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INTRODUCTION

These lecture notes are an attempt to describe something of what has
been achieved in so-called axiomatic field theory in the last couple of years
with the emphasis on those results which are particularly neat.

Two significant projects currently under way which probably are very
deep and certainly are very difficult will not be mentioned: Symanzik's
"structure analysis and the pursuit of the so-called "linear programme" by
KH11én and others. Fortunately, these are excellently summarized in [43].

The paper is divided into two parts. The results presented in the first
half are characterized by the fact that, once one has had the proper insight,
they can be proved with a few simple manipulations. In the second part
there is a steep rise in the difficulty of the analysis.

No attempt will be made to rationalize the rather mathematical pre-
occupations of these lectures; for one reason, the author has tried it before
[1). The root-mean-square deviation from the mean of opinion on what is
a sensible thing to try to do in elementary particle theory seems to be one
of those unrenormalizable infinities one hears about. )

Of all the work reported, the most significant seems Borcher’s dis-
covery of equivalence classes of local fields and Ruelle's rigorization of
Haag’s collision theory. The first was totally unsuspected and represents
the kind of insight which is indispensable if one is ever going to be able to
get back to calculating cross-sections in relativistic quantum field theory.
The second shows that in relativistic quantum field theory the collision
theory (or asymptotic particle description) is already uniquely determined
by the fields, a result which accords with one’s physical intuition and sup-
plies strong evidence that axiomatic field theory is on the right track. ’

PART ONE
This first part will describe a number of results which have simplicity

and generality in common. All mathematical technicalities will be deferred
to Part 2. o

1.1, RECOLLECTION OF THE PCT THEOREM

The PCT theorem will be used again and again in the course of this
paper so it will be presented here briefly in the form given by JOST [1].
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12 A. WIGHTMAN

If A(x) is a charged scalar field, its transform under the PCT operation
is A(-x)*, The anti-unitary operator € on the states which generates this
transformation of the fields therefore satisfies

GA(x)E! = A(-x)*, | (1)

(A charged rather than a neutral scalar field will be considered temporarily
to bring out the role of the Hermitian adjoint in the definition of PCT.)

In any theory of a field (or a denumerable set of fields) that has the vacuum
Yo as cyclic vector (i.e. for which polynomials in the smeared fields'
P(A(g). . .) applied to the vacuum ¥, yield a dense set in #& the Hilbert space
of.states), (1) is equivalent to an identity of the vacuum expectation values:

(¥0,A1(x1). - . .An (%n) ¥o) = [(Yo,Ax(-x)%... Ay(-xa)* Yo)l¥ (2)
or equivalently:
(Yo.A1(x1). .. .An (Xn)¥ ) = (Yo, An(-%0). ... A1(‘X1)‘yo)- (3)
This reduces the problem of determining whether a theory has PCT sym-
metry to an examination of its vacuum expectation values. If (3) or equi-
valently (2) holds for all x;....xnwe say the n-fold vacuum expectation
value has PCT symmetry. On the other hand, from the Lorentz invariance
of the field
Ufa, NA(x) U@, )™ =A(Ax +a), (4)
the vacuum expectation values satisfy
(Yo, AI(AXI + a). .. .An (AXn + a)‘l’o) = (YO,AI (Xl ). .. .An(Xn)‘I’o). (5)
(Only invariance under restricted Lorentz transformations det A = 1,

sgn A} =1, is assumed.)
From this and the spectral condition it follows that

(¥, Ay(xy). ... An (xn)¥,)

f [exp -i E p](x] - ]+1)] Gh--An (p,, ....pn_l)dpl....dpn_l, (6)

where G***** yanishes for P1....Pn-1 outside the physical spectrum which
must be in the future light cone, From this in turn it follows that there is
an analytic function FAtAnof n-1 complex from vector variables,
zj = (xj- Xj+) -1 nj (where j = 1,2....n-1),
(7

o At Ay....A
MM oy, ) = [ Lexploi Bopy a1 6% 0oy, By )b dPay
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analytic in the tube, Jn-i, which is the set of z;....Zn-1 for which nj €Vs,
the future light cone for j=1,....n-1 and such that

(Yo.A1(x). ... An(xa)¥) =lim  FAfa(zy, oz, (8)
Nyee il ™0
inv,

FA A0 ig 2150 Lorentz invariant
FAAnG g ) = FRR (Mg L Azgly ), (9)

which implies that Fhi--An possesses a single-valued continuation to the
extended tube J1n-;, which consists of all points of the form Az,,.... Az
with A a complex Lorentz transformation of determinant one and

Y

Z1seeeeZn-y €Un-1 .
In particular,
Ay....A Ar....A
FU 2y, 0 20) = FOU 2y, L 2h) (10)
at each point of U:: -1 . Finally, it should be remembered that the extended
tube contains real pomts the so-called Jost points; El. e..Ep-y is a Jost
point if it is real and E A & is space-like for all A;(j=1,....n-1) such that

X220 and j)_:1 x> 0. (11)

PCT Theorem
If W(eak) L(ocal) C(ommutativity)
(¥, Ag(xy). . . . A(xn)¥g) = (¥g, An (xn). ... Ay(x)Y) (12)
holds for x;,....X, such that X;-X,,....Xa; - X fill a real neighbourhood
of a Jost point,then (3) holds for all x;,....X%; and the n-fold vacuum expecta-
tion value has PCT symmetry, :
Conversely, if the n-fold vacuum expectation value has PCT symme-
try, then WLC holds in the neighbourhood of every Jost point,

Proof

If WLC holds in the neighbourhood of the Jost point x;-%;,....Xn-; -Xa,
then .

Ut (ay, L z,) s B M ez, L o2y) (13)

in an open set of real space. Therefore, the analytic functions on the left-
hand side and right-hand side coincide throughout J 'n-;, using the fact that
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two functions analytic in an open set of complex space and coinciding on a
real subset which is open in the real subspace coincide everywhere.
Using (10), this says:

Ay A

) ceidA
F M2y eeeZpag) = BV 200, 0000 24) (14)
throughout Dn'_l. (Note that if z;,....2,., is a Jost point so is “Zpegee..-2
and if zy....2p,eJn-1then z,y, ... .2y J;.,.) Passing to the boundary

values with n;€V,, one gets

(Yo,A1(x1)e o« . A (xn)¥) = (Y5, Aq (-Xp). .. . A(-%))¥,) (15)

for all x;....xp which is PCT symmetry.

Conversely, suppose (15) holds for all x,....Xp, then it holds for a
real neighbourhood of a Jost point. Then (14) and (13) follow at every real
point of analyticity, and that is exactly WLC at every Jost point.

Of course, WLC is implied by LC:

[Ai(x),A; ()] = [Ai(x), Aj(y)*] = 0 : (18)

It is important in applications that the PCT operator of an irreducible set
of fields is essentially uniquely determined [3],

If 8,4 (x) 671 = Aj(-x)*
and 0,4 (x) 031 = Aj(-x)*,
then 0, 0,45 (x) 07! @5 = Aj(x) (17

so by the irreducibility of A;(x),
®,0, =21 . ’ (18)

Now because (PCT)? = 1, 8 =y fl with |u|=1. (A priori 6? need only be con-
stant in each coherent subspace of states, i.e. states not separated by super
selection rules. But (17) implies [0%, Aj(x)] = 0, so, by the irreducibility

of Ay, ®¥ = ufl. If one had a more complicated transformation law, say that
for appropriate two-component scalar field, it could be arranged to have
[©2, Aj(x)], = 0, then one would have ©2 = +1 on states obtained from the
vacuum by applying an even number of Aj, and -1 on those obtained by apply
ing an odd number to the vacuum. In that case 8% generates a super selec-
tion rule. While these applications have an interest of their own they will
not be pursued here.) For anti-unitary operators @lg =ufl with |ul =1 im-
plies u=11,(0(00)=6(ul) = (0B)8 =ud® so u is real and therefore =+1); thus
(18) implies

8} = |x [ o3?

SO l)\ lz = 1 and ©; and O, differ only by 'a phase factor. It is customary te
fix this phase factor so that
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@YO = Yo . (19)

Then © is unique. That the left-hand side of (19) must be proportional to

the right follows from a comparison of the transformation law (4) of Aj under
U(a, A) and (1) under ®. One immediately deduces that ® U(a, A) 1 8U(a,A)
commutes with Aj so

w(a, A)U(a, A) = OU(-a, A) @ (where |u] = 1),

and since the inhomogeneous Lorentz group possesses no one-dimensional
representations, w =1,

U(a, A) = @U(-a,A) @71, (20)
Thus the energy momentum operator satisfies
P' =opP" 0-1. (21)

The anti-unitary character of @ is essential here; if ® were unitary, (21)
would have a minus sign and negative energy states would exist. Finally, (21)
and the convention (19) imply that ®¥, = ¥,. The essential point is that the
algebraic structure of the set of field operators, as displayed in the symme-
tries of their vacuum expectation values, uniquely determines a © and a
transformation law of the fields under @,

The relation of © to scattering theory is very simple:

@Ain (X)e-l = AU (—X)* . (22)

This is easy to see if one has a theory in which the simple form of the
asymptotic condition is valid,

A" = A0 - [ Beleey) i) dy

oA (x)e 1 = A(,.g-)* f A (x-y)j(-y) dy

= A(-x)* - j Aa(x-y) iy dy

- AOUI (_x)*
because
Ap(-x) = Ag(x).

(22) is still true in the most general scattering theory we know where the
correspondence between A; and A}" need not be one to one, This will be
discussed below,

It is clear from (22) that @ is not the PCT operator for A®" (x); by
the PCT theorem there must be another anti-unitary operator U satisfying
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out out %

UA;™ (x) U™ = A5 (-x)" (23)

because Aill is local and the A}" are irreducible, which we assume for the
collision states to be complete, Now we know a unitary operator, the S
operator, which satisfies

AOUI (X) = S-].Ain (X) S . ' (24)

By comparing (24), (23) and (22) and using the familiar argument above, we
get: @1 U =S, The collision operator is the relative PCT transformation

of the basic fieldsAj and the out fields AJ" . It is clear from this that one
can define a "'relative S operator' of two fields even when they do not satisfy
the asymptotic condition Sap = ©s0p*,

1.2. THE TRANSITIVITY OF WLC AND LC; EQUIVALENCE CLASSES OF
LOCAL FIELDS [3]

One of the most striking recent discoveries in quantum field theory
was made by Borchers. Roughly, it says (a) that if A is an irreducible field
which is LLC and B is L.C relative to A, i.e.

[A(x), B(y)] = 0 for (x-y2)<o0, (25)

then B is L.C; and (b)if A is irreducible and is L.C and B and C are LC rela-
tive to A then B is LC relative to C. This shows that local fields fall into
equivalence classes (also called Borchers classes),two being equivalent if
they are relatively local. Similar statements hold for WLC. Finally,
Borchers showed [3] that if two fields lie in the same equivalence class and
satisfy the LSZ asymptotic condition they have the same S operator. He
also shows that if the fields are A and B, A'™ = + B™. This shows that in
order to get theories with a non-trivial S operator one must use fields out-
side the equivalence class of any free field. It should be emphasized that
each member of equivalence classes of fields acts in the same Hilbert space
and has the same representation of the inhomogeneous Lorentz group. Two

free fields of different mass are not comparable in this classification. It
remains an open question whether there are Borchers classes, other than
those of free fields, which have the same representation as free fields. Of
course, there is nothing now known to prevent different Borchers classes
from having the same S operator. In fact, this happens for free fields of
the same mass which are not local relative to one another. Incidentally,

it should also be emphasized that one can prove the required properties of
the equivalence classes only by assuming that there is at least one irre-
.ducible field in the class. Thus B and C local relative to A need not imply
B and C relatively local unless A is irreducible. '

* The simple but interesting remark that the S operator is a relative PCT transformation was made by
SYMANZIK [4]. The relative S operator is definable even for models with a space time containing a finite
number of points [4a].
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Before the proof of Borchers! result, an example of a Borchers class
and an application of his theorems to prove the non-existence of solutions
of certain theories will be given. :

Example: the equivalence class of an irreducible free neutral scalar field
Denote the field A. Then DA is again a field (no longer scalar!) and
LC with respect to A, Here

D%A(x) = 3% A(x)/(x°) o (x1)* . .. .a(x3)°", (26)

where I I =ag + oy + ay +a3. Furthermore, the Wick ordered product
0‘A(x)D A(x) : is again a field and LC with respect to A. It is defined

by

’ a(l) c1(2) a(l)
lim : D OA(x)) D A(x3)....D A(xy):

X1re0 Xg>X
[/ -, §in (V20
=L (-1) DID" Alx;)....D% © Alx;,)]
r= Cr

(ey) oke-2)
© D* A(xy)....D Alxg, ), (27)

where [1/2] is the largest integer less than 2/2. The sum L, is over all
partitions of the integers £ into two subsets j;....J,r and k;....k,.,, satisfying
J1<jg.... <jwand ky<kj....kp2r. The Hafnian[........ ] is defined by:

() (iyp) ' (k)
[Da Alx,).... D" A(x,'"_)} =i(1{;.kr [| @0, D° Al )
VR
Ky DY Axi)%),

where, here, the summation is over all partitions (k;, k{). ... (kr, ki) of
jre+..jua in disjoint subsets so that k, <k{ (s=1,...r). Thus the equivalence
class of the free field must include all invariant Wick polynomials of the

form:
E Cpog : DPA(x) DPA(x):

n,a,

where the indices on the derivatives are summed to give invariant combina-
tions. For example,

a ¢ Alx): |, -% Pf(x)axiu A(x) :

1

v

SCHROER (5] has shown recently that the invariant Wick polynomials
exhaust the equivalence class of an irreducible neutral scalar free field of
mass m. An obvious possibility,

£a: AR : | (28)
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with aj decreasing very fast with j, is excluded because it describes a theory
with an infinite number of subtractions®*. This will be discussed in detail
later.

The fact that the invariant Wick polynomial in a free field and its de-
rivatives Were then the only known examples of local fields suggested to
the author some years ago [7] that one should try to use them as currents,
i. e. to look for local solutions of,

Afx) = A" (x) + f Ar(x-y)i(y)dy, (29)

where j is an invariant Wick polynomial in a given free field A0 (x). A"is
also a free field but a priori not in any way related to A" (x). EPSTEIN
and the author have shown that there are no LC solutions in the special case
jx) =g : A (x)? [7). ARAKI, HAAG and SCHROER [8] pointed out that
when j is irreducible, Borchers! result enables one to give a very much
more general and certainly neater discussion,

Theorem 1
If . (0 + m?) Ax) = j(x), (30)

one of A and j is irreducible and A is LC, then A and j lie in the same equi-
valence class.

If j is an invariant Wick polynomial in a free field A" and its derivatives
and is irreducible, S = 1. Furthermore,(29) has no non-trivial solutions
unless j = 0 and A = A" = A,

Proof

The first statement is an immediate consequence of Borchers! result.
To obtain the second, note that first-degree Wick polynomials in A{®) are in-
admissible in (29) because their retarded potentials do not exist. Because
of the assumed irreducibility of j and the assumption that it is an invariant
polynomial in A" and its derivatives A, A® and j lie in the same equivalence
class, (A and Al are LCrelativetoan irreducible j. Therefore, A is LC
relative to A(").,) Therefore, the "in" fields associated with A and A co-
incide up to a sign A" (x) = £ A(" (x), andthe Borchers theorem implies S=1,
If A were local, this would imply

A% (x) +fAR(x-y)j(y)dy (31)

is local which is impossible as a direct calculation shows. Sticklers for
completeness can support this last step by the somewhat more general state-
ment [9].

% The fact that (28) does not satisfy the ordinary axioms of quantum field theory if an infinite number
of ofs # 0 was pointed out by GLASER [6]. It isa freak that this statement is true in three- and four-di-
mensional but not in two-dimensional space time where such expressions occur in the Thirring model. That
operator guage transformations give rise to such "unrenormalizable fields” was emphasized by KALLEN [6].
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Theorérp 2

If A is a neutral scalar field of the form
N
A(x)= E fdxl. eoedxof (X, %, 0.0 %) 0 A%(xg). ... A9 (xn):, (32)
. n=l

where A is a free field and A is L.C then A is an invariant Wick polynomial
in A and its derivatives.

Now let us consider the precise statement of the Borchers theorem
and its proof. It comes in four parts, the first two relating to WLC and the ,
second two to LC.

Theorem 3
Let A and B be neutral scalar fields but not necessarily L.C. Suppose
A irreducible and that A satisfies WLC. Then B satisfies WLC if the iden-
tities,
(Yo, A(xy). . . . A%)By) AlXju ). - - - Alxy) ¥o)
= (¥, A(xp). ... A(xj+1) B(y) A(Xj)- < Alxg) %) (33)
hold for x;-%3,....Xj-1-Xj, Xj =Y, Y-Xj#1, « . - - Xn-1~Xp in a neighbourhood of
some Jost point for -eachn = 0,1,...and each j,1 £ j<n. Furthermore,
the PCT operator of B coincides with that of A so A and B together satisfy
WLC. ’
Proof
Assume (33) holds. Because © is anti-unitary, one has:

(© @, ®B(2)0710Y) = [(¢, B(z)¥)]* = (¥, B(z)d). (34)

In particular, (34) holds for vectors of the form

o7} = %\/’:...- dX]_..c-dxkfk(xl,.o...Xk)A(Xl)....A(Xk)\yo
Y = );\/:.'..fdxl....dx,g,(xl,....x,)A(xl)....A(xi)‘lfo (35)

for which 3
0p = )E,f .. .fdxl. eodxp(fx(xy, ... xk))*A(-xl). oo e Al-xp )Y,

/Y = }i;f...fdxl....dxl(g,(xl,....xlv))*A(-xl)....A(-xl)‘lfo.

The identities (33) in the neighbourhood of a Jost point imply the iden-
tities '
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(Yo, A(xg). .. . A(x;) B(y) A(xj,,). ... Alx,)¥,)
= (Yo, A(-%p). ... . A(=Xj41) B(-y) A(-x;). ... A(-%1) ¥p) (36}

for all x;5....%x; and y. (The argument is that used in the proof of the PCT
theorem.) Thus, .

(Y, B(z)®) =k}.:'n f...fdyl.,..dyqul....dxk . [gz(}’p.....yg)]*

(X1 v X3 (o, Ao ) - - Alyy) B(2) Alxy). . . . Alxy) o)

=kE'j:-..de1¢-..dxk dyl...-dyqfk(xl,...-xk)
*
- gy tyas-e. Y, ) (.Y°’ A(-xp). ... A(-x1) B(-2) A(-yy). .. . A('ye 1Y)
- (00, B(-2)© ¥). (37)|
Since by assumption states of the form (35) are dense in#&, (37) implies
©B(z)@! = B(-2); . (38),
i.e. B has a PCT operator which is the same as that of A. This implies
the statements of the theorem.
It is worth noting that the last statement of the theorem is equivalent
to the rion-trivial result that the identities (33) linear in B imply thé analo-

gous identities with an arbitrary number of B's. When the identities (33)
hold, we say, B is weakly local relative to A; or is WLC relative to A.

Theorem 4

Suppose A, B and C are WLC and A is irreducible. Let B be WLC rel-
ative to A and C be WLC relative to A, then B is WLC relative to C.

Proof

By theorem (3), A, B and C all have the same PCT operator, say ©,
which implies immediately B is WLC relative to C. In fact, it implies that
A, B and C altogether are WLC,

Theorems 3 and 4 together establish a kind of weakened transitivity
for WL.C. Recall that a relation r is transitive if arb and br ¢ implies
arc.

"Theorem 5
If A is LLC and irreducible and B is L.C relative to A, i.e.

[A(x), B(y)] = 0



AXIOMATIC FIELD THEORY 21

for space-like x-y, then B is LC.
This theorem is a special case of the following (take B = C).
Theorem 6

If Ais LC and irreducible and B and C are each LC relative to A,then
B is LC relative to C; i.e.

[B(x), C(y)] =
for space-like x-y.
Proof
By Theorem 4, A, B and C are togeéther WLC. From this and the as-

sumptions of the theorem one gets for any xy....Xn, y;,y2 such that the set
of successive difference vectors (x1-Xp, Xj-;-Xj, Xj-¥p Y1-Y2, Y2 -Xjhse-..
Xp-y~Xp is a Jost point

(Yo, A(xg). . . . A(x;) B(y1) Cly2 ) A(xja). . . . A(xn) %)

= (Yo, A(xq). . . A(xj41) Cy2) B(y1) A(xj). . .. A(x;) ¥p)

= (Yo, A(xq). . .. A(xj) Cly2 ) B{y1) Alxj, ). - . . Alxa) %) (39)
(the first step by WLC; the second by assumption),

Now the first and third expressions in {39) are boundary values of ana-
lytic functions, being -

lim F ([x1 -xg ~iml, . ... [ x50 -x5-1n5,], [ x5-y,-in5],
LTI S TR .
in V+ '

lyi-y2 -in’l, lyz -Xje-in? L [Xj+1'xj+g"inj+1] vene

(%p-1-Xp-ing,I)
and

lim FO ([x;-x5 ~im], . . . . [(xj=y1-in3) + (y1-y2 -in")],
711----11;1-,1.71’. -0 A
in vt

- lyi-y2 + i’ 1, [y1-y2) - i.n' + (¥2 -Xj4-in"). . . . [Xn-1-Xn ~inn-4)),

respectlvely For the next step in the argument we use not the functions
Yand F(Z)but two functions derived from them by setting = 0 and smear-
ing in (y;-y2) w1th a test funetion ¢ where support consists entirely of space-
like veetors 9 = [o(y;-y2)d(y1-y2) (..., y1-Y24...). The f9 are then ana-
lyticin Ja in the variables x;-x3 ~ing, ....[x;-y1-inl, .. [y2 -xju-in"l ...
Xpn-1-Xp -inp-1» and therefore the same is true of f =1 Y. £¢)  Furthermore,
the boundary value of f vanishes in an open set of real vectors, at least if



22 A. WIGHTMAN

the support of ¢ is sufficiently small. (This statement is obtained by smea
ing (39) with ¢ in the variable y;-ys.)

This vanishing of f's boundary values implies that f;-f, vanishes iden
tically, so the first and third expressionsin(39) are equal for all xy....xn
when y;-y, is space-like; thus

[B(yi), C(yz2)] = 0 for (y;-y2 )2 <0.

The fact that f's boundary values vanishing in an open set implies f= 0}
is a generalization of a large class of theorems in one complex variable
of which the Theorem of the Brothers Rieszis typical: let f(z) be analytic
in the unit disc |z| = 1 and continuous on |z|= 1. If £(z) = 0 for |z| =1 and
arg z in an open interval,then £ = 0 throughout the closed unit disc (44], If
one takes the "Edge of the wedge'' theorem [10] for granted,one has an easy|
proof. £(9,zy....2 ) is analytic in J,, [f(p, Z;....Z,[*in - Jy,their boundary|
values coincide in an open set S of real space (and are zero!) and therefore
f(z) is analytic there. Since the value in S is zero, f=0. This implies tha
the identity given by equating the first and third expressions in (39) is valid
for all space-like y;-ys and all xy....X, Since A is irreducible, this mear
that B is LC relative to C.

Now let us examine the question of the equality of the S operator for
different fields. Borchers gives us the simple criterion,

Theorem 7
Let A be L.C and irreducible and the same for B. Suppose
A"= B (40)

and the in fields are irreducible. Then the S-operator of the two theories
is the same if A and B are together WLC,

Remarks

The theorem has been stated as though there were a single ''in'' field in
each theory. This is by no means necessarily so, as will be seen from the
proof, What is assumed is that the set of "'in" fields for the two theories
coincide and are determined by A and B in such a way that (41) and (42) be-
low hold.

Proof

Suppose A and B are together WLC; then by the PCT theorem both have
the same PCT operator ®, Then

A" (x)©-1 = AU (-x) (41)

OB (x) @1 = B (-x) (42)



AXIOMATIC FIELD THEORY 23

so A" = B implies A% = B®' and therefore SASg! commutes with Ai",which
implies Sa = S (since we normalize Ss¥, = Sg¥, = ¥,).
Conversely, suppose

B™'=5-1B"s = 514" 5§ = A™ | (43)
Since A and B are LC,they have PCT operators @4 and ©g, respectively. Now

®4 and € are uniquely determined by A and A® and B® and B®"'via the re-
lations

0 A" (x)0; 1 = A (-x)

out

B (-x)

H

@ B" (x)@g !

(the argument is always the same: assume two @4 and ©®4, say; then prove
@, ©, commutes with A™), Therefore, by (43), @ = @p , and A and B are
together WLC.,

One can, of course, make this theorem ''covariant”. Assume instead
of (40) that :

A" =RB"R-1, RY, = ¥ (deducible as usual); (44)
then in order that the theory of A and B should predict the same results
for collision one wants

Sy = RSgR-1, (45)
because then o )
Aout = 571 A, and B = 551B"S (46)
are consistent with '
AOU[ RBOU( R 1 (47)

and the S matrix elements are the same in the two theories:
(A (xy). ... A® (x;)¥, Sa A% (xp4,). .. . A% (x,)¥,)
= (B™(xy). ... B™(x;)¥, Sg B™(x;,,)- . . . B%(x,)¥), (48)

which is what is meant by predicting the same results for collisions,

Under assumption (44) one has merely to replace B by R"IBR in Theo-
rem 7 to get the appropriate criterion. The covariant form of Theorem 7
therefore reads: (45) follows if A and Rj! BR;, have the same PCT operator
where A" =Ry, BinRil. This is not the situation in practice which may be
described as follows: Let

OA" (x) @1 = A" (-x); @B™(x) 071 = BO(-x), (48a)
STAT (x) S, = £ (x); S31 B"(x) Sy = B (x) (48b)

Rin A" (x) Ry = BI"(x); Ro& AU (x) Roye = BOUY(x). (48c)
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From (48a) and (48b)
Sx OA" (x) ©7183! = A" (-x),
and therefore
| ((s,0), A" (x)] = 0;
so, by the usual argument, '
08,0 1=541, ' (48d)
and sirhilarly
050 1=5;1. . (48¢)
(This is the PCT symmetry of the S operator.) From (48a) and (48c),
@ R;1An(x)R, 07! = R} @ A" (x) @R ],
and so
Ropt =@ Rin©@°1. (48f)
From (48b) and (48c)
S5 Rt A" (x) Rin Sg =Radk 53" A" (x) Sa Rout
so
Rou =S3i' Rin S5 - (48g)
'i‘hus
Ss =R[!S, (@R, @Y. ~ (48h)
The results (48d) to (48h) follow from (48a), (48b) and (48c). Conversely,
if ® A" (x) ©~1= A (-x) and Sa satisfies (48d), one can define Ry by (48f)
and S by (48h); and then (48a), (48b) and (48c¢) will be satisfied for any uni-
tary Rjn that commutes with U(a, A). This shows that to get [®, R;,] = 0 and

therefore the physical equivalence (48) of the operators Sa and Sg, one must

use more details of the relationship between A, B, Aigu[, Bf;},t and ©. How

this works out for the Haag-Ruelle collision theory will be discussed later.
The remaining step in Borchers' theory is as follows:

Theorem 8§

Let A and B be LLC and A be irreducible., Suppose B is LC relative to -
A. Then if A and B have asymptotic fields. of the same mass, B'" = + A",
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The proof as it stands in his paper uses the LSZ asymptotic condition
and will not be reproduced here,

1.3. GENERALIZED FREE FIELDS AND THE SUPPORT PROPERTIES OF
FIELDS IN MOMENTUM SPACE

In an effort to get out of the Borchers class of the free field, GREEN-
BERG introduced the notion of generalized free field as any field A for which
the commutator is a c<number [11],. The standard spectral representation
then gives ’

(AL AGT = [du(@) 0/ Ay 49

It turns out that all the vacuum expectation values of a generalized free field
are obtained from those of a free field of mass m by replacing the free pro-
pagator 3 A% (x) by (1/1) fdu(a) As(x). Although generalized free fields are
physically rather uninteresting, they illustrate a number of points of princi-
ple. For example, a generalized free field may be irreducible and its "in"
and "out' fields exist according to LSZ prescriptions, but the "in" and "out"
fields need not be irreducible. This makes evident a complication already
mentioned before. The Borchers classes are not strictly equivalence classes
unless one restricts one's attention to irreducible fields. Compare the re-
sult of Schroer alluded to just before equation (28) with that of Greenberg

. just quoted. One says that all elements of the equivalence classes of an ir-
reducible free field of mass m are of the form (27); the other says that a
reducible free field can have a generalized free field in its equivalence class
and that generalized free field need not be of the form (27). When a gen-
eralized free field has an "in" field, it is LC relative to it so one does not
get a new Borchers class except in pathological cases where no "in" fields
exist,

A principal reason for discussing generalized free fields is that a num-
ber of elegant criteria have been given which guarantee that a field is a gen-
eralized free field. This gives some idea of what to avoid in trying to
make a non-trivial theory.

Theorem 9 [12, 13, 14]

If A is LLC and is irreducible and
[A(x), A(y)] = B(x-y)

(B may be an operator but must depend on x-y and not x+y), then A is a
generalized free field.
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Proof*

Consider
[B(x-y), A(z)] = [[A(X+E), A(y+8)], A(Z)} )

which holds for all &.
By the Jacobi identity it is

- [[A(y+ £), A(z)], A(X+§')] - {[A(Z), Ax+E)], Aly+ E)J .

For sufficiently large space-like & this vanishes, so
[B(x-y), A(z)] = 0>

and by the irreducibility of A, B must be a constant multiple of the identity
operator so A is a generalized free field.

The second kind of criterion for a field to be a generalized free field
relates to the support of the field in momentum space, i.e, the points of the
spectrum of A (p) = Je!P"* A(x)dx. (This should not be confused with the
spectrum of physical states,with which it is only indirectly connected.)

® There is another proof of Theorem 9 by J, Katzin [13a] which is about as neat as that by Licht and
Toll. It goes as follows. Because the commutator is by assumption translation invariant

Ua)[A(x), A(y)] Ua) ! = [A(x), A(y)].
Then

U(a)A(x), A(y)] ¥o = [A(X), A(Y)] ¥
and therefore by the uniqueness of the vacuum
[A(X), A(YD¥o = b(x-y) ¥,

where b is a ¢ number,
But then

(Yor A(x). .. A IAR), A - Bx = DIAX;, ). Alxg) ¥o = 0
for all Jost points in the successive differences f(x...XjXy Xj4;...Xp) and so by analytic continuation for all

Xp.. Xy,
Therefore

(A(X), A(y)I=b{x~-y)
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Theorem 10 [12, 15, 16¥]

- Let Abe LC and have the vacuum as cyclic vector. If the spectrum of
A omits an open set of space-like p, then A is a generalized free field. Two
local fields whose Fourier transforms agree on such a set differ only by a
generalized free field in their Borchers class.

The results of Robinson and Greenberg have been quoted. Other cases
are considered by Greenberg and Dell'Antonio. For example, it is shown
that, if the spectral weight of the 2-fold vacuum expectation value vanishes
above some mass, then the field is a generalized free field. The proofs
involve a systematic use either of the Dyson representation or holomorphy
envelope calculations. Since these techniques will not be explained here,
the proofs will also not be given.

It is worth noting that, unlike the case in Theorem 2, smeared poly-
nomials in generalized free field operators can be LC [11].

1.4. THE CLUSTER DECOMPOSITION PROPERTY
Given a vacuum expectation value,
CA(Xy). .. A(Xj)A(Xjart @) ... Alxg + 2) Dy
one would expect that, if a - » ina space-like direction, it should approach
CA(xp). .. Ax) D CA(Xja1). ... Alxn) Do

This can in fact be proved under appropriate assumptions and is an example
of a cluster decomposition property. More refined statements can be ob-
tained in which the x,....x, are divided into k clusters which are then
allowed to separate.

The significance of cluster decomposition properties for the theory of
collisions was first emphasized by HAAG [17],and one of the most significant
developments mentioned here is the work by RUELLE [18),which puts Haag's
arguments on a rigorous mathematical foundation. Ruelle's results are
based on a proof that a very refined form of the cluster decomposition prop-
erty can holds in any theory of local fields in which the vacuum is cyclic.
Before going into detail, I shall give two neat results which show the power
of the method. Of course, the required cluster decomposition properties
will be assumed here.

Theorem 11 [19]
Let A and B be two fields which satisfy
U(a, 1) A(x)U1(a,1) = A(x +a) ,
(50)
U(a,1) B(x) U}(a, 1)=B(x+ a),

* Borchers has obtained a number of the same results independently,



28 A. WIGHTMAN

but not necessarily LC. (They could be components of general spinor fields.)
Suppose

[A(x), B(y)l, = 0 = [A(x), B¥(y)], (51)

hold for all space-like x-y. )

Then either A(p)¥, = 0 = A(9)* ¥, or B(p)¥, = 0 = B(p)" ¥, for all test
functions @, If A and B together have ¥, as a cyclic vector and belong to
some sets of operators which transform under homogeneous Lorentz trans-
formation like spinors, then either A = O or B = 0.

Proof

Let ¢ and ¢ be any two test functions of compact support whose supports
are space-like with respect to one another. Taking

A(p) = Jaxo(x) A(x), B(Y) = /dy¢(y) Bly),

[| B () A@)* ¥ |]?

then

(¥, A(9) BW)* BE) Al9)* ¥,)

- (Yo, BW)*BW) Ale) A(9)* &) - (52)

If we let the support of ¢ run off in a space-like direction, the last expres-
sion converges to

I

- (Yo, BW)* B(¥)Yy) (Yo, Al®) Al9)* ¥o)
by the cluster decomposition property. (This proves incidentally that the

left-hand side also converges.) But (¥,, B{)B(¥)* ¥,) and (¥,, A(p)A(p)*¥,)
are non-negative, so either '

A(9)* ¥, =0 or B{¥)¥ =0 .
A precisely similar argument starting from HB(q//)*A(cp)* ¥y H‘ yields
A(9)* ¥, =0 or By)* ¥ =0 .

Finally, starting from the adjoint of the relations (51), one has the same
statements with A(p)* replaced by A(p). Thus either

A(9)*Y¥, = 0 = A(@)¥, or B(W)* ¥ =0 =B\ Y, . (53)

The last statement of the theorem is based on an argument which is,
by now, standard. Look at an arbitrary vacuum expectation value:

(Y9,....A(x)....B{y).... %) (54)

s

If all arguments are taken as space-like and the first of the alternatives
(53) holds, take the farthest A or A*to the right and move it through B's and
B*1g until it hits ¥;; conclude that (54) vanishes for such space-like sepa-
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rators. But the hypothesis on the transformation law of the A's and B's
guarantees that the vacuum expectation values are analytic at Jost points,
so the preceding argument shows all vacuum expectation values containing
an A or an A* are zero. Therefore A = 0,

This argument of Dell! Antonio actually first occurs in a slightly differ-
ent connection in a paper by ARAKI [20]* in which he discusses the possible
commutation relations of different fields and shows that a theory with anom-
alous commutation relations, distinct integer spin fields anti-commuting
or half-odd-integer spin fields commuting or integer spin fields anti-com-
muting with half-odd-integer spin fields, is always physically equivalent to
one with normal commutation relations (all integer spin fields commute with
each other and all half-odd-integer spin fields, all half-odd-integer spin fields
anti-commute), These two papers together with the original BURGOYNE
(21], LUYDERS-ZUMINO [22] proof bring the theorem of the connection of
spin with statistics to a dazzling polish. .

As a second application of the cluster decomposition property, an ex-
ample of SUDARSHAN and BARDACKI (23] in which it is violated will be
discussed.

Consider two theories of a neutral scalar field labelled respectively by
1 and 2: Hilbert spaces #{;, vacua ¥4 , representations of the Lorentz group
Uj{a, A), fields Aj(x). Form a new theory with Hilbert space £, ® /4;
representations of the Lorentz group U; @ U, and field A= A; ®A;." In
this theory, the state vectors are pairs {¥;, ¥; } with the scalar product,

({4, %2}, {91, 92)) = (¥, &) + (Y2, 02).

Clearly, there is a two-dimensional subspace of the Hilbert space ﬂl 5] ﬂg,
each of whose vectors is left invariant by the representation of the Lorentz
group:

(Uy(a,0) ® Uz (a, A)) (@ {¥q, 0} + B{0, ¥y))
= a(¥y,, 0} + B{0, ¥},

which shows a grave defect of this theory; the vacuum ought to be unique.
How does one recognize this defect in the vacuum expectation values? Pick
a particular vacuum, say ¥ =Ja (¥, 0} + V1-2{0,¥p}, 0< e <1, and
compute '

(¥, Alxy). ... A(xn) ¥9) = (¥, Aglxy). . . . Ag(xa) ¥)
+ (1-a) (Y2, Az (x1). ... Ay (xa) ¥po) (55)

This just gives the proposal of Sudarshan and Bardacki: one takes two theo-
ries and forms a new one whose vacuum expectation values are convex linear

"% Note that Araki does not show that the normal case is physically equivalent to the abnormal case,
but rather that the abnormal case: is necessarily very restricted. By virtue of its abnormal commutation re -
lation it must have selection rules which in turn yield the result that it is physically equivalent to a normal
case with the same selection rules,
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combinations of the vacuum expectation values of the two theories. But (55)
does not have the cluster decomposition property even if the theories of A,
and A, do because

(¥ A(x,). ... Alxj) Alxja+a). . . . A(xg+a)¥'™)

= (Yo, Ay(Xe). ... Ay(x)) Ay(Xjuta). . .. Ag(xg+2) Ygp)

+ (1-a) (Yo, Ag(Xy). ... Ag (%) Ag (Xjy +2). . . . Ag (% +2)¥gp)

= a(¥op, Aglxy). . oo Ag(%5) Yor) (Yor, Ay(Xay)- - . - Ay(xq)¥01)

+ (1-a) (Yoo, Ag (x1). .. . Ag (%)) ¥o2) (¥az, Ap (Xjy)- - . . Ap (%) Y2 ),

whereas it ought to approach

(a) (o) (a)

(E, Alxy). .. A ED) (F9 AL, L Al) )

= la (Yo, Ag(xy). ... Ag(x) ¥gy) + (1-@) (Y2, Az (x1). ... Ap (X)) ¥gp ) ]
« fa (Yo, Ay(Xjay)- - . - Ay(xn) ¥g) + (1-0) (Y3, Ay (Xjay). - . - Ap(xp) ¥2)].

Equating these two and assuming that some at least of the vacuum expecta-
tion values are non-zero, one finds @ = 0 or 1; i.e. the only theories of

this kind with cluster decomposition property are the original constituents.
Of course, there are other things wrong with these models but the funda-
mental trouble is the non-uniqueness of the vacuum as was first shown by
HEPP, JOST, RUELLE and STEINMANN [24]. Actually, BORCHERS [25]

has shown that the cluster decomposition property is not only necessary

but sufficient for the uniqueness of the vacuum, if there is at least one cyclic
vacuum. This point will be discussed further in the next section.

A third application of the cluster decomposition property comes about
as follows. The author considers that finding non-trivial examples of in-
ternally consistent field theories is one of the most important problems of
the subject at the present moment. One approach to this problem which
might be attempted is to simplify it mathematically without losing its essen-
tial nature. For example, suppose one assumes that U contains only the
vacuum and one irreducible representation. Can one find local fields which
transform according to (4)? The answer is no, if ¥, is cyclic:

Theorem 12 [26]

In a theory of a neutral scalar field with cyclic vacuum, the physical
spectrum must be additive.

Remark

A point p lies in the physical spectrum if for each open set W of four
momenta containing p there is a non-zero vector whose energy momentum
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spectrum lies in W, That the spectrum is additive means p, inthe spectrum,
and py in the spectrum implies p; + p; in the spectrum.

Proof

Let 5, be an open neighbourhood of p; and S; an open neighbourhood of
p2. The first step in the proof consists in choosing field operators B;(x)
and B, (x) satisfying

U(a, 1) B;(x) U'l(a, 1) = Bi(x+ a) (56)

and test functions @; which have Fourier transforms with sﬁpports in S, and
S, such that

By(p;) ¥ # 0 and By(92) ¥, ¥ 0. (57)

It follows from (56) that the energy momentum spectra of these vectors are
in S; and Sy respectively. (Note that U(a, 1)Bj(9j) ¥, = Bj( {a, 1] 9;) ¥, where
({a, 1)9j)(x) = @j(x-a), so a momentum analysis of the vector is equivalent
to a momentum analysis of @;.)

To get the required B's, choose open neighbourhoods T; and T, of py
and pyp respectively, such that the closures T, and T, satisfy T; € S;,T3C Ss.
Let l&’fj be the closed subspace of £8 consisting of all vectors whose spec-
trum lies in Tj. Then because ¥, is cyclic there exist vectors of the form

N
nZ=31 f . .ffnj(xl,....xn)A(xl)....A(xn)dxl....dxn ¥, (58)

which are respectively not orthogonal to ngj .
Define

Bj(x) = :él f....ff.,,- (X-%qg, . 0o X=Xp) A(xq). ... Alxp)dxy. ... dxy.  (59)

Then clearly (56) holds, {Quantities of the form (59) are called almost local
fields by Haag.) Let @; have a support in §; that includes TJ . Then B;(9;)¥y
# 0 for some such 9;; otherwise (58) would be orthogonal to#6 T;. Thus
the required Bj(p;)¥; # 0 can be constructed. .

Now consider the vectors

Bi(9,)U(a, 1)By (92) ¥y .

Their support must lie in S, + S; by the same argument as before. Can
they vanish for all a? To prove not, assume the contrary:

0

U

|[B1(91) U(a, 1) By (@) % ||

{Bg (92 )* U(a, 1)* By(¢,)* By(91) Ula, 1) Bz (92) Do (60)

Now apply the cluster decomposition property in a stronger form than be-
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fore, It is asserted and will be discussed in detail later that, as a - w0 in
a space-like direction, (60) converges. to

CBa (92)% By (92) Do <By(@y)* By(®1) Do

so either By (q;) ¥, = 0 or By{p,) ¥ = 0 is a contradiction. Therefore, p; +pz
lies in the spectrum, -

To get a neat statement of the required cluster decomposition property
it is advisible to introduce the notion of the truncated part of a vacuum ex-
pectation value [27]. This is defined by induction:

CAX) Do = <AX) Do
CAxy)A(X;)Dg = CAMXy) Alxg oy + A Dor A% Wor
CA(x1) Alxg ) Alxg)Dp = CA(xy) Alxg ) Alxg)Der + CA(x1AGS or <Alxs)or
+ CA(x;) Alxg)Dor <Alxz Dot + <Alxz) Alxs)Dor <A(%;Dor
+ CA(x;) Dot CA(xp Dot CA(x3)or (61)
or generally
CAGxy). .. Alxa)o = Z[[<AG5D0rs (62)

where the sum is overall partitions of 1 ... n into non-empty subsets and
the product is over the truncated vacuum expectation values of the subsets,
all x's occurring in the subsets in the order they occur in 1 ... n. The
definition works both for the almost local fields defined by (59) and for the
field A.

The truncated part calculated in perturbation theory is just the sum of
all connected diagrams. The various cluster decomposition properties can
be stated thus: the truncated parts go to zero as their arguments separate
(under various conditions).

The actual calculation for (60) is the following:

(By (92 ) B1({-2,1}9)* By({-2,1}¢;) B2 (92 )0

{Bg (92 )* By((-2,1}91)" By({-2,1}91) B (92 ) gt

(Ba (@2 Y Dpr <Byl{-2,1)91)* B1({-a, 1)) By (42 ) gr

<+

+

<Bl([' a, 1}@1)*>0T <B2 (CPZ )* Bl([' a, 1] q)l) B, (CPZ )>0T

+

(By((-2, 391 o1 <Bz (®2)* By({-2,1}%)* By (92 ) Dot

Bz (92 )Dor B2 (@2 )* By( (-2, 139y )* By({-2, 31 ) yr

<+

<B2 (2 )* Bl([ -a, 1]%)*>0T <B1([‘a: l]Cpl) By (9, )V>OT

-+
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By (@2 V¥ By({-2,1391) D57 <By({-3,1)91)* Bz (92 )7

+

<+

(Ba (@2 )" B2 (92 )y <Bil(-2, 11 )* By((-2, 101 )00y )

+ By (92)*Dgp B2 (9200 <Bil(-2,1)} 91 ¥ By([-2,1}¢1) ) (i)
+ By (92 Dgp Bil{-2,1)01) 207 <Bil(-2,1301)* By (92 )01

+ (Ba (92 )*Dp <Bulf-a,1301)* Dy <Bil(-2,1}@1) B2 (92 )Dpp

+ <By({-a, 130y )* Dy <Bil(-a,1301) 001 Bz (92 )* Bz (92 )7 (i)
+ (By({-a, 130 V¥ Dor (Ba 92 ) pr $Ba2(92)* By({-2,1}01) 07

+ <B1({' a, 1} q’1)>0'r <B2 (@2 ))OT <B2 (’Pz )* Bl({' a, 1} P )-*/OT

+

Bl -2,1)0) 0y, <By((-a,1)01)%, (Bal0s) )y <Bz (@) i

Of all these terms only the numbered ones (i), (ii), (iii), (ilii) are constant
in a; the rest go to zero as a —» « in a space-like direction, because the
expressions separate into two clusters.

Clearly, here one needs the cluster decomposition property for almost
local fields rather than the local fields of which the almost local fields are
constructed. This will be developed later.

A much stronger result than Theorem 12 can be derived from the work
of Ruelle described below. It can be shown that U necessarily contains as
sub-representation the representation belonging to the theory of free fields,
one for each irreducible representation contained in U. This shows that
there are no non-trivial mathematical idealizations of local field theory
which simplify U. U must be as complicated as physics tells us it isin a
theory of particles,

PART TWO

This part will be quite precise mathematically and will begin with axi-
oms for a theory of scalar fields,

2,1, AXIOMS AND THE RECONSTRUCTION THEOREM

Such a theory has a continuous unitary representation of the restricted
inhomogeneous Lorentz group {a, A} - U(a, A) and a unique vacuum, ¥, in
a separable Hilbert space 9. A field is a linear function A with domain ﬂ,
and values linear operators in 4. It is assumed:
I. As ¢ runs over /9 A(p) and A(9)* possess a common linear dense do-
main D such that
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A(p)DC D AlpY*DC D
Ye D U(a, A)D< D

(63)

A is an operator valued distribution in the sense that for each ¢,¥Ye< D,
(®, A(p) ¥) is a distribution in &, i.e. a continuous linear functional on £
II. OnD

U(a, A) A(p) U(a, A)~?! = A({a, A}9) (64)
. On D
[A(9), A(W)] = 0 = [A(9), AW)*] (65)
for o, wéﬁ such that
o(x)¥(y) = 0 for (x-y)? >0 : (66)
i
A(9)* = A(§) on D, (67)

A is called neutral or Hermitian,
It follows directly from I that the vacuum expectation values

(Yo, Aj, (P1). ... Aj, (Pn) ¥p)
are multilinear functionals in @;....¢n separately continuous in their argu-

ments. The Schwartz Nuclear Theorem asserts that these functionals can be
uniquely extended by continuity to be distributions in the n variables [28].

j;ixl. oo AXn@(Xg. oo X ) (Yo, Ay (xp). ... Aj {(xn) ¥p).

Conversely, as was shown some time ago, one can take a set of distribu-
tions satisfying certain conditions and construct a theory having just those
for vacuum expectation values [29]. The only reason for talking about this
now is that these have significant recent improvements in the sharpness of
this reconstruction theorem,

Let us briefly recapitulate the conditions for a single neutral scalar
field. Then the vacuum expectation values may be labelled

F(n)(Xer, ceeeXng-xn) = (Yo, Alx). .. L Alxa) ¥p)

wheren = 0,1.... From (67) and hermiticity:

(Yo, Alp1). ... Alpn) ¥g). = (¥, A(Pn ¥.... Al ¥, )]*:

and F™(&,....5.) = [F®(Epp, ... . EDI% (68)

The hermiticity conditions

. From Schwartz!s inequality
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IYO’\/;pl(xla coe o Xj) A% L. dXA(Xg). L L. Alx) Ula, 1)
fcpz (Xjpps - - - - Xg) AlXjy). oo Alxy) b))

BRS ||ﬁq)1(x1, cexFdxg L dxg AL L LA |

. ”fcpz (Xj+1, . oo . Xn) dXjar. . . . dXn A(Xjer). . .. A(xa ) ¥, . (69)
this shows that
(Y%, [01(xq, . . .. x3) dxy. . .. dxj A(xy). .. . A(x;) U(a, 1)
. \[q)z (Kja1s « oo o Xp) AXjyo v dXpg A(xgy,). .. Axg)Y) (70)

is bounded in a. Since it is also infinitely differentiable in a (moving U(a,1)
to the right, it can be expressed as a translation of ¢, which is infinitely
differentiable) we can Fourier transform it and find that the Fourier trans-
form is zero except for p in the physical spectrum [30]. (These are the
spectral conditions.) The boundedness of (70) in a also has the consequence
that F( (g,,....9,_,) can be extended to a continuous linear functional on dthe
space of infinitely differentiable functions which, together with their deriva-
tives, vanish at infinity faster than any power of the distance. (Continuity
is then defined in the standard manner of SCHWARTZ {31].) Finally,

%i_’n;lo (70)‘ = (‘l’o,fqal(xl, cee X5)dxg L. dxjA(xy). L A(X5) YY)
. (‘l’o,quz (X415 + -« - Xn ) dXja1. o . . dXg A(Xj4y). .. . A(xg)Y,),

which expressed as a property of F" is

lim F™oy,.... (8,1 0)....9,.) = Fay,....0.)

* F(n-j) (ij, PP %-1) ’ (71)

as a—® in a space-like direction. This is the cluster decomposition prop-
erty [27, 30, 33].
Lastly, because

HEak A((Pkl)----A(q)kk)\l’OHZ 20,

for any finite set of complex numbers a,
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ka:pcik ng .. .ﬁ®kk (i) e on Pk ()] (91 (1) - - - Pgg (30 )]

k+¢
. F( * )(Xk “Xkr s v e o Xz =Xy, X1V Y1Y2s - - - - (Y1 -Yp)
©dxg....dx;dy;. .. .dy, 20 (72)

these are usually referred to as the positive definiteness conditions.
Now the reconstruction theorem can be stated precisely.

Theorem 13

/
Foreachn=0,1, 2,.... let F™ be a distribution in ﬁ depending on
(n-1) four-vector variables and invariant under the transformations

Eyen By PNEy, .. A .

Suppose the F(® are extendable toAf in each of their arguments, the others
being held fixed. If the F® satisfy the hermiticity conditions, the spectral
conditions, the positive definiteness conditions and the cluster decomposi-
tion property, then there exists a Hilbert space #2, a continuous unitary
representation of the Lorentz group {a,A}-U(a, A) with energy-momentum
spectrum inoronthe future light cone and unique vacuum ¥;, and a Hermi-
tian scalar field A(p) satisfying Axioms I and II with D = D, and such that

(¥g, A(xy)e ..  A(xg)Y,) = F(“)(xl-_xz seereXgoy -Xg).

This realization is unique up to unitary equivalence.

Axiom III is also satisfied if in addition the F(Wsatisfy the local com-
mutativity conditions.

The proof will not be given here; it is the same as in [29] or [25], ex-
cept for the uniqueness of the vacuum which is obtained from [25].

2.2, ﬁVERSUS /JAS DEFINITION DOMAIN FOR A(op); DISCUSSION OF
D; SELF ADJOINTNESS FOR HERMITIAN FIELDS

Those things which could be proved by assuming test functions in g
and those which also required assuming the fields defined for test functions
in .4 were not very carefully distinguished in Part One. Clearly some of
the constructions required the latter, for example, that in the proof of Theo-
rem 12, Physically, it is very natural to assume fields defined for test
functions in .&": then A(9), o real would describe a field measurement in
a bounded region of space time. It would be very satisfactory if one could
prove from this that A(g) could be extended to 4. Fields defined for test
functions in /ef are desirable for a very practical reason. They permit one
to use Fourier transforms freely and to derive dispersion relations for
scattering amplitudes. It should be borne in mind that what one is excluding
in such a proof that fields can be extended to A is worse than polynomial
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" ‘growth in x-space. The argument in connection with the spectral conditions
(just before Theorem 13) shows that the vacuum expectation values are
bounded in any one difference variable with the others held fixed. ‘So the
worse-than-exponential growth to be excluded appears only when two or
more difference vectors go to infinity simultaneously. Such a growth is
wildly implausible behaviour for a quantity which measures correlations
between field measurements in the vacuum.

On the other hand, field quantities do behave in a way which would
lead one to use test functions with compact support in p-space rather than
Xx-space.

One finds in the perturbation theory of unrenormalized field theories
evidence that one must expect momentum space vacuum expectation values
which would grow faster than any power of the momentum. To make sense
of these one needs test functions of compact support in p-space and there-
fore entire functions of exponential growth in x-space. The idea that one
should adapt the axioms to such possibilities has been urged particularly by
GUTTINGER [34]. It provides a natural way of making the distinction be-
tween renormalizable and unrenormalizable theories independent of any de-
tailed classification of Lagrangians.

Let us now discuss the domain D, again a subject which was glossed
over in Part One, The first natural question is: Why not simplify the
problem by assuming the field operators are everywhere defined, i.e.

D = #? The answer is that for @ real (and therefore A(p) Hermitian) this
would imply that A(9) is a bounded and therefore continuous operator, i.e.
lsll‘li’pil ) HA@ H < o, This happens to be false for the free field, and there
is every reason to believe that interesting theories should be worse rather -
than better than the free field. Thus D must not be all of #£ . The best
we can hope for is that the Hermitian unbounded A(¢) are self-adjoint,
A(p)* = A(p). But it is known that such operators are everywhere discon-
tinuous on their domain of definitiori, so it appears that one must face up to
unbounded discontinuous operators.

Recall that the adjoint of an operator T with dense domain D(T)cC ﬂ ,
and range R(T)C £4 , and graph Iy, consisting of all pairs (¢, T®] with
® & D(T) is the uniquely defined linear operator T* from ﬂz to #£, whose
graph It* is (-¥*, ¥) where {¥*, ¥} runs over the orthogonal complement
of I} in #£.® £€,. That means that ¥ lies in D(T*) and T*Y = ¥*, if for
all o< D(T)

(¥*, @) = (¥, TD).

An operator T is Hermitian if TET*, i.e. if D(T)ED(T*) and T = T* on D(T).
An operator T is self-adjoint if T = T*, It is essentially self-adjoint if
T** = T%, A self-adjoint operator cannot be extended to any other vector
without losing the property T = T*. A useful criterion for the essential
self-adjointness of an Hermitian operator is that there are no solutions of
the equations:

T*® =+i -
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In general, when T is Hermitian the number of linearly independent solu-
tions of these two equations are respectively the defect indices of T. If the
defect indices of T are equal, then T possesses at least one self-adjoint ex-
tension. Evidently, in the first half of these notes the precise distinctions
made in this paragraph were not noted, but they will be from here on [35].

The very best we can presume for the operators A(p), ¢ real, is that
they are essentially self-adjoint on the domain D,, whose vectors are of
the form P{A(¥)....)¥, where P is a polynomial in the smeared operators
for y€ L. -Clearly, Dy€D,so I write A(cp)|D0 for the restriction of A{9) to
Dy. Written out, the required essential self-adjointness is

[A(0)], T¥* = [Alo)], 1*.
It is possible to prove this for the free field.
Theorem 14

If Ais afree field and ¢ is real andeﬁthen A(cp)|Do is essentially self-
adjoint.

The proof is not long but makes very explicit use of a configuration
space realization of the free field [36].

For a general field satisfying I, II or I, II and III, there is no such re-
sult proved at present. However, one can prove that the defect indices of
A'(cp)|Do are equal. In outline, the proof is as follows: From the discussion
just before Theorem 13, it follows that F(Mis the boundary value of an analy--
tic function in each of its variables, the others being held fixed and smeared
with test functions in o The analyticity in question is in the tube J . It
then follows from a theorem of ZERNER [37]* that there exists a unique
function analytic in _Ju-; which reduces to F® ., This function is invariant
under the homogeneous Lorentz group so that one can use the theorem of
Hall to prove the PCT theorem as at the beginning of Part One Thus the
PCT theorem is valid for an irreducible field satisfying I, Il and III. The
PCT operator © leaves D, invariant.

Now suppose ¢ is not only real but even under x—-x. Then @ satisfies

OA(e) |, @ = A(9)p, -
But then if & satisfies

(A@)p,)* @

(A, ) @2

tids
©9 will satisfy

Fioo.

(If ® commutes with A(p) and leaves Dy invariant, it maps D, one to one
onto itself and commutes with A(cp)|l‘1’ as can easily be verified directly from

* In the simplest case of two complex variables Zerner's result is as follows: if f(x,.2,) is analytic
for z,> 0 for each real value of x, and f(2,,x,) is analytic in z, > 0 for each real x, and f(x,,x,) is continuous,
then there exists a unique function f analytic for z,> 0 and z,> 0 which reduces to the given data on 2= 0,
z,> and z,= 0, 2,>0.
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the definitions.) Thus, there are as many solutions withthe plus sign as with
the minus sign and the defect indices of A(9) are equal when ¢ is real and
even, The general case of ¢ real is easily reduced to this,

There does not appear to be any evidence against the conjecture that
A‘(q>)|Do is essentially self-adjoint in the general case. At the moment, how-
ever, the best we have is the following:

Theorem 15

If ¢ is real and p€.£7and A is an irreducible field satisfying I, II and
111, then A(cp)]Do has equal defect indices and therefore possesses at least
one self-adjoint extension.

The importance of self-adjointness is that it makes available one of
the most powerful tools for the study of operators in Hilbert space, the
spectral theorem. If A(p) is a self-adjoint extension of A(cp)IDo,then

Ao i[.,," dE(\, 9),

where E(X, ¢) is a spectral resolution,

There may be physical requirements which single out a particular self-
adjoint extension (for example, LC for the extended operators). If it
turns out that even after these additional requirements have been applied
the A(q>)|D° do not possess unique self-adjoint extensions, one will have to
say that the theory is not completely given by its vacuum expectation values.
This would not be a catastrophe,

There is one additional simple remark about domains: The ex-
tension of the vacuum expectation values from multilinear functionals
(Y9, A(®y). ... A(p,)¥ ) to distributions in all the variables,

ﬁxl- coe dXp Q(xg, .. .. Xn) (Yo, Alxy). ... A(xq)¥,),

permits an analogous extension for vectors:

A(y). ... Alpp)¥, —>\/:ix1. ceedxO(xg, L. xp JA(Xg). L A Y, (73)

This last expression is then a vector valued distribution where continuity
for the vectors is in the norm topology of Hilbert space [18, 30]. This per-
mits an extension of the operators A(9) to the domain D of all vectors such
as (73).

2.3. VON NEUMANN ALGEBRAS ASSOCIATED WITH A DOMAIN OF
SPACE-TIME AND A FIELD

It is natural to try to associate an algebra of bounded operators with
the field. (This is the reverse situation from that customary in mathema-
tics where one is given an algebra of bounded operators and associates un-
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bounded operators with it, ) HAAG has particularly emphasized the signif-
icance of associating an algebra of bounded operators R(8) with the set of
field operators A(p) where the supports of the ¢ lie in a fixed domain 6
of space-time [38]. .

There would be a straightforward way to define Qa {0) if we knew that
the .A(q))IDo were essentially self-adjoint: take the von Neumann algebra gen-
erated by the spectral projections of the self-adjoint operators(A(qJ)]Dn y*.
(Recall that a von Neumann algebra is a set % of bounded operators with
the properties: 1€fd; if Aefl,, then A*eR,; if A and BE R, then AB and
a A+bBe &, ; if Ap(wheren =1, 2....) is a weakly convergent sequence
of operators € (ﬂp, then lim A € #>.) This definition would still work with
our present knowledge but might give different 1A (9) depending on which
self-adjoint extension of A(cp)|Do is used. Alternatively one can proceed as
follows [18]. Define:C, a bounded operator, commutes with A(gp) if

(A(p)* @, CY¥) = (¢, CA(9) ¥) (74)

for all @,¥ in D. Then define Xe& ﬁ,(@) if X commutes with all C that satisfy
(14) for every A(p) and A(p) with support of ¢ in 6. The relations a.morig the
various possible definitions are well worth exploring. The first steps in
this direction are in [39]. One particular result is so simple and important
that it must be given here [40].

Theorem 16

Let A be a neutral field satisfying I and II, but with test functions inj
(including as usual the requirement that the vacuum be unique). Suppose
¥, is cyclic. Then A is irreducible in the sense that any operator C satis-
fying

(A(p)* @, CY) = (¢, CA(9) ¥) (75)
for all g€ L and all ®,Y¥e Dy is a constant multiple of the identity.
Proof

If (75) holds for the A(®), it also holds with A(p) replaced by

Ef .. .ﬁxl. oo e OXp®p(Xg. . . . Xy Y A(Xy). . . L AlXp),

a fact that will be used in a moment.

Now it may be assumed that C¥,#0 because, if C¥, = 0, C¥ = 0 for any
Ye £, and therefore C = 0,

Write HC‘I’OH = p>0, (¥,CY¥%) = a. Schwartz's inequality then implies
a|< p. To prove the required result it suffices to show |al = p, because
then CY¥, =a¥; and this implies C® = a® for all ®€ Dy, because C com-
mutes with the A(9) according to (75).

Because ¥, is cyclic a polynomial exists in the smeared fields, say (®,
such that ||(C-{)¥%]| <e. Then
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'(YO’ c* CYO) - (YOJ 63* CY, )I = [((C'@)yo, CY, ), <pe. (76)

So far the commutation relation (75) has not been used.

Now analyse the form of 9 ¥, in momentum space. @may have a p-
space support which runs over all of p-space; but when it is applied to ¥y, all
of the contribution save that from the physical spectrum is annihilated. By
multiplying the Fourier transform of the test function occurring in (¥ by a
function which is 1 on the physical spectrum and zero for points which areg
in the negative of the continuous spectrum, one can get a new operator, {/ ,
of the same form as f‘), which satisfies

Py, = Py, Py, = (PY, %)Y, (77)
(Crudely, what is being done is this: Replace

pl P lad> by <p| Plad = 6(p° -q°)8((p-a)2Kp| R la);
plP*lad = 6(a°-p®) 6((a-p)?) £q [P oD »

plP 0> = <p|B |0 but <p| R*|0> = 6(-p°) 6 (p?) 0| P > »

then

so

which can only be different from zero when p = 0 because <0|§?|p> = 0 un-
less p is in the physical spectrum. Actually, 6 has to be replaced by an
infinitely differentiable function, so we need the hypothesis that p = 0 is an
isolated point of the spectrum in order to get enough room for the smoothed
8 to fall to zero from the value 1 it has at 0.) Then, using (75),

pe> IPZ - (@Yo: C\yo)l = ,Pz - (09!{’0, CYy) I = ,PZ - (TO,CJ)*‘YO”
=0 - a (¥, ¥%)|- (78)

But € can be chosen arbitrarily small;and when it is,(@i’o, ¥,) is arbitrarily
close to @, Therefore |ar| =p.

A second remarkable result of this type has been produced by REEH
and SCHLIEDER [39].
Theorem 17

Suppose A is a field satisfying I'and II with D, dense in% (test functions
in ). Dy (8) is also dense for any open set of space-time 6, Dy(8) is the
set of all vectors of the form (P (A(o)....)¥, where P is a polynomial in the
fields smeared with test functions whose supports lie in 6.
"Proof

A matrix element of the form

(X; Axq). . .. Alxp) ¥yp)

is the (distribution!) boundary value of an analytic function G of the vari-
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ables -xy-ing, X1-Xp -iny, . . . . Xn-1-Xp-ing-; defined in7 n. This follows imme-
diately from the arguments described above in connection with the proof of
the PCT theorem under the weakened hypothesis that test functions are in
ﬁ . But then the hypothesis of the theorem implies that the boundary value
of G is zero in an open set of real space. Thus by the argument given in
the proof to Theorem 6, G vanishes everywhere in _J n and therefore so do
its boundary values (X, A(xy)....A(x,)¥,). Since Dy has been assumed dense,
we see that X orthogonal to D,(0) implies X = 0, so the theorem is proved,
One might think that,by combining the arguments of the preceding theo-
rem with the present one, one could prove the irreducibility of the set of
operators /2 (A(9). ... ) with ¢ restricted to have support in any fixed open
set of space-time, However, this is not and cannot be so because the re-
sult is false. As was first shown by HAAG and SCHROER [41], there are
generalized free fields such that the set of & (A(9)) is irreducible when o
ranges over all £ but the set of ﬁ(A(q)). ... ) is not irreducible when the
supports of the ¢ are restricted to lie in any time slice ~0< a< x%<b < o,
The reason the proof does not go through is that the construction of the il
used in (78) requires test functions ¢ which cannot be of compact support
in x space.

2.4, HAAG-RUELLE COLLISION THEORY; GENERAL ACCOUNT

The first step in Haag's theory is the construction of what he calls
almost local fields. These are quantities of the form

B(x) = %1 f .. .ffn(x-xl, v X=Xg VA(X)). .. A(xg)dxy. .. dxy (79)

which satisfy
U(a,A)B(x)U(a, A)"!= B(Ax + a)

(¥, B(x)¥;) = 0.

where fné/f . We assume finite sums in (79). At one time or another Haag
has considered using some kind of limit of finite sums but that does not
appear to be necessary and has not been possible till now. Furthermore,

it is desirable that for each irreducible representation contained in U, say
of mass m;, there exists an almost local field such that B;(x)¥, lies in
the subspace of that irreducible representation. (This actually implies
(Yo, B (x)¥) =0.) Haag refers to the construction of almost local operators
satisfying these requirements as the "solution of the one-body problem'. It
would seem that neither Haag nor Ruelle tells one in print howto "solve the
one-body problem'. It is clear that under some circumstances it can always
be done. Suppose, for example, that the discrete mass state in question is
isolated in the mass spectrum. Then the construction used in the proof of
Theorem 12 will yield the required B;. The same holds true even if the
discrete mass value is not isolated, provided that conserved quantum num-
bers exist which label the fields and the mass value is isolated in the sub-
space of states with definite values of the quantum numbers. The sort of
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thing meant here is, say, the case of the deuteron which lies in the middle
of the mass continuum if all states are considered, but which is isolated if
one confines one's attention to states of baryon number 2, It should always
be possible to "solve the one-body problem'' with sufficient accuracy, so
that the following calculations would work,but the author has not carried out
the details, (The idea is that although B;i(x)¥; is not a pure one-particle
state the left-over piece can be made sufficiently small not to matter.) For
the purpose of the present exposition it is assumed that one can '"'solve the
one-body problem" exactly.

Now define

BI (x{)= i\/?ixi [fi (x)* % B;i(xi) °aaTQ £3(x;)* Bi(xi)'] ’ | (80)

where the Fourier transform of f; is of the form

8(p°) 6 (p? -m? ) { (7)) with fe .

Then Haag's assertion is as follows:
Theorem 18

Let B; be an almost local field such that B;(x;) lies in the subspace of
belonging to the irreducible representation [my, s;] of mass m; and spin
si. Form the states,

o(t) =[] B () ¥

then thr*n @ (t) exists in norm.

Proof

. o . 1 ' . .
Note first that el E._rf(l) At [@(t+ At) - ®(t)] exists where the limit

is to be understood in the norm. This is an immediate consequence of the
continuity properties discussed earlier in connection with the domain D.
Furthermore,in order to verify the strong convergence of ®(t) it is sufficient
to prove that }t]3/2| |do /dt|| -0 ast— 1w, because then
(’I
f dr
g TI?

T
L a2 < c

and this can be made arbitrarily small for sufficiently large t' and t”. Thus,
to prove the theorem it is sufficient to prove

t
oot il =11 ) ar®32 | <

kf¥?||a® /at|| - o .

Now Hd@ /dt” can be written out as a sum of terms of the form
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[0, REEOE R, . F VPR, E,

-
-xk)’ (81)
where two of the fj are actually time derivatives of the f!s appearing in the .
theorem and F is the vacuum expectation value of the B; fields, Note that
F is time independent because x] = x? =t, F can now be expanded in terms
of truncated vacuum expectation values. Then (81) appears as a sum of
products of integrals which are again of the form (81); however, now F stands|
for a truncated vacuum expectation value. ‘
There are now two steps in the proof, First, one must establish that
s%p If5(%, t) < ¢/ |t|3/2 for large (t) and

fd>?|f(2 t < ¢ [t[V2

Secondly, it must be shown that the (truncated) F's fall off faster than
any power of )

k-t . o
T |xjxp,f fork>2.
R | .

If both these things have been established, then (81) will decrease as
]t]("/Z)(k'z) . It remains to show that no terms with k = 2 contribute. This
is a result of the hypothesis that the B's ''solve the one-body problem'. The
two steps in the proof will be returned to in the two following sections,

Some remarks about the relativistic invariance of the procedure are
necessary here. What has to be shown at this point is that the same limit-
ing state is arrived at if one carries out the same procedures along another
time-like direction. For this it suffices to show that (1+i€ ﬁ:ﬁ) o (t)yields
the same result as ®(t), where m, Ne is an infinitesimal pure Lorentz trans-
formation along the direction n. The term 7. No (t) will give rise to no con-
tribution in the limit because it will involve one extra derivative of the term
which approached a constant in the preceding calculation.

The next step is to define "in" and "out' operators on the "in" and "out"
states which have just been defined. One writes

B om - lim_ B t)o) ,

out out L

. (82)

<Bifn > o,= lim (B0 o).
out

out

To be sure that these equations actually define linear operators one has
[
only to check the single valuedness; i.e. suppose ¥(t) =j2=3° @y (t) and ¥, = 0

or ¥You = 0, then one must have }il:lme(t)\l’(t) = 0 for the appropriate case.

But the families of vectors ¥(t) and (Bf wnH* Bf(t) ¥(t) bp‘ph have a strong limit,
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that of the first family being zero. Therefore tl_l)rtn (¥(t), (B"(’t))’;r B‘r(t)‘l’(t)) =0

S0 B{n ®;, = 0or B(t;ut ®our = O, whichever is appropriate.

The Bfy and Bfy and their adjoints are respectively defined on the "in'
and "out" states which span two subspaces of Hilbert space % iy and #& o
respectively.

We have no assurance thatﬂ’m = %om nor that % in = % - fgou, at the
present stage,and in fact examples show that the asymptotic states need not
be complete. (There are generalized free fields such that %, # # and
2 # #6 o) Thatis Axiom IV (Ruelle):

w. B, -#-%

Notice that ®®in is an "out' state; thus if X is orthogonal to % in» then
@x is orthogonal to ,{{ out .. Thus it suffices to assume £{;, = Z to get

out — .

The Bin and Byy which have been defined are associated with the correct
discrete masses m but do not have any simple transformation law under
Lorentz transformation. Ruelle's next step is to extract from the B-free
spinor fields with the appropriate transformation law under Lorentz trans-
formations to describe particles of spin s;. The construction will not be
described here,but the author believes that this is the first place where the
collision theory of particles of arbitrary spin has been treated systematic-
ally in so-called axiomatic field theory.

" There is one subject not explored in Ruelle's paper where further in-
vestigation would seem very valuable. That is the relation between the do-
mains of the operators Bjy , By and the domain of the original operators
A, A typical problem here would be whether one can show that all these
operators can be extended to the subspace of # consisting of all states
whose energy is less than E <w0,

2.5, ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF THE KLEIN GORDON
EQUATION [18]

An important role was played in Haag's original argument for the

asymptotic condition by an estimate of the asymptotic behaviour for large
times of the solutions of the Klein Gordon equation:

Tél”—)m' f oIk

~dmi” a3 exp [—imt(l -3’2)‘/’]{’” T v -v2y" ),

.X

T (k) dQ(k)

where V = %/t. (83)

This was one of the weak points of Haag's argument,because the class of
functions for which it is valid was not determined. Ruelle replaces this by
the following:
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Lemma

Let f be the solution of the Klein Gordon equation (] + m?)f(x) =0 given
by

£(x) = (2m)"2 f dpo(p®) 6(p* -m? )T F) e "P" ¥ (84)

where ?‘(ﬁ’) is infinitely differentiable and of compact support. Then f is
infinitely differentiable and f(Au) goes to zero as A -+ in two different
ways dependmg on whether the vectors Au (where 0<A<w) intersect the
support of &(p?-m? )f(p) or not; such vectors determine a cone C.

(a) IfuecC,
ltaw)| < A)x¥: 0<A<w (85)
where A(u) is continuous;
(b) Ifu ¢ c,
1&3“ [f(u)| =0 foralln=0,1,2,,.. (86)
and uniformly for u in compact subsets of () +d% =1,

Remark

It is helpful to recall the Riemann Lebesgue Lemma and one of its
proofs in order to see why the cone C appears. Consider

£(x) =fe””‘ dx (k)

and suppose?is integrable and has an integrable derivative, Then

f(x) ff(k)dk(1/1x) lkx)_ fdfﬂ({k)

so |i(x)] < (fldf(k)/dkldk)/l x|.

This procedure can be repeated if T has more integrable derivatives; each
yields one more power of |x| in the denominator,
For an integral of the form

‘/‘ei\/k’ +m? x?(k)dk

the situation is different because
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i,j«lk%mz ]i(eislk“m’x):ei\/k’«rmzx
k dk

ix

and the square bracket is singular at 0. Thus the previous argument can-
not be repeated indefinitely.

Proof

(84) can be written

ix) = [2(2#)2]'tfd9m () e®* T(p), (87)

where the integral runs over p?=m2 p® > 0 and de (p) = dp /JP +m? - Be-
cause the integral runs over a compact subset of P p space, one can differen-

Fig.1

tiate with respect to x* under the integral sign and always get convergent
integrals., Therefore f(x) is infinitely differentiable,
To study the asymptotic behaviour in A when x = Au, rewrite (87) as

1 e
f(Au) ﬁ—;f eisAf (s)ds , (88)
where Tu(s) = Tl—);r de(p) 6(s-p- )T (F) . (89)

Now s = p-u is a 3 plane with normal u, It intersects the hyperboloid in a
two-dimensional surface, which is the Lorentz transform of a sphere if u
is plus time-like and s is sufficiently large (Fig. 1). They do not intersect
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for sufficiently small s and in the transition case the plane is tangent to the
hyperboloid. For light-like u the plane intersects in a two-dimensional sur-
face which runs to infinity; the same is true for space-like u, When the 6
function is eliminated, there appears in the remaining integral over the curve
aJacobian whichis analytic in s as long as s does not take the value for which
the plane becomes tangent. If the support of T does not contain the P of the
point of tangency, fy(s) is infinitely differentiable. Since whatever u is,
fy (s) is of compact support because the integrand will get too singular at
k = 0. If the support of f does not include zero, however, the preceding
argument is valid. The analogue of K= 0 in the integral is pe Au,which shows
that one expects different behaviour for u € C and for u & C. (88) shows that
f(Au) vanishes faster than any power of the distance. Furthermore, it will
be uniformly continuous in u as long as u stays away from C. This estab-
lishes (b).

To prove (a) note that under the assumption u€ C, u is plus time-like,
so by a Lorentz transformation it can be brought into the time axis, Then
choosing for convenience u = (1, 0, 0, 0), we get for (89)

~ B 1 d3p = 2T
fu(s) = 2(2m 7 m 8(s ',/p + m?)f (p)

= 4—(-21”)—,/2 Js? - m? 6(s-m) J dw(®)T ()
fp} = Vst-m? ‘
= Js-m g(s-m), (90)

where g(s-m) is infinitely differentiable and of compact support on the
closed half axis 0 s < o, Then

f(xu) = (27)-2 fm dse™ [s-m g(s-m)

= -1/2 o -imA ® ~ish ¥
(2m)-2 e [ dse™Js g(s) .
Write

Js B(s) =Js F0)e™ + s (g(s) - B(0)e™ ).

The contribution from the first can be done exactly because

I e Mot fsds =7 i [1+it]Y? (91)

while the second has two integrable derivatives, so that its Fourier trans-
form is bounded in absolute value by a(u)|)t I'Z. Thus

ltvw)] < A) [ (92)
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Here A(u) can be taken to be continuous because the integral varies con-
tinuously under Lorentz transformations. v
' This Lemma has as an immediate consequence the following:

Lemma
If f satisfies the hypotheses of the preceding Lemma, then

-y
0 | when x° 5+

sup |f(x°,>?)| decreases as |x
X

and
fd)? |£(x° X')| does not increase faster than (x%)¥

when x% s+,
Proof

Because of the uniformity of the estimates in u one has that sup ]f(xo, ?(’)l
x&eC
decreases as ‘|x° ]-’/2 .
The intersection of the plane x° = const. with C is a compact set C; of
three-space which lie inside a sphere of radius <x®, The integral

dx If(x°, )?)l can be split into an integral over C; and over the rest of space.
The contribution from the rest goes to zero faster than any power of

x%, while If |\< const. |x, I"/z |x° |3.
Cl

2.6. THE REFINED CLUSTER DECOMPOSITION THEOREM (18]
First, a notation must be introduced to describe the n + 1 clusters:
él(El) = A(Xiu )A(Xil )""A(Xir(i)) . (93)

(The second index labels the points within a cluster; xj stands for the set
of vector variables x;,.... Xir(i) i=0,....n.) Define also

Aj(xi+ aj) = Uag, 1) A; (%) Ula;, 1)1, (94)

(If we had to deal with a set of fields A, an analogous definition could be
made by putting an extra index on Aj to indicate what the constituent fields
are in the il cluster. Ai would then be called a Bose or Fermi field re-
spectively if the product contained an even or odd number of anti-commuting
fields.) (93) will be referred to as a cluster product and (94) as a trans-
lated cluster product.

The translated cluster products will appear in vacuum expectation values
in different orders, and the next bit of notation labels these vacuum expecta-
tion values, Let 7 be the element (permutation) of the symmetric group on
n + 1 objects such that 7(0,1,....n) = (i5,....i,) (and g = £ 1 according to




50 A. WIGHTMAN

whether, when acting on A;.... A, the permutation of the Fermi fields is
even or odd). Then define

i (x+a) T"(Eo+ao:§1+31.----§n+an)

1

or < Ag, (Xio + a5, AKX, + a5, ). oL Ay (X +21))>,  (95)

Fj(a) = fd{ o(x) T"(x+ a) (96)
n
where ggej in the k);O[r(ik) + 1] vector variables,

Xo0Xp1- - ..Xor(o) «eseXpg ---.Xpyn)-

Note that in (95) and (96) x stands for the set xi,i = 0,....n,and a for the
setaj, 1=0,....n,

The aj that will be under discussion here are purely space-like, so
a =(0,3;). The diameter A of the set ay....ay is givenby A% = ?L;p(?fi -2y

Let this maximum be obtained for i = j and i’ = j’. Then A= (E)j -E)j: Y. Now
consider the family of all partitions of {0, 1,....n} into two subsets X and
X’ such that je X and j’€X’. The maximum of the distance of the set (aj;
ieX]} from the set {E)i' ; i'eX'} as X varies over the family is given by

. - o
p?=sup [ inf. (3] - ap)?].
X ieX iYeX

In the following discussion it will be assumed that this maximum is obtained
for the partition X = Y and X’ = Y” and that u? = (- 3p)% L€Y and L'€Y,
There is an elementary but basic inequality connecting u with the diam-
eter A:
nu> X, (97)

Proof

We divide the points a—:., into two classes: those which can be joined to E’j
by a chain of points such that 1) no point repeats, 2) the distance between
successive points is Ly, and those which cannot, We claim a"’j lies in the
former class, because every point of the latter class lies a distance >u
from every point of the former and if Y belonged to it we would have a
partition violating the definition of 4. Therefore, there is a chain of points

E 5},,....5}, such that

= laj-?j Isl?j-'é’p|+|§;,-.... I+....|....-a~ <nyp.

Notice that nu = X when the 3 are equally spaced along a line.
A final bit of notation: the truncated vacuum expectation values corres-
ponding to (95) will be denoted T} and
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Fr, (2) = [ dx p(x) Tf (x+a)
If
Y = {igsijse.--ik}s Y {0,1f, ... .1k} withk+k =n- 1,

where the elements iy within each of the subsets are written in their natural
order as integers. Define permutations I and J by

1(0,1,....n) = (0, 1,....n); J(0,1,....n) = (ig, ij... .1k, 1f, 1}, -+ .. k).
I is the identity permutation,

Now we are ready for the second step in the proof. Let A be a field
satisfying I, II and III but with test functions in A rather than 8.

Theorem

Let A be the diameter of the set {53. ...%n }J. Then, for any positive inte-
ger N,

lim AV [FT (@) - FJ¢ ()] =0 (97. a)

A=

provided that the configuration of the 2’ 's remains such that the above de-
fined j, j*, Y, Y’, and £ stay the same,

Remarks

(1) This theorem already has been stated by HAAG [17]. He gave a plausible
but somewhat hand-waving-type proof. ’
(2) It is this theorem which enables the commutation relations for the "in
and "out" fields to be proved.

"

Proof
Note first that Tﬁ- (x) - T-{- (x) vanishes when all x;,, (i€Y), are space-

like to all xi’ , (€ Y’), because of III (LC). Therefore,p(x) does not con-
tribute to the integral:

F (a) (a) fdxm(x)[TT(x+a) T (x+a)] ,
(o, ~xE ) <UE Xy, )+ (3 -3 )P,
310 - 3w [P < (Ria - Brar)? + (R - R+ @ -2 (98)

Now the square bracket is always greater than ||x1a - /|- |ai-ak||; and if,
when [(x;, - Xy, +(a;-a;/)]?< 0 for all a =0,....r(i),
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a’=0,....r(i')and 2l i€ Y, ‘e Y'.
Introducing the Euclidean distance,
e - xer| P = - x P + (K - Bire By (99)

one can get a sufficient condition for (99) to be satisfied as follows:
Note (99) can be rewritten as

[t - 0 [ < (R = Kol + (Rl - R + (8- B P (100)

The second term on the right-hand side is always bigger than

([¥iq - Xige| - |7 - 30 17
so the right-hand side is bigger than

2[R Bl + B~ T P 2R - Rl [21- 30

This takes its minimum as l)?:a - )?i,a,l varies when

(R - Rl = (12) |2- 50 |
then it is (1/2) lé‘; -3 Iz; thus (99) is guaranteed if

110 - sl <u /23

or, using (97);

|2 <22 /2n2,

| ,xia - xi/al

Because me - Xy 0(,H (me H + Hxx H)z, if one makes
(i)
xlf = 2l [P< a2 /607,

one has each ||xi, || <X/2V2n s0 [|xiy - Xior [P < (A/¥2n)? = A2/20%, Thus
there is a sphere in x space whose radius is AJ2n such that o(x) does not
contribute to the 1ntegral (98) for x in the sphere.

Next note that the transformation x - x+a, where all a are identical,
leaves TT invariant, so one can assume without loss of generality that the
cluster labelled zero has its first 2’ at the origin. Then

( .
\|alf = 5 E_ |laif = LX, where L = n+ igl r(i);

Nla]j< L. (101)
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To complete the proof, Ruelle introduces an important technical de-
vice: a partition of unity adapted to the problem. Partitions of unity are
a standard device of distribution theory [42], but the one used here has some
special features.

What is wanted is a family of non-negative functions f, (x)& /f v=12
such that

(1) sup f,(x) is bounded in v and the same holds true for each deriva-

tive of f,;
(2) f,(x) = £,(]|x]]) = 0 both if ||x)]>v+1 and ||x||<v-1;
(3) If,(x)=1L

Recall that for an arbitrary open covering of space-time [O;; i € I}
(where, according to the definition of open covering, I is some index set,
Oi is open for all i and every x lies in some Oj) a partition of the identity
is a family of ¢@;.; i€ 1 of infinitely differentiable non-negative functions
with support of @; ¢ Oi and such that if C is any compact set of space-time,
C intersects the support of almost a finite number of @i. In the present
case, the sets may be taken as Oj, the interiors of spherical shells of thick-
ness {2+ €) and integer radius, and one has to look into the details of the
proof, for example that of SCHWARTZ [42], to see that the property 1,
which is usually not required for a partition of unity, can be secured. It.
is true but will not be proved here.

Taking the f, for granted,then one gets

Fr, (@)-F1, (@) - (Fy, (3)-Fr, (@)1,

u>)\/2nw/_ -1

where @, = f, (x) ¢(x). (The series Z°3° ¢, converges to @ ind . There is no

contribution from the terms with v+ 1 <)\/2n~/— because support of @, is then
entirely in the sphere ||x||<X/2nJ2).

Since Ty - T+ is a temperate-distribution,it may be written as TT TT
= D%, where g is a continuous function of xof at most polynomial growth.
D% is the differentiation operator defined in Eq.(26). Thus

F‘Flg" (;)'Frlg" (&) f dx g, (x) D°g(x + a)

fdx [D% (x)]g(x+ a). (102)

Now the numbers sup ID _qg"(x)l decrease with v faster than any power
of v-1. (The reason for this is that ¢ 4 so sup |x®D’o(x)|<w. But'the

derivatives of @, are uniformly bounded in v. This supplies sup lx o (x) |<C
independent of v so

sup |D%9, (x)] <C(a,B)/v"

for all integer v and each B.)
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Thus, since

letx) | c 1+ ||x| B
|F}i',, (;)-E%_(,u (@) < Sw+1) sup |D%e, (x)|C,

“sup (14 Hx“z)k/zs S(v+1) sup |D%,(x)| C(1+2(v+1)? )k/(2 (1+222 L)%,
Ix]] =241

where S(v+1) is the volume of the sphere in x space of radius v +1 and the
inequality 1+ |.|x+a“2<(1+2||x|lz)x(1+2 ” aHZ) has been used.
Now the numbers C, = max D“g,,(_:g)| [CS(v+1)X (1+2 (1/+1)2)k/2 ] de-

crease faster than any power of v-1; therefore, in the inequality

| F1, (2) - Fi, (@)] < (E C,) (1+2L2% "
- T v>A/2%2n-1

the first factor decreases faster than any power of A~1,
(ZCy decreases as N-(I") for £ >2; as proof of this compare with an
integral which can be integrated explicitly.) Therefore,

. N I (=2 ) 2 -
ilinwh [FTg(a) F,r2 (@) =0

for all N, as was to be proved.

It is well to look over the proof to see why it works, Evidently, it
uses the sphere in %, within which there is no contribution to the integral.
Furthermore, it uses the assumption that the T{ are temperate in order
to conclude that they can be written in terms of a derivative of a continuous
polynomial bounded g.

The next theorem is the one which gives the title to this section.
Theorem

With the same hypotheses as in the previous theorem but, in addition,
the requirement that p = 0 be an isolated point of the physical momentum
spectrum, F‘i"(,(a_)) as well as D, F{, (2’) where Dy -is any derivative with re-
spect to the a? are functions in 4.

Proof *

Introduce now in x-space the new variables,
X = X0 £ = Xit, 0 = X{,05 & = Xio -~ Xi,0 (i#i0)
£ = Xy -Xi0, (' 1) Sia= Xia - Xio (@ #0);

Eirgd = Xilg' - Xjrg (al# 0).
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That is, single out one point with index in Y, X ¢ and one with index in Y,
Xig. Introduce the first as x and their difference as §. Then introduce
the differences of the first points of the clusters in Y relative to x; , and
call them £;; introduce the differences of the first points of the clusters in
Y’ relative to x;.y and call them §;. Finally, introduce the differences be-
tween the x;y and the first point of their clusters &y =Xiy - Xjg, and the
corresponding differences between the xy and the first point of their clus-
ters §p gy = Xjrgi- Xyrg! -

Denote by £ the family of all & §v&ia&er. Then Ty is afunctionof £ and £/,
and ¢ a function of x,§,E. Define Fourier transforms by

(}T1)(P.P) =<27r)'2Lf...ded_ge'“wBé’ T (5, 8)

(F ¢ (p, P, P)= (27r)-2‘“1’f .. .fdxd&'dgeﬂ“”“fi*’l’_ag (x, £, E).

Here the P's are labelled in the same way as the §'s. Incidentally, this
formula displays what was already clear from first principles: F-R, is an
infinitely differentiable function of at most polynomial growth, Then

Fr, (a) = (21r)2fdef(‘} @ (0, P, P)(F T1 ) (F T ) (P, P)

ik 4%
X exp+i [P(aizo- a )+ i?i Pi(a; - aj ) +i’-Ei’ Pi(ay-ay)].
- -1

Up to this point in the proof there is essentially nothing but notation
for Fourier-transforms. Now comes the idea. Notice that (3 TTJ Y(P,P)=0
unless Pe VM (where VM stands for all vectors P with Q2> M2, ¢?>0 and
the bar denotes closure). This is true because P is conjugate to the differ-
ence §=Xxyg - Xjo. (Insert U(a, 1) just after A(Xioo) in the vacuum expecta-
tion value, multiply by e 1Qa and integrate, The result has to be zero ex-
cept when Q is in the physical spectrum but has the effect &€ -& +a so that
P must be in the physical spectrum.) M is the assumed lower limit on the
mass of the system. The vacuum does not appear as an intermediate state
because the vacuum expectation values have been truncated. A full formal
proof of this last intuitively obvious statement is contained in [27]. Further-
more if K is the permutation K(0,1,....n)>(i%....1, ig....1x), K changes
§ into § without changing £ so (> T-F) (P, P)=0 unless Pe VM Now define
(¥ (p, P, P)=h(P)3(p, P, lg)e/ where h is infinitely differentiable on Vi
‘and vanishes outside of V.. Then, clearly

Fr, ()= Fy, (a), F, (a) =0 . (103)

Now the argument of the preceding theorem was made for two permutations,
I and J, but it would differ only in notation if carried out for J and K. Thus

lim A FT]Z (@) =0 (104)

A—>w
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under the same conditions described in the preceding theorem. Those con-
ditions involve the points j, j*, £, £ and the sets Y and Y’. But if the @ have
a configuration such that j, j, etc. are different, the conclusion is the same
and there are only a finite number of possible choices for the j,jl...
Thus, whatever the configuration of the a, (104) holds. Applying D, to F
is equivalent to changing @, so the theorem is proved,

For the application to Haag collision theory one needs the preceding
conclusion but for almost local fields. Actually, this case is covered by
the preceding argument if a change in notation is made. Write

B; (’S) =U(x, 1)_A_i (_cBi)U(Xp 1)-!
and call x; the former variables aj, and replace a by x. Then
F(x) = (¥, By (xq) By(x1). . . . By (x5) %)

is a special case of the (untruncated) F's considered before with @ = g, &
P @ e @_q_Jn . The truncated vacuum expectation values are defined with
respect to the B's as in Part One, not as above with respect to the A's, but
one sees immediately from the above proof that the vacuum will be elimi-
nated equally well in the intermediate states by this procedure,

Cbrollary

The preceding theorem is also true for truncated vacuum expectation
values of almost local fields built out of local fields (test functions again
in 4 ) provided the vacuum is an isolated point of the spectrum.

2.7. FINAL REMARKS ON THE HAAG-RUELLE COLLISION THEORY

The preceding sections have explained how one can construct collision
states of all the elementary systems associated with irreducible represen-
tations of the Poincaré group contained in U. A natural question is then:
Are the collision states unique? The answer is yes. Suppose that by choos-
ing two different sets of B's, say B and B, and carrying out the preceding
constructions, one was led to two states ®(t) and (D(t) The arg‘ument wh1ch
follows Eq. (81) shows that they actually converge to the same "in" or "out"
state, The argument goes just as before, except that instead of the terms
with two operators not contributing because thelr time derivatives are zero,
here it is because the contributions of ® and  cancel. Both cases are
covered by the statement that there is no contribution because the one-body
problem has been solved, assuming the-one particle states B;¥, and Bf‘l’o
are normalized in the same way. Thus, the Haag-Ruelle Collision Theory
will give a unique set of "in" and "out" fields and consequently a unique col-
lision matrix.

These statements hold even if Axiom IV does not hold. Then, however,
the S operator is a unitary mapping of h /] ou Onto f& ju which is undefined on
those vectors of #& which are not in out- There might be some point in
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investigating (in the spirit of Heisenberg's elementary particle theory) theo-
ries for which Axiom IV does not hold.

[1]
i2]

(3]
4]

[4a]
(5]
(6]
(1

(8]
(9

[10]
[11)
(12]
(13]

(13a]
[14]
{15])
[16]
17}

(18]
[19]
[20]

[21]
[22]
[23]
[24]

[25)
[26]
(27

(28]
[29]

[30]

(31
[32]

REFERENCES

JOST, R., Eine Bemerkung zum CTP Theorem, Helv. Phys. Acta 30 (1957) 409.

HALL, D. and WIGHTMAN, A.S., A theorem on invariant analytic functions with applications to
relativistic quantumn field theory, Dan. Mat. Fys. Medd. 31 (1957) 5. ~

BORCHERS, H.J., Uber die Mannigfaltigkeit der interpolierenden Felder zu einer kausalen $ Matrix,
Nuovo Cim. 15 (1960) 784.

SYMANZIK, K., Grundlagen und gegenwartiger Stand der feldgleichungsfreien Feldtheorie, Wemer
Hersenberg und die Physik unserer Zeit, Vieweg, Braunschweig (1961).

JOOS, H., Group theoretical models of local field theories, Math. Phys. (in press).

SCHROER, B., private communication,

GLASER, V., private communication; KALLEN, G., private communication,

WIGHTMAN, A.S., Quelques problemes mathématiques de la théorie quantique relativiste, Les Pro-
blemes Mathémafiques de la Théorie Quantique des Champs, CNRS, Paris (1959) 1-38.

ARAKI, H., HAAG, R. and SCHROER, B., The determination of local or almost local field from given
current, Nuovo Cim. 19 (1961) 40.

BARDACKI, K. and SUDARSHAN, E.C.G., Local fields with terminating expansions, Nuovo Cim. 21
(1961) 722.

EPSTEIN, H., Generalization of the "edge of the wedge" theorem, J. Math. Phys. 1 (1960) 524.
GREENBERG, O.W., Generalized free fields and models of local field theory, Ann. Phys. 16 (1961) 158.
DELL'ANTONIO, G.F., Support of a field in p-space, J. Math. Phys. 2 (1961) 759.

LICHT, A.M. and TOLL, J., Two point function and generalized free fields, Nuovo Cim. 21 (1961)
346.

GREENBERG, O.W., private communication.

ACHARYA, R., Some Borchers' type theorems in quantum field theory, Nuovo Cim. 23 (1962) 580.
ROBINSON, D.W., Support of a free field in momentum space (in press).

GREENBERG, O.W., Heisenberg fields which vanish on domains of momentum space (in press).

HAAG, R., Quantum field theories with composite particles and asymptotic conditions, Phys. Rev. 112
(1958) 669-673. _ _ -
RUELLE, D., On the asymptotic condition in quantum field theory, Helv. Phys. Acta 35 (1962) 1,7.
DELL'ANTONIO, G.F., On the connection between spin and statistics, Ann. Phys. 16 (1961) 153.
ARAKI, H., On the connection of spin and the commutation relations between different fields, J.Math.
Phys. 2 (1961) 267.

BURGOYNE, N., On the connection of spin with statistics, Nuovo Cim. 8 (1958) 607.

LUDERS, G. and ZUMINO, B., Connection between spin and statistics, Phys. Rev. 110 (1958) 1450.
SUDARSHAN, E.C.G. and BARDACKI, K., The nature of the axioms of quantum field theory.

HEPP, K., JOST, R., RUELLE, D. and STEINMANN, O., Necessary condition on Wightman functions,
Helv. Phys. Acta 34 (1961) 542.

BORCHERS, H.J., On the structure of the algebra of field observables, Nuovo Cim. 24 (1962) 214.
WIGHTMAN, A.S., Proc. Int, Congress of Mathematicians (14-23 Aug. 1962).

ARAKI, H., On the asymptotic behaviour of vacuum expectation values at large space-like separations,
Ann, Phys, 11 (1960) 260.

GELFAND, I. and VILENKIN, N. Ya., Generalized functions 4, 32,

WIGHTMAN, A.S., Quantum field theory in terms of vacuum expectation values, Phys. Rev. 101
(1956) 860.

JOST, R. and HEPP, K., Uber die Matrixelemente des Translations-operators, Helv. Phys. Acta 35
(1962) 34; UHLMANN, A., Spectral integral for the representation of the space-time translation group
in relativistic quantum field theory, Ann. Phys. 13 (1961) 453-462.

SCHWARTZ, L., "Théorie des distributions”, Paris 2 (1957) 95.

Ibid. 2 90.



58

[33]

[34]
[35]
[36]
37
(38]

[39]
[40]
[41]

[42]
[43]

[44]

A. WIGHTMAN

ARAKI, H., HEPP, K. and RUELLE, D., On the asymptotic behaviour of Wightman functions in space-
like directions, Helv, Phys, Acta 35 (1962) 164.

GUTTINGER, W.

STONE, M.H., Linear transformations in Hilbert space (to be published).

WIGHTMAN, A.S. (in preparation).

ZERNER, M., Seminaire de Physique Mathématique de Marseille.

HAAG, R., Discussion des axiomes, Problmes mathématiques de la théorie quantique des champs,
CNRS, Paris (1959) 151-162.

REEH, H. and SCHLIEDER, S., Bemerkungen zur Unitiriquivalenz von Lorentz invarianten Feldem,
Nuovo Cim. 22 (1961) 1051; Uber den Zerfall der Feldoperatoralgebra im Falle einer Vacuumentartung
(in press).

RUELLE, D., Helv. Phys. Acta 35 (1962) 162-163.

HAAG, R. and SCHROER, B., The postulates of quantum field theiry (in press).

SCHWARTZ, L., "Théorie des distributions", Paris 1 (1957) 22-23.

SYMANZYK, K., Green's functions and the quantum theory, Lectures in theoretical physics, BUTTEN,
W., Ed., New York 3 (1961); On the many-particle structure of Green's functions in quantum field
theory, J. Math, Phys. 1 (1960) 249; Green's function method and the renormalization of renormal-~
izable quantum field theories, Lectures in theoretical physics, J AKSIC, B., ed., Hercegnovi (1961);
KALLEN, G., Properties of vacuum expectation, Values of field operators in dispersion relations and
elementary particles, Wiley, New York (1960).

BIEBERBACH, "Lehrbuch der Functionen Theorie", Bielefeld (1952) 156.



