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1 Introduction

The low energy effective action of Type II string theory on R
1,9−d × T d is extremely

constrained by supersymmetry and U -duality [1–3]. Although there is no non-perturbative

formulation of the theory, duality invariance permits to determine the non-perturbative

low energy effective action from perturbative computations in string theory [4–8] and in

eleven-dimensional supergravity [2, 9, 10]. At low orders in the derivative expansion, the

effective action is completely determined by the four-graviton amplitude, and one can in

principle reconstruct the effective action at these orders from the functions E(p,q) of the

moduli parametrizing the symmetric space Ed(d)/Kd that define the amplitude [11],

Γ ∼
∫ (

1

κ2
R+ κ2

d−2
8−dE(0,0)R

4 + κ2
d+2
8−dE(1,0)∇4R4 + κ2

d+4
8−dE(0,1)∇6R4 + . . .

)

. (1.1)

The functions E(0,0), E(1,0) and E(0,1) are strongly constrained by supersymmetry, and are

in particular eigenfunctions of the Laplace operator on the scalar manifold [9, 12–14].

The realisation of these functions as Eisenstein functions [1, 3] has been generalised in

lower dimensions [15], and to higher order ∇6R4 type corrections [16], leading to more

developments in lower dimensions [17–26].

We have shown in [26] that these functions moreover satisfy to tensorial differential

equations that determine their egenvalues for all Casimir operators. The function E(0,0)

satisfies for example that its second-order derivative vanishes when restricted to the Joseph

ideal [27], constraining it to lie in the minimal unitary representation of Ed(d), in accordance

with [19–22]. We have shown that E(1,0) satisfies to an equivalent equation associated to the
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Figure 1. Each node determines an Ed(d) multiplet of R4 and ∇4R4 type invariants, respectively.

The lines refer to their connection by dimensional reduction. The • refers to parity symmetric

invariants that can be defined in harmonic superspace in the linearised approximation, while • in-

dicates that they are complex chiral invariants in the linearised approximation. ◦ refers to invariants

that cannot be written in harmonic superspace in the linearised approximation.

next to minimal unitary representation of E7(7) in four dimensions [26], from the structure

of the invariant in the linearised approximation [28–31].

This paper extends the analysis of the ∇4R4 type invariant at the non-linear level

in eight dimensions. To carry out this program, we concentrate on terms of maximal R-

symmetry weight, similarly as in [12, 14, 26]. We find in this way that the function of the

scalar fields must satisfy to a tensorial second-order differential equation consistent with

one of the explicit Eisenstein functions conjectured in [17] to define the non-perturbative

threshold function E(1,0). The second function does not depend on the type IIB torus

complex structure, and is not constrained by this analysis that only considers Kähler

derivatives of the function. However, we prove that the two sets of differential equations

satisfied by the two functions defining E(1,0), are in the same E7(7) representation in four

dimensions. We show moreover that they are the unique differential equations satisfying to

this criterium. We conclude therefore that there is two classes of ∇4R4 invariants in eight

dimensions, consistently with the two functions appearing in the string theory effective

action. Combining these results with the ones obtains in [26], we conclude that there is a

unique ∇4R4 invariant in dimension five and lower, that splits into two different invariants

in dimension 6, 7 and 8. They descend respectively from type IIA and type IIB 2-loop

corrections to the supergravity effective action.

We provide an overview of the results in the first section, that combines results already

obtained in [26], and new ones that are derived in this paper. It exhibits the structure of
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the R4 and ∇4R4 type invariants as gradient expansions in the covariant derivative of a

defining function E of the scalar fields parametrising Ed(d)/Kd. In section 3 we discuss

in details the structure of the ∇4R4 type invariant in eight dimensions that lifts to type

IIA in ten dimensions, in the formalism of superforms in superspace [32–34]. Because the

associated function depends on both the complex scalar parametrising SL(2)/SO(2) and

the scalar fields parametrising SL(3)/SO(3), one must consider the gradient expansion in

terms of both the Kähler derivative and the isospin 2 tangent derivatives on SL(3)/SO(3).

This permits to distinguish terms of maximal U(1) weight and isospin, that are uniquely

determined as monomials of order twenty-four in the fermion fields.

In order to show the existence and the uniqueness of the other class of ∇4R4 type

invariants in eight dimensions, we use the uniqueness of the ∇4R4 type invariant in four

dimensions, due to the bijective correspondence between supersymmetry invariants and

superconformal primaries of Lorentz invariant top component in four dimensions [30, 35].

Any supersymmetry invariant that can be defined in eight dimensions, clearly descends

to four dimensions by dimensional reduction on T 4. Starting from the type IIA invariant

we study in section 3, one can consider the corresponding four-dimensional invariant, and

the differential equations satisfied by the associated function on E7(7)/SUc(8). Any other

solution to these differential equations is also supersymmetric in four dimensions, and for

a function defined on R
∗
+× SL(2)/SO(2)× SL(3)/SO(3) with the appropriate power of the

Kaluza-Klein dilaton, it must lift to an invariant in eight dimensions. The invariance of

the supersymmetry invariant with respect to the nilpotent subgroup of E7(7) defining the

shift of the axions, indeed implies that the dependence in the gauge fields and the axions

is defined in such a way as to ensure gauge invariance and diffeormorphism invariance in

eight dimensions.

We show that this line of arguments is indeed valid in section 4, although the proof is

not formulated in this order. We rather start by solving the relevant differential equations

derived in [26] in four dimensions on a function of the seven-dimensional scalar fields. This

way we exhibit the existence of two classes of ∇4R4 type invariants in seven dimensions,

which are then shown to lift to corresponding invariants in eight dimensions. We also

discuss the properties of the solutions with respect to Ed(d)(Z) invariance, and we prove that

the functions conjectured to define the type II exact low energy effective action components

in R4 and ∇4R4 [15, 23] are indeed solutions to the equations derived in [26].

2 Overview of the results in various dimensions

In this section we review the Ed(d) multiplets of supersymmetric corrections to the super-

gravity effective action in various dimensions. We will concentrate ourselves on R4 and

∇4R4 type invariants in maximal supergravity (see figure 1). Such corrections are invari-

ant modulo the classical field equations, and are determined by closed superforms within

the superform formalism of Bates [32–34]. A closed superform depends in general on the

scalar fields parametrising Ed(d)/Kd through a function E and its covariant derivative in
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tangent frame, and takes the form

L[E ] =
∑

n,R

Dn
RE LR̄ , (2.1)

where R refers to irreducible representations of Kd such that the superforms LR̄ are Ed(d)

invariant and transform with respect to Kd in the conjugate irreducible representation

R̄. For BPS protected invariants such as the ones of type R4 and ∇4R4, the appearing

irreducible representations R are generally determined from the linearised analysis, and the

function E satisfies to the constraints that its derivative Dn
R′E in irreducible representations

that do not appear in the gradient expansion either vanish or are related to lower order

derivatives of the function in the same representation.

All along the paper we use the convention that the function Ew for a weight w of

a∗(ed(d)) is the Eisenstein function on Ed(d)(Z)\Ed(d)/Kd associated to this weight [15, 23],

whereas a function Ew refers to any function on Ed(d)/Kd solving the same differential

equations as Ew. Supersymmetry is preserved for any such a solution Ew with the appro-

priate weight w, and requiring moreover Ed(d)(Z) invariance only then distinguishes the

Eisenstein function Ew.

2.1 N = 2 supergravity in eight dimensions

In eight dimensions, maximal supergravity admits for duality group SL(2) × SL(3), and

the scalar fields parametrise the symmetric space SL(2)/SO(2)×SL(3)/SO(3). The Kähler

derivatives on SL(2)/SO(2) are denoted with D and D̄, while the SU(2) isospin 2 tangent

derivatives on SL(3)/SO(3) are defined as Dijkl, with i, j, k, l running from 1 to 2 of SU(2).

The theory includes two 1/2 BPS R4 type invariants and two 1/4 BPS ∇4R4 type invari-

ants, which are supersymmetric up to the classical equations of motion. These invariants

decompose in a gradient expansion of a given function E of the scalar fields as follows

R4 :
12
∑

n=0

Ū−2nD̄nE(2,2,0) L(4n) ,
12
∑

n=0

Dn
[4n]E (2,1,1)L[4n] , (2.2)

∇4R4 :
14
∑

n=0

( 20-n
∑

k=0

Ū−2kD̄kDn
[4n]E(2,1,0) L(4k)[4n] + U−2DDn

[4n]E(2,1,0) L(−4)[4n]

)

,

14
∑

n=0

Dn
[4n]E ′

1
4
L[4n] , (2.3)

where the L(4k)[4n] are SL(2)×SL(3) invariant 8-superforms in the isospin 2n representation

of SU(2) with U(1) weight 4k. The indices of the function E(n,p,q) refers to the harmonic

superspace construction of the associated invariant in the linearised approximation, whereas

the notation E ′
1
4

indicates that the corresponding invariant cannot be written as a Lorentz

invariant harmonic superspace integral in the linearised approximation. The functions

E(2,2,0) and E(2,1,1) appearing in the R4 invariants satisfy the following equations [26]

DE(2,2,0) = 0 , DijklE(2,2,0) = 0 , (2.4)

Dij
pqDklpqE(2,1,1) = − 3

12
DijklE(2,1,1) , DE(2,1,1) = D̄E(2,1,1) = 0 , (2.5)
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in agreement with [3]. The two classes of invariants coincide in trivial topology when the

function is a constant, and define the 1-loop counter-term for the supergravity logarithm

divergence [36]. The invariant associated to E(2,2,0) is chiral and complex, and its associated

complex conjugate associated to the function E(2,0,2) satisfies to the complex conjugate

constraints. The functions E(2,1,0) and E ′
1
4
defining the ∇4R4 type invariants are discussed

in this paper, and are proved to satisfy to

∆SL(2)E(2,1,0) = 2E(2,1,0) , D2E(2,1,0) = 0

Dij
pqDklpqE(2,1,0) =

5

12
DijklE(2,1,0) +

1

9
(εikεjl + εilεjk)E(2,1,0) , (2.6)

Dij
pqDklpqE ′

1
4
= − 7

12
DijklE ′

1
4
+

5

18
(εikεjl + εilεjk)E ′

1
4
,

DE ′
1
4
= 0 , D̄E ′

1
4
= 0 , (2.7)

consistently with [11, 17]. These equations are indeed satisfied by the Eisenstein functions

Ê(2,2,0) + Ê(2,0,2) = Ê[1] , Ê(2,1,1) = Ê[ 3
2
,0] , E(2,1,0) +E(2,0,1) = E[2]E[− 1

2
,0] , E ′

1
4
= E[ 5

2
,0] , (2.8)

which determine the exact R4 and ∇4R4 thresholds in type II string theory [3, 17], up two

inhomogeneous terms associated to the chiral anomaly and the SL(3) anomaly produced by

the 1-loop divergence [26, 37]. Here the hat over Ê(2,2,0) and Ê(2,0,2) indicates that their sum

satisfies to the inhomogeneous equation with a constant right-hand-side [11], and similarly

for Ê(2,1,1).

2.2 N = 2 supergravity in seven dimensions

In seven dimensions maximal supergravity has for duality group SL(5), with maximal

compact subgroup SO(5). We label the vector indices a, b, c of SO(5) and the covariant

derivative Dab is symmetric traceless, i.e. transforms in the [0, 2] of Sp(2). The R4 and∇4R4

type invariants have the following gradient expansion in the function E of the scalar fields

R4 :
12
∑

n=0

Dn
[0,2n]E(4,2) L[0,2n] , (2.9)

∇4R4 :

n+2k≤20
∑

n,k=0

Dn+2k
[4k,2n]E(4,1) L[4k,2n] ,

20
∑

n=0

Dn
[0,2n]E ′

1
4
L[0,2n] , (2.10)

where again L[4k,2n] are SL(5) invariant superforms in the [4k, 2n] of Sp(2), i.e. traceless

tensors of SO(5) with 2k pairs of antisymmetric indices and 2n additional symmetrised

indices, while (4, p) refers to the harmonic superspace construction of the p
4 BPS invariant

in the linearised approximation. The last invariant depending on E ′
1
4
does not admit a

Lorentz invariant harmonic superspace integral form in the linearised approximation. The

function E(4,2) defining the R4 type invariant satisfies to

Da
cDc

bE(4,2) =
3

20
Da

bE(4,2) −
6

25
δbaE(4,2) ,

(

2δ
[c
[aDb]

eDe
d] + 2D[a

[cDb]
d]
)

E(4,2) =
1

20
δ
[c
[aDb]

d]E(4,2) −
9

25
δcdabE(4,2) , (2.11)
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consistently with [3]. It is important to remark that the two possible functions multiplying

R4 in eight dimensions E(2,2,0) and E(2,1,1) are related by SL(5) in seven dimensions. The

functions appearing in the ∇4R4 type invariants satisfy instead

Da
cDc

bE ′
1
4
=

3

4
Da

bE ′
1
4
,

(

2δ
[c
[aDb]

eDe
d] + 2D[a

[cDb]
d]
)

E ′
1
4
=

1

4
δ
[c
[aDb]

d]E ′
1
4
, (2.12)

Da
cDc

bE(4,1) = −1

4
Da

bE(4,1) , (2.13)

consistently with [11]. The two invariants coincide for a constant function, and define

the counter-term for the 2-loop logarithm divergence in supergravity [38]. The SL(5,Z)

invariant Eisenstein functions

E(4,2) = E[ 3
2
000] , Ê ′

1
4
= Ê[ 5

2
000] , Ê(4,1) = Ê[00 5

2
0] , (2.14)

which are conjecture to define the exact low energy effective action in string theory [3, 11],

indeed solve these differential equations, up to an inohomogenous right-hand-side for the

∇4R4 type invariants that comes from the anomaly associated to the 2-loop divergence.

Once again the hat on the functions refers to these anomalous corrections.

2.3 N = (2, 2) supergravity in six dimensions

In six dimensions the duality group of maximal supergravity is SO(5, 5) with maximal

compact subgroup SO(5) × SO(5). We denote the indices i, j and ı̂, ̂ running from 1 to

4 of the two Sp(2) groups, and respectively a, b and â, b̂ the vector indices of the two

SO(5) ∼= Sp(2)/Z2. The covariant derivative in tangent frame is a bi-vector of the two

SO(5), i.e. transforms in the [0, 1] × [0, 1] of Sp(2) × Sp(2). The invariants we discuss in

this paper admit the gradient expansion in the function of the scalar fields

R4 :
12
∑

n=0

Dn
[0,n],[0,n]E(4,2,2) L[0,n],[0,n] , (2.15)

∇4R4 :

n+2k≤20
∑

n,k=0

Dn+2k
[0,n],[0,n+2k]E(4,2,0) L[0,n],[0,n+2k] ,

n+2k≤20
∑

n,k=0

Dn+2k
[2k,n],[2k,n]E(4,1,1) L[2k,n],[2k,n] , (2.16)

where L[2k,n],[2k,m] are SO(5, 5) invariant 6-superforms in the corresponding representation

of Sp(2) × Sp(2). The invariant associated to the function E(4,2,0) is complex and chiral,

and admits the conjugate invariant of function E(4,0,2) for which the role of the two Sp(2)

factors is exchanged. The function E(4,2,2) satisfies to the following equations [26]

Da
âDbâE(4,2,2) = −3

4
δabE(4,2,2) , Da

âDab̂
E(4,2,2) = −3

4
δ
âb̂
E(4,2,2) , D[a

[âDb]
b̂]E(4,2,2) = 0 , (2.17)

whereas E(4,2,0) and E(4,1,1) satisfy respectively to

Da
âDbâE(4,2,0) = −3

4
δabE(4,2,0) ,

Da
âDbâE(4,1,1) = −3

4
δabE(4,1,1) ,

D[a
[âDb]

b̂]E(4,2,0) = 0 ,

Da
âDab̂

E(4,1,1) = −3

4
δ
âb̂
E(4,1,1) .

(2.18)
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The SO(5, 5,Z) invariant Eisenstein functions that are conjectured to define the exact

string theory low energy effective action [11, 15] indeed satisfy to these equations such that

E(4,2,2) = E[

03

2
0 0

0

] , Ê(4,2,0) + Ê(4,0,2) = Ê[

05

2
0 0

0

] , Ê(4,1,1) = Ê[

0
00 0

3

] . (2.19)

up to inohomogenous right-hand-sides associated to the 1-loop divergence of the form

factor of the R4 type invariant [26]. Although the function E(4,2,0) defined such that E(4,2,0)+

E(4,0,2) = E
[

05

2
0 0

0

]

is not itself SO(5, 5,Z) invariant, the associated supersymmetry invariant

only depend on the sum E(4,2,0) + E(4,0,2) and the covariant derivative of the individual

functions, such that it is duality invariant [26].

2.4 N = 4 supergravity in five dimensions

In five-dimensional supergravity the duality group is E6(6), with maximal compact subgroup

Sp(4)/Z2. The covariant derivative in tangent frame is a symplectic traceless rank four

antisymmetric tensor of Sp(4), i.e. in the [0, 0, 0, 1] irreducible representation. The 1/2

and 1/4 BPS invariants admit the following gradient expansion in the function of the

scalar fields

R4 :

12
∑

n=0

Dn
[0,0,0,n]E(8,4) L[0,0,0,n] , (2.20)

∇4R4 :

n+2k≤20
∑

n,k=0

Dn+2k
[0,2k,0,n]E(8,2) L[0,2k,0,n] . (2.21)

The functions E(8,2n) satisfy to the tensorial equations

DijpqDklpqE(8,4) = −2δklij E(8,4) , (2.22)

DijpqDpq
rsDrsklE(8,2) +

4

3
Dij

klE(8,2) =
25

4

(

DijpqDklpq +
70

27
δklij

)

E(8,2) ,

D3
[2,0,0,1]E(8,2) = 0 , (2.23)

where δklij is the projector to the antisymmetric symplectic traceless irreducible represen-

tation of Sp(4).1 E6(6)(Z) invariant solutions to these differential equations are defined by

the Eisenstein series of the type

E(8,4) = E[ 0
3

2
0 0 0 0 ]

, E(8,2) = E[ 0
5

2
0 0 0 0 ]

, (2.24)

that are conjectured to define the non-perturbative low energy effective action in type II

string theory [15, 23].

2.5 N = 8 supergravity in four dimensions

In N = 8 supergravity the scalar fields parametrise the symmetric space E7(7)/SUc(8).

We denote i, j . . . the indices in the fundamental of SU(8), and the covariant derivative in

1I.e. δklij = 1
2
δ
k
i δ

l
j −

1
2
δ
l
iδ

k
j − 1

8
ΩijΩ

kl.
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tangent frame is a complex-selfdual rank four antisymmetric tensor in the [0, 0, 0, 1, 0, 0, 0]

representation of SU(8). The invariants of type R4 and ∇4R4 admit respectively the

following gradient expansions in the function of the seventy scalar fields

R4 :
12
∑

n=0

Dn
[0,0,0,n,0,0,0]E(8,4,4) L[0,0,0,n,0,0,0] , (2.25)

∇4R4 :

n+2k≤20
∑

n,k=0

Dn+2k
[0,k,0,n,0,k,0]E(8,2,2) L[0,k,0,n,0,k,0] . (2.26)

The label (8, 4, 4) and (8, 2, 2) refer to the harmonic superspace measures that permit to

define these invariants in the linearised approximation. The function E(8,4,4) was proved to

satisfy to

DklpqDijpqE(8,4,4) = −9

2
δijklE(8,4,4) , (2.27)

whereas the function defining the ∇4R4 type invariant satisfies to

DijpqDpqrsDrsklE(8,2,2) = −9DijklE(8,2,2) ,

2Djr[klDirmnDpq]mnE(8,2,2) = −δijDklpqE(8,2,2) + 10δi[kDlpq]jE(8,2,2) . (2.28)

These differential equations admit as E7(7)(Z) invariant solutions the Eisenstein series

E(8,4,4) = E[ 0
3

2
0 0 0 0 0 ]

, E(8,2,2) = E[ 0
5

2
0 0 0 0 0 ]

, (2.29)

that are conjectured to define the exact low energy effective action in type II string the-

ory [15, 23].

2.6 N = 16 supergravity in three dimensions

In three dimensions, the duality group is E8(8), of maximal compact subgroup the quotient

of Spin(16) by the Z2 kernel of the chiral spinor representation. We denote i, j the SO(16)

vector indices and A,B the positive chirality Weyl spinor indices. The covariant derivative

in tangent frame is a chiral Weyl spinor, i.e. in the
[

0
00000 0

1

]

representation. In three

dimensions there is no four-graviton amplitude, and the corresponding invariants are of

type (∇P )4 and ∇4(∇P )4, where PA is the scalar momentum of the scalar fields. They

admit in this case the following gradient expansion in the function of the 128 scalar fields

(∇P )4 :
12
∑

n=0

Dn
[

0
00000 0

n

]E(16,8) L
[

0
00000 0

n

]

, (2.30)

∇4(∇P )4 :

n+2k≤20
∑

n,k=0

Dn+2k
[

0
000k0 0

n

]E(16,4) L
[

0
000k0 0

n

]

, (2.31)

which satisfy respectively to

Γijkl ABDADBE(16,8) = 0 , (2.32)

Γkl ABΓijkl
CDDBDCDD E(16,4) = −168Γij

ABDB E(16,4) . (2.33)

– 8 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
9

U(1) weight

4

3

2

1

0

−1

−2

−3

−4

1/2 1 3/2 2 dim

χ̄i
α̇
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abc

F ij
ab/G

+
abcd

ρiabα

ρ̄iabα̇

Rabcd

W̄

D̄i
α̇

Di
α

Lijkl

W

Figure 2. N = 2 supermultiplet in eight dimensions, defined from the chiral superfield W and the

isospin 2 real superfield Lijkl.

The support of the E8(8)(Z) invariant Eisenstein functions conjectured to define the low

energy effective action in type II string theory [23], on BPS instantons in the decom-

pactification limit [24], indicates that they must indeed satisfy to the differential equa-

tions (2.32), (2.33) such that

E(16,8) = E[

03

2
0 0 0 0 0 0

] , E(16,4) = E[

05

2
0 0 0 0 0 0

] . (2.34)

3 The ∇4
R

4 invariant in eight dimensions

In this paper we investigate the second order corrections of type S(5) ∼
∫

E∇4R4 + . . . ,

which can appear in N = 2 supergravity in eight dimensions

S =
1

κ2
S(0) + S(3) + κ

4
3S(5) + κ2S(6) +

∞
∑

n=7

κ
2n
3
−2S(n) . (3.1)

We denote i, j the SU(2) indices, a, b the vector SO(1, 7) indices, and α, β and α̇, β̇ the

Weyl spinor indices of positive and negative chirality, respectively. The field content of the

theory in the linearised approximation is summarised in figure 2, [29].

We will perform this analysis within the superform formalism defined in [33, 34]. In

this context, a supersymmetry invariant modulo the classical equations of motion is defined

as the integral

S =

∫

M8

ι∗L , (3.2)

of the pull-back of a d-closed eight-superform L

dL = 0 , (3.3)
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on an eight-dimensional bosonic subspace M8 embedded in superspace M8|32. Because the

form is d-closed, the integral does not depend on the specific embedding ι, and the integral

is supersymmetric modulo the equations of motion. One decomposes the superform L in

tangent space into L(8−m−n,m,n) components, with 8−m− n antisymmetric tangent vector

indices a, m symmetric pairs of chiral spinor indices α, i and n symmetric pairs of anti-chiral

indices α̇, i. Splitting equation (3.3) into components we get formally

(

D(1,0,0) + T(1,1,0)
(0,1,0) + T(1,0,1)

(0,0,1)

)

L(8−m−n,m,n) + T(2,0,0)
(0,0,1)L(7−m−n,m,n+1)

+ T(2,0,0)
(0,1,0)L(7−m−n,m+1,n) +

(

D(0,1,0) + T(0,1,1)
(0,0,1) + T(0,2,0)

(0,1,0)

)

L(9−m−n,m−1,n)

+
(

D(0,0,1) + T(0,1,1)
(0,1,0) + T(0,0,2)

(0,0,1)

)

L(9−m−n,m,n−1) + T(0,2,0)
(0,0,1)L(9−m−n,m−2,n+1)

+ T(0,0,2)
(0,1,0)L(9−m−n,m+1,n−2) + T(1,1,0)

(0,0,1)L(8−m−n,m−1,n+1)

+ T(1,0,1)
(0,1,0)L(8−m−n,m+1,n−1) + T(0,1,1)

(1,0,0)L(10−m−n,m−1,n−1) = 0 , (3.4)

where the torsion components T(2−m−n,m,n)
(1−p−q,p,q) have their upper indices contracted with

the lower ones of the superform component L(8−m−n,m,n), with the appropriate combinatoric

factor. For a ∇2kR4 type invariant, each component L(8−m−n,m,n) has mass dimension

8 + 2k −m− n and U(1) weight m− n. We have used the following abbreviations

D(1,0,0) ∼ Da , D(0,1,0) ∼ Di
α , D(0,0,1) ∼ D̄α̇i , (3.5)

as well as

T(0,1,1)
(1,0,0) ∼ T i

αβ̇j
c ,

T(0,2,0)
(0,0,1) ∼ T ij

αβ
γ̇k , T(0,2,0)

(0,1,0) ∼ T ij
αβ

γ
k , T(0,1,1)

(0,0,1) ∼ T i
αβ̇j

γ̇k ,

T(1,1,0)
(0,0,1) ∼ Ta

j
β
γ̇k , T(1,1,0)

(0,1,0) ∼ Ta
j
β
γ
k ,

T(2,0,0)
(0,0,1) ∼ Tab

γ̇k . (3.6)

The explicit action of the covariant derivative and the torsion components have been com-

puted up to mass dimension 3/2 in [26].

The complete set of equations (3.4) fixes uniquely the components L(8−m−n,m,n) up to

d−exact terms. But it is enough to enforce some of them to determine the differential

equations satisfied by the function of the scalar fields, as was shown for the R4 type

invariant in [26]. Here we will extend these results for one class of ∇4R4 type invariants.

3.1 Invariant in the linearised approximation

In the linearised approximation, the scalar superfields are defined as the chiral superfield W

of U(1) weight −4 and the isospin 2 real superfield Lijkl that satisfies to the constraint [29]

D(i
αL

jklp) = 0 , D
(i
α̇L

jklp) = 0 , (3.7)

from which it follows that

D1
α

(

(L1111)2+nW̄ 2+m
)

= 0 . (3.8)
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One can therefore define a supersymmetry invariant in the linearised approximation, as

D̄16(D2)8
(

(L1111)2+nW̄ 2+m
)

∼ (L1111)nW̄m
(

t8t8

(

∂a∂bR ∂a∂bR R R
)

+ . . .
)

+ . . .

+ (L1111)n−14W̄m−6(λ111)8(λ̄111)8(χ̄1)8 + (L1111)n−13W̄m−7(λ111)8(λ̄111)7(χ̄1)8(χ̄2)1

+ · · ·+ (L1111)n−6W̄m−14(λ111)8(χ̄1)8(χ̄2)8 (3.9)

where the coefficients are not specified, and one understands that the terms in

W̄m−k(L1111)n−l always vanish for k > m or l > n. However, this construction cannot

be extended to the non-linear level because of the torsion terms

T 1
α
1
β
γ
2 = −Cαβλ

γ111 +
1

2
δγ(αλ

111
β) , T 1

α
1
β
γ̇2 = −2Cαβχ̄

1γ̇ , (3.10)

that prevent the derivatives D1
α to define vector fields closing among themselves in har-

monic superspace. The analysis of these linearised invariants is nonetheless very useful to

understand the structure of the corresponding invariant in the full non-linear theory. Con-

sidering a linearised invariant defined for an arbitrary analytic function F of L1111 (which

we write L for simplicity) and W̄ , we have

D̄16(D2)8F [W̄ , L] =
∑

p,q

∂4+p+qF
∂W̄ 2+q∂L2+p

L(4p)[4q]
lin , (3.11)

where L(4p)[4q]
lin are densities of order 4+p+ q in the fields, that do not depend on the naked

scalar fields uncovered by a space-time derivative, as for example

L(0)[0] ∝ t8t8

(

∂a∂bR ∂a∂bR R R
)

+ . . .

L(8)[8] ∝
(

t8 − i
48ε
)

(F̄ 11)4
(

t8 +
i
48ε
)2
R4 + . . .

L(24+4n))[56−4n)]
lin ∝ (λ111)8(λ̄111)8−n(χ̄1)8(χ̄2)n . (3.12)

According to this structure, we expect the non-linear invariant to decompose in the same

way in components of U(1) weight multiple of 4 and even isospin, such that

L =
∑

p,q

Ū−2pF4p[4q](T, T̄ , t)L(4p)[4q] , (3.13)

where Ū−2pF4p[4q] are tensor functions of the scalar fields (T, T̄ ) ∈ SL(2)/SO(2) and t ∈
SL(3)/SO(3) of (possibly negative) U(1) weight −4p and isospin 2q, and L(4p)[4q] are SL(2)×
SL(3) invariant superforms in the dual representation. In the linear approximation, the

component L(4p)[4q]
(8,0,0) reduces to L(4p)[4q]

lin , for p prositive. These superforms must satisfy to

covariant differential equations in superspace in order for the complete superform L to be

d-closed. Because Ū−2pFp[4q] are tensor functions of the scalar fields, the only covariant

quantities that can enter these equations are the scalar field momenta superforms P, P̄

and P ijkl. If we assume that there is a unique superform L(4p)[4q] for given p and q, as

suggested by the linearised analysis, the most general linear equation consistent with U(2)

representation theory is determined up to a rescaling of these superforms as

dωL(4p)[4q] + 2P [4] ∧ L(4p)[4q−4] + P̄ ∧ L(4p−4)[4q]

= ap,qP
[2]

ij ∧ L(4p)[4q−2]ij + bp,qPijkl ∧ L(4p)[4q]ijkl + cp,qP ∧ L(4p+4)[4q] (3.14)
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for some coefficients ap,q, bp,q, cp,q. In this notation [4q] refers to 4q symmetrised SU(2)

indices that are not written explicitly, and identically for a partition [2][4q− 2], etc. . . The

closure of the covariant derivative implies moreover the integrability condition [26]

d 2
ωL(4p)[4q] = −2qP [1]ijk ∧ Pijkl ∧ L(4p)[4q−1]l + 2pP ∧ P̄ ∧ L(4p)[4q] . (3.15)

This equation admits for general solution

dωL(4p)[4q] + 2P [4] ∧ L(4p)[4q−4] + P̄ ∧ L(4p−4)[4q]

=
2q(4s′−3)

4q + 3
P [2]

ij ∧ L(4p)[4q−2]ij +
(q+1)(2q+1)(2q+3−2s′)(2q + 2s′)

(4q + 5)(4q + 3)
Pijkl ∧ L(4p)[4q]ijkl

+
(

p(p+ 1)− s(s− 1)
)

P ∧ L(4p+4)[4q] , (3.16)

for some integration constants s and s′. It is natural to define a normalisation of the

superform such that the complex conjugate forms do appear with the same coefficient, such

as to make manifest the reality condition on the superform. Therefore the definition (3.16)

holds for strictly positive p only, whereas we will have

dωL(0)[4q] + 2P [4] ∧ L(0)[4q−4]

=
2q(4s′ − 3)

4q + 3
P [2]

ij ∧ L(4p)[4q−2]ij +
(q+1)(2q+1)(2q+3−2s′)(2q + 2s′)

(4q + 5)(4q + 3)
Pijkl ∧ L(4p)[4q]ijkl

−s(s− 1)P̄ ∧ L(−4)[4q] − s(s− 1)P ∧ L(4)[4q] , (3.17)

for p = 0 and the complex conjugate condition for strictly negative −p, i.e.

dωL(−4p)[4q] + 2P [4] ∧ L(−4p)[4q−4] + P ∧ L(−4p+4)[4q]

=
2q(4s′−3)

4q + 3
P [2]

ij ∧ L(−4p)[4q−2]ij +
(q+1)(2q+1)(2q+3−2s′)(2q+2s′)

(4q + 5)(4q + 3)
Pijkl ∧ L(−4p)[4q]ijkl

+
(

p(p+ 1)− s(s− 1)
)

P̄ ∧ L(−4p−4)[4q] . (3.18)

The range of p can only be bounded if there is a minimal p solution to

pmin(pmin − 1) = s(s− 1) , (3.19)

such that the exterior differential of the superform set to zero indeed vanishes. This is

clearly possible if and only if s is an integer such that pmin = 1 − s or s. For simplicity

we will assume that s is indeed a strictly positive integer (we will eventually prove that

s = 2). Because

dωL(4s−4)[4q] + 2P [4] ∧ L(4s−4)[4q−4] + P̄ ∧ L(4s−8)[4q] (3.20)

=
2q(4s′−3)

4q + 3
P [2]

ij ∧ L(4s−4)[4q−2]ij+
(q+1)(2q+1)(2q+3−2s′)(2q+2s′)

(4q + 5)(4q + 3)
Pijkl ∧ L(4s−4)[4q]ijkl

it is possible in principle to have L(4p)[4q] = 0 for all p < s, but this is generally not the

case, and we will see that for the ∇4R4, the gradient expansion rather stops at p = 1− s.

– 12 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
9

Using the explicit exterior derivative (3.16), one finds that the closed superform is

necessarily defined in terms of a unique function such that

L[Es,s′ ] =
∑

q≥0

(

∑

p≥0

Ū−2pD̄pDq

[4q]Es,s′ L
(4p)[4q] +

s−1
∑

p=1

U−2pDpDq

[4q]Es,s′ L
(−4p)[4q]

)

, (3.21)

and the function must moreover satisfy to

∆Es,s′ = s(s− 1)Es,t , Ds−1Es,s′ = 0

Dij
pqDklpqEs,s′ = −4s′ − 3

12
DijklEs,s′ +

s′(2s′ − 3)

18
(εikεjl + εilεjk)Es,s′ . (3.22)

In the linearised approximation, (3.16) reduces to

Di
αL(4p)[4q]

lin + ∂a
(

(γa)αβ̇L
(4p)[4q]
lin

β̇i
)

− 2εi[1]λ[3]
α L(4p)[4q−4]

lin = 0 ,

D̄α̇iL(4p)[4q]
lin + 2δ

[1]
i λ̄

[3]
α̇ L(4p)[4q−4]

lin + 2χ̄α̇iL(4p−4)[4q]
lin = 0 , (3.23)

which is automatically satisfied using the definition (3.11) and

i(D̄15)α̇i(D2)8F [W̄ , L] =
∑

p,q

∂4+p+qF
∂W̄ 2+q∂L2+p

L(4p)[4q]
lin

α̇i . (3.24)

In the next section we will consider the full non-linear superform, concentrating atten-

tion on the terms of maximal weight with respect to U(1) × SU(2). This will permit to

determine the value of the integration constants s and s′. Considering the possible terms

allowed by representation theory, one obtains that the components of maximal weight are

uniquely fixed up to an overall coefficient as

L(24)[56]
(8,0,0) ∝ (χ̄8)[8](λ8)[24](λ̄8)[24] ,

L(28)[52]
(8,0,0) ∝ (χ̄9)[7]α̇(λ8)[24](λ̄7)

[21]
α̇ ,

L(32)[48]
(8,0,0) ∝ (χ̄10)[6]ab(λ8)[24](λ̄6)

[18]
ab ,

. . .

L(52)[28]
(8,0,0) ∝ (χ̄15)[1]α̇(λ8)[24]λ̄

[3]
α̇ ,

L(56)[24]
(8,0,0) ∝ (χ̄16)(λ8)[24] , (3.25)

where there is always a unique way to define a Lorentz invariant such that the contraction

of the indices should not be ambiguous. All these terms already appear in the linearised

invariants as depicted in (3.9), suggesting that they multiply the corresponding derivative

of the function D̄6+kD14−k
[56−4k]Es,s′ for k = 0 to 8, as anticipated in (3.21), see figure 3.

However, in eight dimensions it is not true that all linearised invariants can be written

as harmonic superspace integrals, and it is not clear if all linearised invariants do extend

to full non-linear invariants. Therefore one cannot rely blindly on the linearised analysis,

and we will not assume the closed superform defining the invariant to admit the gradient

expansion (3.21) in the following section. Our computation will retrospectively confirm that

the structure of the invariant is indeed the one suggested by the linearised analysis, and

we will be able to conclude that the invariant admits indeed the gradient expansion (3.21)

for s = 1 and s′ = −1
2 .
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Figure 3. Gradient expansion of the 1/4 BPS ∇4R4 type invariant in eight dimensions.

3.2 Constraints on highest R-symmetry weight terms

We will consider a completely general ansatz for the components of the closed superform

L(8−m−n,m,n) =
∑

a,p,q

Ū−2pF a

4p[2q](T, T̄ , t)I
a (4p)[2q]
(8−m−n,m,n) , (3.26)

where Ū−2pF a

4p[2q] are tensor functions of the scalar fields of U(1) weight −4p and isospin q,

whereas a labels the possible SL(2)×SL(3) tensors Ia (4p)[2q]
(8−m−n,m,n) in the appropriate represen-

tations of U(1)×SU(2)×Spin(1, 7) associated to the corresponding grading (8−m−n,m, n).

Ia (4p)[2q]
(8−m−n,m,n) have U(1) weight m− n+ 4p and isospin j such that q− m+n

2 ≤ j ≤ q+ m+n
2 ,

depending of the specific tensor structure for the symmetrised pairs of fermionic indices.

Note that we do not assume q to only take even values, as suggested from the linearised

analysis in the preceding section, although we will eventually conclude that it must indeed

be even.

We will concentrate on the maximal mass dimension components of the d-closure equa-

tions (3.4), i.e.

D(0,0,1)L(8,0,0) +
(

D(1,0,0) + T(1,0,1)
(0,0,1)

)

L(7,0,1) + T(1,0,1)
(0,1,0)L(7,1,0)

+T(2,0,0)
(0,0,1)L(6,0,2) + T(2,0,0)

(0,1,0)L(6,1,1) = 0 (3.27)

D(0,1,0)L(8,0,0) +
(

D(1,0,0) + T(1,1,0)
(0,1,0)

)

L(7,1,0) + T(1,1,0)
(0,0,1)L(7,0,1)

+T(2,0,0)
(0,1,0)L(6,2,0) + T(2,0,0)

(0,0,1)L(6,1,1) = 0 (3.28)
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In order to simplify further these equations we will moreover restrict ourselves to the anal-

ysis of the terms of highest U(1) weight and carrying the maximal amount of symmetrised

SU(2) indices, which correspond to the terms with maximal value of p and q in (3.26).

Let us consider first the components of L(8,0,0), that are by construction Lorentz scalars

of mass dimension 12. Each Ia (4p)[2q]
(8,0,0) is therefore a Lorentz scalar of mass dimension

12, U(1) weight 4p and isospin q. The terms of maximal weight depends only on the

fermions fields, because they have the lowest mass dimension while carrying the largest

weight representation. However, Fermi statistics requires to limit the number of them to

maximise the weight. For example, there are only eight different λ111
α , so a term in (λ9)α

will necessarily includes at least one λ112
α , such that the maximal SU(2) representation

one obtains for an octic term is (λ8)[24] is of isospin 12, while for nine fermions one only

gets (λ9)
[25]
α of isospin 25

2 . A term with ten fermions (λ10)
[26]
ab has therefore the same mass

dimension and U(2) representation as a term in (λ8)[24]F̄
[2]
ab . The same argument applies

to the sixteen fermion fields χ̄i
α̇. The terms of maximal weight involving scalar momenta

can always be eliminated in favour of lower weight terms through the addition of a d-exact

term, and will therefore be disregarded in our analysis.

The maximal weight terms are therefore the terms of order 24 in the fermions depicted

in (3.25). We shall here concentrate on the two monomials

I1 (24)[56] = (χ̄8)[8](λ8)[24](λ̄8)[24] , I2 (28)[52] = (χ̄9)[7]α̇(λ8)[24](λ̄7)
[21]
α̇ . (3.29)

The next-to-maximal contribution with a lower isospin could have been Ia (24)[54]
(8,0,0) , however

the only possible terms must also be of order 24 in the fermions and one checks that

there is no Lorentz scalar in this representation. Indeed, lowering the isospin of one of the

octic monomial (χ̄8)[8], (λ8)[24] or (λ̄8)[24] requires to consider only seven among eight of

the Spin(1, 7) indices to be antisymmetrised, such that they cannot be scalars. The same

reasoning applies to the terms of order nine and seven in (χ̄9)[7]α̇ and (λ̄7)
[21]
α̇ , respectively,

such that there is no candidate components I28[52]
(8,0,0) either. It is also clear that one cannot

reduce the U(1) weight by 2 only, since the difference of the U(1) weights of the fermion

fields of identical chirality is zero modulo four.

Therefore the non-vanishing next to maximal weight terms have 4p + 2q = 76. In

this case there is always more than one possibility, and one obtains for example three

independent Ia (20)[56]
(8,0,0) components

I3 (20)[56] = F̄
[2]
ab (χ̄

6)ab [6](λ8)[24](λ̄8)[24] ,

I4 (20)[56] = (χ̄7)
[7]
α̇ (λ8)[24](λ̄9)α̇ [25] ,

I5 (20)[56] = (χ̄6)ab [6](λ10)
[26]
ab (λ̄8)[24] , (3.30)

where we do not consider the fourth possible component in P [4](χ̄7)[7](λ7)[21](λ̄8)[24], be-

cause such a term can always be eliminated in favour of lower weight terms through the

addition of a d-exact term in D(1,0,0)L(7,0,0). Altogether, we will therefore consider the
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following ansatz for L(8,0,0)

Labcdefgh =εabcdefgh

(

Ū−12F 1

24[56](χ̄
8)[8](λ8)[24](λ̄8)[24] + Ū−14F 2

28[52](χ̄
9)[7]α̇(λ8)[24](λ̄7)

[21]
α̇

+ Ū−10F 3

20[56]F̄
[2]
ab (χ̄

6)ab [6](λ8)[24](λ̄8)[24] + Ū−10F 4

20[56](χ̄
7)

[7]
α̇ (λ8)[24](λ̄9)α̇ [25]

+ Ū−10F 5

20[56](χ̄
6)ab [6](λ10)

[26]
ab (λ̄8)[24] +

∑

a,p≤4

Ū−2pF a

4p[56]Ia (4p)[56]

+
∑

a,p≤6

Ū−2pF a

4p[52]Ia (4p)[52] +
∑

a,p,q≤25

Ū−2pF a

4p[2q]Ia (4p)[2q]

)

(3.31)

where the components that are not specified will be irrelevant in our analysis.

We must also consider the other components of the superform, corresponding to the

terms involving naked gravino fields in the formalism in components. The superform com-

ponent L(7,1,0) is in the Spin(1, 7) representation tensor product of the 7-form times the

positive chirality spinor representation, i.e.
[

0
1 0

1

]

or
[

1
0 0

0

]

. It has U(1) weight 1 and mass

dimension 23/2. The maximal weight term that one can possibly have in this representa-

tion is simply obtained by removing one fermion field to the maximal weight term in the

component L(8,0,0), and the only possible such term is therefore in the
[

1
0 0

0

]

of Spin(1, 7), i.e.

Iai 6 20[56]
α = εi[1](γa)α

β̇(χ̄7)
[7]

β̇
(λ8)[24](λ̄8)[24] . (3.32)

We consider therefore the ansatz

Li
αabcdefg =εabcdefg

h

(

Ū−10εi[1]F 6

20[56](γh)α
α̇(χ̄7)

[7]
α̇ (λ8)[24](λ̄8)[24]

+
∑

a,p≤4

Ū−2pF a

4p[56]I
i a (4p)[56]
αh +

∑

a,p,q≤27

Ū−2pF a

4p[2q]I
i a (4p)[2q]
αh

)

. (3.33)

L(7,0,1) is instead in the direct sum of the
[

1
1 0

0

]

and the
[

0
0 0

1

]

, and admits a U(1) weight

−1. Because of the chirality of the representations, it cannot admit components in χ̄7λ8λ̄8

and the maximal weight components rather include terms in

Iai 7 20[56]
α̇ = εi[1](γb)α̇

β(χ̄6)
[7]
ab (λ

9)
[25]
β (λ̄8)[24] , (3.34)

and others in the same representation of U(2), such that the general ansatz for L(7,0,1) takes

the form

L(7,0,1) =
∑

a,p≤5

Ū−2pF a

4p[56]I
a (4p)[56]
(7,0,1) +

∑

a,p,q≤27

Ū−2pF a

4p[2q]I
a (4p)[2q]
(7,0,1) . (3.35)

We will not need to specify any of these terms in our analysis. The L(6,1,1) component is of

mass dimension 11 and U(1) weight 0. Chirality implies that the highest weight terms one

can build in the relevant representations of the Lorentz group are in χ̄5λ9λ̄8 or F̄ χ̄4λ8λ̄8,

as for example

Iabiαjβ̇
8 16[56] = εi[1]εj[1](γ[a)αβ̇(γb])

γ̇δ(χ̄5)
[5]
γ̇ (λ9)

[25]
δ (λ̄8)[24] , (3.36)

– 16 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
9

and other terms of the same weight, such that the ansatz is of the form

L(6,1,1) =
∑

a,p≤4

Ū−2pF a

4p[56]I
a (4p)[56]
(6,1,1) +

∑

a,p,q≤27

Ū−2pF a

4p[2q]I
a (4p)[2q]
(6,1,1) . (3.37)

Note moreover that terms of odd isospin are expected to vanish. Finally the L(6,0,2) com-

ponent has mass dimension 11 and U(1) weight −2. The maximal isospin terms are in

λ8λ̄8χ̄6 as for example

Iabiαjβ10 20[56] = εi[1]εj[1]Cαβ(χ̄
6)

[6]
ab (λ

8)[24](λ̄8)[24] , (3.38)

and other Lorentz tensor combinations such that the ansatz is

L(6,0,2) =
∑

a,p≤5

Ū−2pF a

4p[56]I
a (4p)[56]
(6,0,2) +

∑

a,p,q≤27

Ū−2pF a

4p[2q]I
a (4p)[2q]
(6,0,2) . (3.39)

Let us now describe the action of the fermionic covariant derivatives on a general

tensor function Ū−2pF a

4p[2q]. Since the tensor transforms covariantly with respect to U(2),

one obtains

D̄α̇i

(

Ū−2pF a

4p[2q](T, T̄ , t)
)

= Ū−2(p+1)D̄F a

4p[2q]P̄α̇i + 2Ū−2pDjklmF a

4p[2q]P̄
jklm
α̇i ,

Di
α

(

Ū−2pF a

4p[2q](T, T̄ , t)
)

= Ū−2(p−1)(1− T T̄ )2DF a

4p[2q]P
i
α + 2Ū−2pDjklmF a

4p[2q]P
i jklm
α ,

Da

(

Ū−2pF a

4p[2q](T, T̄ , t)
)

= Ū−2(p−1)(1− T T̄ )2DF a

4p[2q]Pa + Ū−2(p+1)D̄F a

4p[2q]P̄a

+2Ū−2pDijklF a

4p[2q]P
ijkl
a , (3.40)

where the field T is the unit disk coordinate on SL(2)/SO(2), and U is the U(1) weight −2

variable satisfying to

UŪ(1− T T̄ ) = 1 . (3.41)

The momentum components were derived in [26] to be

P i
α = 2χi

α , P̄α̇i = 2χ̄α̇i , P i jklm
α = −εi(jλklm)

α , P̄ jklm
α̇i = δ

(j
i λ̄

klm)
α̇ . (3.42)

It is helpful to decompose DjklmF a

4p[2q] into irreducible representations, as

DijklF a

4p[2q]P
ijkl =D(ijklF a

4p[2q])P
ijkl +

4q

(q + 2)
εi[1]D(jkl

mF a

4p[2q−1])mP ijkl (3.43)

+
6(2q − 1)q

(q + 1)(2q + 3)
εi[1]εj[1]D(kl

mnF a

4p[2q−2])mnP
ijkl

+
4(q − 1)(2q − 1)

(2q + 1)(q + 1)
εi[1]εj[1]εk[1]D(l

mnrF a

4p[2q−3])mnrP
ijkl

+
6

(2q + 1)(q − 1)(2q − 1)q
εi[1]εj[1]εk[1]εl[1]DmnrsF a

4p[2q−4]mnrsP
ijkl ,

where we denote with (i1 . . . i2n) the symmetrisation of 2n indices, while the numbers into

brackets sum up to the total number of symmetrised indices i1, i2q that are not written
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explicitly. One understands that the uncontracted indices of the terms in DF4p[2q] are

symmetrised first, and all the indices i1, i2q that are not written explicitly are symmetrised

afterward.

We are now ready to solve equation (3.27) in terms of our ansatz (3.31), (3.33), (3.35),

i.e.

D̄α̇iLabcdefgh + 8D[aLbcdefgh]α̇i + 8Tα̇i[a
β̇jLβ̇j|bcdefgh] + 8Tα̇i[a

β
jL

j

β|bcdergh]

+28T[ab
β̇jLβ̇jcdefgh]α̇i + 28T[ab

β
jL

j

βcdefgh]α̇i = 0 . (3.44)

We shall only consider the mixings between the terms involving tensor functions of U(1)

weight lower or equal to −24 and of isospin 28. As a consequence of (3.35), there is no

mixing contribution coming from T(1,0,1)
(0,0,1)L(7,0,1) at this weight, and these terms can

be disregarded. However, there are contributions from D(1,0,0)L(7,0,1), because the applica-

tion of the derivative to the tensor functions can increase the weight. Those mixings are

nonetheless either proportional to P̄ or to P ijkl, and we can neglect them as long as one

does consider terms involving explicitly the scalar momenta. Disregarding these terms will

allow us to simplify drastically the computation in the following. Because the maximal

weight terms in the ansatz (3.33) are associated to tensor functions of U(1) weight −20

and isospin 28, the terms in T(1,0,1)
(0,1,0)L(7,1,0) do not contribute either in the computation.

Because the isospin 28 terms in L(6,1,1) and L(6,0,2) are all associated to tensor function of

U(1) weight greater than −20, we can also disregard the terms in T(2,0,0)
(0,1,0)L(6,1,1) and

T(2,0,0)
(0,0,1)L(6,0,2) in equation (3.44).

We get therefore that equation (3.44) simplifies drastically to

D̄α̇iLabcdefgh ≈ 0 , (3.45)

when restricted to the terms involving tensors functions of isospin 28 and of U(1) weight

less or equal to −24.

In order to solve (3.45), it will be convenient to define an explicit basis of fermion fields

monomials as follows

(χ̄6)
(i1...i6)
ab ≡ 1

6!
(γab)

α̇β̇εα̇β̇
γ̇...δ̇χ̄

(i1
γ̇ . . . χ̄

i6)

δ̇
,

(

χ̄7
)(i1...i7)

α̇
≡ 1

7!
εα̇

β̇...γ̇χ̄
(i1

β̇
. . . χ̄

i7)
γ̇ ,

(

χ̄8
)(i1...i8) ≡ 1

8!
εα̇...β̇χ̄

(i1
α̇ . . . χ̄

i8)

β̇
,

(

χ̄9
)(i1...i7)

α̇
≡
(

χ̄8
)(i1...i7)j

χ̄α̇j ,
(

χ̄10
)(i1...i6)

ab
≡ (γab)

α̇β̇
(

χ̄9
)(i1...i6)j

α̇
χ̄β̇j ,

(

λ̄6
)(i1...i18)

ab
≡ 1

6!
(γab)

α̇β̇εα̇β̇
γ̇...δ̇λ̄

(i1i2i3
γ̇ . . . λ̄

i16i17i18)

δ̇
,

(

λ̄7
)(i1...i21)

α̇
≡ 1

7!
εα̇

β̇...γ̇ λ̄
(i1i2i3

β̇
. . . λ̄

i19i20i21)
γ̇ ,

(

λ̄8
)(i1...i24) ≡ 1

8!
εα̇...β̇λ̄

(i1i2i3
α̇ . . . λ̄

i22i23i24)

β̇
,

(

λ̄9
)(i1...i25)

α̇
≡
(

λ̄8
)j(i1...i23

λ̄
i24i25)
α̇ j ,

(

λ̄10
)(i1...i26)

ab
≡ (γab)

α̇β̇
(

λ̄9
)j(i1...i24

α̇
λ̄
i25i26)

β̇ j .

(3.46)
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Let us first consider the action of the fermionic derivative D̄α̇i on the tensor function

Ū−12F 1

24[56] in L(8,0,0), i.e.

D̄α̇i

(

Ū−12F 1

24[56]

)

(χ̄8)[8](λ8)[24](λ̄8)[24] (3.47)

= 2

(

Ū−14D̄F 1

24[56] χ̄α̇i + Ū−12DijklF 1

24[56] λ̄
jkl
α̇

)

(χ̄8)[8](λ8)[24](λ̄8)[24]

=
16

9

(

Ū−14D̄F 1

24[55]i (χ̄
9)

[7]
α̇ (λ̄8)[24] − 3Ū−12Di[2]

jF 1

24[55]j (χ̄
8)[8](λ̄9)

[25]
α̇

)

(λ8)[24] + . . .

where the dots state for lower isospin terms in (λ̄9)[23] and (λ̄9)[21] that we neglect at this

order. The first term can only be canceled by the one coming from the application of D̄α̇i

on Ū−14F 2

28[52], leading to

D̄α̇i

(

Ū−14F 2

28[52]

)

(χ̄9)[7] β̇(λ8)[24](λ̄7)
[21]

β̇

= 2Ū−14DijklF 2

28[52](χ̄
9)[7] β̇(λ8)[24](λ̄7)

[21]

β̇
λ̄jkl
α̇ + . . .

= −2Ū−14D[i3]F 2

28[52](χ̄
9)

[7]
α̇ (λ8)[24](λ̄8)[24] + . . . (3.48)

where the dots state for lower isospin terms that we neglect at this order. We conclude

that the two tensor functions must be related through

16

9
D̄F 1

24[56] = 2D[4]F 2

28[52] . (3.49)

It means that F 1

24[56] can be written as the covariant derivative on SL(3)/SO(3) of a given

tensor function F24[52]. Therefore we have

F 1

24[56] = D[4]F24[52] , F 2

28[52] =
8

9
D̄F24[52] . (3.50)

Note that in principle the two tensor functions F24[52] could differ by an inhomogeneous

term such that D̄D[4]c24[52] = 0. However one argues that the equation

D(i1i2i3i4Gn i4i5i6...i4m) = 0 (3.51)

admits no solution, and such inhomogeneous term can only be a holomorphic tensor on

the symmetric space SL(2)/SO(2), i.e. c2(T, T̄ ) = (1 − T T̄ )−12c̃2(T ). Considering other

constraints from supersymmetry one would get to the conclusion that such inhomogeneous

terms must vanish because the supersymmetry constraint is linear in the tensor functions.

For simplicity we shall assume from the beginning that all such terms vanish.

The second terms in (3.47), decomposes as

−16

3
Ū−12Di[2]

jF 1

24[55]j (χ̄
8)[8](λ̄9)

[25]
α̇ (λ8)[24]

= −8

3
Ū−12

(

D(i[2]
jF 1

24[55])j (λ̄
9)

[25]
α̇ +

55

29
D[2]

jkF 1

24[54]jk(λ̄
9)

[24]
α̇ i

)

(χ̄8)[8](λ8)[24] , (3.52)
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where D(i[2]
jF 1

24[55])j is of isospin 58, and therefore cannot be canceled by any other term

since there is no components with a tensor function Ū−12F a

24[54] as we discussed above.

Therefore we conclude that

D[3]
jF 1

24[55]j = D[3]
j

(

1

14
D[3]jF24[52] +

13

14
D[4]F24[51]j

)

= 0 . (3.53)

The first term vanishes because the commutator of two covariant derivative involves the

contraction of three of their respective indices, such that

D[4]D[3]
jF24[51]j = 0 , (3.54)

and therefore

D[3]
jF24[51]j = 0 . (3.55)

Now it remains to cancel the second term in (3.52), for which we will need to consider the

action of the covariant derivative on next to maximal weight terms (3.30), i.e.

D̄α̇i

(

Ū−12F 1

24[56]

)

(χ̄8)[8](λ8)[24](λ̄8)[24] + D̄α̇i

(

Ū−14F 2

28[52]

)

(χ̄9)[7] β̇(λ8)[24](λ̄7)
[21]

β̇

+ Ū−12F 1

24[56]D̄α̇i

(

(χ̄8)[8](λ8)[24](λ̄8)[24]
)

+ D̄α̇i

(

Ū−10F 3

20[56]

)

F̄
[2]
ab (χ̄

6)ab [6](λ8)[24](λ̄8)[24] + D̄α̇i

(

Ū−10F 4

20[56]

)

(χ̄7)
[7]
α̇ (λ8)[24](λ̄9)α̇[25]

+ D̄α̇i

(

Ū−10F 5

20[56]

)

(χ̄6)ab [6](λ10)
[26]
ab (λ̄8)[24] + · · · = 0 (3.56)

where we have already computed the two first terms to simplify to the second term in (3.52).

The corresponding tensor function has U(1) weight 28 and isospin 56. Therefore it also gets

contributions from the action of the covariant derivative on tensor functions of U(1) weight

28 and isospin 52. However, there is a large number of terms like that, and analysing them

all would be rather cumbersome. In order to bypass this difficulty, we remark that their

contributions only arise as an isospin 56 tensor function times a combination of the fields

of isospin 55, whereas the term we want to cancel in (3.52) includes a combination of the

fields of isospin 57. Therefore we will be able to neglect the contribution from the isospin

52 terms in L(8,0,0). In the same way, the action of the covariant derivative in the order 24

term in the fermions of maximal isospin decomposes into a term of isospin 57 and a term

of isospin 55 that we will neglect, i.e.

D̄α̇i

(

(χ̄8)[8](λ8)[24](λ̄8)[24]
)

= εijJ [j56]
α̇ + δ

[1]
i J [55]

α̇ . (3.57)

To carry out this computation, we need the explicit action of the fermionic covariant
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derivative on the fermions derived in [26], and their complex conjugate

D̄α̇iχ̄
j

β̇
= −1

8
(γab)α̇β̇

(

F̄ j
ab i − 1

4

(

λiklγabλ
jkl
)

)

+
1

192
(γabcd)α̇β̇δ

j
i Ḡ

−
abcd −

1

4
λ̄α̇ki

jχ̄k
β̇

−Cα̇β̇

(

3

32
δji (λλ) +

1

2

(

χ̄kλ̄ki
j
)

)

Di
αλ̄

jkl

β̇
= (γa)αβ̇

(

−iP ijkl
a +

1

2
(λp(ijγaλ̄

kl)
p)− εi(j(χkγaχ̄

l))

)

+
i

12
(γabc)αβ̇ε

i(jH
kl)
abc −

3

4
λpi(j
α λ̄

kl)

β̇
p

Di
αλ

jkl
β = −1

4
(γab)αβε

i(j

(

F̄
kl)
ab + (χ̄pγabλ̄

kl)p)

)

+
1

4
λpi(j
α λ

kl)
β p −

1

2
Cαβ(λ

p(ijλkl)
p)

+(γa)αβ̇χ̄
α̇iλ̄β̇ jkl(γa)α̇β , (3.58)

where the term in P ijkl
a will be neglected to avoid considering contributions from DaL(7,0,1).

Using these expression in (3.56), substituting the two first terms by the second of (3.52),

and including the covariant derivative on the tensor functions

D̄α̇iŪ
−10F a

20[56] = 2Ū−12D̄F a

20[56]χ̄α̇i + 2Ū−10DijklF a

20[56]λ̄
jkl
α̇ , (3.59)

while neglecting the second term of larger U(1) weight, one obtains after some algebra the

constraint

D̄α̇iLabcdefgh ≈ εabcdefgh

(

Ū−12

(

−1

8
F 1

24[56]−4D̄F 3

20[56]

)

εij(γ
ab)α̇

β̇F̄
[2]
ab (χ̄

7)
[j6]

β̇
(λ8)[24](λ̄8)[24]

+ Ū−12

(

−2F 1

24[56] −
440

87
D[2]

jkF 1

24[54]jk + 2D̄F 4

20[56]

)

εij(χ̄
8)[j7](λ8)[24](λ̄9)

[25]
α̇

+ Ū−12

(

− 25

504
F 1

24[56] − 4D̄F 5

20[56]

)

εij(γ
ab)α̇

β̇(χ̄7)
[j6]

β̇
(λ10)

[26]
ab (λ̄8)[24]

)

= 0 . (3.60)

In order for L to satisfy the d-closure equation, each of these terms must cancel separately,

and we get

D̄F 3

20[56]=− 1

32
F 1

24[56] , D̄F 4

20[56]=F 1

24[56] +
220

87
D[2]

jkF 1

24[54]jk , D̄F 5

20[56]=− 25

2016
F 1

24[56] .

(3.61)

Using (3.50) in the third equation, we solve similarly these equations by defining the tensor

functions in terms of a lower weight tensor function F20[52], such that

F24[52] = D̄F20[52] ,

F 1

24[56] = D[4]D̄F20[52] , F 2

28[52] =
8

9
D̄2F20[52] ,

F 3

20[56] = − 1

32
D[4]F20[52] , F 5

20[56] = − 25

2016
D[4]F20[52] , (3.62)
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whereas

F 4

20[56] = D[4]F20[52]

+
220

87

(

3

770
D[2]

jkDjk[2]F20[52] +
52

385
D[2]

jkDj[3]F20[51]k +
663

770
D[2]

jkD[4]F20[50]jk

)

= D[4]F20[52] +
220

87

(

1

14
D[2]

jkDjk[2]F20[52] +
663

770
D[2]

jkD[4]F20[50]jk

)

, (3.63)

where we have reduced the two-derivative term with

D[2]
ijD[3]j =

1

2
δi[1]D[2]

jkDjk[2] . (3.64)

Again we neglected the possible holomorphic inhomogeneous solutions to these equations,

because they must all cancel at the end by unicity and linearity of the equations in the

tensor functions. Note moreover that (3.55) together with (3.62) imply that the tensor

function F20[52] also satisfies to the same constraint

D[3]
jF20[51]j = 0 . (3.65)

To summarise the results obtained so far, the expression of L(8,0,0) subject to these

constraints takes the following form

Labcdefgh = εabcdefgh

(

Ū−12D̄D[4]F20[52](χ̄
8)[8](λ8)[24](λ̄8)[24]

+
8

9
Ū−14D̄2F20[52](χ̄

9)[7]α̇(λ8)[24](λ̄7)
[21]
α̇ − 1

32
Ū−10D[4]F20[52]F̄

[2]
ab (χ̄

6)ab [6](λ8)[24](λ̄8)[24]

+ Ū−10

(

D[4]F20[52] +
220

87

(

1

14
D[2]

jkDjk[2]F20[52] +
663

770
D[2]

jkD[4]F20[jk50]

)

)

× (χ̄7)
[7]
α̇ (λ8)[24](λ̄9)α̇[25]

− 25

2016
Ū−10D[4]F20[52](χ̄

6)ab [6](λ10)
[26]
ab (λ̄8)[24] +

∑

a,p≤4

Ū−2pF a

p[56]Ia 4p[56]

+
∑

a,p,q≤25

Ū−2pF a

p[2q]Ia 4p[2q]

)

. (3.66)

We will now constrain the superform to satisfy equation (3.28), i.e.

Di
αLabcdefgh + 8D[aLbcdefgh]

i
α + 8T i

α[a
β̇jLβ̇jbcdefgh] + 8T i

α[a
β
jL

j

βbcdefgh]

+28T[ab
β̇jLβ̇jcdefgh]

i
α + 28T[ab

β
jL

j

βcdefgh]
i
α = 0 . (3.67)

Again we will start from the action of the covariant derivative on the maximal weight term,

and we will then consider all the terms that are needed to cancel this derivative. Similarly

as in (3.47), (3.52) and using the constraint (3.55), one obtains that

Di
α

(

Ū−12F 1

24[56]

)

(χ̄8)[8](λ8)[24](λ̄8)[24] (3.68)

=2

(

(1− T T̄ )2Ū−10DF 1

24[56] χ
i
α − Ū−12DijklF 1

24[56] λαjkl

)

(χ̄8)[8](λ8)[24](λ̄8)[24]

=2

(

(1−T T̄ )2Ū−10DF 1

24[56] χ
i
α(λ

8)[24]+
220

87
Ū−12D[2]

jkF 1

24[54]jk (λ
9)[24]iα

)

(χ̄8)[8](λ̄8)[24]+. . .
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Using moreover (3.62) and the same steps as in (3.63), one obtains moreover

Di
α

(

Ū−12F 1

24[56]

)

(χ̄8)[8](λ8)[24](λ̄8)[24] (3.69)

= 2(1− T T̄ )2Ū−10DD̄D[4]F20[52] χ
i
α(χ̄

8)[8](λ8)[24](λ̄8)[24]

+
440

87
Ū−12D̄D[2]

jk

(

1

14
D[2]jkF20[52] +

663

770
D[4]F20[50]jk

)

(λ9)[24]iα (χ̄8)[8](λ̄8)[24] + . . .

where the dots state for some lower isospin terms in (λ9)
[23]
α and (λ9)

[21]
α that we disregard

in this computation.

After investigation, it turns out that the only terms that can contribute to cancel

the terms of isospin 57/2 in χ̄8λ9λ̄8 in (3.69) are the ones coming from the action of the

covariant derivative on the fermions of the maximal weight term itself. Using the action of

the covariant derivative on the fermion λ and λ̄ (3.58), as well as

Di
αχ̄

j

β̇
=

1

2
(γa)αβ̇

(

−iεijP̄a +
(

χ̄kγaλ
ijk
)

)

+
3

4
λijk
α χ̄β̇k , (3.70)

one obtains finally

Di
α

(

Ū−12D̄D[4]F20[52] (χ̄
8)[8](λ8)[24](λ̄8)[24]

)

= Ū−12D̄
(

440

87
D[2]

jk

(

1

14
D[2]jkF20[52] +

663

770
D[4]F20[50]jk

)

−10

9
D[4]F20[52]

)

(χ̄8)[8](λ9)[24i]α (λ̄8)[24]

+ . . . (3.71)

so we conclude that supersymmetry implies the tensor function F20[52] to satisfy to

D[2]
jk

(

1

14
D[2]jkF20[52] +

663

770
D[4]F20[50]jk

)

=
29

132
D[4]F20[52] . (3.72)

This equation is one of the main results of this section, that will allow us to determine

the differential equation satisfied by the function that defines the invariant. To summarise

the results obtained so far, the expression of L(8,0,0) subject to these constraints takes the

following form

Labcdefgh = εabcdefgh

(

Ū−12D̄D[4]F20[52](χ̄
8)[8](λ8)[24](λ̄8)[24]

+
8

9
Ū−14D̄2F20[52](χ̄

9)[7]α̇(λ8)[24](λ̄7)
[21]
α̇ − 1

32
Ū−10D[4]F20[52]F̄

[2]
ab (χ̄

6)ab [6](λ8)[24](λ̄8)[24]

+
14

9
Ū−10D[4]F20[52] (χ̄

7)
[7]
α̇ (λ8)[24](λ̄9)α̇[25] − 25

2016
Ū−10D[4]F20[52](χ̄

6)ab [6](λ10)
[26]
ab (λ̄8)[24]

+
∑

a,p≤4

Ū−2pF a

p[56]Ia 4p[56] +
∑

a,p,q≤25

Ū−2pF a

p[2q]Ia 4p[2q]

)

. (3.73)
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We recover already here the structure of the gradient expansion anticipated in (3.21), such

that all the tensor functions are related to each other via covariant derivatives maximising

the isospin, i.e. such that all SU(2) indices are symmetrised.

Now it remains to cancel the first term in (3.69) in order to deduce a differential

equation with respect to the SL(2)/SO(2) scalar fields. As before, we shall concentrate on

terms of maximal weight, so for χ
[1]
α (χ̄8)[8](λ8)[24](λ̄8)[24] we have in principle to consider

all the terms of U(1) weight 21 and isospin 57/2. In order to avoid considering the terms

in DaL(7,1,0) we shall disregard terms involving the scalar momenta, and the remaining

possible field combinations are

χ(χ̄8)[8](λ̄8)[24](λ8)[24] , H [2](χ̄7)[7](λ̄8)[24](λ8)[24] , (3.74)

(χ̄7)[7](λ̄9)[25](λ9)[25] , F̄ [2](χ̄6)[6](λ̄8)[24](λ9)[25] , (χ̄6)[6](λ̄8)[24](λ11)[27] . (3.75)

To simplify further the computation, we note that the torsion

T i β̇j
aα =

i

24
(γbcd) β̇

α εij
(

Ḡ−
abcd −

1

24

(

λklpγabcdλklp

)

)

(3.76)

+
i

24

(

γ bc
a + 4δ[ba γ

c]
) β̇

α

(

F̄ ij
bc −

1

4

(

χ̄kγbcλ̄
ijk
)

+ 2
(

λiγbcλ
j
)

)

+
i

4
(γb) β̇

α F̄ ij
ab .

is such that the contribution of maximal isospin coming from T(1,1,0)
(0,0,1)L(7,0,1), only pro-

duces terms listed in (3.75), such that restring attention to the terms listed in (3.74) we

can neglect this contribution. Moreover, because the term of maximal isospin in L(7,1,0)

proportional to χ̄7λ8λ̄8 has isospin 55/2 (3.33), the contribution of D(1,0,0)L(7,1,0) indepen-

dent of the scalar momenta has itself maximal isospin 55/2, and will not contribute to the

terms we are concentrating on. Therefore we only need to analyse the two following terms

in (3.67)

Di
αLabcdefgh + 8T i

α[a
β
jL

j

βbcdefgh] + · · · = 0 (3.77)

proportional to the two field combinations listed in (3.74). In the first term in (3.77) we

shall only need the contributions

Di
αLabcdefgh = εabcdefgh

(

2Ū−10(1− T T̄ )2DD̄D[4]F20[52] χ
i
α(χ̄

8)[8](λ8)[24](λ̄8)[24]

− 1

32
Ū−10D[4]F20[52]

(

Di
αF̄

[2]
ab

)

(χ̄6)ab [6](λ8)[24](λ̄8)[24]

−14

9
Ū−10D[4]F20[52](χ̄

7)
[7]
α̇ (λ8)[24]

(

Di
α(λ̄

9)α̇[25]
)

+ . . .

)

. (3.78)

We need therefore the explicit action of the covariant derivative on λ̄ already displayed

in (3.58) and the one on F̄ also computed in [26],

Di
αF̄

jk
ab = (γab)α

β

(

− i

9
H

(ij
cde(γ

cdeχ̄j))β − 1

4
(χ̄(iγcdχ̄

j)(γcdχk))α

)

− 4i

3
H

(ij
abc(γ

cχ̄k))α

+(γ[a)α
α̇

(

i

3
H

(ij
b]cd(γ

cdχ̄k))α̇ +
7

3
(χ̄(iγb]cχ̄

j)(γcχk))α̇

)

+ . . . (3.79)
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where the dots state for terms of isospin 1/2 in Hχ̄ and χ̄χ2 as well as many terms in

F̄ λ, χ̄λ̄λ, λ3, Dχ̄, P̄ λ̄, P [4]χ̄, Ḡλ, that are irrelevant in our computation. At the end of the

computation we get that all the terms in Hχ̄6λ̄8λ8 cancel out in (3.78), and the expression

simplifies to

Di
αLabcdefgh = 2εabcdefghŪ

−10
(

(1−T T̄ )2DD̄ + 28
)

D[4]F20[52]χ
i
α(χ̄

8)[8](λ8)[24](λ̄8)[24] + . . .

(3.80)

The second contribution from

8T i
α[a

β
jL

j

βbcdefgh] = 8ε[abcdefg
a1Ū−10F 6

20[j55]T
i
αh]

βj(γa1)β
α̇(χ̄7)

[7]
α̇ (λ8)[24](λ̄8)[24] , (3.81)

is evaluated using the expression of the torsion T(1,1,0)
(0,1,0)

T i β
aα j = εjk(γ

bc)α
β

(

− 1

6
H ik

abc +
i

8
(χ(iγabcχ̄

k))

)

+ εjk(γa
bcd)α

β

(

− 1

36
H ik

bcd +
i

24
(χ(iγbcdχ̄

k))

)

+
5i

12
δα

βεjk(χ
(iγaχ̄

k)) +
i

12
(γa

b)α
βεjk(χ

(iγbχ̄
k)) + . . . (3.82)

as

8T i
α[a

β
jL

j

βbcdefgh] = (3.83)

ǫabcdefghŪ
−10F 6

20[56]

(

88i

3
χi
α(χ̄

8)[8] +
1

36
H

i[1]
abc (γ

abc)α
α̇(χ̄7)

[7]
α̇

)

(λ̄8)[24](λ8)[24] .

The sum of the two contributions finally gives the equation

(

2(1− T T̄ )2DD̄D[4]F20[52] + 56D[4]F20[52] +
88i

3
F 6

20[56]

)

χi
α(χ̄

8)[8](λ8)[24](λ̄8)[24] (3.84)

+
1

36
F 6

20[56]H
i[1]
abc (γ

abc)α
α̇(χ̄7)

[7]
α̇ (λ̄8)[24](λ8)[24] = 0 .

Because the two terms are clearly linearly independent, the tensor function F 6

20[56] must

vanish, such that there is finally no contribution from the torsion term, and we obtain the

following differential equation for F20[52]

(1− T T̄ )2DD̄F20[52] = −28F20[52] . (3.85)

Note that one might have expected to have a non-trivial term (3.32) from the linearised

analysis because such a term does appear in (3.24). However the linearised L(8,0,0) compo-

nent (3.13) also includes a term in P [4](χ̄7)[7](λ7)[21](λ̄8)[24] that we have disregarded in our

analysis, and one checks that they are tight together in the linearised approximation such

that removing the second through the addition of the exterior derivative d of the (7, 0, 0)

superform

Labcdefg = εabcdefgh(γ
h)α̇βF20[52](χ̄

7)
[7]
α̇ (λ7)

[21]
β (λ̄8)[24] , (3.86)

one also remove the former.
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3.3 The gradient expansion of the invariant

The structure of the maximal weight terms of L(8,0,0) derived in the preceding section 3.73,

together with the constraint (3.65) reproduces precisely the structure of the invariants

defined in the linearised approximation, such that we conclude that we can indeed trust the

gradient expansion (3.21). Extending the computation of the last section indeed necessarily

implies that the tensor function F20[52] is itself determined as the covariant derivative of a

lower weight tensor functions, according to the constraints implied by supersymmetry in

the linearised approximation (3.11). We conclude therefore that there is a function E(2,1,0)

of the complex scalar field T and the five scalars tµ parametrising SL(3)/SO(3), such that

F20[52](T, T̄ , t) = D̄5D13
[52]E(2,1,0)(T, T̄ , t) , (3.87)

where the function E(2,1,0) multiplies the singlet superform L(0)[0] including the ∇4R4 type

term. The subscript (2, 1, 0) denotes the analytic superspace including only half of the

positive chirality fermionic coordinates, on which one can integrate the function (3.8) to

define the invariant in the linearised approximation.

By construction, (3.87) implies that (3.65) is automatically satisfied, and using the

property that the covariant derivative on SL(2)/SO(2) and SL(3)/SO(3) commute, we

deduce from (3.72) and (3.85) that the function E(2,1,0) satisfies to

(1− T T̄ )2DD̄6E(2,1,0) = −28D̄5E(2,1,0) , D[2]
jkD14

([54]jk)E(2,1,0) =
29

132
D14

[56]E(2,1,0) . (3.88)

Using the commutation relation between D and D̄, one derives the standard formula [12]

(1− T T̄ )2DD̄nE(2,1,0) = −n(n− 1)D̄n−1E(2,1,0) + (1− T T̄ )2D̄nDE(2,1,0)

= D̄n−1(∆SL(2) − n(n− 1))E(2,1,0) , (3.89)

which one uses to prove that the first equation in (3.88) implies that the function E(2,1,0) is

an eigen function of the Laplace operator, i.e.

∆SL(2)E(2,1,0) = 2E(2,1,0) . (3.90)

Note that the general solution to this equation can be obtained from an anti-holomorphic

function F [τ̄ ] and its complex conjugate as

− (τ − τ̄)2∂∂̄

((

∂̄ +
2

τ − τ̄

)

F [τ̄ ]

)

= 2

(

∂̄ +
2

τ − τ̄

)

F [τ̄ ] , (3.91)

where τ is the upper complex half plan coordinate τ = i1−T
1+T

. One computes that

D2

((

∂̄ +
2

τ − τ̄

)

F [τ̄ ]

)

= −∂

(

(τ − τ̄)2∂

((

∂̄ +
2

τ − τ̄

)

F [τ̄ ]

))

= 0 , (3.92)

which implies that the terms in DnE(2,1,0) only depend on the holomorphic function of τ for

n ≥ 2, whereas the terms in D̄nE(2,1,0) only depend on the anti-holomorphic function F [τ̄ ].
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Altogether with the structure (3.21) described in the preceding section, we conclude that

the function E(2,1,0) only include the anti-holomorphic part such that it satisfies moreover to

D2E(2,1,0) = 0 . (3.93)

For the differential equation on SL(3)/SO(3), one uses equivalently the commutation rela-

tions

[Dijkl,Dpqrs]F(i1...in) =
n

4
δpqrs
ijk)(i1

Fi2...in)(l −
n

8
δpqrsijkl F(i1...in) (3.94)

to prove that

D[2]
jkDn

([4n−2]jk)E(2,1,0) =
2n+ 1

4n− 1
Dn−1

[4n−4]D[2]
jkD[2]jkE(2,1,0) , (3.95)

such that the second equation in (3.88) reduces to

29

55
D13

[52]

(

D[2]
jkD[2]jk −

5

12
D[4]

)

E(2,1,0) = 0 , (3.96)

so that

D(ij
pqDkl)pqE(2,1,0) =

5

12
DijklE(2,1,0) . (3.97)

As explained in [26], this equation moreover implies that E(2,1,0) is an eigen function of the

Laplace operator

∆SL(3)E(2,1,0) =
4

3
E(2,1,0) , (3.98)

such that

Dij
pqDklpqE(2,1,0) =

5

12
DijklE(2,1,0) +

1

9
(εikεjl + εilεjk)E(2,1,0) (3.99)

which is precisely equation (3.22) for s′ = −1
2 .

The closed-superform defining the invariant, admits therefore the gradient expansion

L[E(2,1,0)] =
∑

q≥0

(

∑

p≥0

Ū−2pD̄pDq

[4q]E(2,1,0) L(4p)[4q] + U−2DDq

[4q]E(2,1,0) L(−4)[4q]

)

, (3.100)

for an arbitrary solution to (3.93) and (3.99). Of course one has the complex conjugate

invariant, defined such that

L̄[E(2,0,1)] =
∑

q≥0

(

∑

p≥0

U−2pDpDq

[4q]E(2,0,1) L̄(−4p)[4q] + Ū−2D̄Dq

[4q]E(2,0,1) L̄(4)[4q]

)

, (3.101)

and the associated function multiplying ∇4R4 is E(2,1,0) + E(2,0,1), which is defined to be a

real function of τ and τ̄ . This is consistent with the appearance of the threshold function

E(2,1,0)(T, T̄ , t) + E(2,0,1)(T, T̄ , t) = E[2](τ, τ̄)E[− 1
2
,0](t) , (3.102)

in the low energy effective action of type II string theory compactified on T 2 [11, 17]. The

Eisenstein function E[s,0] satisfies in general to the differential equation [26]

Dij
pqDklpqEs = −4s− 3

12
DijklEs +

s(2s− 3)

18
(εikεjl + εilεjk)Es , (3.103)
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such that E[− 1
2
,0] is indeed a solution to (3.99), whereas E[2] solves (3.90). Using the explicit

expansion of the Eisenstein series E[2],

E[2] = 2ζ(4)τ 2
2 + πζ(3)τ −1

2 +
π

2

∞
∑

N=1

∑

r|N

(

1

r3

)

1 + 2Nπτ2
τ2

(

e2πiNτ + e−2πiNτ̄
)

, (3.104)

one finds indeed that E[2] = E[2] + E [2] for the complex function

E[2] = −1

2
ζ(4)

3τ τ̄2 − τ̄3

τ − τ̄
+

π

2
ζ(3)τ −1

2 +
π

2

∞
∑

N=1

∑

r|N

(

1

r3

)

1 + 2Nπτ2
τ2

e−2πiNτ̄ , (3.105)

that satisfies to

D2E[2] = 0 . (3.106)

However this complex function is not modular invariant, and in order for the supersymme-

try invariant to preserve SL(2,Z), it is necessary that

L̄(0)[4q] = L(0)[4q] , L̄(±4)[4q] = L(±4)[4q] , (3.107)

such that the whole invariant only depends on the gradient expansion of the modular

invariant function E[2]. This reality condition is indeed compatible with the linearised

analysis, because there is only one linearised invariant for each values of p and q, and (3.107)

must therefore be satisfied in the linearised approximation. We know indirectly that this

reality condition must be satisfied at the non-linear level, because the term in 2ζ(4)τ 2
2 lifts

to type IIA supergravity in ten dimensions [11], where it is known to appear in the 2-loop

string theory effective action [8], which is by construction invariant with respect to the B

field gauge transformations.

4 Decompactification limit in lower dimensions

We have derived in the last section the structure of the chiral ∇4R4 type invariant in

eight dimensions, however the same analysis does not apply directly to the second real

∇4R4 type invariant (2.10). To understand the two invariants, we are going to analysis

the corresponding invariant obtained by dimensional reduction in four dimensions. We will

see that these two invariants are related through the action of E7(7) in four dimensions.

Solving the differential equation satisfied by the function E(4,2,2) defining the ∇4R4 type

invariant (2.28) in four dimensions in the decompactification limit, we will indeed obtain

that it lifts to the two independent invariants (2.10) in eight dimensions.

We must warn the reader that considering explicit decompositions of E7(7) and SL(5)

forced us to use the same indices for various representations. Each subsection in this section

uses a different definition of the indices that is recalled in the beginning.

4.1 R4 and ∇4R4 type invariants in four dimensions

In this subsection we shall review the results displayed in section 2.5, which were originally

derived in [26]. In N = 8 supergravity the scalar fields parametrise the symmetric space
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E7(7)/SUc(8), where SUc(8) is the quotient of SU(8) by the Z2 kernel of the antisymmet-

ric rank two tensor representation, and the covariant derivative Dijkl on E7(7)/SUc(8) in

tangent frame are in the rank four antisymmetric complex selfdual representation of SU(8),

Dijkl =
1

24
εijklmnpqDmnpq , (4.1)

with i, j, k, l running from 1 to 8 are in the fundamental representation of SU(8).

In four dimensions there is a bijective correspondence between the supersymmetry

invariants and the linearised invariants defined as superspace integrals in harmonic su-

perspace, due to the enhanced superconformal symmetry SU(2, 2|8) of the theory in the

linearised approximation [30, 35].

The R4 type invariant

One defines R4 type invariants in the linearised approximation using harmonic variables

uri and ur̂ i parametrising SU(8)/S(U(4) × U(4)), where r runs from 1 to 4, and r̂ from 5

to 8. One defines the G-analytic superfield [39]

W = u1iu
2
ju

3
ku

4
lW

ijkl , (4.2)

satisfying to

uriD
i
αW = 0 , uir̂D̄α̇iW = 0 , (4.3)

such that one can define the supersymmetric Lagrangians
∫

d8θd8θ̄duF [0,0,0,n,0,0,0]
u W 4+n

∼ Wn [0,0,0,n,0,0,0]R4 + · · ·+Wn−12 [0,0,0,n−12,0,0,0]χ8 [0,0,0,6,0,0,0]χ̄8 [0,0,0,6,0,0,0] , (4.4)

with

F [0,0,0,n,0,0,0]
u ∼

n
∏

k=1

(u[ik1u
jk

2u
kk

3u
lk]

4) . (4.5)

Using the bijective correspondence one concludes that the R4 type invariant is unique in

four dimensions, and admits the following gradient expansion in a function E(8,4,4)

L[E(8,4,4)] =
12
∑

n=0

Dn
[0,0,0,n,0,0,0]E(8,4,4) L[0,0,0,n,0,0,0] , (4.6)

which satisfies to the constraint that its second derivative restricted to the [0, 1, 0, 0, 0, 1, 0]

irreducible representation of SU(8) vanishes, i.e.
(

28DijpqDklpq − 3δklij∆

)

E(8,4,4) = 0 . (4.7)

This constraint implies by consistency that all the higher order derivatives in represen-

tations that do not belong to the [0, 0, 0, n, 0, 0, 0] irreducible representations vanish. In

particular, the third derivative in the [0, 1, 0, 1, 0, 1, 0] also vanishes, i.e.
(

4DijpqDpqmnDmnkl −Dijkl

(

∆+ 24
)

)

E(8,4,4) = 0 . (4.8)
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The linear term in the differential operator in this formula comes from the symmetrisation

of the cubic term, using the commutation relation

[Dijkl,Dpqrs]Dtuvw = −24δijkl
qrs][tDuvw][p + 3δijklpqrsDtuvw . (4.9)

It follows from representation theory that the quadratic constraint (4.7) implies the cubic

constraint (4.8) and its complex conjugate, and using (4.7) in (4.8), one obtains

− 16Dijkl

(

∆+ 42
)

E(8,4,4) = 0 , (4.10)

so we conclude that the function E(8,4,4) defining the R4 type invariant satisfies moreover to

DijpqDklpqE(8,4,4) = −9

2
δklij E(8,4,4) , (4.11)

such that

∆E(8,4,4) =
1

3
DijklDijklE(8,4,4) = −42 E(8,4,4) . (4.12)

In the following, it will be convenient to rewrite this constraint in terms of the e7(7) valued

differential operator D56 in the fundamental representation [26]

D2
56 E(8,4,4) = −9

2
156E(8,4,4) . (4.13)

The ∇4R4 type invariant

One defines ∇4R4 type invariants in the linearised approximation using harmonic variable

parametrising SU(8)/S(U(2)×U(4)×U(2)). We define the G-analytic superfield [39]

W rs = u1iu
2
ju

r
ku

s
lW

ijkl , (4.14)

where r, s are now SU(4) indices running from 1 to 4 and W rs is in the [0, 1, 0] representa-

tion. Since SU(4) ≃ SO(6), W rs is a vector of SO(6), and the general monomials in W rs

are the symmetric traceless monomials times an arbitrary power of the scalar product of

W rs with itself. The general invariant Lagrangian is defined as the harmonic superspace

integral over 24 Grassmann variables of such monomials as

∫

d8θd8θ̄duF [0,k,0,n,0,k,0]
u r1s1...rnsn

(W rsWrs)
2+kW r1s1W r2s2 . . .W rnsn (4.15)

∼Wn+2k [0,k,0,n,0,k,0]∇4R4+. . .+Wn+2k−20 [0,k−6,0,n−8,0,k−6,0]χ12 [0,4,0,4,0,2,0]χ̄12 [0,2,0,4,0,4,0] .

Using the bijective correspondence, one concludes that the non-linear invariant admits the

following gradient expansion in the function E(8,2,2)

L[E(8,2,2)] =

n+2k≤20
∑

n,k=0

Dn+2k
[0,k,0,n,0,k,0]E(8,2,2) L[0,k,0,n,0,k,0] , (4.16)
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which satisfies to the constraint that its third derivative restricted to the [0, 2, 0, 0, 0, 0, 0]⊕
[1, 0, 0, 1, 0, 0, 1]⊕ [0, 0, 0, 0, 0, 2, 0] representation of SU(8) vanishes, i.e.

(

4DijpqDpqmnDmnkl −Dijkl

(

∆+ 24
)

)

E(8,2,2) = 0 , (4.17)

(

36Djr[klDirmnDpq]mn − δijDklpq(∆ + 42) + δi[kDlpq]j(∆− 120)

)

E(8,2,2) = 0 , (4.18)

(

4DijpqDpqmnDmnkl −Dijkl
(

∆+ 24
)

)

E(8,2,2) = 0 . (4.19)

One computes similarly that (4.18) implies
(

24Dr[klpDirmnDq]jmn − δijDklpq(∆− 12) + δi[kDlpq]j(∆ + 96)

)

E(8,2,2) = 0 . (4.20)

Using the property that the function satisfies to all (4.18), (4.19), (4.20), one gets the

following integrability condition in the [0, 1, 0, 0, 0, 1, 0],

D[i|rpq
(

36Drs[klDj]smnDpq]mn − δj]r Dklpq(∆ + 42) + δ
j]
[kDlpq]r(∆− 120)

+48Ds[klpDj]smnDq]rmn − 2δj]r Dklpq(∆− 12) + 2δ
j]
[kDlpq]r(∆ + 96)

)

E(8,2,2)

= −9DklrsDrspqDpqmnDmnijE(8,2,2) +
3

2
DijpqDklpq

(

5∆+246
)

E(8,2,2) −
9

16
δijkl∆

(

∆+60
)

E(8,2,2)

=
21

4

(

DijpqDklpq −
3

28
δijkl∆

)

(

∆+ 60
)

E(8,2,2) , (4.21)

where we only used (4.19) in the last step. Because the function E(8,2,2) does not satisfy to

the quadratic constraint (4.7), we conclude that it must satisfy instead

∆E(8,2,2) = −60E(8,2,2) . (4.22)

Therefore the constraints (4.18), (4.8) simplify to

DijpqDpqrsDrsklE(8,2,2) = −9DijklE(8,2,2) , (4.23)

2Djr[klDirmnDpq]mnE(8,2,2) = −δijDklpqE(8,2,2) + 10δi[kDlpq]jE(8,2,2) . (4.24)

These constraints can be rewritten in terms of the e7(7) valued differential operator D56

and D133 in the fundamental and the adjoint representations, respectively, as [26]

D3
56E(8,2,2) = −9D56E(8,2,2) , D3

133E(8,2,2) = −20D133E(8,2,2) . (4.25)

E7(7) Eisenstein series

One can define solutions to these differential equations in terms of Eisenstein series defined

as constrained Epstein series in the fundamental representation [15]. Let us consider a

rank one charge vector Γ in the 56 of E7(7) such that the second derivative of the quartic

invariant restricted to the adjoint representation vanishes. Acting with the scalar field one

obtains that the central charges Z(Γ)ij = Vij
IΓI satisfy to

Z[ijZkl] =
1

24
εijklpqrsZ

pqZrs , ZikZ
jk =

1

8
δjiZklZ

kl . (4.26)
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The action of the covariant derivative on the central charges gives

DijklZ
pq = 3δpq[ijZkl] , DijklZpq =

1

8
εijklpqrsZ

rs . (4.27)

One computes then that

Dijkl|Z|2 = 6Z[ijZkl] , DijpqDklpq|Z|2 = 6ZijZ
kl + 2δklij |Z|2 , (4.28)

with |Z|2 = ZijZ
ij . Using moreover the intermediate step

Dijpq|Z|2Dklpq|Z|2 = 2ZijZ
kl|Z|2 + 1

4
δklij |Z|4 , (4.29)

one computes that

DijpqDklpq|Z|−2s = 2s(s− 2)ZijZ
kl|Z|−2s−2 +

s(s− 11)

4
δklij |Z|−2s . (4.30)

One gets therefore a solution to the second order equation (4.11) associated to the R4 type

invariant for s = 2. One computes then that

Djr[klDirmnDpq]mn|Z|−2s

= −1

2
s(s− 2)(s− 4)δijZ[klZpq]|Z|−2s−2 +

1

2
s(s2 − 9s− 40)δi[kZpqZl]j |Z|−2s−2 , (4.31)

and therefore the third equation (4.18) is automatically satisfied by |Z|−2s. One computes

moreover

DijpqDpqrsDrskl|Z|−2s=−3s(s−2)(s−4)ZijZkl|Z|−2s−2−3

2
s(s2−15s+8)Z[ijZkl]|Z|−2s−2 .

(4.32)

One concludes therefore that the function |Z|−2s solves to the cubic equation (4.8) for

s = 4. In general one has moreover

∆|Z|−2s = 3s(s− 9)|Z|−2s . (4.33)

One formally obtains E7(7)(Z) invariant functions by considering the sum over all integral

charges satisfying to the rank one constraint

E[

0
0 0 0 0 0 s

] =
∑

Γ∈Z56

I′′4 (Γ)|133=0

|Z(Γ)ijZ(Γ)ij |−s . (4.34)

However this series does not converge for s ≤ 9, which includes the cases of interest. Using

the theorem of [40], the rank 1 integral charge vectors Γ are in the E7(7)(Z) orbit of an

integer element of grad 3 in the parabolic decomposition of e7(7)

e7(7)
∼= 27

(−2) ⊕
(

gl1 ⊕ e6(6)
)(0) ⊕ 27(2)

56 ∼= 1(−3) ⊕ 27(−1) ⊕ 27
(1) ⊕ 1(3) , (4.35)
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i.e. that

{Γ ∈ Z
56 | I ′′4 (Γ)|133 = 0} ∼= Z

∗ × E7(7)(Z)/
(

E6(6)(Z)⋉Z
27
)

. (4.36)

Using the property that the rank 1 charge vector (with unit grater common divider of all

components) defines a character of E7(7) whose restriction to the Cartan subgroup is the

exponential of the generator
[

0
0 0 0 0 0 1

]

in the appropriate basis

V(φ, V, a)Γ(3) = e3φΓ(3) , (4.37)

one obtains that (4.34) coincides with the Langlands formula

E[

0
0 0 0 0 0 s

] = 2ζ(2s)
∑

g∈
E7(Z)

E6(Z)⋉Z27

g
(

e−6sφ
)

, (4.38)

where g acts on e−6sφ through the non-linear realisation of E7(7) on the coset representative

of E7(7)/SUc(8) in the parabolic gauge. Using Langlands functional identities one shows

that these Eisenstein series exist as functions and are related through [23]

E[

03

2
0 0 0 0 0

] ∝ E[

0
0 0 0 0 0 2

] , E[

05

2
0 0 0 0 0

] ∝ E[

0
0 0 0 0 0 4

] , (4.39)

such that these functions indeed satisfy to the differential equation associated to the R4

and ∇4R4 type invariants

E(8,4,4) = E[

03

2
0 0 0 0 0

] , E(8,2,2) =
1

2
E[

05

2
0 0 0 0 0

] , (4.40)

consistently with the conjecture that they define the exact low energy effective action in

type II string theory [15, 23].

4.2 Decompactification limit to seven dimensions

Any supersymmetry invariant in seven dimensions, dimensionally reduces to a well defined

supersymmetry invariant in four dimensions. It follows that the structure of the invariants

in seven dimensions must be compatible with the differential equations we have derived in

four dimensions. In this section we will solve these differential equations in the parabolic

gauge associated to the dimensional reduction from seven to four dimensions, to exhibit

the differential equations satisfied by the seven-dimensional scalar fields. But before to do

this, let us review shortly some properties of the theory in seven dimensions.

Maximal supergravity in seven dimensions

In seven dimensions the scalar fields parametrise the symmetric space SL(5)/SO(5), and

the double cover Sp(2) of SO(5) is the R-symmetry group. The SL(5) representative V is

defined such that it transforms with respect to rigid SL(5) on the right and local Sp(2) on

the left

Vij
K(x) → Li

k(x)Lj
l(x)Vkl

L(x)RL
K , (4.41)

where i, j, · · · = 1, . . . 4 are the indices in the fundamental representation of Sp(2). The

theory is defined in the linearised approximation in terms of the real scalar superfield Lij,kl

L∗
ij,kl = ΩipΩjqΩkmΩlnL

pq,mn , (4.42)
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Lij,kl χi,kl
α F i,j

ab /H
ij
abc

ρiabα Rab,cd

Di
α

Figure 4. Supergravity multiplet in seven dimensions.

in the [0, 2] of Sp(2), i.e.

Lij,kl = −Lji,kl = −Lij,lk = Lkl,ij , ΩijL
ij,kl = 0 , Li[j,kl] = 0 , ΩjlL

ij,kl = 0 , (4.43)

with Ωij the symplectic form of Sp(2). This superfield satisfies to the linear constraint that

its covariant derivative vanishes in the [1, 2] of Sp(2), and its second derivative vanishes in

the vector representation of SO(1, 7) times the [2, 0] of Sp(2) and in the SO(1, 7) singlet in

the [0, 1] of Sp(2). In particular

Di
αL

jk,lm = Ωi[jχk],lm
α +Ωi[lχm],jk

α +
1

4
Ωjkχi,lm

α +
1

4
Ωlmχi,jk

α , (4.44)

where χi,jk
α is the Dirac Spin(1, 6) spinor in the [1, 1] of Sp(2). At mass dimension 1 the

field content includes the scalar field momentum P ij,kl
a = ∂aL

ij,kl transforming in the [0, 2],

the two-form field strength F i,j
ab in the [2, 0] and the three-form field strength H ij

abc in the

[0, 1] irreducible representation. At mass dimension 3
2 there is the Rarita-Schwinger field

strength ρiabα in the [0, 1, 1] irreducible representation of Spin(1, 6) and at mass dimension

2 the Riemann tensor Rab,cd in the [0, 2, 0] of SO(1, 6).

The R4 type invariant can be defined in the linearised approximation in harmonic

superspace, using harmonic variables uri, uri parametrising Sp(2)/U(2), with r = 1, 2 of

U(2) [31], such that the superfield

W = u1iu
2
ju

1
ku

2
lL

ij,kl (4.45)

satisfies the G-analyticity constraint

uriD
i
αW = 0 . (4.46)

One can write generic invariants

∫

d16θduF [0,2n]
u W 4+n ∼ Wn [0,2n]R4 + · · ·+Wn−12 [0,2n−24]χ16 [0,24] , (4.47)

with F
[0,2n]
u defined as the function of the inverse harmonic variables in the [0, 2n] irreducible

representation of Sp(2)

F [0,2n]
u =

n
∏

m=1

u[im1u
jm]

2u
[km

1u
lm]

2 . (4.48)

This suggests the gradient expansion of the non-linear invariant

L[E(4,2)] =
12
∑

n=0

Dn
[0,2n]E(4,2) L[0,2n] . (4.49)
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One ∇4R4 type invariant can be defined in the linearised approximation in harmonic

superspace, using harmonic variables u1i, u
r
i, u

4
i parametrising Sp(2)/(U(1)×Sp(1)), with

r = 1, 2 of Sp(1) [31], such that the superfield

W rs = u1iu
1
ku

r
ju

s
lL

ij,kl (4.50)

satisfies to the G−analyticity constraint

u1iD
i
αW

rs = 0 . (4.51)

One can write generic invariants
∫

d24θduF [4k,2n]
u r1s1,r2s2...rnsn

(W rsWrs)
2+kW r1s1W r2s2 . . .W rnsn

∼ W 2k+n [4k,2n]∇4R4 + · · ·+W 2k+n−20 [4k−24,2n−16]χ24 [24,16] , (4.52)

with

F [4k,2n]
u r1s1,r2s2...rnsn

=
4k+2n
∏

a=1

(

uia1
)

2n
∏

b=1

u[jbrbu
kb]

sb

∣

∣

∣

[4k,2n]
, (4.53)

projected to the [4k, 2n] irreducible representation of Sp(2). This suggests the gradient

expansion of the invariant at the non-linear level

L[E(4,1)] =

n+2k≤20
∑

n,k=0

Dn+2k
[4k,2n]E(4,1) L[4k,2n] . (4.54)

E7(7)/SUc(8) in the parabolic gauge

We consider the graded decomposition of e7(7) associated to the Cartan element
[

0
0 0 0 1 0 0

]

,

i.e.

e7(7) = 5̄(−6)⊕(3⊗5)(−4)⊕(3̄⊗10)(−2)⊕
(

gl1 ⊕ sl3 ⊕ sl5
)(0)⊕(3⊗10)(2)⊕(3̄⊗5̄)(4)⊕5(6) , (4.55)

such that the grad zero component includes the product of the seven-dimensional duality

group SL(5) times the symmetry group SL(3) associated to the compactification on T 3.

The scalar fields AA
IJ in the (3⊗ 10) of SL(3)× SL(5), with A = 1, 2, 3 of SL(3) and I = 1

to 5 of SL(5), are the scalar components of the seven-dimensional 1-forms potentials. The

scalar fields BI
A in the (3̄⊗ 5̄) are the scalar components of the seven-dimensional 2-form

potentials, whereas the scalars CI in the 5 are dual to the 2-form component of the seven-

dimensional 2-form potentials. Due to the Chern-Simons terms in seven dimensions, the

gauge invariant differentials are

∇AA
IJ = dAA

IJ , ∇BI
A = dBI

A +
1

4
εIKLPQεACDA

C
KLdA

D
PQ ,

∇CI = dCI +
1√
2
BK

A dAA
IK − 1√

2
AA

IKdBK
A +

1

12
√
2
εJKLMNεABCA

A
IJA

B
KLdA

C
MN .(4.56)

We define the nilpotent component of the E7(7) coset representative in the fundamental

representation

56 = 3
(−5) ⊕ 10(−3) ⊕ (3⊗ 5)(−1) ⊕ (3⊗ 5)(1) ⊕ 10

(3) ⊕ 3(5) , (4.57)
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as

E =





















0 AA
KL εACEBK

E CKδAC 0 0

0 0 1
2ε

IJKPQAC
PQ

√
2B

[I
C δ

J ]
K

1
2ε

IJKLPCP 0

0 0 0
√
2εACEA

E
IK

√
2δ

[K
I B

L]
A δCACI

0 0 0 0 1
2ε

IKLPQAA
PQ εACEBI

E

0 0 0 0 0 AC
IJ

0 0 0 0 0 0





















, (4.58)

and its semi-simple component

U =



















e5φυaC 0 0 0 0 0

0 e3φV -1
[K

[iV -1
L]

j] 0 0 0 0

0 0 eφυ-1C
aVi

K 0 0 0

0 0 0 e−φυaCV
-1
K

i 0 0

0 0 0 0 e−3φV[i
[KVj]

L] 0

0 0 0 0 0 e−5φυ-1C
a



















,

(4.59)

such that the coset representative is

V = U exp(E) . (4.60)

We use the notation that the SL(5) indices K,L and the SL(3) index C are contracted

on the right-hand side through the left action of E7(7), whereas I, J and A are contracted

on the left-hand-side through the right action of E7(7). The same convention is used for

the SO(3) indices a, b contracted on the left and c, d on the right, and for the SO(5)

indices i, j contracted on the left and k, l on the right, through the respective right and

left actions of SU(8). We apologise to the reader for using now on i, j as vector indices

of SO(5), whereas we were using them as Sp(2) indices in the preceding discussion. Here

υaC and Vi
K are respectively SL(3) and SL(5) coset representatives for the scalar fields

parametrising respectively SL(3)/SO(3) and SL(5)/SO(5).

The vielbeins and the spin-connexion on E7(7)/SUc(8) are defined respectively from

the projections of the Maurer-Cartan form to the 70 and the su(8) representations as

dVV−1 = dUU−1 + Ud exp(E) exp(−E)U−1 = P +B (4.61)

and the metric on E7(7)/SUc(8) reads

ds2 =
1

6
trPP = 60dφ2 + 2PabP

ab + 2PijP
ij + e4φM IKMJLµAB∇AA

IJ∇AB
KL

+e8φM -1
IJµ

-1AB∇BI
A∇BJ

B + e12φM IJ∇CI∇CJ , (4.62)

where the matrices M IK = Vi
IV iK and µAB = υaAυaB are symmetric by construction, and

∇A, ∇B, ∇C are defined in (4.56). The derivatives dual to these differentials satisfying to

DIJ
A

µ∇µA
B
KL = δBAδ

IJ
KL ,

DA
I

µ∇µA
B
KL = 0 ,

DIµ∇µA
B
KL = 0 ,

DIJ
A

µ∇µB
J
B = 0 ,

DA
I

µ∇µB
J
B = δABδ

J
I ,

DIµ∇µB
J
B = 0 ,

DIJ
A

µ∇µCJ = 0 ,

DA
I

µ∇µ∇µCJ = 0 ,

DIµ∇µCJ = δIJ ,

(4.63)
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are defined as

DKL
A =

∂

∂AA
KL

− 1

6
√
2
εKLMNP εABCA

B
MNAC

PI

∂

∂CI
+

1

4
εABCε

KLMNPAB
MN

∂

∂BP
C

,

DA
I =

∂

∂BI
A

− 1√
2
AA

IJ

∂

∂CJ
, DI =

∂

∂CI
. (4.64)

We are interested in finding functions of the scalar fields defining invariants in four

dimensions that lift to seven dimensions. Therefore we will consider functions that depend

only on the seven-dimensional scalar fields t parametrising SL(5)/SO(5) and the Kaluza-

Klein dilaton φ that must appear at a specific power determined from

∫

d4x
√−ge−6(3+n)φE(t)∇2nR4 ∼

∫

d7x
√−gE(t)∇2nR4 , (4.65)

for the invariant to be diffeomorphism invariant in seven dimensions. With this restricted

ansatz for the function, the differential operator D56 = Eµ(∂µ − Bµ) is block diagonal in

the decomposition (4.57), i.e.

D56 = diag

(

1

12
δac∂φ,

1

20
δijkl∂φ − 2δ

[i
[kD

j]
l],

1

60
δcaδ

k
i ∂φ + δcaDi

k,

− 1

60
δac δ

i
k∂φ − δacDk

i, − 1

20
δklij ∂φ + 2δ

[k
[i D

l]
j], − 1

12
δca∂φ

)

. (4.66)

Now we want to compute the action of the second order derivative D2

D2
56E = D

µ

56∂µ

(

Dν
56∂νE

)

−Dµ[Bµ,D
ν
56]∂νE (4.67)

on a function of φ, t defined on GL(5)/SO(5). Note that the spin-connexion decomposes into

B = Bso(3)⊕so(5) +Mij
a e

2φVi
IVj

JυaA∇AA
IJ +Ma

i e
4φV -1

I
iυ-1A

a∇BI
A +Mie6φVi

I∇CI (4.68)

where the matricesMij
a , Ma

i , M
i are constant tensors andBso(3)⊕so(5) is the spin-connexion

on SL(3)/SO(3)× SL(5)/SO(5), such that its contribution in (4.67) simply replaces all the

partial derivatives on SL(3)/SO(3) × SL(5)/SO(5) by covariant derivatives. Moreover,

using (4.63) one obtains that

Dµ ⊗Bµ = D
µ

so(3)⊕so(5) ⊗Bµ so(3)⊕so(5)

+
(

M̃c
kle

−2φV -1
K

kV -1
J

Lυ-1C
cDKL

C + M̃k
ce

−4φVk
KυcCDC

K + M̃ke
−6φV -1

K
kDK

)

⊗
(

Mij
a e

2φVi
IVj

JυaA∇AA
IJ +Ma

i e
4φV -1

I
iυ-1A

a∇BI
A +Mie6φVi

I∇CI

)

= D
µ

so(3)⊕so(5) ⊗Bµ so(3)⊕so(5) + M̃a
ij ⊗Mij

a + M̃i
a ⊗Ma

i + M̃i ⊗Mi , (4.69)

where the matrices M̃ are also constant tensors. Defining D(0)
µ , the covariant derivative

with respect to the grad zero so(3)⊕so(5) spin-connexion, one obtains therefore that (4.67)

simplifies to

D2
56E = D

µ

56D(0)
µ

(

Dν
56D(0)

ν E
)

−
(

M̃a
ij [M

ij
a ,D

µ

56]+M̃i
a[M

i
a,D

µ

56]+M̃i[Mi,D
µ

56]
)

D(0)
µ E . (4.70)
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On a function of φ, t on GL(5)/SO(5), one computes in this way that D2
56 reduces to

D2
56 = diag

(

δac

(

1

122
∂2
φ +

3

8
∂φ

)

,

δijkl

(

1

202
∂ 2
φ +

11

40
∂φ

)

−
(

7
2
+ 1

5
∂φ
)

δ
[i
[kD

j]
l]∂φ + 2δ

[i
[kD

j]mDl]m + 2D[i
[kDj]

l],

δca

(

δki

(

1

602
∂ 2
φ +

29

120
∂φ

)

+Dk
jDj

i +
(

3
4
+ 1

30
∂φ
)

Dk
i

)

,

δac

(

δik

(

1

602
∂ 2
φ +

29

120
∂φ

)

+Di
jDj

k +
(

3
4
+ 1

30
∂φ
)

Di
k

)

,

δklij

(

1

202
∂ 2
φ +

11

40
∂φ

)

−
(

7
2
+ 1

5
∂φ
)

δ[k [iDl]
j] + 2δ

[k
[i D

l]
mDm

j],

δca

(

1

122
∂2
φ +

3

8
∂φ

))

. (4.71)

We can use this expression to solve the differential equation (4.13) for a function E(8,4,4) =

eaφE(t) on GL(5)/SO(5). These equations give

(

a2

122
+

3a

8

)

E(t) = −9

2
E(t) , (4.72)

(

2δ
[i
[kD

j]mDl]m + 2D[i
[kDj]

l]

)

E(t) =

(

a

5
+

7

2

)

δ
[i
[kD

j]
l]E(t)−

(

a2

202
+

11 a

40
+

9

2

)

δijklE(t) ,

Dk
jDj

iE(t) = −
(

a

30
+

3

4

)

Dk
iE(t)−

(

a2

602
+

29 a

120
+

9

2

)

δki E(t) .

The first equation implies a = −18 or a = −36, but we are going to see that the second

solution does not have a solution on GL(5)/SO(5). The second equation implies that the

second derivative of E(t) vanishes in the irreducible representation [2, 0] of Sp(2), i.e.

D[i
[kDj]

l]E(t) = −2

3
δ
[k
[i Dj]

pDp
l]E(t) + 1

12
δklijDpqDpqE(t) . (4.73)

Using the commutation relation

[Dij ,Dkl]Dpq =
1

2

(

δ
(k
(i δ

l)(pDj)
q) − δ

k)
(i δ

(p
j)D

q)(l

)

, (4.74)

one computes that

Di
pDp

[kDj
l] = −Dj

[kDi
pDp

l] +
1

4
δ
[k
i Dj

l] − 1

16
δ
[k
j Di

l] . (4.75)

Substituting (4.73) in (4.75) and taking the trace over i and k one obtains

Di
kDk

lDl
jE(t) = Di

j

(

13

20
DpqDpq +

9

16

)

E(t) + 1

5
δjiDk

lDl
pDp

kE(t) . (4.76)

Using the third differential equation in (4.72) in this equation one obtains

(5832 + 342a+ a2)Di
jE(t) = 0 , (4.77)
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and therefore a = −18 only is possible, as required for a R4 type invariant (4.65). Therefore

we obtain

Dk
jDj

iE(t) = − 3

20
Dk

iE(t)−
6

25
δki E(t) ,

D[i
[kDj]

l] E(t) =
1

10
δ
[i
[kD

j]
l]E(t) +

3

50
δijklE(t) . (4.78)

This function is one example of the generic class of functions for which the second order

derivative restricted to the [2, 0] vanishes, and we write them

Di
kDk

j E[s,0,0,0] = −3(4s− 5)

20
Di

j E[s,0,0,0] +
2s(2s− 5)

25
δji E[s,0,0,0] , (4.79)

D[i
[kDj]

l] E[s,0,0,0] =
4s− 5

10
δ
[k
[i Dj]

l] E[s,0,0,0] −
s(2s− 5)

50
δklij E[s,0,0,0] , (4.80)

where the notation refers to the property that the Eisenstein series E[s,0,0,0] satisfies to these

equations whenever it converges.

The result is consistent with the conjectured exact low energy effective action in type II

string theory. We just note here that the general solution depending on R
∗
+×SL(5)/SO(5)×

SL(3)/SO(3) is such that one should have the expansion of the Eisenstein series at large

volume modulus V (T 3) = e−6φ,

E[

03

2
0 0 0 0 0

] = e−18φE[ 32 ,0,0,0](t)−
4

π
e−20φE[2,0](gT 3) +O(e−e−2φ

) . (4.81)

We will now analysis the differential equations (4.25) relevant for the ∇4R4 type in-

variant. For this, we need in particular to compute the third order differential operator D3
56

D3
56E = D

µ

56D(0)
µ

(

D2
56E
)

− M̃a
ij [M

ij
a ,D

2
56E ]− M̃i

a[M
i
a,D

2
56E ]− M̃i[Mi,D

2
56E ] . (4.82)

One computes that on a function of φ and t on GL(5)/SO(5), it reduces to

D3
56 = diag

(

(

1

123
∂3
φ +

97

1440
∂2
φ +

3

4
∂φ − 3

2
DpsDps

)

δac ,

δijkl

(

1

203
∂3
φ +

61

2400
∂2
φ +

1

5
∂φ −DspDsp

)

+

(

11+
3

10
∂φ

)

δ
[i
[kD

j]
sDs

l]+

(

21

2
+

3

10
∂φ

)

D[i
[kDj]

l]

+

(

− 3

200
∂2
φ − 63

40
∂φ − 119

8

)

δ
[i
[kD

j]
l] − 2δ

[i
[kD

j]
sDs

pDp
l] − 2D[i

[kDj]
pDp

l] − 4D[i
pDp

[kDj]
l],

δca

(

δki

(

1

603
∂3
φ +

49

7200
∂2
φ +

1

20
∂φ − 1

4
DpsDps

)

+

(

1

20
∂φ + 2

)

Di
pDp

k

+

(

3

602
∂2
φ +

37

80
∂φ +

63

16

)

Di
k +Di

sDs
pDp

k

)

, . . .

)

(4.83)

where the dots stand for the conjugate representations that are identical to the ones written

explicitly up the sign. Using the same ansatz E(8,2,2) = eaφE(t), one obtains combining these

equations that

6D[i
[kDj]

pDp
l]E(t)−

3(a+ 35)

10
D[i

[kDj]
l]E(t) (4.84)

= δ
[i
[k

((

15 +
2a

5

)

Dj]
pDp

l] −
(

33

4
+

13 a

20
+

a2

75

)

Dj]
l] −

(

9a

20
+

17a2

600
+

a3

2250

)

δ
j]
l]

)

E(t) ,

– 39 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
9

which implies that the tensor structure of the first term must necessarily reduce. Con-

sidering the general solution of such a system depending on four variables associated to

a maximal abelian subgroup of SL(5), we find that there is a two-parameter family of

equations with this structure, such that

6D[i
[kDj]

pDp
l]E[s,s′,0,0] +

3(2s+ 4s′ − 5)

10
D[i

[kDj]
l]E[s,s′,0,0]

= δ
[i
[k

(

2s+ 4s′ − 5

5
Dj]

pDp
l] +

(

6

(

3(2s+ 4s′ − 5)

20

)2

+
(s+ 2)(s− 3)

2

)

Dj]
l]

−2s+ 4s′ − 5

80

(

9(2s+ 4s′ − 5)2

25
+ 4s2 − 4s− 9

)

δ
j]
l]

)

E[s,s′,0,0] ,

(

Di
kDk

lDl
j +

2s+ 4s′ − 5

5
Di

kDk
j −

(

3(2s+ 4s′ − 5)2

400
+

2s2 − 2s− 3

8

)

Di
j

)

E[s,s′,0,0]

=
2s+ 4s′ − 5

160

(

9(2s+ 4s′ − 5)2

25
− 4s2 + 4s− 9

)

δij E[s,s′,0,0] . (4.85)

Note that E[s,s′,0,0] and E[1−s,s′+s−1/2,0,0] satisfy to the same equations, so we will not consider

them as independent solutions, unless s′ or s vanishes. Indeed, if s′ = 0 the function

satisfies to the stronger equations (4.80), whereas for s = 0 it is proportional to the function

satisfying to

Di
kDk

j E[0,0,s,0] =
4s− 5

20
Di

j E[0,0,s,0] +
3s(2s− 5)

25
δji E[0,0,s,0] , (4.86)

for s = 5
2 − s′. Again the notation we use refers to the property that the corresponding

Eisenstein series E[s,s′,0,0] and E[0,0,s,0] satisfy to the same equations when they converge.

This way we find only three independent solutions, i.e.

D3
56e

−30φE[ 52 ,0,0,0] = −9D56e
−30φE[ 52 ,0,0,0] ,

D3
56e

−30φE[0,0, 52 ,0] = −9D56e
−30φE[0,0, 52 ,0] ,

D3
56e

−36φE[4,− 1
2 ,0,0] = −9D56e

−36φE[4,− 1
2 ,0,0] . (4.87)

We already see that the two first solutions correspond to the seven-dimensional ∇4R4

type invariant, whereas the second would correspond to the ∇6R4 invariant. The first

equation in (4.25) is indeed also satisfied for the∇6R4 type invariant that descends from ten

dimensions, and the type IIB 3-loop invariant in ten dimensions indeed defines a function

solving (4.85) for s = 4, s′ = −1
2 .

Now we want to check the second equation in (4.25). However the computation of

the commutator terms of the M matrices (4.82) becomes rather tedious in the adjoint

representation, and we will only fix the coefficients on the general covariant ansatz by

demanding that the knows solutions indeed satisfy the equations, i.e.

D3
133e

−18φE[ 3
2
000] = −14D133e

−18φE[ 3
2
000] ,

D3
133e

−30φE[ 5
2
000] = −20D133e

−30φE[ 5
2
000] ,

D3
133e

−30φE[00 5
2
0] = −20D133e

−30φE[00 5
2
0] . (4.88)
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It appears that the system of equations for the coefficients is over-constrained, and it is a

non-trivial check that one can indeed find a solution. The positive grad component (4.55)

of the differential operator D133 restricted to a function on GL(5)/SO(5) is

D133 = diag

(

Di
k +

1

10
δki ∂φ, δ

c
a

(

−Dk
i +

1

15
δik∂φ

)

, δac

(

2δ
[i
[kD

j]
l] +

1

30
δijkl∂φ

)

, . . .

)

, (4.89)

and we obtain after calibrating the coefficients such that (4.88) are all satisfied that

D3
133 =diag

(

Di
pDp

qDq
k +

(

19

2
+

3

10
∂φ

)

Di
pDp

k +

(

3

100
∂2
φ +

81

40
∂φ +

217

16

)

Di
k

+δki

(

1

103
∂3
φ +

31

300
∂2
φ +

1

5
∂φ − 7

4
DpqDpq

)

,

δca

(

−Dk
pDp

qDq
i +

(

11

2
+

1

5
∂φ

)

Dk
pDp

i +

(

− 1

75
∂2
φ − 23

20
∂φ − 37

16

)

Dk
i

+δik

(

1

153
∂3
φ +

47

900
∂2
φ − 1

30
∂φ − 5

4
DpqDpq

))

,

δac

(

2δ
[i
[kD

j]
sDs

pDp
l] + 2D[i

[kDj]
pDp

l] + 4D[i
pDp

[kDj]
l] +

(

1

5
∂φ + 4

)

δ
[i
[kD

j]
sDs

l]

+

(

1

5
∂φ +

9

2

)

D[i
[kDj]

l] +

(

1

150
∂2
φ +

29

20
∂φ − 27

8

)

δ
[i
[kD

j]
l]

+

(

1

303
∂3
φ +

19

302
∂2
φ − 1

15
∂φ − 1

2
DpqDpq

)

δijkl

)

, . . .

)

. (4.90)

The dots stand for the zero and negative grad components. In the same way, one finds

that the component in the adjoint of SL(5) of D3
133 − λD133 admits the two components

DAdj 3
(ij)

[kl] + δ(i
[kDj)

pDp
l] + 2

(

3

5
∂φ − 41

16
− λ

)

δ(i
[kDj)

l] ,

DAdj 3
[ij]

(kl) + δ[i
(kDj]

pDp
l) + 2

(

3

5
∂φ − 13

16
− λ

)

δ[i
(kDj]

l) , (4.91)

using the equations

DAdj 3
(ij)

[kl]E[s,0,0,0] =
(

s(2s− 5) +
15

8

)

δ(i
[kDj)

l]E[s,0,0,0] ,

DAdj 3
[ij]

(kl)E[s,0,0,0] =
(

s(2s− 5)− 13

8

)

δ[i
(kDj]

l)E[s,0,0,0] ,

DAdj 3
(ij)

[kl]E[0,0,s,0] =
(

s(2s− 5) +
7

8

)

δ(i
[kDj)

l]E[0,0,s,0] ,

DAdj 3
[ij]

(kl)E[0,0,s,0] =
(

s(2s− 5)− 21

8

)

δ[i
(kDj]

l)E[0,0,s,0] . (4.92)

Using these equations, one finds then indeed that e−36φE[4,- 12 ,0,0] is not a solution, and we

have therefore the two unique solutions corresponding to the ∇4R4 type invariant

E(8,2,2) = e−30φE[ 5
2
000] + e−30φE[00 5

2
0] . (4.93)
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∇4R4 threshold function in seven dimensions

Consistently with the analysis in [26], we find that there are only two classes of ∇4R4 type

invariants in seven dimensions. The first class is associated to the linearised invariants

discussed above, with the gradient expansion (4.54), with the function E(4,1) = E[0,0, 5
2
,0], that

admits the correct gradient expansion as a consequence of (4.86). This equation indeed

implies that the order n derivative is only non-vanishing in the representations [4p, 2q]

for 2p + q ≤ n, and is related to lower order derivatives when 2p + q < n. The second

solution E[ 5
2
,0,0,0] was shown in [26] to correspond to a chiral invariant in six dimensions,

which explains that the corresponding seven-dimensional invariant cannot be defined as a

harmonic superspace integral in the linearised approximation.

The solution to (4.80) can be defined in terms of a vector Zi = Vi
InI such that

DijZ
k =

1

2
δk(iZj) −

1

10
δijZ

k . (4.94)

One computes that the function (ZiZ
i)−s solves (4.80). However the associated Epstein

series

E[s,0,0,0] =
∑

n∈Z5

(Zi(n)Z
i(n))−s , (4.95)

diverges at s = 5
2 , and one must consider the regularised series [11]

Ê[ 5
2
,0,0,0] = lim

ǫ→0

(

E[ 5
2
+ǫ,0,0,0] −

4π2

3ǫ

)

, (4.96)

that satisfies the equation

DikDjkÊ[ 5
2
,0,0,0] = −3

4
Di

jÊ[ 5
2
,0,0,0] +

8π2

15
δji . (4.97)

Given any contravariant vector mI with Z(m)i = V -1
I

imI , one computes that

DikDjkln
(

Z(m)lZ(m)l
)

= −3

4
Di

j ln
(

Z(m)lZ(m)l
)

+
2

5
δji , (4.98)

such that the relevant function to define the string theory Wilsonian action in (2.2) is

E ′
1
4
= Ê[ 5

2
,0,0,0] −

4π2

3
ln
(

Z(m)lZ(m)l
)

. (4.99)

As explained in [26], this additional function defines a consistent anomaly for the continuous

SL(5) Ward identity, because the sl5 variation of this function solves (4.80) for s = 5
2

by construction, whereas the function itself does not. We therefore conclude that this

contribution comes from the 2-loop supergravity amplitude [38].

Similarly, the solution to (4.86) can be defined in terms of an antisymmetric tensor

Zij = V -1
I

iV -1
J

jnIJ satisfying to the constraint

n[IJnKL] = 0 , Z [ijZkl] = 0 , (4.100)
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such that

DijZ
kl = −δ

[k
(iZj)

l] +
1

5
δijZ

kl . (4.101)

One computes that the function (ZijZ
ij)−s solves (4.86). However the associated Eisenstein

series

E[0,0,s,0] =
∑

n∈Z10|n∧n=0

(Zij(n)Z
ij(n))−s , (4.102)

diverges at s = 5
2 , and one must consider the regularised series [11]

Ê[0,0, 5
2
,0] = lim

ǫ→0

(

E[0,0, 5
2
+ǫ,0] −

2π5

9ǫ

)

, (4.103)

that satisfies to the equation

DikDjkÊ[ 5
2
,0,0,0] =

1

4
Di

jÊ[ 5
2
,0,0,0] +

2π5

15
. (4.104)

For a given covariant rank one antisymmetric tensor mIJ , one computes similarly that for

Zij = Vi
IVj

JmIJ

DikDjkln
(

Z(m)ijZ(m)ij
)

=
1

4
Di

j ln
(

Z(m)ijZ(m)ij
)

+
3

10
, (4.105)

such that the relevant function to define the string theory Wilsonian action in (2.2) is

E(4,1) =
6

π3
Ê[ 5

2
,0,0,0] −

8π2

3
ln
(

Z(m)ijZ(m)ij
)

. (4.106)

In the same way, the additional function defines a consistent anomaly for the continuous

SL(5) Ward identity. The specific mIJ , m
I that define the logarithm function of the scalar

appearing in the 2-loop supergravity amplitude must depend of the specific parametri-

sation of the symmetric space SL(5)/SO(5), and this ambiguity amounts to a choice of

renomalisation scheme.

4.3 Decompactification limit to eight dimensions

To make link with the analysis of section 3, we will now solve equations (4.80) and (4.86) in

the parabolic gauge associated to the large compactification radius limit, with the graded

decomposition

sl5 ∼= (2⊗ 3)(−5) ⊕
(

gl1 ⊕ sl2 ⊕ sl3
)(0) ⊕ (2⊗ 3)(5) . (4.107)

We consider therefore the SL(5) representative V in this gauge such that

V =

(

e−3φv-1
j
α 0

e2φV a
KaKj e2φV a

J

)

, (4.108)

with the indices α, β running from 1 to 2 of the local SO(2), i, j from 1 to 2 of the rigid

SL(2), a, b from 1 to 3 of the local SO(3) and I, J from 1 to 3 of the rigid SL(3). We

decompose the Maurer-Cartan form into symmetric and antisymmetric components

dVV−1 = P +B (4.109)
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to obtain the symmetric traceless scalar momentum

P =

(

−3dφδβα − Pα
β 1

2e
5φvα

iV b
Ida

I
i

1
2e

5φvβiVaIda
I
i 2dφδba + Pa

b

)

, (4.110)

and the antisymmetric spin-connexion B. The metric on the symmetric space is defined as

ds2 ≡ 2trP2 = 60dφ2 + e10φµijMIJda
J
i da

J
j + 2PαβP

αβ + 2PabP
ab . (4.111)

The differential operator in tangent frame D is

D =

(

− 1
20∂φδ

β
α −Dα

β 1
2e

−5φv-1
iαV

-1Ib∂i
I

1
2e

−5φv-1
i
βV -1I

a∂
i
I

1
30∂φδ

b
a +Da

b

)

, (4.112)

with by construction

Dν 2trPµPν = Pµ . (4.113)

As in the last section one defines the second order differential operator

D2E = Dµ∂µ

(

Dν∂νE
)

−Dµ[Bµ,D
ν]∂νE , (4.114)

which we compute to be

D2 =





(

1
400∂

2
φ + 1

16∂φ + 1
2DγδDγδ

)

δβα +Dα
β
(

3
4 + 1

10∂φ
)

+ 1
4e

−10φv-1
iαv

-1
j
βM -1IJ∂i

I∂
j
J

−1
8e

−5φ

(

v-1
i
βV -1I

a

(

1 + 1
15∂φ

)

− 4v-1
i
βV -1I

cDa
c + 4v-1

i
γV -1I

aDγ
β

)

∂i
I

(4.115)

−1
8e

−5φ

(

v-1
iαV

-1Ib
(

1 + 1
15∂φ

)

− 4v-1
iαV

-1IcDc
b + 4v-1

iγV
-1IbDα

γ

)

∂i
I

(

1
900∂

2
φ + 1

24∂φ
)

δba +Da
cDc

b +Da
b
(

1
2 + 1

15∂φ
)

+ 1
4e

−10φV -1I
a V -1JbM -1

ij∂
i
I∂

j
J





E[s,0,0,0] solution
We shall consider first the solution for a function on R

∗
+×SL(2)/SO(2)×SL(3)/SO(3). In

this case (4.80) reduces to

1

10
Dα

β
(

∂φ + 15− 6s
)

E = −
(

1
400∂

2
φ + 10−3s

100 ∂φ + 1
2DγδDγδ − 2s(2s−5)

25

)

δβα E ,

Da
cDc

b E +Da
b
(

12s−5
20 + 1

15∂φ
)

E = −
(

1
900∂

2
φ + 6s+5

300 ∂φ − 2s(2s−5)
25

)

δbaE . (4.116)

The two sides of the first equation must vanish separately, therefore one concludes that ei-

ther the function does not depend on the complex scalar field τ parametrising SL(2)/SO(2)

and E = e−4sφE(t) or E = e8(2s−5)φE(t) , or E = e3(2s−5)φE(τ, t) and

∆SL(2)E(τ, t) =
(2s− 3)(2s− 5)

4
E(τ, t) . (4.117)

We note moreover that a function satisfying to the second equation must satisfy to (3.103)

for some s′, i.e.

Da
cDc

bEs′ = −4s′ − 3

12
Da

bEs′ +
s′(2s′ − 3)

9
δbaEs′ . (4.118)

– 44 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
9

Only for s′ = 0 or 3
2 , one can have an additional constant term [26]. Using this one finds

the unique compatible solution

E = e−4sφEs(t) + e3(2s−5)φE 5
2
−s(τ) . (4.119)

The dependence in aIi can be determined for each Fourier momentum eiq
i
Ia

I
i separately.

The equation in the 10 implies the 1/2 BPS constraint [41]

εijq
i
Iq

j
J = 0 , (4.120)

and one can define the invariant mass |Z(q)| =
√

µ-1
ijM

-1IJqiIq
j
J . The rank one 2×3 matrix

then factorises, such that one can define

qiI = pimI , (4.121)

from which we can define the invariant mass |ξ| =
√

µ-1
ijp

ipj . In principle one could expect

a dependence in the SL(2) factor of SL(3) that leaves invariant qiI , but this is forbidden by

the differential equation. One finds the general solution of (4.80) (which vanishes at large

e−5φ|Z|) as a function of |Z|, |ξ| and φ

Eq = e−6φ

(

eφ
|Z(q)|
|ξ(p)|2

)s− 3
2

Ks− 3
2
(e−5φ|Z(q)|)eiqiIaIi . (4.122)

These results are in agreement with the constant term formula for the corresponding Eisen-

stein series [11], and one computes using Poisson summation formula

E[s,0,0,0] = e−4sφE[s,0](t) + π
3
2
Γ(s− 3

2)

Γ(s)
e3(2s−5)φE[s− 3

2 ]
(τ)

+
2πs

Γ(s)

∑

n∈Z2
∗,m∈Z3

∗

e−6φ

(

e2φ
M -1IJmImJ

µ-1
ijn

inj

)
2s−3

4

Ks− 3
2
(2πe−5φ|Z(m⊗ n)|)e2πimIn

iaIi

= e−4sφE[s,0](t) + π
4s−5

2
Γ(52 − s)

Γ(s)
e3(2s−5)φE[ 52−s](τ)

+
2πs

Γ(s)

∑

q∈Z6|q∧q=0

e−6φ
∑

p|q

(

eφ
|Z(q)|
|ξ(p)|2

)s− 3
2

Ks− 3
2
(2πe−5φ|Z(q)|)e2πiqiIaIi . (4.123)

Note that the dependence in the specific integral vector pi = rp′i does not depend on the

scalar fields, and defining p′i, the solution to (4.121) such that p′1 and p′2 are relative

primes, one has

∑

p|q

(

eφ
|Z(q)|
|ξ(p)|2

)s− 3
2

=

(

∑

r|q

r2−3s

)(

eφ
|Z(q)|
|ξ(p′)|2

)s− 3
2

. (4.124)

For s = 3
2 , we get back the property that the solution behaves like an eight-dimensional

threshold ∫

d7x
√−ge−2(3+n)φE(t)∇2nR4 ∼

∫

d8x
√−gE(t)∇2nR4 , (4.125)
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with

E = e−6φE 3
2
(t) + e−6φE1(τ) . (4.126)

Although the value s = 3
2 does not define a smaller representation of SL(2) × SL(3) as in

lower dimensions, we see nonetheless that the Fourier modes simplify at this value, and

become a function of φ and |Z(q)| only. The expansion of the Eisenstein series

E[ 3
2
,0,0,0] = e−6φ

(

Ê[ 3
2
,0](t) + 2Ê[1](τ)− 20πφ

)

+4π
∑

q∈Z6|q∧q=0

e−6φ

(

∑

r|q

1

)

K0(2πe
−5φ|Z(q)|)e2πiqiIaIi . (4.127)

includes the additional function linear in the dilatons

E = e−6φ

(

10φ+ ln

(

MIJm
ImJ

µijninj

))

, (4.128)

which is also an exact solution to (4.116).

For s = 5
2 , we get the function associated to the invariant that cannot be written as a

harmonic superspace integral in the linearised approximation

E = e−10φE 5
2
(t) + E1(τ) . (4.129)

The regularised Eisenstein function decomposes as [11]

Ê[ 5
2
,0,0,0] = e−10φE[1,0](t) +

4π

3
Ê[1](τ) + 8π2φ

+
8π2

3

∑

q∈Z6|q∧q=0

e−6φ
∑

p|q

(

eφ
|Z(q)|
|ξ(p)|2

)

K1(2πe
−5φ|Z(q)|)e2πiqiIaIi . (4.130)

E[0,0,s,0] solution
Let us now consider equation (4.86), which reduces on R

∗
+ × SL(2)/SO(2)× SL(3)/SO(3)

to

1

10
Dα

β
(

∂φ + 2s+ 5
)

E = −
(

1
400∂

2
φ + s+5

100 ∂φ + 1
2DγδDγδ − 3s(2s−5)

25

)

δβα E ,

Da
cDc

b E +Da
b
(

15−4s
20 + 1

15∂φ
)

E = −
(

1
900∂

2
φ + 15−2s

300 ∂φ − 3s(2s−5)
25

)

δbaE . (4.131)

In the same way we get that the two sides of the first equation must vanish separately,

such that either the function does not depend on the complex scalar field τ parametrising

SL(2)/SO(2) and E = e−12sφE(t) or E = e4(2s−5)φE(t) , or E = e−(2s+5)φE(τ, t) and

∆SL(2)E(τ, t) =
(2s− 1)(2s− 3)

4
E(τ, t) . (4.132)

Using moreover that a function satisfying to the second equation must satisfy to (3.103)

for some s′, we get the general solution

E[0,0,s,0] = e−12sφ + e4(2s−5)φEs−1(t) + e−(2s+5)φEs− 1
2
(τ)E2−s(t) . (4.133)
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This solution is consistent with the constant term formula [11], i.e.

E[0,0,s,0] = 2ζ(2s)ζ(2s− 1)e−12sφ +
π2ζ(2s− 3)

(s− 1)
(

s− 3
2

)e4(2s−5)φE[s−1,0](t)

+
π2s−2Γ(2− s)

2Γ(s)
e−(2s+5)φE[s− 1

2 ]
(τ)E[2−s,0](t) +O(e−e−5φ

) . (4.134)

For s = 5
2 we get the function associated to the invariant that can be written as a

harmonic superspace integral in the linearised approximation

E[0,0, 52 ,0] = e−30φ + E 3
2
(t) + e−10φE2(τ)E− 1

2
(t) . (4.135)

4.4 Decompactification limit to ten dimensions

The decompactification limit to type IIB supergravity in seven dimensions can be obtained

in the same way as in (4.108) for the inverse matrix

V =

(

e3φvα
j e3φvα

kBJ
k

0 e2φV -1J
a

)

, (4.136)

such that vα
j(τ) is now parametrised by the string coupling constant complex modulus τ .

One obtains therefore as in the last section that

E[s,0,0,0] = e−6sφE[s](τ) + π2s− 5
2
Γ(52 − s)

Γ(s)
e(4s−10)φE[ 5

2
−s,0](gT 3) (4.137)

+
2πs

Γ(s)

∑

q∈Z6|q∧q=0

e−6φ
∑

p|q

(

eφ
|Z(q)|
|ξ(p)|2

)1−s

Ks−1(2πe
−5φ|Z(q)|)e2πiqiIBI

i ,

where the first term defines the exact R4 and ∇4R4 type IIB threshold functions for s = 3
2

and s = 5
2 , respectively. According to the Kaluza-Klein reduction

∫

d7x e−6(3+k)φE(τ)∇2kR4 ∼
∫

d10x E(τ)∇2kR4 , (4.138)

it follows that a E[ 32 ,0,0,0]R
4 type invariant in seven dimensions can lift to a E[ 32 ](τ)R

4 type

invariant in ten dimensions, and a E[ 52 ,0,0,0]∇
4R4 type invariant can lift to a E[ 52 ](τ)∇

4R4

type invariant.

However

E[0,0, 52 ,0] = 1 + e−20φE−1(gT 3) + e−5φE− 1
2
(τ)E2(gT 3) , (4.139)

and there is no solution that lifts to ten dimensions such that no E[0,0, 52 ,0]∇
4R4 type invari-

ant in seven dimensions does lift to type IIB supergravity.

To understand the decompactification limit to IIA supergravity, it is more convenient

to take an explicit basis for the diagonal elements of the matrix V ∈ SL(5), i.e.

V1
1= y

2
5
7 , V2

2=
y
− 1

10
7√
r8rB

, V3
3= y

− 1
10

7

√

rB
r8

, V4
4= y

− 1
10

7

√

r8
rA

, V5
5= y

− 1
10

7

√
r8rA ,

(4.140)
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where y7 is the effective string coupling constant in seven dimensions, whereas r8 and rB
are the radii moduli in type IIB and r8 and rA the radii moduli in type IIA. In this basis,

the only solutions that lift to ten dimensions are

E[ 32 ,0,0,0] = e−6φE 3
2
(t) = y

− 1
5

7

(

1

y7
+ r8rB

)

,

E[ 32 ,0,0,0] = e−6φE1(τ) = y
− 1

5
7 r8rA , (4.141)

with arbitrary coefficients, which shows that the eight-dimensional threshold E 3
2
(t)R4 in-

cludes both type IIA and IIB tree-level R4 thresholds, and the 1-loop type IIB R4 threshold,

whereas E1(τ)R4 includes the type IIA R4 threshold that lifts to eleven dimensions. Simi-

larly, the only solutions that lift to ten dimensions are

E[ 52 ,0,0,0] = e−10φE 5
2
(t) = y−1

7

(

1

y7
+ y7(r8rB)

2

)

,

E[0,0, 52 ,0] = e−10φE2(τ)E− 1
2
(t) = y−1

7 y7(r8rA)
2 , (4.142)

with arbitrary coefficients, which shows that the eight-dimensional threshold E 5
2
(t)∇4R4

includes both type IIA and IIB tree-level ∇4R4 thresholds, and the 2-loop type IIB ∇4R4

threshold, whereas E2(τ)E− 1
2
(t)∇4R4 includes the type IIA ∇4R4 threshold.

In type IIB, supersymmetry implies a second order Poisson equation on SL(2)/SO(2),

such that the two invariants must be in the same SL(2) representation, whereas in type

IIA supergravity there is only one scalar, and they are independent.
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