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1 Introduction

The low energy effective action of Type II string theory on RM~¢ x T? is extremely
constrained by supersymmetry and U-duality [1-3]. Although there is no non-perturbative
formulation of the theory, duality invariance permits to determine the non-perturbative
low energy effective action from perturbative computations in string theory [4-8] and in
eleven-dimensional supergravity [2, 9, 10]. At low orders in the derivative expansion, the
effective action is completely determined by the four-graviton amplitude, and one can in
principle reconstruct the effective action at these orders from the functions &, of the
moduli parametrizing the symmetric space Ey(g)/Kq that define the amplitude [11],

1 d—2 d+2 d+4
T ~ / </§2R 4 ﬁQg—jg(OmR‘l + ,€28i_35(170)v4R4 4 H28td5(071>V6R4 + .. > . (1.1)

The functions &y, 1,0y and &y 1y are strongly constrained by supersymmetry, and are
in particular eigenfunctions of the Laplace operator on the scalar manifold [9, 12-14].
The realisation of these functions as Eisenstein functions [1, 3] has been generalised in
lower dimensions [15], and to higher order VOR* type corrections [16], leading to more
developments in lower dimensions [17-26].

We have shown in [26] that these functions moreover satisfy to tensorial differential
equations that determine their egenvalues for all Casimir operators. The function &,
satisfies for example that its second-order derivative vanishes when restricted to the Joseph
ideal [27], constraining it to lie in the minimal unitary representation of F4), in accordance
with [19-22]. We have shown that &, () satisfies to an equivalent equation associated to the
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Figure 1. Each node determines an Fy(4) multiplet of R* and V*R* type invariants, respectively.
The lines refer to their connection by dimensional reduction. The e refers to parity symmetric
invariants that can be defined in harmonic superspace in the linearised approximation, while e in-
dicates that they are complex chiral invariants in the linearised approximation. o refers to invariants
that cannot be written in harmonic superspace in the linearised approximation.

next to minimal unitary representation of E7(7) in four dimensions [26], from the structure
of the invariant in the linearised approximation [28-31].

This paper extends the analysis of the V2R* type invariant at the non-linear level
in eight dimensions. To carry out this program, we concentrate on terms of maximal R-
symmetry weight, similarly as in [12, 14, 26]. We find in this way that the function of the
scalar fields must satisfy to a tensorial second-order differential equation consistent with
one of the explicit Eisenstein functions conjectured in [17] to define the non-perturbative
threshold function &£;,. The second function does not depend on the type IIB torus
complex structure, and is not constrained by this analysis that only considers Ké&hler
derivatives of the function. However, we prove that the two sets of differential equations
satisfied by the two functions defining &; o), are in the same E;(7) representation in four
dimensions. We show moreover that they are the unique differential equations satisfying to
this criterium. We conclude therefore that there is two classes of VAR* invariants in eight
dimensions, consistently with the two functions appearing in the string theory effective
action. Combining these results with the ones obtains in [26], we conclude that there is a
unique V4R* invariant in dimension five and lower, that splits into two different invariants
in dimension 6, 7 and 8. They descend respectively from type IIA and type IIB 2-loop
corrections to the supergravity effective action.

We provide an overview of the results in the first section, that combines results already
obtained in [26], and new ones that are derived in this paper. It exhibits the structure of



the R* and V*R* type invariants as gradient expansions in the covariant derivative of a
defining function &£ of the scalar fields parametrising Fyq)/Kg4. In section 3 we discuss
in details the structure of the V4R?* type invariant in eight dimensions that lifts to type
ITA in ten dimensions, in the formalism of superforms in superspace [32-34]. Because the
associated function depends on both the complex scalar parametrising SL(2)/SO(2) and
the scalar fields parametrising SL(3)/SO(3), one must consider the gradient expansion in
terms of both the Kéhler derivative and the isospin 2 tangent derivatives on SL(3)/SO(3).
This permits to distinguish terms of maximal U(1) weight and isospin, that are uniquely
determined as monomials of order twenty-four in the fermion fields.

In order to show the existence and the uniqueness of the other class of VAR?* type
invariants in eight dimensions, we use the uniqueness of the V*R* type invariant in four
dimensions, due to the bijective correspondence between supersymmetry invariants and
superconformal primaries of Lorentz invariant top component in four dimensions [30, 35].
Any supersymmetry invariant that can be defined in eight dimensions, clearly descends
to four dimensions by dimensional reduction on T*. Starting from the type IIA invariant
we study in section 3, one can consider the corresponding four-dimensional invariant, and
the differential equations satisfied by the associated function on FEy(7)/SU.(8). Any other
solution to these differential equations is also supersymmetric in four dimensions, and for
a function defined on R x SL(2)/SO(2) x SL(3)/SO(3) with the appropriate power of the
Kaluza-Klein dilaton, it must lift to an invariant in eight dimensions. The invariance of
the supersymmetry invariant with respect to the nilpotent subgroup of E7(7) defining the
shift of the axions, indeed implies that the dependence in the gauge fields and the axions
is defined in such a way as to ensure gauge invariance and diffeormorphism invariance in
eight dimensions.

We show that this line of arguments is indeed valid in section 4, although the proof is
not formulated in this order. We rather start by solving the relevant differential equations
derived in [26] in four dimensions on a function of the seven-dimensional scalar fields. This
way we exhibit the existence of two classes of V4R* type invariants in seven dimensions,
which are then shown to lift to corresponding invariants in eight dimensions. We also
discuss the properties of the solutions with respect to Ey4)(Z) invariance, and we prove that
the functions conjectured to define the type II exact low energy effective action components
in R* and V4R* [15, 23] are indeed solutions to the equations derived in [26].

2 Overview of the results in various dimensions

In this section we review the Fy) multiplets of supersymmetric corrections to the super-
gravity effective action in various dimensions. We will concentrate ourselves on R* and
V4R* type invariants in maximal supergravity (see figure 1). Such corrections are invari-
ant modulo the classical field equations, and are determined by closed superforms within
the superform formalism of Bates [32-34]. A closed superform depends in general on the
scalar fields parametrising Fy(g) /K4 through a function £ and its covariant derivative in



tangent frame, and takes the form

cle] =S "opeck, (2.1)
n,R

where R refers to irreducible representations of Ky such that the superforms LR are Eqa
invariant and transform with respect to K; in the conjugate irreducible representation
R. For BPS protected invariants such as the ones of type R* and V4R?, the appearing
irreducible representations R are generally determined from the linearised analysis, and the
function & satisfies to the constraints that its derivative D%, & in irreducible representations
that do not appear in the gradient expansion either vanish or are related to lower order
derivatives of the function in the same representation.

All along the paper we use the convention that the function E,, for a weight w of
a*(eq(a)) is the Eisenstein function on Eyq)(Z)\ Eyq)/Kq associated to this weight [15, 23],
whereas a function &, refers to any function on Fjyq)/Kqg solving the same differential
equations as F,,. Supersymmetry is preserved for any such a solution &, with the appro-
priate weight w, and requiring moreover Ed(d)(Z) invariance only then distinguishes the
Eisenstein function E,,.

2.1 N =2 supergravity in eight dimensions

In eight dimensions, maximal supergravity admits for duality group SL(2) x SL(3), and
the scalar fields parametrise the symmetric space SL(2)/SO(2) x SL(3)/SO(3). The Kéhler
derivatives on SL(2)/SO(2) are denoted with D and D, while the SU(2) isospin 2 tangent
derivatives on SL(3)/SO(3) are defined as D;jx;, with 4, j, k, I running from 1 to 2 of SU(2).
The theory includes two 1/2 BPS R* type invariants and two 1/4 BPS V*R* type invari-
ants, which are supersymmetric up to the classical equations of motion. These invariants
decompose in a gradient expansion of a given function £ of the scalar fields as follows

12 12
R*: Y U "D 00 L4, Y DhyEern L, (2.2)
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where the L9147 are SL(2) x SL(3) invariant 8-superforms in the isospin 2n representation
of SU(2) with U(1) weight 4k. The indices of the function &, ,) refers to the harmonic
superspace construction of the associated invariant in the linearised approximation, whereas
the notation £} indicates that the corresponding invariant cannot be written as a Lorentz
invariant harn;lonic superspace integral in the linearised approximation. The functions
E@20) and &1y appearing in the R* invariants satisfy the following equations [26]

Dg(z,z,O) = 0: Dijklg(z,z,o) = 07 (2-4)

3 _
DiquDklpqg(Q,l,l) = _ﬁDijklg(z,l,l) ’ Dg(2,1,1) = D5(2,1,1) = 07 (2-5)



in agreement with [3]. The two classes of invariants coincide in trivial topology when the
function is a constant, and define the 1-loop counter-term for the supergravity logarithm
divergence [36]. The invariant associated to £y, is chiral and complex, and its associated
complex conjugate associated to the function &£, . satisfies to the complex conjugate
constraints. The functions &, , and 5'% defining the V*R* type invariants are discussed
in this paper, and are proved to satisfy to

ASL(Q)(‘:(2,1,0) = 25(2,1,0) ’ D25(2,1,0) =0
5 1
D" DripgE210) = EDijklg(z,Lo) + §(£ik6jl +cigin)ea0 (2.6)
7 9
,Diqu,Dklpqg% = 12 z]klg/ 18(51k5]l + Ezlgjk)gl )
DS% =0, DE% =0, (2.7)

consistently with [11, 17]. These equations are indeed satisfied by the Eisenstein functions
5(2,2,0) +5(2,0,2) = E[l] s 5(2,1,1) = E[%o] 5 5(2,1,0) +5(2,o,1) = E[2]E[_%70] ) 821; = E[%()] 3 (2'8)

which determine the exact R* and V*R* thresholds in type II string theory [3, 17], up two
inhomogeneous terms associated to the chiral anomaly and the SL(3) anomaly produced by
the 1-loop divergence [26, 37]. Here the hat over € ..0) and £q.) indicates that their sum
satisfies to the inhomogeneous equation with a constant right-hand-side [11], and similarly
for £11y-

2.2 N =2 supergravity in seven dimensions

In seven dimensions maximal supergravity has for duality group SL(5), with maximal
compact subgroup SO(5). We label the vector indices a, b, c of SO(5) and the covariant
derivative D,y is symmetric traceless, i.e. transforms in the [0, 2] of Sp(2). The R* and VAR*
type invariants have the following gradient expansion in the function &£ of the scalar fields

12
R': ) D yas £, (2.9)
n=0
n+2k<20 20
ViR Y DibiEan LN D, L0, (2.10)
n,k=0

where again £*%2" are SL(5) invariant superforms in the [4k,2n] of Sp(2), i.e. traceless
tensors of SO(5) with 2k pairs of antisymmetric indices and 2n additional symmetrised
indices, while (4,p) refers to the harmonic superspace construction of the § BPS invariant
in the linearised approximation. The last invariant depending on &) does not admit a
Lorentz invariant harmonic superspace integral form in the linearised fipproximation. The
function € defining the R* type invariant satisfies to

. 3
Da ch5(4’2> == 20D 5(4 2) — 5(525(4@) 5
c e c Cc 9 Cl
(25[{611){,] D" + 2D, Db]d1>5(4,2> = —Oagapb]dlg(“) — 50t (2.11)



consistently with [3]. It is important to remark that the two possible functions multiplying
R* in eight dimensions E20) and £ 1,y are related by SL(5) in seven dimensions. The
functions appearing in the V4R?* type invariants satisfy instead

3 1

ey bl _ b ey ep d ey d _ tglen d

D, DlE} = TPy, (20D D + 2D, Dy ) &) = J0kDy ey (212)
1

DaCchg(4,1) = —Zpabgm,n, (2.13)

consistently with [11]. The two invariants coincide for a constant function, and define
the counter-term for the 2-loop logarithm divergence in supergravity [38]. The SL(5,Z)

invariant Eisenstein functions
5 R R R

which are conjecture to define the exact low energy effective action in string theory [3, 11],
indeed solve these differential equations, up to an inohomogenous right-hand-side for the
V4R?* type invariants that comes from the anomaly associated to the 2-loop divergence.
Once again the hat on the functions refers to these anomalous corrections.

2.3 N =(2,2) supergravity in six dimensions

In six dimensions the duality group of maximal supergravity is SO(5,5) with maximal
compact subgroup SO(5) x SO(5). We denote the indices 4, j and i, running from 1 to
4 of the two Sp(2) groups, and respectively a,b and d,B the vector indices of the two
SO(5) = Sp(2)/Z>. The covariant derivative in tangent frame is a bi-vector of the two
SO(5), i.e. transforms in the [0, 1] x [0,1] of Sp(2) x Sp(2). The invariants we discuss in
this paper admit the gradient expansion in the function of the scalar fields
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RY: ) Do Eans L0100, (2.15)
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n,k=0

n+2k<20
Z D[T;Z,Qrﬁ,[Qk,n]g(él,l,l) E[%’n]’[%’n}, (2.16)
n,k=0

where £2kn)2km] gpq SO(5,5) invariant 6-superforms in the corresponding representation
of Sp(2) x Sp(2). The invariant associated to the function &4, is complex and chiral,
and admits the conjugate invariant of function &£y ) for which the role of the two Sp(2)
factors is exchanged. The function &, . satisfies to the following equations [26]

3 3

Da"Duafuzs = —J0arunn . D'aDyfusn = —04fu2a DDy’ Euzn =0, (217)
whereas €., and £y 1,1y satisfy respectively to
R 3 o
Daan&g(4,2,0) = —15abg(4,2,0> 5 D[a[an]b]g(4,2,o) = 0, 518
a 3 DUD £y = —S0E (218)
D, Dbd5(4,1,1) = _Zéabg(4,1,l)) a™ gp&(4,1,1) 4 ab (4,1,1)



The SO(5,5,Z) invariant Eisenstein functions that are conjectured to define the exact
string theory low energy effective action [11, 15] indeed satisfy to these equations such that

5(4,2,2) - E[ 5(4,2,0) + 5(4,0,2) - EA[E 5(4,1,1) - E[ (2-19)

%oog]’ loog}’ ooog] ’
up to inohomogenous right-hand-sides associated to the 1-loop divergence of the form
factor of the R* type invariant [26]. Although the function &£, ,, defined such that £, .0, +
oz =F [go 0 g] is not itself SO(5, 5, Z) invariant, the associated supersymmetry invariant
only depend on the sum &4, + £uoo and the covariant derivative of the individual

functions, such that it is duality invariant [26].

2.4 N =4 supergravity in five dimensions

In five-dimensional supergravity the duality group is Fg ), with maximal compact subgroup
Sp(4)/Zsy. The covariant derivative in tangent frame is a symplectic traceless rank four
antisymmetric tensor of Sp(4), i.e. in the [0,0,0,1] irreducible representation. The 1/2
and 1/4 BPS invariants admit the following gradient expansion in the function of the
scalar fields

12
R': ) Do L0090, (2.20)
n=0
n+2k<20
4 2k 12k,0,
VR : Y Ditaom s L0 (2.21)
n,k=0

The functions & »,) satisfy to the tensorial equations

Dz‘qupklpqg(sA) = _267{?8(8,4)7 (2.22)
4 25 70
Dijpg D" D" E5 o) + §Dz‘jk15<s,z) =7 (Diqupklpq T 27‘55>‘€<8?2>7
Df’zo,o,ug(&z) =0, (2.23)

where (51-’“} is the projector to the antisymmetric symplectic traceless irreducible represen-
tation of Sp(4)." Eg(g)(Z) invariant solutions to these differential equations are defined by
the Eisenstein series of the type

Esny = L € = B (2.24)

o 3 o Y
0000 0000
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wjo

that are conjectured to define the non-perturbative low energy effective action in type II
string theory [15, 23].
2.5 N = 8 supergravity in four dimensions

In V' = 8 supergravity the scalar fields parametrise the symmetric space Er(7y/SU.(8).
We denote 4, j ... the indices in the fundamental of SU(8), and the covariant derivative in

"Le. 8 = $6765 — £6107 — £, Q.



tangent frame is a complex-selfdual rank four antisymmetric tensor in the [0, 0,0, 1,0, 0, 0]
representation of SU(8). The invariants of type R* and V*R* admit respectively the
following gradient expansions in the function of the seventy scalar fields

12
4. 0,0,0,7,0,0,0

R pré,o,o,n,o,o,o]5<s,4,4>E[ ¥ (2.25)
n=0
n+2k<20

4 p4d n—+2k 0,k,0,n,0,k,0

VR Z D[O,k,O,n,O,k,O}g(&?J)‘C[ I (2.26)

n,k=0

The label (8,4,4) and (8,2,2) refer to the harmonic superspace measures that permit to
define these invariants in the linearised approximation. The function &£ 44 Was proved to

satisfy to
9

2

whereas the function defining the V4R* type invariant satisfies to

Dklpqpiqug(&‘%) = 5135(8,4,4) ) (2.27)

DiquqursDrsklg(s,z,z) = _gpijklg(8,2,2)7
2Djr[leZ’I‘mnqu]mng(&Q’z) = —(S;IDklpqg(g’z’z) + 106fk,Dlpq]jg(8,2,2) . (228)

These differential equations admit as E7(7y(Z) invariant solutions the Eisenstein series

Esam = B (2.29)

o
()

P 5(8,2,2) — E[
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that are conjectured to define the exact low energy effective action in type II string the-
ory [15, 23].

2.6 N = 16 supergravity in three dimensions

In three dimensions, the duality group is Eg(g), of maximal compact subgroup the quotient
of Spin(16) by the Zs kernel of the chiral spinor representation. We denote 7, j the SO(16)
vector indices and A, B the positive chirality Weyl spinor indices. The covariant derivative
in tangent frame is a chiral Weyl spinor, i.e. in the [ooooooj] representation. In three
dimensions there is no four-graviton amplitude, and the corresponding invariants are of
type (VP)* and V#(VP)*, where Py is the scalar momentum of the scalar fields. They
admit in this case the following gradient expansion in the function of the 128 scalar fields

12

(VP)4 : ZDTOOOOO 00]5(16’8) 6{0000002] ? (230)
n=0 "
n+2k<20 R
v4(vp)4 . Z Dn-i—?k . 5(16’4) E[oooko on] ’ (231)

n7k:0 [oooko On]

which satisfy respectively to

TR ABD  Dp&igs = 0, (2.32)
THABY P DpDeDp Epsay = —168T; D Egay - (2.33)
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Figure 2. N = 2 supermultiplet in eight dimensions, defined from the chiral superfield W and the
isospin 2 real superfield L¥*!,

The support of the Fgg)(Z) invariant Eisenstein functions conjectured to define the low
energy effective action in type II string theory [23], on BPS instantons in the decom-
pactification limit [24], indicates that they must indeed satisfy to the differential equa-
tions (2.32), (2.33) such that

Ees) = E[ ) Eeay = E{ (2.34)

3 9 5 9 ‘
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3 The V*R* invariant in eight dimensions

In this paper we investigate the second order corrections of type S® ~ f5V4R4 + ...,
which can appear in N' = 2 supergravity in eight dimensions

o
K

n="7

We denote 4,5 the SU(2) indices, a,b the vector SO(1,7) indices, and «, 8 and ¢, B the
Weyl spinor indices of positive and negative chirality, respectively. The field content of the
theory in the linearised approximation is summarised in figure 2, [29].

We will perform this analysis within the superform formalism defined in [33, 34]. In
this context, a supersymmetry invariant modulo the classical equations of motion is defined
as the integral

S = L, (3.2)
M8
of the pull-back of a d-closed eight-superform £

dL =0, (3.3)



on an eight-dimensional bosonic subspace M?® embedded in superspace M832. Because the
form is d-closed, the integral does not depend on the specific embedding ¢, and the integral
is supersymmetric modulo the equations of motion. One decomposes the superform L in
tangent space into Ls_,,—n m.n) components, with 8 —m — n antisymmetric tangent vector
indices a, m symmetric pairs of chiral spinor indices «, i and n symmetric pairs of anti-chiral
indices ¢, i. Splitting equation (3.3) into components we get formally

(DWO,O) + Tl + T(l,mn(o’oqn)£(8—m—n,m,n> + T200) "V Lir—mnimomtn)

+ 1_1(2,070)(07170>£(77mfn,m+1,n) + <D(o,1,0) + T(0,1,1)(0’O’1) + T(O,2,O)(0’1,O))‘C(Qfmfn,mfl,n)
+ <D(0,0,1) + T(o,l,l)(O’LO) + T(o,o,z)(O’O’D)E(g—m—n,m,n—l) + T(o,z,o)(0’0’1)£(9—m—n,m—2,n+1)
+ 11(0,0,2)(07170>£(97m7n,m+1,n—2) + T(l,l,())(0’071)£(87'mfn,m71,n+1)

+ CZ—1(1,0,1)(O’L0>ﬁ(S—m—n,m-}—l,n—1) + T(O,l,l)<17070)£(10—m—n,m—1,n—1) = Ou (34)

where the torsion components T(g,m,n,myn)(l’p’q’p*‘” have their upper indices contracted with
the lower ones of the superform component L£s_,,_» m.n), With the appropriate combinatoric
factor. For a VR4 type invariant, each component L _,,_, ... has mass dimension
8 + 2k —m — n and U(1) weight m — n. We have used the following abbreviations

D<1,0,0) ~ Da, D<0,1,0) ~ sz 5 D(o,o,l) ~ Ddi 5 (3-5)
as well as
(1,0,0) i, oc
T(o,l,l) ~ Taﬁj )
0,0,1 tj Ak 0,1,0 tj Y 0,0,1 i Ak
T(0,2,0) """ ~ Tagfy ; T0,2,0) """ ~ Tosk Tioa,) " ~ T;Bjy ’

T(1,1,0)(O RN Tajﬁ7 P T(1,1,0)(0 Lo~ Tajgg )
To00) """ ~ Top ™™ . (3.6)

The explicit action of the covariant derivative and the torsion components have been com-
puted up to mass dimension 3/2 in [26].

The complete set of equations (3.4) fixes uniquely the components L,y mny Up to
d—exact terms. But it is enough to enforce some of them to determine the differential
equations satisfied by the function of the scalar fields, as was shown for the R* type
invariant in [26]. Here we will extend these results for one class of V4R?* type invariants.

3.1 Invariant in the linearised approximation

In the linearised approximation, the scalar superfields are defined as the chiral superfield W
of U(1) weight —4 and the isospin 2 real superfield L¥* that satisfies to the constraint [29]

peLite o, pYUrike =q, (3.7)
from which it follows that
Dé((L1111)2+nW2+m) —0. (38)

,10,



One can therefore define a supersymmetry invariant in the linearised approximation, as
D'S(D?)8 (LML) ZEngy2im) o (LHIyngpm (tgtg <6a8bR 9°0"R R R) + .. ) b
(LML ppm=6(\111)8 (I8 1)8 | (p 1L n—18ypm=T y111y8 J111)7(1y8(52)1
Fo o (LML)nBmo14\111)8 (51185218 (3.9)

where the coefficients are not specified, and one understands that the terms in
Wm=F(LHI = always vanish for k& > m or [ > n. However, this construction cannot
be extended to the non-linear level because of the torsion terms

Thhy = —CopA™ + 5(7 ARt Tap?? = —2Casx " (3.10)

that prevent the derivatives D} to define vector fields closing among themselves in har-
monic superspace. The analysis of these linearised invariants is nonetheless very useful to
understand the structure of the corresponding invariant in the full non-linear theory. Con-
sidering a linearised invariant defined for an arbitrary analytic function F of L' (which
we write L for simplicity) and W, we have

_ _ gAtrtar
16/ 79218 _ (4p)[4q]
DDA FIW, L) =) o L (3.11)

X

where £( »14) 4re densities of order 44 p+q in the fields, that do not depend on the naked
scalar fields uncovered by a space-time derivative, as for example

£O0 o tot (0,0,R 0°0'R R R) +
LB « (ts—g )(Fll) (t8+4i8€)234+
[’1(12n4+4”))[56 4n)] x ()\111) ()\111)8—71(21)8()22)71 ] (312)

According to this structure, we expect the non-linear invariant to decompose in the same
way in components of U(1) weight multiple of 4 and even isospin, such that

L= U Fyyuq(T, T, )L (3.13)
pyq

where U _21’]-"41)[4,1} are tensor functions of the scalar fields (T, T) € SL(2)/SO(2) and t €
SL(3)/SO(3) of (possibly negative) U(1) weight —4p and isospin 2¢, and £#"44) are SL(2) x
SL(3) invariant superforms in the dual representation. In the linear approximation, the
component E(spo) [04)(1] reduces to L7 l4dl , for p prositive. These superforms must satisfy to
covariant differential equations in superspace in order for the complete superform £ to be
d-closed. Because U _QPFqu} are tensor functions of the scalar fields, the only covariant
quantities that can enter these equations are the scalar field momenta superforms P, P
and Pk If we assume that there is a unique superform £#”14 for given p and ¢, as
suggested by the linearised analysis, the most general linear equation consistent with U(2)
representation theory is determined up to a rescaling of these superforms as

d,Lerld L opll A penlie—a] | p A pur—9dd]
— apﬂp[?]ij A LUPHa=2]i bp.q Pijri Lépdalijkl | cpgP A £ (4p+4)[4q] (3.14)
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for some coefficients a4, by 4, Cpq. In this notation [4¢g| refers to 4¢ symmetrised SU(2)
indices that are not written explicitly, and identically for a partition [2][4q — 2], etc. .. The
closure of the covariant derivative implies moreover the integrability condition [26]

A2l = _oqplliak n pyy A LOPBIE L opp A P A LoD (3.15)
This equation admits for general solution

d,cerld 1 opll A puplie—4] | p A plr—oldd]

_29(45'=3) g umig—2ij . (@+1)(2¢+1)(2¢+3-25")(2¢ +25') (4p)[4q)ijkl
= age3 L uNk * (dq+5)(4q 1 3) Fja AL
+(plp+1) — s(s — 1)) P A LUl (3.16)

for some integration constants s and s’. It is natural to define a normalisation of the
superform such that the complex conjugate forms do appear with the same coefficient, such
as to make manifest the reality condition on the superform. Therefore the definition (3.16)
holds for strictly positive p only, whereas we will have

d,LOHd 4 oplll A O]

2q(4s’ —3) Coui - (@1 (2¢+1)(2g+3—25") (29 + 25') .
— PRI A penldg—2li Py A LUnHdlik
4q + 3 J - (49 + 5)(4g +3) .
—s(s —1)P ALY _ (s —1)P A LOB (3.17)

for p = 0 and the complex conjugate condition for strictly negative —p, i.e.

dwﬁ(—4p)[4Q] + 2P[4] A £(—4p)[4’1—4] +PA ﬁ(—4p+4)[4‘1]

_ 2q(4s'-3) 2] (—4p)[4q—2]i5 (q+1)(2¢+1)(2q+3—-25")(2¢+25") (—4p)[Aq)ijkl
T 4g+3 P=i N L + (4 + 5)(4q + 3) P N £
+(plp+1) —s(s — 1)) P A LD (3.18)

The range of p can only be bounded if there is a minimal p solution to
pmin(pmin - 1) = 8(8 - 1) ) (319)

such that the exterior differential of the superform set to zero indeed vanishes. This is
clearly possible if and only if s is an integer such that p,;,, = 1 — s or s. For simplicity
we will assume that s is indeed a strictly positive integer (we will eventually prove that
s = 2). Because

dw£(4574)[4q} + 2P[4} A 5(48*4)[44*4} L+ PA £(4S*8)[4‘I] (3.20)
_ 2q(4s'-3) q+1)(2¢+1)(2¢+3—25")(2¢+25")
4qg + 3 (49 +5)(4q + 3)

P /\£<43_4)[4q—2]ij+( Pyja A L=~k

it is possible in principle to have £“P14 = 0 for all p < s, but this is generally not the
case, and we will see that for the V4R?, the gradient expansion rather stops at p = 1 — s.

— 12 —



Using the explicit exterior derivative (3.16), one finds that the closed superform is
necessarily defined in terms of a unique function such that

s—1
LIEs ] = Z( Z U—2p@pp§1q]gs’s, Lénld Z U_zprD[q4q]5s,s' £(4p)[4q]> . (3.21)
q=0 * p>0 p=1

and the function must moreover satisfy to

Ay = s(s— 1)y, D g =0
45" —3 §'(2¢' = 3)

12 18

In the linearised approximation, (3.16) reduces to

Dgﬁfﬁf’)[“q} + aa((’Ya)agﬁ(4p)[4q]Bi) _ 2541])\([3]&(;@[4(1—4] —0,

lin

Da i1 1 og Nl pop =t 4 gy clirolal — ¢, (3.23)

lin

D" DiipgEs,s = Dijris,s + (civgji + €ugjn)lss - (3.22)

which is automatically satisfied using the definition (3.11) and

a4+p+q]: L<4P) [4(]] 6%} . (324)

- 715\ s 2\8 T _
Z(‘l) ) ('l) ) ‘7?[]7Lf7 1;] - 69‘;if2A+,qéa<l;24+]) lin
q

p7
In the next section we will consider the full non-linear superform, concentrating atten-
tion on the terms of maximal weight with respect to U(1) x SU(2). This will permit to
determine the value of the integration constants s and s’. Considering the possible terms
allowed by representation theory, one obtains that the components of maximal weight are
uniquely fixed up to an overall coefficient as
56 - N
LEW o (PP,
52 _ 5 174 [21
EE;?&[O)] o (XQ)[7]a(/\8)[24]()\7)([i ] ’

5232)[481 o (>—<10)[6Mb()\8)[24](5\6)[18}

8,0,0) ab

5252)[28] ~ (215)[1](54()\8)[24]5\5}’

8,0,0)
LEMB o (%) (A%, (3.25)

where there is always a unique way to define a Lorentz invariant such that the contraction
of the indices should not be ambiguous. All these terms already appear in the linearised
invariants as depicted in (3.9), suggesting that they multiply the corresponding derivative
of the function D6+kD[1546111k]5s,s/ for k =0 to 8, as anticipated in (3.21), see figure 3.
However, in eight dimensions it is not true that all linearised invariants can be written
as harmonic superspace integrals, and it is not clear if all linearised invariants do extend
to full non-linear invariants. Therefore one cannot rely blindly on the linearised analysis,
and we will not assume the closed superform defining the invariant to admit the gradient
expansion (3.21) in the following section. Our computation will retrospectively confirm that
the structure of the invariant is indeed the one suggested by the linearised analysis, and
we will be able to conclude that the invariant admits indeed the gradient expansion (3.21)
1

for s=1and s = —35.
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Figure 3. Gradient expansion of the 1/4 BPS V4R* type invariant in eight dimensions.

3.2 Constraints on highest R-symmetry weight terms
We will consider a completely general ansatz for the components of the closed superform

Lisomnmm = 3 U2 Fpo (T, T, 1078 (3.26)

4p[2q (8—m—n,m,n) ?
u7p7q

where U=2PF prq] are tensor functions of the scalar fields of U(1) weight —4p and isospin ¢,

whereas a labels the possible SL(2) x SL(3) tensors I(as(fi,) ?j}myn) in the appropriate represen-
tations of U(1)xSU(2) xSpin(1, 7) associated to the corresponding grading (8 —m—n,m, n).
Iéffrf?g’]myn) have U(1) weight m — n + 4p and isospin j such that ¢ — 24 < j < ¢+ ™2,
depending of the specific tensor structure for the symmetrised pairs of fermionic indices.
Note that we do not assume ¢ to only take even values, as suggested from the linearised
analysis in the preceding section, although we will eventually conclude that it must indeed
be even.

We will concentrate on the maximal mass dimension components of the d-closure equa-

tions (3.4), i.e.
Do,01)Ls,00) + (D(l,o,O) + T(l,o,l)(o’o'l)) Lizo01) + T(1,0,1>(0’1’0)£(7¢1,0)

+T(2,0,0)(0’0’1)£(6,0,2) + T(z,o,o)(O’I’O)E(G,LU =0 (3-27)
D(O,I,O)*C(S,O,O) + (D(l,o,o) + T(l,l,o)(O’l'())) ['(7,1,0) + 11(1,1,0)(0’0’1)»6(7,0,1)
+T(2,o,o)(0’1’0)£(6,2,0) + 11(2,0,0)(0’0’1)5(6,1,1) =0 (3.28)
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In order to simplify further these equations we will moreover restrict ourselves to the anal-
ysis of the terms of highest U(1) weight and carrying the maximal amount of symmetrised
SU(2) indices, which correspond to the terms with maximal value of p and ¢ in (3.26).

Let us consider first the components of L (), that are by construction Lorentz scalars
of mass dimension 12. Each I(‘;f;‘f’g)”q] is therefore a Lorentz scalar of mass dimension
12, U(1) weight 4p and isospin ¢q. The terms of maximal weight depends only on the
fermions fields, because they have the lowest mass dimension while carrying the largest
weight representation. However, Fermi statistics requires to limit the number of them to
maximise the weight. For example, there are only eight different AL, so a term in (\?),
will necessarily includes at least one A}'%, such that the maximal SU(2) representation
one obtains for an octic term is (A%)[4 is of isospin 12, while for nine fermions one only

gets ()\9)5 o of isospin 2. A term with ten fermions ()\10)([121)6] has therefore the same mass

]

dimension and U(2) representation as a term in (A%)24F g) The same argument applies
to the sixteen fermion fields )’(fx The terms of maximal weight involving scalar momenta
can always be eliminated in favour of lower weight terms through the addition of a d-exact

term, and will therefore be disregarded in our analysis.

The maximal weight terms are therefore the terms of order 24 in the fermions depicted
in (3.25). We shall here concentrate on the two monomials

T1e[56] _ (XS)[8}()\8)[24](5\8)[24]7 T2e8)[52] _ (Xg)[ﬂa()\s)pz;](;\?)gl] . (3.29)

The next-to-maximal contribution with a lower isospin could have been I&fﬁﬂ){m, however
the only possible terms must also be of order 24 in the fermions and one checks that
there is no Lorentz scalar in this representation. Indeed, lowering the isospin of one of the
octic monomial (¥®)1®, (A®)24 or (A8)[24 requires to consider only seven among eight of
the Spin(1,7) indices to be antisymmetrised, such that they cannot be scalars. The same
reasoning applies to the terms of order nine and seven in (¥°)[71¢ and (5\7)51], respectively,
such that there is no candidate components Iig,([f(i] either. It is also clear that one cannot
reduce the U(1) weight by 2 only, since the difference of the U(1) weights of the fermion
fields of identical chirality is zero modulo four.

Therefore the non-vanishing next to maximal weight terms have 4p 4+ 2¢ = 76. In
this case there is always more than one possibility, and one obtains for example three

: 56
independent I&(iog)[ ] components

73056 _ Fﬁ] (XG)ab [6]( )\8)[24](5\8)[24]7
7

74056 _ (27)[@]0\8)[24](5\9)@ [25]7

75056l — (56)ab [6]()\10)52176}(5\8)[24]7 (3.30)

where we do not consider the fourth possible component in PH(x7)FI(AT)ZU(A3)24] | be-
cause such a term can always be eliminated in favour of lower weight terms through the
addition of a d-exact term in D o0 L(700. Altogether, we will therefore consider the
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following ansatz for L 0

Labede fgh =Eabedefh <U ]:24[56]( B AHRIRH R L - 14]:28[52]( 9)[7]&()\8)[24](5\7)51]
+ Ufl()fz}()[%]pﬁ](—ﬁ)ab [6]()\8)[24](5\8)[24] + 0710]_-240[56}(—7)([;}(/\8)[24](5\9)d [25]

+ U~ 10}—250[ ]( )ab [6]()\10)[26}0\8 [24] Z U= 2p]_-11[ ]Iu(4p)[56]
a,p<4

+ YU PR TP N U I”W)Pq]) (3.31)

a,p<6 a,p,q<25

where the components that are not specified will be irrelevant in our analysis.

We must also consider the other components of the superform, corresponding to the
terms involving naked gravino fields in the formalism in components. The superform com-
ponent L, is in the Spin(1,7) representation tensor product of the 7-form times the
positive chirality spinor representation, i.e. [1 oj] or [o o ] It has U(1) weight 1 and mass
dimension 23/2. The maximal weight term that one can possibly have in this representa-
tion is simply obtained by removing one fermion field to the maximal weight term in the
component L s g ), and the only possible such term is therefore in the [o 0 é} of Spin(1,7), i.e

i620[56] _ _i[1] B o[ \8Y[24] (18[24]
Tol, e (va)a” (X1) g (A7) RN (3.32)
We consider therefore the ansatz
ci abede g =€abcdefgh (U 10 4[1] ‘F260[56}( )f(;‘i)?( A 241 (33)[24]
+ Z U 4p[56 ;2(417)[56]_1_ Z U 4p[2q Zﬂ(4p)[2Q]> (333)
a,p<4 a,p,q<27

Lz, 18 instead in the direct sum of the [10}] and the [o09], and admits a U(1) weight
—1. Because of the chirality of the representations, it cannot admit components in Y’ A8A8
and the maximal weight components rather include terms in

i 720[56 i _6\[7 25] /v
Ty % = )5 ()5S (%) P (3:34)
and others in the same representation of U(2), such that the general ansatz for £, , ) takes
the form
a 56 T — a a 2
Loon = Y UPFLgTeeh™ N 0 %Fg o TGP (3.35)
a,p<5 a,p,q<27

We will not need to specify any of these terms in our analysis. The L, ;) component is of
mass dimension 11 and U(1) weight 0. Chirality implies that the highest weight terms one
can build in the relevant representations of the Lorentz group are in x° A8 or Fy*A3\8,

as for example

Iab%sw[sd = MW (g, s () (x )[5](>\9)[25]()\8)[24} (3.36)
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and other terms of the same weight, such that the ansatz is of the form

— a 56 — a a 2
Loy = D UPFL e+ N 07 %F o TP (3.37)
a,p<4 a,p,q<27

Note moreover that terms of odd isospin are expected to vanish. Finally the L., com-
ponent has mass dimension 11 and U(1) weight —2. The maximal isospin terms are in
NA8Y0 as for example

abey

T bz %1020[56] _ cllille 5(X )[6]()\8)[24]()\8)[24] (3.38)
and other Lorentz tensor combinations such that the ansatz is
a (4p)[H6 a a(4p)[2
Loon = Y UPFLegTeah™ + 3 0% F n, Ten . (3.39)
2,p<5 a,p,q<27

Let us now describe the action of the fermionic covariant derivatives on a general
tensor function U 2P F¢ dp[2q]" Since the tensor transforms covariantly with respect to U(2),
one obtains

_ _ " - — = = — a jklm
Dai (U 2p]:4p[2q}(T,T,t)) = U 20D FL o Pai + 20 Djpam Fipog P

Dé (ULZP Zp[Qq] (T,TJ)) = 072@71)( TT)QD}_Q [Qfl]PZ ™ 20 Djklm}-‘l'pp‘ﬂ
Do (U7 Fpypo (T.1,8)) = U0V (1 = TT)DFfy 1o Pa+ U2 P IDF 0 Py

+20 Dy F o BT (3.40)

Pz Jkim

?

where the field 7" is the unit disk coordinate on SL(2)/SO(2), and U is the U(1) weight —2
variable satisfying to
UU(1—-TT)=1. (3.41)

The momentum components were derived in [26] to be

PL=2x%, Pai=2Xai, Péjklm = —Ei(j)\]gm) ) pc{flm = 5z(j/_\’?lm) : (3.42)

o

It is helpful to decompose Djklm}—fp[zq] into irreducible representations, as

.. .. 4(] ..
a ijkl a ijkl m Ta ijkl
DijiFipag P =Dl ipagy PV + (q+ 25l Dkt Fipjzg—1ym P (3.43)

6(2g — 1)q
(¢+1)(2q +3)
4(g—1)(2¢ - 1)

(2¢+1)(g+1)
6
T RarDg-1)2g-1)g

where we denote with (i1 ...42,) the symmetrisation of 2n indices, while the numbers into

mn a 17kl
g€ D™ Fipjag—2)ymn

mnr a 17kl
simEimerm Pa™" Fippg—a)mnr

mnrs Ta 17kl
eiEimermEn D™ Fipiog—ajmmrs £ 5

brackets sum up to the total number of symmetrised indices i1, i3, that are not written
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explicitly. One understands that the uncontracted indices of the terms in DFy,p, are
symmetrised first, and all the indices i1, i24 that are not written explicitly are symmetrised
afterward.

We are now ready to solve equation (3.27) in terms of our ansatz (3.31), (3.33), (3.35),
ie.

DeiLabedefgh + 8D Lucdefghjai + 8T ifa™ Lsibedefon) T 8Tai[afﬁé‘bcdewh]

ij 8ri _
+28T006™ L3 e pongai + 28T1aby Lhoegmai = 0 - (3:44)

We shall only consider the mixings between the terms involving tensor functions of U(1)
weight lower or equal to —24 and of isospin 28. As a consequence of (3.35), there is no
mixing contribution coming from Ti o1, %%V L0, at this weight, and these terms can
be disregarded. However, there are contributions from D, )L 70,1, because the applica-
tion of the derivative to the tensor functions can increase the weight. Those mixings are
nonetheless either proportional to P or to PY* and we can neglect them as long as one
does consider terms involving explicitly the scalar momenta. Disregarding these terms will
allow us to simplify drastically the computation in the following. Because the maximal
weight terms in the ansatz (3. 33) are associated to tensor functions of U(1) weight —20
and isospin 28, the terms in T{; o1y *"” L7, do not contribute either in the computation.
Because the isospin 28 terms in L, 1) and L) are all associated to tensor function of
U(1) Welght greater than —20, we can also disregard the terms in Ty, " L) and
T2.0.0) %" L60,2) In equation (3.44).
We get therefore that equation (3.44) simplifies drastically to

DeiLabedefgh = 0, (3.45)

when restricted to the terms involving tensors functions of isospin 28 and of U(1) weight
less or equal to —24.

In order to solve (3.45), it will be convenient to define an explicit basis of fermion fields
monomials as follows

i1 3 5.6 (@ i 16y (ineins) _ 1 ap 53 (iriai i16i171
(KOG = Sa) ey I 5, (W) = Gan) ey AN R R,
<X7) (.i1~-~i7) = l'g B..% (611 X:) (5\7)5;—1'”2421) = ;-' B.. 7)\(111213 B '5\;192'202'21)7

& 7% XA .
()_(8)(11...18) _ 1 o ﬁX(“ ) (;\8)@1‘.@24) _ 81' B3 mm. _/\2221'231‘24),

8! @ s’

()29)((;1...1'7) = ()28)(1'1...%)]‘ _dj’ (5\9)(}’1...125 _ ()\8) j(i1...123 )\:’;41’25)]"
(XIO)((ZZI:..JG) = (fyab)d/? (XQ)E;IWZG)J )z,éja <>\10>((12b1"'7;26) = ('Yab>d6 (j\g)i(il...im 5\;'257;26)]’ .

(3.46)
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Let us first consider the action of the fermionic derivative Dg; on the tensor function

U 12]:24[56] in ‘C(S,O,O)a i.e.

D (U ‘7:24[56]> (X )[8]()‘8)[24}0\8)[24] (3.47)

=2 <U_14D]:214[56] Xai + U_I2Dz‘jkl-7:214[56] 5\@“) (28)[8] ()‘8)[24](5‘8)[24]

16 [~ _14= —o\[7] /3
=90ﬂ%ﬁ%mwwmw 30~ Dmﬂmm>wwwymw+m

where the dots state for lower isospin terms in (A%)[23 and (A\?)2 that we neglect at this
order. The first term can only be canceled by the one coming from the application of Dyg;
on U_M}-ézs[m]v leading to
21
D (071 Fiysy) ()P0 BIAT) 2
_ _ 21)y 7kl
= 20Dy Py (XM OF)PIAN AL +

o[ 149[13]}-228[52}( )[7]()\8)[24]0\8)[24} +... (3.48)

where the dots state for lower isospin terms that we neglect at this order. We conclude
that the two tensor functions must be related through

16 -
5Df214[56] = 2D[4]JT"228[52] . (349)

It means that .7:24[56]

tensor function Fay[s9). Therefore we have

can be written as the covariant derivative on SL(3)/SO(3) of a given

8
]:214[56] = Dy Faufs2) » ]:28[52] = D]:24[52] . (3.50)

Note that in principle the two tensor functions Foy(59) could differ by an inhomogeneous
term such that ﬁDW co4(52) = 0. However one argues that the equation

D(i1i2i3i4gni4i5i6...i4m) =0 (351)

admits no solution, and such inhomogeneous term can only be a holomorphic tensor on
the symmetric space SL(2)/SO(2), i.e. co(T,T) = (1 — TT) '2&,(T). Considering other
constraints from supersymmetry one would get to the conclusion that such inhomogeneous
terms must vanish because the supersymmetry constraint is linear in the tensor functions.
For simplicity we shall assume from the beginning that all such terms vanish.
The second terms in (3.47), decomposes as
3 Dipy ]:24[5513 (X )[8]()\9)[25]()\8)[24]

j I 55 B
= —g (D(i[z}]f214[55})j ()\9)55} + == 5 [ ] ]:24[54}%()\9)[24}2) (XB)[S]()\8)[24] : (3'52)
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where D(i[z}j F. 214[55])3'

since there is no components with a tensor function U~! ]:2 J[54) S We discussed above.

is of isospin 58, and therefore cannot be canceled by any other term

Therefore we conclude that
) ) 13
Dysy’ Faagss) = D[sﬁ( DigjjFaasa) + 7P Fapss ) =0. (3.53)

The first term vanishes because the commutator of two covariant derivative involves the
contraction of three of their respective indices, such that

DDy’ Foupsr) =0, (3.54)

and therefore

Dy’ Foasrj =0 - (3.55)

Now it remains to cancel the second term in (3.52), for which we will need to consider the
action of the covariant derivative on next to maximal weight terms (3.30), i.e

Ddi(U_12f214[56})(78)[8]()\8)[24](5\8)[24} + Dm’ (U_14f228[52]) (29)[715()\8)[24](5\7)[621]

+ U2 F 5 Daa ()P (%P (1) 24)
+ Dy (T ( 10]_—20[56]) ] ab 6] )\8)[24]()\8)[24} + Dy (U ];20[56])( )g}()\s)[m](;\g)a[%}

where we have already computed the two first terms to simplify to the second term in (3.52).
The corresponding tensor function has U(1) weight 28 and isospin 56. Therefore it also gets
contributions from the action of the covariant derivative on tensor functions of U(1) weight
28 and isospin 52. However, there is a large number of terms like that, and analysing them
all would be rather cumbersome. In order to bypass this difficulty, we remark that their
contributions only arise as an isospin 56 tensor function times a combination of the fields
of isospin 55, whereas the term we want to cancel in (3.52) includes a combination of the
fields of isospin 57. Therefore we will be able to neglect the contribution from the isospin
52 terms in L5,0). In the same way, the action of the covariant derivative in the order 24
term in the fermions of maximal isospin decomposes into a term of isospin 57 and a term
of isospin 55 that we will neglect, i.e.

Dai ((2)IOHPI )P ) = ey 77 40177 (3.57)

To carry out this computation, we need the explicit action of the fermionic covariant
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derivative on the fermions derived in [26], and their complex conjugate

5. .o L, ab = o5 1 ikl L abed | A v g
Daixty = —5(7")as <Fabij — 7 QN )) + 795 (0D as0 Gabea — Aaki’ X5
(35 Lok j
Cécﬁ <325z ()‘)‘) + 2 (X )\kz ))
o R T -
U abey i) Sy pi(i 3R
+12 (Py )aﬁg Habc 4)\06 )\:8 p
o 1 v _ 1 . 1 ~
D&)\Jﬁkl — _Z(,yab)aﬁgl(j <Fflf) + (>_(p'7ab)\kl)p)> + Z)\gl(])\gl)p _ 5 aﬁ(}\p(’b])\k‘l)p)
+(1) s XN (va)ag (3.58)

where the term in Péj M will be neglected to avoid considering contributions from D,L 7 1)

Using these expression in (3.56), substituting the two first terms by the second of (3.52),
and including the covariant derivative on the tensor functions

B r7— a rT— N Ta — rr— a Nkl
DsiU 10f20[56} =2U 12Df20[56]Xdi +2U 10Dijkl]:20[56])\£4 ) (3.59)

while neglecting the second term of larger U(1) weight, one obtains after some algebra the
constraint

_ _ 1 = aby B &[2] —77\[i6 Y
Déziﬁabcdefgh ~ 2"—‘abcdefgh<(] 12 <_8f214[56} —4D.F230[56]> Eij (7 b)dﬂFib] (X7)g ]()‘8)[24} (Ag)[24]

440 _ o i
= D’ Py + 2DF§0[56]> e (X (A% 2 (32

rr—12 1
+U <—2}‘24[56] -

_ 25 _ aby B/ —7\[76 26] /v
+07" <_m]:214[56] - 4D}-250[56}> eij (v b)dﬁ(X7)g 0 ]()\8)[24}> =0. (3.60)
In order for £ to satisfy the d-closure equation, each of these terms must cancel separately,

and we get

_ 1 _ 220 " _
D‘F230[56] = _372]:214[56} ) D]:240[56] :]:214[56] + @D[Q]J f214[54}jk ’ Df250[56] -

2%

- 2016]:24[56] :
(3.61)

Using (3.50) in the third equation, we solve similarly these equations by defining the tensor
functions in terms of a lower weight tensor function Foq[52], such that

Fourso] = DFoopso) »

_ 8 _
f214[56] = DD Fa0[52) » ‘7:228[52] = §D2f20[52} ;
1 25
7 250[56] - _33D[4]f 20[52] > F. 250[56} = —mpm]fmm] ) (3.62)

— 21 —



whereas

]:240[56] = D Fa0(52)

220 (3 52 663 ”
87 (7707)[2}] Djkf2) F20[52) + %D[ 2" D1 Faopsjk + 777077[2]] D[4]-720[50]jk>
220 663
= Do + g (14D[2] DirgaFaols2) T 776 D1ar” i 20[50]Jk> , (3.63)

where we have reduced the two-derivative term with
ij Lo gk
Dyg” Dy3); = 55[1}D[2}] Do) - (3.64)

Again we neglected the possible holomorphic inhomogeneous solutions to these equations,
because they must all cancel at the end by unicity and linearity of the equations in the
tensor functions. Note moreover that (3.55) together with (3.62) imply that the tensor
function Foq(59] also satisfies to the same constraint

D[3]jf20[51]j == 0 . (365)

To summarise the results obtained so far, the expression of L) subject to these
constraints takes the following form

Labedefgh = Eabedefgh (U DDy Faopsz (X°)F (A%) 2 (28) 124

8 = 147 _o\[7]& 5 1 - . -
+ UMD Foggsey ()OI AN — 010Dy P Fiy (1) 01 (%) P4 (3%) P4

_ 220
—-10
+U (D[4]]:20[52} ]7 < Dioy’* Djupa Faosz) + 7709[1 9[41720[jk501>>

% (—7)[7]0\8)[24](5\9)@[25]

U D[4] ./_"20[52}( )ab (6] ()\10)[26] ()\8 [24] + Z - pr-a[ ]Ia4p[56}

a,p<4

+ ) U —2pf£[2q11“4p[2q]> . (3.66)

a,p,q<25

2016

We will now constrain the superform to satisfy equation (3.28), i

Déﬁabcdefgh + 8D[a£bcd€fgh]iy + 8Toiz[aﬁj£,5’jbcdefgh] + 8Tl[ 'C]Bbcdefgh}

+28T0 7 £ oo ont e + 28That'; £ =0.  (3.67)

Bcdefgh]
Again we will start from the action of the covariant derivative on the maximal weight term,
and we will then consider all the terms that are needed to cancel this derivative. Similarly
as in (3.47), (3.52) and using the constraint (3.55), one obtains that

D4 (072 Ff s ) () FO8)EA(R) 28 (3.68)

220
87

:2<

(1= TT)T D FLy 6 X A2 4+ = U 2Dy Fys <A9>£34“) ()P 4.
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Using moreover (3.62) and the same steps as in (3.63), one obtains moreover

Dy (U712 F 5 ) ()38 24 (3.60)
=2(1 = TT)*U""DDDy; Faosy X (%) BT (A8 241 (1824
440 — _ 45 = . 1 663 i _
+57 U 2Dy * < DpajnFa052) + 7 [4]]:20[50]jk> (AR BSR4

where the dots state for some lower isospin terms in (A9)L? % and ()\9),[3 1 that we disregard
in this computation.

After investigation, it turns out that the only terms that can contribute to cancel
the terms of isospin 57/2 in x®A?A® in (3.69) are the ones coming from the action of the
covariant derivative on the fermions of the maximal weight term itself. Using the action of
the covariant derivative on the fermion A and A (3.58), as well as

1 o g
DX, =501"ap (—%”Pa + (mﬂ”’“)) + w’fxﬁk, (3.70)
one obtains finally
D, (U DDy Faops) (X°)F ](AB)[M]()\E;)[M])

_ o - (440 1 663
—12 ik
=U D( 57 Dy’ (14D[2}jk]:20[52] + 770D[4]f20[5013k)
1
- 90 [4]]:20[52]>( 5B ZHI(38) 124

+... (3.71)
so we conclude that supersymmetry implies the tensor function Fag[59) to satisfy to

. 1 663 29
Dig’* (MD[2}jk]:20[52] + 77073[4]]'"20[5[)%) =133 Dy F20(52] - (3.72)

This equation is one of the main results of this section, that will allow us to determine
the differential equation satisfied by the function that defines the invariant. To summarise
the results obtained so far, the expression of L) subject to these constraints takes the
following form

£abcdefgh = Eabcdefgh (U_12DD[4]]:20[52] (28)[8] ()‘8)[24] (/_\8)[24]

+ 7U 141)2]-"20[52]( 9)[7} ()\8)[24]()\7)51] B IOD[4}]‘—20[52]F£](X6) b[G]()\S)[24]()\8)[24]

32
. 25 a
. U "Dy Fanpey (Y1)l (W) — D710y Faogy (67 ) 5
Y e S o g T ) o

a,p<4 a,p,q<25
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We recover already here the structure of the gradient expansion anticipated in (3.21), such
that all the tensor functions are related to each other via covariant derivatives maximising
the isospin, i.e. such that all SU(2) indices are symmetrised.

Now it remains to cancel the first term in (3.69) in order to deduce a differential
equation with respect to the SL(2)/SO(2) scalar fields. As before, we shall concentrate on
terms of maximal weight, so for X[ ]( 8)BI(A8)24(X8)[24] we have in principle to consider
all the terms of U(1) weight 21 and isospin 57/2. In order to avoid considering the terms
in DyL ., we shall disregard terms involving the scalar momenta, and the remaining
possible field combinations are

8)[8](5\8)[24]()\8)[24] 7 H[Q] (X7)[7](5‘8)[24](A8)[24] 7 (3.74)
7)[7](5\9)[25]()\9)[25] 7 F[2] (XG)[G](S\S)[%]()\Q)[QS] 7 (XG)[G](XS)[24]<)\11)[27} _ (3.75)

pad

x(

(

To simplify further the computation, we note that the torsion

P

LS Z B
Taclu Bi — ﬂ(,ybcd) B 1] <Gabcd 4 ()\klp’}/abcd)‘klp>> (376)
i 0 L (i v i _
+3700% +46079),] (szi -1 (0kmeX %) +2 ()\’fybc/\ﬂ)> ONE
is such that the contribution of maximal isospin coming from T(; ; 6,**" L .1, only pro-

duces terms listed in (3.75), such that restring attention to the terms listed in (3.74) we
can neglect this contribution. Moreover, because the term of maximal isospin in L,
proportional to Y"A®A® has isospin 55/2 (3.33), the contribution of D g0 L .10, indepen-
dent of the scalar momenta has itself maximal isospin 55/2, and will not contribute to the
terms we are concentrating on. Therefore we only need to analyse the two following terms
n (3.67)

D! ﬁabcdefgh + 87" alaj E =0 (377)

Bbede fgh) +-

proportional to the two field combinations listed in (3.74). In the first term in (3.77) we
shall only need the contributions

D(ilﬁabcdefgh = Eabedefgh <2U10(1 - TT)QD'ZBD[4];2O[52] Xia (X8)[8](A8)[24] (5‘8)[24]

32 U D[4] FZO[SQ] ( F[ ]) ( )ab [6] (X‘S)[24] ()\8) (24]

—50—1%[4@0[52] (X)) (DL (N0 > . (3.78)

We need therefore the explicit action of the covariant derivative on A already displayed
in (3.58) and the one on F also computed in [26],

7 i cde — 1 —(7 -7 c 4i ij Cc—
DLFIF = (m)ﬁ( - §Hc(de(7 e g — Z(X( YeaX?) (Y dxk))a> - nglb”C(v W

& i iJ ( cd— 7 —(i —j c
+(Va)a <3Hb(]ﬁd('7 Na + g(x( VojeX) (y Xk))a> +... (3.79)
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where the dots state for terms of isospin 1/2 in Hy and Yx? as well as many terms in
FX, Y0\, A3, Dy, PX, Py, G\, that are irrelevant in our computation. At the end of the
computation we get that all the terms in H % 3\8 cancel out in (3.78), and the expression
simplifies to

Drixﬁabcdefgh = 25abcdefghU710((1—TT)2D]5 + 28)7)[4]~7:20[52]X2(>28)[8]()\8)[24] (5\8)[24] +...
(3.80)
The second contribution from

i j a1jr— ) 7
8T 0 Lhiede gy = Slabedes™ U Foopys T ™ (var)s* (X NDOHRIAHE (381

is evaluated using the expression of the torsion T(; ; ¢)*"%

i 1
Tos = jk(1")a” < 6Habc 8(X(Wabcx’“))> + &k (1"’ <— %Hifd + 24( X YbeaX ))>

o1 i = ' [P
+ﬁ(5aﬁ€jk(X( YaX®) + 12(% Yol Px™) + . .. (3.82)
as
8T 410 Lhpede o) = (3.83)
8SZ i/ — 1 1 abe Qv — ird —
€aedesgnU~ %w{ x&@w+%%%qu{Mymmwwm-

The sum of the two contributions finally gives the equation

88t

(2(1 — TT)*DDDyy Faopsz) + 56Dja Faojso) + ]:260[56}>XZ(XS)[B]()\S)[M}(/_\8)[24] (3.84)

fmwﬂW“%fwwmvwwﬁquu

abc

Because the two terms are clearly linearly independent, the tensor function .7-'20[56

vanish, such that there is finally no contribution from the torsion term, and we obtain the

] must

following differential equation for Fyg(s9)
(1= TT)*DDFogps9 = —28Fa52] - (3.85)

Note that one might have expected to have a non-trivial term (3.32) from the linearised
analysis because such a term does appear in (3.24). However the linearised L, compo-
nent (3.13) also includes a term in PH4(x7)TI(AT)RU(X8)[24] that we have disregarded in our
analysis, and one checks that they are tight together in the linearised approximation such
that removing the second through the addition of the exterior derivative d of the (7,0,0)
superform

Lapode g = Eabede o (1) Faopsg (XD AT FI ()2 (3.86)

one also remove the former.
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3.3 The gradient expansion of the invariant

The structure of the maximal weight terms of L s, derived in the preceding section 3.73,
together with the constraint (3.65) reproduces precisely the structure of the invariants
defined in the linearised approximation, such that we conclude that we can indeed trust the
gradient expansion (3.21). Extending the computation of the last section indeed necessarily
implies that the tensor function Fy[59) is itself determined as the covariant derivative of a
lower weight tensor functions, according to the constraints implied by supersymmetry in
the linearised approximation (3.11). We conclude therefore that there is a function &£p ;o
of the complex scalar field 7" and the five scalars t* parametrising SL(3)/SO(3), such that

Faopse) (T T.t) = 25E)D[1532}5(2,1,0) (T,T,t), (3.87)

where the function &, multiplies the singlet superform £©% including the V4R* type
term. The subscript (2,1,0) denotes the analytic superspace including only half of the
positive chirality fermionic coordinates, on which one can integrate the function (3.8) to
define the invariant in the linearised approximation.

By construction, (3.87) implies that (3.65) is automatically satisfied, and using the
property that the covariant derivative on SL(2)/SO(2) and SL(3)/SO(3) commute, we
deduce from (3.72) and (3.85) that the function &y, ¢ satisfies to

29

(1 - TT)QDIZ?GE(Q’I’O) = —28@58(271’0) 3 D[Z}jkpg-é}zl]jk)g(ll,o) = ﬁ

Dig€ero - (3.88)
Using the commutation relation between D and D, one derives the standard formula [12]

(]_ - TT)2D2_)TL5(27L()) == _n(n - 1)1_)71—18(2’1’0) + (]- - TT)2@TLD5(2,1,O)
= @"—1(ASL(2) —n(n—1)Eau10, (3.89)

which one uses to prove that the first equation in (3.88) implies that the function &g, ) is
an eigen function of the Laplace operator, i.e.

Asr2)€21.0 = 28210 - (3.90)

Note that the general solution to this equation can be obtained from an anti-holomorphic
function F[7] and its complex conjugate as

—(7—7)288(<8+T2T>I[T]> :2<8+7_27_>]-"[T], (3.91)

where 7 is the upper complex half plan coordinate 7 = ’LL‘F—; One computes that

D2<<5+ Ti»ﬂﬂ) = —8<(T -~ %)2a<(5+ TEJI[?])) =0, (3.92)

which implies that the terms in D", ; ) only depend on the holomorphic function of 7 for

n > 2, whereas the terms in 25”5(2,1,0) only depend on the anti-holomorphic function F|[7].
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Altogether with the structure (3.21) described in the preceding section, we conclude that
the function &, ; o, only include the anti-holomorphic part such that it satisfies moreover to

D?E10 =0 . (3.93)
For the differential equation on SL(3)/SO(3), one uses equivalently the commutation rela-
tions
n n
[Dijrr, PP F iy i) = Z5Zg,:)s(ilﬂg...in)(z - 555%57:(@'1.‘.1”) (3.94)
to prove that
; 2n+1__,_ ;
k 1 k
D" Din-2j0y €210 = 37 Pran-4 P2 Prjje€eao (3.95)

such that the second equation in (3.88) reduces to

29 13 ik 5
=5 D) (D[zf Dok — 12”{4}>5<2,1,o> =0, (3.96)
so that -
D(i" " Driype€ .00 = 75 Pighi€ezro) - (3.97)

As explained in [26], this equation moreover implies that &g ; o) is an eigen function of the
Laplace operator

4
Agr3)€21.0 = 55(2,1@) ) (3.98)
such that 5 1
D’ DripgEi21.0) = EDijklg(z,l,o) + §(£z’k5jl + €igin)E21,0 (3.99)

. . . . 1
which is precisely equation (3.22) for s' = —3.

The closed-superform defining the invariant, admits therefore the gradient expansion
LEzi0)] = Z( Y T PDPD], oy LV + UT>DDY, o1 ﬁ“*“‘*q]) . (3.100)
q>0 * p=>0
for an arbitrary solution to (3.93) and (3.99). Of course one has the complex conjugate
invariant, defined such that
LEx01) = Z( > UTDPD] € L U*DDY, €0 Z<4>[4q]> ., (3.101)
q20 * p=0

and the associated function multiplying V*R?* is €1.0) + Ez.0.1), Which is defined to be a
real function of 7 and 7. This is consistent with the appearance of the threshold function

é':‘(2,1,0) (Ta Ta t) + 5(2,0,1) (Ta T? t) = E[Z] (7-7 %)E[fé,o] (t) ) (3102)

in the low energy effective action of type II string theory compactified on 72 [11, 17]. The
Eisenstein function Fj, o satisfies in general to the differential equation [26]
4s — 3 s(2s —3)

Dij" Dripg€s = =5 Pigin€s + —¢

9 (8ik8jl +5il5jk)‘€s , (3.103)
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such that E_1  is indeed a solution to (3.99), whereas Ejy) solves (3.90). Using the explicit
2 ’
expansion of the Eisenstein series Ey,

Ep = 20(4)7" +7¢(3)my ' + 5 Z 2 ( > = QNWQ( NT 4 eTINT) L (3.104)

N 17N

one finds indeed that Ejg = &) + 2[2} for the complex function

1., 3772 —73 _ 1+2N7T2 _omins
5[2]:_54(4)7_+§ 4 D ZZ( )2 2mNT - (3.105)

T—T
234 r|N

that satisfies to
D*Ey =0 . (3.106)

However this complex function is not modular invariant, and in order for the supersymme-
try invariant to preserve SL(2,7Z), it is necessary that

LOWd — pO4d] LEDM — peld] (3.107)

such that the whole invariant only depends on the gradient expansion of the modular
invariant function Ejpy. This reality condition is indeed compatible with the linearised
analysis, because there is only one linearised invariant for each values of p and ¢, and (3.107)
must therefore be satisfied in the linearised approximation. We know indirectly that this
reality condition must be satisfied at the non-linear level, because the term in 2¢(4)7,? lifts
to type ITA supergravity in ten dimensions [11], where it is known to appear in the 2-loop
string theory effective action [8], which is by construction invariant with respect to the B
field gauge transformations.

4 Decompactification limit in lower dimensions

We have derived in the last section the structure of the chiral V4R* type invariant in
eight dimensions, however the same analysis does not apply directly to the second real
V4R* type invariant (2.10). To understand the two invariants, we are going to analysis
the corresponding invariant obtained by dimensional reduction in four dimensions. We will
see that these two invariants are related through the action of E7(7) in four dimensions.
Solving the differential equation satisfied by the function &£y, defining the V*R* type
invariant (2.28) in four dimensions in the decompactification limit, we will indeed obtain
that it lifts to the two independent invariants (2.10) in eight dimensions.

We must warn the reader that considering explicit decompositions of E77) and SL(5)
forced us to use the same indices for various representations. Each subsection in this section
uses a different definition of the indices that is recalled in the beginning.

4.1 R* and V*R?! type invariants in four dimensions

In this subsection we shall review the results displayed in section 2.5, which were originally
derived in [26]. In N = 8 supergravity the scalar fields parametrise the symmetric space
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Er(7)/SU.(8), where SU.(8) is the quotient of SU(8) by the Z3 kernel of the antisymmet-
ric rank two tensor representation, and the covariant derivative Diji on E7(7)/SU.(8) in
tangent frame are in the rank four antisymmetric complex selfdual representation of SU(8),

ngkl — ﬁsljklmnPQDmnpq, (41)

with 4, j, k, [ running from 1 to 8 are in the fundamental representation of SU(8).

In four dimensions there is a bijective correspondence between the supersymmetry
invariants and the linearised invariants defined as superspace integrals in harmonic su-
perspace, due to the enhanced superconformal symmetry SU(2,2|8) of the theory in the
linearised approximation [30, 35].

The R* type invariant

One defines R* type invariants in the linearised approximation using harmonic variables
u"; and u"; parametrising SU(8)/S(U(4) x U(4)), where r runs from 1 to 4, and # from 5
to 8. One defines the G-analytic superfield [39]

W = uliquu3ku4lWijkl s (4.2)

satisfying to
’LLTiD(il W = 0, uifDm' W = 0, (4.3)

such that one can define the supersymmetric Lagrangians

/ d89d8§duF£0’0’O’n’0’0’0] W4+n

~ W [0,0,0,7,0,0,0] R4 et Wn—12 [0,0,0,n—12,0,0,0] X8 [0,0,0,6,0,0,0] >7<8 [0,0,0,6,0,0,0] , (4.4)

with

n

F000m.000] H(u[ik1u3k2u kgulkly) . (4.5)

Using the bijective correspondence one concludes that the R* type invariant is unique in
four dimensions, and admits the following gradient expansion in a function &g 4 4

LIEs.a,)] Z Dfy 0.0.m.0,0.01E w42 L0000 (4.6)

which satisfies to the constraint that its second derivative restricted to the [0,1,0,0,0, 1,0]
irreducible representation of SU(8) vanishes, i.e.

<28Diquz>’“lpq - 35@%) Esan =0 (4.7)

This constraint implies by consistency that all the higher order derivatives in represen-
tations that do not belong to the [0,0,0,n,0,0,0] irreducible representations vanish. In
particular, the third derivative in the [0,1,0,1,0,1,0] also vanishes, i.e.

<4Diququm”Dmnkz — Dy (A + 24)> Esan=0. (4.8)
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The linear term in the differential operator in this formula comes from the symmetrisation
of the cubic term, using the commutation relation

(D, Dy Do = ~245 Doy + 3355 Dr (19)

It follows from representation theory that the quadratic constraint (4.7) implies the cubic
constraint (4.8) and its complex conjugate, and using (4.7) in (4.8), one obtains

— 16 Dijpr (A + 42)Eg a0y =0, (4.10)

so we conclude that the function &g 4 4) defining the R* type invariant satisfies moreover to

9
,DiquDklpqg(SAA) = _555[5(8,4,4) y (4.11)
such that
1 .
As40) = gDz‘jlewklg(sA,zl) =—42€544) - (4.12)

In the following, it will be convenient to rewrite this constraint in terms of the e7(7) valued
differential operator Dsg in the fundamental representation [26]

9
Dgﬁ Emaay = —511565@,4,4) . (4.13)

The V*R* type invariant

One defines VAR? type invariants in the linearised approximation using harmonic variable
parametrising SU(8)/S(U(2) x U(4) x U(2)). We define the G-analytic superfield [39]

Wrs = uliUQjUTkuleijkl y (4.14)

where 7, s are now SU(4) indices running from 1 to 4 and W"* is in the [0, 1, 0] representa-
tion. Since SU(4) ~ SO(6), W™ is a vector of SO(6), and the general monomials in W"*
are the symmetric traceless monomials times an arbitrary power of the scalar product of
WTs with itself. The general invariant Lagrangian is defined as the harmonic superspace
integral over 24 Grassmann variables of such monomials as

UT181...TnSn

/d89d8§duF[0,k‘,0,n70,k’,U](WTSWTS)2+kwT‘181 Wr2s2 P Tnsn (415)

T H2E0E00KOFARA | pt2k—20(0.k—6,0,n—8,0,k—6.0] 12[0,4,0,4,0,2,0]5(12 [0:2,0,4,0,4,0]

X

Using the bijective correspondence, one concludes that the non-linear invariant admits the
following gradient expansion in the function &g »

n+2k<20
_ n+2k 0,k,0,n,0,k,0
£[8(8,2,2)] - Z D[O,k,O,n,O,k,O}g(&Qﬁ) E[ ] R (4.16)
n,k=0
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which satisfies to the constraint that its third derivative restricted to the [0, 2,0,0,0,0,0]®
[1,0,0,1,0,0,1] & [0,0,0,0,0,2,0] representation of SU(8) vanishes, i.e.

<4Diquppqmnpmnkl — Dy (A + 24)>5(s,2,2> =0, (4.17)
<3677jr[mD"m”qu]mn — 05 Diipg(A +42) + 87, Dy (A — 120))&8,2,% =0, (4.18)
<4Dz’jP(I'qumannkl _ piikl (A + 24))(5‘(8,272) =0. (4‘19)
One computes similarly that (4.18) implies
(24Dr[klp1>“"m"z>q] jmn — 05 Dripg (A = 12) + 67 Dipy; (A + 96)) Esny =0 (4.20)
Using the property that the function satisfies to all (4.18), (4.19), (4.20), one gets the
following integrability condition in the [0,1,0,0,0, 1, 0],
DP9 (36D, DI Dy — 63 D (A + 42) + 5} D (A — 120)
+48D5[klppﬂsmnpq]rmn - 267]"]Dklpq(A - 12) + 25{]iplpq}7‘(A + 96))8(8722)
g 3 9 ..
= =9Dkirs D" Dpgmn D™ Eis 2.2 + 5 D" Dhipg (5A+246)E g 2.9) — TG(S,ZA(A+60)€<&272)

21 g 3 ..
=7 (prql)klpq - 285;%) (A +60)Es 22 (4.21)

where we only used (4.19) in the last step. Because the function £, 4, does not satisfy to
the quadratic constraint (4.7), we conclude that it must satisfy instead

A& 22 = —00Es 2.2 - (4.22)

Therefore the constraints (4.18), (4.8) simplify to
Diquppqrsprsklg(wg) - _gpijklg(872,2)’ (423)
2Djr[lelenqu}mn5(8,2,2> - *5;Dklpqg<8’272) + 105’[Lk;plpq]jg(872‘2) . (4.24)

These constraints can be rewritten in terms of the e7(7) valued differential operator Dsg
and Dj33 in the fundamental and the adjoint representations, respectively, as [26]

D§65(8,2,2) = _9D565(8,2,2)7 D?335(8,2,2) = _20D133€(8,2,2) . (4-25)

Er(7) Eisenstein series

One can define solutions to these differential equations in terms of Eisenstein series defined
as constrained Epstein series in the fundamental representation [15]. Let us consider a
rank one charge vector I' in the 56 of Er(7) such that the second derivative of the quartic
invariant restricted to the adjoint representation vanishes. Acting with the scalar field one
obtains that the central charges Z(I");; = VijIF[ satisfy to

1 ) 1 .
Zyi Zpy = ﬂsijk,pqmzpqzm, Zin 2% = §5§ Zu 2™ (4.26)
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The action of the covariant derivative on the central charges gives

1
Dijklqu = 35€3Zkl] 5 Dijklqu = geijklpqu” . (427)

One computes then that
DijilZ® = 6Z;Zxy,  DijpgD"'"| 2| = 62,2 + 2501 | Z)? (4.28)
with |Z|*> = Z;;Z%. Using moreover the intermediate step
1
Dijua Z°DM7| 2 = 22,24\ 2P + 16412, (4.29)

one computes that

(s —11)

D D 2| 72 = 2s(s = 2) 2,222 + B Zgll|z 2 (430)

One gets therefore a solution to the second order equation (4.11) associated to the R* type
invariant for s = 2. One computes then that

Djr[klpirmnppq]mn|Z’_28
1 : 1 .
= —55(s = 2)(s = )0 21 Zp |Z|7%72 4 55(52 — 95 — 40)60y Zpg Zyj | Z|7# 72, (4.31)

and therefore the third equation (4.18) is automatically satisfied by |Z|~2°. One computes
moreover

_ _9s_9 3 _os—
Dijpg PP Dyt Z| 725 = —35(s — 2) (s — 4) Zij Znt| 2|72 2—53(32—15s+8)Z[ijZkl]\Z| 252
(4.32)

One concludes therefore that the function |Z|~2% solves to the cubic equation (4.8) for
s = 4. In general one has moreover
A|Z|7% =3s(s — 9)|2] 7 . (4.33)

One formally obtains F7(7)(Z) invariant functions by considering the sum over all integral
charges satisfying to the rank one constraint

— Z |Z(); Z(T)7| 75 . (4.34)

F€Z56
14/ (D)133=0

E|

3]
000005]

However this series does not converge for s < 9, which includes the cases of interest. Using
the theorem of [40], the rank 1 integral charge vectors I' are in the Er(7)(Z) orbit of an
integer element of grad 3 in the parabolic decomposition of er(7)

ery =277 @ (gl @ eq()) " @ 27
56 =2 109 270 27V 9 1@ (4.35)
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i.e. that
{T € Z°° | I{(T)|133 = 0} = Z* x Eq7)(Z)/(Ee(6)(Z) x Z*7) . (4.36)

Using the property that the rank 1 charge vector (with unit grater common divider of all
components) defines a character of Fy7) whose restriction to the Cartan subgroup is the
exponential of the generator [,,8,,.] in the appropriate basis

V(6,V,a)T® = *T® (4.37)
one obtains that (4.34) coincides with the Langlands formula

| = 20(2s) > g(e7®9), (4.38)

E7(Z)
Eg(z)xz27

Q
[000005

ge

where g acts on e%? through the non-linear realisation of E7(7y on the coset representative
of Er(p /SU.(8) in the parabolic gauge. Using Langlands functional identities one shows
that these Eisenstein series exist as functions and are related through [23]

E E E E 4.
[308000}0( [008007.}7 [%ogooo]oc [008004]’ ( 39)

such that these functions indeed satisfy to the differential equation associated to the R*
and V4R* type invariants

1
-F
2
consistently with the conjecture that they define the exact low energy effective action in

type II string theory [15, 23].

Esan = E] (4.40)

8000} ’ 5(8’2‘2> =

Q
i0 500000} ’
2 2

4.2 Decompactification limit to seven dimensions

Any supersymmetry invariant in seven dimensions, dimensionally reduces to a well defined
supersymmetry invariant in four dimensions. It follows that the structure of the invariants
in seven dimensions must be compatible with the differential equations we have derived in
four dimensions. In this section we will solve these differential equations in the parabolic
gauge associated to the dimensional reduction from seven to four dimensions, to exhibit
the differential equations satisfied by the seven-dimensional scalar fields. But before to do
this, let us review shortly some properties of the theory in seven dimensions.

Maximal supergravity in seven dimensions

In seven dimensions the scalar fields parametrise the symmetric space SL(5)/SO(5), and
the double cover Sp(2) of SO(5) is the R-symmetry group. The SL(5) representative V is
defined such that it transforms with respect to rigid SL(5) on the right and local Sp(2) on
the left

Vii¥(z) = L*(x) L' (x)Vig“ () RLE (4.41)

where i,7,--- = 1,...4 are the indices in the fundamental representation of Sp(2). The
theory is defined in the linearised approximation in terms of the real scalar superfield L%+

Tkt = QipQg Qe Qun L™ (4.42)
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Figure 4. Supergravity multiplet in seven dimensions.

in the [0, 2] of Sp(2), i.e.
Lkl — ikl _ _Tijlk _ Lkl,ij’ QijLij,kl -0, Lkl 0, leLij,kz =0, (4.43)

with €2;; the symplectic form of Sp(2). This superfield satisfies to the linear constraint that
its covariant derivative vanishes in the [1, 2] of Sp(2), and its second derivative vanishes in
the vector representation of SO(1,7) times the [2,0] of Sp(2) and in the SO(1,7) singlet in
the [0, 1] of Sp(2). In particular

[e% 9

o . ) 1 1 .
D(zlL]k:,lm _ Qz[]Xg],lm + QZ[ZXZL]Jk + ZijXZlm + Zlexz,]kz (444)

where y4'* is the Dirac Spin(1, 6) spinor in the [1,1] of Sp(2). At mass dimension 1 the
field content includes the scalar field momentum P = 9, L transforming in the [0, 2],

the two-form field strength F ;bj in the [2,0] and the three-form field strength H;Jb . in the

[0, 1] irreducible representation. At mass dimension % there is the Rarita-Schwinger field

strength pi, in the [0,1,1] irreducible representation of Spin(1,6) and at mass dimension
2 the Riemann tensor Ry ¢4 in the [0,2,0] of SO(1,6).

The R* type invariant can be defined in the linearised approximation in harmonic
superspace, using harmonic variables u";, u,; parametrising Sp(2)/U(2), with » = 1,2 of
U(2) [31], such that the superfield

W = uliu2ju1ku2;L’j’kl (4.45)
satisfies the G-analyticity constraint
u"; DLW =0 . (4.46)
One can write generic invariants

/dlﬁgduF1[L0,2n] W4+n ~ W [0,2n] R4 I Wn712 [0,2n724]X16 [0,24] , (447)

with F*?" defined as the function of the inverse harmonic variables in the [0, 2n] irreducible
representation of Sp(2)

Rl — H ulim Jydmlyglfm qylml, (4.48)

m=1
This suggests the gradient expansion of the non-linear invariant

12
£[€(4’2)] - ZDR‘)Qn]g(‘lﬂ) E[O,QTL] . (449)
n=0
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One V4R* type invariant can be defined in the linearised approximation in harmonic
superspace, using harmonic variables u!;, u";, u*; parametrising Sp(2)/(U(1) x Sp(1)), with
r =1,2 of Sp(1) [31], such that the superfield

W' = uliulkurjuleij’kl (4.50)

satisfies to the G—analyticity constraint

ul DEW™ =0 . (4.51)
One can write generic invariants
/ AP 0duF R L (W) 2R gyrase | pyrasn
~ W2ktndk2n]gApd o p2ktn—20 [4k724,2n716]x24 [24,16] (4.52)
with
4k+2n . 2n A
F1£4rkl§1n}7"252 TS H (ulal) HU[‘%% k Sb [4k,2n] ’ (453)
a=1 b=1 '

projected to the [4k,2n] irreducible representation of Sp(2). This suggests the gradient
expansion of the invariant at the non-linear level

n+2k<20

5(4 1) Z D7, 4k 2n]5(4 1) »C[M 2n] (4.54)
n,k=0

E7(7/SU.(8) in the parabolic gauge

We consider the graded decomposition of e7(7) associated to the Cartan element [008100]s
i.e.

erry = 5 0®(325) V@ (3w10) Yo (gl @ sl; @ sl5) VD (3210) @@ (325)Va5® , (4.55)

such that the grad zero component includes the product of the seven-dimensional duality
group SL(5) times the symmetry group SL(3) associated to the compactification on T3.
The scalar fields A%, in the (3 ® 10) of SL(3) x SL(5), with A = 1,2,3 of SL(3) and I = 1
to 5 of SL(5), are the scalar components of the seven-dimensional 1-forms potentials. The
scalar fields BY in the (3 ® 5) are the scalar components of the seven-dimensional 2-form
potentials, whereas the scalars Cj in the 5 are dual to the 2-form component of the seven-
dimensional 2-form potentials. Due to the Chern-Simons terms in seven dimensions, the
gauge invariant differentials are

1
VAj, = dA};, VB, =dB)+ ZEIKLP%ACDA?{LC@AIQQ,

1
VC; = dCr + —=BEdA%, — A L dBE ¢ ——KLMN b A AB L dAS, 4.56)

V2 V2! 122

We define the nilpotent component of the E;(7) coset representative in the fundamental

representation

56 =3""310Y 3 (325) Ve Be5)"a10” @3®, (4.57)
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as

0 A4, eACEBE Cr o4 0 0
0 0 % JIKPQ AgQ V2 B[cl 5;{] % €IJK;P (ip 0
g_|0 0 0 V2eacpAE. V2K BE  sCc; (as8)
0 0 0 0 sl KLPRAS, eACP B
0 0 0 0 0 AS,
0 O 0 0 0 0
and its semi-simple component
e5¢vac 0 0 0 0 0
0 eXVilyigl 0 0 0 0
= 0 0 ePvtC VK 0 0 0
B 0 0 0 e PVl 0 0 ’
0 0 0 0 e I T
0 0 0 0 0 e 5%u1C,
(4.59)
such that the coset representative is
V=Uexp(E) . (4.60)

We use the notation that the SL(5) indices K, L and the SL(3) index C' are contracted
on the right-hand side through the left action of E7(7), whereas I, J and A are contracted
on the left-hand-side through the right action of E7(7). The same convention is used for
the SO(3) indices a,b contracted on the left and ¢,d on the right, and for the SO(5)
indices i, j contracted on the left and k,l on the right, through the respective right and
left actions of SU(8). We apologise to the reader for using now on i,j as vector indices
of SO(5), whereas we were using them as Sp(2) indices in the preceding discussion. Here
v? and V;X are respectively SL(3) and SL(5) coset representatives for the scalar fields
parametrising respectively SL(3)/SO(3) and SL(5)/SO(5).

The vielbeins and the spin-connexion on Ev(7)/SU.(8) are defined respectively from
the projections of the Maurer-Cartan form to the 70 and the su(8) representations as

dVV™t = dUU=* + Ud exp(E) exp(-EYU ' =P+ B (4.61)
and the metric on Fr(7)/SU,(8) reads
1 .
ds® = G PP = 60d¢? + 2P, P™ + 2P;; PV + " MK ML 1y gV AL,V AR,
+e8 M APV BLVBE + 2 MIIV OV Oy, (4.62)

where the matrices MK = V,IViK and pwap = v®4v,p are symmetric by construction, and
VA, VB, VC are defined in (4.56). The derivatives dual to these differentials satisfying to

DYMVAR =056,  DYMVuBL =0, DIYMY,Cr =0,
DMV, AR =0, DMV, BY = 6p8f, DMVLVLCr =0, (4.63)
DIV, AR, =0, D"V, Bf =0, DY, Cy =6,
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are defined as

0 1 1 0
pEL _ _ SKLMNP,_ AB 4G + e SKLMNP 4B ’
0 1 0 0
Dt = — — AL pl=_— . 4.64
T oBL 2 'oc,’ aC; (464)

We are interested in finding functions of the scalar fields defining invariants in four
dimensions that lift to seven dimensions. Therefore we will consider functions that depend
only on the seven-dimensional scalar fields ¢ parametrising SL(5)/SO(5) and the Kaluza-
Klein dilaton ¢ that must appear at a specific power determined from

/d4$\/—ge_6(3+”)¢5(t)v2”R4 ~ /d7x\/—gz€'(t)v2”R4, (4.65)

for the invariant to be diffeomorphism invariant in seven dimensions. With this restricted
ansatz for the function, the differential operator Dss = E*(9,, — B,,) is block diagonal in
the decomposition (4.57), i.e.

1

3006 — 204Dy ek, + 5D,

[k 60 “ "

1
D56 = diag (12(538¢,

1 . . 1
9510 — 09Dy, —%55;% +20y;

- L= _i c
- il 125aa¢> . (4.66)

Now we want to compute the action of the second order derivative D?
DgGE = Dg(iau( gﬁavg) - D“[Bu, 56)OvE (4.67)
on a function of ¢, t defined on GL(5)/SO(5). Note that the spin-connexion decomposes into
B = Buo(3)aso(5) T MU Vi Vi 0 AV AL, + MV 04,V B + MY ™V VT (4.68)

where the matrices Mflj, M¢, M’ are constant tensors and Bso(3)@so(5) 1s the spin-connexion
on SL(3)/SO(3) x SL(5)/SO(5), such that its contribution in (4.67) simply replaces all the
partial derivatives on SL(3)/SO(3) x SL(5)/SO(5) by covariant derivatives. Moreover,
using (4.63) one obtains that

T
D* @ By = Dy, 3)060(5) © Buso(3)aso(s)
+( V ile_Q‘ij(lijlLU'lchgL + Mfe_4¢VkKUCCD]c; + Mke_6¢V['§kDK)
® (M7 2V V; 0" sV ALy + MV o 4, VB + MeV, IV Cy)

- D:LU(3)6950(5) ® Buso(S)EBso(B) + 1\7[?] ® Mfzj + 1\7[2 ® M? + Mz o2y M’ > (4'69)

where the matrices M are also constant tensors. Defining fo), the covariant derivative
with respect to the grad zero s0(3) @s0(5) spin-connexion, one obtains therefore that (4.67)
simplifies to

DZ€ = DEDY (DYDY E) — (MY M, DY+ M, M}, DY+ M [M;, D) DY E . (4.70)
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On a function of ¢, t on GL(5)/SO(5), one computes in this way that D2; reduces to

1 3
2 s al _— 92 e
D56 = dlag <5C <122 8¢ + 88¢),

i 1 11 i 1y i yjlm i 1y
5kﬂl<2028¢2+a¢> — (5 + 105) 8, D7y + 20, D™Dy, + 2D DIy,

(
) +D5DY e+ (3 + 3%%)9%)’
5t (1%2 + 113¢> = (5 + 100)0"5DY) + 207 DDy,

c 1 2 3
(ot 20,)). am

We can use this expression to solve the differential equation (4.13) for a function £y 44y =
e®E&(t) on GL(5)/SO(5). These equations give

a® 3a 9
i il SR a TN ofigmi a? 11a 9\ 4
(25[[k1>ﬂ Djjy + 2D [kpﬂl])g(t) = <5 + 2) 5[[kz>ﬂl]5(t) — <202 + 0t 2)5 1E(t),
) 3 a® 29a 9
Dk DI, — (2.2 DF, B (e T I 1 )
iD7E(t) <30 + 4> E(t) <602 + 120 + 2)51 E(t)
The first equation implies a = —18 or a = —36, but we are going to see that the second

solution does not have a solution on GL(5)/SO(5). The second equation implies that the
second derivative of £(t) vanishes in the irreducible representation [2,0] of Sp(2), i.e.

2 1
DDyl (t) = —55[[1. DD, € (1) + 1505 Dpy DPIE) - (4.73)

Using the commutation relation

1
kl _ (k 51 k) o( !
[Di;, DM = - (5@ 3VeDya) — 55D ) , (4.74)
one computes that

DD, kD!l = —p; kDD, + ial[’“pj” - 1165][.’“191-” : (4.75)

Substituting (4.73) in (4.75) and taking the trace over i and k one obtains

A (13 9 1
D*DyIDIE(t) = Dy (mp,,qpm - 16)5@) + gagpklplpppkg(t) . (4.76)

Using the third differential equation in (4.72) in this equation one obtains

(5832 + 342a + a®)DIE(t) = 0, (4.77)
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and therefore a = —18 only is possible, as required for a R* type invariant (4.65). Therefore

we obtain
A 3
ijpjig(t) = —?Opk g( ) - %655( )7
DD, E(t) = Toa{zpﬂl]g(t) + %5,35(15) : (4.78)

This function is one example of the generic class of functions for which the second order
derivative restricted to the [2,0] vanishes, and we write them

. 3(4s — 5 . 25(2s — 5) _;
Dika;J g[s,o,o,o] = —(20)Dij 5[5,0,0,0] + (25)55 5[5,0,0,0] ) (4-79)
4s — 5 s(2s —5H
’D[i[k’Dj}l] g[s,o,o,o] = 10 5[[,?@]‘]” g[s,o,o,o] - (50)55[ 8[3,0,0,0] ) (4‘80)

where the notation refers to the property that the Eisenstein series E, ¢ o o satisfies to these
equations whenever it converges.

The result is consistent with the conjectured exact low energy effective action in type 11
string theory. We just note here that the general solution depending on R* xSL(5)/SO(5) x
SL(3)/SO(3) is such that one should have the expansion of the Eisenstein series at large
volume modulus V(T3) = =6,

4

_ _ 20
E[ 18¢E $.,0,0,0) ( ) - ; € 20¢E[2,0] (9T3) + O<e ) : (4'81)

N s

[3]
00000}

We will now analysis the differential equations (4.25) relevant for the V*R?* type in-
variant. For this, we need in particular to compute the third order differential operator D3

D3s& = D5, DY (DE:E) — My, MY, D2,€] — ML M}, D3:E] — MY[M;, D%€] . (4.82)
One computes that on a function of ¢ and ¢ on GL(5)/SO(5), it reduces to
. 97 3
D§6 = d1ag<(123 a¢ + 14408¢ + a¢ Dps’l)p5> (53,

il 1 43 61 s 3 [i s 21 3 i .
5k]l(8¢> + 24008¢ + 8¢ - D pD5p> (11+108¢>5[k,pj] D l]+<2+108¢>1§[ [kD]]l]

63, 119\ g i i i -
+ ( 200@, 1000~ )5[ Dy — 25, D7, D*, D)y — 2D, DI, DP) — 4Dl DP DI,

49 1
o oF [ = 7D SD — 2 |D,PD,*
< (6038¢+72008¢+208¢ ps) <2oa¢+ ) v
63 k sy py k
+ 602a¢, a¢+ o |D" +DDID ) (4.83)

where the dots stand for the conjugate representations that are identical to the ones written
explicitly up the sign. Using the same ansatz £, = ??£(t), one obtains combining these
equations that

- 3(a+35) ;i
6Dl DI, D E(t) — (m)p[ wDIE(t) (4.84)

2 2 3
_ gl A pe (33, Ba a5 (% l7a a 7]
5[k<<15+ 5>D P <4 50 *75) P20+ 600 T azs0 )% )W)
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which implies that the tensor structure of the first term must necessarily reduce. Con-
sidering the general solution of such a system depending on four variables associated to
a maximal abelian subgroup of SL(5), we find that there is a two-parameter family of
equations with this structure, such that

3(2s + 4s' — 5)

6D[i[kpj]pppl]g[s,s’,o,o] + D[i[kpj]l]g[s,s’,o,o]

10
2
o [’L 23+48/_5 X 3(28+43/—5) (3+2)<8—3) )
= (5[k <5DJ]prl] + (6 20 + 5 DJ]I]
25 +4s' — 5 (9(2s + 45’ — 5)? ) ]
_ 0 < 5F +4s° —45—-9 5;] i 00 »
i kol 25448 =5 325445 —5)2 252 —25—3\
D kD lD j + fID kD j— 100 + S D j 5[5,51,0,01
2s +4s' — 5 (9(2s 4 4s' — 5)? .
T 160 ( ( 25 L4 s 9) 05 €. 0,01 - (4.85)

Note that &£ g and E;_, o1 1/0,0, satisfy to the same equations, so we will not consider
them as independent solutions, unless s’ or s vanishes. Indeed, if s’ = 0 the function
satisfies to the stronger equations (4.80), whereas for s = 0 it is proportional to the function
satisfying to

4s — 5
20

3s(2s —5)
25

Dikpkj 8[0,0,5,0] = Dz'j 5[0,0,5,0] + 5{ 5[0,0,5,0] ) (4-86)

for s = % — s'. Again the notation we use refers to the property that the corresponding

Eisenstein series Ej, v, and Ej 0 satisfy to the same equations when they converge.
This way we find only three independent solutions, i.e.

3 —30 _ —30.
D3se %5 000 = —9Ds6e €5 0001,
3 —30 _ —30.
Dige ¢5[0,0,%,0] = —9Dsee ¢5[0,0,%,0]7
3 —36 —36
Dige %8, 100 = —9Ds6e €, 100 - (4.87)

We already see that the two first solutions correspond to the seven-dimensional V*R*
type invariant, whereas the second would correspond to the VOR?* invariant. The first
equation in (4.25) is indeed also satisfied for the VO R* type invariant that descends from ten
dimensions, and the type IIB 3-loop invariant in ten dimensions indeed defines a function
solving (4.85) for s =4, s’ = —3.

Now we want to check the second equation in (4.25). However the computation of
the commutator terms of the M matrices (4.82) becomes rather tedious in the adjoint
representation, and we will only fix the coefficients on the general covariant ansatz by

demanding that the knows solutions indeed satisfy the equations, i.e.

D:{’33€_18¢6[%000] = —14D133€_18¢5[%000],
D?336*30¢g[%000] = —20D1336730¢5[%000]7
Disse €050 = —20D1sze "€ g3 - (4.88)
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It appears that the system of equations for the coefficients is over-constrained, and it is a
non-trivial check that one can indeed find a solution. The positive grad component (4.55)
of the differential operator D33 restricted to a function on GL(5)/SO(5) is

. 1 . 1 .
R T k c 7 7 [ )
D133 = diag (D + T05’ D, 05 <Dk + 155,@,) ( %Dﬂz] + 305,gla¢> e ) , (4.89)

and we obtain after calibrating the coefficients such that (4.88) are all satisfied that

19 3 81 217
3 7 . k ) k k
DT (Dlpppqpq i <2 + 10%) DDy <1ooa¢ + 0%+ 6 )Dl
31 7
s Lapy ey Ly _Tp pm
11

; 1 23 37 ;
(5; (_kappqpq’l + < + 8¢> kaD —|— ( 82 — 0y — )'DkZ

9 75 20°° " 16

. 47 5
7 Pq

5;}( 84, D7D*,DPy + 2Dl [,gpﬂ,,ppl} +4Dl,DP DIl + ( =05 + 4> 04D Dy
9\ i 20 27\ i
+<53¢ + 2>'D[ [k:D]]l] + <1500¢ 203 >5[k'Dﬂ I

19 1, 1
<303 03+ 55305 — 1506 — 2ququ> 5,5) - ) . (4.90)

The dots stand for the zero and negative grad components. In the same way, one finds
that the component in the adjoint of SL(5) of D355 — AD133 admits the two components

) 3 41
3kl k l k l
DM + 64Dy PD, ! + 2<8¢ - E - A) 5Dy

,D[zz;i]J 3(kl) + 5[i(kpj}ppp ) ( 8¢ — E — /\> (5[i(ij]l) s (4'91)

using the equations

DAdJ 3 [kl]

@) 15,00, s(2s —5) >5(i[kpj)l]g[s,0,0,0] ;

Dﬁj 3(kl) 5[5 0,0,0] = ( (2s —5) — >5[¢( J]l)g[s,o,o,o] )

Dajj)g[k]g[OOsO] 5(25s — 5 >5(1[ DJ)]5[0030]7
; 21
Dﬁjf B(kl)g[O,O,s,O] = ( (25 —5) — 8)5[1( o )5[070,5,0] ) (4.92)

Using these equations, one finds then indeed that 6_364)5[4’_ 1,00 18 DOt 2 solution, and we
have therefore the two unique solutions corresponding to the V4R* type invariant

Es22) = e_304)5[3000] + 6_3%5[0030} . (4.93)
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V*R* threshold function in seven dimensions

Consistently with the analysis in [26], we find that there are only two classes of VAR* type
invariants in seven dimensions. The first class is associated to the linearised invariants
discussed above, with the gradient expansion (4.54), with the function £, ;) = 5[07073 o) that
admits the correct gradient expansion as a consequence of (4.86). This equation indeed
implies that the order n derivative is only non-vanishing in the representations [4p,2q]
for 2p + ¢ < n, and is related to lower order derivatives when 2p + ¢ < n. The second
solution 5[% 0,0,0) Was shown in [26] to correspond to a chiral invariant in six dimensions,
which explains that the corresponding seven-dimensional invariant cannot be defined as a
harmonic superspace integral in the linearised approximation.
The solution to (4.80) can be defined in terms of a vector Z; = Viln; such that
1, 1

Dy ZF =6k 7z, — —
J (i%7) 10

5 5i; 2" . (4.94)

One computes that the function (Z;Z%)~% solves (4.80). However the associated Epstein
series

Es000 = Y (Zi(n)Z'(n))~", (4.95)

nezs

diverges at s = 3, and one must consider the regularised series [11]

e—0 €

~ . 472
E[%,0,0@] = lim E[g_‘_e,(]’o’o} - 37 ) (4.96)
that satisfies the equation

82

oo 3 .
k
Dikpj E[g,O,O,O} = _EIDi]E[%,O,O,O] + TS(Si . (497)

Given any contravariant vector m! with Z(m)! = V;'¥m!, one computes that

DD (Z(m)' Z(m))) = —>Diln(Z(m)! Z(m),) + 26

_Z 5i0 (498)

such that the relevant function to define the string theory Wilsonian action in (2.2) is

4 = Ejs g00 — - (Z(m)'Z(m)) . (4.99)

As explained in [26], this additional function defines a consistent anomaly for the continuous
SL(5) Ward identity, because the sl; variation of this function solves (4.80) for s = 5
by construction, whereas the function itself does not. We therefore conclude that this
contribution comes from the 2-loop supergravity amplitude [38].

Similarly, the solution to (4.86) can be defined in terms of an antisymmetric tensor

Z4 = ViW3tin!7 satisfying to the constraint

KL — Zliizkl — ¢ (4.100)
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such that 1
kil _ sk, 1 kl
Dy 2" = =632 + 20, 2" . (4.101)
One computes that the function (Z;;Z%)~* solves (4.86). However the associated Eisenstein
series

Egoso = ., (Zi(n)Z9n))~*, (4.102)

n€Z10nAn=0

diverges at s = %, and one must consider the regularised series [11]

- . 270
Eo0,5,0 = m | Eppo31e0 ~ 5 ) (4.103)
that satisfies to the equation
- | 27®
k
DikD] E[g707070] = ZDi]E[%,QO,O] + TE) . (4104)

For a given covariant rank one antisymmetric tensor myz, one computes similarly that for
—_yiyJ
Zij = Vi'Vitmyy

, ) 1. g 3
D DI (Z(m)i;Z(m)") = ZDﬂln(Z(m)ijZ(m)”) + 15 (4.105)
such that the relevant function to define the string theory Wilsonian action in (2.2) is

872

6 al 7
Eis 0,00 — Thq(Z(m),»jZ(m) oF (4.106)

I p——
(4,1) 3

In the same way, the additional function defines a consistent anomaly for the continuous
SL(5) Ward identity. The specific my, m! that define the logarithm function of the scalar
appearing in the 2-loop supergravity amplitude must depend of the specific parametri-
sation of the symmetric space SL(5)/SO(5), and this ambiguity amounts to a choice of
renomalisation scheme.

4.3 Decompactification limit to eight dimensions

To make link with the analysis of section 3, we will now solve equations (4.80) and (4.86) in
the parabolic gauge associated to the large compactification radius limit, with the graded
decomposition

sl; = (203) 0 @ (gl @ sl ®sl)” @ (22 3)9 . (4.107)

We consider therefore the SL(5) representative V in this gauge such that

e 3Py 0
_ J 4.108
4 ( 62¢’V“KaJK e2ya; |7 ( )

with the indices «, 8 running from 1 to 2 of the local SO(2), i,7 from 1 to 2 of the rigid
SL(2), a,b from 1 to 3 of the local SO(3) and I,J from 1 to 3 of the rigid SL(3). We
decompose the Maurer-Cartan form into symmetric and antisymmetric components

AV '=P+B (4.109)
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to obtain the symmetric traceless scalar momentum

_ B_p B 150, iyb dgl
P it i bo ) (110
56 v Vafdai 2d¢6a + Pa

and the antisymmetric spin-connexion B. The metric on the symmetric space is defined as
ds® = 2trP? = 60d¢” + ' 1 My yda; da) + 2P PP + 2P, P™ (4.111)

The differential operator in tangent frame D is

1 B 1,-5¢,-17/-11bgi

D— —%8¢(5a - Daﬁ 56 5¢'Ul-étv ! 8} : (4112)
se PPV 9t L0500 + Do’

with by construction

DY 2trP Py = P, . (4.113)

As in the last section one defines the second order differential operator
D?¢ = D*9,(D"9,€) — DBy, DV]O\€ (4.114)
which we compute to be

, (15502 + £0s + $D1sD) 08 + Do (3 + £05) + te 10 v AN 920,
D2 — . 4.115
—te75¢ (qlﬁvﬂ o(L4+ £0y) — 40PV DyC + 4oV aDﬁ) oy (4.115)
—1e7%? (q}lv-lfb (14 £0y) — dvh VDb + 4v;;v-1sz>a”/> 94
(0505 + 2109)0% + DaDed + Da’ (3 + 5505) + e~V VIOM;0;0)
&15,0,0,0) solution

We shall consider first the solution for a function on R x SL(2)/SO(2) x SL(3)/SO(3). In
this case (4.80) reduces to

—3s 25(25—5
10 ((‘3¢+15 65)5 (400‘9 + 1(10(:)3 3¢+lp 5D75_ (25 ))5557

DaCDc &+ D, (1225(;5 + %8(;5)5 (9008 + 6??(;55% - 28(28 5))5b5 (4.116)

The two sides of the first equation must vanish separately, therefore one concludes that ei-
ther the function does not depend on the complex scalar field 7 parametrising SL(2)/SO(2)
and £ = e € (t) or £ = 8(2579)9E(t) | or £ = 3279)E (1, 1) and

(2s — 3)(2s — 5)

Agr2)€(T,t) = 1

E(r,1) . (4.117)

We note moreover that a function satisfying to the second equation must satisfy to (3.103)

for some ¢, i.e.
4s' — 3 s'(2s' — 3
Dby + (9)5358, . (4.118)

D, DLbEy = —
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3
2
the unique compatible solution

Only for s = 0 or 3, one can have an additional constant term [26]. Using this one finds

E=e10E,(t) + S (7). (4.119)

2

. . . . |
The dependence in aif can be determined for each Fourier momentum e'4% separately.

The equation in the 10 implies the 1/2 BPS constraint [41]
€ijqiqs =0, (4.120)

and one can define the invariant mass |Z(q)| = y/p;; M7 q%qﬂ. The rank one 2 x 3 matrix
then factorises, such that one can define

¢t =p'my, (4.121)

from which we can define the invariant mass |§| = /p;ip'p?. In principle one could expect

a dependence in the SL(2) factor of SL(3) that leaves invariant q¢, but this is forbidden by
the differential equation. One finds the general solution of (4.80) (which vanishes at large
e~??|Z|) as a function of |Z|, |¢| and ¢

s—3

E,=e 09 <e¢ 12 (q”> Ko (e750|2(g))) el (4.122)
€)1 :

These results are in agreement with the constant term formula for the corresponding Eisen-

stein series [11], and one computes using Poisson summation formula

QF(S— %)

Ejsp00 = € Biyg)(t) + 77 BB _g)(7)

25—3

27* 6 M mmy\ 1 .
—6¢ 291 e —5¢ 2mimn’a;
+F(s) E e <e i Ky 3(@2me™?|Z(m @ n)|)e ™™

n€Z2, mezs3

45 MF(%_S) 3(2s—5
= e OB g(t) + 7 2 We( " Big_y(7)

3
27° Z(q)|\° 2
-l e‘6¢2<6¢’ <q)|2> K, 3(2me%|Z(q))e*m et . (4.123)
I(s) 4~ ()] :

q€Z8|gNg=0 plg

Note that the dependence in the specific integral vector p’ = rp does not depend on the
scalar fields, and defining p’, the solution to (4.121) such that p'' and p? are relative

S () () ()

plg rlg

primes, one has

For s = %, we get back the property that the solution behaves like an eight-dimensional
threshold

/ A"z /—ge 2B () VP RY ~ / B/ —gE(t) VR | (4.125)
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with
E= 6_6¢5% (t) + e 58 (1) . (4.126)
Although the value s = 3 does not define a smaller representation of SL(2) x SL(3) as in

lower dimensions, we see nonetheless that the Fourier modes simplify at this value, and
become a function of ¢ and |Z(q)| only. The expansion of the Eisenstein series

E[%,O,O,O} — ¢ 69 (EA'[;O] (t) + QEA'[H (1) — 207T¢>
Hr Y e <Z 1> Ko(2me | Z(q)))e2™ 1% . (4.127)
q€Z8|qNg=0 rlq

includes the additional function linear in the dilatons

I,.J
£— e—w(m N 1<Mmm>) , (4.128)

PN

which is also an exact solution to (4.116).
3
harmonic superspace integral in the linearised approximation

For s = 3, we get the function associated to the invariant that cannot be written as a

= e*l‘”’sg (t) + & (1) . (4.129)
The regularised Eisenstein function decomposes as [11]
s gog = ¢ \%E g 2
2000 =€ Buo(t) + 5 Epy(r) + 877
82
DY _6¢Z< ol > 1(2me ™| Z(q)])e?™ . (4.130)
3 6 1€(p)I?
q€Z51gNg=0 plg

&10,0,5,0) solution

Let us now consider equation (4.86), which reduces on R x SL(2)/SO(2) x SL(3)/SO(3)
to

1 _
10 a5(6¢+25+5)5 (40082+ Slggaqﬁ‘lp D7 — 38(222 5))5g5’
DD’ € + Dol (Bt + £04)€ = — (k502 + 55220, — 22\ gbe (4.131)

In the same way we get that the two sides of the first equation must vanish separately,
such that either the function does not depend on the complex scalar field 7 parametrising
SL(2)/SO(2) and £ = e 125%&(t) or £ = e*>79)2E(t) | or £ = e~ >+ (7, ) and

(2s —1)(2s — 3)
4

Agr2)€(T,t) = E(T,t) . (4.132)

Using moreover that a function satisfying to the second equation must satisfy to (3.103)
for some s, we get the general solution

5[0707570] = ¢~ 1259 + 64(28_5)(755371@) + 6_(28+5)¢5S_% (7‘)52,3(15) . (4.133)
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This solution is consistent with the constant term formula [11], i.e.
El,0,50 = 2(25)¢(2s — 1)e™ "¢ +

T 2T(2 — ) —(2545)¢ —e7%?
+————"¢ B 1) (T)Ep_sq(t) + O(e ). (4.134)

2I°(s)

For s = g we get the function associated to the invariant that can be written as a

harmonic superspace integral in the linearised approximation
Eop.5.0 =€ 0+ Es(t) +e 1 PE(TIE_L (1) . (4.135)
" b 2 2

4.4 Decompactification limit to ten dimensions

The decompactification limit to type IIB supergravity in seven dimensions can be obtained
in the same way as in (4.108) for the inverse matrix

egd’vaj e3¢vakB‘]
V= < 0 62¢V'1J: , (4.136)

such that v,7(7) is now parametrised by the string coupling constant complex modulus 7.
One obtains therefore as in the last section that

;TG —s) (45—10)

E[5707070] = 6768¢E[s] (T) + 7T2872 We ¢E[g_5,0] (gT3) (4'137)
Qs 7 1-s iy
X e () Koz
I(s) & 3621
q€Z5]gNg=0 plg

where the first term defines the exact R* and V4R* type IIB threshold functions for s = %
5

and s = 3, respectively. According to the Kaluza-Klein reduction

/ A7z e SCHRSe (1) VR RE ~ / Az E(r)VHRY, (4.138)

it follows that a 5[%70’0,0] R* type invariant in seven dimensions can lift to a 5[%](7')}24 type
invariant in ten dimensions, and a &3 90,0 VAR?* type invariant can lift to a 5[%}(7)V4R4
type invariant.
However
€p0,30 =1+ e 8 1 (grs) + 6_5¢8—%(7—)82(9T3) ; (4.139)

and there is no solution that lifts to ten dimensions such that no &g, %7O]V4R4 type invari-
ant in seven dimensions does lift to type IIB supergravity.

To understand the decompactification limit to ITA supergravity, it is more convenient
to take an explicit basis for the diagonal elements of the matrix V € SL(5), i.e.

1
Vll:y75’ VZz_j;gTB’ V33:y7 10 78’ V44:y7 loﬂav V55:y7 10\/7487ﬂAv
(4.140)
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where y7 is the effective string coupling constant in seven dimensions, whereas rs and rg
are the radii moduli in type IIB and rg and r 4 the radii moduli in type IIA. In this basis,
the only solutions that lift to ten dimensions are

1/ 1
E13.000 = e s (t) =y, ° < + 7’87’B> ;

€13.000 = e %81 (r) = y; *rsra, (4.141)

with arbitrary coefficients, which shows that the eight-dimensional threshold £s(t)R* in-
2

cludes both type IIA and IIB tree-level R* thresholds, and the 1-loop type IIB R?* threshold,
whereas &1 (7)R* includes the type ITA R? threshold that lifts to eleven dimensions. Simi-
larly, the only solutions that lift to ten dimensions are

_ _ 1
5[3,0,0,0} =e 10¢5g (t) =y, ! ( ; + y?(TSTB)2> ,

E10,0,3,0 = 6_1%52(7)57%@) = y7  yr(rsra)®, (4.142)

IR

with arbitrary coefficients, which shows that the eight-dimensional threshold £ 5 (t) ViRt
includes both type ITA and IIB tree-level V4R?* thresholds, and the 2-loop type IIB V*R*
threshold, whereas (7)€ (t)VAR?* includes the type ITA V4R?* threshold.

In type IIB, supersymmetry implies a second order Poisson equation on SL(2)/SO(2),
such that the two invariants must be in the same SL(2) representation, whereas in type
ITA supergravity there is only one scalar, and they are independent.
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