
Submit Manuscript | http://medcraveonline.com

Introduction
To describe the spacetime of any massive objects (i.e. whether 

astrophysical objects like stars, galaxies etc or hypothetical objects 
like black holes, wormholes etc), it requires an interpretation of the 
matter content of the object. As a conventional process one can use 
fluid (as matter source) to study cosmological as well as astrophysical 
phenomena. But for matter fluid further specification of an EOS is 
desired. Before the acceleration of the Universe was discovered, 
pupils usually considered linear EOS as =p mρ  (with 0 1m≤ ≤ ). 
But for the last few years theoretical physicists have used different 
EOS (particularly, Phantom energy, the generalized Chaplygin gas, 
Vander Walls quintessence EOS, etc) and elucidated the causes of the 
expansion of the Universe in an accelerated manner. Also, it has been 
shown that wormholes be supported by the fluid with these different 
equation of states.1 The homogeneous as well as inhomogeneous 
cosmological models of the universe have been suitably defined 
recently by Ananda et al.2, by a quadratic EOS. This quadratic EOS, 

2
0=p p αρ βρ+ + , where 0p  , α  and β  are parameters, represents 

the Taylor series expansion of the barotropic EOS, ( )p ρ  and ρ  
being arbitrary. It is known that the mystery behind the expansion 
of the universe is dark energy or unified dark matter which can be 
defined by a quadratic EOS as demonstrated by Ananda et al.2

Self-sustained traversable wormhole is studied as a vacuum 
solution of gravitational theory3, with emphasis being given on the 
gravitational coupling and a possible effective gravity near the Planck 
scale. Modelling of wormholes within the perspective of alternative 
gravity theory,4 where an extra material term in the gravitational 
action is considered. Further taking into account the Starobinsky 

( )f R  model, considering a static spherically symmetric geometry 
with matter contents as anisotropic, isotropic, and barotropic fluids,5 
the wormhole solutions are constructed without exotic matter, in few 
regions of space-time. The authors thus obtain realistic and stable 
wormhole solutions with anisotropic matter in the modified theory 
of gravity. The possibility of the existence of wormhole geometries 
by taking a particular model of 2( , ) =f R T R R Tα λ+ + ,6 where it is 
shown that in the context of anisotropic fluid and gravity, wormhole 
models could exist without the requirements for exotic matter. Some 
models of static wormholes within the ( , )f R T  extended theory of 
gravity are constructed where the pressure components (radial and 
lateral) and different equations of state.7 Wormhole solutions in a non-
minimal torsionmatter coupled gravity,8 where the transfer of energy 
and momentum occurs between matter and torsion scalar terms. 
Wormhole models in modified gravity have been further discussed 

from studies,9 which is consistent with stable stellar configurations, 
where the second-order derivative with respect to the Ricci scalar, R, 
remains positive and the solution satisfies the energy conditions. The 
M sharif et al.10 have considered chaplygin, linear and logarithmic gas 
models to study the exotic matter content at thin-shell and observed 
that the Hoffmann-Born-Infeld parameter along with the electric 
charge enhance the stability regions. The correction to the standard 
Newtons law in terms of a polarization energy density and in presence 
of a spherically symmetric wormhole has been examined.11 Here the 
authors have studied the Newtonian potential in two term, where the 
first term is found to be independent of the wormhole metric and 
corresponds to the standard law while the second term is dependent 
it. Nonexotic matter wormhole solutions have been obtained,12 where 
a gravity theory with linear and quadratic terms of the trace of the 
energy-momentum tensor in the gravitational action, is considered.

String theory defines gravity, as a truly higher dimensional 
interaction, which eventually assumes a 4D form at low enough 
energies. Brane-world models, inspired by string theory, pave the 
novel way to corrections in GR. In comparison, where the physical 
fields in our 4D Universe are restricted to the 3-brane, gravity can 
be expressed by the extra dimension. The gravity on the brane world 
scenario is best represented by the modified 4-dimensional Einstein’s 
equations which contain (i) Sνµ  and (ii) Eν

µ , representing a quadratic 
in terms of the stress energy tensor of matter restricted on the brane, 
and the trace less tensor of the 5D Weyl tensor, respectively. It is 
reasonable to neglect the contributions of 5D Weyl tensor in these 
equations. Even then the quadratic term of energy density appears 
in the 4-dimensional effective energy momentum tensor and plays a 
major role in defining the different characteristics of the models. Here 
lies the significance of choosing the quadratic form of the EOS. As 
defined earlier, this quadratic form of the EOS is rather the specific 
form of barotropic EOS, ( )p ρ  where ρ  is arbitrary. There has been 
a hectic search by theoretical physicists for the matter source that is 
an intrinsic characteristic of the wormhole. Matter source plays a vital 
role for constructing wormholes, which is revealed in literature in the 
form of several manifesto by various authors.13−22 Authors have nicely 
interpreted phantom energy to describe wormhole solutions.13−22 
Lobo16 has shown that Generalized Chaplygin gas may well support 
wormholes. Wormhole with Tachyonic field has been further studied 
by Das et al.23 Casimir field can be considered as an alternative for 
exotic matter source, as assumed by Mansouryar24 and Khabibullin A 
et al.25 Study of wormhole in presence of C-field has been extended 
by F Rahaman et al.26,27 that wormhole may exist in Kalb-Ramond 
spacetime is also an interesting study by F Rahaman et al.28 Hence 
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Abstract

In last few years, several cosmologists have been used different equation of 
states (EOS) (namely, Phantom energy, generalized Chaplygin gas, Vander Walls 
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we are motivated by the findings in the brane world models and try to 
explore the possibility that the quadratic EOS can really represent a 
wormhole. As a fruitful research, we find a series solution of Einstein 
field equations. This solution defines matter source represented by 
quadratic EOS and truly defines a wormhole. Hence we assume the 
following quadratic form of EOS2 in terms of the energy density as,

   
2=p αρ βρ+   (1)

where, ,α β  are parameters. At first we take these parameters as 
arbitrary, but restrictions on these parameters may be specified later.

Basic equations for constructing wormholes
 We consider a static spherically symmetric metric in Schwarzschild 

co-ordinates ( , , , )t r θ φ  as 

 

2 2 ( ) 2 2 2 2
2

1= ,( )[1 ]

f rds e dt dr r db r
r

− + + Ω
−

  (2)

where f(r) and b(r) are known as redshift function and shape 
function respectively. The above metric in fact represents a Lorentzian 
wormhole which is defined by a manifold 2 2R XS . The range of the 
radial coordinate is considered from 0r  to infinity, where 0=r r  is 
the wormhole throat. Also the convenient ‘cutoff’ of the stress energy 
tensor is assumed at the junction radius ’a’.

Using the Einstein field equations = 8G Tµν µνπ , in orthonormal 
reference frame ( with = = 1c G  ) , we obtain the following stress 
energy scenario, 

  
2( ) = ,

8

'br
r

ρ
π

    (3)

 
 

3
1( ) = [ 2 (1 )],

8

'b f bp r
r rrπ

− + −    (4)

 
2

2
1 ( ) ( )( ) = (1 )[ ],

8 2 ( ) 2 ( )

' ' '
'' ' '

t
b b r b f b r bp r f f f
r r r b r r r bπ

− −
− − + + −

− −
 (5)

where ( )rρ  is the energy density, ( )p r  is the radial pressure and 
( )tp r  is the transverse pressure. 

Using the conservation of stress energy tensor ; = 0T µν
ν , one can 

obtain the following equation 

 
2 2( ) = 0.' ' '

tp f f p p
r r

ρ+ + + −    (6)

We take the quadratic EOS in the form 

  

2
= =t

c
p p εραρ

ρ
+    (7)

The characteristic energy scale cρ  of the quadratic term as well as 
ε  are determined by the parameter β .

The usual perfect fluid follows a linear EOS ( = 0)β  with 

=0= |dp
d ρα
ρ

. Hence α  represents the speed of sound of the fluid and 

as 0ρ → , = scα . The 2ρ  term, i.e square of the energy density in 
the quadratic eqn.(7) is important and one may call the high energy 
regime (Figure 1).

          (A)     (B)     (C)

Figure 1 (A) The variation of redshift function with respect to ρ  (B) The shape function of the wormhole ( retaining a few terms )for 0 1= 0.1, = 6.5, = 0.6b bα − −  

(C) Energy density with respect to radial coordinate ’r’ ( retaining a few terms) for 0 1= 0.1, = 6.5, = 0.6b bα − − .

Solutions
From (6) by using (7), one can obtain

 

2(2 )
2 1( )22 0 1= ( ) 1 ,f

c c
e e

α
α αρ αρ ερ α

ρ ρ

− +
+−

+
 

+ + 
 

  (8)

where 0ρ  is an integration constant.

Taking into account equations (3)-(8), we have the following 
equation containing ’b’ as 

2 3 2 4

4 2 6 2 3 8 4 3 4
(1 ) (1 2 ) =

8 64 512 4 4 2

' ' ' '' '' '

c c

b b b bb b b
r r r r r r

α α ε α ε α α α
π ρ π ρ π π π π
+ +

+ + − +

2

5 2 5 2 6 2 6
(1 )[ ]

2 8 16 16 8

' ' '' ' '' '

c c c

bb b b bb b b
r r r r

α α ε ε ε
π π ρ π ρ π ρ π

+
− + − + +

2

7 2 2
1 1( ).

64 8

'

c c

bb
r

ε
π ρ π ρ

− +

Now to investigate whether there exists physically meaningful 
solutions consistent with the boundary requirements , we take a 
general functional form of ( )b r  . We can generally express it in the 
form 
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  =1 =0( ) = n m
n n m mb r a r b r∞ ∞ −Σ + Σ                (9)

since ( ) 0b r
r

→  as r →∞ , equation (10) is consistent only when 
all the na ’s in ( )b r  vanish i.e.

   
=0( ) = m

m m
bb r
r

∞Σ        (10)

Plugging this in equation (9) and matching the coefficients of 
equal powers of r  from both sides, we get , 

0 11
0 2

(1 9 )1( ) =
20

b bbb r b
r r

α
α

+ + +   

  

2
0 1

3 2
(1 9 )(1 11 )1 ......,

360
b b

r
α α

α
 + +

+ + 
 

 (11)

with 0b  and 1b  is arbitrary constant.

Now expression for ρ  can be obtained from (3) as
0 11

4 5
(1 9 )1=

8 10
b bb

r r
αρ

π α
+− −  

2 2 2
0 1 1

6 2
(1 9 )(1 11 )1 ( 8 1) ......,

128 120
b b b

r
α α α α

απ α
 + + − −

− − −  
 

Here > 0ρ  implies 1b  should be negative.

The throat of the wormhole occurs at 0=r r  where 0r  is the 

solution of the equation ( ) =b r r . Suppose 1 = y
r

, then ( ) =b r r  
implies 

 
2 3

0 1 2( ) = ............ 1 = 0.g y b y b y b y+ + + −   (12)

 This is an algebraic equation with negative last term. Then this 

equation must have at least one positive root, say, 
0

1=y
r

. Since 

0

1
r

 is a root of equation (14), then by standard theorem of algebra, 

either ( ) > 0g y  for 
0

1>y
r

 and ( ) < 0g y  for 
0

1<y
r

 or ( ) < 0g y  for 

0

1>y
r

 and ( ) > 0g y  for 
0

1<y
r

. Let us take the first possibility and 

one can note that for 
0

1 1= <y
r r

 i.e. 0>r r , ( ) < 0g y , in other words, 

( ) <b r r . But when 
0

1 1= >y
r r

 i.e. 0<r r , ( ) > 0g y , this means, 

( ) >b r r , which violates the wormhole structure given in equation(2).

According to Morris et al.29 the ’r’ co-ordinate is ill-behaved near 
the throat, but proper radial distance

  
0

( ) =
( )1

r

r

drl r
b r

r

+±
−

∫  (13)

must be well behaved everywhere i.e. we must require that ( )l r is 
finite throughout the space-time.

For our Model, 

  

0 1 2
0 2

( ) = .
11 [ ....]

r

r

drl r
b bb

r r r

+±
− + + +

∫  (14)

Though we cannot find the explicit form of the integral but one can 
see that the above integral is a convergent integral i.e. proper length 
should be finite. 

The axially symmetric embedded surface = ( )z z r  shaping the 
Wormhole’s spatial geometry is a solution of 

   

1=
1

( )

dz
dr r

b r

±
−

     (15)

One can note from the definition of Wormhole that at 0=r r  
(the wormhole throat) Eq.(14) is divergent i.e. embedded surface is 
vertical there.

The embedded surface (solution of eq.(14) ) in this case
1 32 2

2 0 0 1 1 22 2
0 0 1

7 2 3 4= [2 ( ) ( )
12

b b b b bz b r b b r r
− −+ + +

± − + −

52
0 2 0 1 1 3 212 7 3 8( ) .....]

40
b b b b b b r

−+ + +
−

One can see that embedding diagram of this wormhole (retaining 
a few terms) in Figure 2. The surface of revolution of the curve about 
the vertical z axis makes the diagram complete (Figure 2). 

     (A)    (B)
Figure 2 (A) The embedding diagram of the wormhole for 0 1= 0.1, = 6.5, = 0.6b bα − −  (B) The full visualization of the surface generated by the rotation of 

the embedded curve (retaining a few terms) about the vertical z axis.
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Final remarks
The major thrust in this article is to explore the matter ingredients 

characterized by quadratic EOS that produces wormhole akin 
spacetime. We are indeed triumphant in our work to exhibit that 
wormhole can be supported by quadratic EOS. It is easy to verify that 
the shape function of the wormhole satisfies all the desired conditions 
to represent a wormhole. The resulting line element represents an one 
parameter ( 1b ) family of geometries which contains wormholes. If 

1 = 0b , then = = 0pρ . And one obtains the standard Schwarzschild 

solution, viz., 2 ( ) ( )= [1 ] = 1f r srb re
r r

− − , provided 0 = = 2sb r M  ( 

the Schwarzschild radius). The asymptotical wormhole mass reads
01= ( ) =lim 2 2r

bM b r→∞ . Also as the parameter 0 > 0b , the asymptotic 

mass ‘M’ of the wormhole is positive, hence a distant observer could 
not distinguish between the gravitational nature of the wormhole and 
a compact mass ‘M’.
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