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The procedure of construction of a big class of operators on configuration spaces is presented.
Second-order differential operators are studied on configuration space over domain with
boundary. Symmetric extensions of the minimal operator are discovered.

1 Introduction

The aim of the present article is construction of a big class of operators on configuration spaces
over whole underlying space or only domain of them and discovery of conditions under which
these operators will be symmetric. Our underlying space is the usual R

d with Borel σ-algebra
B(Rd) and the fixed measure σ on (Rd,B(Rd)), such that

dσ(x) = ρ(x)dx,

where ρ > 0 a.a., ρ ∈ L1
loc(R

d, dx), ρ1/2 ∈W 1,2
loc (Rd, dx).

Definition 1. Configuration space Γ = ΓRd is the space of all locally finite subsets (configura-
tions) of R

d:

Γ =
{
γ ⊂ R

d
∣∣ |γΛ| < +∞ for any compact Λ ⊂ R

d
}
,

where | · | means the cardinality of a set and

γΛ = γ ∩ Λ.

Let us define the σ-algebra B (Γ) as the minimal σ-algebra such that all mappings

Γ � γ �−→ |γΛ|

are B(Γ)-measurable for any Λ ∈ Bc(Rd), where Bc(Rd) is the family of all Borel subsets of R
d

with compact closure.
The space Γ can be naturally embedded into the space M(Rd) of all measures on R

d in the
following way

γ ∈ Γ ↔
∑
x∈γ

εx ∈ M(Rd),

where εx is a Dirac measure at the point x. Thus Γ can be endowed with topology generated
by the weak topology on M(Rd). Moreover, it can be shown that the σ-algebra B(Γ) is really
the Borel σ-algebra with respect to this topology.

For f ∈ C0(Rd) we can define a pairing between the function and configuration:

〈f, γ〉 :=
∑
x∈γ

f(x).
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This definition is correct since the sum in the r.h.s. is finite due to definition of configurations.
Consider also the class of cylindrical smooth functions: F ∈ FC∞

b (Γ,D) iff

F (γ) := gF (〈ϕ1, γ〉, . . . , 〈ϕN , γ〉), (1)

where ϕ1, . . . , ϕN ∈ D := C∞
0 (Rd), gF ∈ C∞

b (RN ) (the space of all infinitely differentiable
functions on R

N , which are bounded together with all its derivatives).
Note that, if f ∈ C0(Rd) then for any γ ∈ Γ

〈f, γ + ε·〉 − 〈f, γ〉 ∈ C0(Rd).

Analogously, if F ∈ FC∞
b (Γ,D) then for any γ ∈ Γ

F (γ + ε·) − F (γ) ∈ D.

Consider also the space ΓΛ of the all configurations of Λ ∈ B(Rd):

ΓΛ =
{
γ ⊂ R

d
∣∣ γ ∩ Λc = ∅

}
, (2)

where Λc := R
d \ Λ.

2 Measures on the configuration spaces

Let us consider a class M1
fm(Γ) of the probability measures on (Γ,B(Γ)), which have all finite

local moments; it means that

µ ∈ M1
fm(Γ) ⇔

∫
Γ
|γΛ|ndµ(γ) < +∞ (3)

for any n ∈ N and for any Λ ∈ Bc(Rd).
We start from the non-negative B(Γ) × B(Rd)-measurable function r : Γ × R

d → R+. We
suppose that r(γ, x) is defined for µ-a.a. γ ∈ Γ and a.a. x ∈ R

d (note that we always assume
that x �∈ γ).

Definition 2. The measure µ ∈ M1
fm(Γ) is called the Gibbs measure corresponding to r if for

any non-negative B(Γ) × B(Rd)-measurable function h : Γ × R
d → R+ the following Campbell–

Mecke identity holds:∫
Γ

∑
x∈γ

h(γ, x)dµ(γ) =
∫

Γ

∫
Rd

h(γ + εx, x)r(γ, x)dσ(x)dµ(γ). (CM)

For examples of the such measures we start from the case when r ≡ 1. Mecke [3] proved that
there exists only one such measure µ for given Radon measure σ on R

d. This measure is called
the Poisson measure with intensity σ and is denoted by πσ. There exists a direct construction
of the Poisson measure. For explore it we start from the space ΓΛ, where Λ ∈ Bc(Rd). Clearly,

ΓΛ :=
⊔

n∈N0

Γ(n)
Λ ,

where Γ(n)
Λ is the set of all n-particle configurations (subsets) of Λ, N0 = N∪{0}. There is a bijec-

tion Λ̃n/Sn → Γ(n)
Λ , where Λ̃n := {(x1, . . . , xn) ∈ Λn |xk �= xj , k �= j}, and Sn is the permutation
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group over {1, . . . , n}. Therefore, we can consider on Γ(n)
Λ the image σ(n) of the product mea-

sure σn under this bijection. Consider also a σ-algebra B(ΓΛ) as the minimal σ-algebra such
that all mappings

ΓΛ � γ �−→ |γΛ′ | (4)

are B(ΓΛ)-measurable for any Λ′ ∈ Bc(Λ). Then the Poisson measure πΛ
σ on (ΓΛ,B(ΓΛ)) is

defined as

πΛ
σ := e−σ(Λ)

∞∑
n=0

1
n!
σ(n). (5)

It can be shown that the measurable space (Γ,B(Γ)) is the projective limit of the measurable
spaces (ΓΛ,B(ΓΛ)) and that the family of measures {πΛ

σ }Λ∈Bc(X) is consistent. Therefore one
has to define the Poisson measure πσ on (Γ,B(Γ)) as the projective limit of this family.

Another examples were found by Nguen and Zessin [4]. They showed that a big class of
Gibbs measures constructed by the quite general potential satisfy the Campbell–Mecke identity.
More precisely, let Φ be a potential, i.e., a measurable function Φ : Γ0 → R ∪ {+∞}, such
that Φ(∅) = 0. Define for any Λ ∈ Bc(Rd) the conditional energy EΦ

Λ : Γ → R ∪ {+∞}
such that EΦ

Λ (γ) =
∑

η�γ,|η∩Λ|>0 Φ(η) if
∑

η�γ,|η∩Λ|>0 |Φ(η)| < ∞ and EΦ
Λ (γ) = +∞ otherwise

(the notation η � γ means that η is a finite subset of γ). Then for fixed β > 0 we define for
γ ∈ Γ, ∆ ∈ B(Γ) a specification

Πσ,β,Φ
Λ (γ,∆) =

1{Zσ,β,Φ
Λ (γ)<+∞}
Zσ,β,Φ

Λ (γ)

∫
Γ

1∆(γΛc ∪ γ′Λ)e−βEΦ
Λ (γΛc∪γ′

Λ)dπσ(γ′), (6)

where Zσ,β,Φ
Λ (γ) =

∫
Γ e

−βEΦ
Λ (γΛc∪γ′

Λ)dπσ(γ′). A measure µ ∈ M1(Γ) is called the grand canon-
ical Gibbs measure with interaction potential Φ iff for all Λ ∈ Fc(Rd) and for all ∆ ∈ B(Γ)
the following Dobrushin–Lanford–Ruelle identity holds

µ(∆) =
∫

Γ
Πσ,β,Φ

Λ (γ,∆)dµ(γ). (7)

The set of all such probability measures µ will be denoted by Ggc(σ, βΦ).
Therefore, let µ ∈ Ggc(p dx, βΦ) and let µ has the local first moment (i.e., (3) is true for

n = 1). Then µ satisfies the Campbell–Mecke identity with

r(γ, x) = exp(−βEΦ
{x}(γ + εx)). (8)

Let us recall that

EΦ
{x}(γ + εx) =

{ ∑
{x}⊂η�γ∪{x} Φ(η), if

∑
{x}⊂η�γ∪{x} |Φ(η)| < +∞,

+∞, otherwise.
(9)

Of course, all our considerations will be true in the general situation with function r, but
with some additional conditions on it. Thus, if we will want to use our results for examples
above, we have to check such conditions for corresponding r.

3 Construction of operators

First of all, for µ-a.a. γ ∈ Γ let us consider a measure on (Rd,B(Rd)):

dσγ(x) = r(γ, x)dσ(x).
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Therefore, we have a family of spaces {L2(Rd, σγ)}γ∈Γ (without loss of generality we assume
that this family is indexed by all space Γ).

Suppose that we have the family of operators {B(γ)}γ∈Γ in the corresponding spaces
{L2(Rd, σγ)}γ∈Γ such that

D ⊂ Dom (B(γ)), B(γ)1 ∈ L2(Rd, σγ) ∩ L1(Rd, σγ). (10)

Suppose also that for F ∈ FC∞
b (Γ,D) there are functions Fk ∈ FC∞

b (Γ,D), ψk : Γ × R
d → R,

k = 1, . . . , n such that ψk(γ′, ·) ∈ L2(Rd, σγ)∩L1(Rd, σγ) for µ-a.a. γ, γ′ ∈ Γ and for x ∈ γ if we
consider F (γ) as function of x then

B(γ′)xF (γ) =
n∑

k=1

Fk(γ)ψk(γ′, x).

Then we can consider the bilinear form E on FC∞
b (Γ,D) generated by the family {B(γ)}γ∈Γ:

Eµ(F,G) =
∫

Γ

∫
Rd

B(γ′)x(F (γ + εx) − F (γ))
∣∣
γ′=γ

· (G(γ + εx) −G(γ))r(γ, x)dσ(x)dµ(γ)

for F,G ∈ FC∞
b (Γ,D).

Note that for x �∈ γ one has

B(γ′)xF (γ) = F (γ)(B(γ′)1)(x), (11)

since then F (γ) is a constant as a function of x.

Proposition 1. For any F,G ∈ FC∞
b (Γ,D) the following equality holds

Eµ(F,G) =
∫

Γ
HµF (γ) ·G(γ)dµ(γ),

where

HµF (γ) =
∑
x∈γ

B(γ′)xF (γ)
∣∣
γ′=γ−εx

−
∑
x∈γ

F (γ − εx)(B(γ − εx)1)(x)

−
∫

Rd

B(γ)xF (γ + εx)r(γ, x)dσ(x) + F (γ)
(∫

Rd

(B(γ)1)(x)r(γ, x)dσ(x)
)
.

Proof.∫
Γ

∫
Rd

B(γ)x(F (γ + εx) − F (γ)) · (G(γ + εx) −G(γ))r(γ, x)dσ(x)dµ(γ)

=
∫

Γ

∫
Rd

B(γ)xF (γ + εx) ·G(γ + εx)r(γ, x)dσ(x)dµ(γ)

−
∫

Γ

∫
Rd

B(γ)xF (γ + εx) ·G(γ)r(γ, x)dσ(x)dµ(γ)

−
∫

Γ

∫
Rd

F (γ) · (B(γ)1)(x) ·G(γ + εx)r(γ, x)dσ(x)dµ(γ)

+
∫

Γ

∫
Rd

F (γ) · (B(γ)1)(x) ·G(γ)r(γ, x)dσ(x)dµ(γ)

=
∫

Γ

∫
Rd

n∑
k=1

Fk(γ + εx)ϕk(x, γ) ·G(γ + εx)r(γ, x)dσ(x)dµ(γ)

−
∫

Γ

∫
Rd

B(γ)xF (γ + εx) ·G(γ)r(γ, x)dσ(x)dµ(γ)
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−
∫

Γ

∫
Rd

F (γ) · (B(γ)1)(x) ·G(γ + εx)r(γ, x)dσ(x)dµ(γ)

+
∫

Γ

∫
Rd

F (γ) · (B(γ)1)(x) ·G(γ)r(γ, x)dσ(x)dµ(γ)

=
∫

Γ

∑
x∈γ

(
n∑

k=1

Fk(γ)ϕk(x, γ − εx)

)
G(γ)dµ(γ)

−
∫

Γ

(∫
Rd

B(γ)xF (γ + εx)r(γ, x)dσ(x)
)
G(γ)dµ(γ)

−
∫

Γ

(∑
x∈γ

F (γ − εx)(B(γ − εx)1)(x)

)
G(γ)dµ(γ)

+
∫

Γ
F (γ)G(γ)

(∫
Rd

(B(γ)1)(x)r(γ, x)dσ(x)
)
dµ(γ). �

Therefore, if B(γ) are symmetric operators on C∞
0 (Rd) in L2(Rd, σγ) for any γ ∈ Γ, then the

corresponding operator Hµ is a symmetric operator on FC∞
b (Γ,D) in L2(Γ, µ).

4 Second order differential operators

In this section we generalized results obtained in [1, 2] for the Poisson measure in our general
case. Suppose that r(γ, ·) ∈ C1(Rd) for µ-a.a. γ ∈ Γ.

Consider now instead of B(γ) the Dirichlet operator A(γ) corresponding to the bilinear form

Eσγ (f, g) =
∫

Rd

〈A(γ, x)∇f(x),∇g(x)〉dσγ(x),

where A(γ, x) = (aij(γ, x))i,j=1,...,d and aij(γ, ·) = aji(γ, ·) are smooth functions on R
d. Since∫

Rd

〈A(γ, x)∇f(x),∇g(x)〉dσγ(x)

=
∫

Rd

〈A(γ, x)∇f(x),∇g(x)〉r(γ, x)ρ(x)dx

= −
∫

Rd

div ((A(γ, x)∇f(x))r(γ, x)ρ(x))g(x)dx

= −
∫

Rd

(div (A(γ, x)∇f(x)))r(γ, x)ρ(x)g(x)dx

−
∫

Rd

〈A(γ, x)∇f(x),∇(r(γ, x)ρ(x))〉g(x)dx

= −
∫

Rd

div (A(γ, x)∇f(x))g(x)dσγ(x)

−
∫

Rd

〈A(γ, x)∇f(x),∇ ln(r(γ, x)ρ(x))〉g(x)dσγ(x),

then

A(γ)f(x) = −div (A(γ, x)∇f(x)) − 〈A(γ, x)∇f(x), β(γ, x)〉, (12)

where β(γ, x) = ∇ ln(r(γ, x)ρ(x)).
Since A(γ)1 ≡ 0 then the operator Hµ corresponding to the family {A(γ)}γ∈Γ has the simple

form

HµF (γ) =
∑
x∈γ

A(γ′)xF (γ)
∣∣
γ′=γ−εx

.
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Let us now study the operator Hµ in the space L2(ΓΛ, µΛ), where µΛ is the projection of
the measure µ onto ΓΛ and Λ is the regular (bounded or not) domain of R

d with piecewise C1

boundary ∂Λ.

Proposition 2. The first Green formula for the operator Hµ holds:

∫
ΓΛ

HµF (γ)G(γ)dµΛ(γ)

=
∫

ΓΛ

∫
Λ
〈A(γ, x)∇xF (γ + εx),∇xG(γ + εx)〉dσγ(x)dµΛ(γ)

−
∫

ΓΛ

∫
∂Λ

∂

∂nγ
s
F (γ + εs)G(γ + εs)dσ̃γ(s)dµΛ(γ),

where

∂

∂nγ
s
f(s) = 〈A(γ, s)∇f(s), ns〉.

Proof. Due to Campbell–Mecke identity one has∫
ΓΛ

HµF (γ)G(γ)dµΛ(γ) =
∫

ΓΛ

∫
Λ
(Aγ)xF (γ + εx)G(γ + εx)dσγ(x)dµΛ(γ).

Then, write for A(γ) the first Green formula:

∫
Λ
A(γ)f(x)g(x)dσγ(x)

= −
∫

Λ
div (A(γ, x)∇f(x))g(x)dσγ(x) −

∫
Λ
〈A(γ, x)∇f(x), β(γ, x)〉g(x)dσγ(x)

= −
∫

Λ
div (A(γ, x)∇f(x))g(x)r(γ, x)ρ(x)d(x)

−
∫

Λ
〈A(γ, x)∇f(x), β(γ, x)〉g(x)dσγ(x)

=
∫

Λ
〈A(γ, x)∇f(x), β(γ, x)〉g(x)dσγ(x) +

∫
Λ
〈A(γ, x)∇f(x),∇g(x)〉dσγ(x)

−
∫

∂Λ
〈A(γ, s)∇f(s), ns〉g(s)r(γ, s)ρ(s)dS(s)

−
∫

Λ
〈A(γ, x)∇f(x), β(γ, x)〉g(x)dσγ(x)

=
∫

Λ
〈A(γ, x)∇f(x),∇g(x)〉dσγ(x) −

∫
∂Λ

〈A(γ, s)∇f(s), ns〉g(s)dσ̃γ(s),

where dσ̃γ(s) = r(γ, s)ρ(s)dS(s) for s ∈ ∂Λ. As a result, we obtain the statement. �

Corollary 1. The second Green formula for the operator Hµ has the following form

∫
ΓΛ

(HµF (γ)G(γ) − F (γ)HµG(γ))dµΛ(γ)

=
∫

ΓΛ

∫
∂Λ

(
∂

∂nγ
s
G(γ + εs) · F (γ + εs) − ∂

∂nγ
s
F (γ + εs) ·G(γ + εs)

)
dσ̃γ(s)dµΛ(γ).
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Remark 1. Note that for any function F ∈ FC∞
b (Γ,D) in the form (1)

∂

∂nγ
s
F (γ + εs) =

N∑
k=1

F̂k(γ + εs)
∂

∂nγ
s
ϕk(s),

where

F̂k (γ) :=
∂gF

∂qk
(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉), 1 ≤ k ≤ N.

Let us consider now the minimal operator

Hmin := (Hµ,FC∞
b (ΓΛ,D(Λ))),

which is symmetric in L2(ΓΛ, µΛ) (there D(Λ) = C∞
0 (Λ)). We define the maximal operator by

the standard way:

Hmax = (Hmin)∗

Proposition 3. FC∞
b (ΓΛ,D) ⊂ Dom (Hmax) and for any G ∈ C∞

b (ΓΛ,D)

HmaxG(γ) = HµG(γ) +
∫

∂Λ

∂

∂nγ
s
G(γ + εs)dσ̃γ(s)

Proof. It follows directly from the second Green formula that for any G ∈ FC∞
b (D,ΓΛ) and

F ∈ FC∞
b (D(Λ),ΓΛ)∫

ΓΛ

(
(HµG)(γ)F (γ) −G(γ)(HµF )(γ)

)
dµΛ(γ)

= −
∫

ΓΛ

∫
∂Λ
F (γ)

∂

∂nγ
s
G(γ + εs) dσ̃γ(s) dµΛ(γ). �

In the case when A is not dependent on γ: A(γ, x) ≡ A(x) one has that

∂

∂nγ
s
f(s) ≡ ∂

∂νs
f(s) = 〈A (s)∇f(s), ns〉

is the usual co-normal derivative.
Thus, if we define the following set of functions that satisfies Neumann-type boundary con-

ditions on ∂Λ:

DN (Λ) =
{
f ∈ D

∣∣∣ ∂

∂νs
f(s) = 0, s ∈ ∂Λ

}
,

then the operator (Hµ,FC∞
b (ΓΛ,DN (Λ))) will be symmetric in L2(ΓΛ, µΛ).
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