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INTRODUCTION

T hese lectu re  notes are an attempt to d escr ib e  som ething o f what has 
been  achieved in so -ca lle d  axiom atic fie ld  theory in the last couple of years 
with the em phasis on those resu lts  which are particu larly  neat.

Two significant p ro je c ts  cu rren tly  under way which probably are very  
deep and certa in ly  are  v ery  d ifficu lt w ill not be m entioned: Sym anzik's 
stru ctu re analysis and the pursuit o f the s o -c a lle d  "linear p rogram m e" by 
Kc!ll6n and oth ers. Fortunately, these are  excellen tly  sum m arized in [43].

The paper is  divided into two parts. The resu lts presented in the firs t 
half a re  ch a ra cterized  by the fact that, once one has had the proper insight, 
they can be proved  with a few  sim ple m anipulations. In the second part 
there is  a steep r is e  in the d ifficu lty  o f the analysis.

No attempt w ill be made to rationalize  the rather m athem atical p r e ­
occupations o f these le c tu res ; fo r  one reason , the author has tried  it be fore
[1 ]. The root-m ean -square deviation from  the mean o f opinion on what is 
a sensib le  thing to try  to  do in elem entary p a rtic le  theory seem s to be one 
o f those unrenorm alizable  in fin ities one hears about.

Of a ll the w ork  reported , the m ost significant seem s B orch er ’ s d is­
co v e ry  o f equivalence c la ss e s  o f lo ca l fie ld s  an d R u elle 's  r igorization  of 
Haag’ s co llis io n  theory . The f ir s t  was totally  unsuspected and represents 
the kind o f insight which is  indispensable if  one is  ever going to be able to 
get back to calcu lating c r o s s -s e c t io n s  in re la tiv istic  quantum fie ld  theory. 
The secon d  show s that in re la tiv istic  quantum fie ld  theory the co llision  
theory  (or asym ptotic p a rtic le  descrip tion ) is already uniquely determ ined 
by the fie ld s , a resu lt which a ccord s  with one’ s physica l intuition and sup­
p lies  strong evidence that axiom atic fie ld  theory  is  on the right track .

PA R T ONE

This f ir s t  part w ill d escr ib e  a num ber o f resu lts which have sim plicity  
and gen era lity  in com m on. A ll m athem atical techn ica lities w ill be deferred 
to P art 2.

1. 1. RECOLLECTION OF THE PCT THEOREM

The P C T  th eorem  w ill be used  again and again in the cou rse  o f this 
paper so  it w ill be presented  here b r ie fly  in the form  given by JOST [1].
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12 A. WIGHTMAN

If A(x) is  a charged sca la r  fie ld , its tran sform  under the PCT operation 
is  A (-x )* . The anti-unitary operator © on the states which generates this 
transform ation  o f the fie ld s  th ere fore  sa tisfies

0A (x)0_1 = A (-x )*  . (1)

(A charged  rather than a neutral sca la r  fie ld  w ill be considered  tem porarily 
to  bring out the ro le  o f the H erm itian adjoint in the definition of P C T .)
In any theory  o f a fie ld  (or a deriumerable set o f fie lds) that has the vacuum 
To as c y c lic  v e cto r  (i. e. fo r  which polynom ials in the sm eared fields 
ifi(Mg)• • •) applied to  the vacuum  To y ie ld  a dense set in the Hilbert Space 
o f states), (1) is equivalent to an identity o f the vacuum expectation values:

CPo,A1(x1) . . . . A n (xn)'?o) = [('f0,A 1( - x f . . . . A n( -x n)*¥0)]* (2)

o r  equivalently:

CPoAl(xi). . . .An (xn)'?0 ) = fr0,A„(-Xn). . . . A ,( -x ,)* 0). (3)

This redu ces the p rob lem  of determ ining whether a theory has PC T sym ­
m etry  to an exam ination o f its vacuum expectation values. If (3) or equi­
valently (2) holds fo r  a ll x i . . , .  xn,we say the n -fo ld  vacuum expectation 
value has P C T  sym m etry . On the other hand, from  the Lorentz invariance 
o f  the fie ld

U(a, A)A(x) Ufa.A)*1 =A (A x + a ) ,  (4)

the vacuum  expectation values satisfy

(^o, A i(A xi + a )------An (A x n + a )Y 0)= (5ro,A 1(x1 )------A n(xn)Y0). (5)

(Only invariance under restr icted  Lorentz transform ations det A = 1, 
sgn A°0 = 1, is  assu m ed .)

F rom  this and the sp ectra l condition it follow s that

( j A i(xx) . . . .  An (xn J'JJq )

= J  [ exp - i  E^pjfxj -  x .+1)] GA» - " Ao(p 1 , ------Pn-,)dP i -------dPn-i *

w here GAl‘ “ An vanishes fo r  px. . . . p n-i outside the physical spectrum  which 
m ust be in the future light cone. F rom  this in turn it fo llow s that there is 
an analytic function F A' " " An o f n-1 com plex from  vector  variables,

zj = (x j-  xj+i) - i  rjj (where j = 1, 2------n -1 ) ,

(7)

F Ai"  " An(z11 . . . .  z „ - ! ) = J [ ex p (-i E^Pj Zj)] GAl"  '■An(pi , ----- Pn-i)dPi--------dpnM,
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analytic in the tube, 3 n - i , which is  the set o f z1#. . .  z n-i fo r  which rjj £V +, 
the future light cone fo r  j = l , . . . .  n-1 and such that

(T0 lA 1(x1) . . . . A n ( x n)T0) = lim  F*1’ ' '  -A" ( z 1j . . .  . zn-, ) .  (8)

in V+

Ai AF  1 " i s  also Lorentz invariant

F ai A"(Zl..........znM) = F Al----A" (A zj, . . . .  A zn-i ) ,  (9)

which im p lies  that F Al— A" p o sse sse s  a single-va lued  continuation to the 
extended tube CJn-i. which con sists  o f all points o f the fo rm  A z j , . . . .  Azn-i 
with A  a com plex  L orentz transform ation  o f determinant one and

z i , . . . .  zn-i •

In particular,

F A- - - An(zlJ . . . . z n. 1) = F Al' - An(-Z i..........-Zn-i) (10)

at each point o f 3n-i . F inally, it should be rem em bered  that the extended
tube contains rea l points, the so -ca lle d  Jost points; is  a Jost
point i f  it is  rea l and E Xj is  sp a ce -lik e  fo r  all X j( j= 1 , . . .  .n -1 )  such that 

j=i

X > Ö and "e  Xs > 0. (H )
j=i J

PCT T heorem

If W (eak) L (oca l) C(om m utativity)

(T 0,A 1(x1) . . . . A ( x n)T0) = (S0>An ( x „ ) . . . . A 1(x1)y0 ) (12)

holds fo r  x i , . , . .  x n such that x j-x 2, . . . .  xn., -  x n fill  a rea l neighbourhood 
o f a Jost point, then (3) holds fo r  all X j,. . . .  xn sind the n -fo ld  vacuum expecta­
tion value has P C T  sym m etry .

C onversely , i f  the n -fo ld  vacuum expectation value has PCT sym m e­
try. then WLC holds in the neighbourhood o f every Jost point.

P roo f

If WLC holds in the neighbourhood o f the Jost point Xj-Xj ,  . . . .  xn-i -xn,
then

F*1 A" (zu ------znM) = f a" Al( - z „ . i -------- - Zl) (13)

in an open set o f rea l space. T h ere fore , the analytic functions on the le ft-
hand side and right-hand side co in cide  throughout C 7Vi, using the fact that
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two functions analytic in an open set o f com plex  space and coinciding on a 
rea l subset which is  open in the rea l subspace coincide everyw here.

Using (10), this says:

F A," " An(z1, ------zn. , )  = F An" " A,(zn_1........... Zl) (14)

throughout O n - f  (Note that if  z l t . . . .  zn_, is  a Jost point so is  - z nM. . . .  -z  
and if zx. . . .  znM g 0 n -ith e n  zn-i» < —  zi£ c7 n -i ') Passing to the boundary 
values with rjjeV t , one gets

A .j(x i) .. . .  An (x„ )Y0 ) = (¥0,A n ( - x n) . . . . A 1( -x 1)!?o) (15)

fo r  all Xj____x n,w hich is  PC T sym m etry.
C onversely , suppose (15) holds fo r  all X j.. . .  xn, then it holds fo r  a 

rea l neighbourhood o f a Jost point. Then (14) and (13) follow  at every rea l 
point of analyticity, and that is  exactly  W LC at every  Jost point.

Of cou rse , W LC is im plied  by LC:
[ Ai (x), Aj (y)] = [ Ai (x), Aj (y)*] = 0 (16)

It is  im portant in applications that the PCT operator o f an irredu cib le  set
o f fie ld s  is  essentia lly  uniquely determ ined [3],

If OjAj (x )© !1 = A j(-x )*

and ©2 Aj (x)© ^1 = A j(-x )* ,

then 0 20 1A j(x )© i1 0 J 1 = Aj (x) (17)

so by the irred u cib ility  of Aj (x),

0 20 j  = X l  . (18)

Now because (P C T )2 = 1, 0 2 = p 11. with | = 1. (A  p r io r i 0? need only be con ­
stant in each coherent subspace of states, i . e .  states not separated by super 
selection  ru les . But (17) im p lies  [0 2, A j(x )] = 0, so, by the irredu cib ility  
o f A j, 0 2 = If one had a m ore  com plicated  transform ation  law, say that 
fo r  appropriate tw o-com ponent sca la r  fie ld , it could be arranged to have 
[0 2, A j(x)]+ = 0, then one would have 0 2 = +1 on states obtained from  the 
vacuum by applying an even num ber o f Aja and -1  on those obtained by apply 
ing an odd num ber to the vacuum . In that case  ©2 generates a super s e le c ­
tion ru le. W hile these applications have an in terest of th eir  own they w ill 
not be pursued h e r e .) F or  anti-unitary op era tors  ©j = Axfl with |/u j = 1 im ­
p lies ju = ± 1. (0 (0 0 )  = 0 (/j 1) = (0 0 )0  = ß® so  ß is  rea l and th ere fore  = ±1); thus 
(18) im plies

0? = | X |2 0 2‘ 2

so | X |2 = 1 and 0 j and 0 2 d iffer only by a phase fa ctor . It is  custom ary to 
fix  this phase fa ctor  so  that
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0 *o  = *o • (19)

Then 0  is  unique. That the left-hand side of (19) must be proportional to 
the right fo llow s from  a com parison  o f the transform ation  law (4) o f Aj under 
U(a, A ) and (1) under 0 . One im m ediately deduces that 0 _1U(a, A )-1 0U(-a,A) 
com m utes with Aj so

u (a , A)U(a, A ) = 0 U (-a , A) 0 _1(where |u| = 1)>

and since the inhom ogeneous L orentz group p o sse sse s  no one-dim ensional 
representations, u = 1.

U(a, A) = 0 U (-a , A ) 0 _1 . (20)

Thus the energy m om entum  operator satisfies

P M = 0 P M 0 - 1  . (21)

The anti-unitary ch aracter of 0  is  essentia l here; if  0  w ere unitary, (21) 
would have a m inus sign and negative energy states would exist. Finally, (21) 
and the convention (19) im ply that ©Hf0 = T0 . The essentia l point is  that the 
a lgebraic structure o f the set o f fie ld  op era tors , as displayed in the sym m e­
tr ie s  o f their vacuum  expectation values, uniquely determ ines a 0 and a 
transform ation  law o f the fie ld s  under 0 .

The relation  o f 0  to scattering theory is  very  sim ple:

0 A in ( x ) 0 '1 = A 0Ut ( - x f  . (22)

This is  easy to see if  one has a theory  in which the sim ple form  of the 
asym ptotic condition is  valid.

A m(x) = A (x ) -J  A r  (x -y ) j  (y) dy ,

0 A i n ( x ) 0 ' 1 = A  A r ( x - y )  j ( - y )  dy

= A (-x )'"  -J "  A A(x -y ) j (y)*dy 

= Aout (-x )*
because

A a ( - x ) = A r (x ) .

(22) is  still true in the m ost general scattering theory we know where the 
corresp on d en ce  between Aj and A-n need not be one to one. This will be 
d iscu ssed  below .

It is  c lea r  from  (22) that 0  is  not the PCT operator fo r  Aout (x); by 
the PC T theorem  there m ust be another anti-unitary operator U satisfying
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UA,°Ut (x)U'1 =A°U‘ (-xf (23)
becau se A m is  lo ca l and the Aj" are irredu cib le , which we assum e for  the 
co llis ion  states to be com plete . Now we know a unitary operator, the S 
opera tor, which sa tisfies

Aout(x) = S_1Ain(x) S . (24)

By com paring (24), (23) and (22) and using the fam iliar argument above, we 
get: 0 ' 1 U = S. The co llis io n  operator is  the relative PCT transform ation 
o f the b a sic  fie ld s  Aj and the out fie lds A°ut . It is  c lea r  from  this that one 
can define a "re la tiv e  S op era tor" o f  two fie lds even when they do not satisfy 
the asym ptotic condition  Sab = ®A0b*.

1 .2 . THE TRANSITIVITY OF WLC AND LC; EQUIVALENCE CLASSES OF
LOCAL FIELDS [3]

One o f the m ost striking recent d iscov er ie s  in quantum field  theory 
was m ade by B orch ers . Roughly, it says (a) that if  A is  an irredu cib le  field  
which is  LC and B is  LC re la tive  to A, i. e.

[A (x), B (y) ] = 0 fo r  (x2 -y 2 ) < 0 , (25)

then B is  LC; and (b ) if  A is  irred u cib le  and is  LC and B and C are LC re la ­
tive to A then B is  LC rela tive  to C. This shows that lo ca l fie ld s  fall into
equivalence c la ss e s  (a lso  ca lled  B orch ers  classes),tw o  being equivalent if 
they are re la tive ly  lo ca l. S im ilar statem ents hold fo r  WLC. Finally, 
B orch ers  showed [3] that if  two fie ld s  lie  in the sam e equivalence c lass  and 
satisfy  the LSZ asym ptotic condition they have the sam e S operator. He 
a lso  shows that if  the fie ld s  are A and B, A ln = ± B in. This shows that in 
o rd er  to get th eories  with a n on -triv ia l S operator one must use fie lds  out­
side the equivalence c la ss  o f any fre e  fie ld . It should be em phasized that 
each m em ber of equivalence c la sse s  of fie ld s  acts in the sam e H ilbert space 
and has the sam e representation  o f the inhom ogeneous Lorentz group. Two 
fr e e  fie ld s  of different m ass are not com parable in this class ifica tion . It 
rem ains an open question whether there are B orch ers c la sses , other than 
those o f fr e e  fie lds , which have the sam e representation  as fre e  fie lds . Of 
cou rse , there is  nothing now known to prevent different B orch ers cla sses  
from  having the sam e S opera tor. In fact, this happens fo r  free  fields of 
the sam e m ass which are not lo ca l relative to one another. Incidentally, 
it should a lso  be em phasized that one can prove the required properties of 
the equivalence c la sse s  only by assum ing that there is  at least one ir r e ­
ducible fie ld  in the c la ss . Thus B and C loca l relative to A need not im ply 
B and C re la tive ly  lo ca l unless A is  irredu cib le .

*  The simple but interesting remark that the S operator is a relative PCT transformation was made by 
SYMANZIK [4], The relative S operator is definable even for models with a space-time containing a finite 
number o f  points [4a],



AXIOMATIC FIELD THEORY 17

B efore  the p roo f o f B o rch e rs ' resu lt, an exam ple o f a B orch ers c lass  
and an application o f h is th eorem s to prove the n on-ex isten ce of solutions 
o f certa in  th eories  w ill be  given.

E xam ple: the equivalence c la ss  o f an irred u cib le  fre e  neutral sca lar field

Denote the fie ld  A. Then DaA is  again a fie ld  (no longer s c a la r !) and 
LC with resp ect to A. H ere

DaA(x) = a1“ 1 A (x )/ (d x ° f ' l d(x1)a' . . .  .3 (x 3)"5, (26)

w here |a| = or0 + « j  + a 2 + a 3 . F urtherm ore, the W ick ordered  product 
: D “A (x)DßA(x) : is  again a fie ld  and LC  with resp ect to A . It is  defined 
by

(■) 00 (0 
lim  : Da A (x!) D01 A (x2 ) . . . .  Da A (x f) :

[e/23 r ( j2r)
= 2  (-1 ) E [D A(x, ) . . . . D “  A(xj )] 

r = 0 cr ti .
( kl )  <kl-2r)

• D“  A (xkl). . . . D“  A (xk ,. „ ) . ,  (27)

w here [ i /2 ]  is  the la rgest integer le s s  than 1/2. The sum ECr is  over all 
partitions of the in tegers St into two subsets j 1# . . . j2r and kt. . . .  k f .2r satisfying 
j j  < j j  . . . .  < j 2r and kj <k2 . . . .  k i - 2t . The Hafnian [ ....................] is  defined by:

' a0 »* 1 TT ' a(k*)D A (Xj1) . . .  . D A (xj?r) = E k n ^ 0,D “  A (x„s )
(k;)

K'l-k'r . j f A(Xk/)I0)

w here, here, the sum m ation is  over elLI partitions (kt, k { ) . . . .  (kr, ki) of
j r . ___jar in d isjoint subsets so  that ks <k^ ( s = l , . . .  r ). Thus the equivalence
c la ss  o f the fr e e  fie ld  m ust include all invariant W ick polynom ials o f the 
form :

E c na0 : E fA (x )D 8A(x):
n, a,ß

w here the in d ices  on the derivatives are sum m ed to give invariant com bina­
tions. F o r  exam ple,

l a >  : A (x )i: , : A ( x ) ^ -  A(x) :

SCHROER [5] has shown recen tly  that the invariant W ick polynom ials 
exhaust the equivalence c la ss  o f an irred u cib le  neutral sca lar fre e  fie ld  o f 
m ass m . An obvious p ossib ility ,

£  ff, : A (x)J 
j=i

(28)
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with aj decreasin g  very  fast with j, is  excluded because it describes a theory 
with an infinite num ber of subtractions*. This w ill be discussed in detail 
la ter.

The fact that the invariant W ick polynom ial in a fre e  field  and its de­
riva tives Were then the only known exam ples of lo ca l fie lds suggested to 
the author som e y ea rs  ago [7] that one should try to use them as currents,
i . e. to  look  fo r  lo ca l solutions of,

A(x) = Am (x) + J  A R(x -y ) j ( y )d y ,  (29)

w here j is  an invariant W ick polynom ial in a given fr e e  fie ld  .Pf0* (x). Ainis 
a lso  a fr e e  fie ld  but a p r io r i not in any way related  to Â 0) (x). EPSTEIN 
and the author have shown that there are no LC solutions in the special case 
j(x ) = g : A(o) (x)2 [7]. ARAKI, HAAG and SCHROER [8] pointed out that
when j is  irred u cib le , B orch ers  * resu lt enables one to give a very  much 
m ore  general and certa in ly  neater d iscussion .

T heorem  1

If " (D  + m 2 ) A(x) = j ( x ) ,  (30)

one o f A and j is  irred u cib le  and A is  LC, then A and j lie  in the sam e equi­
va lence c la ss .

If j is  an invariant W ick polynom ial in a fre e  fie ld  A ^and its derivatives 
and is  irred u cib le , S = 1. Furtherm ore, (29) has no non -triv ia l solutions 
unless j = 0 and A = Ain = A^°\

P roo f

The fir s t  statem ent is  an im m ediate consequence of B orchers* resu lt.
To obtain the second, note that first-d egree  W ick polynom ials in A ^  are in ­
adm issib le  in (29) becau se  their retarded potentials do not exist. Because 
o f the assum ed irred u cib ility  o f j and the assum ption that it is  an invariant 
polynom ial in A^0̂  and its  derivatives A, A(o> and j lie  in the sam e equivalence 
c la s s . (A  and A ^  are LC re la tive  to an irred u cib le  j . T herefore , A is  LC 
re la tive  to A(0). ) T h ere fo re , the " in "  fie ld s  associated  with A and A(°) c o ­
in cide up to a sign Ain (x) = ±A (°)(x ), and the B orch ers  theorem  im plies S = l .  
If A  w ere lo ca l, this would im ply

A °(x ) +J&R(x-y) j (y )dy  (31)

is  lo ca l which is  im p ossib le  as a d irect calculation shows. S ticklers for 
com pleteness can support this last step by the somewhat m ore  general state­
m ent [9],

*  The fact that (28) does not satisfy the ordinary axioms o f quantum field theory if  an infinite number 
o f  rfs ^  0 was pointed out by GLASER [6]. It is a freak that this statement is true in three-and four-di­
mensional but not in two-dimensional space-tim e where such expressions occur in the Thirring m odel. That 
operator guage tpansformations give rise to such "unrenormalizable fields" was emphasized by KALLEN[6].
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T h e o re m  2

If A  is  a n eu tra l s c a la r  f ie ld  o f  the fo r m

w h ere  A ^  is  a fr e e  f ie ld  and A  is  LC  then A  is  an in varian t W ick  p o lyn om ia l 
in  A ^  and its  d e r iv a t iv e s .

N ow le t  us c o n s id e r  the p r e c is e  statem ent o f  the B o r c h e r s  th eorem  
and its  p r o o f .  It c o m e s  in  fo u r  p a r ts , the f ir s t  tw o re la tin g  to  W L C  and the . 
se con d  tw o to  L C .

T h e o re m  3

L et A  and B be  n eu tra l s c a la r  f ie ld s  but not n e c e s s a r ily  L C . Suppose 
A  ir r e d u c ib le  and that A  s a t is f ie s  W L C . Then B s a t is f ie s  W LC  i f  the id en ­
t it ie s ,

s o m e  J ost point f o r  each  n = 0, 1 , . . .  and each  j ,  1 ■$ j n. F u rth e rm o re , 
the P C T  o p e ra to r  o f  B  c o in c id e s  w ith that o f  A  so  A  and B tog eth er  sa tis fy  
W L C .

P r o o f

A ssu m e  (33) h o ld s . B e ca u se  © is  a n ti-u n ita ry  one has:

T he id en titie s  (33) in  the n eigh bou rh ood  o f  a J ost point im p ly  the id en ­
tit ie s

(33)

( 0 $ ,  © B f z j e '1© ?) = [(<£, B (z)¥ )]*  = (¥, B(z)4>). (34)

In p a r t icu la r , (34) h o ld s  f o r  v e c t o r s  o f  the fo r m

fo r  w hich
0 $  = L

k
d*x i ------- d x k( f k ( x 1, . . . .  XU) ) * A ( - X j ) ---------A ( - x k )¥0
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(¥0, A (x j)------ A (x j) B (y) A (x j+I)------- A (x n )¥0 )

= (*o . A ( -Xn )------ A ( -x j+1) B (-y )  A (-X j) ---- A (-X j) T0 ) (36)

f o r  a ll X j . . . .  x n and y . (T he argum ent is  that u sed  in the p r o o f  o f  the P C T  
t h e o r e m .) Thus,

(¥,B(z)d>) = E ------ dxk • [g { ( y i , ------- y { )]*

• f k (x j------ x k) (^0, A (y 0 )------- A (y j) B (z ) A (x x)--------A (x k) <j/0 )

= 0X1--dXk dyi--dY{ fk (Xl’ ----- ^

’  [gc ( y i . ------ y„ )1*(¥0, A ( - x k)-------A ( -x x) B ( - z )  A ( -y x) --------A ( -y { )¥0)

= ( 0 O , B ( - z ) 0 Y ) .  (37)|

S ince by  assu m ption  s ta tes  o f  the fo r m  (35 ) a re  den se  in 'Ä ,  (37) im p lie s

0 B ( z ) 0 ‘ 1 = B ( - z ) ;  (38)j

i .  e . B  has a P C T  o p e ra to r  w hich  is  the sa m e  as that o f  A . T h is  im p lie s  
the sta tem en ts o f  the th e o re m .

It is  w orth  noting that the la st statem ent o f  the th e o re m  is  equ ivalent 
to  the lio n -tr iv ia l r e su lt  that the id en tities  (33) lin e a r  in  B im p ly  the an a lo­
gou s id en titie s  with an a rb itra ry  n um ber o f  B 's .  W hen the id en titie s  (33) 
h old , w e  sa y , B  is  w eakly  lo c a l  re la t iv e  to  A; o r  is  W LC  re la t iv e  to  A .

T h e o re m  4

Suppose A , B and C a re  W LC  and A  is  ir r e d u c ib le . L et B b e  W LC  r e l ­
a tive  to  A  and C be  W LC  re la t iv e  to  A , then B is  W LC  r e la t iv e  to  C.

P r o o f

B y th e o re m  (3), A , B and C a ll have the sa m e  P C T  o p e ra to r , say  0 , 
w hich  im p lie s  im m ed ia te ly  B is  W LC  r e la t iv e  to  C . In fa ct , it im p lie s  that 
A , B and C a ltogeth er a re  W L C .

T h e o re m s  3 and 4 tog e th er  esta b lish  a kind o f  w eakened tra n s it iv ity  
f o r  W L C . R e c a ll  that a r e la t io n  r  is  tra n s it iv e  i f  a r  b and b r  c im p lie s  
a r c .

T h e o re m  5

If A  is  LC  and ir r e d u c ib le  and B is  LC  re la t iv e  to A , i .  e.

[A (x ), B (y )] = 0
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f o r  s p a c e - l ik e  x -y , then B is  L C .
T h is  th e o re m  is  a s p e c ia l c a s e  o f  the fo llo w in g  (take B = C).

T h e o re m  6

If A  is  LC  and ir r e d u c ib le  and B and C a re  each  LC  r e la t iv e  to  A ,then  
B  is  LC  re la t iv e  to C; i. e.

[B (x ), C (y)] = 0

fo r  s p a c e - l ik e  x -y .

P r o o f

B y T h e o re m  4, A , B and C a re  tog e th er  'W LC . F ro m  th is and the a s ­
sum ptions o f the th e o re m  one gets  f o r  any x 1#. . .  x n, y ls y 2 such  that the set 
o f  s u c c e s s iv e  d if fe re n ce  v e c to r s  ( x j - x ^  X j^ -X j, x j - y rj y j - y 2 , y 2 -X j+lJ . .  . .  
xn .j-x,, is  a J ost point

(? 0, A (Xl). . . . A (x j) B (y i ) C (y2 ) A (x j+ i). . . . A (x „ ) \  )

= (* o - A (x n)- - • A (x j+i ) C (y2 ) B (y j) A (x j)---------A (x j) f 0 )

= ( f 0, A (X l)------ A (x j)C (y 2 )B (y i)  A (x j+1)--------A (x n )¥ 0 ) (39)

(the f ir s t  step  by  W L C ; the se con d  by  assu m ption ).
N ow  the f ir s t  and th ird  e x p re s s io n s  in  (39) a re  bou ndary  va lu es  o f  ana­

ly t ic  fu n ction s , bein g  •

lim  F( )([x1-x 2 -iT)i].......... [ X j^ -X j- ir j j . , ] ,  [ X j-y ^ ir jj] ,
TJj---TJ" -*• 0

ln V+

[y i -y 2 - i ^ h  [y2 -X j+ i- ir j '] , [x j+ i-x j+ j- in j+ i]------

[x n -i-x n -illn -j)
and (2)lim  F  ( [ x i - x a - i r j j ] , ------ [ (x j-y i - ir j j )  + ( y j -y 2 - in ') ]  *

in V+

-  [y i -y 2 + i n '] ,  U y i-y 2 ) -  in ' + (y2 -X j+ ,- in ') ] ------[xn- i -x n -in n -J ),

r e s p e c t iv e ly . F o r  the next step  in  the argum ent we u se  not the fu nctions 
F ^  and F ^ b u t  tw o fu n ction s  d e r iv e d  fr o m  th em  by  settin g  1 7 ^ = 0  and sm ea r  
in g  in  (y j -y 2) with a test fu nction  <p w h ere  su p p ort c o n s is ts  e n tire ly  o f  sp a ce  
lik e  v e c to r s  f (i) = /q>(yi.-y2 ) d (y i -y 2 ) Fi ( . . . ,  y i - y 2, . . . ). T he f (i) a re  then ana­
ly t ic  in ^ n  in  the v a r ia b le s  X !-x 2 - i r j j , ------ [ x j - y i - i r j ] , . . . .  [y2 -X j+1- i r j" ] --------
x n -i-x n -irjn-i* and th e r e fo r e  the sa m e  is  tru e  o f f  = r  -  f^2̂ . F u rth e rm o re , 
the bou ndary  va lu e  o f  f  va n ish es  in an open  se t o f r e a l v e c to r s , at le a s t  i f
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the su pport o f  cp i s  su ffic ien tly  sm a ll. (T h is  Statem ent is  obta ined  by sm ea  
in g  (39) w ith cp in the v a r ia b le  y i - y 2 . )

T h is  van ish ing o f f ' s boundary va lu es  im p lie s  that f j - f 2 va n ish es  id en ­
t ica lly , s o  the f ir s t  and th ird  e x p re s s io n s  in (39) a re  equal fo r  a ll x x. . . .  Xn 
when y j - y 2 is  s p a c e - l ik e ; thus

[B (y !), C (y2 )] = 0 fo r  ( y ! -y 2 )2 < 0 .

T he fa c t  that f '  s boundary va lu es van ish in g  in an open set im p lie s  f  = 0 
is  a gen era liza tion  o f  a la r g e  c la s s  o f  th e o re m s  in one co m p le x  v a r ia b le  
o f w hich  the T h e o re m  o f the B ro th e rs  R ie s z is  ty p ica l: le t f (z )  be  analytic 
in  the unit d is c  | z | = 1 and continuous on | z | = 1. If f (z )  = 0 fo r  | z | = 1 and 
a rg  z in  an open in terva l, then f  = 0 throughout the c lo s e d  unit d is c  [44]. If 
one tak es the "E d g e  o f  the w ed g e" th eorem  [10] fo r  g ran ted ,on e has an easy 
p r o o f . fffp.Zj. . .  . Zn ) is  an a lytic in *Jn , [f(<p, zt. . .  . zn ]* in -  7̂n>their boundary 
v a lu es  c o in c id e  in  an open  set S o f r e a l sp a ce  (and a re  z e r o ! ) and th e re fo re  
f(z )  is  analytic th e r e . S ince the value in S is  z e r o , f  = 0 . T h is  im p lie s  tha 
the identity  g iven  by  equating the f ir s t  and th ird  e x p re s s io n s  in (39) is  va lid  
fo r  a ll s p a c e - l ik e  y i - y 2 and a ll x x. . . . x n. S ince A  is  ir r e d u c ib le , th is  m ear 
that B is  LC  r e la t iv e  to  C.

N ow le t  u s  exam ine the question  o f the equality  o f the S op e ra to r  fo r  
d iffe ren t f ie ld s . B o r c h e r s  g iv e s  us the s im p le  c r ite r io n .

T h e o re m  7

L et A  be  L C  and ir r e d u c ib le  and the sam e fo r  B . Suppose

Aia = B in (40)

and the in  f ie ld s  a re  ir r e d u c ib le . Then the S -o p e ra to r  o f the tw o th e o r ie s  
is  the sa m e  i f  A  and B a re  tog e th er  W L C .

R em a rk s

T he th e o re m  has b een  stated  as though th ere  w e re  a s in g le  " in "  fie ld  in 
each  th e o ry . T h is  is  by no m ean s n e c e s s a r ily  so , as w ill be  seen  fr o m  the
p r o o f. What is  assu m ed  is  that the set o f  " in "  f ie ld s  f o r  the tw o th e o r ie s
co in c id e  and a re  d eterm in ed  by A  and B in  su ch  a way that (41) and (42) b e ­
lo w  hold .

P r o o f

Suppose A  and B a re  tog eth er  W LC ; then by the P C T  th eorem  both have 
the sa m e  P C T  o p e ra to r  © . Then

0A in ( x ) 0 - i  = Aout ( -x )  (41)

0 B in ( x ) 0 _1 = B°ut ( -x )  (42)



so  = Bin im p lie s  Aout = B outand th e r e fo r e  SaSb1 com m u tes  with Ain,w h ich  
im p lie s  Sa = Sb (s in ce  we n o rm a liz e  SAiP0 = S bT0 = ¥0 ).

C o n v e rse ly , suppose

B out = S _1 B inS = S_1 Ain S = A°ut . (43)

S ince A  and B a re  L C ,th ey  have P C T  o p e ra to rs  ©a and 0B« r e s p e c t iv e ly . Now 
0A and ©b a re  uniquely d eterm in ed  by Ain and Aout and B lnand B outv ia  the r e ­
la t ion s

e AÄ n ( x ) ® ^  = Aout ( -x )

® B  B in  ( x ) ® B  1 =  B out(-x )

(the argum ent is  a lw ays the sam e: a ssu m e tw o ©a and ©a , say; then p ro v e
0 A 0A com m u tes  with A in). T h e r e fo r e , by (43), ©a = © b  , and A  and B are
tog eth er  W L C .

One can, o f c o u r s e , m ake th is th e o re m  "c o v a r ia n t " . A ssu m e instead  
o f  (40) that

Ain = R Bln R '1, RW0 = ¥0 (d ed u cib le  as u su a l); (44)

then in o rd e r  that the th eory  o f A  and B shou ld  p re d ic t  the sam e re su lts  
f o r  c o ll is io n  one wants

SA = R SB R _1 . (45)
b e ca u se  then

Aout = SÄ1 Ain SA and B?ut = Se^B^Sg (46)
a re  con s is ten t with

Aout = R B out R _1 (47)

and the S m a tr ix  e lem en ts  a re  the sam e in the tw o th e o r ie s :

(A in(X l)........Ain (X j)T0, SA Ain(x j+1). . .  . Ain(x n)¥0 )

= ( B ^ f x ^ .^ . E '^ x p T o ^ B B 1̂ ^ , , ) . . . ^ ^ ) ^ ) .  (48)

w hich  is  what is  m eant b y  p re d ic t in g  the sam e re s u lts  fo r  c o ll is io n s .
Under assum ption (44) one has m ere ly  to  rep lace  B by R _1BR in Theo­

rem  7 to get the appropriate cr iter ion . The covariant form  of T heorem  7 
th ere fore  reads: (45) fo llow s if  A  and R^1 BRjn have the sam e PCT operator 
w here Ain = Rin Bin Rft1. This is  not the situation in p ractice  which may be
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d escr ib ed  as fo llow s: Let

0Ain (x) 0 ' 1 = Aout (-x ); 0 B in(x) 0 ' 1 = B out(-x). (48a)

s ; 1 Ain (x) SA = /eut (x); Sb1 B in(x) SB = Bout(x) (48b)

Rin Ain (x) R jn = Bin(x); R ^ t Aout(x) R0Ut = Bout(x). (48c)
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F rom  (48a) and (48b)

SA ©Ain (x) 0 ' 1 SÄ1 = Ain (-x ),

and th ere fore

[(S .© )2 , Ain (x)] = 0;JAV

so, by the usual argum ent,

©■Sa O ' ^ s; 1, (48d)

and sim ila r ly

0  Sß©"1 = Sg1 . (48e)

(This is  the PCT sym m etry  o f the S o p e r a to r .) F rom  (48a) and (48c),

© R-n* Ain (x) R .n0  -1 = R -lt © ^n (x) 0  -1 R -1 ,

and so

R o u t ^ R in © '1 • <48f)

F rom  (48b) and (48c)

Sb 1 Rfn1 Ain (x) R in SB = R j i  S'A 1 An (x) SA RoUt;

so

R 0ut = s ;1 Rin %  - (48g)

Thus

SB =Rin1SA( 0 R in© -1) .  (48h)

The resu lts  (48d) to (48h) fo llow  from  (48a), (48b) and (48c). C onversely, 
i f  © Ain (x) 0 _1 = Aout (-x ) and SA sa tisfies  (48d), one can define Rout by (48f) 
and Sb by (48h); and then (48a), (48b) and (48c) w ill be satisfied  fo r  any uni­
tary  Rin that com m utes with U(a, A ). T his shows that to get [0 , R in] = 0 and 
th ere fore  the physica l equivalence (48) o f the op era tors  SA and Sb, one must 
use m ore  details of the relationship  between A, B, A1̂  t, B ^  and 0 . How 
this w orks out fo r  the H aag-R uelle co llis ion  theory w ill be d iscussed  later.

T he rem a in in g  step  in B o r c h e r s 1 th e o ry  is  as fo llo w s :

T h e o re m  8

L et A  and B be  LC  and A  be  ir r e d u c ib le . Suppose B is  LC  r e la t iv e  to  
A . Then i f  A  and B have a sym p totic  f ie ld s  o f the sa m e  m a s s , Bln = ± A ln.
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The p r o o f  as it stands in  h is  p a p er u s e s  the L S Z  a sym p totic  con d ition  
and w ill not b e  re p ro d u ce d  h e re .

1. 3. GENERALIZED FREE FIELDS AND THE SUPPORT PROPERTIES OF 
FIELDS IN MOMENTUM SPACE

In an effort to get out of the B orch ers  c la ss  o f the free  fie ld , GREEN­
BERG introduced the notion o f generalized  fr e e  fie ld  as any fie ld  A fo r  which 
the com m utator is  a c-n u m ber [11]. The standard spectra l representation  
then gives

[A (x ),A (y )] = J d ^ (a ) (1 /i )  A a(x -y ). (49)

It turns out that all the vacuum  expectation values o f a generalized  fre e  field  
are obtained from  those o f a fre e  fie ld  of m ass m by rep lacing  the free  p ro ­
pagator iAm* (x) by (1/i)/d/Li(a) A a(x). Although generalized  fre e  fie lds  are 
ph ysica lly  ra th er uninteresting, they illustrate  a num ber of points o f p r in c i­
p le . F o r  exam ple, a gen era lized  fr e e  fie ld  m ay be irred u cib le  and its "in" 
and "ou t" fie ld s  ex ist accord in g  to LSZ p rescrip tion s , but the "in " and "out" 
fie ld s  need not be irred u cib le . This m akes evident a com plication  already 
m entioned b e fo re . The B orch ers  c la ss e s  are not str ictly  equivalence c la sses  
unless one re s tr ic ts  o n e 's  attention to irred u cib le  fie ld s . Com pare the r e ­
sult o f S chroer alluded to just b e fo re  equation (28) with that of G reenberg 
just quoted. One says that all elem ents o f the equivalence c la sse s  o f an i r ­
red u cib le  fr e e  fie ld  o f  m ass m  are of the fo rm  (27); the other says that a 
redu cib le  fr e e  fie ld  can have a gen era lized  fr e e  fie ld  in its  equivalence class 
and that gen era lized  fre e  fie ld  need not be o f the form  (27). When a gen­
era lized  fr e e  fie ld  has an " in "  fie ld , it is  LC relative to it so  one does not 
get a new B orch ers  c la ss  except in pathological ca ses  where no "in " fie lds 
exist.

t A principal reason  fo r  d iscu ssing  generalized  fre e  fie lds is  that a num­
b er  o f elegant cr ite r ia  have been given which guarantee that a field  is a gen­
era lized  fr e e  fie ld . This gives som e idea o f what to avoid in trying to 
make a n on -triv ia l theory.

T heorem  9 [12, 13, 14]

If A is  LC and is  irred u cib le  and

[A(x), A (y)] = B (x -y )

(B m ay be an operator but m ust depend on x -y  and not x + y), then A is  a 
genera lized  fr e e  fie ld .
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C onsider

[B (x -y ), A (z)] [A (x+5), A (y+ ?)], A (z)

which holds fo r  all £.
By the Jacobi identity it is

[A(y + I ) ,  A (z)], A(x + ?) [A (z), A(x + f )], A ( y + 5 ) j

F or su fficiently  large  sp a ce -lik e  ? this vanishes, so

[B (x -y ), A (z)] = 0 »

and by the irred u cib ility  of A, B must be a constant m ultiple of the identity 
operator so A is  a genera lized  fre e  field .

The second  kind o f cr ite r ion  fo r  a fie ld  to be a generalized free  field  
re la tes  to the support o f the fie ld  in momentum space, i. e. the points of the 
spectrum  o f A (p ) = f e ip'x A (x)dx. (This should not be confused with the 
spectrum  o f physica l states,w ith which it is  only indirectly  con n ected .)

• There is another proof of Theorem 9 by J. Katzin [13a] which is about as neat as that by Licht and 
Toll. It goes as follows. Because the commutator is by assumption translation invariant

U(a)[A(x), A(y)] Ufa)'1 = [A(x). A(y)].

Then

U(a)[A(x).A(y)]*0 = [A(x). A(y)]*0 

and therefore by the uniqueness of the vacuum

[A(x), A(yB*0 = b(x-y)*0

where b is a c number.
But then

(4'0lA(x1)...A(Xj)([A(x),A(y)] - b(x -  y)] A(xj+, ) . . .  A(x„) +„ = 0

for all Jost points in the successive differences f(x1...xjxyxj+i...x n) and so by analytic continuation for all 
X j . . . X n .

Therefore

[A(x),A(y)] = b(x-y)
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T heorem  10 [12, 15, 16*]

^  Let A be LC and have the vacuum  as cy c lic  v e cto r . If the spectrum  of 
A  om its an open set o f sp a ce -lik e  p, then A is  a generalized  fre e  fie ld . Two 
lo ca l fie ld s  w hose F ou rier  tran sform s agree on such a set d iffer  only by a 
generalized  fr e e  fie ld  in their B orch ers  c la ss .

The resu lts  of Robinson and G reenberg  have been quoted. Other cases 
are con sidered  by G reenberg and D ell'A nton io. F or exam ple, it is  shown 
that, i f  the spectra l weight of the 2 -fo ld  vacuum  expectation value vanishes 
above som e m a ss , then the fie ld  is  a generalized  fre e  fie ld . The proofs 
involve a system atic use either of the Dyson representation  or holom orphy 
envelope calcu lations. Since these techniques w ill not be explained here, 
the p roo fs  w ill a lso  not be given.

It is  worth noting that, unlike the case  in Theorem  2, sm eared p o ly ­
nom ials in generalized  fr e e  fie ld  op era tors  can be LC [11].

1 .4 . THE CLUSTER DECOMPOSITION PRO PERTY

Given a vacuum  expectation value,

<A(xt )------A (xj)A (xj+1+ a)------- A (xn + a) >0 ,

one would expect that, if  a -> oo  in a sp a ce -lik e  d irection , it should approach

<A (xj)------A (x j) >0 <A (xj+i)------- A (xn) >o •

This can in fact be proved  under appropriate assum ptions and is an example 
o f a clu ster decom position  p rop erty . M ore refined statements can be ob ­
tained in which the xx. . . .  x n are divided into k clu sters  which are then 
allow ed to separate.

The sign ifican ce  o f c lu ster decom position  prop erties  fo r  the theory of 
co llis io n s  was fir s t  em phasized by HAAG [17], and one of the m ost significant 
developm ents m entioned here is  the work by RUELLE [18]« which puts Haag's 
argum ents on a r igorou s  m athem atical foundation. R u elle 's  resu lts are 
based on a p ro o f that a very  refined  form  o f the c lu ster decom position  prop ­
erty  can holds in any th eory  of lo ca l fie ld s  in which the vacuum is cy c lic . 
B e fore  going into detail, I shall g ive two neat resu lts which show the power 
o f the m ethod. Of cou rse , the requ ired c lu ster  decom position  properties 
w ill be assum ed h ere .

T heorem  11 [19]

Let A and B be two fie ld s  which satisfy

U(a, 1) A (x)U _1 (a, 1) = A(x +a) ,
(50)

U (a ,l) B (x) U_1(a, l )  = B (x+  a) ,

*  Borchers has obtained a number o f  the same results independently.
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but not n ecessa r ily  LC. (They could be com ponents of gen era lsp in or fie ld s .) 
Suppose

[A(x), B (y)]± = 0 = [A(x), B *(y)], (51)

hold fo r  all sp a ce -lik e  x -y .
Then either A(cp)T0 = 0 = A((p)* T0 o r  B(tp) T0 = 0 = B ((p )T 0 fo r  all test 

functions <p. If A sind B together have T0 as a cy c lic  vector  and belong to 
som e sets o f op era tors  which tran sform  under hom ogeneous Lorentz tran s­
form ation  like sp in ors, then either A = 0 o r  B = 0.

P ro o f

Let cp and 4* be  any two test functions o f com pact support whose supports 
are sp a ce -lik e  with resp ect to one another. Taking

A(<p) = /dxcp(x) A (x), B(ip) = !dyip (y) B(y) ,
then

11 B (i0) A(<p)* T0 112 = (T0, A(<p) B «0 *  B (*) A(q>)* T0)

= - (T0, B «/)*  B (*) A(q>) A(<p)* T0) . (52)

If we let the support o f <p run o ff in a sp a ce -lik e  d irection , the last exp res­
sion  con verges  to

-  (T0, B « /)*  B (* )I0) (T0, A(q>) A(q>)* T0)

by the clu ster  decom position  property . (This p roves incidentally that the 
left-hand side a lso  c o n v e r g e s .) But (T0, B (^)B (^)*T0) and (T0, A(cp)A(<p)*T0) 
a re  non-negative, so either

A(q>)*T0 = 0 or B(tf)T0 = 0 .

A p re c ise ly  s im ila r  argum ent starting from  | iBO^Afcp)* ||* y ields

A(cp)* T0 = 0 o r  B t y f  T0 = 0 .

F inally, starting from  the adjoint o f the relations (51), one has the same 
statem ents with A(q>)* rep laced  by A(cp). Thus either

A(cp)*T0 = 0 = A(q>)T0 o r  B « /)*  T0 = 0 = B (<P)\ . (53)

The last statem ent o f the theorem  is  based on an argument which is, 
by now, standard. Look  at an arb itrary  vacuum  expectation value:

(*o ..........A (x ) . . . .  B (y ) .. . .  T0) (54)

If all argum ents are taken as sp a ce -lik e  and the firs t  o f the alternatives 
(53) h olds, take the farthest A o r  A* to the right and m ove it through B 's  and 
B * 's  until it hits T0; conclude that (54) vanishes fo r  such sp ace -lik e  sepa-
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ra tors . But the hypothesis on the transform ation  law of the A 's  and B 's  
guarantees that the vacuum  expectation values are analytic at Jost points, 
so the preced in g  argument shows all vacuum  expectation values containing 
an A o r  an A* are ze ro . T h ere fore  A = 0.

This argument o f D e ll1 Antonio actually firs t  o ccu rs  in a slightly d iffe r ­
ent connection  in a paper by ARAKI [20]* in which he d iscu sses  the possib le  
com m utation rela tion s o f d ifferent fie ld s  and shows that a theory with anom­
alous com m utation re la tion s, distinct integer spin fie ld s  anti-com m uting 
o r  h a lf-od d -in teger  spin fie ld s  com m uting o r  integer spin fie lds a n ti-com ­
muting with h a lf-od d -in teger spin fie ld s , is  always physically  equivalent to 
one with norm al com m utation relations (all integer spin fie ld s  com m ute with 
each other and all half-odd-integer spin fie ld s , all half-odd-integer spin fie lds 
anti-com m ute). These two papers together with the orig inal BURGOYNE 
[21], LÜDERS-ZUM INO [22] p ro o f bring the theorem  of the connection of 
spin with sta tistics  to a dazzling polish .

A s a second  application of the clu ster  decom position  property , an ex ­
am ple o f SUDARSHAN and BARDACKI [23] in which it is  v iolated  w ill be 
d iscu ssed .

C onsider two th eories  o f a neutral sca la r  fie ld  labelled  respective ly  by 
1 and 2: H ilbert sp aces  ' i t i , vacua , representations o f the Lorentz group 
Uj(a, A ), fie ld s  A j(x ). F orm  a new theory  with H ilbert space © ^ 2 
representations o f the L orentz group Ux ® U2 and fie ld  A = Aj © A2 . ’ In 
th is theory, the state v e c to rs  are pa irs  (T j, ¥2 ) with the sca la r  product,

( ( ^ 2} , { * 1 , <t>2})  = (? i.® i) + (*2.® 2 ) .

C learly , there is  a tw o-dim ensional subspace o f the H ilbert space
each o f whose v e c to rs  is  left invariant by the representation  of the Lorentz
group:

(U j(a,A ) © U2 (a, A )) (a {T01, 0} + ß [ 0, Hf02})

= a (T 01, 0 }  + /3{0,¥02} ,

which show s a grave defect o f this theory ; the vacuum ought to be unique. 
How does one recog n ize  th is defect in the vacuum expectation values? Pick 
a particu lar vacuum , say = \[a [T01, 0] + -J 1-or [0, T,^}, 0-$ a  <  1, and 
com pute

(T(a), A (Xl) . . . .  A (x n) ^ a)) = a (¥01, A f a ) . . . .  A jfxn) \ )

+ (1 -a )  (¥„2, A2 (x1) . . . . A 2 (x „ )T 02) , (55)

This just g ives the prop osa l o f Sudarshan and B ardacki: one takes two theo­
r ie s  and fo rm s  a new one whose vacuum  expectation values are convex linear

*  Note that Araki does not show that the normal case is physically equivalent to the abnormal case, 
but rather that the abnormal case is necessarily very restricted. By virtue o f  its abnormal commutation re­
lation it must have selection rules which in turn yield the result that it is physically equivalent to a normal 
case with the same selection rules.



30 A. WIGHTMAN

com binations o f the vacuum  expectation values o f the two th eories . But (55) 
does not have the clu ster  decom position  property even if the th eories of Aj 
and A2 do because

(¥(a), A (Xl) . . . .  A (x j) A (xj+1+ a ) . . . .  A (x„+  a )* '“ ’ )

= a (*oi» A i(x i ) ------A j(x j) A1(x j+,+ a )-------A^xn + a ) ^ )

+ (l-or)(^ 02 » A2 (xx)------A2 (x j) A2 (xj+1 + a)-------A2 (xn + a ) ^  )

-» ff(1F01, A j(Xl)------AjfxjJUfjn) (¥01, A jfxj+j)------- AjtxnJfm)

+ (1 - a ) (¥02 , A2 (x j). . . .  A2 (x j) Tq2 ) (*o2 > A 2 (xj+i )• • • • A2 (xn) Yq2 ),

w hereas it ought to approach

(¥(a), A(Xl). . . . A (Xj)¥(a)) (y (a),A (x j41). . . . A fx ,,)?00 )

= [a (* 01, A ^ x j)------A 1(x j)5f01)+  (1 -a )  (Hf^, A2 (xj)-------A2 (xj )5f02)]

• [o' (*0i, A jfx j+ j) . . . .  A jfxn) ¥01) + ( l - o : ) (5^  > A 2 (x j+i)* • • • A2 (xn) ) ] .

Equating these two and assum ing that som e at least o f the vacuum expecta­
tion values are n on -zero , one finds a  = 0 o r  1; i. e. the only th eories of 
this kind with clu ster  decom position  property  are the orig inal constituents.
Of cou rse , there are other things wrong with these m odels but the funda­
m ental trouble  is  the non-uniqueness o f the vacuum as was fir s t  shown by 
H E PP, JOST, RUELLE and STEINMANN [24], A ctually, BORCHERS [25] 
has shown that the c lu ster  decom position  property  is  not only n ecessary  
but sufficient fo r  the uniqueness o f the vacuum , if  there is  at least one cy c lic  
vacuum . This point w ill be  d iscu ssed  further in the next section.

A th ird  application o f the clu ster  decom position  property  com es about 
as fo llow s. The author con s id ers  that finding n on -triv ia l exam ples o f in ­
ternally  consistent fie ld  th eor ies  is  one o f the m ost im portant p rob lem s of 
the subject at the present m om ent. One approach to this problem  which 
might be attempted is  to s im plify  it m athem atically without losin g  its essen ­
tia l nature. F or  exam ple, suppose one assum es that U contains only the 
vacuum  and one irred u cib le  representation . Can one find lo ca l fie lds  which 
tran sform  accord in g  to  (4)? The answer is  no, i f  Y0 is  cy c lic :

T heorem  12 [26]

In a theory  o f a neutral sca la r  fie ld  with cy c lic  vacuum , the physical 
spectrum  m ust be additive.

R em ark

A point p lie s  in the physica l spectrum  if  fo r  each open set W o f four 
m om enta containing p there is  a n on -zero  vecto r  whose energy momentum
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spectrum  lie s  in W. That the spectrum  is  additive m eans pj in the spectrum , 
and p2 in the spectrum  im plies  pt + p2 in the spectrum .

P ro o f

Let Sj be an open neighbourhood o f pi and S2 an open neighbourhood of 
p2 . The f ir s t  step in the p roo f con sists  in choosing fie ld  operators B^x) 
and B2 (x ) satisfying

U(a, 1) B i(x) U-1(a, 1) .= B t(x + a) (56)

and test functions cpj which have F ou rier  tran sform s with supports in Sj and 
S2 such that

B i (9 i ) * o =/= 0 and B 2 (cft>) ¥0 =/= 0 • (57)

It fo llow s from  (56) that the energy mom entum spectra  of these vectors  are 
in S]̂  and S2. resp ective ly . (Note that U(a, l)B j(q)j)'?0 = Bj( [a , 1] cpj) where 
([a , l]cpj)(x) = cpj(x-a), so a mom entum analysis o f the v ector  is  equivalent 
to a m om entum  analysis o f tpj. )

To get the requ ired  B 's , ch oose  open neighbourhoods Tj and T2 of pj 
and p2. resp ective ly , such that the c lo su re s  ^  and T2 satisfy Tj^C S j/I^ C  52- 
Let Ä TJ be the c losed  subspace o f consisting  o f all v e cto rs  whose sp ec­
trum  lie s  in T j . Then because T0 is  cy c lic  there exist v ectors  o f the form

L ____ xn) A (x1) . . . .  A (x „ ) dx1#. . .  d x n T0 (58)

which are resp ective ly  not orthogonal to Ä f j .
Define

Bj (x) = E fnj ( x - x i , ------x - x n)A (x j) ------- A (x „)d x x------- dxn. (59)

Then c lea r ly  (56) holds. (Quantities o f the form  (59) are called  alm ost loca l 
fie ld s  by Haag. ) Let qTj have a support in Sj that includes T j. Then Bj(cpj)T0 
^ 0 fo r  som e such <Pjj otherw ise (58) would be orthogonal t o /6  f . . Thus 
the requ ired  Bj(q>j)Y0 =£ 0 can be constructed .

Now con sid er the v e cto rs

Bi(<Pi) U(a, 1) B2 (cp2 ) *0 •

T heir support m ust lie  in Sj + S2 by the sam e argument as b e fore . Can 
they vanish fo r  all a ? To prove  not, assum e the contrary:

0 =  I |B1(cp1)U (a, l ) B 2 (<p,)?0 ||2

= <B2 (< fe )*U (a ,l)*B 1(q>1)* B 1((p1)U (a , l )B 2((p2)>o (60)

Now apply the clu ster decom position  property in a stronger form  than b e ­
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fo re . It is  a sserted  and w ill be d iscu ssed  in detail later that, as a -» «  in 
a sp a ce -lik e  d irection , (60) con verges to

0*2 (<P2 )’" ^2  ( ^  ) /to \Bi(cPi)  ̂Bi(<Pi) »

so  either B2 (cp2 ) * 0 = 0 o r  = 0 is  a contradiction . T h ere fore , P1 +P2
l ie s  in the spectru m .

To get a neat statement o f the requ ired  c lu ster decom position  property 
it is  advisib le to introduce the notion of the truncated part of a vacuum ex ­
pectation value [27]. This is  defined by induction:

<A(x) >0 = <A(x) >OT ,

C A (x i)A (x 2-)^o = \ A (x j)  A (x 2 ))>qj. +  xAtxjJ^Qrj. \ A (x 2 )̂ >0j  ,

^A(xx) A(x2 ) A (x3))>0 = ^A(xx) A(x2 ) A (x3))>0r + \A(xj)A (x2 ))>0T \A(x3))>0fr 

+ <A(xj) A (x3)>ot <A(x2 )>ot + \A(x2 ) A(x3)>0T (A fx ^ o x  

+ <A(xj)>ot \A(x2 )^it \A(x3)>ot * (61)

o r  generally

<\A(x1) . . . .  A (xn )^q = 2  \A(xj )̂ >crr » (62)

w here the sum is  overa ll partitions o f 1 . . .  n into non-em pty subsets and 
the product is  over  the truncated vacuum expectation values of the subsets,
all x 's  occu rr in g  in the subsets in the ord er  they occu r in 1 . . .  n. The
definition  w orks both fo r  the alm ost lo ca l fie ld s  defined by (59) and fo r  the 
fie ld  A.

The truncated part calcu lated  in perturbation theory is  just the sum of 
all connected d iagram s. The various c lu ster decom position  properties  can 
be stated thus: the truncated parts go to ze ro  as their arguments separate 
(under variou s conditions).

The actual calcu lation  fo r  (60) is  the follow ing:

<B2 (cp2 'Y' B i({ -  a, 1} cpi) B i({ - a, 1} cpi) B2 (q  ̂)/>o

= ( B j f o  ) -  B 1 ((-a ,l}cp 1r  B j({-a , 1 jtpj) B2 (cfe ) \ T 

+ 0 3 2 (<P2 )^ o t  \ B i(["a» l ] cPi) ^ B i({-a . l}P i) B2 (q>2 ))>0T 

+ ^ B i([_a» l } cPi)^/bT \B2 (%  Y  ̂B i((*a, l ) cPi) B2 (<P2 )^ot 

+ <(B l( [_a» l ] lP l)/’0T \ ® 2  (<P2 y B i({-a Jl}qJ1)'r' B2 (%

+ <B2 (q  ̂)̂ >0T <B2 (q>2 y  B !((-a , l}cp1)'<' B j({-a, 1}<Pi)̂ >ot 

+ <B2 (q* ) ' B j( { -a ,  1}(Pi)'‘ \ B j({-a , l}<Pi) B2 (q^
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+ <̂ B2 (<P2 Y B ^ f-a , 1)cPi)/>0T \B l({_a>1] (Pl)^ ®2 (%  )/>0T 

+ i(B 2 (%  Y B2 (cp2 )yoT \ B i((-a , 1}'PiJ''' B i((-a . l } cP1)/>oT 

+ <B2 ( 9 2 f > 0T ( B a f e ) ) ^  <B1((-a,l)}q>l )* B 1({-a Jl}<p1)>ffr (ü)

+ <B2 (q>2 Y y ot \ B i((- a,l}<Pi)^0T \ B j([-a ,ljcp i) '1' B2 (%  ) / 0T 

+ <B2 (q>2 )*>0T <Bi ({■ a, 1) P̂i)*>oT < B i([-a ,l}<p1) B2 (q* )>0T 

+ <B 1([-a ,l]cp 1)*> 0T < B i([ -a , l}cp1)>0T <B2 (cp2 )* B2 (%  )>QT (M)

■*" \ B j({ -a , 1 ] \ B2 (cp2 ))>gj <B2 ( % ) '  B j( ( - a, 1]cpj)/QT 

+ (B jft -a , l j c p j ) )^  <B 2 (q>2 ) / 0T <B2 (%  Y B ^ f-a , l j c p i f /^

+ ( B ^ f - a . l ] ^ ) * ) ^  ( B j l f - a . l j c p j ) ^  <B2 (tfc f > 0T <B2 (q>2)>0T (Uii)

Of all these term s only the num bered ones (i), (ii), (iii), (iiii) are constant 
in a; the re s t  go to ze ro  as a -» °o in a sp a ce -lik e  d irection , because the 
exp ression s separate into two clu sters .

C learly , here one needs the clu ster decom position  property for alm ost 
lo ca l fie ld s  rather than the lo ca l fie ld s  o f which the alm ost lo ca l fie lds are 
constructed . This w ill be developed later.

A much stronger resu lt than T heorem  12 can be derived  from  the work 
o f R uelle described  below . It can be shown that U n ecessarily  contains as 
su b -representation  the representation  belonging to the theory of free  fie lds, 
one fo r  each irred u cib le  representation  contained in U. This shows that 
there are no n on -triv ia l m athem atical idealizations o f lo ca l fie ld  theory 
which sim plify  U. U must be as com plicated  as physics te lls  us it is  in a 
theory  of p a rtic les .

PART TWO

This part w ill be quite p re c ise  m athem atically and w ill begin with axi­
om s fo r  a theory  of sca la r  fie ld s .

2. 1. AXIOMS AND THE RECONSTRUCTION THEOREM

Such a theory has a continuous unitary representation  of the restricted  
inhom ogeneous L orentz group (a , A ] -» U(a, A) and a unique vacuum, Yq, in 
a separable H ilbert space . A  fie ld  is  a linear function A with domain ,0, 
and values lin ear op era tors  in It is  assum ed:
I. A s cp runs over A(cp) and A((p)* p o sse ss  a com m on linear dense do­
m ain D such that
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A(q>) D C  D 

I £ D

A(cp)* D C D  

U(a, A) D e  D
(63)

A is  an operator valued distribution in the sense that fo r  each $ ,¥ e .D ,
(4>, A(<p)¥) is  a d istribution in JS, i. e. a continuous linear functional on £ f .
II. On D

are m ultilinear functionals in <pj.. .  . <pn separately  continuous in their argu­
m ents. The Schwartz N uclear T heorem  a sserts  that these functionals can be 
uniquely extended by continuity to be distributions in the n variab les [28].

C onversely , as was shown som e tim e ago, one can take a set of d istribu ­
tions satisfying certain  conditions and construct a theory having just those 
fo r  vacuum expectation values [29], The only reason  fo r  talking about this 
now is  that these have significant recent im provem ents in the sharpness of 
this recon stru ction  theorem .

Let us b r ie fly  recapitulate the conditions fo r  a single neutral sca lar 
fie ld . Then the vacuum  expectation values may be labelled

III. On D

fo r  cp, JET such that

If

U (a,A )A(cp)U (aJA ) -1 = A ({a ,A }cp) 

[A(cp), A « » ) ]  = 0 = [A(<p), A (0 )* ] 

<P(x)^(y) = 0 fo r  (x -y )2 >  0 

A(q>)* = A(cp) on D ,

(65)

(67)

(64)

(66)

A is  ca lled  neutral o r  H erm itian.
It fo llow s d irectly  from  I that the vacuum expectation values

t*o. Ajj (cpi). . . .  Ajn (9„ ) f 0)

F(n)(x i-x 2, ------x n. , - x n ) = (¥0, A (xx)------- A(xn )¥0) ,

w here n = 0 ,1 . . . . F rom  (67) and herm iticity :

( I 0 , A(qpx) . . . .  A («p „ )y 0 ). = U V  A (cp n )* .. . .  A f o ) * ? , , ) ] * ; 

and F (n) ( f i ,  . . . . § , . , )  = [F (n) ( f n-,..........S i)]*.n-u • •• • (68)

The herm iticity  conditions

F rom  S ch w a rtz 's  inequality
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K J oM , ------ x i ) dxi ------------------------------------------dxj A (x j)----A (x j)U (a ,l)

• ........ x n> A <x j+i)-------- A (x n)^o)|

• | \ß<h(x i>------ xj )]* dx i ------------------------------------- dxj A (x j)* ------------A(xx)* 11

' II f i »  (X j+ I ,-------Xn) d x j+ i--------------------------------------- dxn A (x j+ i) --A (x n ) ? o  || ;

th is shows that

( V j i l ( xi> ------ x j) dx j-----------------------------------------dxj A (xx) ----A (x j)U (a , 1)

• J % ( xj+ i .------x n)dx j+1. . .  .d x n A (xj+1)-------A (xn)Y0)

(69)

(70)

is  bounded in a. Since it is  a lso  in fin itely differentiable in a (m oving U (a ,l) 
to  the right, it can be exp ressed  as a translation  o f which is  infinitely 
d ifferentiable) we can F ou rier  tran sform  it and find that the F ourier tran s­
form  is  z e ro  except fo r  p in the physica l spectrum  [30]. (These are the 
sp ectra l cond itions. ) The boundedness o f (70) in a also has the consequence 
that Ft“) ^ , . . .  .q>n.,)ca n  be extended to a continuous linear functional o n j ,the 
space o f infin itely d ifferentiab le  functions which, together with their d eriva ­
tives , vanish at infinity fa ster  than any pow er of the distance. (Continuity 
is  then defined in the standard m anner o f SCHWARTZ [3 1 ].) F inally,

lim  (70) = (¥0.J^Pi(*i.------x j ) dx i -------d x jA (x x)-------A (xj)¥ 0)

• (* „>fi>2 (xj+»*------xn) dx j+i------- dx„ A(xj+1)-------A (x „ )üf0 ),

which exp ressed  as a property  o f F n is

lim  F (n)(q>!..........(a , l )  tpj,--------<pnJ  = F*,)(cp1#------- q>jM)

• F(“ ' j) (<Pj,....<Pn-i), (71)

as a->oo in a sp a ce -lik e  d irection . This is  the c lu ster decom position  prop ­
e r t y  [27, 30, 33].

Lastly , because

l| E «k A(cpk l)------A(cpkk)^0 I f  ^ 0  ,

fo r  any finite set o f com plex  num bers a. ,
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• .«Pkitei)]* [<pn (y i)— <P{{ (yt )1

xk+1 , ------x2 -x j, x j-y j, y i -y 2, ------- (yf -, - y , )

• dxk ------d x jd y i-------dyf £.0 (72)

these are usually r e fe rre d  to as the positive definiteness conditions.
Now the recon stru ction  theorem  can be stated p rec ise ly .

T heorem  13

F or each n = 0, 1, 2 , . . . .  let be a distribution in $  depending on 
(n -1 ) fo u r -v e c to r  variab les  and invariant under the transform ations

5i>------5n-i 5 i , . . . .  A  5nM .

Suppose the F ®  are extendable to - 4  in each o f their arguments, the others 
being held fixed . If the F (n* satisfy  the h erm iticity  conditions, the spectral 
conditions, the positive  definiteness conditions and the cluster decom posi­
tion  property , then there exists a H ilbert space ^ , a continuous unitary 
representation  o f the Lorentz group (a ,A }-»U (a , A) with energy-m om entum  
spectrum  in o r  on the future light cone and unique vacuum Sf0, and a H erm i- 
tian sca lar  fie ld  A(qp) satisfying A xiom s I and II with D = D0 and such that

(* o .A (x i) ------A (x„)¥ 0) = F (n)(x1-x 2, ------- xn_, - x n) .

This rea lization  is  unique up to unitary equivalence.
A xiom  III is  a lso  satisfied  i f  in addition the F (n)satisfy the loca l com ­

mutativity conditions.
The p roo f w ill not be given here; it is  the sam e as in [29] o r  [25], ex ­

cept fo r  the uniqueness of the vacuum which is  obtained from  [25],

2. 2. £f VERSUS J  AS DEFINITION DOMAIN FOR A(cp); DISCUSSION OF 
D; SELF ADJOINTNESS FOR HERMITIAN FIELDS

T hose things which could be proved by assum ing test functions in 
and those which a lso  requ ired  assum ing the fie ld s  defined for  test functions 
in w ere not very  carefu lly  distinguished in Part One. C learly  som e of 
the constructions requ ired  the latter, fo r  exam ple, that in the proof o f Theo­
rem  12. P hysica lly , it is  very  natural to assum e fie lds defined fo r  test 
functions in : then A(cp), cp rea l would d escr ib e  a fie ld  m easurem ent in 
a bounded reg ion  o f space tim e. It would be very  satisfactory  if one could 
prove  from  this that A(<p) could be extended to J . F ields defined fo r  test 
functions in ^  are desirab le  fo r  a very  p ractica l reason . They perm it one 
to use F ou rier  tran sform s free ly  and to derive d ispersion  relations for  
scatterin g  am plitudes. It should be borne in mind that what one is  excluding 
in such a p ro o f  that fie ld s  can be extended to J  is w orse than polynom ial

k£ <?k .J[cpkk (xk ), . .

F (k+I)(xk.
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growth in x -s p a ce . The argument in connection  with the spectra l conditions 
(just b e fo re  T heorem  13) shows that the vacuum expectation values are 
bounded in any one d ifferen ce  variab le  with the others held fixed. So the 
w orse-than -exponentia l growth to be excluded appears only when two or 
m ore  d ifferen ce  v ecto rs  go to infinity sim ultaneously. Such a growth is 
w ildly im plausible behaviour fo r  a quantity which m easures corre la tion s 
between fie ld  m easurem ents in the vacuum .

On the other hand, fie ld  quantities do behave in a way which would 
lead one to use test functions with com pact support in p -sp a ce  rather than 
x -sp a ce .

One finds in the perturbation theory of unrenorm alized fie ld  theories 
evidence that one m ust expect mom entum  space vacuum expectation values 
which would grow  fa ste r  than any pow er o f the mom entum . To make sense 
o f these one needs test functions o f com pact support in p -sp a ce  and th ere­
fo re  entire functions o f exponential growth in x -sp a ce . The idea that one 
should adapt the axiom s to such p oss ib ilit ie s  has been urged particu larly  by 
GÜTTINGER [34]. It p rov id es a natural way o f making the distinction b e ­
tween ren orm alizab le  and unrenorm alizable th eories  independent of any de­
ta iled  c la ss ifica tion  o f Lagrangians.

Let us now d iscu ss  the dom ain D, again a subject which was g lossed  
over in P art One. The f ir s t  natural question is : Why not sim plify the 
prob lem  by assum ing the fie ld  op era tors  are everyw here defined, i. e.
D = The answ er is  that fo r  cp rea l (and th ere fore  A(q>) Herm itian) this
would im ply that A(<p) is  a bounded and th ere fore  continuous operator, i. e.

sup I A $  I < oo. This happens to be fa lse  fo r  the fre e  field,and there 
11*11=1 "  "
is  every  reason  to b e lieve  that in teresting  th eories  should be w orse rather 
than better than the fr e e  fie ld . Thus D m ust not be all o f . The best 
we can hope fo r  is  that the H erm itian unbounded A(<p) are self-ad joint,
A(cp)* = A(cp). But it is  known that such operators are everyw here d iscon ­
tinuous on their dom ain o f definition, so  it appears that one must face up to 
unbounded discontinuous op era tors .

R eca ll that the adjoint o f an operator T with dense domain D (T )c  , 
and range R (T )C 2 and graph rT, consisting  o f all pa irs ( $ , T $ ]  with 

D(T) is  the uniquely defined linear operator T* from  to ^  i whose 
graph I}.* is  {-¥ * , Y) w here (1?*, 1}  runs over the orthogonal com plem ent 
of I j  in / £ ] ©  That m eans that ¥ lie s  in D(T*) and T*¥ = ¥*, if for
all D(T)

(¥ * ,$ ) = OF, T4>).

An operator T is  H erm itian if  T £ T * , i. e. if  D (T )£D (T *) and T = T* on D(T). 
An op era toF T  is  se lf-ad jo in t if T = T*. It is  essentia lly  self-ad joint if 
T ** = T*. A se lf-ad jo in t operator cannot be extended to any other vector 
without losin g  the property  T = T*. A useful criterion  fo r  the essential 
se lf-ad jo in tn ess o f an H erm itian operator is  that there are no solutions of 
the equations:

T *0  = ± i $•
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In general, when T is  H erm itian the number o f linearly  independent solu ­
tions o f these two equations are resp ective ly  the defect indices o f T . If the 
defect in d ices  o f T are equal, then T p ossesses  at least one self-ad join t ex ­
tension . Evidently, in the f ir s t  half o f these notes the p re c ise  distinctions 
m ade in this paragraph w ere not noted, but they w ill be from  here on [35].

The very  best we can presum e fo r  the operators A(cp), <p real, is  that 
they are essentia lly  se lf-ad jo in t on the domain D0, whose v ectors  are of 
the form  P (A ((£ ).. . .  )¥0 w here P  is  a polynom ial in the sm eared operators 
fo r  C learly , D0GD. so  I w rite A(cp)|D|) fo r  the restriction  of A((p) to
D0 . W ritten out, the requ ired  essentia l se lf-ad jo in tness is

[A.(cp)|Do ]** = [A M Iq, ]*.

It is  p oss ib le  to p rove  this fo r  the fr e e  fie ld .

T heorem  14

If A is  a fr e e  fie ld  and <p is  rea l a n d e ^ t h e n  Aftp)^ is  essentially se lf- 
adjoint.

The p roo f is  not long but m akes very  exp licit use of a configuration 
space rea liza tion  o f the fr e e  fie ld  [36].

F or  a general fie ld  satisfying I, II o r  I, II and III, there is  no such r e ­
sult proved  at present. H ow ever, one can prove that the defect indices of 
A(<T>)|eh, are equal. In outline, the p roo f is  as fo llow s: F rom  the d iscussion
just b e fo re  T heorem  13, it fo llow s that F ^ i s  the boundary value o f an analy­
tic  function in each o f its variab les , the others being held fixed  and sm eared 
with test functions in The analyticity in question is  in the tube . It 
then fo llow s from  a theorem  o f ZERNER [37]* that there exists a unique 
function analytic in 3/n-i which redu ces to F (n̂  . This function is  invariant 
under the hom ogeneous Lorentz group so  that one can use the theorem  of 
Hall to  p rove  the PC T theorem  as at the beginning o f P art One Thus the 
PC T theorem  is  valid  fo r  an irred u cib le  fie ld  satisfying I, II and III. The 
PC T operator 0  leaves D0 invariant.

Now suppose (p is  not only rea l but even under x -> -x . Then 0  satisfies

© A t e ) ^ - 1 = A fo )!*  .

But then if  0 sa tis fies

(A(q>)|D|)* 4  = ± i® .
©i> w ill satisfy

(A(cp)L )* ®<b = Ti04>.
Do

(If 0  com m utes with A(<p) and lea ves  D0 invariant, it m aps D0 one to one 
onto itse lf and com m utes with A(cp)|^ as can easily  be verified  d irectly  from

*  la the simplest case o f  two com plex variables Zemer's result is as follows: if  f(xlv z 2) is analytic 
for z 2> 0 for each real value o f  x 1 and is analytic in z , > Ofor each real x 2 and f(xt , x 2) is continuous,
then there exists a unique function f analytic for z ,>  0 and z 2> 0 which reduces to the given data on z t= 0, 
z 2>  and z 2= 0, Zj^O .
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the d e fin ition s .) Thus, there are as many solutions with the plus sign as with 
the m inus sign and the defect in d ices o f A(q>) are equal when <p is  rea l and 
even. The general case  o f  <p rea l is  easily  reduced to this.

T here does not appear to be any evidence against the con jecture that 
is  essentia lly  se lf-a d jo in t in the general case . At the m om ent, how­

ever, the best we have is  the follow ing:

Theorem  15

If cp is  rea l and cp€«^and A is  an irred u cib le  fie ld  satisfying I, II and
III, then A(<p)|d0 has equal defect in d ices and th erefore  p ossesses  at least 
one se lf-ad jo in t extension.

The im portance o f se lf-ad jo in tn ess is  that it m akes available one of 
the m ost pow erful too ls  fo r  the study of operators in H ilbert space, the 
sp ectra l theorem . If A(cp) is  a se lf-ad jo in t extension o f A(cp)]Ê , then

poo

A(<p) = /  X dE(X,cp),
V-00

where E (X , <p) is  a sp ectra l resolution .
T here m ay be physica l requ irem ents which single out a particular se lf- 

adjoint extension (for exam ple, LC fo r  the extended operators). If it 
turns out that even after these additional requ irem ents have been applied 
the A(qp)|Db do not p o sse ss  unique se lf-ad jo in t extensions, one w ill have to 
say that the theory  is  not com plete ly  given by its vacuum expectation values. 
This would not be a catastrophe.

T here is  one additional s im ple rem ark  about dom ains: The ex ­
tension o f the vacuum  expectation values from  m ultilinear functionals 
(!F0, A(q>i).. . .  Aftpn)^) to distributions in a ll the variab les,

J d x x------dXn cp(xj,------- X n) (Y0, A (xx)-------A(xn )¥„) ,

perm its an analogous extension fo r  v e cto rs :

A(tpi)------A(<pn )¥0 -»JdXi------- dxncpfxj,-------xn)A (x j)------- A (xn) V  (73)

This last exp ression  is  then a v ecto r  valued distribution where continuity 
fo r  the v e c to rs  is  in the norm  topology  o f H ilbert space [18, 30]. This p e r ­
m its an extension o f the op era tors  A(<p) to the domain D o f all vectors  such 
as (73).

2. 3. VON NEUMANN ALGEBRAS ASSOCIATED WITH A DOMAIN OP 
SPAC E-TIM E  AND A FIELD

It is  natural to try  to associa te  an algebra o f bounded operators with 
the fie ld . (This is  the re v e rse  situation from  that custom ary in mathema­
t ic s  w here one is  given an algebra of bounded operators and associates un­
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bounded opera tors  with it. ) HAAG has particu larly  em phasized the s ign if­
icance o f  associating  an algebra of bounded operators R(0) with the set of 
fie ld  operators A(<p) w here the supports o f the <p lie  in a fixed domain 0 
o f sp ace -tim e [38].

T here would be a straightforw ard way to  define fh  (0) if we knew that 
the A(<p)|d0 w ere essentia lly  self-ad joint: take the von Neumann algebra gen­
erated by the spectra l projection'^ o f the se lf-ad jo in t o p e ra to rs (A(<p)|d0 )*. 
(R ecall that a von Neumann algebra is  ä set ifta o f bounded operators with 
the properties : l e ^ i ;  i f  A e& > , then A * e £ , ;  if  A and , then AB and
a A+b B e  iRp ; i f  A n (w here n = 1, 2 . . . . )  is  a weakly convergent sequence 
o f operators e. |f a ,  then lim  A ne. Ä > .) This definition would still work with 
our present knowledge but might give different (Rj> (0) depending on which 
se lf-ad jo in t extension of A(cp)|D is used. A lternatively one can proceed  as 
fo llow s [18]. Define: C, a bounded operator, com m utes with A(cp) if

(A(q>)* CY) = (3>, CA(cp) ¥) (74)

fo r  a ll in D. Then define X 6  fb{Q) i f  X  com m utes with all C that satisfy 
(14) fo r  every  A(cp) and A(cp) with support o f <p in 0. The relations among the 
variou s p oss ib le  definitions are w ell worth exploring. The firs t  steps in 
this d irection  are in [39]. One particu lar resu lt is  so  sim ple and important 
that it m ust be given here [40].

T heorem  16

Let A be a neutral fie ld  satisfying I and II, but with test functions in Ä  
(including as usual the requ irem ent that the vacuum be unique). Suppose 
? 0 is  cy c lic . Then A is  irred u cib le  in the sense that any operator C sa tis­
fying

(A(<p)* 4 ,C J ) = (®.CA(<p)¥) (75)

fo r  all cpe and all 4 ,  f e  D0 is  a constant m ultiple of the identity.

P roo f

If (75) holds fo r  the A(cp)., it a lso holds with A(<p) rep laced  by

• • d x ^ x j ------xn) A (x j)-------A(xn),

a fact that w ill be used in a mom ent.
Now it m ay be assum ed that C \i=0  because, if C¥0 = 0 , C¥ = 0 fo r  any

o and th ere fore  C = 0.
W rite ||CY0|| = p > 0, (¥0,C¥o) = a . Schw artz's inequality then im plies 

|a|< p . To prove  the requ ired  result it su ffices  to show |orj = p, because 
then C¥0 =a¥ 0 and this im p lies  C4> = fo r  all 4>e D0 , because C com ­
m utes with the A(cp) accord in g  to (75).

B ecause ¥0 is  cy c lic  a polynom ial exists in the sm eared fie lds , say 
su ch th at ||(C-(p)Sf0|| < e .  Then
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|(y0, c - C f o  ) -  (to , I?3 * C!F0)| = j((C-|^)S'0,CS'0 )| < PC . (76)

So far the com m utation relation  (75) has not been used.
Now analyse the form  of (P ¥0 in momentum space. Ip may have a p- 

space support which runs over all o f p -sp a ce ; but when it is applied to ¥o< all 
o f  the contribution save that from  the physica l spectrum  is annihilated. By 
m ultiplying the F ou rier  tran sform  of the test function occu rrin g  in by a 
function which is  1 on the physical spectrum  and zero  fo r  points which are 
in the negative o f the continuous spectrum , one can get a new operator, ft) , 
o f the sam e form  as P , which satisfies

= (Py, ( P %  = ( ^ W V  (77)

(C rudely, what is  being done is  this: R eplace

<p|(P|q>by<p|P|q> = e (p ° -q ° )e ((p -q )2)<p|^|q>;
then ^ _______

<p|P*|q> = e (q ° -p ° )0 ( (q -p )2) < q '\<f> |p> »
SO A _______

<p|(P |o> = <p|<ß |0 > but < p | r| 0 >  = 0 ( -p ° )0 (p 2 ) <o|^|p>,

which can only be different from  zero  when p = 0 because \0|(P|p^> = 0 un­
le s s  p is  in the physica l spectrum . A ctually, 0 has to be rep laced  by an 
infinitely d ifferentiable function, so  we need the hypothesis that p = 0 is  an 
isolated  point o f the spectrum  in ord er  to get enough room  fo r  the smoothed
0 to fa ll to ze ro  from  the value 1 it has at 0. ) Then, using (75),

p e >  |p2 - (<P?0,C T 0)| = |p2 - ( P \ , C 1 0) | = |p2 - ( v c £ * y 0 )|

= |p2 - a ( ^ * 0 , * 0 )|. (78)

But e can be chosen  arb itrarily  sm all;and when it i s , ( ( p f 0, ¥0) is  arbitrarily  
c lo s e  to ä .  T h ere fore  |<*|=p.

A second  rem arkable  resu lt o f th is type has been produced by REEH 
and SCHLIEDER [39].

T heorem  17

Suppose A is  a fie ld  satisfying l and II with D0 dense in7<# (test functions 
in £ f ) .  Do (0) is  a lso  dense fo r  any open set o f sp ace -tim e 0. Do (0) is  the
set o f all v e c to rs  o f the form  f t  (A (p ).. .  . )¥<, w here P  is  a polynom ial in the 
fie ld s  sm eared  with test functions w hose supports lie  in 0.

P roo f

A m atrix  elem ent of the form

(X. A (x j)------A (xn)¥0)

is  the (d istr ib u tion !) boundary value o f an analytic function G o f the v a ri-
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ables -X j-irjo , X !-x2 - i r j i , . . . .  x n-i-x n-irjn-i defined in"^ n. This follow s im m e­
diately from  the argum ents d escribed  above in connection with the proof of 
the PCT theorem  under the weakened hypothesis that test functions are in 

But then the hypothesis o f the theorem  im p lies  that the boundary value 
o f G is  ze ro  in an open set o f  rea l space. Thus by the argument given in 
the p ro o f to T heorem  6, G vanishes everyw here in jT n and th erefore  so do 
its  boundary values (x, A (xx) . . . .  A (xn)¥0). Since D0 has been assumed dense, 
we see  that x orthogonal to Do (0) im plies x = 0, so the theorem  is  proved.

One might think that,by .com bining the arguments o f the preceding theo­
rem  with the present one, one could  prove the irredu cib ility  o f the set of 
o p e ra to rs  (P (A(cp).. . . )  with cp restr icted  to have support in any fixed  open 
set o f sp a ce -tim e . H ow ever, this is  not and cannot be so because the r e ­
sult is  fa lse . As was f ir s t  shown by HAAG and SCHROER [41], there are 
generalized  fr e e  fie ld s  such that the set of f i  (A(cp)) is  irredu cib le  when q> 
ranges over  all tS but the set o f ^ (A (<p).. . . )  is  not irredu cib le  when the 
supports o f the cp are re s tr ic ted  to lie  in any tim e s lice  - «  < a< x° < b < °o. 
The reason  the p roo f does not go through is  that the construction of the (P 
used in (78) req u ires  test functions cp which cannot be o f com pact support 
in x space.

2. 4. H AAG -RU ELLE COLLISION THEORY; GENERAL ACCOUNT

The fir s t  step in H aag's theory is the construction  of what he ca lls  
alm ost lo ca l fie ld s . T hese are quantities o f the form

B(x) = E J. . . . J f n i x - x i , ------x -x J A fx J ------ A(xn)dx!-------dx„ (79)

which satisfy
U(a,A) B (x)U (a , A )-1 = B(Ax + a)

(5F0,B (x )¥ 0) = 0 .

where f n We assum e fin ite sum s in (79). At one tim e o r  another Haag
has con sidered  using som e kind of lim it of finite sum s but that does not 
appear to be n ecessa ry  and has not been possib le  till now. Furtherm ore, 
it is  desirab le  that fo r  each irred u cib le  representation  contained in U, say 
o f m ass m i, there ex ists  an alm ost lo ca l fie ld  such that Bj(x)¥0 lie s  in 
the subspace o f that irred u cib le  representation . (This actually im plies 
(¥0, B (x)Uf0 ) = 0.) Haag re fe r s  to the construction  o f alm ost loca l operators 
satisfy ing  these requ irem ents as the "solution  o f the one-body prob lem ". It 
would seem  that neither Haag nor Ruelle te lls  one in print how to "so lve  the 
on e-body  p rob lem ". It is  c lea r  that under som e circum stances it can always 
be done. Suppose, fo r  exam ple, that the d iscre te  m ass state in question is  
isolated  in the m ass spectrum . Then the construction  used in the p roo f of 
T h eorem  12 w ill y ie ld  the requ ired  B; . The sam e holds true even if  the 
d iscre te  m ass value is  not isolated , provided that conserved  quantum num­
b e rs  exist which label the fie ld s  and the m ass value is  isolated  in the sub­
space o f states with definite values o f the quantum num bers. The sort of
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thing meant here is , say, the ca se  o f the deuteron which lie s  in the m iddle 
o f the m ass continuum if  all states are con sidered , but which is  isolated  if 
one con fines on e 's  attention to states of baryon num ber 2. It should always 
be p oss ib le  to "so lv e  the one-body p rob lem " with sufficient accuracy , so 
that the fo llow ing ca lcu lations would work,but the author has not ca rried  out 
the deta ils . (The idea is  that although Bi(x)Y0 is  not a pure one-particle 
state the le ft -o v e r  p iece  can be made sufficiently  sm all not to m a tte r .) For 
the purpose o f the present exposition  it is  assum ed that one can "so lv e  the 
on e-body  p rob lem " exactly.

Now define

b [ (x i ) = i J d x j J fi(x r  Bi (xi ) - g ^ -  f i fx i^ B ^ X i)

w here the F ou rier  tran sform  o f f t is  o f  the form

0(P°) <5 (P2 -m f ) f  (p*) with f e  & .

(80)

Then H aag's a ssertion  is  as fo llow s:

T heorem  18

Let Bj be ain a lm ost lo ca l fie ld  such that B i(x t) lie s  in the subspace o f 
^ b e lo n g in g  to the irred u cib le  representation  [mi( s j  o f m ass nij and spin 
s , . F orm  the states,

$ (t ) = IJ Bf (t)Y0 ;

then lim  4>(t) ex ists  in norm . 
t-»±°°

P ro o f

d$Note f ir s t  that —  = limdt At-i-0
[$ (t+  A t) - $ (t)] exists where the lim it

is  to be understood in the norm . This is  an im m ediate consequence o f the 
continuity p rop erties  d iscu ssed  e a r lie r  in connection with the domain D. 
F urtherm ore ,in  ord er to v er ify  the strong convergence o f $ (t ) it is  sufficient 
to prove  that |t|3/21 |d<3> /dt| | —»0 as t-»±oo , because then

| | $(t')-0 (t" il It-dT
d$(r)

dT r dr
i d$(T)
I dT

rC' dr  
X  t 3/2

and this can be m ade a rb itra rily  sm all fo r  sufficiently  large  t' and t n . Thus, 
to p rove  the th eorem  it is  su fficient to prove

(t|3/2| | d$/dt|b0  .

Now | |d4> / dt| | can be written out as a sum o f term s of the form
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J d xjdx2 ------d x kf 1(x1Jt ) f 2 (x2, t ) ------- f^ x ^ t jF C x j-X z ...........V r x k), (81)

where two o f the fj are actually tim e derivatives of the f 's  appearing in the 
theorem  and F is  the vacuum  expectation value of the B j fie ld s . Note that 
F is  tim e independent because x° = x? = t. F can now be expanded in term s 
o f truncated vacuum  expectation values. Then (81) appears as a sum of 
products o f in tegra ls which are again o f the form  (81); how ever, now F stands 
fo r  a truncated vacuum  expectation value.

T here are now two steps in the p roo f. F irst, one must establish that 
sup |fj(£t)| < C / |t|3/2 fo r  lar-ge (t) and 

x

J dx |f(x,t)| < Cj |t|3/2.

Secondly, it m ust be shown that the (truncated) F 's  fa ll o ff faster than 
any pow er of

k- ‘ I 12L |xj-xj+1| fo r  k > 2 .
j=i

If both these things have been established, then (81) w ill d ecrease  as 
]11(-*/z) (k-z) _ it rem ains to show that no term s with k = 2 contribute. This 
is  a resu lt o f the hypothesis that the B 's  "so lv e  the one-body problem ". The 
tw o.steps in the p roo f w ill be returned to in the two follow ing sections.

Some rem arks about the re la tiv istic  invariance of the procedure are 
n ecessa ry  h ere . What has to  be  shown at this point is  that the sam e lim it­
ing state is  arrived  at if  one ca r r ie s  out the sam e procedu res along another 
t im e -lik e  d irection . F or  this it su ffices  to show that ( l  + i€ nt 5f) 0 (t )y ie ld s  
the sam e resu lt as <£(t), where nt fie  is  an in fin itesim al pure Lorentz trans­
form ation  along the d irection  n. The term  n. i?$ (t) w ill give r is e  to no con ­
tribution in the lim it becau se it w ill involve one extra derivative o f the term  
which approached a constant in the preceding calculation.

The next step is  to define "in "  and "ou t" operators on the "in " and "out" 
states which have just been defined. One w rites

Bin Oin = lim  Bf (t )$ (t )  , t-± «

(82)
b L ) <i>in = lim  (Bf (t ) )* $ (t ) .in

out

To be sure that these equations actually define linear operators one has
t

only to check  the single valuedness; i. e. suppose ¥(t) = 4>j (t) and = 0

or  ¥0ut = 0, then one m ust have lim  B (t)¥(t) = 0 fo r  the appropriate case.t->±

But the fa m ilies  of v e c to rs  'JJ(t) and (Bf (t))* Bf (t) 'i(t) both have a strong lim it,
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that o f the f ir s t  fam ily  being ze ro . T h ere fore  lim  (Y(t), (B' (t))v B‘ (t)S'(t)) = 0,

so B^ Oin = 0 o r  B̂ ut 4>out = 0, w hichever is  appropriate.
The Bin and Bout and their adjoints are resp ective ly  defined on the "in" 

and "ou t" states which span two subspaces o f H ilbert space in and M out 
resp ective ly .

We have no assurance that ^  = ^»0ut nor that ^  in = = ^ 0ut at the
present stage, and in fact exam ples show that the asym ptotic states need not 
be com plete . (T here are generalized  fre e  fie lds such t h a t ^ in ^  and 
$  out • ) That is  A xiom  IV (Ruelle):

iv. %oa
N otice that 0$in is  an "ou t" state; thus i f  \ is  orthogonal to ^ .then 

©X is  orthogonal to ^  out.. Thus it su ffices  to assum e ^ i n = to get
out = •

The Bin and Bout which have been defined are associated  with the co rre ct 
d iscre te  m a sses  m but do not have any sim ple transform ation  law under 
L orentz transform ation . R u elle 's  next step is  to extract from  the B -free  
spinor fie ld s  with the appropriate transform ation  law under Lorentz trans­
form ations to d escr ib e  p a rtic les  o f spin Sj. The construction will not be 
d escr ib ed  here,but the author b e lieves  that this is  the fir s t  p lace where the 
co llis ion  theory  o f p a rtic les  o f arb itrary  spin has been treated system atic­
ally in so -ca lle d  axiom atic fie ld  theory.

1 There is  one subject not exp lored  in R u e lle 's  paper where further in ­
vestigation  would seem  very  valuable. That is  the relation between the do­
m ains of the opera tors  Bjn , Bout and the domain of the original operators 
A. A typ ical prob lem  here would be whether one can show that all these 
op era tors  can be extended to the subspace o f i4> consisting of all states 
w hose energy is  le s s  than E<oo.

2 .5 . ASYM PTOTIC BEHAVIOUR OF SOLUTIONS OF THE KLEIN GORDON 
EQUATION [18]

An im portant ro le  was played in H aag's orig inal argument for the 
asym ptotic condition  by an estim ate o f the asym ptotic behaviour fo r  large 
tim es o f the solutions o f  the Klein Gordon equation:

1 P -ik. 
^ J e( 2  JT):

f  (k) dfi(k)

s/m i  ̂ (1 - v 2 ) exp - i  m t  (1 - v 2 ) '
-t/i

7 (mV(l-v2)'*

w here v = 'x / t .  (83)

This was one o f the weak points o f H aag's argum ent,because the c la ss  of 
functions fo r  which it is  valid  was not determ ined. R uelle rep laces this by 
the follow ing:
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Lem m a

Let f  be  the solution o f the Klein Gordon equation (O  + m2 )f(x ) = 0 given
by

f(x ) = (2 tt)'2 J dp0(p°) 6(p2 -m 2 ) f  (p) e Mp' x (84)

w here f(p } is  infin itely d ifferentiable and o f com pact support. Then f  is  
in fin itely d ifferentiab le  and f(Xu) goes to zero  as X-» + oo in two different 
ways depending on whether the v e cto rs  Xu (w here 0<X <oo) in tersect the 
support o f 6(p2 -m 2 ) f  (p*) o r  not; such v ecto rs  determ ine a cone C.

(a) If u e. C ,

|f(Xu)| < A (u )X '0  0 < \ < oo (85)

w here A(u) is  continuous;
(b) I f u ^ C ,

lim  X“ |f(Xu) | = 0 fo r  all n = 0, 1, 2 , . . .  (86)
\-*+cp

and uniform ly  fo r  u in com pact subsets o f (u0 )2 + u 2 = 1.

R em ark

It is  helpful to r e ca ll the Riemann Lebesgue Lem m a and one o f its 
p roo fs  in o rd er  to see why the cone C appears. Consider

f(x) = Jeikx dkT(k)

and suppose f  is  integrable and has an integrable derivative. Then 

f ( x )  . /  ? ( k ) d k ( l / i * ) £  (e “ ‘ ) -  i  / i i M a k  e “ >

s o  | f(x )| -S ^ J | d f(k )/d k | d k  V l x l •

This p roced u re  can be repeated if  f  has m ore  integrable derivatives; each 
y ie ld s  one m ore  pow er o f | x | in the denom inator.

F o r  an in tegra l o f the form

J '  +m2' xe +m f  (k) dk

the situation is  d ifferent because
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ix
Vk* d /  is/k2 + m ! x \ isik* + m ‘ x 

d k ' 6 ' = e

and the square bracket is  singular at 0. Thus the previous argument can­
not be repeated indefinitely.

P roo f

(84) can be written

f(x ) = l2(2w)2V 1J d Q m {p )e - iPx f ( p )  , (87)

where the in tegral runs over p2 = m 2, p° > 0 and dn m (p) = dp3/^ ^ 2  + m2 . B e­
cause the in tegral runs over a com pact subset o f p> space, one can differen ­

tiate with resp ect to xu under the integral sign and always get convergent 
in tegra ls. T h ere fore  f(x ) is  infinitely d ifferentiable.

To study the asym ptotic behaviour in X when x = Xu, rew rite (87) as

f (X u )  e - i s X fu ( s ) d s  ,

where ^u(s) = 2(2?t) *  J (d n (p )6 (s -p -u )f  (p*)

(88)

(89)

Now s = p -u  is  a 3 plane with norm al u. It in tersects  the hyperboloid in a 
tw o-dim ensional su rface , which is  the Lorentz transform  o f a sphere if u 
is  plus t im e -lik e  and s is  su fficiently  large  (F ig. 1). They do not intersect



4 8 A. WIGHTMAN

fo r  su fficiently  sm all s and in the transition  ca se  the plane is  tangent to the 
hyperboloid . F or ligh t-lik e  u the plane in tersects  in a tw o-dim ensional su r­
fa ce  which runs to infinity; the sam e is  true fo r  sp a ce -lik e  u. When the 6 
function is  elim inated, there appears in the rem aining integral over the curve 
a Jacobian which is  analytic in s as long as s does not take the value fo r  which 
the plane b ecom es  tangent. If the support of f does not contain the "p o f the 
jDoint of tangency, fu(s) is  infinitely d ifferentiable. Since whatever u is, 
fu (s) is  of com pact support because the integrand w ill get too singular at 
k = 0. If the support of f does not include zero , how ever, the preceding 
argument is  valid . The analogue o f I?= 0 in the integral is  paXu,which shows 
that one expects different behaviour fo r  u € . C and fo r  u ^  C. (88) shows that 
f(Au) vanishes fa ster  than any pow er o f the distance. F urtherm ore, it will 
be  uniform ly  continuous in u as long as u stays away from  C. This estab­
lish es  (b).

To p rove  (a) note that under the assumption u e  C, u is  plus tim e-lik e , 
so by a Lorentz transform ation  it can be brought into the tim e axis. Then 
choosing  fo r  convenience u = (1, 0, 0, 0), we get fo r  (89)

w here g (s -m )  is  in fin itely differentiable and of com pact support on the 
c losed  half axis 0^ s < °o. Then

% f - 7-d-P - - 6(s - Ip2 + m 2 ) ?  (p ) 
- J  m2 V

J s - m  g ( s -m ) , (90)

m

W rite

J s  g (s )  = -Js 1 (0 ) e s + n/s (g (s )  - g-(0) e"ä ) .

The contribution from  the fir s t  can be done exactly because

(91)

while the second  has two integrable derivatives, so that its F ourier tran s­
fo rm  is  bounded in absolute value by a(u) | A |-2. Thus
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H ere A(u) can be taken to be continuous because the integral varies  con ­
tinuously under L orentz transform ations.

T h is L em m a has as an im m ediate consequence the follow ing:

Lem m a

If f  sa tis fies  the hypotheses o f the preced ing Lem m a, then 

sup | f (x ° , i?) | d ecrea ses  as |x° | ^  when x°-> + oo
X

and p
d x  |f(x°, 5?) | does not in crea se  faster than (x° )ŝ ! 

when x°-> + <x>.

P roo f

B ecause o f the uniform ity o f the estim ates in u one has that sup jf(x°, x)|
x £  C

d ecrea ses  as |x° |
The in tersection  o f the plane x° = const, with C is  a com pact set Q  of 

th ree -sp a ce  which lie  inside a sphere o f radius < x ° .  The integral

J 'd x  |f(x°, x*)| can be split into an integral over Cj and over the rest of space.

The contribution from  the rest goes to ze ro  faster than any power of

x ° , while | ^  | ^  const. |x0 | 5/>2 |x°|3. 
c i

2. 6. THE REFINED CLUSTER DECOMPOSITION THEOREM [18]

F irst, a notation must be introduced to d escr ib e  the n + 1 clusters :

A i(x i) = A (x i0 )A (x h )------A (x ir(i)) . (93)

(The second index labels  the points within a clu ster; xi stands fo r  the set 
o f vector  variab les  xi0 • • • • x ir(i)» i = 0 , . . . .  n. ) Define also

A i(x i+ a i) = U(ai, l ) A i (x i )U (ai , l ) - 1 . (94)

(If we had to deal with a set o f fie ld s  A, an analogous definition could be 
m ade by putting an extra  index on Ai to indicate what the constituent fie lds 
are in the i— c lu ster . Ai would then be ca lled  a B ose or F erm i field  r e ­
spectively  i f  the product contained an even o r  odd number of anti-com m uting 
f i e ld s . ) (93) w ill be  re fe r re d  to as a c lu ster product and (94) as a trans­
lated clu ster  p rodu ct.

The translated clu ster  products w ill appear in vacuum expectation values 
in d ifferent ord ers , and the next bit o f notation labels these vacuum expecta­
tion values. Let it be the elem ent (perm utation) o f the sym m etric group on
n + 1 ob jects  such that 7r(0, 1 , . . . .  n) = (i0, . . . .  i„ ) (and <% = ± 1 accord ing to
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whether, when acting on . . .  A n the perm utation o f the F erm i fie lds is 
even o r  odd). Then define

Tir (x +  a) = T ^ X q + a0, X j+ a j,-------- X n + a n)

= <% < A i jx u  + aio )A (x i i + ait )------ A in(x in + ain )> 0, (95)

^  (a ) = / d x  cp(x) T " (x + a )  (96)

c nw here cp£.^J in the £ [r(iii) + 1] vector  variab les ,

x 0 0 x 0 1 ■ • • • x  0 r( o) •••• x no • • • • x ni<n) •

Note that in (95) and (96) x stands fo r  the set Xi, i = 0, . . .  . n,and a fo r  the
set ai, i = 0, . . . . n.

The a; that w ill be under d iscussion  here are purely space-lik e , so
a - (0, ). The diam eter X of the set a0___a„ is  given by X2 = sup (a* -a*,/)2.

---------------- i.f 1
Let this m axim um  be obtained fo r  i = j and i' - j T h e n  X2 = (aj -a j /  )2. Now
con sid er  the fam ily  o f all partitions o f {0, 1, . .  . .  n} into two subsets X and
X 's u c h  that j€ .X  and j 'G X '.  The m axim um  o f the distance o f the set [li;
i e X }  from  the set {äi' ; i ' e X 1} as X  va ries  over the fam ily  is  given by

H2 = sup [ inf. (ä* - a £/)2 ] .
X ieX, i'«X '

In the fo llow ing d iscu ssion  it w ill be assum ed that this maximum is  obtained 
fo r  the partition X  = Y and X ' = Y ' and that ß2 = ( ? {  - ^ t ')2, i e Y  and £'^-Y'.

T here is  an elem entary but basic inequality connecting ß with the diam ­
eter X :

riß X . (97)

P roo f

We divide the points a*, into two c la sses : those which can be joined to 
by  a chain o f points such that 1) no point repeats, 2) the distance between 
su cce ss iv e  points is.$/u , and those which cannot. We cla im  5j lie s  in the 
fo rm e r  c la ss , becau se every  point o f the latter c la ss  lie s  a distance >ß 
from  ev ery  point of the fo rm e r  and if  So belonged to it we would have a 
partition  violating the definition o f ß. T h erefore , there is  a chain o f points 

, 5 ,̂, . . . .  £?j, such that

x =  |ä j-ä j k l ä r ^ p H ^ p ' - - - -  | + ------|---------a j | ^ n /i.

N otice  that nß = X when the ij  are equally spaced along a line.
A final bit o f notation: the truncated vacuum expectation values c o r r e s ­

ponding to (95) w ill be denoted TiJ. and
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•F T ?  = J d * 2 ( x '> t t  ( *  +  a )

If
Y = fi0, i i , ---- ik } . Y ' { i 'o .i 'i ,-------4 ' }  w ith k  + k' = n -  1,

w here the elem ents ir within each o f the subsets are written in their natural 
o rd er  as in tegers . Define perm utations I and J by

1(0, 1 , ------ n) = (0, 1 , ------- n); J(0, 1 , -------n) = (i0, ix-------ik,i'o»ii»------- i^).

I is  the identity perm utation.
Now we are ready fo r  the second  step in the proo f. Let A be a field  

satisfy ing I, II and III but with test functions in rather than .

T heorem

Let X be the d iam eter o f the set ____aii ] . Then, fo r  any positive  inte­
g er  N,

lim  XN [Ft ( a ) -  F  ̂ ( a )] = 0 (97. a)
*  i

provided  that the configuration  o f the a ’ s rem ains such that the above de­
fined j, j ' ,  Y , Y ', and i '  stay the sam e.

R em arks

(1) This th eorem  already has been stated by HAAG [17]. He gave a plausible 
but som ewhat hand-w aving-type p roo f.
(2) It is  th is theorem  which enables the com m utation relations fo r  the "in " 
and "ou t" fie ld s  to be proved .

P roo f

Note f ir s t  that T? (x) - t {  (x) vanishes when all xia, ( i£ Y ) , are space­
like to all x i 'a/ , ( i '^ .Y ') , becau se o f III (LC ). Therefore,q>(x) does not con ­
tribute to the integral:

Ft^  ( ? )  -  fJ ( a ) = J dx cp(x) [T^.(x + a ) - T *(x  + a )] ,

I |x l« -  Xi'a- |f < (xta -  Xi'a')2 + l (* a  - *i'a ') + (S  -  3 i ') ] . (98)

Now the square bracket is  always greater than ||x*ia - ? i ' a/| -| 3  -  ai'||; and if, 
when [(Xj-a - + - a j/)]2< 0 fo r  all or = 0 , . . . .  r (i),
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a ' = 0, . . . . r ( i ' ) and all i €  Y, i ' e  Y '.

Introducing the Euclidean distance,

I k o  -x 'i 'a 'II2 = (x? « - x ? '„ ' )2 + (Xic (99)

one can get a su fficient condition fo r  (99) to be satisfied  as follow s:
Note (99) can be rew ritten  as

Ilx ia < (Xic -X iV ')2+ [(Xio - Xi'a-) + (ai - a j')]2. (100)

The second term  on the right-hand side is  always b igger than

so  the right-hand side is  b igger than

2 l x icT  X i v f  +  P i  -  ä V  |2 -  2 | x ia  -  x i V | | £\ -  a . /  | .

This takes its m inim um  as |x|a "X i'a/| va ries  when

|?ia -X i'a 'I = (1/2) | äi -  äV |;

then it is  (1 /2) |ä̂  - s^/12; thus (99) is  guaranteed if

l l x i «  - x i v l f  < M 2/ 2 ;

o r , using (97);

one has each | |xia 11 < A/2 \/2n- so ||xi„ - x^/1.|2< [\ / j2n )2 = X 2/2n2 . Thus 
there is  a sphere in x space whose radius is  \\[2n such that >̂(x ) does not 
contribute to the in tegral (98) fo r  x in the sphere.

Next note that the transform ation  x -> x + a, where all a are identical, 
lea ves  Tt invariant, so  one can assum e without lo s s  of generality that the 
c lu ster  labelled  ze ro  has its fir s t  a* at the origin . Then
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To com plete  the p roo f, R uelle in troduces an im portant technical d e ­
v ice : a partition  o f unity adapted to the p roblem . Partitions o f unity are 
a standard dev ice  of distribution  theory  [42J, but the one used here has som e 
sp ecia l fea tures. .

What is  wanted is  a fam ily of non-negative functions f „ ( x ) e  J ; v = 1, 2 . .  
such that

(1) sup f„ (x )  is  bounded in v and the sam e holds true fo r  each deriva ­

tive  o f f„ ;
(2) f „ (x )  = f„ (  11x11) = 0 both if  J|x11 > v + l and ||x|| < v -  1;
(3) £ f „ ( * )  = 1.

R eca ll that fo r  an arb itrary  open coverin g  of sp a ce -tim e  {O j ; i € . I] 
(w here, a ccord in g  to the definition  o f open coverin g , I is  som e index set,
Oi is  open fo r  all i and every  x lie s  in som e Oi) a partition o f the identity 
is  a fam ily  o f c p i i 6  I o f in fin itely differentiable non-negative functions 
with support o f q)j c  Oi and such that if  C is  any com pact set of space-tim e, 
C in tersects  the support o f a lm ost a fin ite num ber o f cpi. In the present 
ca se , the sets m ay be taken as Oi, the in teriors  o f sph erica l shells o f th ick­
n ess (2 + e ) and in teger radius, and one has to look  into the details o f the 
proo f, fo r  exam ple that o f SCHW ARTZ [42], to see that the property  1, 
which is  usually not requ ired  fo r  a partition of unity, can be secured. It 
is  true but w ill not be proved  here.

( i V  ( ? )  1 ,

oo a
w here q>„ = f„ (x) cp(x). (The se r ie s  L con verges to cp in>* . There is  no

contribution from  the term s with i/ + l< X /2n -/2  because support of cp2 is  then 
en tirely  in the sphere ||x||<X/2n>/2).

Since T } -  T-f is  a tem perate distribution .it may be written as Ty - T j 
= D“ g, w here g is  a continuous function o f x o f  at m ost polynom ial growth.
D“  is  the differentiation  operator defined in Eq. (26). Thus

FtI  (a ) = / 'd x f „ ( x ) D ag (x + a )
“1/ —v

- J  dx [D^cPy (x)] g(x + a ) . (102)

Now the num bers sup |Dag>„(x) | d ecrea se  with v faster than any power

o f i/_1. (The reason  fo r  this is  that <p e J  so  sup |x8D ,'(p(x) |< °o. But the

derivatives o f are uniform ly bounded in v. This supplies sup |xBcp,,(x) |<C 
independent o f v so

sup i D ^ M l  < C ( a , ß ) / v 6

fo r  all in teger v and each ß . )
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Thus, sin ce

Ig(x)|< C(1 + l|x||2)k/l

If t> ( a ) - F j  (a )| ^  S(i/ + 1) sup |d°'2 i;(x )|c ,
- v  - v  A

sup (1 + ||x|p)k/2<  S(i/ + 1) sup l^ c p ^ x ) !  C(1 +2(v + l )2 ? /i (l+ 2 X 2L)k/if 
11*11 =v+i

w here S(v + 1) is  the volum e o f the sphere in x space o f radius v +1 and the 
inequality 1+ |.|x + a | J2< (1+21 |x | |2)X  (1+2 || a| p ) has been used.

Now the num bers Cy = m ax |d“ 9 „(x ) | [C S{v + 1)X (1+2 (v + l)2f /r ] de­

c re a se  fa ster  than any pow er o f i/_1; th ere fore , in the inequality

| F ^  (a ) -  f / „  (a ) | < (E C ,) (1 + 2 LX2 
~ ' i/>X /2^n -l

the f ir s t  fa cto r  d ecrea ses  fa ster  than any pow er o f X"1.
(ECi/ d ecrea ses  as fo r  i  ^ 2 ;  as p roo f o f this com pare with an

integral which can be integrated e x p lic it ly .) T h ere fore ,

lim  XN [F ‘ ( a ) - F '  (a )] = 0 
f »  T1 Tf?

fo r  all N, as was to be proved .
It is  w ell to look  over the p roo f to see why it w orks. Evidently, it 

u ses  the sphere in x, within which there is  no contribution to the integral. 
F urtherm ore, it u ses the assum ption that the T j  are tem perate in order 
to conclude that they can be written in term s of a derivative of a continuous 
polynom ial bounded g.

The next theorem  is  the one which g ives the title  to this section.

T heorem

With the sam e hypotheses as in the previous theorem  but, in addition, 
the requ irem ent that p = 0 be an isolated point o f the physical momentum 
spectrum , as w ell as D0Ft<p ( ? )  w here D0 is  any derivative with r e ­
spect to the a"? a re  functions in 4 .

P ro o f •

Introduce now in x -s p a ce  the new variab les ,

x  = x i„0 > 5  = x i '# 0 "  x i„0  • 5 i  = x *0 "  x i 0O ( i  *0 )•

Si' "  x i' 0  " x i'( 0 » ( i 1 ^ i o ) ;  5 i a  = x i a  “  x i o  ( ®  ^  0 ) ;

= x i ' a ' - x i'0 ( «¥<•)■
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That is , single out one point with index in Y , xio0 and one with index in Y/, 
xj q̂. Introduce the f ir s t  as x and their d ifferen ce  as Then introduce 
the d iffe ren ces  o f the fir s t  points o f the c lu sters  in Y relative to Xj 0 and 
ca ll them f j ;  introduce the d iffe ren ces  o f the fir s t  points o f the clu sters  in 
Y ' re la tive  to Xj< 0 and ca ll them fj /. F inally, introduce the d ifferen ces b e ­
tween the Xia and the fir s t  point of their clu sters  5ia =Xia - x j0, and the 
correspon d in g  d iffe ren ces  between the Xj/a/ and the f ir s t  point of their c lu s­
te rs  Xj/q/ •

Denote by £  the fam ily  o f all ?i Then T-J is  a function o f 5 and?',
and <p a function o f x, £ . Define F ou rier  tran sform s by

{ j T j ) ( P , P )  = (2 n )'21 Tt (5,5) ,

O  <p)(p,P, P) = (2 tt)'2^ / . . . /  dxd 5d £e+i(Px+^ +-P% ( x , 5 , i ) .

H ere the P 's  are labelled  in the sam e way as the £ 's .  Incidentally, this 
form ula  d isplays what was already c lea r  from  fir s t  prin cip les: F-f  ̂ is  an 
in fin itely  d ifferentiab le  function o f at m ost polynom ial growth. Then

*T2 (a) = (2,r)2/ d P  dP O  2) (0, P, P) (3*  T* ) ( J- T* ) (P , P)

‘k i'k'

Up to this point in the p roo f there is  essentia lly  nothing but notation 
fo r  F ou rier -tra n sform s. Now com es the idea. N otice that ( "3" Tj ) (P, P) = 0 
unless P £  V+M (w here V ^  stands fo r  all v e cto rs  P  with Q2 > M2, <p°>0 and 
the bar denotes c lo su re ). This is  true because P is conjugate to the d if fe r ­
ence 5 = x i'0o - x i0o • (Insert U(a, 1) just after A (xi|j0) in the vacuum expecta­
tion  value, m ultiply by e ’ *0 ' “  and integrate. The resu lt has to be zero  ex ­
cept when Q is  in the physica l spectrum  but has the effect f  ->S + a  so that 
P m ust be in the physica l sp e c tru m .) M is  the assum ed low er lim it on the 
m ass o f the system . The vacuum does not appear as an interm ediate state 
becau se  the vacuum  expectation values have been truncated. A full form al 
p ro o f o f this last intuitively obvious statem ent is  contained in (27). F urther­
m ore  if  K is  the perm utation K (0 ,1 , . . . .  n) —̂ (i'o .. . .  i'j,, i0. . .  . ik)> K changes 
5 into £  without changing £  so  ( ^  T ^ ) (P , P) = 0 unless P e  VH Now define
(2> ¥) (p, P, P ) = h (P ) cp(p, P, T ? ) e J  where h is  infinitely d ifferentiable on vi*
and vanishes outside o f V+ . Then, c lea r ly

Frf  (a) = <  (a), F ^  (a) = 0 . (103)

Now the argument o f the preced in g  theorem  was made fo r  two perm utations,
I and J, but it would d iffer only in notation if ca rried  out fo r  J and K. Thus

lim  XN F ^  ( ? )  = 0 (104)
X —> «o
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under the sam e conditions described  in the preceding theorem . Those con ­
ditions involve the points j, j', SL, t! and the sets Y and Y '. But if  the ?  have 
a configuration such that j, j', etc. are d ifferent, the conclusion is the same 
and th ere  are only a fin ite num ber o f p oss ib le  ch o ices  fo r  the j, j'.. . .  
Thus, whatever the configuration of the 5  (104) holds. Applying D0 to F 
is  equivalent to changing g>, so  the theorem  is  proved.

F or  the application to Haag co llis ion  theory one needs the preceding 
conclusion  but fo r  alm ost lo ca l fie ld s . Actually, this case  is  covered  by 
the p reced in g  argument i f  a change in notation is  m ade. W rite

Bj (x j) = U(Xj, 1) Aj ( j j )  U(xj, I ) -1

and ca ll x4 the fo rm e r  variab les  a,, and rep la ce  a by x. Then

F(x) = ( ! „ , B0 (xQ) B !(xx)------Bn (xn) ¥0 )

is  a specia l case  of the (untruncated) F 's  con sidered  before  with cp = S
• • ‘ ®  $n- The truncated vacuum  expectation values are defined with 

resp ect to the B 's  as in P art One, not as above with respect to the A 's , but 
one sees im m ediately  from  the above p roo f that the vacuum will be e lim i­
nated equally w ell in the interm ediate states by this procedure.

C oro lla ry

The preced in g  theorem  is  a lso  true fo r  truncated vacuum expectation 
values of a lm ost lo ca l fie ld s  built out o f lo ca l fie ld s  (test functions again 
in ^ ) provided  the vacuum  is  an isolated  point of the spectrum .

2. 7. FINAL REMARKS ON THE H AAG -RU ELLE COLLISION THEORY

The preced in g  sections have explained how one can construct co llis ion  
states o f all the elem entary system s associated  with irredu cib le  rep resen ­
tations o f the P oin care  group contained in U. A natural question is  then:
A re  the co llis ion  states uhique? The answer is  yes . Suppose that by ch oos­
ing two different sets o f B 's , say B and ß , and carry in g  out the preceding 
constructions, one was led  to tw o states 't’ (t) and 4>(t). The argument which 
fo llow s Eq. (81) shows that they actually con verge  to the sam e "in " or "out" 
state. The argument goes just as b e fore , except that instead o f the term s 
with two operators not contributing because their tim e derivatives are zero , 
h ere it is  because the contributions o f <5 and $ cancel. Both ca ses  are 
covered  by the statement that there is  no contribution because the one-body 
prob lem  has been solved , assum ing the-one particle  states Bf¥0 and Bf¥0 
are n orm alized  in the sam e way. Thus, the H aag-R uelle C ollision  Theory 
w ill give a unique set o f  " in " and "ou t" fie ld s  and consequently a unique c o l­
lis ion  m atrix .

These statem ents hold even if  Axiom  IV does not hold. Then, however, 
the S operator is  a unitary mapping o f out onto ,$2 jn which is undefined on 
those v e cto rs  of ̂ 2 which' are not in out. T here might be som e point in
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investigating (in the sp irit o f H eisen berg 's  elem entary particle  theory) theo­
r ie s  fo r  which A xiom  IV does not hold.
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