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abstract

In this paper, we study Schrödinger equation for the Kratzer potential in constant
positive curvature. By comparing the corresponding Schrödinger equation of Kratzer
potential in constant positive curvature to the Gegenbauer polynomials differential equa-
tion, we obtain the energy spectrum and wave function. These lead us to have raising
and lowering operators which are first order equations. We take advantage from these
first order equations and discuss the supersymmetry algebra. Also, we obtain the cor-
responding partner hamiltonian for Kratzer potential and investigate the commutation
relation for the generators algebra.
Keywords: The Kratzer potential; Supersymmetry approaches; Gegenbauer polynomials;
Raising and lowering operators

I. INTRODUCTION

The accidental degeneracy for the first time discussed by Schrodinger [1], Infeld [2] and Stivenson[3].
This subject play important role in physics, because it connect to nontrivial realization of hidden sym-
metry and also apply to construct many - particle wave functions [4], non relativistic models of quark
systems [5] and solutions of two - center problem [6]. Also the accidental degeneracy in this system are
discussed by Ref.s [7-13]. They have shown that the complete degeneracy of spectrum of the Columb
problem and harmonic oscillator on the three dimensional sphere in the orbital and azimutal quantum
number is caused by an additional integral of motion. In case of Kratzer potential, we have some com-
pleted problem, we see Ref[14] which discussed the Kratzer potential with algebra point of view. In
that paper they considered Kratzer potential in flat space, but here we consider the Kratzer potential in
positive curvature and we do same calculation as the Ref [14] mentioned. So, we consider the following
kratzer potential in flat space with non-curvature.

v(r, θ) = De

(
r − re
r

)2

+ [
β′ cos2 θ

r2 sin2 θ
] (1.1)

whereDe is the dissociation energy between two atoms in a solid, re is the equilibrium internuclear sepa-
ration and β′ is positive real constant. We find that this potential (1.1) reduces to the modified Krazter
potential in the limiting case of β′ = 0. The group of hidden symmetry of this systems with accidental
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degeneracy give us motivation to discuss the Kratzer potential with constant positive curvature. Also
note that the concept of shape invariance has extended to ordinary differential equations. In that case
the second order differential operator will decompose the multiplication of raising and lowering operators
[15-20]. In this paper, we use the factorization method and shape invariance of the Gegenbauer differential
equation with respect to parameters n and obtain the factorized Schrödinger equations for the Kratzer
potential in constant positive curvature. Also we obtain the shape invariance relation for the correspond-
ing potential. So, the paper organize as follows: Section 2 presents the general form of Kratzer potential
in spherical coordinates with spaces of constant curvature. Section 3 we use the Gegenbauer equation
and solve the corresponding equation. Section 4 by using the factorization method from the Gegenbauer
equation we obtain the raising and lowering operators, and finally we obtain the super algebra which is
important in super symmetry system.

II. KRATZER POTENTIAL ON THE CONSTANT POSITIVE CURVATURE

As we know the three - dimensional space of constant positive curvature can also be realized geometri-
cally on the three - dimensional sphere S3 of the radius R, imbedded into the four - dimensional Euclidean
space,

ξ0
2 + ξiξi = R2. (2.1)

We note that the relation between the coordinates xi in the tangent space and ξµ(µ = 0, 1, 2, 3) is given
by,

ξi =
xi√

1 + r2

R2

ξ0 =
R√

1 + r2

R2

, (2.2)

where the coordinates ξi change in the region ξiξi ≤ R2.
Now we are going to write the general form of Kratzer potential in space of constant curvature. By using
the r2 = x1

2 + x2
2 + x3

2 and equation (2.2), one can obtain the following potential,

V (r) = V (ξ) = De[1−
2re
ξ

(1− ξ2

R2 )
1
2

+
r2e
ξ2

1− ξ2

R2

]. (2.3)

In the spherical system of coordinates we have,

ξ1 = R sinψ sin θ cosϕ, ξ2 = R sinψ sin θ sinϕ

ξ3 = R sinψ cos θ, ξ0 = R cosψ, (2.4)

where 0 ≤ ψ < π, 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.
So, the kratzer potential (2.3) in spherical system is,

V (ψ) = De[1−
2re cotψ

R
+
r2e cot

2 ψ

R2
], (2.5)

III. SOLUTION OF THE SCHRÖDINGER EQUATION FOR THE KRATZER POTENTIAL

In order to solve the Schrödinger equation, we need to write the corresponding equation (2.5) on
constant curvature, [

− ~2

2µ
△+ V

]
Ψ = EΨ, (3.1)
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where △ is the Laplace - Beltrami operator and is given by,

△ =
1
√
g

∂

∂xi
√
ggik

∂

∂xk
(3.2)

so the metric is,

ds2 = gikdx
idxk (3.3)

where g = det(gik), g
ik = (gik)

−1 and r2 = xixi (i, k = 1, 2, 3). and the metric can be obtained the
following equation,

ds2 = dξ21 + dξ22 + dξ23 + dξ20 , (3.4)

By using equation (2.4), one can obtain the equation (3.5) as following,

ds2 = R2d2ψ +R2 sin2 ψd2θ +R2 sin2 ψ sin2 θd2φ, (3.5)

and,

g = R2 sin4 ψ sin2 θ, (3.6)

We put equations (2.5),(3.2),(3.5) and(3.6)into equation (3.1), and obtain the Schrödinger equation,

[
1

sin2 ψ

∂

∂ψ
sin2 ψ

∂

∂ψ
]Φ(ψ) +

2µR2

~2
[E − ~2

2µR2

m′(m′ + 1)

sin2 ψ
(3.7)

−De(1−
2re cotψ

R
+
r2e cot

2 ψ

R2
)]Φ(ψ) = 0

Now we are going to choice the variables Φ(ψ) = W
sinψand x = cosψ, and we have,

(1− x2)W ′′(x)− xW ′(x) + [1 +
2µR2

~2
(E − ~2

2µR2

m′(m′ + 1)

1− x2
(3.8)

−De(1 +
r2e
R2

x2

1− x2
)]W (x) = 0

where we have assume the following condition,

cotψ ≥ −2R

re
(3.9)

In order to solve equation (3.8), we consider the following variable,

W (x) = g(x)p(x) (3.10)

from which we obtain,

(1− x2)P ′′(x) + [ 2(1− x2)
g′(x)

g(x)
− x]P ′(x) (3.11)

[1 +
2µR2

~2
(E − ~2

2µR2

m′(m′ + 1)

1− x2
−De(1 +

r2e
R2

x2

1− x2
)]P (x) = 0

and compare with the following Gegenbauer equation [21],

(1− x2)P ′′λ
n,m(x)− 2(λ+ 1)xP ′λ

n,m(x) + [n(2λ+ n+ 1)− m(2λ+m)

1− x2
]pλn,m(x) = 0 (3.12)

the wave function and energy spectrum are respectively,

Φ(x) = an,m(λ)(1− x2)
2λ−1

4 pλn,m(x) (3.13)

E = De +
~2

2µR2

[
m′(m′ + 1) + 2λ(n−m) + n(n+ 1)−m2 + (λ− 1

2
)

]
, (3.14)

where an,m(λ) is a real normalization coefficient.
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IV. LADDER OPERATORS

By using the factorization method we construct the creation and annihilation operators. In order to
obtain A± operators, we use following equation,

A±Φn(x) = a±Φn±1(x) (4.1)

and,

A± = ±α(x) d
dx

± β(x) (4.2)

In that case we apply the operators on the wave function (3.13),

d

dx
Φ(x) = (

2λ− 1

2
)(

−x
1− x2

)Φ(x) + an,m(λ)(1− x2)
2λ−1

4
d

dx
pλn,m(x) (4.3)

One possible relation for the first derivative of the Gegenbauer polynomials [21] is,

(1− x2)
d

dx
pλn(x) = (n+ 2λ− 1)pλn−1(x)− nxpλn(x) (4.4)

We put equation (4.4)into equation (4.3) and we obtain the lowering operator with respect to n,

A−(n, x) = (1− x2)
d

dx
+ (n+ λ− 1

2
)x (4.5)

We now proceed same the raising and obtain operator.In that case,we need to consider the Gegenbauer
polynomials [21],as following,

(1− x2)
d

dx
pλn(x) = (n+ 2λ)xpλn(x)− (n+ 1)pλn+1(x) (4.6)

We put again this equation into equation (4.2), one can obtain raising operator with respect to n,

A+(n, x) = −(1− x2)
d

dx
+ (n+ λ+

1

2
)x (4.7)

V. THE SUPERSYMMETRY APPROACHES FOR KRATZER POTENTIAL WITH
CONSTANT POSITIVE CURVATURE

In order to discuss the supersymmetry for this model. we have to consider the ground state wave
function. By using the hamiltonian and ground state wave function. we can obtain V1(r) as,

H1Ψ0(r) = − ~2

2m

d2Ψ0

dr2
+ V1(r)Ψ0(r) = 0, (5.1)

V1(r) =
~2

2m

Ψ′′
0(r)

Ψ0(r)
(5.2)

Now, we factorize the corresponding Hamiltonian in terms of first order equation, which are called A,A+,

H1 = A+A (5.3)

where hamiltonian H1is,

H1 = −(1− x2)2
d2

dx2
+ (β + 2)x(1− x2)

d

dx
− α(1− x2) + βαx2 (5.4)
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Now, we are going to obtain the hamiltonian H2, as H2 = AA+, which is partner H1, so we have,

H2 = −(1− x2)2
d2

dx2
+ (2− α)x(1− x2)

d

dx
+ β(1− x2) + αβx2 (5.5)

The relation between H1 and H2, lead us to have a following equation,

n = −λ (5.6)

By using the equation(5.6) in equation (4.5) and equation (4.7) we obtain the following relations.

A−(n, x) = (1− x2)
d

dx
− 1

2
x (5.7)

A+(n, x) = −(1− x2)
d

dx
+

1

2
x

In that case hamiltonian H1 will be as,

H1 = −(1− x2)2
d2

dx2
+

5

2
x(1− x2)

d

dx
− 3

4
x2 +

1

2
(5.8)

and this lead us to have a following equation,

V1(r) =W 2(r)− ~√
2m

W ′(r) (5.9)

This equation is known as Riccit equation, where Wr is superpotential, so we obtain,

W (r) =
1

2
x (5.10)

Finally the corresponding potential V1(r) is,

V1(r) =
1

4
x2 − 1

2

~√
2m

(5.11)

Now, we are going to obtain the Hamiltonian H2,

H2 = −(1− x2)2
d2

dx2
+

5

2
x(1− x2)

d

dx
− 3

4
x2 +

1

2
(5.12)

where,

V2(r) =W 2
2 (r) +

~√
2m

W ′
2(r) (5.13)

The W2(r) is superpotential is,

W2(r) = −1

2
x (5.14)

Finally the corresponding potential V2(r) is,

V2(r) =
1

4
x2 − 1

2

~√
2m

(5.15)

The shape invariance condition will be as V2(r) = V1(r). The shape invariance condition and hamiltonian
partner lead us to study the aspect of supersemmetry. So, the supercharges are,

Q =

(
0 0
An 0

)
, Q+ =

(
0 A+

n

0 0

)
, (5.16)
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Also, we have the following commutation relation,

[ H,Q ] = [ H,Q+ ] = 0 (5.17)

{ Q,Q+ } = H, { Q,Q } = { Q+, Q+ } = 0

and,

[ H,Q ] = [
0 0

H2A−AH1 0
] (5.18)

In order to satisfy the equations (5.18), we need following equation,

H2A = AH1 (5.19)

This completely satisfy the following anti-commutation relations ,

{ Q,Q+ } = H, { Q,Q } = { Q+, Q+ } = 0

{ Q+, Q+ } = 0 ⇒
(

0 A+

0 0

)(
0 A+

0 0

)
+

(
0 A+

0 0

)(
0 A+

0 0

)
= 0 (5.20)

{ Q,Q } = 0 ⇒
(

0 0
A 0

)(
0 0
A 0

)
+

(
0 0
A 0

)(
0 0
A 0

)
= 0

and,

{ Q,Q+ } = H ⇒
(

0 0
A 0

)(
0 A+

0 0

)
+

(
0 A+

0 0

)(
0 0
A 0

)
= (5.21)

(
A+A 0
0 AA+

)
=

(
H1 0
0 H2

)
= H

VI. CONCLUSION

In this paper we discuss the Kratzer potential in constant Positive curvature. We have obtained the
energy spectrum and wave function. Using the factorization method we derive some raising and lowering
operators. These lead us to introduce some supercharge operators. With the help of shape invariance
condition it may be interesting to discuss the representation of super algebra for the Kratzer potential in
constant curvature.

22



J. Sadeghi and M.Rostami African Journal Of Mathematical Physics Volume 9(2010)17-23

REFERENCES

1 E. Schrödinger, Proc. Royal Irish. Acad. A46, 9 and 183 (1940); A47, 53 (1941) 53.
2 L. Infeld and A. Schild, Phys. Rev. 67, 121 (1945).
3 A. F. Stevenson, Phys. Rev. 59, 842 (1941).
4 N. Bessis and G. Bessis, J. Phys. A12, 1991 (1979).
5 A. A. Izmest’ev , Yad. Fiz. 52, 1697 (1991); 53, 1402 (1991).
6 A. A. Bogush and V. S. Otchik, J. Phys. A30 559 (1997).
7 Y. Nishino, Math. Japon. 17, 59 (1972).
8 P. W. Higgs, J. Phys. A12, 309 (1979).
9 H. I. Leemon, J. Phys. A12, 489 (1979).

10 Y. A. Kurochkin and V. S. Otchik, DAN BSSR, XXIII , 987 (1979) (in Russian).
11 A. A. Bogush, Y. A. Kurochkin and V. S. Otchik, DAN BSSR, XXIV , 19 (1980) (in Russian).
12 A. A. Bogush, V. S. Otchik and V. M. Red’kov; Vestnik AN BSSR, 3, 56 (1983) (in Russian).
13 A. A. Bogush and V. M. Red’kov Preprint, 298, IN AN BSSR (1983) (in Russian).
14 J. Sadeghi,M.Rostami, IJTP. DOI:10. 1007/s10773-009-0012-3 (2009).
15 M. A. Jafarizadeh and H. Fakhri, Ann. Phys. (N.Y.) 262, 260 (1998).
16 J. Sadeghi, Eur. Phys. J. B 50, 453-457 (2006).
17 H. Fakhri and J. Sadeghi, Mod. Phys. Lett. A 19, 615 (2004);
18 H. Fakhri and J. Sadeghi, IJTP. 43, No 2 (2004).
19 J. Sadeghi, IJTP. DOI: 10. 1007/510773-006-9105-4 (2006).
20 M. A. Jafarizadeh and H. Fakhri, Phys. Lett. A230, 164 (1997).
21 Gradshteyn,I.S.and. Ryzhik,I.M.(1994). Tables of Integrals, Series, and Products 5th ed. Academic Press,New

York.

23


