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Chern-Simons theories occur in Physics more often than one may think. In particular, the Hamil-
tonian action for any mechanical system with finite number of degrees of freedom is a CS La-
grangian. CS forms can be seen as generalizations of the coupling between the electromagnetic
field and a point charge. It should come as no surprise, therefore, that the CS forms are perfectly
suited to describe the consistent coupling of a (nonabelian) gauge connection to extended charged
objects (branes). An application of this is provided by a spacetime region M where the electro-
magnetic field is described by the Lagrangian 1
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1. Introduction

Chern-Simons (CS) forms provide Lagrangians for gauge theories, invariant under some sym-
metry group G in a certain odd-dimensional manifold M. The fundamental object in a gauge theory
is the gauge connection A (known as the vector potential in physics). If g(x) ∈G is an element of
the group acting independently at each point in spacetime, the connection transforms as

A→ A′ = gAg−1 +gd(g−1). (1.1)

The connection is gauge-dependent and, therefore, not directly measurable. However, the curvature
(field strength in physics), F = dA+A∧A, transforms in a tensorial representation of the gauge
group,

F→ F′ = gFg−1, (1.2)

and has more direct observable features. The four fundamental forces of nature are described by
gauge theories. The standard model of electromagnetic, weak and strong interactions, is a triumph
of the gauge principle, spanning 1010 orders of magnitude in energy, from the scale of the chemical
bond to the physics at the LHC, and possibly beyond. General Relativity, albeit a classical theory,
is founded on the equivalence principle, which states the invariance of the laws of physics under
a gauge symmetry: local Lorentz transformations. Moreover, Einstein identified the gauge field
associated to this invariance as the gravitational interaction, which makes him the discoverer of the
first nonabelian gauge theory, several decades prior to Yang and Mills.

Chern Simons forms can be understood as lagrangian densities for some gauge potential in
odd-dimensional spacetimes. Mathematically, CS forms are related to topological structures like
the Euler or the Pontryagin invariants. If we denote by P2k(F) one of those invariants, then P2k

satisfies the following conditions [1]:
i. It is a polynomial in the curvature F associated to a gauge connection A.
ii. It is invariant under gauge transformations (1.1) and (1.2).
iii. It is closed, dP2k = 0.
iv. It can be locally expressed as the derivative of a (2k−1)-form, P2k = dC2k−1.
v. Its integral over a 2k-dimensional compact, orientable manifold without boundary, is a topolog-
ical invariant,

∫
M P2k = c2k(M) ∈ Z.

Condition (ii) is satisfied if P2k is a trace over the gauge algebra of a product of curvature
2-forms. Condition (iii) is a consequence of the Bianchi identity which states that the covariant
derivative (in the connection A) of the curvature F vanishes identically: DF = dF+ [A,F] ≡ 0.
Condition (iv) follows from (iii) as a direct consequence of Poincare’s lemma: If Dφ = 0 then
φ = d(something). The forms C2n−1 are the Chern-Simons forms and are the subject of these
notes. Finally, (v) means that, although in a local chart P2k looks like an exact form, globally it is
not.

The invariance of P2k under gauge transformations is easily seen from the homogeneous trans-
formation law for the curvature (1.2), which implies that Tr[Fk] is invariant by construction, due to
the cyclic property of the trace. This has a very useful consequence: under gauge transformations,
CS forms change by an exact form (total derivative). This can be seen from combining features
listed above. From (iv), a gauge transformation gives

δgaugeP2k = d(δgaugeC2k−1), (1.3)
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and since P2k is invariant, one concludes that

d(δgaugeC2k−1 = 0). (1.4)

By Poincare’s lemma, this last equation implies that the gauge variation of C2k−1 can be written
locally as an exact form,

δgaugeC2k−1 = dΩ. (1.5)

This is a nontrivial feature: although the nonabelian connection A transforms as in (1.1), the
CS form transforms in the same way as an abelian connection, and this is sufficient to ensure that
CS forms define gauge invariant actions. The reason is the same that makes the electromagnetic
coupling between a point charge and its surrounding electromagnetic field, I[A] =

∫
Γ

A, gauge
invariant:

δgaugeI[A] =
∫

Γ

δgaugeA =
∫

Γ

dΩ, (1.6)

which vanishes for any reasonable set of boundary conditions. Apart from this, CS actions are
exceptional in physics because they do not require a metric structure in spacetime in order to
construct Lorentz invariants, as is the case for most physical systems, like the Maxwell or Yang-
Mills theories. A particular consequence of this is that in CS gravitation theories the metric is
a derived (composite) object and not a fundamental field to be quantized. This in turn implies
that concepts such as the energy-momentum tensor and the inertial mass are phenomenological
constructs of classical or semi-classical nature.

Another important difference with Yang-Mills systems is that CS lagrangians are functions of
a connection A and its exterior derivatives that cannot be written as local functions involving only
the curvature F. A direct consequence of this is that CS forms are not necessarily defined globally
throughout the spacetime manifold M, and many charts may be required to define them.

1.1 Historical background

CS forms were originally introduced in physics in the discussion of chiral anomalies, which
signal the violation of the classically conserved chiral currents due to quantum mechanical cor-
rections. By direct computation, the deviation from the classical conservation law for the chiral
current (anomaly) in four spacetime dimensions, was shown to be proportional to the Chern class
P4(F) [2, 3]. It was later observed that this form could be written as the exterior derivative of a local
three form, P4(F) = dC3(A), where C3(A) is a function of the connection, originaly discussed by
Chern and Simons in the mathematical literature [4]. For a historical overview, see [5].

A CS form seems to have been used as a Lagrangian for the first time in the 11-dimensional
supergravity model of Cremmer, Julia and Scherk. There, the action contains a CS term for a three-
form field needed by supersymmetry [6]. It was later realized that CS forms define potentially
useful field theory Lagrangians in three spacetime dimensions. CS actions have also been invoked
for the description of the quantum Hall effect [7] and were shown to be related to polynomial
invariants of knot theory [8]; CS theory is also closely related to conformal field theory and the
Wess-Zumino-Witten (WZW) action in two dimensions [8, 9], and to superconductivity [10, 11].
Finally, the standard gravity theory in 2+1 dimensions itself was shown to be a CS system [12,
13, 14]. Moreover, CS forms in more dimensions can describe gravities or supergravities which
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are genuine gauge theories [15] (for a review, see [16]). As discussed in the next subsections,
however, examples of CS actions have been around much longer in the context of mechanics and
electrodynamics.

2. Examples of Chern-Simons theories

The CS forms C2k+1(A) are defined by the label k and the Lie algebra G associated to the
gauge group G. In this section we review some examples.

2.1 k = 1: 0+1-dimensional CS theory

For k = 1, the invariants P2k take the rather simple form, with F = FaJa, where Ja are the
generators of the Lie group G. Since most gauge groups of physical interest, SU(n,m), SO(n,m),
etc. are of determinant one, their generators are traceless and therefore Tr[F] = 0. There is only
one very important exception to this rule: electrodynamics. In this case, the gauge group is U(1)
and the generator is the imaginary unit, i, so the trace can be dropped and the invariant is just the
two-form which corresponds to the field strength,

P2 = F =
1
2

Fµνdxµ ∧dxν , (2.1)

and the respective CS form is the U(1) connection

C1 = A = Aµdxµ . (2.2)

This CS form is relevant for the coupling of an electrically charged point particle with an external
electromagnetic field,

I = e
∫

Γ

Aµ(z)dzµ , (2.3)

which has the peculiar features indicated above. First, it does not make reference to the metric
of the spacetime where the interaction takes place; it does not require the existence of a metric
structure to make sense. Second, although it depends explicitly on a non-invariant gauge field, it is
invariant under proper1 gauge transformations.

This unique form of interaction accounts for the coupling between charged matter and the
electromagnetic field, implemented through the substitution of ordinary derivatives by (gauge) co-
variant derivatives. This form of interaction in turn means that the field that mediates the electro-
magnetic interaction is a connection on a fiber bundle (gauge theory). This is also the simplest
example of a CS system.

The action (2.3) can be viewed as a functional of A or as a functional of the embedding coordi-
nates zµ that parametrize the trajectory of the charge in spacetime. In the first case, it might seem to
lead to an inconsistent classical system: the Euler-Lagrange equation obtained varying with respect
to A reads 1 = 0. However, this is a very narrow interpretation of the variation. In fact, what one
obtains is

δ I[A] = e
∫

Γ

δAµ(z)dzµ = 0, (2.4)

1Proper gauge transformations are those that approach the identity at infinity, A′ = A+dΩ, so that at infinity, Ω→
[constant]. It can be seen that this condition can be replaced by the requirement that the spacetime manifold be bounded
or periodic in time.
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which only states that the integrand must be an exact form,

δA(z) = dα(z), (2.5)

with α(z+) = α(z−), where {z+,z−} = ∂Γ. In other words the classical equation only informs
us of the fact that A can change as an abelian connection, but it is otherwise arbitrary, and α(z)
is periodic. The periodicity of α(z) can be automatically guaranteed if the manifold Γ is closed
on itself, i. e., if it has no boundary, ∂Γ = 0. So, the action principle hints to the fact that the
coordinate z along Γ should be periodic [17].

2.2 Classical mechanics as a 0+1 CS system

In the alternative interpretation, equation (2.3) is considered as a functional of zµ , the embed-
ding coordinates for Γ in a higher-dimensional target manifold. This is the conventional interpre-
tation leading to equations of motion for a charge in the presence of an external e-m potential A,
although here we have not included a kinetic term for the charge (K = 1

2 γab(z)żażb), which requires
a spacetime metric. However, as we will show next, this is not really necessary.

Consider the action for a mechanical system of a finite number of degrees of freedom in
Hamiltonian form,

I[p,q] =
∫

Γ

[pidqi−H(p,q)dt], i = 1,2,3, ...,s, (2.6)

which can be seen to be of the form (2.3) if one identifies Ai = pi, As+i = 0, A0 = −H, and zµ =

(t,qi, p j). In other words, the Hamiltonian action for any mechanical system is a (0+1)-CS form
defined on the 1-dimensional history of the system in a (2s+ 1)-dimensional embedding space
M2s+1. Clearly, this embedding spacetime is just the phase space to which we have added the time.

The electromagnetic analogy can be made more apparent if the kinetic term is written in the
skew-symmetric form, (pidqi−qid pi)/2 (the corresponding identification is now Ai = pi/2, As+i =

−qi/2) [18]. Note that the phase space, enlarged by the inclusion of time, is odd-dimensional, and
Hamilton’s equations can be written as

Fabżb = Ea, a,b = 1,2,3, ...2s, (2.7)

where we have defined Ea = F0a = ∂0Aa− ∂aA0 = ∂aH, and the field strength Fab is identified as
the symplectic form. Thus, we conclude that all of classical mechanics can be understood as a CS
system where Hamilton’s equations describe a particle moving under the influence of an external
electromagnetic field that produces zero net Lorentz force on the charge (e[−→E +−→v ×−→B ] = 0).
One application of the analogy between the dynamics of classical mechanics and electromagnetic
phenomena is Feynman’s derivation of Maxwell’s equations from classical mechanics [19].

Where is gauge invariance in a mechanical system? In this language, gauge invariance is
just the invariance of the Euler-Lagrange equations under the addition of a total derivative to the
Lagrangian, L→ L+ dΩ(p,q, t), where L = pidqi−H(p,q)dt. Thus, in this framework, gauge
invariance is the symmetry of classical mechanics under canonical transformations.

2.3 k = 2: CS field theory

The next example of invariant form is

P4 = 〈F∧F〉, (2.8)

5



P
o
S
(
I
C
F
I
 
2
0
1
0
)
0
0
4

Chern-Simons Theories Jorge Zanelli

and the corresponding CS lagrangian is the three-form

C3(A) = 〈A∧dA+
2
3

A∧A∧A〉. (2.9)

Here 〈· · ·〉 denotes the symmetrized trace2 over G , the Lie algebra associated generated by {Ja}. It
can be checked directly that dC3 = 〈F∧F〉.

Now there is no need to restrict ourselves to an abelian gauge group since the commutators
Tr[JaJb] don’t vanish in general. The action that corresponds to (2.3) now reads

I[A] = e
∫

Γ3
〈A∧dA+

2
3

A∧A∧A〉, (2.10)

where Γ3 denotes a three-dimensional world volume swept by the evolution of a 2-dimensional
membrane. Since the Lagrangian now involves derivatives of the connection, extremizing the ac-
tion under variations of A yields dynamical equations over Γ3 for this field. That wasn’t the case in
the preceding section, where A(z) was a prescribed, non dynamical function (an external potential).

Varying the CS action with respect to A produces –rather simple but non trivial– field equa-
tions,

〈JaF〉= 0, (2.11)

which in turn implies F = 0. These equations mean that on any open patch, the connection is flat
and can be locally written as a pure gauge,

A(z) = g−1dg, (2.12)

where g(z) is any application from the worldvolume onto the gauge group, g : Γ3 → G. This
means in particular, that there are no propagating degrees of freedom in this theory, since any
configuration is locally equivalent to a flat connection A = 0, and can be gauged away. However,
a locally flat connection doesn’t necessarily describe a trivial situation. In fact, there exist many
locally flat but topologically nontrivial configurations, as for example in the case of AdS gravity in
2+1 dimensions, where the CS action admits locally flat classical solutions that describe interesting
configurations such as black holes [20, 21].

The three-dimensional CS field theories have been extensively studied in the past three decades,
which makes it unnecessary to delve much further into this topic in an introductory survey. The
reader can find a wealth of material in modern texts on field theory, such as [22, 23, 24]

The invariant P4 = 〈F∧F〉 has an interesting history of its own. This is the Pontryagin invariant
that defines a characteristic class in the fibre bundle associated to a connection A. In quantum field
theory it appears as the obstruction to chiral current conservation (chiral anomaly), and as the
Atiyah-Singer index associated to a Dirac spinor coupled to a Yang Mills field.

The integral of P4 is a topological invariant or just a boundary term and therefore, if added
to the lagrangian, it does not affect the field equations. Nevertheless, all topological densities
like this change the value of the action, giving different weights in the quantum path integral to

2A note of caution is in order here: The symmetrized trace 〈· · ·〉 is a two-entry object, 〈,〉 : G ×G → R. So, the
expression 〈A∧A∧A〉 actually stands for 1/2Aa ∧Ab ∧Ac〈Ja, [Jb,Jc]〉, where Ja are the generators of the Lie algebra
G . Naturally, if G is abelian this term vanishes identically.
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configurations in different topological sectors. This in turn implies that the quantum vacuum of
the theory is degenerate, containing a huge number of distinct zero-energy states among which the
system can tunnel. Such a degenerate ground state is often called a θ -vacuum, because the addition
of P4 to the action is with a coupling constant θ .

In electromagnetism P4 is a curiosity: it is the only Lorentz invariant bilinear in F , apart from
the Maxwell Lagrangian, FµνFµν . It is gauge naturally invariant, but its addition does not modify
Maxwell’s equations, so it seems to play no role in classical electrodynamics. In the next section
we will argue that that is not necessarily the case.

The abelian CS three-form looks like (2.9), but without the cubic term. This CS form should
couple to a two-dimensional membrane whose world volume is a three-dimensional spacetime Γ3,

I[A] =
∫

Γ3
A∧dA, (2.13)

whose classical equations are F = 0, which means that locally, the space is free of electric and
magnetic fields. Although this looks like a trivial situation, it is far from it. One could recall the
Aharonov-Bohm experiment, which underscores the importance of nontrivial topology that makes
a seemingly trivial configuration (~E = ~B = 0) into a remarkable proof of nonlocality in quantum
mechanics. This system is also related to other important applications such as superconductivity
and the Hall effect. We will come back to this case in the next section.

2.4 k ≥ 2: Higher dimensional CS theories

CS field theories can be constructed for all odd dimensions in correspondence with the inte-
gral topological invariants (characteristic classes) of the dimension immediately above. The main
difference between the different theories stem from the different Lie groups that are used. For
SU(N) groups, the topological invariants are the Pontryagin classes. For SO(N) groups, besides
the Pontryagin classes, there exists the Euler family. The corresponding CS actions give rise to the
Lorentz CS theories in the first case, and to special forms of Lovelock actions in the second case
[25]

2.4.1 Generic case (SU(N))

The extension of CS theories to higher dimensions is straightforward but nontrivial. The gen-
eralization is achieved by looking for the (2k−1)-forms whose exterior derivative yields a Chern
class for a given Lie-algebra valued connection in (2k) dimensions. The construction is rather
unambiguous and only requires identifying an appropriate kth rank invariant tensor τa1a2···ak :=
〈Ja1Ja2 · · ·Jak〉, where 〈· · ·〉 is the symmetrized trace over the Lie algebra. Then, the CS lagrangian
form reads

C2k−1[A] = 〈A∧ (dA)k−1 +α1A3∧ (dA)k−2 + · · ·+αk−1A2k−1〉, (2.14)

where {α1, · · ·αk−1} are fixed rational numbers.
CS theories for dimensions D≥ 5 have been studied in different contexts (see e. g., [26, 27]),

and in contrast with the case D = 3, they are not necessarily topological and contain propagating
local degrees of freedom [28].

These systems, however, exhibit pathological features, which obscure the analysis of their dy-
namical nature. First, the rank of the symplectic form is generically not constant throughout phase
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space, becoming noninvertible on some surfaces, Σ. In this case the system evolves from an initial
state into another with fewer degrees o freedom in a finite time [18]. Second, the symmetry gener-
ators (first class constraints) may become functionally dependent in some subsets of phase space.
There, the canonical analysis breaks down and it is no longer clear how to identify the physical
observables (propagating degrees of freedom, conserved charges, etc.) and Dirac’s canonical for-
malism [29] cannot be applied. Fortunately, the troublesome configurations generically occur in
sets of zero measure in phase space and one can always restrict the attention to open regions where
the canonical analysis holds (canonical regions) [30, 31].

2.4.2 CS gravity (SO(N))

It was observed by Witten that three-dimensional gravity can be cast as a CS theory for the
Poincaré, de Sitter or anti-de Sitter groups, depending on the value of the cosmological constant
(Λ = 0, Λ > 0 or Λ < 0) [14]. It turns out that this continues to be true for any odd dimension[15].
Moreover, the supersymmetric extension of these theories is quite elegant and yields a family of
very interesting supergravities in which the spacetime symmetries (rotations, Lorentz boosts, trans-
lations or AdS bosts) are part of the gauge superalgebra [32, 33]. The construction that leads to
this conclusion is quite interesting, but lies somewhat outside the scope of this note. The reader
can refer to [16] and references therein for a review of this topic.

The most appealing feature of CS gravity is that it is a bona fide gauge theory, constructed
using only a connection in which the Lorentz (“spin") connection and the vielbein are combined.
As a consequence, the metric does not appear as a fundamental field in the action principle, but as
a derived entity in the solutions. In this way, the gravitational field is described by more degrees of
freedom than those encoded in the metric alone, which is viewed as a composite emerging feature
of the full geometrical content of spacetime. Other appealing features of CS gravities is its absence
of dimensional coupling constants: as in any CS theory all coefficients appearing in the action
are fixed rational numbers that cannot be renormalized without breaking gauge invariance. As a
consequence, the corresponding quantum theory is expected to be scale invariant and finite.

The main difficulty of this elegant structure is how to couple them to external sources. The
naive coupling of brane appropriately charged to contract its world and group indices to the con-
nection usually leads to inconsistencies. This problem was detected in the attempts to couple an
extended object with a nonabelian p-form that would play the role of a connection [34]. This dif-
ficulty was encountered again in the context of CS supergravity [35]. The problem is in essence,
that a coupling of the form j ·A, where j is an extended source, typically breaks gauge invariance.

3. Extended sources and CS couplings

We observe that a (2n+ 1)-CS form describes the coupling between a connection A and a
membrane whose time evolution sweeps a (2n+ 1)-dimensional volume. The consistency of this
scheme follows from the precise form of the coupling [36],

I[A; j] =
∫
〈j2p∧C2p+1(A)〉, (3.1)

where C2p+1 is the CS (2p+ 1)-form living on the brane history, and we have defined C2p+1 =

〈C2p+1(A)〉. The current generated by the 2P-brane is represented by the (D− 2p− 1)-form j

8
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supported on the (2p+1)-dimensional worldvolume Γ2p+1 of the brane,

j2p = q ja1a2···asJa1Ja2 · · ·Jasδ (Γ)dxα1 ∧dxα2 ∧·· ·dxαD−2p−1 , (3.2)

where dxαi are transverse directions to Γ. The integration over the D−2p−1 transverse directions
yields a (2p− 1)-CS form integrated over the worldvolume of the 2p-brane. This integral might
vanish –for instance, if 〈C2p+1〉 is zero for the corresponding gauge algebra. The fact that the cur-
rent is supported on a submanifold (Γ) of the entire spacetime (M) implies that on the complement
of Γ the system enjoys full invariance under the entire gauge group. On Γ, however, the gauge
symmetry is reduced to the subgroup that commutes with K = ja1a2···asJa1Ja2 · · ·Jas .

It can be checked directly, using the symmetry properties of the bracket 〈· · ·〉, that under a
gauge transformation, I[A; j] changes by a (locally) exact form, provided the current is covariantly
conserved,

Dj2p = dj2p +[A, j2p] = 0. (3.3)

This is also the case in electrodynamics: the minimal coupling is gauge invariant provided the elec-
tric charge is conserved. Here, the current has been taken as an external source, whose dynamics
is not determined by the action principle. Nevertheless, is the current j2p results from particles or
fields whose dynamics is governed by an action invariant under the same gauge group G, then its
conservation is guaranteed by consistency and one could confirm Dj2p = 0 by direct computation,
using the explicit form of the current.

An interesting –and possibly the simplest– example of such embedded brane occurs when an
identification is made in the spatial slice of AdS3, using a rotational Killing vector that leaves the
origin fixed. In that case, a deficit angle is produced and the conical geometry produced around
the singularity can be identified with a point particle [37] and the singularity is the worldline of the
particle where the curvature behaves like a delta function. The geometry is analogous to that of the
BTZ black hole [20, 21], but the naked singularity results from a wrong sign in the mass parameter
of the solution: m < 0 [38]. A similar situation arises also when one considers a co-dimension 2
brane in higher dimensions [39]. In all these cases it is confirmed that the coupling between this
0-brane and the (nonabelian) connection is indeed of the form (3.1).

In all these cases, the geometry is only affected in its topological structure, but the local geom-
etry outside the worldline of the source. If the gravity action is invariant under the corresponding
SO(D− 1,2) gauge group, this symmetry is still respected on any open set outside the worldline.
On the worldvolume, on the other hand, the gauge symmetry is reduced to the subgroup of G that
commutes with the current.

3.1 θ -conductors

The three-dimensional CS action for the U(1) connection (electromagnetic field in 2+1 di-
mensions) has a natural interpretation [40]. Consider an electromagnetic field in four-dimensional
spacetime, M, in which there is a region M̃ occupied by some material characterized by some
parameter θ . The action reads

I[A] =
1
2

∫
M

F ∧∗F− θ

2

∫
M̃

F ∧F. (3.4)

9
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The first term is the usual Maxwell action, while the second is θP4, integrated over the region con-
taining the θ -conductor. This last term can also be written as an integral over the entire spacetime
with the help of the characteristic function

Θ(x) =

{
θ , x ∈ M̃
0, x /∈ M̃

. (3.5)

Then, the action reads

I[A] =
∫

M

(
1
2

F ∧∗F− Θ

2
F ∧F

)
, (3.6)

Since P4 is a closed form, it does not affect the field equations either inside or outside M, and
can be locally written as a boundary term,∫

M

Θ

2
F ∧F =

θ

2

∫
M̃

F ∧F

=
θ

2

∫
M̃

d(A∧dA)

= θ

∫
∂M̃

A∧dA .

This can also be written as coupling between the Chern-Simons and a surface current,∫
Θ

2
F ∧F =

∫
j∧A∧dA. (3.7)

Here the surface current is the one-form j = θδ (Σ)dz = dΘ, where z is the outward normal coor-
dinate to the surface of M, Σ = ∂M.

Due to the topological nature of the θ -term, the field equations are the same as those in vac-
uum. However, this modifies the behavior of the field at the surface ∂M. In fact, varying the action
(3.6) yields

d ∗F = j∧F,

or, in more familiar notation,

∂µFµα =
θ

2
δ (Σ)εnαµνFµν , (3.8)

where the index n refers to the normal direction to Σ.
The effect of the θ -term is to introduce an effective current density on the surface of the region

M. The peculiar feature of this source term is that it is proportional to the components of the
electromagnetic field itself, and therefore the electromagnetic superposition principle (linearity of
the equations) still holds. Writing (3.8) in coordinates adapted to the surface, one finds3

∇ ·E = θδ (Σ)B ·n (3.9)

−∂tE+∇×B = θδ (Σ)E×n (3.10)

where n is the unit normal to Σ. In the steady state or static case (∂t ∼ 0), in the vicinity of
the surface Σ these equations imply that the normal and the tangential components of E and B,

3Here (
−→E )i = Foi =−F0i and (

−→B )i = 1
2 εi jkF jk.
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respectively, are discontinuous,

[En] = θBn (3.11)

[B‖] = −θE‖ (3.12)

On the other hand, from the Bianchi-Jacobi identity dF ≡ 0 (∇ ·B = 0, ∂tB+∇×E = 0), it
follows that the normal component of B and the tangential component of E must be continuous (in
the static case at least),

[Bn] = 0 (3.13)[
E‖
]
= 0 (3.14)

These continuity conditions imply that the right hand sides of (3.11) and (3.12) are well de-
fined and they represent surface charge and current densities, respectively. The phenomenological
novelty here is that these sources are given by components of the electromagnetic field itself. The
surface charge is proportional to the normal component of the magnetic field, which is similar to
the behavior of vortices with magnetic flux as carriers of electric charge in superconductors.

3.2 Other applications: BCS superconductivity

Applications of Chern-Simons theories include relevant problems such as the fractional quan-
tum Hall effect and high-Tc superconductivity, where nontrivial topology of these effective 2D
systems play the key role [10, 11].4

The previous example is especially interesting for a general discussion about the phenomenon
of superconductivity, even if viewed as a toy model of a superconducting material. Beyond that, it
is interesting to mention the connection discovered between a Chern-Simons theory and the BCS
theory applied to superconductivity in nanoscopic metallic grains5, where a discrete excitation
spectrum was shown to exist [43]. It has been shown that this system permits a theoretical treatment
based on an exactly solvable reduced BCS model with a fixed number of pairs, and whose solution
was discovered long time ago by Richardson [44]. This reduced BCS model is equivalent to a
Chern-Simons theory.

The problem can be simplified to the hard-core bosons Hamiltonian

H =
N

∑
n,m

[2εnδnm−g]b+n bm, (3.15)

where the operators b+ (b) create (anihilate) a pair, and satisfy commutation relations of the form
[b,b+] = δnm(1− 2bnb+n ) and (b+)2 = 0 (g is a model-dependent coupling constant). This appar-
ently simple system is in fact nontrivial because of the above hard-core conditions for the operators;
nevertheless, it is exactly solvable.

4For a review, see [41].
5For a review, see [42].
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This Hamiltonian is equivalent to a XY model with long range couplings, which can be ex-
pressed in terms of operators satisfying a SU(2) algebra. In this way, it is possible to show the
equivalence between this theory with the following CS action

I[A;g1,g2, ...,gN ;ξ ,) =
k

4π

∫
〈A∧dA+

2
3

A∧A∧A〉

+
N

∑
n=1

∫
∞

−∞

dt〈Λng−1
n (t)(A0 +

d
dt
)gn(t)〉

− 1
2πi

∫
∞

−∞

dt
∮

C
dz〈ξ A0(z, t)〉, (3.16)

where Aµ is the SU(2) gauge field, gn are elements of the gauge group field describing the dynamics
of a system of interacting coloured particles (temporal Wilson lines insertions) located at points
z1, ...,zN of a complex 2D plane, and Λn is its highest weight representation. Here ξ is any element
of the complexified SU(2) Lie algebra, and C is a non-self-intersecting closed curve in the complex
plane which encloses all point-like insertions zn of colored particles.

The resulting Hamiltonian

H =
1
2

N

∑
n,m

(2znξnδnm− ta
(n)t

a
(m)), (3.17)

where the t’s form a basis for the SU(2) Lie algebra, is shown to be equivalent to the reduced BCS
Hamiltonian up to a factor 1/g and an additive constant.

This equivalence deserves a further analysis. However, the connnection is remarkable, pro-
viding an interesting geometrical approach to BCS superconductivity. This result establishes an
independent discovery that standard superconductivity is related to the Chern-Simons forms, in
this case, in terms of an SU(2) theory. The implications, both theoretical and phenomenological,
are currently under study [40].

4. Quantum mechanics

Assuming the symplectic form Fab to be nondegenerate (invertible), Feynman’s quantization of
sum over paths can be applied. As already mentioned, the electromagnetic coupling between point
charges and the electromagnetic field, as well as the action for any mechanical system with finite
number of degrees of freedom are examples of (0+1)-dimensional CS systems. The corresponding
quantum theories have no mysteries or inconsistencies and the quantum postulates seem to be
realized by the demand that the holonomies in phase space take integer values,

1
h̄

e
∮

Γ

Aµdzµ = 2nπ , (4.1)

which is readily recognized as the Bohr-Sommerfeld quantization condition. Other simple exam-
ples of quantum behaviour are provided by the quantization of magnetic flux (holonomy around a
magnetic center) as in the Aharonov/Bohm effect) and Dirac’s quantization of the product of elec-
tric and magnetic charges. In all of these cases, the relevant result takes the form (4.1). For details,
see [17].
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The quantum behavior of the 2+1 CS systems was analyzed by Witten [8], who showed that
CS theories are finite (exactly soluble), and provide a framework to understand the Jones polyno-
mial of knot theory in three-dimensional spaces. CS theories are also related to conformal field
theories in 1+1 dimensions, furnishing an example of the AdS/CFT correspondence, conjectured a
decade later in the context of string theories. Since there is a vast literature over the past twenty
years on this subject, there is no point in repeating it here. For an interesting discussion on the
relation between Wilson loops in quantum 2+1 CS theory and knot theory, see [22].

The assertion about the absence of local degrees of freedom applies to the classical solutions,
so one could imagine that there might exist fluctuations around locally flat configurations that could
possess a quantum spectrum of small oscillations near a stationary point of the action. However,
this possibility doesn’t exist: small fluctuations around a classical solution should satisfy

δF = d(δA) = 0, (4.2)

which means that around a classical configuration these must be closed forms, δA = d(something).
So, all directions in function space around a classical solution are gauge directions, and hence,
contribute nothing to the path integral in a perturbative expansion. The conclusion is that the
quantum spectrum of 2+1 CS theories –if any– must be nonperturbative. Following the reasoning
of [8], it can be seen that the quantum Hilbert space corresponds to nontrivial holonomies (i.e.,
Wilson loops) of the connection A. What can be expected in higher dimensions?

For the reasons explained above, almost nothing is known about the full quantum behavior
of higher-dimensional CS systems. However, all CS systems possess a vacuum configuration,
A = 0, which is maximally symmetric, absolutely stable, maximally degenerate and isolated from
the rest of the configurations. Around this configuration, the theory has no propagating degrees
of freedom, and therefore this point defines a topological field theory, like the entire CS theory in
three spacetime dimensions. Indeed, in all dimensions, the perturbations around this configuration
are pure gauge, δA = g−1(x)dg(x).

Thus, the quantum spectrum of these theories around A = 0 is given by all possible locally
flat connections defined by the group elements g : M2n+1→G. This set is divided into equivalence
classes and the quantization problem must be related to the possibility of classifying all inequivalent
g(x). For a pure gauge configuration A= g−1(x)dg(x), the CS action takes the form of a WZ theory
without the kinetic term,

I[g] = const×
∫

M2n+1
〈(g−1dg)2n+1〉, (4.3)

which defines a field theory for g on the boundary of M2n+1. This boundary theory inherits all
the symmetries of the bulk action, has propagating degrees of freedom, and must also contain
nonperturbative and nonlocal states, analogous to Wilson loops, but which in this case would be
higher dimensional surfaces.

5. Summary

CS systems are quite ubiquitous in physics. As we have seen, any mechanical system with
a finite number of degrees of freedom and the interaction term between a point charge and an
electromagnetic field are (0+1)-CS systems. The Bohr-Sommerfeld quantization rules correspond
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to quantization of holonomies of loops in phase space, or of the symplectic flux enclosed by those
loops. Dirac’s quantization of the product of magnetic and electric charge is a particular case
of the same quantization rule, and that same condition arises in the quantization of the only free
parameter of Chern-Simons theories in 2n+1 dimensions, and in particular, in the quantization of
the analogue of Newton’s constant in CS gravities [46].

Higher dimensional CS systems define dynamical theories for a connection field. These
higher-dimensional actions can also be interpreted as consistent couplings between 2p-branes and
(non)abelian connections. In both cases there is no need for the background spacetime to be en-
dowed with a metric structure. Thus, CS systems seem better suited to define a more basic under-
lying framework for the fundamental description of fields and sources.

In closing, let us summarize the features of the functional (2.3) that are common to all CS
actions,

• Topological origin. The CS form is related to a topological density in 2n dimensions known
as a characteristic class C2n, through

dC2k−1(A) = P2k(A). (5.1)

• No metric required. Since the CS forms are local (2k+1)-forms, they are ready to integrate
over Γ2k+1, without any additional structure. In particular, the metric of the embedding space,
M2s+1, is irrelevant. This is a consequence of the topological origin of the CS forms.

• Gauge quasi-invariance. The functional (2.3) involves explicitly the connection A and can-
not be expressed as an integral of a gauge invariant local function. However, under a gauge
transformation A→ A+dΩ, I changes by the surface term

δ I = e
∫

Γ

dΩ = e[Ω(z+)−Ω(z−)], (5.2)

where z+ and z− are the end points of the worldline Γ. Thus, the action is not strictly gauge
invariant, but quasi invariant. However, I is a genuine gauge invariant object for the class
of gauge transformations that have periodic boundary conditions (no boundary), Ω(z+) =
Ω(z−). Higher-dimensional CS forms are also quasi invariant, and this is sufficient to define
a consistent coupling to conserved sources of the form (3.1).

• Nontrivial dynamics. Even though there is no “kinetic term" (ż2/2) in I, the lagrangian
defined by (2.3) gives a meaningful action principle. Indeed, varying with respect to z one
obtains the first order equations

Fabżb = 0, (5.3)

which describe the motion of a charge under the influence of an external electromagnetic field
such that the electric and magnetic forces exactly cancel each other. Varying with respect to A
informs us that this field can only vary as a connection, but is otherwise arbitrary. In higher
dimensions, the field A is not an arbitrary connection without dynamics. The variation of
the action with respect to it yields a set of field equations for A on the (2n+1)-dimensional
worldvolume of the brane to which it couples.
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