BRs of some decay channel of the SM Higgs
boson. Quite interestingly the neutrino BR spans from 0.1% to 1% becoming comparable to, or even
exceeding, the vy mode of the SM Higgs. The behaviour of the depicted curves can be understood by
scrutinizing the structure of the Hyv, vy, vertex. This is proportional to sin a(m,, [x) ~ sina g} (my,, [Mz/)
and therefore, for fixed m,, , can be increased by growing the ratio g7/Mz,. Taking into account the LHC
limits on the Abelian gauge couplings discussed in section 4.3, which are obviously more constraining

for lower Z’ masses, we find a bigger ratio for Mz = 3 TeV, in which case ¢/ is allowed to vary up to 0.6.
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Figure 4.20: (a) Branching ratio of the H; — v,vp, mode. For reference some of the SM Higgs branching
ratios are shown with dashed lines. (b) Cross section times BR for the process pp — Hy — vpvy, at the
LHC with \/s = 13 TeV. Only the gluon fusion channel has been considered. In both plots we have chosen
m,, =50 GeV and different assignments of Mz and the gauge couplings.

For completeness, we depict in fig. 4.20(b) the ox BR values for the process pp - Hy — vpvp at the LHC
with 13 TeV CM energy, which can reach 100 fb. Notice that the H; production cross section scales with
a factor of cos? & with respect to the SM case, which is reproduced by a vanishing scalar mixing angle.

In such case o(gg — Hy) = 44.08 pb [161] which has been used to normalize our cross section.

Hallmark LHC signatures from U(1)" Higgs states

The production cross sections and decay BRs of Hy can be combined with the recent limits, coming from
LHC search on the extended Higgs sector, to probe realistic discovery opportunities. Our phenomeno-
logical scenario calls for a /& = 13 TeV CM energy and an integrated luminosity of 100 fb™!, as expected
to be collected at LHC. From what has been illustrated in the previous analysis, the heavy scalar decay
can reveal its presence and that of the remaining beyond-SM spectrum through peculiar decay chan-
nels. Such distinctive signatures involve heavy neutrinos and light scalars. Considering production from
gluon-gluon fusion we project in the (mpy,,«) plane, fig. 4.21(a), the contour of equal value for the cross
section times BR of the process pp — Hs — vpv,. We kept the heavy neutrinos at a common degenerate
mass of 95 GeV, summing the final state over generations, and considered the benchmark point in the
extended gauge sector with My, = 2 TeV, g = -0.13 and gj = 0.11. The values of ¢ =0.1,0.2 fb and 0.5 fb
illustrate the magnitude involved and the number of neutrino events that can be expected. We crossed

the results with the stability /perturbativity implications of a given choice of the parameter space. We
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Figure 4.21: Contour plots of the cross section times BR for the processes pp - Ho — vy, (a) and
pp —» Hy » H1H; (b) at the LHC with /s = 13 TeV in the (mpy,, «) plane. Only the gluon fusion channel

has been considered. The parameters have been chosen as follows: Mz =2 TeV, g =-0.13 and g7 = 0.11.

notice how the request to exceed 50 events selects a restricted area of the heavy scalar mass, roughly 200
GeV <mpy, < 250 GeV, with values of the scalar mixing not excluded (hatched area) by LHC data. The
same area covers a region with a scale of stability/perturbativity breaking greater than the SM case. A
more generous response is obtained when the gluon-gluon cross section is multiplied for the branching of
Hy — H1H;. In fig. 4.21(b) are drawn, for the latter process and the same setting of masses and gauge
parameters of the previous figure, the contours with ¢ = 0.1, 1, 100 and 200 fb. Above the threshold
mp, = 250 GeV, the scalar mixing angle can critically raise the value of ¢ leading potentially to ~100
events. The LHC limits severely intervene to exclude large value of o with the resulting effect of an upper
bound of ~200 events in the space investigated.

The H, decay in light scalars or heavy neutrinos states represents a peculiar feature of our minimal
class of Z’ models, nevertheless a search aimed to a heavy scalar discovery would favor different channels.
From the previous analysis of the BRs (see figs. 4.17-4.18), Hs decays in WW, ZZ and tt are the main
candidates as search channels. Consequently, we proceed by testing the gluon-gluon induced cross section
of such channels against the LHC exclusion limits in fig. 4.22. The corresponding contours of equal value
for the cross section of pp -~ Hy - WW and pp — Hy - ZZ are illustrated in figs. 4.22a-b. The two cases
share the absence of a threshold in the interval of my, considered and a cross section increasing with the

scalar mixing. At the highest values of mixing allowed the WW decay is more capable to get close to 1
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pb while the ZZ decay has a weaker growth as can be read off from the path of the line ¢ = 0.2 pb. The
process pp — Hy — tt completes our survey. The threshold is sufficiently high to concern only a small

section of the (mg,,a) plane. The values of the cross section times BR depicted are for o = 10,25,50 fb.

4.6 Comments and conclusions

We have shown how production and decay patterns peculiar to a class of U(1)" models involving the
entirety of their additional particle spectrum, i.e., heavy neutrinos, a second Higgs state and a Z’, at
times interplaying with each other in experimental signatures accessible at the second stage of the LHC,
can be linked to the high scale behaviour of such scenarios. This has been made possible by combining the
description of their low and high-energy dynamics through an advanced RG analysis which specifically
used as boundary conditions only those potentially accessible by experiment at present and in the near
future. The role of the running kinetic mixing, and, in a way, of the charge assignment of U (1)’ revealed
how RG methods will be crucial, in case of discovery, to properly read the hints of a unified structure
at higher energy. Our survey has also touched a more general aspect that may affect other different
attempts of SM extension. In particular the analysis pursued in fig. 4.10 has clarified how the critical
and unnatural role of pure SM parameters may be relaxed when considering an embedding in a simple
and minimal extension by a scalar singlet.

We look forward to extend a similar effort to the case of anomalous U(1) charge assignments linked to an
E6 GUT. In such case only a single new parameter must be added, to account for an U(1), component
of the charge. A general survey, with a slight modification of the methods previously developed, can then

be pursued.
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Chapter 5

Final remarks

The dark energy and matter content of the Universe, the matter-antimatter asymmetry, the unnatural
distribution of its dimensionaless parameters. All these puzzles form some of the clear indications that
the SM cannot be the end of the story and that some unknown modification has to take place way
before the inclusion of gravity at Planck scale. Obviously no one expects all the answers to come from a
sequence of collider with a center of mass energy in exponential growth every decade. More likely, unless
a technological revolution will take place, the direct collider research will only be restricted to bite the
lowest levels in the energy span that link the Fermi to the Planck scale. New strategies must be invoked
to address the exploration of more fundamental, high-energy structures that will always live out of the
reach of our direct detection.

Cosmological measurements are certainly of big help in providing a picture of the time, where GUT-like
(and upper) energies were exciting the particle content of the “ultimate” theory. Radiative corrections,
on their side, also supply a twofold opportunity for our quest. As usually explored, they affect low-energy
observables by loop contributions, often clear and measurable, storing the information of high-energy
degrees of freedom that are virtually exchanged. This ability of radiative corrections to link different
scales, manifests itself also when considering the running of renormalized parameters. The dreamed
scenario being the one where an ensemble of disconnected low-energy inputs appear as related, or better
unified, when extrapolated at higher energies.

The subject of this thesis is the interplay between the phenomenological and the more formal aspects of the
RG extrapolation. We suggest the partial conclusions 2.7, 3.4 amd 4.6 for a more detailed survey of our
results, but we stress here how the general and common flavour along all the chapters is that a coherent
application of the RG, when supported with the choice of boundary conditions of experimental value,
gives a unique instrument to study the place of a successfully low-energy parametrization into a bigger
picture. This scientific attitude, that enjoy a close bound between the experimental characterization and
the formal development, has also been our personal achievement that has emerged in our PhD years of

research and that will form a solid basis for our, hopefully, future quests.
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Appendix A

Linear and double seesaw

In full generality, we introduce a Majorana mass term for the right-handed neutrinos and a Yukawa

coupling for the fermionic singlets

L = iNgy"(0,Ng)+iSy"(0,5)
_ [FRYUﬁTL +SOYsHL + NRkMgS + %TgMNNR + %Fpss + h.c.] . (A1)

In the left-handed basis Nz = (v, N5, S)T we have, after EW symmetry breaking, the following mass
matrix
0 mb mk
M=l mp My Mg |, (A.2)
ms M ps

with mp = UYV/\/§ and mg = vYS/\/§.

o The linear seesaw [112] corresponds to pug =0, My =0

0 mE mk
Miss=]l mp 0 Mg |. (A.3)

ms M}; 0

In this case the only source of lepton number violation comes from mg. Following the standard

seesaw approximation we find
T (77Ty-1 T qr-1
my 8 mp(Mg) "mg+mgMp mp . (A.4)

Generalizing the Casas-Ibarra parametrization [56], we obtain [53]

V2 I e
YVZTMR(mg) 1UPMNS iy, A mVUlFT’MNS’ (A.5)

where A is a 3x3 matrix satisfying the equation A+ A7 = 1. Consequently, 4;; = 1/2 and Ay = -Aj;.
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Linear and double seesaw

o The double seesaw corresponds to mg =0

0o mL o
MDSS = mp MN MR . (A6)
0 Mj ps

The Majorana mass term My, in addition to pug, violates lepton number for two units. We assume
the hierarchy My > Mg > mp > pg. Integrating out the heavy fields N, we find the effective

Lagrangian
11—~ ~ 1== ~
Lhss = §L?H*(YVTM&1Yv)inTLj +§5f(M£M&1Yu)inTLj (A.7)

11—~ l1—= 1—
+ §LZCH*(YVTMJ§,1MR)USJ- + iSiC(MgM]QlMR)iij - 55%55 +h.c. .

In the left-handed basis Nz, = (v, S)T eq. (A.7) corresponds, after EW symmetry breaking, to the

mass matrix

— TM—l _ TM—IM
Mg = m,; 11]1mD " T y -1 N : (A.8)
_MRMNmD /LS_MRMNMR
After block-diagonalization we find
vty o ™ 0 (A.9)
pss 0 Mheavy 7
where
my, = =mpMy'mp = (mp My Mg) (s - Mg My Mg)™ (Mg My'mp) (A.10)
Mheavy =us — MgM&lMR . (All)

From eq. (A.10) it follows that m, — 0 if ug — 0 since the type-I contribution mTDMlemD cancels

out between the two remaining terms. Considering a perturbative expansion in pg, we find
my s mp (M) usMztmp . (A.12)

As a result, the Casas-Ibarra parametrization is analogue to eq. (3.5). The unitary mixing matrix

V in eq. (A.9) has the general structure

V:(\/l—BBT B )

A.13
-Bt V1-BiB ( )

and, at the lowest order, we find B* = mg(Mg)_l. For the sake of simplicity, we focus on the case
with ng = ng = 3, and we assume Mg = diag(Mg;), and My = diag(My;) with 4 =1,2,3. In this
case the heavy block in eq. (A.9) simplifies to ME M Mg = diag(M3;/My;). In eq. (A.7) the inter-
actions between the lepton doublets L; and the three singlet fermions S; are mediated by an effective
Yukawa matrix Y, = M};MR,IYV. The previous assumption implies (f/l,)ij = Mpi(Y,)ij/ Mn.
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A.1 Linear seesaw: results

For definiteness, we focus on the case with np = ng = 3. Considering the low-energy neutrino data, we
follow the same strategy outlined in section 3.2.2. We make use of the Casas-Ibarra parametrization in
eq. (A.5) to numerically reconstruct the Yukawa matrix Y,, and we randomly scan over the intervals
10 GeV < Mg; <102 TeV, 102 keV < (mg);; < 10keV, and 107! < A;; < 10%. As done for the inverse
seesaw, we discard points unable to comply with the bounds discussed in section 3.2.1. As far as the
stability of the EW vacuum is concerned, in the mg — 0 limit the mass matrix Mygg in eq. (A.3) reduces
to the same structure already studied in the inverse seesaw case (see eq. (3.2)). Consequently, in the
definition of the Higgs effective quartic coupling we employ the same RG equations, matching conditions
and effective potential used in the inverse seesaw analysis. We show the final result of our analysis in

fig. A.1 considering a normal ordering of light neutrino masses.

Linear seesaw: Normal Ordering‘
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Figure A.1: The same as in fig. 3.6 but considering the linear seesaw.

As expected, we find the same quantitative conclusion if compared with the inverse seesaw case.
Yukawa couplings such that Tr(Y,[Y;) 2 0.4 are excluded by the metastability bound. Remarkably,
considering both the lepton flavor violating process u — ey and the 0v243, these points lie in a region of

the parameter space close to present or future sensitivities.

A.2 Double seesaw: results

We follow the same approach already exploited for the inverse and linear seesaw models. However, in

the double seesaw case there are few remarkable differences. We use the Casas-Ibarra parametrization
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in eq. (3.5) to sample the Yukawa matrix Y,, and we randomly scan over the intervals 10 TeV < Mg; <
103 TeV, 10? GeV < My; < 10 GeV, and 10keV < (ug);; < 10*keV. Few comments are in order. First,
notice that this choice of parameters — optimized in order to obtain O(1) Yukawa couplings — respects the
hierarchy My > Mg > mp > pgs assumed above (see discussion below eq. (A.6)). Second, we expect the
following order of magnitude estimates: for the mixing parameter in eq. (A.13), B ~ O(1072); for the mass
of the heavy neutrinos in eq. (A.11), Myeavy ~ O(1) GeV; for the effective Yukawa coupling in eq. (A.7),
Y, ~107°Y,. Armed with these numbers, we can outline as follows. At large renormalization scale values,
> Mp;, the model is described by the full Lagrangian in eq. (A.1) (with Ys = 0). In terms of the RG
running, the only relevant parameter is the Yukawa matrix Y, describing the interactions between the
Higgs doublet, the lepton doublets and the three right-handed heavy neutrinos. At this stage, the situation
is formally equivalent to the familiar type-I seesaw.! There is, however, one remarkable difference. In the
type-I seesaw right-handed neutrino masses My; ~ O(10°) GeV require, in order to reproduce low-energy
neutrino phenomenology, small Yukawa couplings (typically Y, ~ 107°). As a consequence, the impact
of the interactions NgY, H'L + h.c. on the running of the Higgs quartic couplings is negligible. In the
double seesaw case, on the contrary, we are allowed to consider O(1) Yukawa couplings since the mass of
light neutrinos is set by ugs (see eq. (A.12)). Below the thresholds My; the heavy right-handed neutrinos
are integrated out, and eventually the model is described by the effective Lagrangian in eq. (A.7). Given
our choice of parameters, in this region the running is approximately equivalent to the pure SM since for
the effective Yukawa interactions LE H*Y,, S we expect Y, ~107°Y,,.

We summarize our results in fig. A.2. In the left panel, we show the running of the effective Higgs
quartic coupling for a specific realization of the double seesaw model with Tr(Y,Y,) ~ 0.62. Above
the thresholds Mpy; the Yukawa couplings Y, largely affect the running of A\eg eventually violating the
metastability bound before the Planck scale. In the right panel we show the result of our numerical scan
focusing on the effective neutrino mass relevant for the 0v25. The most striking difference with respect
to the inverse and linear seesaw models (see, respectively, figs. 3.6, A.1) is that the presence of additional
neutrinos with mass Mpeavy ~ O(1) GeV gives a sizable contribution to m;’;f. As a result, numerous
points in our numerical analysis are close to (or even exceed) the present experimental bound. We find
that Yukawa couplings such that Tr(Y,[Y,) > 0.6 are excluded by the metastability bound.

In concrete, the contribution of each heavy right-handed neutrino to the effective quartic coupling is given by eq. (3.20)
(divided by two, since now there is no double degeneracy) while for the 8 functions we exploit the same two-loop expression

already discussed in section 3.3.3 (see eq. (3.31) for the one-loop approximation).
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’ Double seesaw: Normal Ordering ‘
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Figure A.2: Left panel. Running of the effective Higgs quartic coupling in the double seesaw model. Right-
handed neutrinos with mass My; ~ O(10°) GeV (vertical dashed lines) notably affect the RG evolution
thanks to O(1) Yukawa couplings. In the analyzed case, Yukawa couplings such that Tr(Y,[Y,) ~ 0.62
exceed the metastability bound below the Planck scale. Right panel. Effective neutrino mass as a function
of the trace of the Yukawa couplings, Tr(YY,).






Appendix B

One-loop 3 functions for
non-anomalous U (1)’ model with

generic charge assignment

We give in this appendix the one-loop 8 functions employed in chapter 4 with complete freedom in the
choice of the U(1)" charge, given in term of zg, charge of the quark doublet, and z,, charge of the RH
quark up ([162, 163]).

£ functions of gauge coupling constants

41¢3 19g.°
BV = = BN == 8L =-Te’ (B.1)
2 (46720 50§z.\ 41¢15° 3
ﬂ;? = g ( 3Q+ S )+ 61 + 91" (~44zqz, + 13423 + 1827) (B.2)
41¢? 464, 5091
B - g( 39 —44g;2zQzu+134gfzg+18912zﬁ)+g‘2( g?iZQ + 9312“)
415 46 50
T+§g291zQ+ Egzgizu (B.3)

[ functions of Yukawa interactions

_ _ 175> 17¢* 993 9 ) 9y3
ﬁg) = Yt(_ging_ZlgigZu_12—12—42—893—391 Zé—3gi Zz +7275
B = Y (48912zQzu ~ 9691722 - 691223) +10Y} (B.4)
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£ functions of quartic scalar interactions

B = A (12g;ng 12912, - 357 - 397 - 993 + 249, 2z, — 1291723 — 1241722 + 12Yt2)
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Appendix C

Two-loop  functions for

non-anomalous U(1)" model

We give in this appendix the complete set of the two-loop 8 functions employed in chapter 4 ([162, 163]).

The choice for zg and z, is the one corresponding to B — L assignment.
£ functions of gauge coupling constants

~2 2 YQ 5
6(2)—92(491 3 +3g+123+4;2—32)+35692 (1)

4919 115° 119 995 4gi” 5
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£ functions of quartic scalar interactions
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