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Bulk Space-time Geometries in AdS/CFT

by Andrew Mark HICKLING

The AdS/CFT correspondence provides a geometric description of certain strongly
coupled conformal field theories (CFTs). These CFTs are conjectured to have a dual de-
scription involving ‘bulk’ space-time geometries that solve Einstein’s equation. It is a
holographic correspondence, so the CFTs in some sense lives on the boundary of the
bulk. In the regime where this description is applicable, the holographic CFTs are at
strong coupling, and can be placed on non-trivial curved space-times. In these contexts,
other available tools, such as perturbation theory and lattice techniques, break down.

Under this correspondence, physical quantities in the CFT can be extracted from the
bulk geometry. This means that properties of the CFT will be reflected in features of the
dual bulks. Using a mix of basic geometry and numerical methods, we explore ways in
which the bulk space-time geometries in the AdS/CFT correspondence reflect physical
properties of the dual CFTs. We will, for instance, discuss the role of certain features of
the bulk geometry in describing a large scale limit of the CFT state. This will motivate us
to construct a class of bulk geometries numerically that describe this large scale limit.

We will also find that the geometric tools that come with the bulk description allow
us to make powerful statements about the CFTs which would be non-trivial to derive
using traditional quantum field theory methods. We will be able to derive bounds on the
energy gap and vacuum energy density of these CFTs using basic geometric methods.
Finally, we will end with a conjecture of a bound on a finite temperature phase transition
in the CFT, which we will present analytical and numerical evidence for using similar
bulk geometric arguments.
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Chapter 1

The AdS/CFT Correspondence

The AdS/CFT[1, 2, 3], or Gauge/Gravity, correspondence is an example of a duality. A
duality relates two equivalent descriptions of the same underlying theory. This particular
duality relates certain string theories (or M-Theories)to gauge theories (which are also
conformal field theories (CFTs)). These theories look very different. They are written
in terms of different degrees of freedom, one theory with strings, the other particles.
What’s more, string theory is a theory of quantum gravity, so its spacetime geometry is
dynamical, whereas for the gauge theory the spacetime is a static background which the
theory responds to but does not affect. Despite this, the AdS/CFT conjecture asserts that
these are simply two different ways of describing the same underlying theory.

There is no proof of this correspondence, although it has been extensively tested and
there are limits in which it is thought to be understood. However it provides a powerful
tool to further our understanding of both string theory and gauge theory. In particular,
this duality has the potential to help in the search for a theory of quantum gravity, by
recasting the problem in terms of gauge theories. The focus in this thesis will be on
the application of this correspondence in the other direction. We will focus on a limit
where string theory can be described by classical supergravity. Under the duality, this
gets mapped to a limit of the field theory where it is strongly coupled, and has a large
number of degrees of freedom. Strongly coupled field theories turn up in the standard
model (QCD), as well as in effective descriptions of condensed matter systems. While
the duality in its current form only applies to a very particular class of gauge theories
(to which QCD does not belong), one might hope to get a qualitative understanding of
features of such strongly coupled field theories by studying those that can be described
in this way.

In this limit, the physical properties of the gauge theories are encoded in features of
classical supergravity solutions. In fact, there is always a particular sector of solutions
within the supergravity where the only non-trivial field is the metric, and where this
metric satisfies the vacuum Einstein’s equation with negative cosmological constant. In
this ‘universal’ sector, the physics of the field theory is described by the geometry of this
gravitational metric. As we will see, this geometric description makes it quite natural to
put the gauge theory on a curved spacetime.

As a stepping stone towards quantum gravity, curved space quantum field theory
has received many decades of attention. This has yielded many important results, such
as Hawking radiation[4]. However, basic physical quantities in curved space QFT can
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be hard to calculate when the spacetime is generic. By this I mean that, given a specific
theory defined on a curved spacetime, it’s very difficult to work out how these physical
properties depend on the choice of spacetime. For instance, consider the problem of
trying to find the energy spectrum of modes in a scalar field theory defined by the action

S =

∫ √
−g
(
∂µφ∂

µφ+m2φ2
)
. (1.1)

On flat space, or on a given highly symmetric spacetime, this is simple. Once the space-
time is made general, however, the problem of finding this spectrum as a functional of
the spacetime is prohibitively difficult.

As we will describe, under the duality, the gauge theory’s spacetime becomes a bound-
ary condition for the string theory partition function. In the ‘universal’ sector of the su-
pergravity limit, this duality translates the problem of studying strongly coupled gauge
theories on arbitrary spacetimes into the problem of solving Einstein’s equation for some
general boundary conditions. This is also not a solved problem, but recasting curved
space quantum field theory in terms of this geometric problem means there is a new set
of tools to use to derive results.

In this thesis we will explore how features of this dual gravitational spacetime known,
as we will explain, as the ‘bulk’ spacetime, reflect properties of the CFT, and also how they
can be used to constrain these features. We will use a mix of numerical and analytical
methods. The numerical methods will be introduced in Chapter 2, and the analytical
methods will be introduced in this chapter, with more details when we use them. We
will start in Chapter 3 by exploring the role of a special class of bulk spacetimes, which
are the near-horizon geometries of extremal horizons, in describing a large-scale limit of
CFT states. In so doing we will find that we can write down CFT states with similar large
scale limits to those captured by these bulks, but which can’t themselves be described by
the large scale limit of near-horizon geometries. This will motivate us to consider more
general bulk spacetimes in Chapter 4 which fill this gap. In Chapters 5 and 6 we will
then explore how the bulk geometry can allow us to derive bounds on the energy gap
and vacuum energy of the CFT as a function of the CFT’s spacetime geometry. Finally,
in Chapter 7 we will present some evidence for a bound on a ‘temperature gap’ which
is relevant for a confinement/deconfinement phase transition that the CFT undergoes
when it is put on certain spacetimes.

In this chapter we will begin by giving a brief introduction to the AdS/CFT conjecture
and why it works. We will start with a short description of the origin of the conjecture,
and its precise statement. Then, moving to the supergravity limit, we will explain how
the duality works in practice in this case. We briefly discuss aspects of the gravitational
side in 1.4, and CFTs in 1.5, before moving into the dictionary that maps between the
two in Section 1.6. We will give examples of how this works in the simplest cases in 1.7.
Finally we will briefly describe some promising applications of this correspondence to
condensed matter and high energy physics in 1.8, and conclude in 1.9 with a summary of
some of the evidence we have that the correspondence holds. For more detailed reviews
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of the AdS/CFT correspondence see [5, 6, 7], and for a review of the use of AdS/CFT to
explore CFTs in curved spacetime see [8].

1.1 Origin of the Correspondence

1.1.1 Maldacena’s Conjecture

This surprising conjecture was first arrived at by Maldacena through the following thought
experiment [1] which is also described in, for instance, [6]. He considered a stack of N
D3-Branes in 9+1 dimensional type IIB string theory in two different regimes, and asked
what low energy physics decoupled in each of these cases.

1. The first case is gs → 0 with N fixed. In this case we can ignore the gravitational
back-reaction of the branes. The vacuum state is then a stack of D-branes sitting
in Minkowski space. The low energy theory of excitations about this state has two
decoupled sectors. One sector corresponds to open strings that start and end on the
branes. Thought of as a theory on the 3 + 1 dimensional brane, this is a U(N)N = 4

SYM gauge theory. The other sector is the massless spectrum of the closed strings
propagating in the bulk. This is type IIB supergravity on a flat background. These
two sectors are decoupled at low energy.

2. The second case is gs → 0, N → ∞ but with gsN fixed. In this regime we can
use supergravity, but we can no longer ignore the gravitational back-reaction of the
branes. Type IIB supergravity admits black p-brane solutions that carry the charge
to source a p + 1 form potential (R-R field). In this case, we are interested in the
p = 3 solutions.

There are two free parameters for these solutions, the mass M and charge N . These
are constrained by the requirement that the supergravity solution doesn’t have a
naked singularity[5]

M ≥ N

(2π)pgsl
p+1
s

. (1.2)

The low energy limit corresponds to taking the extremal solution that saturates
(1.2), so this is the vacuum solution we should consider. The low energy theory
then consists of excitations about this vacuum, and this again has two decoupled
sectors.

If you consider modes close to the horizon, then their energy as measured by an
observer at infinity can be made arbitrary low because of the redshift. We can take
an infinite red shift limit, and consider modes living in the AdS5 × S5 near horizon
geometry of the extremal horizon. This is type IIB string theory onAdS5×S5. Since
the low energy limit is provided by the redshift rather than a long-wavelength limit,
this theory includes the full spectrum of the massive string states and not just the
massless supergravity sector.
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You can also consider long wavelength excitations that live in the asymptotically
flat spacetime away from the horizon. In the infinite long wavelength limit, this is
described by Type IIB supergravity on Minkowski space·

These two sectors are decoupled at low energy because the infrared excitations
near the extremal horizon can’t escape the gravitational well, and the supergravity
modes away from the horizon have a long wavelength compared to the absorption
cross-section of the black brane.

These two theories are both low energy effective descriptions of the same theory,
which hold in different limits. We can take the large N limit of the first case, then both
have gs → 0 and N →∞. Maldacena’s claim is that these two low energy effective theo-
ries are equivalent descriptions of the same theory, that have merely been written down
in terms of degrees of freedom that are appropriate to different limits. Both theories con-
sist of two decoupled sectors, and they share a common 9 + 1 dimensional type IIB flat
space supergravity sector. The assertion is therefore that the other pair of sectors that
apparently differ are dual. In other words, type IIB string theory on an AdS5 × S5 back-
ground is equivalent to U(N) SYM in 3 + 1 dimensions. It should be noted that although
the above argument was made in a large N limit, he made the stronger conjecture that
the two theories are in fact equivalent at any value of N .

1.2 Statement of the Correspondence and a ‘Classical’ Limit

The correspondence argued for above can be stated more precisely as a relation between
two partition functions [3]

Zstring|Φ = ZSYM [J ]. (1.3)

The left-hand side is the partition function for Type IIB string theory on AdS5 × S5, and
the right hand side is the partition function for U(N) SYM in 4d. The string theory
partition function is a functional of some asymptotic boundary conditions, represented
schematically by Φ. These include, for instance, fixing the spacetime to be asymptotically
AdS5×S5. In the gauge theory we’re actually considering the generating function, which
is a functional of some applied source terms J . Under this correspondence, the gravita-
tional boundary conditions get mapped to the gauge theory sources Φ → J . In fact, the
AdS5 factor has a particular type of asymptotic structure at infinity called a conformal
boundary, which we will explain in 1.4.1. On this 3 + 1 dimensional conformal boundary
there is , as we will discuss, a conformal class of metrics. The boundary conditions fix a
representative of this conformal class. This metric is the spacetime that the SYM lives on,
and we think of it as one of the sources J in the generating function. A more precise map,
along with a more detailed description of these boundary conditions will be discussed in
1.6.
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For now, we just need the relationship between a few parameters in the two theo-
ries[9, 6]

gs = g2
YM

`4 = 4πgs
(
α′
)2
N

(1.4)

where gs is the string coupling, gYM the Yang-Mills coupling and ` is the AdS5 and S5

radius.
We are going to consider a particular limit in which the gravitational theory simplifies.

The first step is to take a weak coupling gs → 0 limit of the string theory. The precise limit
is to take gs → 0 while keeping

λ = gsN = g2
YMN (1.5)

fixed[9]. From the point of view of the gauge theory this corresponds to the t’Hooft planar
limit introduced in [10].

The next stage is to take the large λ limit. From the gauge theory perspective, this
means taking the planar CFT to be strongly coupled. From (1.4) we see that from the
gravitational perspective the AdS length scale becomes very large compared to the string
length `s =

√
α′. In this limit, we can ignore corrections arising from quantum loops

on the worldsheet[6], and excited states on the string have large masses. We are left
with an effective theory with only a small number of massless fields, namely classical
supergravity.

Under these conditions the action is approximated by that of the massless super-
gravity sector, and the partition function is approximated by a sum of classical saddle
points[8]

Zstring ≈
∑
φi|Φ

e−S[φi]sugra . (1.6)

Here the φi stand for field configurations that solve the supergravity equations. The
boundary conditions Φ for the partition function become the boundary conditions for
the field equations, so the sum above is restricted to those φi which are consistent with Φ.
In this limit, it is these supergravity boundary conditions that get mapped to the sources
in the SYM under this correspondence. One of the fields is a metric, and its boundary
conditions are what determine the conformal boundary, and hence the spacetime the
SYM lives on. Boundary conditions on the other fields in the supergravity are mapped
to source terms for for various local operators in the field theory. It should be stressed
that this is not a classical limit for the field theory, so this limit of the correspondence
allows us to study a strongly coupled quantum field theory outside of the classical limit,
by solving the classical equations of motion of a dual theory.

In this limit the supergravity actions are very large, so in the case that there are multi-
ple solutions with the same boundary condition, the minimum action solution dominates
this sum. If as we vary the boundary conditions the values of S(φi) for two different solu-
tions cross, you will get a discontinuous jump from one solution dominating the partition
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function to another. This leads to a discontinuous phase transition in the dual field the-
ory in this large N, strong coupling, limit, as the corresponding sources are varied in the
same way[3].

The relationship between the partition functions in (1.6) works as well at finite tem-
perature[8]. In the supergravity, we can consider static thermal equilibrium states at
temperature T by going to Euclidean signature and including a thermal circle of period
β = 1

T in the metric. This gets carried over to the conformal boundary, and so to the
SYM’s spacetime. The field theory is therefore also at finite temperature and, in this way,
the temperature is one of the boundary conditions that you can fix.

The process for performing calculations in this limit of AdS/CFT can therefore be
summarized as follows

1. Choose sources in the SYM generating function. These will get mapped to bound-
ary conditions for the supergravity equations.

2. Solve the supergravity equations using these boundary conditions

3. If there is more than one solution, choose the one with minimum action

4. Evaluating its action yields a saddle point approximation for the SYM’s generating
function in a large N , strong coupling, limit.

How we go about these steps in practice, will be explained in more detail in the following
sections.

1.3 More General Correspondence and The Universal Sector

In Maldacena’s original argument, the bulk spacetime described by the string theory was
asymptotically locally AdS5 × S5. In fact we can consider more general cases where we
start from Type IIB String theory in 9 + 1, or M theory in 10 + 1, dimensions and com-
pactify in different ways so that we end up with bulk spacetimes which are asymptoti-
cally locally AdSn+1 ×X , where X is some internal space. The dual field theory is then
some conformally invariant field theory (CFT) that lives on the n dimensional conformal
boundary of the AdSn+1 factor. The details of the theory depend on the choice of internal
space X[8].

There is then a corresponding limit like in Section 1.2, and we can solve supergrav-
ity equations for bulks that are asymptotically locally AdSd+1 ×X to describe a strongly
coupled CFT in an analogous large ‘N‘ limit. In fact, for various choices of X , there is
always a class of solutions which factorize globally to the formM×X , whereM is a so-
lution to the vacuum d+ 1 dimensional Einstein’s equation with a negative cosmological
constant[8]. This is called the universal sector because it’s independent of the details of
the particular CFT, which is encoded in the space X . As we’ll explain in more detail in
Section 1.6 this corresponds to a sector of dynamics in the CFT which describes how the
one-point function of the stress tensor depends on the spacetime the CFT lives on. Since
there is no non-trivial dependence on any other supergravity fields, the source terms for



1.4. Gravity in Asymptotically Locally AdS Spacetimes 7

local operators in the CFT corresponding to the boundary conditions of these fields have
not been turned on.

The parameters of this gravity sector are related to the full D = 9 + 1 or D = 10 + 1

dimensional supergravity parameters via[8]

Gd+1 =
1

volX
GD

Λ = −d(d− 1)

2`2

ceff =
`d−1

16πGd+1
.

(1.7)

The parameter ` is a length scale associated with the internal space X which sets the
size of the cosmological constant Λ. The parameter ceff, is proportional to N2 for gauge
theories, and is related to the number of degrees of freedom in the CFT [8].

To look at other operators, we need to deform the field theory by sources, and as we’ll
see this corresponds to adding fields to the bulk gravitational theory. Strictly speaking,
we should only add combinations of fields that are consistent from the supergravity per-
spective. By this we mean that we can only add bulk fields that are present in the full
supergravity (either in the full D dimensional theory, or ones that arise from the dimen-
sional reduction), and we need to check that it’s consistent to set the rest to zero, so it
constitutes a ‘consistent truncation’ . For an example of a ‘top-down’ consistent trunca-
tion see for instance [11, 12]. However, we will take a ‘bottom-up’ perspective in this
work, as is often done in applications to condensed matter physics (called AdS/CMT)
[13], and add the fields corresponding to the deformations we want to consider, without
worrying about finding a consistent truncation of a full supergravity with this combina-
tion of fields.

1.4 Gravity in Asymptotically Locally AdS Spacetimes

We are left with d + 1 dimensional gravity, satisfying Einstein’s equation with negative
cosmological constant

Rµν = − d
`2
gµν . (1.8)

The maximally symmetric vacuum solution to these equations is AdS space. A nice
way to arrive at AdSd+1, which makes its symmetry group manifest, is by considering
the space Rd+2 with a diagonal metric of signature (2, d) [14] . This metric is invariant
under the group SO(2, d). We then consider the orbit under the action of SO(2, d) of a
point a distance ` from the origin of this space, so we consider a slice of this space which
is a constant distance from the origin

X2
0 +X2

d+1 −
d∑
i=1

X2
i = `2. (1.9)
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This space is AdSd+1, but with a compactified time direction, and is by construction in-
variant under SO(2, d).

To obtain an intrinsic description of AdS we can solve the constraint (1.9) by setting

X2
0 +X2

d+1 = `2 + r2

d∑
i=1

X2
i = r2.

(1.10)

At fixed r these describe a circle and a d− 1 sphere, so we use polar coordinates to write
the induced metric as

gAdS = −(`2 + r2)dψ2 + r2dΩ2
d−1 + `2

dr2

`2 + r2
. (1.11)

Here ψ is a timelike coordinate but it is periodic with period 2π, which means we admit
closed timelike curves. However, we can get around this simply by considering instead
the universal covering of this space, obtained by decompactifying ψ to arrive at a non-
periodic time coordinate t[15].

1.4.1 The Conformal Boundary and AlAdS

AdS (1.11) has a conformal boundary, which we can think of as the spacetime on which
the dual CFT lives, in a sense which will become clearer when we discuss the map be-
tween the CFT and gravity in more detail. When we say that a spacetime (gµν ,M), de-
fined by a metric gµν and a manifoldM, has a conformal boundary ∂M, we mean that
the following holds[16, 17]

• There is a smooth spacetime (ḡ, N̄ ) with a boundary ∂N̄ , such thatM is diffeomor-
phic to the interior of N̄ , N

• There is a smooth function Z(x) on N̄ , called the defining function, such that in the
interior N , ḡ = Z(x)2g

• Z(x) > 0 throughout N and on ∂N̄ Z(x) = 0, and dZ 6= 0.

The conformal boundary ∂M of M is defined as the regular boundary ∂N̄ of N̄ .
Given a defining function Z(x) that satisfies the above properties, the function ω(x)Z(x)

satisfies them too for any everywhere positive ω(x). For any given choice of Z(x), ḡ
induces a metric on the boundary ∂M. The set of all possible boundary metrics on ∂M
defined in this way forms a conformal class {ḡ}, and (∂M, {ḡ}) defines the conformal
boundary on which the CFT is defined.

For AdS (1.11), if we set r = 4−`2z2

4z then we find

gAdS =
1

z2

(
`2dz2 −

(
1 +

l2z2

4

)2

dt2 +

(
1− l2z2

4

)2

dΩ2
d−1

)
. (1.12)
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We see therefore that ḡ = z2gAdS has a smooth boundary at z = 0, on which the metric is

g∂AdS = −dt2 + dΩ2
d−1. (1.13)

This is the conformal boundary, we’ve taken Z = z as the defining function, and g∂AdS is
the corresponding representative of the induced conformal class.

More generally, if a manifoldMwith a conformal boundary satisfies Einstein’s equa-
tion, then it can be shown that you can choose coordinates near the conformal boundary
such that the metric takes the form[18]

g =
1

z2

(
`2dz2 + hab(x, z)dx

adxb
)
. (1.14)

We see that (1.12) is a special case of these coordinates. Here the indices a, b run over
the d dimensional conformal boundary spacetime directions, and the xa are coordinates
over this boundary. This construction with the coordinates (z, xa) is known as Fefferman-
Graham coordinates. We can use the coordinate z as the defining function in the above
construction, and the metric h = hab(x

a, 0)dxadxb extracted in this way is a representative
of the conformal class {ḡ}. In fact, the AdS isometry group in the bulk SO(d, 2), is the
(d− 1) + 1 dimensional conformal group, and its action on the conformal boundary is to
generate conformal transformations[14].

Given this, we can now define an asymptotically locally AdS (AlAdS) spacetime as a
solution to (1.8) with a conformal boundary[17]. Given a choice of conformal boundary1,
the gravitational theory is then described in this universal sector by AlAdS spacetimes
with this conformal boundary, and the dual CFT lives on this conformal boundary. This
is the sense in which the duality is holographic, we refer to the gravitational description
as the ‘bulk’, and the CFT as the boundary. We will always use the parameter d to label
the number of dimensions, where the bulk is d + 1 dimensional, and the boundary is
(d− 1) + 1 dimensional.

We can start to see how this holographic duality will work by building a holographic
CFT from a scalar field theory on AdS[6]. The scalar field theory can be defined in the
usual way in terms of some action S =

∫
AdSd+1

L(Φ). However, if we want to have a the-
ory that we can evolve in time, then we need to supply boundary conditions in addition
to this action. This is because there are no Cauchy surfaces in AdS, we always have to
apply extra boundary conditions at the conformal boundary[14], since light rays can get
to the conformal boundary and back in finite time [6]. These boundary conditions will
be written in terms of some function J on the conformal boundary. We can consider the
semi-classical approximation of the scalar field theory partition function as a functional
of these boundary conditions2

Z[J ] = exp

(
−
∫

AdSd+1

L(ΦJ)

)
, (1.15)

1A choice of spacetime and a corresponding conformal class of metrics.
2As we will discuss below, this is divergent and needs to be renormalized.
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where ΦJ is the solution to the ‘bulk’ field equations. Now we can treat the function J

as the source conjugate to a field φ living on the conformal boundary, and think of the
functional Z as a generating function for a theory on this boundary spacetime. Since the
SO(2, d) isometry generates conformal transformations on the boundary, this ‘boundary’
theory will be conformally invariant so long as the ‘bulk’ action L(Φ) respects this isom-
etry.

1.5 CFTs in General Dimensions

A regular relativistic quantum field theory, such as the standard model, has Lorentz sym-
metry. The fields in the theory organise themselves into representations of the Lorentz
group, labelled by the Casimirs of the group, their mass and spin (scalars, spinors, vectors
etc..). If we consider theories with increased symmetry, then these might not be the ap-
propriate way to label degrees of freedom. In a supersymmetric theory, for instance, we
add transformations to the symmetry group that change the spin of particles, so it makes
more sense to consider multiplets of fields of different spin that get mixed together under
the transformations.

Another extension of the Lorentz group we can consider, and one that plays a central
role here, is the conformal group. The Lorentz group can be thought of as the set of
coordinate transformations in (d−1)+1 dimensions that leaves the Minkowski metric ηµν
invariant. The conformal group generalizes this, and consists of these transformations,
together with any that leave ηµν invariant up to a Weyl scaling. So, it is all transformations
of the form

xµ → ζµ(x) s.t. ηµν → φ(x)ηµν . (1.16)

For a nice introduction to Conformal Field Theories see [19], or [20]. This symmetry
has important consequences for what local physical observables look like. As a conse-
quence, it’s more natural not to think of this theory as living on a pseudo-Riemannian
manifold with a given metric, but rather on a space with a given conformal class of met-
rics. Crucially, everything has to be scale invariant, so in particular, you have no scale
with respect to which to measure distance in a such a theory.

Another consequence is that you can no longer have massive particles. One class of
transformations in the conformal group is the simple dilations, where

x→ λx. (1.17)

The mass of a field would be scaled under this transformation, so all fields must be mass-
less. The types of fields you can consider are instead labelled by their spin and their
scaling dimension ∆, which describes how the field transforms under these dilations.
There is not always even a particle interpretation of CFTs, so they don’t necessarily have
an S-matrix[19]. The natural way to study such theories is by looking at the expectation
values and n point correlators of operators in the theory, which can be derived from a
generating functional Z[J ]. These will be our focus when we consider holographic CFTs.
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1.5.1 Example: Free Scalar CFT

A free scalar field theory is a theory with one scalar degree of freedom, and a quadratic
action. On flat space, if you want this to be Lorentz invariant, you are restricted to3

S =

∫
dnx∂µφ∂

µφ−m2φ2. (1.18)

On curved spacetime, demanding instead that the Lagrangian is a scalar, we can have as
well a coupling to the curvature. Restricting ourselves to a canonical kinetic term we can
consider

S =

∫
dnx∂µφ∂µφ−m2φ2 − f(R)φ2. (1.19)

The particular choice m = 0 and f(R) = d−2
4(d−1)R is conformally invariant, where the

scalar has scaling dimension ∆ = d−2
2 [21].

1.5.2 Example: N = 4 SYM

The original AdS/CFT correspondence has as its CFT side 3 + 1 dimensional N = 4

Super-Yang-Mills with gauge group SU(N). This can be constructed by taking SU(N)

N = 1 SYM in 9 + 1 dimensions

S =
1

g2
YM

∫
d10xTr

(
−1

2
F 2 + iχ̄γMDMχ

)
(1.20)

and reducing it to 3 + 1 dimensions by classical Kaluza-Klein compactification, and then
truncating the theory by throwing away all the resulting massive modes[7]. Under this
reduction the gauge field becomes a gauge field and 6 scalar fields, and the spinor be-
comes 4 Weyl spinors.

1.6 The AdS/CFT Dictionary: Sources and Boundary Conditions

The physical state for the classical gravitational bulk is characterized by field configura-
tions. We will be limiting ourselves to the universal sector we discussed in 1.3, plus a few
additional fields that don’t effect the internal space X . Our fields are therefore geometric
objects defined on a d + 1 dimensional manifold. In contrast, the dual CFT is a Quan-
tum Field theory, and the physical observables can be reduced to expectation values and
correlation functions of operators defined on a d dimensional manifold. We need to spec-
ify how to relate such physical observables across the duality. These rules constitute the
AdS/CFT ‘dictionary’.

Recall the statement of the duality

Sgravity|Φ|∂M = −WCFT [J ] , (1.21)

3A potential constant in front of the kinetic term can be absorbed by scaling φ
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so that the classical gravitational action, when boundary conditions are imposed, corre-
sponds to the generating function of the CFT with corresponding sources. The boundary
conditions are applied at the conformal boundary, and the corresponding sources are
functions on this boundary, which is why this is the spacetime in which the CFT is de-
fined. There is a map, which pairs of the boundary conditions Φ, with sources J in the
CFT, which we will give some examples of below. From the sources J , we can define
conjugate fields φ in the CFT through

〈φ...〉 =
δ

δJ
〈...〉J |

J=0
, (1.22)

where ... refers to some combination of local operators, and 〈...〉J is the expectation value
of these operators when the source J is turned on. In particular, the one-point functions
are given by

〈φ(x)〉 =
δ

δJ(x)
WCFT = − δ

δJ(x)
Sgravity. (1.23)

Naïvely, it would seem that this means that in order to find 〈φ(x)〉 for any given J(x),
we would have to know the gravitational solutions for general J(x), and so the on-shell
action Sgravity as a functional of J(x). Luckily, it turns out that by finding the classical
gravity solution for a given J(x), we can immediately extract 〈φ(x)〉J . This only applies
to the one point functions of the particular operators φ(x) conjugate to the sources J(x)

which are dual to the gravitational boundary conditions Φ(x). To find two point functions
for instance, you would need to look at linear perturbations to these solutions, since

〈φ1(x1)φ2(x2)〉J1J2
=

δ

δJ2(x2)
〈φ1(x1)〉J1J2

. (1.24)

One subtlety is that both sides of (1.21) are divergent. The right hand side is divergent
for the usual Quantum Field Theory reasons, while the left hand side diverges because
of the infinite volume of the gravitational bulk. Both sides need to be renormalized,
and the method of renormalization on the gravitational side is known as ‘Holographic
Renormalization’[22, 23, 24]. A nice introduction to the program is provided by [17].

The process involves cutting off the bulk integral that gives Sgravity at some surface
before the conformal boundary. Near the conformal boundary we can choose the coordi-
nates (1.14), and then we can choose z = ε as the cut-off surface. The action will have a
finite number of terms that diverge with inverse powers of ε, which can be cancelled by
adding counter terms which are integrals over the z = ε surface. These counter terms can
be written as functionals of the fields on these surfaces, with no explicit dependence on
the particular solution.

We will now discuss three different types of operators in the CFTs, which are the
three we will study in this thesis. We will explain how the source terms conjugate to
these operators get mapped to boundary conditions of dual fields in the gravitational
bulk, and how to extract the one point functions of these CFT operators from the bulk
solutions involving these dual fields. While we will only focus on local operators here,
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other observables such as entanglement entropy [25] and Wilson loops [26, 27] can also
be studied in this limit of the correspondence.

1.6.1 The Universal Sector and the Stress Tensor

In the universal sector we have pure gravity in the bulk, so the only field we have to set
boundary conditions for at the conformal boundary is the metric. Taking the Fefferman-
Graham coordinates from (1.14), we can expand hab(x, z) in z for solutions to (1.8). The
form of the expansion depends on whether the d + 1 dimensional bulk is even or odd
dimensional.

If d is odd it takes the form[23]

hab(x, z) = h
(0)
ab (x) + h

(2)
ab (x)z2 + ...+ h

(d−1)
ab (x)zd−1 + tabz

d + ... (1.25)

h
(0)
ab (x) is the boundary metric (or rather a representative of the conformal class of bound-

ary metrics) from 1.4.1, and solving Einstein’s equation order by order in z determines
the h(n) in terms of the curvatures of this metric. However, Einstein’s equation are second
order PDEs, so at some point there is a second piece of data that is not determined by the
expansion4. This happens at order zd. The only constraints on this free tensor tab implied
by the equations are that it must be traceless and conserved.

If d is even, then this is complicated slightly. Now the expansion takes the form[23]

hab(x, z) =h
(0)
ab (x) + h

(2)
ab (x)z2 + ...+ h

(d−2)
ab (x)zd−2

+
(
tab + h

(l)
ab (x) log z

)
zd + ...

(1.26)

The tensor tab is still conserved, but it is no longer traceless. Its trace, however, is deter-
mined in terms of some local function of the boundary geometry. This trace and the term
h

(l)
ab (x) are connected to the conformal anomaly.

The boundary condition to be applied at the conformal boundary is to fix h(0)
ab (x). This

fixes geometry that the CFT lives on. Thinking of this geometry as an applied source in
the CFT generating function, the conjugate operator is the stress tensor. The expectation
value of the stress tensor for a holographic CFT on a given spacetime h(0) is given by

〈Tab〉 =
2√
h(0)

δWcft

δh
(0)
ab

=
2√
h(0)

δSgravity

δh
(0)
ab

. (1.27)

In this sense the CFT operator dual to the bulk metric is the stress tensor.
As discussed above, Sgravity is divergent and needs to be renormalized. This can be

done by cutting of the space-time on some surface z = ε and adding counter terms to
the action involving geometric quantities on this surface. The result is a stress tensor
that was found in [28]5, with the result being the Brown-York stress tensor[29] defined

4When you consider the full solution to the equations, with sufficient boundary conditions elsewhere in
the bulk, this second piece of data should be determined.

5Although they did not use the action, instead adding counter terms directly to the Brown-York stress
tensor.
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in terms of the extrinsic curvature of the surface z = ε, plus corrections involving the
intrinsic curvatures of this surface. For instance, in 3 + 1 bulk dimensions this can be
written as

T ab =
1

8πG

(
Kab −Kγab − 2

`
γab − `Gab

)
, (1.28)

where γab, Kab and Gab are the induced metric, extrinsic curvature, and Einstein tensor
on the surface on which this quantity is evaluated. To extract 〈Tab〉, this surface needs to
be taken to the conformal boundary. Depending on the set of surfaces taken in this limit,
different conformal frames will be approached on the boundary. To match a given con-
formal frame for which we’ve taken FG coordinates as in (1.25), we can choose constant
z surfaces and take z → 0. In fact, written in terms of these coordinates, the CFT stress
tensor becomes in general dimensions[23, 30]

Tab = dcefftab +Xab. (1.29)

where Xab is a dimension dependent, local function of the boundary geometry. Its pres-
ence is related to the conformal anomaly, and leads to scheme dependence6 in even
boundary spacetime dimensions, but vanishes for odd boundary dimensions[23, 30]. We
will be dealing almost exclusively with odd boundary dimensions, so we won’t have to
worry about this term.

As discussed above, this universal sector will be shared by all holographic CFTs. In
this sector we can vary the CFT spacetime, and examine how the one point function of
the stress-tensor varies as a result. As we will find, there is a lot of interesting physics
already in this regime. Note that the stress tensor extracted in this way is proportional to
ceff from (1.7). As remarked above, this parameter plays the role of the effective number
of degrees of freedom in the CFT, and classical gravity is valid only in a large ceff limit.
When the stress tensor extracted in this way vanishes, what we are saying is that the
stress tensor is no longer O(ceff), but is O(1) instead[8].

1.6.2 Primary Scalar Operators

The simplest deformation we can consider adding to the CFT is a source for a primary
scalar operator. In order to do this we need to add a scalar field in the bulk. The scalar
field will be described by the action

Sφ,m = − 1

16πG

∫
ddx
√
−g∂µφ∂µφ+m2φ2. (1.30)

Near the conformal boundary, we can solve the resulting Klein-Gordon equation in a
series. Taking the metric to be written in Fefferman-Graham coordinates, the scalar field
solving the equations of motion has the form[23]

φ = zd−∆
(
φ0 + z2φ2 + ...z2∆−d (φ2∆−d + log zφl)

)
+O(z∆+1). (1.31)

6An arbitrary coefficient in the stress tensor coming from a finite counter term you can add to the action
[23].
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Here φ0 and φ2∆−d are the two free pieces of information in the boundary expansion. ∆

satisfies
∆(∆− d) = `2m2. (1.32)

We can consider the holographic interpretation of the theory consisting of this scalar
field of mass m coupled to gravity. We define the generating function to be

W∆
CFT[J(x)] = −Sφ,m|φ0(x)=J(x). (1.33)

So we’ve chosen to solve the bulk equations subject to boundary conditions that fix
φd−∆(x). The calculation of the renormalized on-shell action in the bulk for this theory
for the case where the scalar is on a fixed background of AdS is described in [17], with the
more general case where it is coupled to gravity in [23]. The vacuum expectation value
of the operator Φ(x) conjugate to the source J(x) in the CFT is7

〈Φ(x)〉J ≡
δW∆

CFT[J ]

δJ(x)
= 2ceff (2∆− d)φ(2∆−d)(x). (1.34)

The one-point function of the dual field is therefore given by the z∆ term in the expansion
of the solution. It is clear from construction that this operator is a scalar, in fact it is a
primary scalar field of dimension ∆ (sourced by a primary scalar classical source J of
dimension d−∆). We can see this by noting that a Weyl scaling is generated by z → z/λ,
under which h(0) → λ2h(0), and our fields transform as

Φ(x)→ λ−∆Φ(x)

J(x)→ λ∆−dJ(x)
(1.35)

which are the scaling transformation laws for the field and a source for a primary scalar
field of scaling dimension ∆.

1.6.3 Global U(1) symmetry - a Chemical Potential

A situation that often arise in AdS/CMT is when we have a conserved particle number or
charge density in the condensed matter system. We may then want to consider states that
are ‘finite density’ with respect to this. This can be done by adding a chemical potential
as a source term for this current density on the boundary8.

This vector chemical potential has to be the boundary condition for a bulk field. In
fact the bulk field is a gauge field. As discussed in [13], we add a gauge field to the bulk
action leaving us with Einstein-Maxwell

SEYM =

∫
1

16πG

(
R+

d(d− 1)

`2

)
− F 2

4g2
. (1.36)

7This differs by a factor of 1
8πG

from the value in [23] because we’ve normalized our scalar field differently
here.

8In other words, we are now considering a Grand Canonical Ensemble.
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The global U(1) symmetry associated to the conserved current on the boundary is the
global part of the local U(1) gauge symmetry in the bulk. If we restrict ourselves to static,
electric configurations, then the gauge field can be written in terms of an electric potential
At = φ, and has a near boundary expansion

φ = χ(x) + ...− ψ(x)zd−2 + ... (1.37)

where both χ and ψ are free from the point of view of this expansion.
The holographic interpretation of this Einstein-Maxwell theory is to consider the gen-

erating function
WCFT[hµν ,Ξ] = −SEYM|χ=Ξ,h(0)=h. (1.38)

The one-point function of the conserved current is given by 〈ρ(x)〉 = δWCFT
δΞ(x) ∼ ψ(x).

1.7 Holography on Simple Spaces

We shall now describe the simplest examples of holographic CFT states. We will consider
universal sector states on flat space, a sphere, and a torus, and we will then give a basic
example beyond the universal sector.

1.7.1 Flat Space: Poincaré AdS and the AdS Black Brane

The simplest bulk spacetime where the boundary is flat Minkowski space is Poincaré AdS
[14]

ds2 =

(
`2

z2

)(
dz2 + ηabdx

adxb
)
. (1.39)

The conformal boundary is at z = 0, and the xa are the coordinates in the boundary.
This bulk geometry represents a maximally symmetric CFT vacuum state. The global
Poincaré symmetry in the boundary xµ coordinates is manifest, as is the scale invariance
through z → λz and xa → λxa. In fact, this geometry is invariant under the full d dimen-
sional conformal group SO(d,2). We can also immediately see that the one-point function
of the stress tensor Tab = 0, as this metric is already in Fefferman-Graham coordinates.

An alternative bulk geometry which breaks the scale invariance is given by[13]

ds2 =

(
`2

z2

)(
dz2

f(z)
− f(z)dt2 + δijdx

idxj
)

(1.40)

with f(z) = 1 − zd/zd0 . The indices i, j run over the spatial directions on the boundary
and the xi are coordinates on these spatial sections. There is a planar black hole horizon
at z = z0. The presence of this horizon means that the CFT partition function is at finite
temperature. To find this temperature, we transform to Euclidean signature and demand
that the axis where the time circle shrinks is regular. The resulting size of the time circle
gives the inverse temperature. Near the horizon, writing z = z0 + ερ2 the metric takes the
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form

ds2 =
`2

z2
δijdx

idxj + ε

(
4dρ2

−f ′(z0)
+ ρ2dt2f ′(z0)

)
+O(ε2). (1.41)

For this to be smooth, the time coordinate has to have period β = − 4π
f ′(z0) = 4πz0

d . The
CFT temperature is then T = 1/β.

Unsurprisingly, for these finite temperature states the stress tensor does not vanish.
To transform to Fefferman-Graham coordinates we write

z = Z

(
1− Zd

2dzd0
+O(Zd+1)

)
(1.42)

which yields a stress tensor with non-vanishing diagonal elements. In particular, Ttt =

ceff
d−1
zd0

.
These black-brane spacetimes (1.40) have a conformal boundary at z = 0, and end on

a black-brane horizon at z = z0. In Poincaré AdS (1.39) there is also a horizon, although
it’s less obvious in this case. There is an extremal horizon, that in these coordinates can
be reached by taking z, xi →∞while keeping their ratios finite[31]. An extremal horizon
is a type of black hole horizon with vanishing surface gravity, and so vanishing temper-
ature.

1.7.2 The Sphere: Global AdS and the Hawking Page Transition

The universal sector vacuum state with a round sphere on the boundary is global AdS
as in (1.11). This is a unit sphere, but we can vary the radius simply by rescaling t → t

R ,
r → Rr to get

gAdS = −
(
`2

R2
+ r2

)
dt2 + r2R2dΩ2

d−1 + `2
dr2

`2

R2 + r2
. (1.43)

At finite temperature, things get a bit more complicated. As discussed in [8], unlike the
flat space case, on a sphere there are two possible competing finite temperature space-
times which preserve the spherical symmetry. One is simply to take (1.43) at finite tem-
perature, thermal AdS, and the alternative is a black hole spacetime, AdS-Schwarzschild

ds2 = −f(r)dt2 +
`2dr2

f(r)
+ r2dΩ2

d−1 (1.44)

with

f(r) =
`2

R2
+ r2 −

rd−2
h

(
`2

R2 + r2
h

)
rd−2

.
(1.45)

To figure out which one dominates in the saddle point approximation for the partition
function at a given temperature, you have to compare their free energies. To compute
this, we need to extract the holographic stress energy tensors of the two spacetimes. Now,
in even dimensions we would in principle have to worry about the contribution of the
conformal anomaly. However this term is just a function of the background metric in the



18 Chapter 1. The AdS/CFT Correspondence

CFT, and so since we are going to be only interested in the difference of free energy in
two solutions with the same boundary metric we can drop it.

The AdS-Schwarzschild black holes are a one-parameter family of solutions that we
can label by their horizon size, rh. The temperature as a function of horizon size is given
by

T =
dr2
h + (d− 2)`2

4πrhR`2
. (1.46)

This diverges for small or large radius, and has a minimum value Tmin =

√
d(d−1)

2π` . In the
Euclidean picture, this temperature is the inverse size of the Euclidean time circle, and
this is fixed by smoothness when this circle shrinks at the horizon. In thermal AdS on the
other hand, this thermal circle never shrinks, so there is no constraint from smoothness,
and so it makes a contribution to the partition function at any temperature.

For T < Tmin, thermal AdS is therefore the only saddle point. For T > Tmin on the
other hand there are three possibilities, thermal AdS, and a small or large black hole. The
free energy of the black hole solution as a function of horizon size, compared to thermal
AdS of the same temperature is

F = ceff
Ωd−1

`R

(
1−

r2
h

`2

)(rh
`

)d−2
. (1.47)

This is positive, so the free energy is greater than thermal AdS, for rh < `. A transition
happens at rh = `, which corresponds to the larger black hole at the Hawking-Page
temperature THP = d−1

2π`R .
At T = THP we therefore undergo a phase transition, and the large black hole branch

describes the state of the field theory. This is interpreted as a confinement/deconfinement
transition in the CFT, with thermal AdS for T < THP describing a confined phase[3, 32].
There are several ways this interpretation can be motivated, but the simplest is just to
look at the behaviour of the energy. The energy extracted from the holographic stress
tensor in the confined phase is independent of T , since the bulk spacetime is just global
AdS. Because of the large N limit, this energy should really be interpreted as the O(ceff)

component of the energy in the field theory, so what this is saying is that, for T < THP,
E − Evac ∼ O(1). For T > THP, the spacetime is a black-hole spacetime that varies with
temperature, so the holographic stress tensor varies, and so E(T ) − Evac ∼ O(ceff). This
is consistent with a a deconfined phase at high temperature, and a phase transition to
a confined phase at low temperature. For instance, in the N = 4 SYM example, the
effective number of degrees of freedom in a deconfined phase is the number of ‘quarks’
which goes as N2, and in a confined phase the quarks are restricted to an O(1) number
of singlet states [8].
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1.7.3 The Torus

There are two different vacuum solutions which we can consider when the boundary is
a torus. The simplest thing we can do is take the Poincaré patch of AdS

ds2 =
dz2 − dt2 + δijdx

idxj

z2
(1.48)

and periodically identify the xi coordinates. The resulting geometry is smooth except for
a null singularity in the place of the extremal horizon in the IR, which we will explain
in Chapter 3.5. There is an alternative geometry given by the AdS-Soliton, which is a
double wick rotated black brane[33]

ds2 = r2(−dt2 + δijdx
idxj) +

`2dr2

f(r)
+ f(r)R2dθ2. (1.49)

with f(r) = r2
(

1− rd0
r2

)
, r0 = 2`

dR , and the θ coordinate has canonical period 2π. One of
the S1 factors in the boundary, the one described by θ, now plays a special role. On the
boundary this circle has radius R, but into the bulk its radius shrinks compared to the
other dimensions of the torus, until it smoothly caps off at r = r0. This point where it
shrinks is the double wick rotation of the horizon from the black brane. This solution is
only allowed if we take antiperiodic boundary conditions for the fermions around this
shrinking circle[8].

If we take the AdS black brane which describes finite temperature states on flat space
and periodically identify it we get a smooth bulk geometry which can describe finite
temperature states on the Torus. However, as in the case of the sphere, we can also
simply take the zero temperature vacuum and trivially put it at finite temperature, giving
a confining finite temperature bulk state. There is a thermodynamic competition between
these three possibilities which we resolve by comparing their free energy densities[8]

fThermal AdS = 0

fAdS Soliton = −ceff`

(
4π

dR

)d
fBlack Brane = −ceff`

(
4πT

d

)d
.

(1.50)

We see that, while thermal AdS is never preferred, there is a phase transition between
the black brane and the AdS-Soliton at T = 1

R . This phase transition only happens if the
AdS-Soliton is allowed by the boundary conditions on the fermions.

1.7.4 Chemical-Potential - Reissner-Nordstrum Black Branes

To add a chemical potential to the boundary, we add a Maxwell field to the bulk, and
solve the equations of motion corresponding to the action SEYM (1.36). There are transla-
tionally symmetric electrically charged black-brane solutions, where the metric is of the
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form (1.40), but with[13]

f(z) = 1−
(

1 +
z2

+µ
2

γ2

)(
z

z+

)d
+
z2

+µ
2

γ2

(
z

z+

)2(d−1)

(1.51)

where γ2 = (d−1)g2`2

(d−2)8πG . These solution has in addition a gauge field9

A = µ

(
1−

(
z

z+

)(d−2)
)
dt. (1.52)

The chemical potential on the boundary is µ, and there is a resulting charge density in
the CFT ρ ∼ µ

zd−2
+

. These solutions have a temperature[13]

T =
1

4πz+

(
d− (d− 2)z+µ

2

γ2

)
. (1.53)

1.8 Applications of the correspondence

1.8.1 Condensed Matter - AdS/CMT

One promising application of this correspondence is in Condensed Matter systems. This
is reviewed in [13]. There are real world physical systems with quantum critical points
(zero temperature phase transitions), where near the critical point, the effective degrees
of freedom are strongly interacting. The lack of weakly coupled quasi-particles means
that the usual effective field theory methods of condensed matter cannot be applied.

Using AdS/CFT, strongly coupled systems with properties similar to these quantum
critical systems can be constructed. An example of this is the construction of holographic
models of superconductors, reviewed in [34, 35]. S-wave models can be constructed
by considering gravitational bulks which are black hole solutions which develop scalar
‘hair’, a non-trivial static scalar field outside of the horizon, below some critical temper-
ature. This scalar field is dual to a primary scalar operator in the CFT, as in Section 1.6.2.
When the black hole develops hair, the dual scalar operator picks up a non-zero expec-
tation value. This is the analogue of the bosonic condensate in BCS superconductors.
Along with the scalar field, these bulk black holes also involve a Maxwell field, which is
dual to a conserved current on the boundary as in 1.6.3. By adding an SU(2) yang-mill’s
field, or a charged rank 2 tensor, p-wave and d-wave models can also be constructed,
with corresponding vector or spin-2 condensates[35].

By looking at linear fluctuations of this Maxwell field, you can find how the dual
current in the CFT responds to an applied potential, and so study the conductivity of
these holographic superconductors[34]. This is one way that it is hoped to be able to
make comparisons with real world superconductors, and so gain a better understanding
of their physics. An important feature of real world superconductors is that they are not

9The gauge field vanishes on the horizon, which is required by smoothness[13].
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necessarily homogeneous and isotropic, often with lattice structures that break the sym-
metry. This can be achieved by breaking the symmetry in our gravitational bulks. For
instance, in [36], bulk spacetimes are numerically constructed with a periodic chemical
potential on the boundary. This periodic chemical potential is a model for the lattice back-
ground for the superconductor, and the dependence of conductivities on the structure of
this lattice can be explored.

1.8.2 Heavy Ion Collisions, QGP, and the Fluid/Gravity Correspondence

Another example of a strongly coupled field theory that AdS/CFT might shed some light
on is QCD. While QCD itself does not have a known holographic dual, you can still hope
to explore qualitative features by studying theories which do have gravitational duals,
like N = 4 SYM [37]. In particular, the quark-gluon plasma (QGP), in which QCD is in a
deconfined phase, is a regime that is not very well understood using other techniques.

The QGP is produced soon after heavy ion collisions in detectors like RHIC, and is
very quickly in local thermodynamic equilibrium (LTE), with the temperature and lo-
cal densities10 sufficiently slowly varying functions of position for a hydrodynamic de-
scription to be valid[38]. This regime can be described in the gravitation bulk with a
corresponding long wavelength expansion of solutions Einstein’s equation, which was
introduced in [39] and is reviewed in [38, 40]. This is called the Fluid/Gravity correspon-
dence. The long wave-length expansion allows you to construct bulk geometries that can
describe LTE by starting with global thermodynamic equilibrium solutions (like the AdS
black brane (1.40)), allowing parameters like the temperature to be slowly varying func-
tions of position, and adding corrections with increasing numbers of gradients of these
parameters. Among the properties that can be considered in this way is a local entropy
current [41], the viscosity to entropy ratio [42] and the behaviour of shock waves [43, 44].
The correspondence has also been generalized to charged fluids[45, 46].

The applicability of AdS/CFT to heavy ion collisions isn’t limited to the hydrody-
namic regime of QGP. For example in [47, 48], they studied boost invariant solutions to
Einstein’s equation to try to understand how fast a QGP should thermalize and admit a
hydrodynamic description after a collision. Another avenue of study involves looking at
single quarks travelling through a homogeneous QGP, which is described in the bulk by
a string on the background of an AdS-Schwarzschild black brane(1.40). This example is
described in detail in the review[37]. The string ends on the conformal boundary, and
this end point of the string corresponds to the location of the quark in the QGP. The back-
reaction of this string on the bulk geometry can be used to extract the linear response of
the QGP to the moving quark. This interaction between the QGP and the quark may be
crucial in understanding features of heavy ion collision events like jet splitting.

10energy densities, charge densities, etc...
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1.9 Evidence for the Correspondence

Of course, there is no complete proof of the AdS/CFT correspondence, it is a conjecture;
so we conclude this introduction with a few reasons why this duality is believed to hold.
Firstly, as we pointed out in Section 1.4.1, a partition function on AdS, written in terms
of a Lagrangian which is a scalar, and supplemented with boundary conditions at the
conformal boundary, has the right symmetries to be viewed as the generating function of
a CFT on this conformal boundary. The question is whether this is a consistent CFT, and
if so what specific theory it is.

Maldacena’s argument from Section 1.1.1 tells us that we can use the low energy de-
scription of a stack of D-branes to tell us what theory this is. It is then possible to compare
quantities on both sides of the correspondence. For instance, the global symmetries, and
the spectra of supersymmetric states[7] have been matched up. However, most physi-
cal observables are functions of parameters in the theory, and often calculations of these
quantities use perturbative expansions that rely on some coupling constant or similar pa-
rameter being small. This means that there is no reason to expect all quantities to agree
unless there is some symmetry that determines their dependence on coupling. For in-
stance, in [33] the AdS-Soliton (1.49) bulk is used to calculate the Casimir energy of a
non-supersymmetric vacuum state. This is compared to a corresponding calculation in
the field theory, and the two are found to differ by an overall factor. This is not unex-
pected, because the field theory calculation in question is only valid when the CFT is
weakly coupled, while we can only ignore quantum corrections to the gravitational de-
scription when the CFT is strongly coupled. However, there are cases when you can use
symmetries to compute quantities exactly. For instance, in [49] they were able to match
the large N limit of the free energy on a class of deformed 3-spheres with rigid super-
symmetry, computed exactly using a technique called localization, to the corresponding
calculation of the renormalized action in a dual gravitational bulk.

One tool that allows a direct comparison between quantities in the CFT and in the
string theory is integrability[50]. In the t’Hooft planar limit, N = 4 SYM becomes inte-
grable. This is a very special property for a theory to have which means, for instance, that
the spectrum of scaling dimensions of local operators can be computed exactly (in terms
of solutions to algebraic equations) as a function of t’Hooft coupling λ = g2

YMN . At weak
coupling, this can be compared to perturbative calculations in the planar gauge theory,
while at strong coupling it can be compared to free classical strings. The quantities that
have been compared in this way are found to agree[50].
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Chapter 2

Numerical Methods for Gravity

What we have learnt is that we can calculate the leading order large ‘N ’ behaviour of
certain strongly coupled CFTs by solving classical field equations. The classical field
equations in question is Einstein’s equation of general relativity with negative cosmo-
logical constant, sometimes with additional matter fields. In d + 1 dimensions, we write
Einstein’ equation as

Rµν +
d

`2
gµν = T̃µν , (2.1)

where T̃µν = Tµν− 1
2Tgµν is a source term coming from the stress tensor Tµν of any matter

fields we consider.
Together with the equations of motion of these matter fields, these form a set of cou-

pled, second order, non-linear PDEs. The problem of finding their general solution is of
course unsolved, so in order to make progress you have to either

1. Assume sufficient symmetry to solve the problem analytically (typically enough
symmetry to reduce to ODEs)

2. Assume less symmetry, and solve the resulting set of PDEs numerically.

3. Try and prove general statements about solutions

In this section we’re going to explain the numerical methods involved in option 2.
In Chapters 4 and 7, we will be numerically solving the static Einstein’s Equation, some-
times coupled to a Maxwell field or a scalar field. In both cases, we will be assuming suffi-
cient symmetry to reduce the problem to a set of two dimensional PDEs. The techniques I
will discuss were developed for the static solutions in [51], and further developed in [52],
with a generalization to the stationary case in [53]. We will restrict our discussion to static
spacetimes, since our application of these methods will be limited to this case. In what
follows, it will be convenient to analytically continue these static solutions to Euclidean
signature (replacing the time coordinate t with τ = it), leaving us with a Riemannian
metric. At finite temperature, the resulting Riemannian manifolds have a compact time
coordinate with a period given by the inverse temperature[54].

2.1 Coming up with a well-posed Problem

When faced with a numerical problem like finding a solution of Einstein’s equation, the
first thing that needs to be done is to state the problem in such a way that there is a
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unique solution. Part of this is making sure you’ve fixed enough boundary conditions.
This can sometimes be a subtle problem, and we won’t attempt to address it in general,
but we will go into more specifics when we come to the explicit cases in the thesis. The
spacetimes we consider have a conformal boundary, and we will fix data for the bulk
metric and other fields at this boundary. This fixed data will determine the metric on the
conformal boundary and the sources for the CFT operators dual to any matter fields we
consider as in 1.6.

The other part of posing the problem unambiguously is getting rid of any gauge sym-
metry. In particular, GR has coordinate invariance. This means that for any metric that
solves our equations with the boundary conditions we’ve applied, we can perform any
one of an infinite number of coordinate redefinitions to get another, physically equiva-
lent, but numerically different solution to the problem.

2.1.1 The Harmonic Einstein Method

In order to completely specify the problem of solving the static Einstein’s equation, we
need to get rid of the coordinate freedom by imposing a gauge condition. Instead of
doing this directly, we are going to circumvent this problem using the following gauge
fixing trick first developed in [51].

The problem of the gauge freedom manifests itself in the fact that the differential
equations are only weakly elliptic[51]. By this we mean that if we take the principal
symbol (two derivative terms) in Rµν and look at its linear shift about some background
gµν → gµν+hµν , then there are unphysical wavelike modes in hµν for which this vanishes.
More concretely, the shift in the Ricci tensor is given by

δRµν = −1

2
gαβ∂α∂βhµν −

1

2
∂µ∂νh+ gαβ∂α∂(νhµ)β + ... (2.2)

where ... refers to lower derivative terms. Note that the ∂α are just partial derivatives, not
covariant derivatives, because we are only interested here in the two derivative terms.
Then if we take hµν = ∂(µχν) for some vector χ, this principal part vanishes. In fact, if
we take hµν = ∇(µχν), then this is precisely a coordinate transformation. It’s these gauge
degrees of freedom that we need to get rid of.

The trick is instead of solving Einstein’s equation, to solve

RHµν ≡ Rµν −∇(µξν) −
d

`2
gµν = 0, (2.3)

where we have defined ξµ = gαβ(Γµαβ − Γ̄µαβ), for Γ̄µαβ as some fixed reference connection.
This is referred to as the Harmonic Einstein’s equation. If it so happens that in solving this
equation, we find a solution such that ξ = 0 then we have in addition solved Einstein‘s
equation. These equations are elliptic for Riemannian metrics[51]. This follows from the
fact that the two derivative term in the linearised equation now looks like

δRHµν = −1

2
gαβ∂α∂βhµν + ... (2.4)
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which does not have any equivalent to the gauge modes above. The Harmonic Einstein’s
equation 2.3 is still covariant, because ξµ being constructed from the difference of two
connections is a proper vector. The coordinate invariance is broken by the fact that when
we solve the equations we will choose an explicit form for the components of Γ̄αβγ .

2.2 Asymptotics of the reference connection and a maximum prin-
ciple for ξ

The method outlined above is to solve the Harmonic Einstein’s equation and ’hope’ that
the solution we find satisfies ξ = 0, and so is a solution of Einstein’s equation. In fact,
in certain situations it has been proved that this is exactly what will happen[52]. We
reproduce this proof here because we will make use of it later on.

Let’s assume we’ve managed to find a (Euclidean) static solution with no matter fields

Rµν −∇(µξν) − Λgµν = 0, (2.5)

such that ξ 6= 0 (such solutions are called Ricci Solitons). Using the contracted Bianchi
identities one can show

∇2ξµ +Rµνξ
ν = 0 (2.6)

(∇2 + ξµ∂µ)φ = −2Λφ+ 2(∇µξν)(∇µξν), (2.7)

where φ = ξµξµ. The right hand side of (2.7) is positive definite. This means we have the
inequality

(∇2 + ξµ∂µ)φ > 0. (2.8)

For Riemannian metrics, this inequality obeys a maximum principle. Any function φ that
satisfies (2.8) in some regionM, attains its maximum on the boundary of that region ∂M.
For static solutions φ ≥ 0, so if φ = 0 on ∂M then φ = 0 throughoutM.

This boundary includes the conformal boundary, but the spacetime domains we con-
sider will sometimes have other boundaries, such as for instance finite temperature hori-
zons. However, since we are considering static solutions, the analytically continued Eu-
clidean geometry in fact no longer has a boundary at the horizon[54]. It is instead just a
fixed point of Euclidean time translations generated by ∂

∂τ . From the point of view of this
maximum principle, therefore, φ cannot be maximized on a horizon1.

In certain cases we will consider, there will also be boundaries that aren’t finite tem-
perature horizons, but in those cases we will have symmetries that prevent φ from being
maximized there. Therefore, for the cases we will be interested in, the only relevant

1This also means that we don’t need to treat the horizon as a boundary from the point of view of our
PDEs. We need to make sure it is smooth, but so long as this Euclidean picture gives a smooth geometry
at the horizon the horizon is regular. We can build our metric anzatz in such a way that this happens
automatically and no explicit boundary conditions need to be applied.
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boundary will be the conformal boundary of the spacetime. If we choose boundary con-
ditions such that φ = 0 on the conformal boundary, Ricci Solitons are in this way ruled
out.

When we choose our reference connection Γ̄εµν , we can choose it in such a way that
our boundary conditions on the metric at the conformal boundary imply that φ = ξµξµ

vanishes on this boundary. For convenience, we will construct the reference connection
from a reference metric ḡ. At the conformal boundary, the vanishing of φ is then assured
by making sure that the leading order behaviour in the reference metric matches the
solution.

As discussed in 1.4.1, near the conformal boundary, the metric can be written in the
form

gµν =
Gµν
z2

, (2.9)

for some regular metric Gµν , where the conformal boundary is at z = 0. The boundary
conditions we apply to gµν will fix Gµν at z = 0. If we choose a reference metric that also
has a conformal boundary in the same place,

ḡµν =
Ḡµν
z2

, (2.10)

then so long as Ḡµν = Gµν at z = 0, φ vanishes at the conformal boundary. This means
that if we choose our reference connection to satisfy the same boundary conditions here
as the solution, we can rule out Ricci Solitons. This result no longer holds automatically
with the addition of matter fields, so in the most general case we need to check that φ = 0

on our solutions.

2.3 Choosing an Anzatz

We now have a well defined problem to solve, so the next step is choosing an anzatz for
the metric. This anzatz has to be the most general metric corresponding to the symme-
tries, because all the coordinate fixing is done by the choice of reference connection in
the Harmonic Einstein’s equation (2.3). Another useful property is for smoothness of the
metric to translate into smoothness of the functions in the anzatz.

An example where smoothness of the functions does not translate into smoothness of
the corresponding metric is 2-d polar coordinates

ds2 = A(r, φ)dr2 +B(r, φ)r2dφ2. (2.11)

Here the φ coordinate is compact, and there is a point r = 0 where the circle described
by φ shrinks to zero. The coordinates therefore break down here, so smoothness of the
functionsA andB at r = 0 does not translate into smoothness of the metric. For instance,
if A(r, φ) = 1, and B(r, φ) = α2, this is the metric of a cone, and unless α = 1, there is a
conical singularity at the tip r = 0. Once φ dependence gets introduced, the conditions
for the geometry to be smooth at r = 0 become much more complicated, so diagnosing
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whether a given choice of A and B corresponds to a smooth choice of metric becomes
cumbersome.

On the other hand, writing the problem in a Cartesian coordinate system

ds2 = Ã(x, y)dx2 + B̃(x, y)dy2 (2.12)

where both coordinates are now non-compact, means that smoothness of the functions
automatically translates into smoothness of the corresponding metric, so long as A 6= 0

and B 6= 0 everywhere2.

2.4 Discretize

Having chosen coordinates and an anzatz, the differential equations then need to be dis-
cretized. This involves choosing a lattice of points to replace the continuous domain, and
constructing approximations of the derivative operators on these lattices. Our continu-
ous functions become a vector of values, with each element corresponding to the value
of the function at a point in the lattice. The discretized version of derivative operators
are matrices that act on these vectors. There are various methods for constructing these
derivative matrices, and through the work presented in this thesis we make use of a few
different ones. Which one we use depends on the smoothness of the solutions we are
looking for, and on the boundary conditions.

We will be solving two dimensional problems on square lattices, so we can discretize
each coordinate separately. Namely we take a pair of coordinates, x, y, discretize each
using one of the methods described here, and then the full 2d lattice is simply the outer
product of those two 1d lattices. Mixed derivatives like ∂2

∂x∂y are simply calculated by
applying the derivative matrices for each of the 1d lattices one after the other.

Perhaps the most straight forward discretization method is finite difference described,
for instance, in section 5.7 of [55]. In this case we take a regularly spaced3 grid of points.
Derivatives are then approximated locally. For order n finite difference, at each point, we
effectively find the order n polynomial that passes through the point and the n/2 points
to either side. The approximation for the derivatives is then the explicit values of the
derivatives of this polynomial. At each point in the lattice we’re fitting a separate poly-
nomial. The resulting derivative matrices only take values in a band n+ 1 columns wide
around the diagonal4.

With periodic boundary conditions, Fourier methods are natural. Instead of a sepa-
rate fit to the function around each point in the lattice, we approximate our function by
an expansion in Fourier modes. There are as many modes as lattice points so that the

2Equivalently ∂
∂x

and ∂
∂y

are a well defined set of basis vector fields everywhere, so a metric that acts on
them smoothly acts on all vector fields smoothly. In contrast, ∂

∂r
and ∂

∂φ
are not well defined at the origin,

so even if the metric acts on these vector fields smoothly everywhere they are defined, that isn’t enough to
guarantee smoothness at the origin.

3Regularly spaced in coordinate distance. The physical distance between the points will of course be
determined by the metric, which is what we are solving for, so is initially unknown.

4This is true in the middle of the lattice, towards the boundary the story is a bit more complicated.
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function values at the lattice points uniquely specify the expansions and vice-versa. The
Fourier expansion then determines the derivative operators. Because we are expanding
the whole function in a basis of functions, we are effectively doing a global rather than a
local fit, and as such the resulting derivative matrices have non-zero entries everywhere.

If you expect your solution functions to be infinitely differentiable, then pseudospec-
tral interpolation can be used. This makes use of the Chebyshev polynomials[55]

Tn(x) = cos(n arccosx), (2.13)

for integer n ≥ 0. Like the Fourier interpolation this involves an expansion in a basis of
functions. The functions Tn can be used as a basis for the domain −1 ≤ x ≤ 15. The
lattice consists of the Chebyshev points

xn = cos
(nπ
N

)
(2.14)

for n = 0, 1, 2....N . A set of values at these points fn, determines a function of the form

f(x) =

N∑
n=0

f̃nTn(x) (2.15)

which takes these values at these points, f(xn) = fn
6. This expansion is used to deter-

mine the derivative matrices. This interpolation method is described in Chapter 5 of [55],
but the way in which we use it with a Chebyshev lattice is described in Chapter 6 of [56].

In the same way that the spectral methods build in periodic boundary conditions, we
can build other types of symmetry into our discretization method. One which we will
make use of quite a lot is a parity symmetry. It is often convenient to limit ourselves
to functions f(x) which are either even or odd under x → −x. Say we are solving for
such functions in the domain −1 ≤ x ≤ 1, then we can simply construct a lattice and
derivative operators that build this in, and reduce the memory cost. First we construct a
lattice that runs over the whole domain, and then we project our derivative operators on
to functions with the correct symmetry, giving us an effective lattice that runs only over
half the points 0 < x ≤ 1. More explicitly, we start with n points running between−1 and
1 (with n even). We construct our n× n derivative matrices using whichever method we
choose. We then construct n/2 × n/2 versions of these derivatives, that act just on the n/2

points between 0 and 1, by assuming that the other points on the other half of the lattice
have the values they should have based on the parity symmetry.

2.5 Solution of Discretized System

Once we’ve discretized these equations, we are left with a set of non-linear simultaneous
equations for the function values at the lattice sites. Think of the set of function values as

5We will map this domain linearly to the domains we end up using in our problems.
6The vectors fn and f̃n are related by a discrete cosine transformation.
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a vector φi and the set of equations as a vector function of this vector

Ra(φi) = 0. (2.16)

We will solve these systems using Newton-Raphson iteration. The one dimensional ver-
sion of this is described in section 9.4 of [55]. Start by making an initial guess φi = φ

(0)
i .

Then linearise the system about this guess,

Ra(φ0
i + δφi) ≈ Ra(φ0

i ) +
∂Ra

∂φi
|φ0δφi = 0. (2.17)

We then solve this linear system to get an improved guess φ1
i = φ0

i + δφi, and proceed
iteratively. In this way you, hopefully, converge on the solution.

2.6 Implementation in C++

I implemented the PDE solver itself in C++, while the problems are set up in Mathe-
matica[57]. The C++ program is modular, and roughly speaking can be divided into the
following sections

• The Field section that looks after the discretized functions. The initial guesses are
read in from a file, and the final solutions are written back out.

• The Lattice section that uses the methods discussed in 2.4 to take the Fields and
calculate the derivatives. The points in the lattice, and the derivative matrices to
use (and so implicitly the discretization method) are provided to the program in
an input file generated in Mathematica. Mathematica has built in methods for gen-
erating the derivative matrices given a choice of lattice points and discretization
method.

• The Geometry section that calculates the equations of motion based on the dis-
cretized functions. This section changes depending on the precise geometric setup
in which we are searching for solutions. Much of the C code in this section is gen-
erated by Mathematica, and contains the formulae for the metric, connection, and
curvature in terms of the functions in our anzatz for the metric. I have written Math-
ematica code that automatically generates this section of C code given the anzatz
we are using for the metric in terms of component functions.

• The Linear System Solver section is a wrapper for the library we use to solve the
linearised systems as part of the Newton-Raphson method. Under the covers it
uses the UMFPACK solver from SuiteSparse [58]. This solver is particularly suited
to sparse systems where most of the matrix entries are 0. This allows us to be much
more memory efficient when we use finite difference interpolation.
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• The Solver that brings all of the above together and solves the non-linear PDE by
implementing Newton’s method. At each step in the iterative method, the linearisa-
tion (2.17) is done numerically, this linear system is solved, and the solution is used
to update our guess. This process continues until the maximum residual on the
solution is small enough that we can conclude that we have solved the discretized
system to within numerical error. We also track the change in solution from step to
step, and cut-off the process if this becomes too small or too large.

The Solver has several parameters you can tweak. One of these is the step-size ε. If
the linear system tells us that we should update our solution to φn+1

i = φni + δi, then we
modify this update step to

φ
(n+1)
i = φ

(n)
i + εδi

typically for 0 < ε ≤ 1. This helps mitigate the fact that you might land on a particu-
lar configuration φi where one of the eigenvalues of the linearised system becomes very
small. This would lead to you updating your field to somewhere far away in configura-
tion space.
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Chapter 3

Extremal Horizons and the Infrared
in AdS/CFT

The bulk spacetimes in AdS/CFT all have conformal boundaries. This fixes one asymp-
totic region in these geometries (the AlAdS region). However, as you move into the bulk
away from the conformal boundary, the spacetime can do many different things. These
behaviours are not completely unconstrained, and often reflect features of the dual CFT
state. For instance, if there is a black hole horizon in the bulk with finite surface gravity,
the CFT is at finite temperature. However, as we saw in 1.7.2, finite temperature bulks
don’t have to have a black hole horizon, and whether or not the bulk has a horizon can
be a signal of confinement or deconfinement in the CFT.

At zero temperature, there are also different types of possible behaviour. The bulk
may smoothly round off, with no other asymptotic regions other than the conformal
boundary. Examples of this include global AdS, and the AdS-Soliton and we will dis-
cuss these type of bulks in Chapters 5 through 7.

The case we will be interested in here is when the bulk has another asymptotic region
away from the conformal boundary. In this region the redshift diverges, so it is known
as the infrared (IR) (with the conformal boundary where the redshift goes to zero often
called the UV). Just like the conformal boundary region, this IR region can have non-
trivial geometry. The geometry at the conformal boundary is related to the space-time
the CFT lives on, so an interesting question is whether the geometry in the IR is similarly
fixed, and what it corresponds to from the perspective of the CFT. What we will find is
that there is a class of IR geometries that are related to a large scale, scale-invariant limit in
the CFT. The relation goes two ways. To a certain extent the IR geometry is determined
by the large-scale limit of the boundary geometry and source terms, and then, given
the IR geometry, the large scale limit of the one-point function of the stress tensor and
corresponding operators can be read off.

We will begin by discussing scale-invariance in CFTs. We will then introduce a class of
AlAdS Einstein spacetimes that can be used to describe scale-invariant CFT states holo-
graphically via AdS/CFT. These are the near-horizon geometries of AlAdS extremal hori-
zons, and we will provide a few examples of such spacetimes, and the scale-invariant
states they can describe.

We will then discuss holographic CFT states that are not scale-invariant, but where
scale-invariance can be recovered in a large scale limit. We will find that we can describe
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such states holographically using bulk spacetimes with an IR region, with this IR region
being described by an extremal horizon. The key result of this chapter, from [59], is then
that the near-horizon geometry of this extremal-horizon, which is what we mean by the
geometry of the IR, describes a scale-invariant state which is precisely the large scale limit
of the CFT state we started with. However, we will also find that only a particular class
of scale-invariant states can be described using these near-horizon geometries. This will
lead us to discuss a more general type of IR geometry in Chapter 4. The work discussed
in this chapter was done in collaboration with Toby Wiseman and James Lucietti.

3.1 Scale-invariant CFT states

CFTs on (d− 1) + 1 dimensional Minkowski space have global symmetry group SO(d, 2),
which is the (d− 1) + 1 dimensional conformal group. This is a symmetry of the theory,
and particular states in this CFT may respect or break it. Typically, the vacuum will
preserve this symmetry which has consequences for vacuum correlators of the fields in
these theories - they are highly constrained, with the two-point and three-point functions
in particular completely determined up to constants[19].

Other states may break the symmetry to a subgroup. For instance, the finite tempera-
ture state which we can describe holographically by the AdS-Schwarzschild black brane
bulk breaks the group down to the d − 1 dimensional Euclidean group[13]. The temper-
ature picks out an energy scale and so breaks the scale invariance. You can also explicitly
deform the CFT, for instance by adding external sources to the action, or by taking the
theory and putting it on a curved space time. These deformations may break some or all
of the symmetries, and so the symmetry group of the vacuum will then be reduced.

In this chapter and the next we are going to be interested in CFTs that have been de-
formed so that the conformal group is broken down to just staticity and scale-invariance.
This can be achieved by putting the CFT on a curved space time which preserves these
symmetries, or by deforming the CFT by appropriate source terms. In this section we
will introduce these spacetimes and CFT deformations, as well as discussing features of
CFT states that preserve these symmetries.

3.1.1 Spacetimes consistent with static, scale-invariance

To start with let’s consider what the static and scale-invariance symmetries look like on
flat space. Writing Minkowski as

ds2 = −dt2 + dr2 + r2dΩ2
d−2, (3.1)
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then the symmetries corresponding to staticity and scale-invariance are generated by the
vectors1

χt =
∂

∂t

χs = r
∂

∂r
+ t

∂

∂t
.

(3.2)

Taken together, these generate the algebra of one-dimensional affine transformations[60].
The corresponding finite transformations are

t→ µt+ λ

r → µr.
(3.3)

Note that, while χt is a Killing vector, which satisfies the Killing equation

∇(µχ
t
ν) = 0, (3.4)

χs is a conformal Killing vector satisfying,

∇(µχ
s
ν) = gµν (3.5)

and which generates Weyl scaling of the metric. This means that the transformation 3.3
leads to

g → µ2g (3.6)

Because of the conformal invariance, this type of symmetry is a symmetry of the theory.
In fact, we can make use of this freedom to Weyl transform this metric to an alternative
conformal frame where it becomes AdS2 × Sd−2

d̄s
2

=
ds2

r2
=
−dt2 + dr2

r2
+ dΩ2

d−2. (3.7)

In this frame both χt and χs are Killing vectors.
A more general class of space-times we will consider which have this symmetry take

the form
g = −A(xi)dt2 +B(xi)dr2 + 2ξi(x

k)rdxidr + r2hij(x
i)dxidxj , (3.8)

where the xi are a set of d − 2 spatial coordinates. When A(xi) = 1, B(xi) = 1 and
ξi = 0, this is a generalized cone with base hij(xi). We will refer to these more general
metrics as twisted cones. In fact, this form of the metric has some degeneracy, in that our
freedom to choose coordinates and our freedom to choose a conformal frame can allow
us to remove some of the functions in this anzatz. It is often natural, for instance, to do a
conformal transformation to an ultrastatic frame defined by A(xi) = 1, but we’ll discuss
these choices when we come to specific examples.

1We are considering relativistic scaling, where space and time get scaled in the same way together. For
an introduction to the holographic treatment of more general scaling laws, see [13].
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We can again use the conformal freedom to transform to a frame where the conformal
Killing vector χs becomes a regular Killing vector

ḡ =
g

r2
=
−A(xi)dt2 +B(xi)dr2

r2
+ 2ξi(x

k)dxi
dr

r
+ hij(x

i)dxidxj . (3.9)

Note that this conformal transformation is singular at r = 0, and the inverse transfor-
mation is singular as r → ∞; correspondingly ḡ ends up with a conformal boundary at
r = 0, and the r, t → ∞ null infinity of g has been conformally compactified to a null
surface in ḡ. This frame, along with this null surface, will be central when we come to
talk about these CFTs holographically because it will emerge naturally when we take co-
ordinates in the gravitational bulk where the scale-invariance is manifest. We will refer
to (3.8) as the cone frame, and (3.9) as the scale-invariant frame.

3.1.2 Fields that preserve the static, scale-invariance

In addition to deforming the metric, we can also add sources for other fields, and consider
states where these fields take non-zero expectation values.

What a scale-invariant source term or expectation value looks like depends on whether
we take the frame (3.8) or (3.9). In the frame (3.8), we need to take into account of the fact
that the coordinate transformation (3.3) leads to the Weyl scaling (3.6).

It’s therefore more straightforward to write down the scale-invariant terms in (3.9)
where they are simply invariant under the transformations (3.3), and then Weyl transform
them to the frame (3.8). Under a Weyl scaling of the metric

gµν →
gµν
µ2

(3.10)

operators transform according to their scaling dimension. For the transformation from
the scale-invariant to the cone frame, µ = 1

r .
Let’s first consider the simplest case of a scalar operator of dimension ∆. A scale-

invariant vev in the scale-invariant frame (3.9) simply needs to be independent of t and
r, so it takes the form 〈

Φ∆(r, xi)
〉

scale invariant = f∆(xi). (3.11)

The Weyl transformation of a primary scalar field is [19]

Φ∆(r, xi)→ µ∆Φ∆(r, xi), (3.12)

so in the cone frame (3.8) it becomes

〈
Φ∆(r, xi)

〉
cone = r−∆f∆(xi). (3.13)

An operator that we will be particularly interested in is the stress tensor Tµν . In the
scale-invariant frame, this is static and scale invariant if the lie derivatives LχtTµν =
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LχsTµν = 0. This means that

〈
Tµν(r, xi)

〉
scale invariant =

Ttt(x
i)dt2 + Trr(x

i)dr2

r2
+ 2Tri(x

i)
dr

r
dxi

+ Tij(x
i)dxidxj .

(3.14)

The stress tensor has scaling dimension d[61], which means that it transforms as2 so that
we have

Tµν → µd−2Tµν (3.15)

and so transforming to the cone frame (3.8)

〈
Tµν(r, xi)

〉
cone =

Ttt(x
i)dt2 + Trr(x

i)dr2

rd
+ 2Tri(x

i)
dr

rd−1
dxi +

Tij(x
i)dxidxj

rd−2
. (3.16)

The other case we will be interested in will be a static chemical potential and a corre-
sponding conserved electric charge density. The scale invariant potential and current in
the scale-invariant frame are of the form

Ascale-invariant =
α(xi)dt

r

〈J〉scale-invariant = ρ(xi)r
∂

∂t
,

(3.17)

where note we are only considering electric and not magnetic charge. A conserved cur-
rent has scaling dimension d − 1[61], which means that it and its source transform as

Aµ → Aµ

Jµ → µdJµ
(3.18)

and so in the cone frame we get

Acone =
α(xi)dt

r

〈J〉cone = ρ(xi)r1−d ∂

∂t
.

(3.19)

3.2 Introduction to Extremal Horizons

Here we review only those features of extremal horizons necessary for this work. For a
more comprehensive review of extremal horizons and their near horizon geometries see
[31]. An extremal horizon is a degenerate Killing horizon. Geometrically, the fact that it is
a Killing horizon means that we have a Killing vector kµ, which becomes null specifically
on the horizon. In addition, kµ is normal to the horizon.

2It is µd−2 rather than µd because of the two lowered indices. If we did a conformal transformation rather
than just a Weyl scaling, then another two factors of µ would come from the accompanying coordinate
transformation.
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The fact that its norm vanishes on the horizon means that the derivative of its norm
must be proportional to the normal vector

∂µ(gνρk
νkρ) = 2κkµ, (3.20)

for some κ, and using the Killing equation for k this can be rearranged to yield

kµ∇µkν = κkν , (3.21)

which tells us that the Killing vector generates geodesics along the horizon[62]. The
parameter κ is called the surface gravity of the horizon, and it is constant for Killing hori-
zons[63]3. Degenerate Killing horizons are those for which κ = 0, and so the parameter
along the geodesics defined by the vector field kµ is affine.

A special feature of these horizons is their ‘near horizon geometry’. For a generic null
Killing horizon (not necessarily degenerate) one can construct Gaussian null coordinates
in an open neighbourhood, such that the metric takes the form[31]

g = rA(r, y)dv2 + 2dvdr + 2rla(r, y)dyadv + hab(r, y)dyadyb, (3.22)

where A, la, and hab are smooth functions for some open region including r = 0. The
Killing vector is ∂

∂v and the horizon is at r = 0. The coordinates ya span the horizon.
When it’s degenerate, the condition in (3.20) (with κ = 0) implies that d(rA(r, y))|r=0 =

A(0, y)dr = 0. This means we can write

g = r2Ã(r, y)dv2 + 2dvdr + 2rla(r, y)dyadv + hab(r, y
a)dyadyb. (3.23)

The metric in (3.23) has an important property not shared by that in (3.22), in that we
are able to take an r → 0 limit of it in such away that we end up with a full-dimensional
metric. Obviously, if you just set r = 0, in either case you get the n−2 dimensional metric
hab(0, y

a)dyadyb induced on the null hypersurface. However, in the second case you can
consider the following limit which takes advantage of the Killing symmetry

r → εr

v → v/ε

ε→ 0.

(3.24)

In this limit we get

g → gNH = r2Ã(0, y)dv2 + 2dvdr + 2rla(0, y)dyadv + hab(0, y)dyadyb. (3.25)

This is the ‘near horizon geometry’ of the extremal horizon[31]. Since the transformation
described in (3.24) is a coordinate transformation for any finite ε (albeit a singular one in
the limit ε → 0), if the original metric satisfies some covariant condition (i.e. Einstein’s

3Subject to a dominant energy condition on the stress tensor for any matter fields.
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equation for some cosmological constant Λ, and with some stress tensor), then, by conti-
nuity, the near horizon geometry satisfies this same condition on its own. The restriction
of Einstein’s equation to the specific case of a near-horizon geometry is referred to as the
near-horizon equations.

3.3 Enhanced Symmetry of Static near-horizon Geometries

If the Killing field that generates the horizon is hypersurface orthogonal, then it turns out
that the near-horizon geometry can be written in the form [31]

gNH = ψ(y)2dΣ2 + γab(y)dyadyb, (3.26)

where
dΣ2 = kr2dv2 + 2dvdr. (3.27)

for some constant k. Depending on the value of k, dΣ2 is one of the two-dimensional con-
stant curvature manifolds. k > 0, k = 0 and k < 0 corresponds to deSitter, Minkowski,
and Anti-deSitter respectively. We can scale coordinates so that k = 1, k = 0, or k = −1.
Note that while for k = 1 or k = −1 the near horizon geometry inherits the Killing
horizon from the bulk, in the k = 0 case there is no Killing horizon in the near horizon
geometry. In this case the surface r = 0 is just one null Killing surface among many, and
the Killing vector that generates it is null everywhere. This case arises if

∣∣ ∂
∂v

∣∣2 falls off
sufficiently quickly near r = 0.4

For k = 1,−1 we can write t = v − k
r we then find that

dΣ2 = k(r2dt2 − dr2

r2
). (3.28)

In these coordinates, the Killing vector is ∂
∂t . For the AdS2 case, this Killing vector is

timelike outside the horizon, so that the near horizon geometry is static.
We can see from (3.26) that when the Killing vector is hypersurface orthogonal, the

near horizon geometry has more symmetries than we might have have a priori expected.5

It was guaranteed to inherit the Killing symmetry associated with the Killing horizon
and, in addition, since it is the end point of the flow defined by (3.24), it is automatically
invariant under that flow. However, we now have the full symmetry of dΣ2. So, in
addition to these symmetries generated by

∂

∂v
, v

∂

∂v
− r ∂

∂r
, (3.29)

4Generically, we see from Equation 3.65 that
∣∣ ∂
∂v

∣∣2 ∼ r2, but if
∣∣ ∂
∂v

∣∣2 ∼ r3 or higher, we will end up with
this Minkowski case in the near-horizon limit.

5In fact, it is shown in [64], that if sufficient rotational symmetries are assumed, you get this extended
symmetry as well.
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we have an extra symmetry generated by

∂

∂r
+ k

(
1

2
v2 ∂

∂v
− rv ∂

∂r

)
. (3.30)

For k 6= 0, these three symmetries taken together form SO(2,1), and for k = 0 they are the
two dimensional Lorentz group.

Even without the stipulation that ∂
∂v was hypersurface orthogonal, we see in (3.25)

that we don’t have the most generic metric compatible with the Killing and scaling sym-
metry. We are missing the potential drdya terms6

g = r2Ã(y)dv2 + 2dvdr + 2rla(x
i)dyadv + 2pa(y)

dr

r
dya + hab(y)dyadyb. (3.32)

If pi(0, y) 6= 0 this does not describe a smooth near horizon geometry, and we will have
more to say about these singular geometries later.

3.4 Near Horizon Geometries with Conformal Boundaries

We now consider static near-horizon geometriesM, which are AlAdS solutions to Ein-
stein’s equation with negative cosmological constant. We discussed general AlAdS space-
times and their conformal boundaries in 1.4.1. From, (3.26), it is clear that there must be a
special class of defining functions Z(y) which is invariant over Σ, so doesn’t depend on t
or r7. The crucial thing to note is that, for such choices of defining function, the ambient
metric, ḡNH = Z(y)2gNH which we introduce as part of this construction is itself a near-
horizon geometry. In particular, the surface in this ambient space corresponding to the
conformal boundary has a metric of the form

gNHB = p(x)2dΣ2 + hij(x)dxidxj , (3.33)

where the (d − 2) xi coordinates span the Z(ya) = 0 subspace of the ya coordinates.
Explicitly, comparing with (3.26), we have

p(x) = Z(y)ψ(y)|Z=0

hij(x)dxidxj = Z(y)2γab(y)dyadyb
∣∣∣
z=0

.
(3.34)

We see, therefore, that the conformal boundary of a near-horizon geometry must, in some
class of conformal frames, be a near horizon geometry itself.8

6Note that there were two coordinate freedoms

r → rλ(y)

v → v +
k(y)

r

(3.31)

which we fixed by demanding that the coefficient of dr2 vanishes and the coefficient of dvdr is 1.
7i.e. γabdyadyb taken on its own has to have a conformal boundary.
8This follows as well in the non-static case.
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We focus now on the k = −1, AdS2 case and examine this boundary. We see that the
boundary metric is a special case of the general static scale-invariant geometries in (3.9).
In fact, the generators of the static scale-symmetry, are just the restriction of the generators
of the symmetries of the near horizon geometry (3.29) to the boundary. Transforming this
to the frame (3.8) we get

ḡNHB = p(x)
(
−dt2 + dρ2

)
+ ρ2hij(x

i)dxidxj . (3.35)

We can always take the special conformal frame where p(x) = 1. If the xi describe a
compact manifold, this is then the product of time and a generalized cone. AlAdS near
horizon geometries therefore describe static-scale invariant states on these generalized
cones. Note that these geometries are a subset of (3.8), and don’t include ‘twisted’ cones.

3.4.1 AdS Example

The simplest example of a near-horizon geometry in d + 1 dimensions is the Poincaré
patch of AdS described in 1.7. We can write the metric as

g =
−dt2 + dz2 + dρ2 + ρ2dΩ2

d−2

z2
. (3.36)

where the conformal boundary metric is at z → 0 and is simply flat space

h = −dt2 + dρ2 + ρ2dΩ2
d−2. (3.37)

In these coordinates it’s not obvious that there is an extremal horizon, but we can perform
the coordinate transformation[31]

z =
r′

ψ

ρ =
r′
√
ψ2 − 1

ψ
,

(3.38)

to make this manifest. The metric is then

g = ψ2

(
−dt2 + dr2

r2

)
+

dψ2

ψ2 − 1
+ (ψ2 − 1)dΩ2

d−2. (3.39)

Now the conformal boundary is at ψ → ∞, and there is an axis at ψ = 1. This has the
standard form of a static near horizon geometry, with the horizon at r → ∞. Note from
(3.38) that to get to the horizon, you don’t just send z → ∞, but ρ → ∞ to with the ratio
z
ρ kept finite. The conformal boundary metric is now given by

h̄ =

(
−dt2 + dr2

r2

)
+ dΩd−2 (3.40)

which is AdS2 × Sd−2. In doing this bulk coordinate transformation we see that we gen-
erated the Weyl transformation from the cone frame to the scale-invariant frame. In the
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scale-invariant frame the boundary itself has an extremal horizon, and this horizon ex-
tends into the bulk as the Poincare horizon. Under the Weyl transformation that relates
these two frames, this extremal horizon on the boundary gets mapped to null infinity,
so in the cone frame we can say that the Poincare horizon meets the boundary at null
infinity.

3.4.2 4d Einstein Near Horizon Geometries

In 4 dimensions, the complete set of AlAdS near horizon geometries is known analyti-
cally. The metrics take the form[31]

g =
dψ2

f(ψ)
+ α2f(ψ)dφ2 + ψ2

(
−dt2 + dr2

r2

)
(3.41)

where f(ψ) = ψ2 − 1 − ψ0(ψ2
0−1)
ψ , and where ψ0 and α are constants. The case ψ0 = 1

corresponds to AdS. More generally we can consider values of ψ0 >
1√
3
, so that ψ = ψ0

is the largest zero of f(ψ). The conformal boundary is again at ψ →∞, and now the axis
of symmetry for the φ coordinate in the bulk is at ψ = ψ0. The parameter α is fixed in
terms of ψ0 by requiring that there is no conical singularity in the bulk along this axis9.
This fixes α = 2ψ0

3ψ2
0−1

, so we have a one parameter family of solutions corresponding to
the full range of possible values of α > 0. The conformal boundary metric is AdS2 × S1

h =
−dt2 + dr2

r2
+ α2dφ2 (3.42)

with α controlling the size of the S1. This is the scale-invariant frame, and transforming
to the cone frame we have

h̄ = −dt2 + dr2 + α2r2dφ2, (3.43)

which is a cone with α controlling the opening angle.
If we examine the limiting case ψ0 → 1√

3
, we find something a little different. α(ψ)

diverges in this limit, but this was just a factor inserted to keep the period of φ canonical,
and so can just be absorbed as a redefinition of φ = φ̃√

α
. In this solution, the φ̃ coordi-

nate is no longer compact (since when φ → φ + 2π, φ̃ → φ̃ + 2π
√
α which diverges as

ψ0 → 1√
3
). This means that the natural choice of boundary is asymptotically the same as

before but with a non-compact φ coordinate. However, there is nothing to stop us from
compactifying this coordinate to turn it into a circle of whatever size we want and so turn
the boundary into a cone of any conical deficit we want. For each cone opening angle,
there are therefore two possible bulk geometries we can choose.

These near-horizon geometries therefore describe static, scale-invariant CFT states on

9We take φ to have canonical period.
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a cone. The stress tensor can be extracted by moving to the Fefferman-Graham coordi-
nates we discussed in 1.6.1, and in the two frames it takes the form

Tscale-invariant = c
ψ0

(
ψ2

0 − 1
)

r2

(
−dt2 + dr2 − 2r2α2dφ2

)
Tcone = c

ψ0

(
ψ2

0 − 1
)

r3

(
−dt2 + dr2 − 2r2α2dφ2

)
.

(3.44)

3.4.3 4d Einstein-Maxwell Near-Horizon Geometries

We can add in a gauge field, in which case the solutions take the form[65]

g =
dψ2

f(ψ)
+ α2f(ψ)dφ2 +

ψ2
(
dr2 − dt2

)
r2

A = e
dt

r

(3.45)

where f(ψ) = ψ2 − 1−
ψ3

0−ψ0− e2

ψ0
ψ − e2

ψ2 . There are now two free parameters α and e10. In
addition to the boundary metric as above, there is now a scale-invariant boundary chem-
ical potential of the form edtr . These solutions (in the special case α = 1) are discussed
in [66], where they are interpreted as point charge defects in the CFT. Fixing α = 1, e is
given in terms of the largest zero ψ0 by

e2 = ψ2
0(1 + 3ψ0)(1− ψ0). (3.46)

In this case ψ0 is the greatest positive zero of f so long as 0.226... < ψ0 < 1. The parameter
ψ0 in this range labels a family of bulk solutions, and the dual CFT states are sourced by
a potential with strength e. As pointed out in [66], the map, e→ ψ0, from source to state
is neither left-complete nor one-to-one. The range of e for which there is a corresponding
state is bounded by e2 < 1

288

(
69 + 11

√
33
)
≡ e2

m, and, for e2 > 0.066... ≡ e2
c , there are

two branches of states labelled by two different values of ψ0. The two branches are,

• Branch 1: Runs from 0 < e2 < e2
m. The e2 = 0 case is pure AdS.

• Branch 2: Runs from e2
c < e2 < e2

m. It meets Branch 1 at e2 = e2
m.

The boundary charge density corresponding to the chemical potential can be read off
by looking at the series expansion of the gauge field near ψ →∞. Since the gauge field is
independent of ψ, we find that this vanishes. However, as explained in [66] this isn’t the
whole story.

There are in fact two different components of the conformal boundary. There is a
2 + 1 dimensional component at ψ → ∞, and a 1 + 1 dimensional component coming
from the conformal boundary of the AdS2 factor as r → 0. This comes from the fact
that the conformal transformation relating the scale invariant frame to the cone frame
is singular at r = 0. The effect of this can be seen in the explicit AdS example in 3.4.1.

10ψ0 is again then determined by the requirement that the bulk has no conical singularity.
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The bulk coordinate transformation (3.38) that generates this conformal transformation
is degenerate at r = 0, which is why the origin of the cone frame conformal boundary
has been blown up to lie along all values of ψ at r = 0.

To extract the full boundary charge, we need to take this additional component into
consideration. In the cone frame, the charge that comes from this extra component can
be thought of as a point charge defect at the origin on the boundary[66], and when that
is taken into account, the total charge is Q = 2e

ψ0
.

3.5 Extremal Horizons and Large Scale Limits in AdS/CFT

We have seen that we can describe certain static, scale-invariant, holographic CFT states
in the bulk by AlAdS near horizon geometries. In 3.5.1 we will discuss more general CFT
states which are only static, and scale-invariant in a large scale limit. In [59] we explore
how AlAdS bulk spacetimes with extremal horizons describe these more general states
in AdS/CFT, and we will now discuss this result. This work was in collaboration with
James Lucietti and Toby Wiseman.

What is shown here is that when you have an extremal horizon in the infrared in
the bulk, which meets the conformal boundary at null infinity, you cannot choose the
near horizon geometry of this extremal horizon freely. This is because the geometry of
the Extremal Horizon in the bulk determines the large scale limit of the geometry on the
boundary. In fact, going the other way, the geometry of null infinity on the boundary
forms the boundary conditions for an elliptic PDE whose solution is the geometry of the
Extremal Horizon, which in turn determines the large scale limit of the CFT state on this
geometry. After introducing large scale limits, we will discuss a non-trivial example of
bulk spacetimes that contain the 4d extremal horizons with the near-horizon geometries
discussed in 3.4.2. We’ll see there explicitly the correspondence between the large scale
limit on the boundary, and the near-horizon limit in the bulk. In Section 3.5.3 we provide
a sketch of the proof of this result, and then in 3.5.4 we discuss potential generalizations.

3.5.1 Large Scale Limit of a CFT state

An exactly scale-invariant state is quite special. However they arise naturally as a large
scale limit of a large class of CFT states. To illustrate this, consider first an asymptotically
flat spacetime. At large r the metric can be written in the form

g = −
(

1 +O

(
1

r

))
dt2 +

(
1 +O

(
1

r

))
dr2 + r2

(
1 +O

(
1

r

))
dΩ2. (3.47)
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FIGURE 3.1: The C-Metric

We can think of this as a metric that becomes Minkowski in a ‘large scale limit’. To make
this more precise, consider the combination of transformations

r → λr

t→ λt

g → g

λ2
.

(3.48)

Under these transformations, the metric becomes

g → −
(

1 +O

(
1

λr

))
dt2 +

(
1 +O

(
1

λr

))
dr2 + r2

(
1 +O

(
1

λr

))
dΩ2. (3.49)

We see that if we then take λ → ∞ limit this becomes Minkowski. This is what we will
call the large scale limit.

We can consider more general spacetimes that admit a large scale limit (3.48) which
are not necessarily asymptotically flat. Spacetimes that at large r are of the form (3.8) plus
contributions that fall off faster with r admit such a limit. We can similarly consider other
sources and the expectation values of fields in CFT states. The state has a large scale limit
if the leading order in r behaviour at large r of sources and vevs is the scale-invariant
form we discussed in 3.1.2. Any fields that fall off faster than this disappear in the scale-
invariant limit, while any that do not fall off fast enough obstruct the construction of this
limit.

3.5.2 Holographic CFT on 2+1 dimensional resolved cones

Before we move on to the more general result, we will start with a non-trivial explicit
four dimensional example. We consider a class of static, rotationally symmetric, 4-d bulk
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AdS C-Metrics[67]. These spacetimes take the form

gC =
1

(x− r)2

(
−r2f(r, x0)dt2 +

dr2

r2f(r, x0)
+

dx2

g(x, x0)
+ g(x, x0)α(x0)dφ2

)
f(r, x0) = 1− x2

0 − 1

x3
0

r

g(x, x0) = 1− x2 − x3

x3
0

(
1− x2

0

)
α(x0) =

4x2
0(

x2
0 − 3

)2 ,
(3.50)

forming a one-parameter family parametrized by the constant x0. The bulk is described
by the domain

0 < r < x ≤ x0. (3.51)

The x−r dependence of this spacetime is illustrated in 3.1. It has a conformal boundary at
x = r, and an extremal horizon at r = 0 that meets the conformal boundary at x = r = 0.
There is an axis of symmetry running from the horizon to the boundary at x = x0. For
this bulk to be smooth x0 needs to be the smallest positive root of g(x, x0). This implies
the condition

0 < x0 ≤
√

3. (3.52)

The constant α(x0) simply rescales the φ coordinate, and is inserted so that φ is taken to
have canonical period 2π with there being no conical singularity on the axis at x = x0.
Explicitly, writing x = x0 − ερ2, and looking at the x-φ part of the metric for small ε we
find

gC |r,t=const =
2
√
α(x0)

(x− r)2

(
dρ2 + ρ2dφ2

)
ε+O(ε2). (3.53)

Let’s examine the conformal boundary x = r. A representative of the induced confor-
mal structure is given by

h̄C = (x− r)2gC |x=r

= −x2f(x, x0)dt2 + dx2

(
1

x2f(x, x0)
+

1

g(x, x0)

)
+ g(x, x0)α(x0)dφ2.

(3.54)

To understand what spacetime the conformal boundary is, lets look at two limits. If we
look at small x, or large ρ = 1

x the metric becomes

h̄C → x2

(
−dt2 +

dx2

x4
+
α(x0)

x2
dφ2

)
=
−dt2 + dρ2 + ρ2α(x0)dφ2

ρ2
.

(3.55)

On the other end if we look at the region approaching x = x0 and again write x = x0−ρ2

we find
h̄C → x2

0

(
−dt2 + 2

√
α(x0)

(
dρ2 + ρ2dφ2

))
. (3.56)
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So at small x it is an example of the scale-invariant metric of the form (3.9), and at x = x0

it caps of smoothly. We can perform a Weyl scaling to instead put the metric in a form so
it is asymptotically like (3.8)

hC =
h̄C
x2

= −f(x, x0)dt2 + dx2

(
1

x4f(x, x0)
+

1

x2g(x, x0)

)
+
g(x, x0)

x2
.α(x0)dφ2.

(3.57)

Then the two limits become

hC → −dt2 + dρ2 + ρ2α(x0)dφ2 (3.58)

and
hC → −dt2 + 2

√
α(x0)

(
dρ2 + ρ2dφ2

)
. (3.59)

This is a resolved cone. At large ρ there is an opening angle determined by α(x0), but
instead of a conical singularity, the geometry rounds off smoothly.

Now let’s look at the extremal horizon at r = 0 which meets the conformal boundary
at x = 0, or ρ → ∞. We can find the associated near horizon geometry. We do this by
taking r → εr, t→ t

ε and taking the limit ε→ 0. This yields

gnhC =
1

x2

(
−r2dt2 +

dr2

r2
+

dx2

g(x, x0)
+ g(x, x0)α(x0)dφ2

)
, (3.60)

which through the change of variables x = 1
ψ , recovers the 4-d near horizon geometries

from (3.41).
Having taken this limit we can, if we choose, simply forget about the rest of the ge-

ometry, and take this metric to describe a new complete spacetime. Recall from Section
3.4.2 that the conformal boundary is now given by

h = −dt2 + dρ2 + ρ2α(x0)dφ2. (3.61)

This is precisely what we got as the large scale limit of the C-Metric boundary in (3.58).
As we’ve taken a near-horizon limit in the bulk, we’ve found that we’ve taken a large
scale limit on the boundary, and thrown away all other information. This principle also
extends to observables like the stress energy tensor.

3.5.3 The General Statement

What we saw in Section 3.5.2 was an example of a bulk spacetime with an extremal hori-
zon that met the conformal boundary. In an appropriate conformal frame as in (3.8), this
extremal horizon meets the boundary at null infinity. What we found was that there was
a connection between the near horizon geometry of extremal horizon, and the large scale
limit of the conformal boundary. The main result of [59] was to prove the statement about
this connection in general.
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FG Coordinates for Near Horizon Geometries

The near-horizon equations for static extremal horizons of this form are just a set of ellip-
tic equations, with the boundary conditions given by the metric on the conformal bound-
ary. Following from (3.26), we know that these solutions take the form

gNH = ψ(y)2

(
−dt2 + dr2

r2

)
+ γab(y)dyadyb. (3.62)

If they are AlAdS, then the conformal boundary is a cone

gc = −dt2 + dr2 + r2hij(x
i)dxidxj . (3.63)

We will write gNH [h(x)] as a (not necessarily unique) solution to the near-horizon equa-
tions, with a conformal boundary that in some frame is this cone specified by hij .

As usual, we can take Fefferman-Graham coordinates near the conformal boundary.
The bulk coordinates ya on the horizon get replaced by z, xi, where the xi are boundary
coordinates, and the coordinate z = 0 on the boundary, and increases in to the bulk.
Adapted to an AlAdS near-horizon geometry this takes the form

gNH [h(x)] =
1

z2

(
ψ(x, z)

(
−dt2 + dr2

r2

)
+Hij(x, z)dx

idxj + dz2

)
. (3.64)

If we choose the frame where ψ(x, 0) = 1, then we will have Hij(x, 0) = hij(x). The FG
expansion from 1.6.1 then determines ψ and γij in a series expansion in z, until at order
zd there is information corresponding to the stress tensor in the CFT that is not fixed by
the boundary expansion. To find this, we need to solve the full near-horizon equations
for gNH [h(x)].

Large Scale limits and Near Horizon limits related through the Fefferman Graham
Expansion

We now argue that if there is an extremal horizon in the bulk, that meets the boundary
at null infinity, then the conformal boundary of the Near Horizon Geometry of the bulk
horizon is the large scale limit of the boundary. Thus, this large scale limit forms the
boundary conditions of the near horizon Einstein equations described above. This ar-
gument was come up with collaboratively, but the slightly more general presentation in
[59] which holds as well when the near horizon geometry as written in (3.26) has k = 1

or k = 0 is due to James Lucietti.
We do this by illustrating the relationship between extracting the large scale limit on

the boundary and taking the near horizon limit in the bulk for the case where the extremal
horizon meets the boundary at null infinity. Consider a static spacetime with an extremal
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horizon. In a region containing the horizon we can write the metric as[52]11

g =
−A(r, ya)dt2 +B(r, ya) (dr + ωa(y

a)dya)2

r2
+ γab(r, y

a)dyadyb, (3.65)

where limr→∞A(r, xa) = limr→∞B(r, xa) = ψ(xa), limr→∞ γab(r, y
a) = γab(y

a), and all
other functions are smooth and bounded. Unless otherwise stated, in everything that
follows f(y) ≡ limr→∞ f(r, y). The near-horizon geometry of this extremal horizon is
thus (3.62).

If this extremal horizon meets a conformal boundary, we can transform this to Fefferman-
Graham coordinates in some open region which includes the conformal boundary. Com-
pared to (3.64), it’s complicated slightly by the r dependence of the metric functions

g =
−Ā(r, z, xi)dt2 + B̄(r, z, xi)dr2 + 2αi(r, z, x)drdxi

z2r2

+
Hij(r, z, x

i)

z2
dxidxj +

dz2

z2
.

(3.66)

The conformal boundary metric is given by

gb =
−Ā(r, 0, xi)dt2 + B̄(r, 0, xi)dr2 + 2αi(r, z, x)drdxi

r2

+Hij(r, 0, x
i)dxidxj

(3.67)

which we can see is an asymptotically scale-invariant boundary metric written in the
scale-invariant frame. We can transform this to the cone frame by performing a coordi-
nate redefinition in the bulk. We can write

g =
−Ã(r′, Z, xi)dt2 + B̃(r′, Z, xi)dr′2 + 2α̃i(r, Z, x)drdxi

Z2

+
r′2H̃ij(r

′, Z, xi)

Z2
dxidxj +

dZ2

Z2

(3.68)

where Z = zr + O(z3) and r′ = r + O(z2), where the higher order terms are determined
by forcing the metric to take this FG form. The boundary metric is now in the cone frame

gbf = −Ā(r, 0, xi)dt2 + B̄(r, 0, xi)dr2 + 2αidrdx
i + r2Hij(r, 0, x

i)dxidxj . (3.69)

The near horizon limit in (3.66) amounts to taking r → µr, t → µt and then µ → ∞. To
leading order in z, this means in (3.68) that Z → µZ, and so for the boundary metric in

flat frame gbf →
gbf
µ2 . This is precisely the large scale limit from 3.5.1.

What’s more, by considering the FG expansion, the expansion in z or Z of (3.66) or
(3.68), we can see that we’ve also taken the large scale limit of the state. It’s simplest to
consider the cone frame (3.66). The stress tensor is theO(zd) component of the expansion,

11Crucially, these coordinates hold over the entire horizon.
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〈T 〉 =dc

(
−Ā(d)(r, 0, xi)dt2 + B̄(d)(r, 0, xi)dr2 + 2α

(d)
i (r, 0, x)drdxi

r2

)
+ dc

(
H

(d)
ij (r, 0, xi)dxidxj

)
,

(3.70)

where Ā(r, z, xi) = Ā(0)(r, 0, xi) + z2Ā(2)(r, 0, xi) + ...zdĀ(d)(r, 0, xi) + ..., and similarly for
the other functions. The crucial point is that the near-horizon limit and this expansion
in z commute, so we can take the near-horizon limit independently at each order in z.
Applied at this order in z, the near horizon limit is simply the large scale limit of this
stress tensor, and so this large scale limit must be equal to the stress tensor from the near
horizon geometry gnh [hij(x)].

In summary we conclude that if the bulk contains an extremal horizon that meets
the boundary at null infinity, it’s near horizon geometry is a solution to the near horizon
equations with conformal boundary given by the large scale limit of the boundary geom-
etry. In addition, the above argument tells us that the large scale limit of the one-point
function of the stress tensor can be extracted from the near-horizon geometry.

Obstructions to Null Infinity extending to an Extremal Horizon

So far we have discussed what must happen if there is an extremal horizon that meets the
boundary at null infinity. We now turn that on it’s head, and ask under what conditions
null infinity can extend to an extremal horizon in the bulk.

First of all, it follows from (3.33), that any null infinity that extends to an extremal
horizon in the bulk must be conformally related to an extremal horizon. It must there-
fore have the corresponding enhanced SO(2,1) symmetry. We call this an ‘extremal null
infinity’. We will discuss what happens in the interesting more generic case where null
infinity is non-extremal in Chapter 4. For now, we can construct an example by taking
a Minkowski boundary and periodically identifying one of it’s spatial directions. For
instance, for a 2 + 1 dimensional boundary we would write

g = −dt2 + dr2 + α2dφ2 (3.71)

where φ has period 2π. We can see that the scale-invariant limit of this is in fact singular.
The transformation (3.48) leaves

ḡ = −dt2 + dr2 + α2dφ
2

µ2
. (3.72)

so the φ circle vanishes in this limit. This, therefore, cannot be the boundary of a bulk
which has an extremal horizon that meets the boundary at infinity. Indeed, as we dis-
cussed in 1.7.3, there are two bulk vacuum solutions we could consider here, the AdS-
Soliton or periodically identified Poincaré AdS. Neither of these has an extremal horizon.
Periodically identified Poincaré AdS actually has a region that looks like an extremal
horizon, but has a singularity in place of the horizon. To illustrate this, we can add a
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compact direction to Poincare AdS (3.73)

g =
−dt2 + dz2 + dρ2 + ρ2dΩ2

d−3 + dθ2

z2
. (3.73)

Performing the coordinate transformation (3.38)

g = ψ2

(
−dt2 + dr2 + dθ2

r2

)
+

dψ2

ψ2 − 1
+ (ψ2 − 1)dΩ2

d−3. (3.74)

The near-horizon limit of this looks like a near-horizon geometry, except the θ circle
shrinks, making it singular.

Given a boundary geometry that does have an extremal null infinity further con-
straints are provided by the conditions that the near-horizon limit of (3.66) is well-defined.
Since the FG coordinate z is not touched by this limit, this should be true order by order
in z. For instance, the zd component of this expansion tells us the stress tensor needs to
be finite in this limit, which means it has the scale-invariant form (3.14). Transforming to
the flat frame, it’s leading order fall off needs to be (3.16), otherwise null infinity cannot
extend to an extremal horizon in the bulk. This is precisely the condition that the CFT
state has a well defined large scale limit as in 3.5.1.

We can illustrate what changes holographically when the state does not have a large
scale limit by, for instance, considering a finite temperature homogeneous state in Minkowski.
The stress tensor here has a constant energy density, and so does not fall off as fast as
(3.16). The bulk dual to this state is AdS-Schwarzchild (1.40) We can take coordinates like
we do for the near horizon geometry by setting z = z̄r

g =

dφ2 + dr2

r2 − (1− z̄drd

zd0
)dt

2

r2 + (rdz̄+z̄dr)2

r2(1− z̄drd
zd0

)

z̄2
. (3.75)

However now we cannot take the r → ∞, t → ∞ limit. Note that, in these coordinates,
the black-hole horizon is at

r =
z0

z̄
, (3.76)

which does meet the boundary at null infinity, but is not an extremal horizon.

3.5.4 Beyond the universal sector

The proof in [59] was in the universal sector, but we would expect a similar story with
the addition of extra fields. In particular, the argument relating the near horizon limit
to the large scale-limit holds just as well with the addition of extra bulk fields. Taking
the near horizon limit of additional bulk fields is therefore equivalent to taking the large
scale limit of the corresponding dual CFT operators.

An example has been demonstrated numerically in [66]. Here they considered the
addition of a gauge field in the 3 + 1 dimensional bulk, and so an electric potential on the
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2 + 1 dimensional boundary. The boundary electric potential was asymptotically scale-
invariant, but had non-trivial rotationally invariant profiles as a function of radius. The
large scale, scale-invariant limit of this electric potential determined the resulting near
horizon geometry of the extremal horizon in the bulk. These near horizon geometries are
the ones we discussed in 3.4.2.

3.6 Discussion

In this chapter, we started with the simple observation that near-horizon geometries in
the bulk describe a certain class of scale-invariant states in holographic CFTs. We then
argued more generally that spacetimes with extremal horizons in the bulk can be used
to described holographic CFT states with well defined large scale limits. The large scale
limit of the state is then described by the near-horizon geometry. The power of this result
lies in it’s universality. This holds for any universal-sector state with an extremal horizon
that meets the conformal boundary in this way. We would argue that similar results
should hold with the addition of matter fields. The existence of the near-horizon limit in
the bulk, which satisfies it’s own near-horizon equations means that the large-scale limit
of the corresponding CFT states can also be treated apart from the full states.

In certain cases, this could even apply to integrated quantities like charges, when
those quantities are tied to the asymptotic fall-off of corresponding densities. For in-
stance in [66] they considered a CFT with no chemical potential and then smoothly turn
one on with arbitrary profile V (r). They found that the total charge only depended on
the scale-invariant large scale fall-off of the chemical potential. Hence, if this large scale
fall-off is described by a near-horizon geometry, this near horizon-geometry tells you the
total charge, independent of what happens away from the large scale limit. Holograph-
ically, you can argue this by considering a non-scale-invariant bulk with a gauge field
and an extremal horizon in the infrared. If the bulk spacetime is bounded only by this
null surface and the conformal boundary, and there is no charged matter or horizons in
the bulk, then Gauss’s law tells us that the electric flux through the boundary (which is
the total charge in the CFT), is equal to the charge on the horizon. This charge can be
calculated just as well on the near-horizon geometry, and so would be unchanged as you
take the large scale limit.

However, this story is by no means all encompassing. From the discussion in 3.3 of
the enhanced symmetry of static extremal horizons, we know that they cannot describe
the most generic static, scale-invariant states. Since a conformal boundary that breaks this
symmetry is a perfectly legitimate choice of boundary conditions for Einstein’s equations,
there should exist static, scale-invariant bulks without this extra symmetry. These bulks
are the subject of Chapter 4.
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Chapter 4

Singular Scale Invariant Geometries

In the previous chapter we explored the role of extremal horizons in describing (asymp-
totically) static scale-invariant states in Holographic CFTs. The observation we now want
to make is that these bulk space-times can only get us so far. As remarked in Section 3.3
static near-horizon geometries have enhanced symmetry. The static and scale-symmetry
are part of a larger SO(2, 1) symmetry due to the AdS2 factor in their metric.

This means that AlAdS extremal horizons cannot describe the most generic static
scale-invariant states. In this chapter we discuss work that was published in [68] in which
we discussed bulk spacetimes that generalize the notion of extremal horizons, and which
allow us to describe more generic static scale-invariant states holographically. We demon-
strate their existence by constructing them numerically using the techniques described in
Chapter 2. Our claim is then that these are possible IR geometries in the case that the
CFTs have a large scale limit of this more general form, in the same way that extremal
horizons can lie in the IR when the large scale limit has the appropriate enhanced sym-
metry. This would mean that the enhanced symmetry that’s often observed in the IR in
AdS/CFT is only there because we are considering a subset of the possible IR geometries.

The examples we will construct will have 3 + 1 dimensional bulks, and we will con-
sider both the universal sector, and the addition of a bulk gauge field. From the discus-
sion in 3.4.2, we know that the most general static scale-invariant boundary metric and
chemical potential that is consistent with a near-horizon geometry in the bulk is

h = −dt2 + dr2 + α2r2dφ2

A = e
dt

r
.

(4.1)

The metric is a cone, and the chemical potential has a scale-invariant, isotropic (i.e. inde-
pendent of φ), fall off. However, a more generic scale-invariant set of sources we might
consider is

h = −dt2 + dr2 + 2χ(φ)rdrdφ+ α2r2dφ2

A = V (φ)
dt

r
.

(4.2)

Here, the cone metric has been replaced by what we will call a twisted cone, and the
chemical potential is no longer isotropic. These sources are still static and scale-invariant,
but they break the extra generator of the SO(2, 1) symmetry. As before, we can also write
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this in a conformal frame where the scale invariance is manifest

h̄ =
−dt2 + dr2

r2
+ 2χ(φ)

dr

r
dφ+ α2dφ2

A = V (φ)
dt

r
.

(4.3)

The bulk Einstein-Maxwell equations are

R(n)
µν = − 3

`2
g(n)
µν + 2

(
FµαF

α
ν −

1

4
gµν

(
FαβF

αβ
))

∇µFµν = 0.

(4.4)

where we will take units with ` = 1. The bulk spacetime is four dimensional, but the
staticity and scale-invariance will will leave us with a set of two dimensional PDEs.

We will start by constructing these bulks as linear perturbations of AdS, then we will
proceed to the numerical construction of examples of bulk solutions to the full equations,
and then we will discuss their properties and the singularity more generally.

4.1 Linearised Construction of Solutions

Here we present the linearised construction of the bulks we are interested in as perturba-
tions of AdS. This calculation was first presented without a gauge field in [59], and then
the gauge field was added in [68].

We write down a linearised perturbation of AdS, and a linearised gauge field

g = gAdS + h

A = α,
(4.5)

substitute into (4.4), and expand to linear order in h and α. Since the gauge field only en-
ters quadratically in the equations, it decouples and simply satisfies Maxwell’s equations
on AdS4 and the perturbation h separately satisfies the linearised Einstein’s equation on
this background. The perturbations are going to preserve the staticity and the scaling
symmetry, but break the other symmetries of AdS. To take advantage of this symmetry
we will write AdS4 as

gAdS =
ψ2

r2

(
−dt2 + dr2

)
+

1

ψ2 − 1
dψ2 +

(
ψ2 − 1

)
dφ2. (4.6)
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Because of the rotational symmetry of the background, we can expand our perturba-
tion in Fourier modes in φ. For each mode we write an anzatz

h = cosnφ

(
pn(ψ)

(
−dψ2

ψ2 − 1
+
(
ψ2 − 1

)
dφ2

))
+ cosnφ

(
2ln(ψ)

dr

r
dψ

)
+ sinnφ

(
2fn(ψ)

dr

r
dφ

)
+ sinnφ (2hn(ψ)dψdφ)

α = vn(ψ) cosnφ
dt

r

(4.7)

with integer n ≥ 0. We then have a set of ODEs in ψ. The solution for the gauge field is

vn(ψ) =

 B1 +B2 arcCothψ n = 0

B1

(
ψ−1
ψ+1

)n/2
+B2

(
ψ+1
ψ−1

)n/2
n > 0

(4.8)

where B1 and B2 are constants, and the Einstein’s equation for the other functions can be
reduced to a single second order ODE for pn with solution

pn(ψ) =

 C1 + C2(ψ + 2 arcCothψ) n = 0

1
ψ(ψ2−1)

(
C1

(
ψ−1
ψ+1

)n/2
(nψ − 1) + C2

(
ψ+1
ψ−1

)n/2
(nψ + 1)

)
n > 0

. (4.9)

Imposing smoothness at ψ = 1 implies B2 = C2 = 0.
The n = 0 modes aren’t very interesting, they simply move us along the 2 parameter

family of near-horizon geometries from 3.4.2. For n > 0 the other metric functions take
the form

ln(ψ) = −C1nψ(ψ − 1)
n
2
−1(ψ + 1)−

n
2
−1

fn(ψ) = C1

(
ψ − 1

ψ + 1

)n/2 (
nψ + ψ2 − 1

)
hn(ψ) = C1

(ψ − 1)
n
2
−1(ψ + 1)−

n
2
−1(nψ − 1)

ψ
.

(4.10)

To interpret these deformations we look at the conformal boundary. For the pertur-
bation to the gauge field, the boundary chemical potential is of the form (4.3) with

V (φ) = B1 cosnφ. (4.11)

From the asymptotic expansion of the solution we can extract the VEV of the dual charge
density

ρ(φ) = −nB1 cosnφ. (4.12)
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For the metric perturbation we can see that the boundary metric gets deformed to

g∂ =
−dt2 + dr2

r2
+ dφ2 + 2εC1 sinnφ

dr

r
dφ, (4.13)

which is a twisted cone from (4.3). Through the Fefferman-Graham expansion[30], we
can extract the boundary stress tensor

Tµν = cC1

((
n2 − 1

)
dt2 cos(nφ)

r2
+

(
n2 + 1

)
dr2 cos(nφ)

r2
+

4ndrdφ sin(nφ)

r
− 2dφ2 cos(nφ)

)
.

(4.14)
These modes can be added together to give any choice of V (φ) or χ(φ) we want, while an
extremal horizon in the bulk would require χ(φ) = 0 and V (φ) = e for some constant e.
This linearised calculation therefore suggests that the near-horizon geometries are only a
very special subset of a more generic class of scale-invariant IR geometries.

4.2 Setup for Numerical Construction of Solutions

The best way to demonstrate that these scale-invariant bulk geometries exist would be to
find an explicit analytic solution. Unfortunately, we haven’t yet found one, so all we can
do is construct them numerically. In this section we present the setup for finding these
solutions, what boundary conditions we choose to consider, and aspects of how we can
demonstrate that these are genuine solutions. We will then discuss the explicit solutions
in 4.3.

4.2.1 The Harmonic Einstein’s Equation and our Anzatz

For the numerical computation, we take coordinates like (4.6) but we replace the holo-
graphic coordinate ψ with a new coordinateX which ranges from 0 ≤ X ≤ 1, withX = 1

being the conformal boundary, andX = 0 being the axis of symmetry. The domain of the
problem has therefore been compactified to a unit-disk D, with X the radial coordinate,
and φ the angular one.

We will take an anzatz for the most general metric and gauge field compatible with
the symmetries, written in terms of these coordinates

g =
1

(1−X2)2

(
S1(X,φ)

dt2

r2
+ S2(X,φ)

dr2

r2
+ 2

dr

r
ωi(X,φ)dyi + g2ij(X,φ)dyidyj

)
A = S3(X,φ)

dt

r
,

(4.15)

where y runs over (X,φ). From the perspective ofM, S1, S2, and S3 are scalars, ω is a
one-form, and g2 is a symmetric rank 2 tensor. Note that as we have explicitly factored
out the divergent conformal factor 1

(1−X2)2 , we can choose coordinates such that these are
all smooth objects on D. While, as we will discuss, the surface r → 0 is singular, we still
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want the geometry on constant r surfaces to be smooth which means, for instance, that
the induced metric g2

ij will be non-degenerate.
Building the symmetries into the anzatz goes some way towards fixing the gauge

freedom in (4.4). In particular, we have chosen to focus on a pure electric solution, so
we are able to fix the U(1) gauge freedom by setting the spatial components of A to zero,
Ai = Ar = 0. However, we still have coordinate freedom over D corresponding to the
transformations

t→ µt

r → rλ(X,φ)

X → X̃(X,φ)

φ→ φ̃(X,φ).

(4.16)

The first of these is fixed by the boundary conditions, but to fix the others we will need
to make use of the method described in Chapter 2. We will use the Harmonic Einstein’s
equation, which in our case take the form

Rµν = − d
`2
gµν + 2

(
FµαF

α
ν −

1

4
gµν

(
FαβF

αβ
))

+∇(µξν)

∇µFµν = 0.

(4.17)

where ξ is defined as usual in terms of some reference connection Γ̄

ξ(x)α ≡ gµν
(
Γαµν − Γ̄αµν

)
. (4.18)

This reference connection will be derived from a reference metric ḡ which we will write
in the same anzatz (4.15). The choice of ḡ is implicitly a choice of coordinate system, and
we’ll discuss this choice in 4.2.5.

4.2.2 A Generalization of the Maximum Principle

In the absence of a gauge field, the maximum principle discussed in 2.2 ensures that
so long as we choose boundary conditions such that φ = ξαξα vanishes on ∂D, then
solutions to (4.17) are automatically solutions to (4.4). Note that the scaling symmetry
means that φ is independent of r, so we don’t need to worry about it being maximized
for r → 0 or r → ∞. For Fµν 6= 0 however we do not have such a maximum principle.
This presents a potential difficulty. In order to demonstrate that a particular solution to
(4.17) is a solution to (4.4) we need to show that ξ = 0 everywhere. While this would
be straight forward for analytic solutions, we will be producing numerical solutions to
discretized versions of (4.17) evaluated on a finite lattice. At any finite lattice spacing,
we would not expect to find ξ = 0. Rather, we would expect that as the lattice spacing
is taken to zero, and our numerical solutions are becoming ever better approximations
to continuum solutions, we should find ξ → 0. The problem of demonstrating ξ = 0
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is therefore tied up with the issue of demonstrating the numerical convergence of our
solutions to continuum, and it becomes hard to rule out finite but small ξ.

In some cases, we can show ξ = 0 more robustly by an indirect method. This involves
a slight generalization of the maximum principle from 2.2. From the contracted Bianchi
identity applied to (4.17) we can show

∇2φ+ ξµ∂µφ = 2
d

`2
ξαξα + 2(∇µξν)(∇µξν)− 2T̃µνξ

µξν , (4.19)

where T̃µν = 2
(
FµαF

α
ν − 1

4gµν
(
FαβF

αβ
))

and φ = ξαξα. Because of the static symmetry,
we will have that (∇µξν)(∇µξν) ≥ 01. We can therefore write

∇2φ+ ξµ∂µφ ≥ 2

(
d

`2
gµν − T̃µν

)
ξµξν , (4.20)

If the right hand side of this equation is positive for any ξ, then we have∇2φ+ ξµ∂µφ ≥ 0

which is the inequality from which the usual maximum principle follows. Therefore, if
the spatial part of the tensor d

`2
gµν− T̃µν is positive definite, the same maximum principle

holds as before, and so long as φ = 0 on ∂D, φ vanishes everywhere.
While the spatial part of gµν is positive definite on an arbitrary spacetime, the prop-

erties of d
`2
gµν − T̃µν depend on the precise solution. This is therefore something we have

to test on each explicit numerical solution. However, this test can be easier then demon-
strating φ = 0 directly. This is because we just need to test that the eigenvalues of this
matrix are positive, and if these eigenvalues are reasonably large, this disentangles the
problem from issues of numerical convergence. For some of our solutions we find this
is true, and in others we don’t. For instance, if we look at the near horizon solutions
from Section 3.4.2 we find that sometimes this matrix is positive definite, and sometimes
it isn’t. This is illustrated in Figure 4.1.

In the cases where this matrix is not positive definite, we have to check ξµ = 0 directly.
As mentioned, at any finite lattice resolution this won’t be the case, but rather what we
should have is ξµ → 0 as the number of lattice points is increased. This is checked in
4.3.4.

4.2.3 Boundary Conditions

We have a set of two dimensional PDEs which are elliptic on D. In order to have a well-
posed problem, we need to provide boundary conditions on ∂D, which is X = 1. These
boundary conditions fix the metric and chemical potential on the conformal boundary.
As long as we impose these constraints on our boundary conditions for the anzatz (4.15)
here

ω(1, φ) = ωφ(1, φ)dφ

g2(1, φ) = 4dX2 + gφφ(1, φ)dφ2,
(4.21)

1This can be seen most easily by analytically continuing to Euclidean signature.
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FIGURE 4.1: Minimum value of the minimum eigenvalue of the spatial
matrix d

`2 gµν − T̃µν for the near-horizon geometries from (3.45) (with no
conical deficit) as a function of charge. For the entirety of Branch 1, as
defined in 3.4.2, this eigenvalue is positive, meaning that the matrix is pos-
itive definite.

which is required so that the metric satisfies Einstein’s equation to leading order, then the
remaining boundary conditions fix the metric and potential on the conformal boundary
to be

h = S1(1, φ)
dt2

r2
+ S2(1, φ)

dr2

r2
+ 2ωφ(1, φ)

dr

r
dφ+ gφφ(1, φ)dφ2

A = S3(1, φ)
dt

r
.

(4.22)

We presented the boundary metric and chemical potential in which we will be interested
in (4.2). This choice of boundary conditions corresponds to

S1(1, φ) = S2(1, φ) = 1

ωφ(1, φ) = χ(φ)

gφφ(1, φ) = α2

S3(1, φ) = V (φ).

(4.23)

In fact, up to coordinate transformations and Weyl scaling, (4.2) is the most generic
static, scale-invariant boundary condition. Starting from a general static-scale invariant
metric and chemical potential

h = −S1(φ)
dt2

r2
+ S2(φ)

dr2

r2
+ ψ(φ)2dφ2 + 2χ(φ)dφ

dr

r

A = V (φ)
dt

r
,

(4.24)
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we can eliminate functions by a appropriate choice of coordinates and frame. Just like
we had in the bulk in (4.16) we have coordinate transformations

t→ µt

r → λ(φ)r

φ→ φ̃(φ)

(4.25)

and in addition we have a freedom of conformal frame under which

g → Ω(φ)g. (4.26)

Due to the scaling symmetry, t→ µt with r → µr leaves the metric invariant, so only the
second two of the coordinate transformations in (4.25) can help us.

The requirement that the signature of the metric is fixed means that S1(φ) > 0 and
S2(φ)ψ(φ)2 > χ(φ)2 ≥ 0. This means that the Weyl transformation where g → g

S2(φ)

is non-singular, and we can use it to send S2(φ) → 1. Having done that, we can then
perform the transformation r →

√
S1(φ)r to send S1(φ)→ 1.

This just leaves three degrees of freedom ψ(φ), χ(φ) and V (φ), and one gauge sym-
metry φ→ φ̃(φ). We need to be a little bit careful when using this freedom because the φ
coordinate is periodic, so we require

φ̃(φ+ 2π) = φ̃(φ) + 2π. (4.27)

A consistent choice is

φ̃(φ) =
2π
∫ φ

0 ψ(φ′)dφ′∫ 2π
0 ψ(φ′)dφ′

(4.28)

which allows us to set ψ(φ) → α = V ol(S1)
2π . This leaves us with the general form (4.2).

One subtlety is that if both V (φ) and χ(φ) are constants the resulting rotational symmetry
allows us to get rid of χ. If χ(φ) = µ, we can set φ→ φ− µ

α2 log r to get rid of it. In addition
the requirement that the metric is non-degenerate adds an additional constraint to (4.2).
We require α2 > χ(φ)2.

Having used up all this freedom, we can confirm that the the metric in (4.2) is con-
formally non-trivial by looking at it’s Cotton tensor. The non-vanishing components are

Ctr =
2χ(φ)χ′(φ)2

α (χ(φ)2 − 1)3 −
χ′′(φ)

2α (χ(φ)2 − 1)2

Ctφ = − χ′(φ)

αr (χ(φ)2 − 1)2 .

(4.29)

The fact that it is non-zero means that the metric is not conformally flat[69].
The set of possible boundary deformations forms an infinite dimensional function

space, so we need to choose some finite set of deformations to focus on. We will, for
simplicity, consider deformations to the metric and to the gauge field separately. So we
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will consider a two parameter family of deformations where

χ(φ) = λ sin 2φ

V (φ) = 0
(4.30)

for varying values of α, and another where

χ(φ) = 0

V (φ) = a+ b cos(2φ),
(4.31)

with α = 1. For λ = 0 in (4.30) and for b = 0 in (4.31), we have the enhanced SO(2,1)
symmetry, and the bulks are the near horizon geometries described in 3.4.2. For reasons
which we will explain in 4.2.4, we have restricted ourselves here to deformations with a
φ → φ + π symmetry. In fact, they also have a φ → −φ symmetry, and we’ll see both
symmetries are preserved in our solutions.

4.2.4 Discretization

Having fixed the domain, anzatz, and boundary conditions, the equations (4.17) become
a well posed set of 8 coupled PDEs to solve for 8 functions (S1,S2, S3, the two components
of ω, and the three components of g2). In order to solve this numerically we now need to
discretize the PDE as described in 2.4.

The difficulty is that the disk domain isn’t really suited to a square lattice. We will
take as our two coordinates the X and φ radial and angular coordinates described above.
These coordinates break down at the origin, so even if the functions in our anzatz are
smooth functions of X and φ, that doesn’t imply that the geometric objects built up from
them are smooth on D.

The requirements of smoothness can be thought of as a set of differential constraints
at X = 0. The objects are smooth if we can write them as smooth functions of some
coordinates that are well defined at X = 0. A simple choice of such coordinates are the
Cartesian type coordinates x, y related to X,φ through

x = X cosφ

y = X sinφ.
(4.32)

The requirement is then that in an open region around X = 0

Si(X,φ) = S̃i(x, y)

ωX(X,φ)dX + ωφ(X,φ)dφ = ω̃x(x, y)dx+ ω̃y(x, y)dy

g2
XX(X,φ)dX2 + 2g2

Xφ(X,φ)dXdφ = g̃2
xx(x, y)dx2 + 2g̃2

xy(x, y)dxdy

+g2
φφ(X,φ)dφ2 + g̃2

yy(x, y)dy2,

(4.33)
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where all the functions of x and y on the right hand side are smooth. Using the coordinate
transformation, we can write out these equations component by component

Si(X,φ) =S̃i(X cosφ,X sinφ)

ωX(X,φ) =ω̃x(X cosφ,X sinφ) cosφ+ ω̃y(X cosφ,X sinφ) sinφ

ωY (X,φ) =X (ω̃y(X cosφ,X sinφ) cosφ− ω̃x(X cosφ,X sinφ) sinφ)

g2
XX(X,φ) =g̃2

xx(X cosφ,X sinφ) cos2 φ+ g̃2
xy(X cosφ,X sinφ) sin 2φ

+ g̃2
yy(X cosφ,X sinφ) sin2 φ

g2
Xφ(X,φ) =X

(
g̃2
xy(X cosφ,X sinφ) cos 2φ

+
g̃2
yy(X cosφ,X sinφ)− g̃2

xx(X cosφ,X sinφ)

2
sin 2φ

)
g2
φφ(X,φ) = X2

(
g̃2
yy(X cosφ,X sinφ) cos2 φ− g̃2

xy(X cosφ,X sinφ) sin 2φ

+g̃2
xx(X cosφ,X sinφ) sin2 φ

)
.

(4.34)

The differential constraints that impose smoothness at X = 0 can be found by expanding
the above in a power series in X . For instance the n-th X derivative of one of the scalars
must satisfy

S
(n,0)
i (0, φ) =

n∑
m=0

cosm φ sinn−m φS̃
(m,n−m)
i (0, 0) (4.35)

which is equivalent to the requirement that if you expand it in modes eimφ, the only
non-zero ones are in the range −n ≤ m ≤ n.

This, and the corresponding constraints for the vector and tensor are tricky to apply
as boundary conditions, so instead we avoid treating the point X = 0 as a boundary. We
will extend the X coordinate to the domain −1 ≤ X ≤ 1, so that we are covering the
whole disk twice. The extension is defined so that the relation (4.32) continues to hold
for negative X . When putting a lattice on this extended domain, we will avoid putting a
point at X = 0 as the equations are singular here.

Solutions on this extended domain must be invariant under

X → −X

φ→ φ+ π
(4.36)

for consistency. This identification mixes X and φ together, and so we wouldn’t be able
to construct separate derivative matrices for each coordinate. To avoid this complication,
we will consider only solutions that are even about X = 0, so they are invariant under

x→ −x

y → −y.
(4.37)
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The symmetry then implies that our solution is invariant under each of

X → −X

φ→ φ+ π
(4.38)

taken separately. This obviously does not automatically mean that the conditions for
smoothness are satisfied at X = 0, but since we are no longer treating the point as a
boundary, we don’t apply boundary conditions there. Instead, we simply check that our
solutions are smooth there after finding them, by checking the conditions implied by
(4.34). This is discussed in 4.3.4.

We therefore construct a lattice for X that builds in this even symmetry as described
in 2.4, and similarly we construct a periodic lattice with period π for φ. In the X direction
we use 6th order finite difference, and in the φ direction we use Fourier differencing.
Crucially there is no point at X = 0 where the equations would be singular.

We then specialize some of our functions in the anzatz to take advantage of this sym-
metry and to build in some of the lowest order smoothness requirements near X = 0

S1(X,φ) = (1 +X2)(1 +A(X,φ))

S2(X,φ) = (1 +X2)(1 +B(X,φ))

ω(X,φ) = F (X,φ)d(X2) +X2H(X,φ)dφ

g(X,φ) = 4(1 + L(X,φ))(dx2 + dy2) + 2M(X,φ)dxdy + S(X,φ)(dx2 − dy2).

(4.39)

4.2.5 The Reference Metric

The final thing that needs to be specified is the fixed reference metric in (4.17). Some
care needs to be taken in choosing this because it needs to be consistent with the gauge
condition φ = ξµξ

µ = 0 on the boundary. From the discussion in Section 2.2 we know
that this means that the reference metric should satisfy the same boundary conditions as
our solution.

For the gauge field deformations (4.31), for given a, b we will take as our reference
metric the near-horizon geometry corresponding to the matching value of a with b = 0,

ḡµν =
1

(1−X2)2

(
ψ2

0

(
1 +X2

)2
r2

(
−dt2 + dr2

)
+ 4

(
dX2

P (X)
+ P (X)ψ2

0X
2dφ2

))
, (4.40)

where P (X) = −ψ0(X2−1)
3
+X2(X2−1)

2−2ψ2
0X

2(X4−2X2+3)
ψ2

0(X2+1)2 and a2 = ψ2
0(1 + 3ψ0)(1 − ψ0),

which is simply (3.45) written in these coordinates.
However, for the metric deformations (4.30), we cannot take a near-horizon geometry

as the reference metric, as that would be inconsistent with the boundary conditions. We
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therefore choose

ḡµν =h(X)

(
1 +X2

)2
(1−X2)2 r2

(
−dt2 + dr2

)
+

1

(1−X2)2

(
4
(
dX2 +X2dφ2

)
+ 8λX2k(X) sin 2φ

drdφ

αr

)
,

(4.41)

with h(X) = 1 + 1−α2

α2 X2 and k(X) = 1 −
(
1−X2

)4. This has been chosen so that it
satisfies the equations of motion for the first few orders near X = 1, and it satisfies the
right boundary conditions so that φ→ 0 on the boundary.

4.2.6 Computational Resources

While initial solutions were found using a desktop PC, in order to do a full parameter
scan I made use of Imperial College’s High Performance Computing (HPC) cluster[70].
This meant that I could make use of multiple nodes to run many different values of the
parameters simultaneously. It also allowed me to use the increased memory resources to
run at a higher resolution than would have been obtainable on the desktop.

4.2.7 Aside on Calculation of Boundary Charge

Before we proceed to actual solutions, we will discuss a particular observable which we
are going to be interested in, which is the total integrated charge on the boundary. As
discussed in Section 3.4.2, in these scale-invariant coordinates there are two components
to the conformal boundary, one at X = 1 and another at r = 0.

In the cone frame the r = 0 component corresponds to the origin, so the contribution
to the total charge from this component is interpreted as a point charge at the origin. The
additional contribution from X = 1 corresponds to a charge density distributed away
from the origin.

In fact, we can show that this distributed density integrates to 0, and the only overall
contribution to the charge is the point charge at the origin. We’ve shown a slice of our
spacetime at constant φ and t in figure 4.2. The charge from each component of the
conformal boundary can be written as[66]

Qa = lim
za→0

1

4π

∫
S(za)

∗F, (4.42)

where za is some function that goes to 0 on the boundary component in question, S(za)

is a constant time-slice of the surface z = za, and ∗ is the Hodge star operator. The
two components of the conformal boundary in the diagram are at the right and the top.
Consider the cylinder in the bulk spatial slice enclosed by the surfaces Σr0 , Σr1 , and ΣX

(the surfaces extend over the φ coordinate, but on a constant time slice). We can consider a
limit where this cylinder grows to fill the entire spacial slice. In this limit, Σr0→∞ becomes
the extremal horizon, Σr1→0 the component of the conformal boundary corresponding to
the origin, and ΣX→1 becomes the other component of the conformal boundary. The total
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Extremal Horizon

Conformal Boundary X = 1

AdS2 Conformal Boundary

r Axis X = 0 ΣX

Σr1

Σr0

V

FIGURE 4.2: A Constant Time slice of the Bulk
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charge can be extracted using this limit through

Q = lim
X→1,r1→0

1

4π

(∫
Σr1

∗F +

∫
ΣX

∗F

)
. (4.43)

where the surface integrals are oriented outwards.
To show that the contribution

∫
ΣX
∗F vanishes, note that the bulk gauge field satisfies

Maxwell’s equation, which can be written as

d ∗ F = 0. (4.44)

When this is integrated over the region enclosed by the cylinder, V , and Stoke’s theorem
is applied we find, ∫

V
d ∗ F =

∫
ΣX

∗F +

∫
Σr0

∗F +

∫
Σr1

∗F = 0, (4.45)

From the scaling symmetry2 ∫
Σr1

∗F = −
∫

Σr0

∗F, (4.46)

where the minus sign comes from the fact that the integrals are oriented outwards. Hence,∫
ΣX

∗F = 0, (4.47)

and the overall charge contribution comes from the origin

Q = lim
r1→0

1

4π

∫
Σr1

∗F. (4.48)

4.3 Numerical Solutions

4.3.1 Gauge Field Solutions

We will start by presenting bulk solutions corresponding to the gauge potential deforma-
tions (4.31). These were found up to a resolution of 25× 65 (φ×X). By expanding these
solutions near the conformal boundary, we are able to extract the boundary charge and
energy densities.

Dependence of Charge on Boundary Parameters

Recall from Section 3.4.2, that for the extremal solutions, corresponding to b = 0 in 4.31,
depending on the value of a there are 0, 1 or 2 bulk solutions. We are able to observe this
as well when b 6= 0. Some examples of the dependence of the point charge at the origin
on boundary source parameters is shown in Figure 4.3. In order to find these solutions

2Like everything else, ∗F must be scale-invariant. It’s pull-back to a constant (r, t) surface is therefore
independent of r.
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FIGURE 4.3: Overall charge on solutions as a function of the parameters
a for a section of choices of b in the electric potential source term V (φ) =
a+ b cos 2φ for which we find solutions. Note that at a = 0 the total charge
is always zero, which we would expect from symmetry.

(a) Form of the applied source V (φ) (b) Resulting charge density ρ(φ)

FIGURE 4.4: Charge density resulting from an electric potential source
term V (φ) = b cos 2φ

r , for b = {0, 0.8, 1.6, 2.4, 3.2}. The induced charge den-
sity integrates to zero. Viewed in the cone frame the potential goes as 1/r,
the charge density as 1/r2, and both have been evaluated at r = 1.

we use the Newton-Raphson iteration described in 2.5. This requires an initial guess, and
for that we use the reference metric (4.40). In order to find the two branches of solutions,
for instance for the b = 0.8 curve we take as the initial guess (and reference metric) each
of the two different branches of the analytic near-horizon solutions. When we are talking
about larger values of b, we only find one branch of solutions. There is, however, no
reason to rule out the second branch. Additionally, for the larger values of a for which
there is no b = 0 near-horizon geometry, we weren’t able to find any solution for non-zero
b either.

Dependence of Charge Density on Boundary Parameters

In addition to the point charge at the origin, there is also an induced charge density
away from the origin, which in this case means on the X = 1 conformal boundary. The
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(a) Form of the applied source V (φ)

(b) Resulting charge density ρ(φ) for branch
1

(c) Resulting charge density ρ(φ) for branch
2

FIGURE 4.5: Charge density resulting from an electric potential source
term V (φ) = 0.5+b cos 2φ

r for b = {0, 0.2, 0.4, 0.6, 0.8}. In this case we found
two branches of solutions. Note that even though the potential V (φ) is no
longer centred about zero, unlike in Figure 4.4,the charge density still is,
and it still integrates to zero. Again, they have all been evaluated at r = 1.
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(a) Form of the applied source V (φ) (b) Resulting energy density Ttt(φ)

FIGURE 4.6: Energy density resulting from an electric potential source
term V (φ) = b cos 2φ

r , for b = {0, 0.8, 1.6, 2.4, 3.2}. Note that, quite intu-
itively, the energy density is peaked when the magnitude of the charge
density in Figure 4.4 is largest. Also, there is a symmetry in the energy
density between the regions of positive and negative charge, which makes
sense because there is no overall charge at the origin. Again, everything is
evaluated at r = 1.

dependence of this charge density on r is fixed by scaling symmetry3, but it has a non-
trivial dependence on φ. By the arguments in Section 4.2.7, the integral of the charge
density vanishes, and this indeed is confirmed numerically (in the data it doesn’t go
above order 10−6, we’ll discuss errors in more detail below). A few examples of the
charge densities found are shown for a = 0 in Figure 4.4 and for a = 0.5 in Figure 4.5.

Dependence of Energy Density on Boundary Parameters

Another observable we can look at is the boundary energy density, extracted from the
stress tensor in the Fefferman-Graham expansion of the metric[28, 30]. Again, the r de-
pendence is fixed by scale invariance (as 1/r2 in the scale-invariant frame and 1/r3 in
the cone frame), but there is non-trivial dependence on φ. The energy densities resulting
from the same applied potential as above are shown in Figures 4.6 and 4.7.

4.3.2 Metric Deformation Solutions

For the case of the purely metric deformations (4.30), there is no gauge field, and so there
is no charge density on the boundary. In this case we just focus on the energy density.
The solutions were found up to a resolution of 25× 145. The resulting plots are shown in
Figure 4.8. The main difference is that the energy density is no longer positive definite,
but this feature was already present in the extremal solutions corresponding to λ = 0.
In this case, the boundary was a cone and the energy density was a constant which is
positive for α > 0 and negative for α < 0. Once we move to our more general case, we
can find solutions that have regions of positive and negative energy density.

3In the scale-invariant frame it goes like 1/r, and in the flat frame like 1/r2
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(a) Form of the applied source V (φ)

(b) Resulting energy density Ttt(φ) for
branch 1

(c) Resulting energy density Ttt(φ) for
branch 2

FIGURE 4.7: Energy density resulting from an electric potential source
term V (φ) = 0.5+b cos 2φ

r for b = {0, 0.2, 0.4, 0.6, 0.8}. In this case we found
two branches of solutions. The main difference now is that we no longer
have a symmetry in the energy density between regions of positive charge
and regions of negative charge. This is because these solutions have an
overall (positive) charge at the origin. Again, they have all been evaluated
at r = 1.
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(a) Form of the off-diagonal SO(2,1) breaking drdφ term in the
boundary metric χ(φ)

(b) Resulting energy density Ttt(φ) for α = 1

(c) Resulting energy density Ttt(φ) for α =
√

5
2

(d) Resulting energy density Ttt(φ) for α =√
5
6

FIGURE 4.8: Large scale energy density for a boundary metric with χ(φ) =
λ sin 2φ

r , for λ = {0, 0.01, 0.05, 0.1, 0.15}, with 3 different conical deficits

α =
{√

5
6 , 1,

√
5
2

}
. The energy densities go as 1/r3, and we’ve evaluated

them at r = 1. Now that we’ve deformed the boundary metric, the energy
density is no longer positive definite. This is not a feature that is peculiar
to our solutions as it was already the case in the near horizon solutions that
some had positive energy density, and others negative. Roughly speaking
the energy density follows the gradient of χ(φ), and it always intersects
the near-horizon energy density for the corresponding value of α close to
when χ′(φ) = 0.
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FIGURE 4.9: Charge density with an electric potential source term V (φ) =
b cos 2φ

r for a range of values of b compared to that of the linearised solution

FIGURE 4.10: Energy density for a boundary metric with χ(φ) = λ cos 2φ
r

compared with the linearised solution.

4.3.3 Comparison with Linearised Solutions

As a check on our solutions, we can compare them to the linearised solutions constructed
in 4.1. In Figures 4.9 and 4.10, we look at a comparison between the charge densities
and energy densities for the linearised solutions and the numerical ones. As one would
expect, initially they agree well, but there is a disagreement that grows once the pertur-
bation becomes to big.

4.3.4 Convergence and Smoothness

In sections 4.3.1 and 4.3.2 we presented a parameter scan of solutions. There is always the
danger that these solutions to the discretized systems are not approximations to smooth
solutions of the continuum equations. In this section we discuss our analysis of this issue.
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(a)

(b)

(c)

FIGURE 4.11: Integrated absolute value of the shift in the solutions be-
tween subsequent X resolutions with 20 points in the φ direction, taken
on the slice φ = π

8 . We take the case of the function A and we plot the
shifts in (a) it’s value, (b) it’s first derivative, and (c) it’s second derivative.
These are log-log plots, and our linear fit to the final few points give us an
estimate of the order of convergence. In these fits, x = log10Resolution.
These seem to indicate fourth order convergence for the function and it’s
first derivative, and second order convergence for it’s second derivative.
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(a)

(b)

(c)

FIGURE 4.12: Integrated absolute value of the shift in the solutions be-
tween subsequent φ resolutions, with 65 points in the X direction, taken
on the slice φ = π

8 . We take the case of the functionA and we plot the shifts
in (a) it’s value, (b) it’s first derivative, and (c) it’s second derivative. These
plots indicate approximately exponential convergence with φ resolution.
When you continue above a φ resolution of 25 the X resolution becomes
limiting.
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Direct Convergence

The first thing to check is the behaviour of our solutions as we vary the resolution of the
discretization. As we increase the resolution, by raising the number of lattice points in the
X and φ directions, the solutions should converge. We should see this in the shift in the
solutions from resolution to resolution shrinking. We take a selection of our parameters,
and solve the discretized systems at various resolutions.

In Figures 4.11 and 4.12 we plot the integrated absolute value of the shift of one of
the functions in our solutions at fixed φ resolution and fixed X resolution respectively. In
4.11 the φ resolution is fixed to 20 and in 4.12 theX resolution is fixed to 65. the first thing
to note is that the shifts are definitely falling off with resolution, which is what we want.
Also, in comparing these two plots we can see that its the dependence on X resolution
that dominates as the shifts in this case are orders of magnitude bigger.

We can make this more numerically precise by estimating the order of convergence
when the number of points in the X direction N is increased, while keeping the φ resolu-
tion fixed. At high resolution, we expect some power law convergence. By this we mean
that we expect our discretized solution to behave as∣∣∣fN (x)− f̃(x)

∣∣∣ ∼ N−n (4.49)

where fN (x) is the solution at this resolution, and f̃(x) is the continuum solution. This is
called n-th order convergence. The ‘derivative’ of (4.49) tells us that the shifts we plot in
4.11 would obey

|fN (x)− fN+1(x)| ∼ N−n−1

log |fN (x)− fN+1(x)| ∼ −(n+ 1) logN + c.
(4.50)

We therefore try fitting lines to the log-plots in 4.11, and the resulting fits are included in
the figure. Since we are using 6th order finite difference, we would typically expect 6th
order convergence for the function itself, with lower order convergence for it’s deriva-
tives. We find instead that our data is only consistent with 4th order convergence.

This is a signal that our solutions are not necessary smooth beyond 4th derivative,
and in fact this lack of smoothness is a limitation stemming from our choice of reference
metric which we will explain when we discuss the boundary expansions below.

Harmonic Gauge Condition

Recall that these solutions to the discretized system are not converging to solutions to Ein-
stein’s equation as the lattice size is increased unless the vector ξµ = gαβ

(
Γµαβ − Γ̄µαβ

)
→

0. Since the static symmetry means that this is a space-like vector, it is sufficient to ex-
amine φ = ξµξµ, since φ = 0 implies ξµ = 0. It’s dependence on both X resolution and
φ resolution is shown in Figure 4.13. These demonstrate convergence, although in the
latter part of 4.13(a), in which we plot dependence on X resolution, we are limited by the
fixed φ resolution, and vice versa for 4.13(b).
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(a)

(b)

FIGURE 4.13: The maximum value of φ = ξµξµ as a function of resolution.
In (a) we see the dependence on X resolution at a fixed φ resolution of 20
points. Initially we see what looks like power law behaviour in all these
solutions, but a couple of them start to level off at around 65 points. This
is where the φ resolution is becoming the limiting factor. In (b) we plot the
dependence on φ resolution at a fixed X resolution of 65 points. Above
the φ resolution of 20 up to which we plot, the X resolution becomes the
limiting factor. For the parts of (a) which look like a power law, the slope
is about −3.9, which is consistent with the third order convergence seen in
the second derivatives in Figure 4.11.
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Boundary Expansions

As remarked above, there is a limitation on the smoothness that we can trace back to our
choice of reference metric and an expansion near the conformal boundary at X = 1. In
Figure 4.14 we show the behaviour of a function at the boundary, and some of it’s normal
derivatives, as the resolution is varied. Once we get to the 5th derivatives the functions
aren’t really converging at all.

This could be explained by a logarithm in our boundary expansion, but we think
this logarithm just results from a poor choice of coordinates. We can argue that this
logarithm is pretty much inevitably there as follows. If we think we have smooth solution
to Einstein’s equation, then we know at least one set of coordinates we can take, at least
near the conformal boundary, where the solution is smooth, and that’s the Fefferman-
Graham expansion. Let’s write our solution in these coordinates as

g =
dz2

z2
+
gab(x)dxadxb

z2
+ hab(x, z)dx

adxb, (4.51)

where the xa coordinates are boundary spacetime coordinates. When we find our so-
lution to the Harmonic Einstein’s equation, these aren’t the coordinates in which our
solution will be written. Our reference metrics are themselves (for the first few orders in
z) solutions to Einstein’s equation, so we can write our reference metric in FG coordinates
as well

ḡ =
dz2

z2
+
gab(x)dxadxb

z2
+ h̄ab(x, z)dx

idxj . (4.52)

As described in Section 2.2, choosing our reference metric so that it’s boundary metric
matches that of our solution insures that φ = ξµξµ vanishes as z → 0, however we will
not generically have ξµ = 0 away from z = 0 in these coordinates. The leading order
behaviour of ξ is given by

ξ =z4

(
∇a
(
hab(x, z)− h̄ab(x, z)

) ∂

∂xb

)
− z4 1

2

(
∇b(h(x, z)− h̄(x, z))

∂

∂xb
− 1

2

∂(h(x, z)− h̄(x, z))

∂z

∂

∂z

)
+O(z6).

(4.53)

In fact, in this case, we have that hab(x, 0) = h̄ab(x, 0). This is because the reference metric
is itself a solution to Einstein’s equation to this order, so the boundary expansion (1.25)
guarantees agreement. Where the disagreement happens is at the order in z correspond-
ing to the stress tensor. We therefore have

ξz =
z4

2
(T̄ − T ) +O(z5)

ξa = z5

(
∇b(T ba − T̄ ba)−

1

2
∇a(T − T̄ )

)
+O(z6),

(4.54)

If we are considering the vacuum Einstein’s equation (no gauge field), then the stress-
tensor Tab is traceless and conserved, and by choosing T̄ab to be so as well we can ensure
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(a)

(b)

(c)

FIGURE 4.14: Absolute value shift in the boundary value of the solutions
between subsequent X resolutions, taken at φ = π

8 . We take the case of the
function A and we plot the shifts in (a) it’s first derivative, (b) it’s second
derivative, and (c) it’s fifth derivatives. Linear fits are made to the final
few points with x = log10Resolution. Convergence is slower than the bulk
convergence in Figure 4.11, and at fifth order we see the effect of the lack
of smoothness discussed in the text.
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that ξ vanishes to this order. However, when we add a chemical potential source to
the boundary, the stress tensor is no longer conserved, but instead satisfies a sourced
conservation equation. This can be seen by looking at how the argument for stress tensor
conservation is modified by adding in the source term. The expectation values of the
stress tensor and charge current are defined by the variation of the effective action

δW =

∫
√
g 〈Tab〉 δgab + 〈Ja〉 δAa. (4.55)

Coordinate invariance means that this should identically vanish for a diffeomorphism.
This leads to the conservation equation

∇bTab = −FabJb, (4.56)

which means that in our case

ξz = O(z5)

ξa = z5
(
FabJ

b − F̄abJ̄b
)

+O(z6).
(4.57)

While we can choose our reference metric such that F̄ = F , we can’t choose J̄ = J

because we don’t know what J will be until we solve the equations. This means that there
is a coordinate transformation between these smooth coordinates, and our coordinates in
which ξ = 0, which is given to leading order by

xa → xa +
z5 log z

5

(
FabJ

b − F̄abJ̄b
)

+O(z6). (4.58)

The presence of a logarithm in this transformation inevitably translates into a logarithm
term in the boundary expansion of our numerical solutions at fifth order. This means that
our solutions cannot be more than C4, which would explain why we only get 4th order
convergence.

The boundary expansion also gives us another check on our solutions, which is that
the conservation condition (4.56)4 and tracelessness of our stress tensor are satisfied. This
is shown in Figure 4.15. We see that these quantities do not converge very rapidly, but,
given the lack of smoothness on the boundary, we would not expect them to.

Coordinate Axis Expansions

We’ve uncovered a limitation on the smoothness of our coordinate choice at the confor-
mal boundary. Another place we might worry this could happen is at the axis X = 0.
Even if our functions in the anzatz are perfectly smooth, the polar coordinates we’ve
taken break down here, and we discussed in 4.2.4 how we go about constructing the

4In fact, the stress tensor we’ve been plotting is normalized in a non-standard way so the condition is
∇µTµν = − 4

3
FµνJ

ν .
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(a) Tracelessness

(b) Conservation

FIGURE 4.15: We plot how well the stress tensor satisfies the conservation
and trace requirements. Neither converges very rapidly, but given the lack
of smoothness on the boundary, we would not expect them to. In these
plots, the X resolution is increased at fixed φ resolution, so we can see a
levelling off in the first plot corresponding to when the dependence on the
φ resolution has become the limiting factor.
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conditions that impose smoothness. The symmetry we used means many of these condi-
tions are satisfied automatically, but we still need to check smoothness order by order in
powers of X .

As in (4.34) we transform into Cartesian coordinates here, and we impose order by
order in X the condition following from (4.35) that at order Xn there is no Fourier mode
in the φ dependence beyond einφ. This condition applies to components of the two-tensor
and two-vector in the same way as the scalar. Half these modes are ruled out by our
parity symmetry. In Figure 4.16 we check for Fourier modes that violate this condition
at order X0, X , and X4. We see very fast convergence in the first two plots, and even
at order X4 we are still seeing fourth order convergence. This seems to indicate that the
functions are well behaved at least up to fourth derivatives at the origin.

4.4 Analysis of the Singularity

Now we want to understand these scale-invariant bulk geometries more generally. The
analytic, SO(2, 1) invariant solutions had extremal horizons as r → ∞, but in the more
general solutions we’ve constructed in this chapter, the surface is singular. Pragmatically,
we know that the surface is singular because you cannot take Gaussian null coordinates
as in (3.65) in any open region around the surface, which you would be able to do for
a codimension one smooth null hypersurface[31]. However, because of the scaling sym-
metry, no scalar curvatures can diverge as we approach this surface.

The physical nature of this singularity can be understood by examining how massive
particles would behave in this spacetime. To this end, we look at timelike geodesics in
these geometries. Moving now to general dimensions d, we choose coordinates where
the metric takes the form

ds2 = ψ(x)2

(
−dt2 + dr2

r2

)
− 2ψ(x)2Ai(x)dxi

dr

r
+ (hij(x) + ψ(x)2Ai(x)Aj(x))dxidxj .

(4.59)
The xi coordinates describe a d − 2 dimensional subspace, on which hij(x) is a non-
degenerate metric, and Ai(x) and ψ(x) are a one-form and scalar respectively. The ge-
ometry on constant r surfaces is smooth, but we will find singular behaviour as r → 0.
Near horizon solutions have Ai(x) = 0 when written in this form, and the generalized
solutions we found above have no-zero Ai(x) because they break the SO(2,1) symmetry.
Using the remaining global scaling and time translation symmetries, we can integrate
some of the geodesic equations using Noether’s theorem. The equations we are left with
are,

E = ψ2r2ṫ

K = Et+ ψ2

(
Aiẋ

i − ṙ
r

)
ẍi + Γ[h]ijkẋ

j ẋk = −∂
iψ

ψ

(
k2 + hklẋ

kẋl
)

+ EAiṫ− F ij ẋj (K − Et) ,

(4.60)
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(a) X0

(b) X1

(c) X4

FIGURE 4.16: We’ve expanded our fields near the origin X = 0 in a Carte-
sian basis (x,y) and checked that derivatives in x and y are well defined.
Thanks to our parity symmetry, this amounts simply to checking that at
each order Xn, if we expand the φ dependence in Fourier modes, there are
no modes above cosnφ and sinnφ. We plot here the sum of the squares of
the modes cosmφ and sinmφ at order Xn for m > n summed over all the
components of our fields, for (a) n = 0, (b) n = 1 and (c) n = 4, at a series
of X resolutions, at a fixed φ resolution of 15 points. These show that the
functions are well behaved at least up to fourth derivatives at the origin.
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where a dot represents differentiation with respect to an affine parameter λ. Indices are
raised and lowered using hij , and we have defined Fij = Ai,j − Aj,i. K and E are con-
served quantities due to the static and scaling symmetry, and the third equation is the
geodesic equation in the xi direction. The parameter k2 is a constant whose sign deter-
mines whether the geodesic is timelike, spacelike, or null. It is 0 for null geodesics, and
otherwise if we take our affine parameter to be proper distance or time it will be 1 for
timelike and −1 for spacelike geodesics.

By dotting the third equation in with ẋi we can show that5

d

dλ

(
ψ2(k2 + ẋj ẋ

j)
)

= 2E2r2ẋiAi. (4.61)

Substituting this equation into the conservation equations, we find the differential equa-
tion

K

E
= t− rdr

dt
+

1

2E2

d

dt

(
ψ2(k2 + ẋj ẋ

j)
)
, (4.62)

which can be solved to give

r2(t) =
(Et−K)2 + C + ψ2(k2 + ẋj ẋ

j)

E2
. (4.63)

The parameter C is a constant of integration. Using this result, we can rewrite the third
equation as

ẍi + Γ[h]ijkẋ
j ẋk =

(
Ai − ∂iψ

ψ

)(
k2 + hklẋ

kẋl
)

+
Ai

ψ2

(
(Et−K)2 + C

)
+ F ij ẋ

j (Et−K) .

(4.64)

Now, assume there exists some point on the n− 2 dimensional x manifold, x0, where
Ai = dψi = 0. Such a point exists, for instance, at the point X = 0 in the solutions
we constructed, because of the reflection symmetry we imposed. We can then consider
freely falling particles at this point with ẋi = 0. In this case, the particles stay at x = x0.
Timelike geodesics satisfy

t(λ) = −cotλ

B
+ t0

r(λ) = −cscλ

B
,

(4.65)

t0 and B being constant, while null geodesics are given by

t(λ) = − 1

λ
+ t0

r(λ) = − 1

λ
,

(4.66)

5This becomes an extra conservation law when Ai = 0, which is because the scaling/static symmetry
gets enhanced to SO(2, 1) in this case.
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where in both cases we have chosen λ = 0 to be the time when the geodesic hits the
surface. Note that they reach the horizon in finite affine parameter.

Define V a to be the tangent vector d
dλ . The geodesic deviation tensor in the n − 2

dimensional xi space is then given by R̃ij = RaibjV
aV b[62]. This means that if the vector

Xi describes the infinitesimal displacement between a pair of geodesics both initially
parallel to V a,

V a∇a
(
V b∇bXi

)
= −hijR̃jkXk. (4.67)

For both the timelike and null cases we find that this goes as

R̃ij ∼
1

λ2

(
ψ4FikFjlγ

kl − ψ2∇(iAj)

)
. (4.68)

We therefore see that, at least for this geodesic at x = x0, the geodesic deviation diverges
as you approach the surface.

More generally, away from x = x0 the geodesics seem to be very poorly behaved.
From (4.63) it can be seen that any time-like or null geodesic will have t → ∞ as it ap-
proaches the horizon r → ∞. By examining (4.64), if we project the trajectory of this
particle onto a constant r surface, then the effect of the Ai and Fij is like an electric and
magnetic force on this particle. As we approach the horizon, t → ∞, and the strength
of these forces diverges. Unless there is some neat cancellation, which we don’t expect
generically, these particles will accelerate off to infinity in x. So while the scaling symme-
try rules out any sort of curvature singularity as r → ∞, we see the singular behaviour
in the form of divergent tidal forces acting on test particles.

We haven’t explicitly proven that this is what happens. We can, however, provide
evidence for this numerically. We can take our numerically constructed bulk geometries
(with no gauge-field), and shoot timelike geodesics towards the singularity. In Figure
4.17 we plot x(τ), and x′(τ) for a selection of geodesics on pure-AdS and on one of our
SO(2, 1) symmetry breaking solutions. The coordinate x is one of a pair of Cartesian
coordinates on our unit disk, and τ is proper time. These geodesics were evolved using an
adaptive step size Runge-Kutta method implemented in Mathematica, and we integrated
until the step-size became too small to continue. From this we can see that, in the non-
AdS case, as the geodesics get close to the singular surface there is a large transverse
acceleration, and it looks like geodesics will have divergent x′ by the time they hit the
surface. It seems reasonable to conclude, based on examination of (4.64) above, that
the large transverse acceleration observed in the singular case just before the end will
continue and lead to a divergent x′.

4.5 Discussion and Generalizations

We have demonstrated the existence of bulk spacetimes that can describe static, scale-
invariant CFT states without the enhanced symmetry required by extremal horizons. We
conjecture that these geometries will also play the role of describing the large scale limit
of more general CFT states. Such states could be described by bulk solutions where these
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(b) x(τ) in SO(2,1) breaking solution α = 1,
λ = 0.15
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FIGURE 4.17: x(τ) and x′(τ) for various numerical timelike geodesics that
head towards the r = 0 surface. The proper time coordinate has been cho-
sen so that it is 0 when they hit the surface. As they approach the surface,
nothing happens in the case of the AdS4 and they just cross over a smooth
extremal horizon. In the other case, all the geodesics start to swerve off as
they approach the horizon, except a single geodesic that we’ve placed at
the point x = y = 0 with no transverse velocity (x′ = y′ = 0). This is the
point where Ai = dψi = 0 as discussed in the text.
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geometries lie in the IR. The arguments from Chapter 3 make this compelling, and would
relate this large scale-limit to a ‘near-geometry’6 of these null singularities. However the
general proof in [59] relies on results specific to spacetimes containing extremal horizons.

If this conjecture were true then it would mean that, like in the extremal horizon case,
the large scale properties of the CFT state would decouple, and by knowing the scale-
invariant bulks we have described here, you would be able to read off the large scale limit
of expectation values given the large scale limit of sources. These large scale properties
correspond to the leading order fall off of observables like the stress tensor and charge
densities.

The scale-invariant IR geometries that are usually used in AdS/CFT are the near-
horizon geometries of extremal horizons. The IR therefore usually has the correspond-
ing enhanced symmetry associated with these spacetimes. The spacetimes we have con-
structed offer an answer to the interesting question of whether the enhanced symmetry
that is often observed in the IR in AdS/CFT is actually just an artefact of considering a
limited set of possible IR geometries. They suggest that there is a more generic case and,
specifically, if the large scale limit in the CFT breaks this enhanced symmetry, in the IR
in the bulk there will be a singular, scale-invariant geometry of the type we have studied
here.

Finally, it is worth pointing out that while this is a singularity, at finite temperature we
would expect bulk solutions to exist with smooth finite temperature horizons. So long as
this is true, then these would be examples of ‘good’ singularities in the sense of[71], and
so would be perfectly good for describing vacuum states. A useful piece of further work
would be to demonstrate this explicitly.

6Like the near-horizon geometry of the extremal horizons.
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Chapter 5

Holographic Description of Energy
Gaps

So far we have been using AdS/CFT to discuss vacuum states and the expectation values
of CFT operators on these states. We can also consider the spectrum of fluctuations about
this state associated to given operators. This spectrum may be discrete or continuous,
and it may be gapless or gapped, meaning that the lowest energy excitation may have
zero energy, or positive energy1. If we move to a Euclidean signature, then a gap in the
spectrum turns into an exponential fall-off of the two point function at large Euclidean
time separations[32].

The CFT states we considered in the last two chapters had well defined large scale
limits. The large scale scale-invariance generically implies that there is a gapless and
continuous spectrum of excitations about this state, corresponding to arbitrarily long
wavelength modes. From a bulk perspective, these modes can be thought of as living
far down the ‘throat’ of the bulk extremal horizon, or scale-invariant null singularity. We
would like to now explore the holographic description of vacuum states with gapped
spectra. We will generate a gapped spectrum by putting the CFT on compact spacetimes.
The length scales in the boundary provide the energy scale for the gap. The prototypical
example is global AdS, where the boundary is a round sphere. As we will discuss, in this
case there is indeed an energy gap.

We want to explore how the energy gap depends on the space the CFT lives on. We
will start in 5.1 by computing the energy gap associated to an arbitrary primary scalar
field on time × sphere, where it is determined by conformal symmetry. We will then
start to explore the dependence on geometry in 5.2, by deriving a bound on the gap in
terms of the minimum value of the Ricci scalar R for a particular CFT corresponding to
a single free scalar field. We will then use perturbation theory to describe more general
CFTs on spacetimes that are small deformations of spheres. Finally, we will present the
main results of [72] which is a bound on the energy gap associated to scalar operators for
holographic CFTs. We will derive this bound using simple geometric properties of the
classical gravitational bulk. This work was done in collaboration with Toby Wiseman,
and the perturbation theory calculation in Section 5.3 was motivated by discussions with
Paul McFadden.

1The energy won’t be negative since the vacuum is stable.
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5.1 CFT on a Sphere - Radial Quantization

As a prototype for what can happen if you put a CFT on a compact space, let’s consider
a CFT on (time ×) a sphere. Since this spacetime is conformally flat, we can simply take
the flat space correlators and conformally transform them. This is the procedure used in
radial quantization of a CFT on flat space, as discussed in [19].

On flat space, the conformal symmetry implies that the vacuum correlator of two
(appropriately normalized) primary scalar fields of dimension ∆ is given by

〈φ(x1)φ(x2)〉 =
1

(x1 − x2)2∆
. (5.1)

Under a conformal transformation, the scalar field transforms as

g′ = b2(x)g

φ′(x′) =
1

b(x)∆
φ(x)

(5.2)

where the second equation is an operator equation, which means it can be inserted in a
path-integral together with other operators, and so this transformation carries directly
through into correlators. If we write flat space in the form

δ = dρ2 + ρ2dΩ2 (5.3)

then we can conformally transform to (Euclidean) time × sphere by taking b = 1/ρ

ḡ =
1

ρ2
(dρ2 + ρ2dΩ2) = dτ2 + dΩ2 (5.4)

with ρ = eτ . We can therefore transform the two-point function (5.1) onto the sphere,
taking x2 to be at the north pole

〈φ(x1)φ(x2)〉Ω = ρ∆
1 ρ

∆
2 〈φ(x1)φ(x2)〉δ =

ρ∆
1 ρ

∆
2(

(ρ1 cos θ1 − ρ2)2 + ρ2
1 sin2 θ1

)∆ . (5.5)

This is the propagator, and we can use it to get information about the energy spectrum.
In particular, if we examine it at large (Euclidean) times, its fall off will be controlled by
the lowest excited state. We find, taking ρ1 � ρ2 (τ1 � τ2) that

〈φ(x1)φ(x2)〉Ω ∼ e−∆(λ1−λ2). (5.6)

and so the energy gap for scalars is given by their scaling dimension

E = ∆. (5.7)

This relationship can be understood by noting that the euclidean time coordinate τ is
related to the radial coordinate on flat space, and the Hamiltonian on this sphere HS =
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∂
∂τ = ρ ∂

∂ρ generates dilations on flat space. This is closely related to the operator-state
correspondence, where a scalar field inserted at the origin in flat space gets mapped to
the far past on the cylinder, and so from (5.6) gives rise to a state of energy ∆.

If we write flat space in Cartesian coordinates

δ = dt2 + δijdx
idxj (5.8)

and think of t as a Euclidean time coordinate, then at large time separations we get

〈φ(x1)φ(x2)〉δ ∼ (t1 − t2)−2∆ . (5.9)

Since this is a power law rather than an exponential falloff, this is an ungapped spec-
trum[32].

So, the spectrum of excitations of an arbitrary scalar operator in a CFT on flat space is
gapless, while if we put the same theory on a sphere the spectrum is gapped, with the gap
determined by conformal symmetry. To generate an energy gap you need some length
scale to set its size. There is no inherent length scale to generate the gap on flat space,
but when we put the theory on a sphere the finite volume, or non-zero curvature, of the
space provides such a scale. To make this explicit, we can generalize (5.7) to a sphere of
radiusR, and we find

E =
∆

R
. (5.10)

5.2 Free Scalar CFT

The example in 5.1 might lead us to conclude that while a CFT on an asymptotically flat
space has a gapless spectrum, on a compact space the finite volume generates an energy
gap, and it’s the volume that controls the size of this gap. However, by studying the
specific case of the free CFT introduced in Section 1.5.1, we will be lead to a different
conclusion. To work out the spectrum of the theory on some static spacetime with metric
ḡ, we would need to solve its equation of motion

�̄φ =
d− 2

4 (d− 1)
R̄φ (5.11)

for energy eigenstates φ = eiEtΦ(x), where R̄ is the Ricci scalar and �̄ is the Laplacian of
the spacetime metric ḡ.

Consider first the torus, R× Td−1, with metric

ḡ = −dt2 + δijdθ
idθj . (5.12)

In this case R̄ = 0, so �̄φ = 0 and the eigenmodes are simply

Φ(x) = ei
∑
n knxn (5.13)
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with E2 =
∑

n k
2
n. The wavenumbers in the different directions on the torus kn are quan-

tized by the size of the circles, so the spectrum is discrete, with the gaps between states
set by the size of the torus cycles. However, there is a mode with kn = 0, which corre-
sponds to an excitation with E = 0, so the spectrum is ungapped. From this example we
see that finite volume alone isn’t enough to guarantee a gapped spectrum.

On the sphere, the free scalar CFT must obey (5.10) by symmetry, and so it has a
gapped spectrum. Indeed for R×Sd−1, with a sphere of radiusR, the energy eigenstates
are spherical harmonics with Y `

m(x) with E2 =
(
d−2
2R
)2

+ `(` + 1). This is consistent with
(5.10) since for the free scalar ∆f = d−2

2 .
One difference between the torus and the sphere is that the sphere has a non-vanishing

Ricci scalar, so we are going to explore to what extent we can argue that R̄ controls the
gap. To that end, consider placing the free scalar CFT now on an arbitrary curved ultra-
static spacetime

ḡ = −dt2 + h̄ijdx
idxj , (5.14)

where the spatial sections h̄ are compact.
The energy states are the solutions of the eigenvalue equation on the spatial section(

E2 − d− 2

4(d− 1)
R̄

)
Φ = −∇̄2Φ, (5.15)

where ∇̄2 is the Laplacian of h̄, and we note that the Ricci scalar of ḡ, R̄, is also the Ricci
scalar of h̄. Since R̄ is not constant and ∇̄2 is the Laplacian of an arbitrary curved space,
we can’t solve this explicitly. However, we can quite simply extract an upper and lower
bound on E in terms of the Ricci scalar.

To get the lower bound, multiply by Φ and integrate over the compact space∫ (
E2 − d− 2

4(d− 1)
R̄

)
Φ2 = −

∫
Φ∇̄2Φ =

∫ (
∇̄Φ
)2 ≥ 0. (5.16)

Rearranging yields

E2 ≥ d− 2

4(d− 1)

∫
R̄Φ2∫
Φ2
≥ d− 2

4(d− 1)
min R̄. (5.17)

This holds for any energy eigenstate, so in particular, this bounds the lowest energy
mode, the energy gap Emin.

To get an upper bound, we can use a variational method. Consider the functional

I [φ] =

∫ (
∇̄φ
)2

+ d−2
4(d−1)φ

2R̄∫
φ2

. (5.18)

Stationary values of the functional are solutions to (5.15), and on these solution I [φ] = E2.
Since this functional is invariant under rigid scaling of φ → λφ, we can restrict attention
to unit normalized φ. This leaves the quadratic form In [φ] =

∫ (
∇̄φ
)2

+ d−2
4(d−1)φ

2R̄. Any
given test function φ can be expanded in terms of the eigenfunctions of (5.15) which
diagonalize it, and so, so long as the functional is bounded from bellow, In(φ) must be
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greater than the minimum eigenvalue. This functional is bounded from below so long
as R̄ is bounded from below, since then I [φ] ≥ d−2

4(d−1) min R̄. This means that if the
functional is evaluated on an arbitrary test function, this value is then greater than the
energy gap. Taking the test function φ = 1, we find that

E2
min ≤

d− 2

4(d− 1)

∫
R̄

vol
≤ d− 2

4(d− 1)
max R̄. (5.19)

These bounds can be written in a neat way by noting that for a positive Ricci scalar
we can define an associated length

R2
(
R̄
)

=
(d− 2)(d− 1)

R̄
(5.20)

which is the radius of a sphere of constant Ricci scalar R̄. If R̄ is positive everywhere, we
can use this to rewrite the bound

∆f

R(max R̄)
≥ Emin ≥

∆f

R(min R̄)
. (5.21)

Because of the scale-invariance in CFTs, only dimensionless ratios are physical. This
means that we always need to choose a length scale with respect to which the energy
is measured. What (5.21) therefore says is that, on spaces of positive definite R̄, if we
measure the energy gap with respect to a length scale given by the minimum value of R̄,
then this energy gap is bounded from below by the scaling dimension, and similarly it is
bounded from above if we use the maximum Ricci scalar. This is our first indication that
it is this scalar curvature, rather than the volume, that controls the size of the gap. By
comparison with (5.10) we see that both bounds are saturated on a sphere, where it was
determined by symmetry.

5.3 General Scalars - Conformal Perturbation Theory

We would like to begin to generalize the discussion in Section 5.2 for a free scalar CFT
on an arbitrary compact space, to a general CFT with interacting scalars of arbitrary di-
mension ∆. In 5.2 we could use the explicit Lagrangian for a free theory to tell us about
the spectrum, so this method doesn’t immediately generalize. We can, however, make
use of the conformal symmetry. In Section 5.1, we used this symmetry to work out the
energy gap for an arbitrary scalar on a sphere. This, however, relied on the fact that the
space-time in question is conformally flat, so the symmetry allowed us to write down
the two point function, and so read off the energy gap. A more general space-time will
generically break this symmetry, and we won’t have such a simple way to write down
the correlator.

If we consider space-times that are small deformations of spheres, then by using per-
turbation theory we can continue to make use of the symmetry. Consider a conformal
field theory defined by an action S [ḡµν , φA] which is a functional of a spacetime ḡ and
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some fields φA. We take our spacetime to be

ḡ = dτ2 + dΩ2
d−1 + εhij(θi)dθ

idθj (5.22)

where ε is some small parameter. The coordinate τ is a Euclidean time coordinate, the θi

span a d − 1 dimensional sphere, and dΩ2
d−1 is the usual round unit-sphere metric. The

action can be expanded in a power series in ε

S [ḡµν , φA] = S
[
ḡ0
µν , φA

]
+

∫
δS

δḡµν
δḡµνdτdΩd−1

= S0 [φA]− ε

2

∫
Tijh

ijdτdΩd−1 +O(ε2) ≡ Sε
[
φA
]
.

(5.23)

where ḡ0
µν is the ε = 0 sphere, S0 [φA] is the ε = 0 action, and Tij is the stress tensor on this

sphere. The right hand side is written in terms of integrals over the sphere, so we can use
it to define a deformed action on the undeformed sphere Sε

[
φA
]
, which is equivalent to

our theory on the deformed sphere to first order in ε.
While, at ε = 0, S0 is conformally invariant, when we turn on the deformation Sε is no

longer invariant. However, since ε is a small parameter, we can use perturbation theory
to rewrite expectation values in Sε in terms of correlators in S0 with additional insertions.
This can be seen through the path integral

Z =

∫
d [φA] exp (−Sε [φA])

=

∫
d [φA]

(
1 +

ε

2

∫
Tijh

ijdτdΩd−1 +O(ε2)

)
exp (−S0 [φA]) .

(5.24)

As we did on the ε = 0 sphere in Section 5.1 we consider the two point function of a
scalar of dimension ∆. This time it can be expanded in a series in ε

〈
φ(τ1, θ

i
1)φ(τ2, θ

i
2)
〉Ω

Sε
=
〈
φ(τ1, θ

i
1)φ(τ2, θ

i
2)
〉Ω

S0
+

ε

2

∫ 〈
φ(τ1, θ

i
1)φ(τ2, θ

i
2)Tij(τ, θ

i)
〉Ω

S0
hij(θi)dτdΩd−1

+O
(
ε2
)
.

(5.25)

Since S0 is conformally invariant, the correlators on the right hand side above are
correlators for a conformally invariant theory on time cross a sphere. Therefore, as in
Section 5.1, we can conformally transform to flat space and use the conformal symmetry
to constrain the correlators there2. Performing this same transformation here, noting the

2In fact we can reinterpret the whole perturbation in flat space, where it becomes the scale-invariant
perturbation which sends the metric to

g̃ = dρ2 + ρ2
(
dΩ2

d−1 + εhij
(
θi
)
dθidθj

)
. (5.26)

Note that this differs from the scale-invariant spatial deformations we considered in previous chapters since
these had a separate time coordinate.
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transformation of the stress tensor from (3.15),〈
φ(τ1, θ

i
1)φ(τ2, θ

i
2)
〉Ω

S0
= ρ∆

1 ρ
∆
2

〈
φ(ρ1, θ

i
1)φ(ρ2, θ

i
2)
〉δ
S0〈

φ(τ1, θ
i
1)φ(τ2, θ

i
2)Tij(τ, θ

i)
〉Ω

S0
= ρ∆

1 ρ
∆
2 ρ

d−2
〈
φ(ρ1, θ

i
1)φ(ρ2, θ

i
2)Tij(ρ, θ

i)
〉δ
S0
.

(5.27)

Putting this all together therefore yields

〈
φ(τ1, θ

i
1)φ(τ2, θ

i
2)
〉Ω

Sε
=ρ∆

1 ρ
∆
2

〈
φ(ρ1, θ

i
1)φ(ρ2, θ

i
2)
〉δ
S0

+

ε

2
ρ∆

1 ρ
∆
2

∫ 〈
φ(ρ1, θ

i
1)φ(ρ2, θ

i
2)Tij(ρ, θ

i)
〉δ
S0
hij(θi)ρd−3dρdΩd−1

+O
(
ε2
)
.

(5.28)

The flat space two point function
〈
φ(ρ1, θ

i
1)φ(ρ2, θ

i
2)
〉δ
S0

is completely determined by con-
formal symmetry as we stated in (5.1), and also, as shown in [61] the conformal symmetry
fixes the three point function with the stress tensor to be

〈
φ(ρ1, θ

i
1)φ(ρ2, θ

i
2)Tµν(ρ, θi)

〉δ
S0

=
a
(
ŷµŷν − 1

dδµν
)

|x− x1|d |x− x2|d |x1 − x2|2∆−d , (5.29)

with the constant a = − d∆
Ωd−1(d−1) . xµ, xµ1 and xµ2 are Cartesian vectors corresponding to

the points (ρ, θi), (ρ1, θ
i
1) and (ρ2, θ

i
2) respectively, and the vector ŷµ is the unit normalized

vector parallel to

yµ =
xµ − xµ1
|x− x1|2

− xµ − xµ2
|x− x2|2

. (5.30)

We are interested in the limit where τ1 � τ2, and hence ρ1 � ρ2. In this limit |x1 − x2| ≈
ρ1, and (5.28) becomes

〈
φ(τ1, θ

i
1)φ(τ2, θ

i
2)
〉Ω

Sε
≈ρ

∆
2

ρ∆
1

1 +
aερd1

2

∫ (
ŷiŷj − ρ2

d Ωij

)
|x− x1|d |x− x2|d

hij(θi)ρd−3dρdΩd−1

+O
(
ε2
)
.

(5.31)

Instead of diving into attempting to calculate this full integral, we can work out which
bits of it are needed in order to calculate the shift in energy gap. Now, in flat space the
correlator in this limit went as

〈φ(x1)φ(x2)〉δS0
≈ 1

ρ2∆
1

(5.32)

which becomes, on conformally transforming to the sphere

〈φ(x1)φ(x2)〉ΩS0
≈ ρ∆

2

ρ∆
1

= e−∆(τ1−τ2). (5.33)
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Because of the scaling symmetry, the corrections to this will take the form

〈φ(x1)φ(x2)〉ΩSε ≈
(

1 + εf

(
ρ2

ρ1

))
ρ∆

2

ρ∆
1

. (5.34)

We will find the function f will have an expansion of the form

f(x) = A+B log x+
∑
n>0

Anx
n (5.35)

at small x. Since ρ1 � ρ2, we can ignore all the positive powers of x, and we are left in
the limit with

〈φ(x1)φ(x2)〉ΩSε ≈ (1 + εA)e−(∆+εB)(τ1−τ2) (5.36)

so we see that it’s the logarithm term B that shifts the energy. This is therefore the only
term we need to calculate in the perturbation to the two point function, and we can ignore
any finite contribution in the limit ρ2

ρ1
→ 0.

At this point it is worth pointing out one subtlety. The integral as we have written it
in (5.31) is not well defined due to the divergences as x→ x1 and x→ x2. However, these
divergences can be regulated, as discussed in [61], by replacing the divergent three point
function with a distribution which is equivalent to (5.29) for x 6= x1 and x 6= x2. This
distribution then gives a finite constant contribution to these integrals at these points, so
in terms of (5.36), these contributions modify the value of A and not B, and so we don’t
need to worry about them since they won’t affect the energy shift.

In order to take advantage of this limit, we can split the ρ integral into two domains,
one where ρ < ρ̃ and another where ρ > ρ̃. If we choose ρ̃ such that ρ2 � ρ̃ and ρ1 � ρ̃

then in each of these domains the integrand simplifies. In the first case ρ < ρ̃ we have
that

|x1 − x| ≈ ρ1

ŷµ ≈ xµ2 − xµ

|x2 − x|
.

(5.37)

The components ŷi which will be contracted with hij(θ
i) are the components normal to

x. To separate the angular integral from the ρ integral we introduce a unit vector on the
sphere ξi2. This is a vector at the point x which is unit-normalized with respect to the
sphere metric dΩ2, is perpendicular to x, and lies in the plane defined by x and x2. This
is illustrated in Figure 5.1. These normal components are then3

ŷi ≈
ρ2ρξ

2
i sin θ2√

ρ2 + ρ2
2 − 2ρρ2 cos θ2

. (5.38)

3The indices of ξ are raised and lowered by the sphere metric Ωij .
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Using this, and introducing a dimensionless integration variable α = ρ
ρ2

I1 ≡
aερd1

2

∫ ρ̃

0

(
ŷiŷj − ρ2

d Ωij

)
|x− x1|d |x− x2|d

hij(θi)ρd−3dρdΩd−1

≈ aε

2

∫
dΩd−1 sin2 θ2ξ

i
2ξ
j
2hij(θ

i)

(∫ ρ̃
ρ2

0
dα

αd−1

(1 + α2 − 2α cos(θ2))d/2+1

)

− aε

2d

∫
dΩd−1Ωijhij(θ

i)

(∫ ρ̃
ρ2

0
dα

αd−1

(1 + α2 − 2α cos(θ2))d/2

)
.

(5.39)

If we send ρ̃
ρ2
→ ∞, then the first integral is finite, so by the above arguments we can

ignore it. However, the second integral gives a divergent contribution

I1 ∼ −
aε

2d

∫
dΩd−1Ωijhij(θi) log

ρ̃

ρ2
. (5.40)

For the second domain ρ > ρ̃

|x2 − x| ≈ ρ

yµ ≈ xµ − xµ1
|x− x1|2

− xµ

ρ2
.

(5.41)

Proceeding as above, the normal component of ŷ is

ŷi ≈
ρ2ξ1

i sin θ1√
ρ2 + ρ2

1 − 2ρρ1 cos θ1

. (5.42)

The integral is then

I2 ≡
aερd1

2

∫ ∞
ρ̃

(
ŷiŷj − ρ2

d Ωij

)
|x− x1|d |x− x2|d

hij(θi)ρd−3dρdΩd−1

≈ aε

2

∫
dΩd−1 sin2 θ1ξ

i
1ξ
j
1hij(θ

i)

(∫ ∞
ρ̃
ρ1

dα
α

(1 + α2 − 2α cos(θ1))d/2+1

)

− aε

2d

∫
dΩd−1Ωijhij(θ

i)

(∫ ∞
ρ̃
ρ1

dα
1

α (1 + α2 − 2α cos(θ1))d/2

)
.

(5.43)

Now we send ρ̃
ρ1
→ 0. Again, the first integral is finite in this limit, but the second integral

has a logarithmic divergence of the form

I2 ∼
aε

2d

∫
dΩd−1Ωijhij(θi) log

ρ̃

ρ1
. (5.44)

Combining all this together, we find

〈
φ(τ1, θ

i
1)φ(τ2, θ

i
2)
〉Ω

Sε
≈ρ

∆
2

ρ∆
1

(
1 +

aε

2d

∫
dΩd−1Ωijhij(θi) log

ρ̃2

ρ1
+ ...

)
+O

(
ε2
)
. (5.45)
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FIGURE 5.1: Illustration of the coordinate choice.

where the ... refer to terms that are finite as ρ2

ρ1
→ 0. Noting that the shift in volume is

δV = − ε
2

∫
dΩd−1Ωijhij(θi), and substituting for a, we can therefore read off the shift in

the energy gap

δE =
∆δV

(d− 1)Ωd−1
= − EδV

(d− 1)V
, (5.46)

where we have used the fact that we are perturbing a unit sphere where V = Ωd−1 and
E = ∆. This is equivalent to the volume normalized temperature staying invariant to
first order. To consider the energy gap normalized by the Ricci scalar, we can show that,
for a sphere

δminR ≤
∫ √

gδR

V
= −2

R

d− 1
δV

δmaxR ≥
∫ √

gδR

V
= −2

R

d− 1
δV.

(5.47)

Hence, to first order in perturbation theory,

δE

E
≥ δminR

2R
=⇒ δ(E2 minR) ≥ 0

δE

E
≤ δmaxR

2R
=⇒ δ(E2 maxR) ≤ 0.

(5.48)

In other words, the energy gap normalized by the minimum(maximum) value of the Ricci
scalar is minimized(maximized) on the sphere.
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5.4 Holographic Energy Gap

What we’ve seen so far is that we can write down a bound on the energy gap for a pri-
mary scalar operator in two different cases. Firstly, for a free scalar, we can write a bound
down on an arbitrary space of positive definite R, and secondly, for an arbitrary scalar,
we can write down a bound that holds for small perturbations of a sphere. We will now
move to holographic CFTs, and consider scalar fluctuations about universal sector vac-
uum solutions. What we’ll find is that while we can derive precisely the same lower
bound as in the other cases, the upper bound we will derive will not be as strong, and we
will be able to find explicit counter examples to a straight forward generalization of the
upper bound in (5.21) and (5.48).

5.4.1 The bulk equations and the optical geometry

We are going to consider scalar fluctuations about universal sector vacua where the CFT
has (d − 1) + 1 dimensions. The vacua will be described by d + 1 dimensional static
solutions to Einstein’s equation

GRµν = − d
`2
Gµν , (5.49)

where we have used Gµν to denote the d + 1 dimensional bulk metric, and GRµν is its
Ricci tensor.

As discussed in Section 1.4.1, on the conformal boundary of this bulk spacetime, there
isn’t a single induced metric ḡ, but rather an induced conformal class of metrics

[ḡ] =
{
g̃
∣∣∣g̃ = eφḡ

}
. (5.50)

where ḡ is some representative of the class. Each element of this set is called a choice
conformal frame. If the geometry is static, then there is some class of representative
metrics g̃ that are static and take the form

g̃ = −ω2(xi)dt2 + αij(x
i)dxidxj , (5.51)

where the d−1 xi coordinates cover a spatial slice of the conformal boundary, and αij(xi)
is some time-independent d − 1 dimensional spatial metric. If there are no horizons,
where we would have ω2 = 0, and the conformal boundary doesn’t have any asymptotic
regions where ω2 → ∞, then we can Weyl scale to get rid of ω. This yields a a special
conformal frame called the ultra-static frame where the metric takes the form

ḡ = −dt2 + h̄ij(x
i)dxidxj . (5.52)

The results we have discussed above for CFTs on ultrastatic geometries therefore actually
apply more generally to a wide class of static geometries. However, the Ricci scalar R̄
that enters into the bounds (5.21) is specifically the Ricci scalar of the spatial metric in
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this ultrastatic frame, so in other conformal frames the bound won’t take such a simple
form.

We will consider bulk geometries where the static symmetry of the conformal bound-
ary extends into the bulk, so we’re considering a static CFT state. We can then write the
bulk metric in a way that’s adapted to this frame. We can write

G =
`2

Z(y)2

(
−dt2 + hab(y)dyadyb

)
(5.53)

where the d ya coordinates span a spatial slice of the bulk, and hab(y) is a time-independent
d dimensional spatial metric. The function Z(y) is called the redshift, because it relates
time intervals measured by the scaled metric to ones measured by the physical metric.
The metric hab is the optical geometry introduced in [73]. It’s called the optical geometry
because if you consider light rays following null geodesics in g, and project them on to
constant time slices of the spacetime, the spatial paths they follow are the geodesics of
h. If we take the redshift Z(y) as our defining function for the extraction of the confor-
mal boundary metric, following 1.4.1, then the boundary metric will be in the ultrastatic
frame (5.52). The conformal boundary of the physical metric at Z = 0 becomes a regular
smooth boundary of the optical metric hab, and the induced metric on this boundary is
precisely h̄ij . Unlike the FG coordinates, we can write (5.53) everywhere in the bulk, not
just in a region about the conformal boundary, so long as there are no horizons.

The bulk Einstein’s equation written in terms of hab and Z takes the form

hRab = −(d− 1)
h∇a∂bZ
Z

hR =
d(d− 1)

Z2
(1− ∂aZ∂aZ)

(5.54)

where hRab and hR are the Ricci tensor and scalar associated with the optical metric.
A useful identity, which we will rely on heavily in what follows, can be derived from
taking two derivatives of the first equation. After a bit of algebra, and application of the
contracted Bianchi identity, it can be shown that (dropping the superscript)

∇2R = R2 − dRabRab −
d− 3

2

∂aZ

Z
∂aR = −dR̃abR̃ab −

d− 3

2

∂aZ

Z
∂aR. (5.55)

where R̃ab = Rab − 1
dhabR is the traceless component of the Ricci tensor. In what follows,

we will drop the superscript h. Unless otherwise stated, unbarred quantities relate to
the spatial optical geometry, and barred quantities relate to the spatial sections of the
boundary geometry in ultrastatic frame.

For concreteness, let’s consider two simple choices of boundary h̄ij , their dual bulk
geometries, and the resulting optical metric. Firstly, for a sphere on the boundary, a bulk
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vacuum is provided by global AdS (1.11). The optical metric is given by

hAdS =
r2

`2 + r2
dΩ2

d−1 +
dr2

`2
(

1 + r2

`2

)2 = dΩ2
d (5.56)

where we have set r = ` tan θ with θ the angle to the pole in Ωd. The conformal boundary
is at the equator θ = π

2 , so the optical geometry is a d dimensional hemisphere. This
geometry has constant optical R = d(d− 1).

For flat space on the boundary, the simplest vacuum state we can consider is Poincaré AdS.
In this case, the optical geometry is just

hPoincaré AdS = dz2 + δijdx
idxj (5.57)

with the boundary at z = 0, and now optical R = 0. As remarked in Chapter 3, if we
periodically identify the boundary into a torus this geometry is actually singular in the
IR. An alternative bulk is the AdS-Soliton from (1.49), where the optical geometry is

hAdS Soliton = δijdx
idxj +

`2dr2

r2f(r)
+
f(r)

r2
R2dθ2. (5.58)

Now, the optical Ricci scalar is R =
(4(d−1))rd−2

0

rd−2(dR2)
, which starts from 0 on the boundary

r →∞, and increases to a maximum value of maxR = 4(d−1)
dR2 when the geometry rounds

off at r = r0.
These special cases where the bulk solutions are known are the exception rather than

the rule. In general, to find a solution with a given boundary h̄ij , we would have to solve
(5.54) numerically using, for instance, the techniques from Chapter 2. Instead we will
see what we can say simply by assuming a bulk geometry with certain properties exists,
without specifying the precise form of the solution.

5.4.2 Scalar Fluctuations

To consider a primary scalar field in the CFT, we add a massive scalar field to the bulk.
Since we are only interested in small fluctuations of the scalar, we can consider the scalar
field on the background of the vacuum solution without worrying about its stress-tensor,
and hence its back-reaction on the geometry. Also, this means we can restrict ourselves
to a quadratic action for the scalar. The spectrum of linear fluctuations of this scalar field
in the bulk then corresponds to the spectrum of excitations of the dual operator in the
CFT. The most straightforward justification of this is the Hamiltonian formulation of the
AdS/CFT correspondence, where the supergravity Hilbert space in the bulk is identified
with the Hilbert space in the boundary CFT[3, 32].

Although strictly speaking the addition of this scalar field means we are no longer in
the universal sector, our results are still very applicable. In any top-down two-derivative
gravitational model, there will be a number of scalar degrees of freedom that have been
truncated to get to the universal sector; some will come from scalars in the original action,
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and some will be associated with internal spaces in the dimensional reduction. Small
fluctuations of these scalar fields will behave as minimally coupled scalar fields, since
at two derivatives there is nothing else they can covariantly couple to. On a general
spacetime, they could couple to the Ricci scalar, but this is rendered trivial by Einstein’s
equation. We discussed these scalar fields in Section 1.6.2.

In order to find the spectrum, we need to solve for energy eigenmodes φ = φω(y)eiωt.
Written in terms of the optical metric, these satisfy

−Z(y)D−1∇a
(

1

Z(y)D−1
∂aφω(y)

)
+
`2m2

Z(y)2
φω(y) = ω2φω(y). (5.59)

In order to think about solutions to these equations we need to decide on boundary con-
ditions. We are interested in unsourced fluctuations, which, by comparison with (1.35)
means that our solutions will go like Z∆ near the boundary, with the other leading order
behaviour that goes as ZD−∆ set to 0.

It will be convenient to write the equation of motion in terms of a scaled field ψω =

Z−∆φω. This is scaled in such a way that ψω is finite everywhere, and its boundary
values on ∂M are proportional to the expectation value of the field. This scaled field
then satisfies the equation

∇2ψω(y) +
2∆− d+ 1

Z(y)
∂aZ(y)∂aψω(y) +

(
ω2 − ∆2

d(d− 1)
R(y)

)
ψω(y) = 0, (5.60)

where R(y) is the Ricci scalar of the optical geometry.
In the simplest cases we can solve this equation explicitly. For instance, whenever

optical R is constant, constant ψω is a solution. This is in fact the lowest energy solution4,
so in these cases we have an energy gap ω2

min = ∆2R
d(d−1) . For instance, in global AdS as

shown above this is true, and we have an energy gap ωmin = ∆. We had to find this value
for the gap, since global AdS is the maximally symmetric vacuum which preserves the
full conformal group in the boundary, so our arguments from 5.1 have to apply.

5.4.3 Bulk Assumptions

We are interested in scalar fluctuations about zero temperature vacuum states. These
states are described by some bulk geometry, and we’re going to make some assumptions
about this bulk geometry. As we will see, these assumptions will give rise to a gapped
spectrum of scalar fluctuations and allow us to put a bound on this gap. We are going to
assume that the conformal boundary is compact and that the bulk geometry ends only
on the conformal boundary, has no other asymptotic regions, and has no horizons. These
assumptions have implications for the optical geometry we introduced in Section 5.4.1.
Denote the Riemannian manifold consisting of the spatial section of our geometry and
the optical metric by (M, hab). Then it follows that

1. The redshift Z(y) is bounded onM.

4This will follow from (5.63) derived below.
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2. M has finite volume, and ends only on a compact smooth boundary ∂M, corre-
sponding to the spatial section of the conformal boundary in ultrastatic frame.

Global AdS and the AdS-Soliton we discussed above satisfy these assumptions, and as a
result their optical geometry has these properties, but periodically identified Poincaré AdS
does not, because of the singular infrared region.

5.4.4 Lower Bound on the Scalar Fluctuation Spectrum

We can proceed much as we did with the free conformal scalar. Let’s first consider (5.59).
We can multiply by φ(x) and integrate. This yields

ω2 =

∫
M
(
Z1−d∂aφω∂

aφω + `2m2Z−1−dφ2
ω

)∫
M Z1−dφ2

ω

(5.61)

so long as ∆ > d+1
2 so that the integrals are finite and we can ignore boundary terms

when we integrate by parts. We can extract a bound on ω from this integral by noting
that (∂φω)2 ≥ 0 and

∫
M Z1−dφ2

ω <
(
maxZ2

) ∫
M Z−1−dφ2

ω so that, if m2 > 0

ω2 >
`2m2

(maxZ2)
. (5.62)

This inequality is unsatisfactory for a number of reasons. Firstly since Z is never con-
stant, this bound can never be saturated. This is an indication that the bound is quite
weak. Secondly, this bound only works if m2 > 0, and hence ∆ > d. This in particular
rules out any relevant operators. Finally, this bound as we’ve written it is not immedi-
ately written in terms of CFT data. Namely, while m2 can be determined by the scaling
dimension of the dual operator in the CFT, the maximum redshift maxZ is a property of
the vacuum solution of Einstein’s equation. This means it is not something we would be
able to immediately read off in the CFT, but instead is a property of the vacuum state.

In order to derive a better bound we can instead consider (5.60). We multiply by
Z2∆−d+1ψω and integrate by parts to find a bound on ω

ω2 =

∫
M
√
gZ2∆−d+1

(
(∂ψω)2 + ∆2

d(d−1)ψ
2
ωR

2
)

∫
M
√
gZ2∆−d+1ψ2

ω

≥ ∆2 minR

d(d− 1)
(5.63)

In order for these integrals to be finite, and for the boundary terms that arise from in-
tegrating by parts to vanish, the only condition is that ∆ > d−2

2
56. This coincides with

the unitarity bound [74], which is the lower bound on the scaling dimensions of scalar
operators we can consider anyway. At first glance we haven’t gained much compared to
(5.62) beyond allowing ourselves to consider relevant operators. However, a series of ob-
servations will illustrate that this bound is much stronger. First of all, this bound can be

5This works for either quantization for ∆ < d+2
2

.
6Recall from our assumptions that there are no boundary regions to consider in these integrals other than

the conformal boundary.
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saturated if R is constant, in which case lowest mode has ψω constant as well. This is in-
deed the case, for instance, on global AdS. Secondly, while we’ve written it here in terms
of a bulk geometric quantity, this bound can be recast in terms of boundary quantities
without making it any weaker.

This is because we can derive a maximum principle for the optical R. By examining
the identity (5.55), we can see that at a stationary point ofR, so that∇iR = 0, we have that
∇2R ≤ 0. This means that the stationary point cannot be a minimum. This in turn means
that R must attain its minimum value on the boundary of the domain, the conformal
boundary ∂M . By looking at a boundary expansion of the equations of motion, we can
find that in fact the boundary value of R is given by

R|∂M =
d

d− 2
R̄ (5.64)

where R̄ is the Ricci scalar of the boundary geometry (in the ultrastatic frame). We there-
fore have that

minR =
d

d− 2
min R̄ (5.65)

which, when substituted into (5.63) yields

ω2 ≥ ∆2 min R̄

(d− 1)(d− 2)
=

∆2

R2
(
min R̄

) . (5.66)

By comparing with (5.21), we see have derived the same lower bound as for the free
scalar, but now for a general scaling dimension ∆ in these holographic strongly coupled
CFTs.

5.4.5 An Upper Bound

Having bounded the gap from below, an interesting question is whether the energy gap
can be arbitrarily large. As with the free scalar, we can write an upper bound on this gap,
but unfortunately this bound is not in terms of CFT data. We do this by recasting (5.60)
in terms of a functional

I∆ [ψ] =

∫
M

√
hZ2∆+1−d

(
∂aψ∂

aψ + ∆2

d(d−1)Rψ
2
)

∫
M

√
hZ2∆+1−dψ2

. (5.67)

where ψ is now any smooth bounded function on the optical geometry. The condition
δI∆
δψ(x) = 0 is precisely (5.60) where ω2 = I∆ [ψ]. The stationary points of this functional
therefore correspond to the spectrum of the scalar operator.

The argument follows the same pattern as the free scalar. The smallest stationary
point of this functional is given by the energy gap. So long as this functional is bounded
from below, which is true so long asR is bounded from below, this means that this energy
gap is the minimum value of the functional. From (5.65) it is sufficient for the boundary
R̄ to be bounded from below. If this holds, I∆ [ψ] > ω2

min for any trial function ψ.
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Taking ψ(x) = 1 we find an upper bound on the gap

ω2
min ≤ I∆ [1] =

∫
M

√
hZ2∆+1−d ∆2

d(d−1)R∫
M

√
hZ2∆+1−d

≤ ∆2 maxR

d(d− 1)
. (5.68)

Unfortunately, this maximum value ofR in the bulk cannot be related back to a boundary
value of R̄ without knowing the explicit solution.

Taken together with the lower bound, we get the neat result

∆2 minR

d(d− 1)
≤ ω2

min ≤
∆2 maxR

d(d− 1)
. (5.69)

As mentioned above, the lower bound can only be saturated if R is constant, when con-
stant ψ is the solution. The same condition holds here. If R is not constant, for instance if
R̄ is not constant on the boundary, then neither bound can be saturated, and we get the
strict inequalities

∆2 minR

d(d− 1)
< ω2

min <
∆2 maxR

d(d− 1)
. (5.70)

5.4.6 Range of Applicability of the Bounds

In the example of global AdS considered above, the optical Ricci scalar is constant, and
the bounds are saturated. An example where this is not true is the AdS Soliton (5.58).
The optical Ricci scalar is no longer constant, it’s zero on the boundary, but increases to
a maximum of maxR = 4(d−1)

dR2 . Correspondingly, there is a non-zero energy gap[8], and
this must satisfy 0 < ω2

min <
4∆2

d2R2 . The lower bound is trivial, since stability implies that
ω2 > 0, while for the upper bound we don’t just need to know the boundary geometry, it
depends on details of the AdS Soliton bulk.

What this example shows us is that there cannot be a simple upper bound on the
energy gap of the form we presented for the free scalar in (5.21) in general. This example
explicitly violates it. In addition, this also illustrates that the lower bound on the gap is
only non-trivial when R̄ > 0 on the boundary, and hence the optical R > 0 everywhere.

An example where this bound is non-trivial is when the boundary is a deformed
sphere. Since the sphere has constant R̄ > 0, we can consider deformations of this space
where R̄ > 0 everywhere. There is then presumably some bulk vacuum similar to global
AdS, but where the optical Ricci scalar has some non-trivial profile. So long as our bulk
satisfies our assumptions of no horizons or other asymptotic regions, which we would
expect to be the case so long as the deformation is small enough, our bound on the gap
will apply. The size of the gap may vary as we deform the boundary, but if we normalize
it by the minimum value of the Ricci scalar, it will always be larger than the value on the
sphere. If we instead normalize the energy gap by the another scale like the volume of
the boundary, then it can of course decrease, and may vanish altogether. This bound also
tells us that the gap can only vanish when we make the deformation big enough such
that R̄ < 0 somewhere on the boundary, or the bulk solution changes discontinuously to
develop an extremal horizon or other asymptotic region.
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In [32] they use this energy gap on global AdS as one of the signals of confinement.
As we discussed in Sections 1.7.2 and 1.7.3, global AdS and the AdS soliton are exam-
ples of spacetimes that can be used to describe confining phases holographically. These
are both examples where a compact factor in the boundary geometry shrinks to a point
somewhere in the bulk, and it has been asserted[8] that the same behaviour should oc-
cur when other compact factors shrink in the bulk. Indeed, such an example is provided
by [75] where they numerically construct spacetimes with 3 + 1 dimensional boundary
whose spatial sections are S2 × S1, where either the S2 factor or the S1 factor shrinks in
the bulk. In either case, the boundary has positive Ricci scalar, so we can use our lower
bound on the energy gap for all the bulks they discuss. Interestingly, our lower bound is
completely oblivious to S1 factors like this on the boundary, since they don’t effect R̄.

5.5 Discussion

What we have found is that there is a lower bound for the energy gap of scalar fluctua-
tions. The same bound can be derived for a free scalar on an arbitrary compact space and
a scalar fluctuation about the universal sector in a holographic CFT, and it can also be
confirmed for a scalar in an arbitrary CFT on a linear perturbation of a sphere. This is a
wide class of CFTs, and in particular the fact that the same geometric quantity determined
the lower bound in both the free and holographic case is non-trivial. This motivates the
open question of whether there is a more general statement that holds for generic CFTs.

Perhaps the most straight forward step in generalizing this would be to go beyond
the universal sector. Unfortunately, once you add other fields to the bulk, you then have
more freedom for deciding how the scalar couples. In addition, the optical Ricci scalar
no longer obviously satisfies the same minimum principle (5.65), so it’s unclear that you
would be able to make arguments along the same lines that we took here. Another way to
generalize would be to consider fluctuations of non-scalar operators about the universal
sector.
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Chapter 6

Vacuum Energy

We are now going to use similar types of arguments to those in Chapter 5 to derive
a bound for the Vacuum energy in holographic CFTs. Under AdS/CFT, the vacuum
energy, or Casimir energy, is relatively straightforward to extract. Given a solution to
Einstein’s equation, it can be read off from the time-time component of the holographic
stress-energy tensor which we discussed in Section 1.6. On highly symmetric spaces,
this Casimir energy can be compared to the corresponding weakly coupled field theory
calculation. For instance [33, 76] make such a comparison for a CFT on a torus with
anti-periodic fermions, described in the bulk by the AdS-Soliton (1.49).

However, once we put the CFT on a generic curved spacetime, comparing results
derived from the gravitational bulk to field theory calculations is more difficult. This is
because the problem of finding the vacuum energy, even for a free scalar, is very compli-
cated once the space-time is made arbitrary. For an example of a calculation of a Casimir
energy see [77], where a scalar field between parallel ‘plates’1 is considered. The impor-
tant point there is that all the energy states are relevant in the calculation, and it can only
be solved because the full spectrum of the theory in this setup can be found. For the case
of the free scalar, this means that we would have to solve for the full spectrum of the
Laplacian on an arbitrary space. In contrast, when we were considering the energy gap
for fluctuations, all we cared about was the lowest eigenvalue of this Laplacian. Because
of this, unlike in Chapter 5, we will not be able to compare our holographic results to
corresponding results for free CFTs. It is interesting that in this case we are able to derive
a result in this strongly coupled context which we don’t have the tools to approach for
free theories.

We are going to specialize to d = 3 CFTs dual to 4d static bulks. In this case we don’t
have to worry about any ambiguity in the stress tensor due to the conformal anomaly.
The arguments we present here were published in [78, 79], with the work done in collab-
oration with Toby Wiseman and Sebastian Fischetti.

6.1 The Bound on the Free Energy

We will begin by presenting a derivation of a finite temperature bound on the free energy,
as presented in [78]. This result is a generalization of a result in [80], where they derive

1The ‘plates’ are two parallel planes on which Dirichlet boundary conditions are applied forcing the field
to vanish.
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this bound in the case where the boundary is a round sphere, a flat torus, or constant
curvature hyperbolic space. In fact, there is an elegant relation of this result to a geometric
result in [81] which we will discuss in 6.1.1. We will present our more straightforward
proof here, because it will allow a generalization to the inclusion of a massless scalar
field, and to the local bounds that follow.

We are going to consider 3 + 1 dimensional static bulks describing finite temperature
2 + 1 dimensional holographic CFTs in the universal sector, so satisfying the vacuum
Einstein’s equation with negative cosmological constant. We will again make use of the
optical geometry from (5.4.1). Compared with Chapter 5, we are going to relax our as-
sumptions on the bulk geometry. We will still assume that the conformal boundary is
compact, but we will now allow the bulk geometry to end not only on the conformal
boundary, but also potentially on finite temperature horizons. We will consider the Rie-
mannian 3-manifold (hab,M), whereM is a spatial slice of the bulk, and hab is the optical
geometry. As discussed in 5.4.1, the conformal boundary of the bulk spacetime is a regu-
lar boundary of the bulk geometry, and we will denote this 2 dimensional surface (h̄ij ,B),
where the optical geometry induces a metric on this surface h̄ij which is the spatial sec-
tion of the conformal boundary in the ultrastatic frame. In addition, the bulk may end on
some number of finite temperature horizons, whose Hawking temperature corresponds
to the CFT’s temperature. We will denote these horizons as ( IH̄ij ,HI), where the index
I labels the horizons, and the metric IH̄ij is the two dimensional spatial metric induced
on the horizon by the physical bulk metric Gµν . We will see below that from the point of
view of the optical geometry, these horizons are conformal boundaries.

The basic bound follows again from (5.55). In d = 3 this identity implies that2

∇2R ≤ 0 (6.1)

everywhere. We can integrate this over the optical geometryM, and use the divergence
theorem to turn this into a sum of boundary integrals∫

M
∇2R =

∫
B
?dR+

∑
I

∫
HI
?dR ≤ 0 (6.2)

where the surfaces are orientated with outward facing normals. To calculate the two con-
tributions from the conformal boundary and the horizons we need to look at expansions
of the bulk equations about these regions.

Near the conformal boundary, we can write down a FG expansion of the physical
bulk metric Gµν . Choosing an FG coordinate z such that the conformal boundary is in

2Once again, we drop the h superscript, but all equations are understood to be in the optical geometry
unless otherwise stated.
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the ultrastatic frame (5.52),

G

`2
=
dz2 − dt2 + h̄ijdx

idxj

z2

− 1

4
R̄dt2 −

(
R̄ij −

1

4
R̄h̄ij

)
dxidxj

+
z

3c

(
〈Ttt〉 dt2 + 〈Tij〉 dxidxj

)
+O(z2),

(6.3)

where h̄ij and R̄ij are the spatial metric and Ricci tensor of the boundary in this ultrastatic
frame, and 〈Ttt〉 and 〈Tij〉 are the expectation values of components of the CFT stress
tensor in this frame.

From this, we could read off an expansion of the optical metric h near the conformal
boundary in terms of this FG coordinate. However, it is more straight forward to calculate∫
B ?dR if we take normal coordinates in the optical geometry. In these coordinates, the

optical geometry near the conformal boundary is

h = dz̄2 + γij(z̄, x
i)dxidxj , (6.4)

with the boundary at z̄ = 0 and γij(0, x
i) = h̄ij(x). The relation between this normal

coordinate z̄ and the FG coordinate z can be found in an expansion z̄ = z(1 − 1
24R̄z

2 +
1

24c 〈Ttt〉 z
3 + O(z4)). From this it follows that the optical geometry near the conformal

boundary takes the form

Z (z̄, x) = z̄

(
1− 1

12
R̄z̄2 + z̄3 〈Ttt〉

8c

)
+O(z̄4)

γij(z̄, x) = h̄ij − R̄ij z̄2 +

(
〈Ttt〉 h̄ij + 〈Tij〉

3c

)
z̄3 +O(z4)

(6.5)

In these coordinates, we find that the optical Ricci scalar has an expansion in z̄

R = 3R̄− 6
ρ

c
z̄ +O

(
z̄2
)
. (6.6)

where we have introduced the energy density ρ = 〈Ttt〉. The boundary integral is there-
fore ∫

B
?dR =

6

c

∫
B
ρ =

6E

c
. (6.7)

The other (potential) contribution to this integral comes from any horizons in the
bulk. Since these are static Killing horizons, the physical bulk metric in a region around
the horizon can be written in the form

G = −κ2r2f(r, xi)dt2 + dr2 +Hij(r, x
i)dxidxj (6.8)

where the xi coordinates cover the horizon at r = 0, f(0, xi) = 1, and κ is the horizon’s
surface gravity. IH̄ij(x

i) = Hij(0, x
i) is the induced metric on the horizon HI . Moving
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to the optical metric, we see that the horizon becomes a conformal boundary

h =
dr2 +Hij(x, r)dx

idxj

κ2r2f(r, xi)
. (6.9)

We can solve Einstein’s equation in a series near the horizon to find

f(r, xi) = 1− 1

6
IR̄r2 +O(r3)

Hij(r, x
i) = IH̄ij(x

i) +

(
3

2`2
+

1

4
IR̄

)
IH̄ij(x

i)r2 +O(r3),
(6.10)

where IR̄ is the Ricci scalar of IH̄ij on the horizon. This allows us to find an expansion
for the optical Ricci scalar

R = −6κ2 + 3κ2

(
2

`2
+ IR̄

)
r2 +O

(
r4
)
, (6.11)

From this, the horizon integral is∫
HI
?dR = −12κ

AI
`2
− 6κ

∫
HI

IR̄ (6.12)

where AI is the horizon area. Then, using the Hawking temperature, κ = 2πT , the
Bekenstein-Hawking entropy S = Ac

4π`2
and the Gauss-Bonnet theorem

∫
R = 4πχ, where

χ is the Euler character of the 2d surface, we find∫
Hi
?dR = −6

TSI
c
− 48π2TχI . (6.13)

Summing up the horizon integrals, and combining this with the boundary integrals
yields

E − TS = F ≤ 8π2cT
∑
I

χI . (6.14)

Thus we find that the free energy is bounded from above by the temperature and Euler
character of any horizons.

6.1.1 An Alternative Derivation of this Bound

At this stage we should point out that the bound (6.14) can actually be derived from a
result in [81]. This result is a bound on the renormalized volume, Vren, of a 4-d asymptot-
ically locally hyperbolic space, in terms of its Euler characteristic χ(M4)3

χ(M4) ≥ 3

4π2

Vren

`4
. (6.15)

3This inequality comes from a relation involving the Euclidean action, which was used in [82] to relate
gravity in euclidean AdS to conformal gravity
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We can analytically continue the bulks we are considering here so that they become Eu-
clidean asymptotically hyperbolic spacetimes. This renormalized volume is proportional
to the renormalized Euclidean on-shell action4, renormalized using the techniques we
discussed in Section 1.6. This on-shell action can be related to F

T

F ≤ 8π2cχ (M4)T. (6.16)

After we had come up with the previous proof, it was pointed out to us by Juan Malda-
cena that the result (6.16) implies that F < 0 whenever there are no horizons in the bulk.
This is because the Euclidean time coordinate then corresponds to an overall S1 factor in
the bulk topology, which implies that χ (M4) = 0. In fact, when there are horizons we
can use a relation from [83] which relies only on the existence of our Killing vector ∂

∂t ,
and the fact that it is tangent to the conformal boundary. Under these conditions, we can
use

χ(M4) =
∑
A

χ(HA) +N (6.17)

where HA are the two dimensional fixed point sets of the Killing vector field, the ‘bolts’,
and N is the number of one-dimensional fixed points, or ‘nuts’. In this Euclidean picture,
the horizons have been analytically continued to two-dimensional fixed point sets of ∂

∂t ,
so these are the HA, and we have no nuts so N = 0. Substituting (6.17) into (6.16) yields
(6.14).

6.1.2 A Vacuum Bound

Now let’s consider a zero temperature limit of the above bound. As T → 0, so long as the
entropy doesn’t diverge and any horizons remain smooth we find

E ≤ 0. (6.18)

So we find that the Casimir energy is non-positive in these holographic CFTs.
In taking this zero temperature limit, we have allowed ourselves to consider a wider

class of vacuum states than we considered in 5. Our bulks may have zero temperature
horizons, and in addition, we haven’t confined ourselves to non-singular zero temper-
ature spacetimes. So long as the bulk is smooth at arbitrarily small finite temperatures,
then we can take this zero temperature limit. In other words, at zero temperature we
can have a singularity so long as, when we move to finite temperature, it is ‘masked’ by a
smooth black hole horizon. This is precisely the criterion for a good singularity according
to [71].

An important example of this is periodically identified Poincaré AdS. At zero tem-
perature there is a singularity in the infrared, but at any finite temperature we can take
the planar AdS black brane and periodically identify it and this provides a completely

4Since on-shell GR is constant.
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smooth bulk. We can get Poincaré AdS back as the T → 0 limit of these smooth bulks,
and in this sense the singularity in the infrared is masked at finite temperature.

6.1.3 Addition of a Massless Scalar

In fact, we can quite easily generalize this result away from the universal sector for the
particular case of a massless scalar in the bulk. This corresponds to a deformation by a
marginal ∆ = d operator on the boundary. The bulk equations of motion written in the
optical frame are

Lab ≡ Rab − ∂aφ∂bφ = −2∇a∂bZ
Z

L = 6

(
1− (∂Z)2

Z2

)

∇2φ = 2
∂Z

Z
.∂φ.

where we have introduced the tensor Lab which plays the same role in the first two equa-
tions as the optical Ricci tensor Rab does in the vacuum equations.

Indeed, from these equations we can derive that

∇2L = −3
(
L̃abL̃ab +

(
∇2φ

)2) ≤ 0, (6.19)

where L̃ab is the traceless part of Lab. From this it follows that L satisfies the same mini-
mum principle that the optical Ricci scalar satisfies in the absence of φ.

We can carry through exactly the same integral argument as above. The expansion of
the optical geometry near the conformal boundary (6.5) becomes

Z (z̄, x) = z̄

(
1− 1

12
L̄z̄2 + z̄3 〈Ttt〉

8c

)
+O(z̄4)

γij(z̄, x) = h̄ij − L̄ij z̄2 +

(
〈Ttt〉 h̄ij + 〈Tij〉

3c

)
z̄3 +O(z4),

(6.20)

where L̄ij ≡ R̄ij − ∂iφ∂jφ is defined in the ultrastatic frame conformal boundary geome-
try. This gives the expansion

L = 3L̄ − 6
ρ

c
z̄ +O

(
z̄2
)
. (6.21)

The horizon expansions (6.10) get replaced with

f(r, xi) = 1− 1

6
IL̄r2 +O(r3)

h̃ij(r, x
i) = IH̄ij(x

i) +

(
3

2`2
+

1

4
IL̄
)

IH̄ij(x
i)r2 +O(r3),

(6.22)
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where IL̄ = IR̄−∂iφ∂jφ IH̄ ij is defined in the horizon geometry. This gives an expansion

L = −6κ2 + 3κ2

(
2

`2
+ IL̄

)
r2 +O

(
r4
)
. (6.23)

We see that these expansion are exactly the same as those in the absence of the scalar field,
except for the substitution R→ L. The finite temperature bound in this case becomes

E − TS ≤ 8π2cT
∑
I

χI − 2πcT
∑
I

∫
HI

(∇φ)2 (6.24)

and then, as T → 0 we get again that E < 0.

6.1.4 Saturation of the bound

For this bound to be saturated, we require that ∇2L = 0 everywhere. From (6.19) this
implies that

L̃ij = 0

∇2φ = 0.
(6.25)

These two equations, and the Bianchi identity, imply that L is constant everywhere, and
in particular, since on the boundary L = 3L̄, the boundary L̄ is constant. In addition, the
near boundary expansion of φ in the normal coordinates (6.5) is

φ = φ̄(x) +
1

2
z̄2∇̄2φ̄(x) +O(z̄3) (6.26)

so we find that on the boundary ∇2φ = 2∇̄2φ̄ = 0. Since the boundary is compact, this
implies that the boundary φ̄, and so R̄, is also constant. The energy is therefore strictly
negative unless these conditions are met. In d = 3 dimensions, constant R̄ means the
conformal boundary is a sphere, a torus, or compact hyperbolic space.

At finite temperature, this bound basically cannot be saturated. This is because, from
(6.23), on the horizon L = −6κ2, so unless it takes this value on the conformal boundary
as well, Lmust vary in the bulk.

6.2 A local statement

With a little bit more work, we can turn this global energy bound into a local statement.

Again working at finite temperature, with the same assumptions as above, let’s con-
sider a boundary geometry with non-constant L̄. For a smooth boundary and scalar field,
there will be some minimum value min L̄. For any L̄∗ ≥ min L̄, we can consider a region
of the spatial boundary geometry

B
(
L̄∗
)

=
{
x | L̄(x) ≤ L̄∗(x)

}
. (6.27)
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min L̄

L̄∗

L̄∗

B
(
L̄∗
)

S
(
L̄∗
)

Σ
Σ′i

HI

FIGURE 6.1: The region of integration S defined by the condition R < R?,
it intersects the boundary in some region B which includes the minimum
value ofR on the boundary, and it ends in the bulk either on surfaces where
R = R?or on black hole horizons.

If we choose L̄∗ small enough, and there is one unique minimum min L̄ on the boundary,
B
(
L̄∗
)

will be a single connected region containing min L̄ as shown in Figure 6.1, but this
isn’t necessary for the argument.

Now we can consider an extension of this region into the bulk optical geometry
S
(
L̄∗
)
. This extension will meet the boundary at B

(
L̄∗
)
, and is defined by the condi-

tion that the optical L ≤ 3L̄∗5. The bulk region S
(
L̄∗
)

may also have a number of other
boundaries. One of these will be the surface Σ defined byL = 3L̄∗. One component of the
surface Σ will end on the conformal boundary, but there may also be other disconnected
components, which we denote by Σ′i in Figure 6.1. In addition, if L̄∗ > −2κ2, the region
may be bounded by black hole horizons HI , and in the special case where L̄∗ = −2κ2,
the surface Σ may intersect these horizons.

If we integrate (6.19) over S we can bound the boundary integral∫
S
∇2L =

∫
∂S
?dL =

∫
B
?dL+

∫
Σ
?dL+

∑
I

∫
HI
?dL < 0. (6.28)

The bound is strict because by assumption L is not constant.
We know what the contributions from B andHi are from the global arguments above,

but the contribution from Σ isn’t useful. To get rid of it, we introduce a weight function

5As we have defined it, the region S
(
L̄∗
)

may have disconnected components that don’t meet the con-
formal boundary. In that case, we could throw out those regions, and focus only on that part of S

(
L̄∗
)

consisting of regions connected to the conformal boundary. However, this has no effect on the result, so it is
an unnecessary complication.
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which is positive inside S , but vanishes on Σ. We insert a function f(x) such that for
x < L̄∗, f(x) > 0, f(L̄∗) = 0 and we also require f ′(x) ≤ 0. We then find that we can take

∇a
(
f

(
L
3

)
∇aL

)
= f

(
L
3

)
∇2L+∇af

(
L
3

)
∇a(L)

= f

(
L
3

)
∇2L+

1

3
f ′
(
L
3

)
(∇L)2 < 0,

(6.29)

where the inequality holds inside the domain S . This time, when we integrate we get∫
S
∇a
(
f

(
L
3

)
∇aL

)
=

∫
∂S
f

(
L
3

)
? dL

=

∫
B
f

(
L
3

)
? dL+

∑
I

∫
HI
f
(
−2κ2

)
? dL < 0

(6.30)

since the terms on the other boundaries have a factor of f
(
L̄∗
)

= 0, so they vanish. The
contribution on a horizon component is∫

HI
f
(
−2κ2

)
? dL = −κ

6f
(
−2κ2

)
`2

∫̄
HI

(
2 + `2 IL̄

)
(6.31)

As long as the integral over the horizon doesn’t diverge, this vanishes when we take the
T → 0 limit. Taking this limit, we are therefore just left with the boundary term, which
we can write as ∫

B
f(L̄)ρ < 0. (6.32)

In particular, the function f
(
L̄
)

= θ
(
L̄∗ − L̄

)
obeys our conditions, so we can bound the

total energy in this region ∫
B
ρ < 0. (6.33)

We have therefore found that there are certain regions on the boundary where the energy
must be negative. This bound holds independent of what happens in other regions on
the conformal boundary, so long as L̄ is everywhere greater than the values it takes in
this region.

6.3 Spacelike Symmetries and Stress

Let’s consider the case where, in addition to the timelike Killing vector, we have a space-
like one K = ∂

∂y as well, and let’s assume that K is hypersurface orthogonal. We can
make the same arguments as for a timelike Killing vector to establish a bound on the
stress. We can consider an equivalent of the optical geometry adapted to this Killing
vector. We write the bulk metric as

G =
`2
(
dy2 − ω(xi)dt2 + αij(x)dxidxj

)
W 2(x)

. (6.34)
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The xi span a two dimensional space bounded by a one-dimensional slice of the bound-
ary. We will use x as the coordinate on this slice of the boundary. UsingW as the defining
function, the representative of the boundary geometry is then of the form

h̄ = dy2 − ω̄(x)dt2 + ᾱ(x)dx2, (6.35)

and in fact we will choose the coordinate x such that ᾱ(x) = 1. We will take y to be a
compact coordinate with period 2πRy, and the x coordinate is also compact. We can now
apply the same arguments as before where we replace our ‘optical’ metric with6

h = −ω(xi)dt2 + αij(x
i)dxidxj . (6.36)

The Ricci scalar of this geometry satisfies the same identify (5.55), which we can integrate.
This integral picks up a boundary term∫

∂M
?dR = 6

∫
dxdt
√
ω 〈Tyy〉
c

. (6.37)

We can make this integral finite by compactifying the time coordinate. If the y circle
shrinks somewhere in the bulk, then there is a boundary term on this timelike surface Σ.
This is the analogue of the horizon in the previous argument. If we write the bulk metric
near this point as

G = γ2ρ2f(ρ, x)dy2 + dρ2 − a(ρ, z)dt2 + b(ρ, z)dz2 (6.38)

where f(0, x) = 1, and we require γ = 1
Ry by smoothness, then the corresponding contri-

bution to the integral is∫
Σ
?dR = −γ

∫
Σ

√
a(0, z)b(0, z)dtdz

(
12

`2
+ 6R̄

)
(6.39)

Because the metric is static, this surface has toroidal topology7, so the R̄ integral vanishes.
Putting this together∫

∂M
?dR+

∫
Σ
?dR = 6

∫
dxdt
√
ω 〈Tyy〉
c

− γ
∫

Σ

√
a(0, z)b(0, z)dtdz

(
12

`2

)
=

6

2πRy

∫
dt

(
Πy

c
− 4πRΣ

`2

) (6.40)

where we have defined the the total stress Πy =
∫
dxdy

√
h
√
ωTyy, and the size of the

surface Σ, RΣ =
∫
Σ

√
h̄dtdz∫
dt

. We therefore have a bound on the total stress, in terms of the
area of this surface Σ

Πy ≤
4πcRΣ

`2
, (6.41)

6Because it’s static, the arguments follow through just like for the Riemannian optical metric correspond-
ing to ∂

∂t
, because we can simply analytically continue to Euclidean signature.

7Since we can compactify the time coordinate.
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with saturation only for a constant R boundary. In particular, this stress being positive
would be a signal that the S1 associated with the y coordinate shrinks on a surface Σ in
the bulk. Unfortunately, in the simplest example where this bound could be used, the
AdS Soliton, this stress is negative, and so the bound is satisfied trivially.

6.4 A positivity constraint

We have therefore shown that, for a boundary of non-constant curvature, the total energy
is negative, and there are certain regions on the boundary over which the integrated
energy density is negative. This makes it tempting to postulate that the energy is negative
everywhere, but this is, in fact, not the case. Furthermore, we can prove for a wide class
of states that the energy must be positive somewhere. This discussion applies to the
universal sector, and in particular we are not including a massless scalar field.

The tool needed is inverse mean curvature flow(IMCF) which was introduced in [84]
as a tool to prove positivity of the Arnowitt-Deser-Misner(ADM) mass in asymptotically
flat initial data8 for the four dimensional Einstein’s equation without cosmological con-
stant. IMCF is a flow of two dimensional surfaces in a three dimensional Riemmanian
manifold. So we consider some set of two dimensional surfaces Σλ, labelled by a real
parameter, the ‘flow time’ λ, which form a foliation of this space. We can think of this
parameter λ as a function on the space whose level sets determine the surfaces Σλ.

The three dimensional metric in which we consider this flow is a time slice of the full
spacetime, rather than the optical metric. We will write σij(λ) for the induced metric on
these surfaces. The condition that defines the flow is that9

na∂aλ = K (6.42)

where na is the unit normal to the surfaces, and K is the trace of the extrinsic curvature,
the mean curvature, of the surfaces. These flows have the neat feature that the area of
these flow surfaces A(λ) satisfies

dA

dλ
=

d

dλ

∫ √
σ =

1

2

∫ √
σ
σij

dσij
dn

K
= A (6.43)

where d
dn is the normal derivative, and we have used the fact that

dσij
dn

= 2Kij . (6.44)

The key is then that the Hawking mass of these surfaces, defined by

mH(Σt) =
√
A

(∫
Σt

2 ΣtR− ΣtK2

)
(6.45)

8Three dimensional metric and extrinsic curvature for an initial spacelike surface that satisfy the appro-
priate constraints.

9This means that if you take the surface normal to be pointing in the direction of flow, K > 0.
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increases monotonically. It vanishes for very small spheres, and it’s proportional to the
ADM mass for very large surfaces, so if there exists an IMCF connecting these two
regimes this proves that the ADM mass is positive. It was pointed out by [85], that if
there is a spherical horizon in the bulk, and an IMCF exists starting at this horizon and
expanding to infinity, then the monotonicity of mH implies the Penrose inequality[86]

16πE2 ≥ A (6.46)

where A is the area of the horizon, and E is the ADM mass. This is because K = 0 on the
horizon, so at the start of the flow mH = 16π

√
A.

In fact, in many cases the flow doesn’t exist, but this problem was surmounted in
[87], where ‘weak solutions’ to the flow are defined which are shown to preserve this
monotonicity property, where the flow is replaced by an elliptic differential equation for
the function λ. This then leads to a proof of the Penrose inequality for asymptotically flat
3d spatial slices with non-negative curvature 10.

With negative cosmological constant, the spatial slices are hyperbolic with negative
curvature, so the above results don’t apply. The generalization to this case is discussed
in [88], and then made rigorous in [89] where the weak solutions of [87] are generalized
to this setting. The Hawking mass now takes the form

mH =
√
A

∫
2R+

4

`2
−K2 =

√
A

(
8πχ+

4

`2
A−

∫
K2

)
(6.47)

and it still increases monotonically along the flow. They consider the case where the two
dimensional spatial sections of the boundary are constant curvature spaces, and they
show that ‘weak’ flows exist that reach the conformal boundary.

We can start the flow either at a small ball around a point, or on a horizon. The
Hawking mass on a horizon K = 0 is, using S = 4πcA

`2
,

mH =
√
A

(
8πχ+

4

`2
A

)
=

√
`2

4πc
S

(
8πχ+

1

πc
S

)
(6.48)

while for a small ball, the Hawking mass vanishes. An important property is that the
topology doesn’t change along the flow, so if you want to start the flow at a point the
boundary must have spherical topology, and if you want to start the flow on a horizon,
the horizon must have the same topology as the boundary.

At the conformal boundary, mH approaches a quantity related to the energy as we
will discuss below, so in [89] a lower bound on this quantity is derived. We want to
consider more general conformal boundaries where the curvature is non-constant, so we
will demonstrate that the existence proof of [89] can be generalized to this case. We will
then discuss the value of the Hawking mass at the conformal boundary, and how the
resulting bound constrains the energy density.

10In these spatial slices, a static black hole horizon becomes a minimal surface where K = 0, so they
proved a bound on the ADM mass in terms of the area of such a minimal surface.
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6.4.1 Existence of Weak Solutions to IMCF flow

In [79] it was shown that the arguments in [89] can be generalized to boundaries of non-
constant curvature. This proof is due to Toby Wiseman and Sebastian Fischetti, and I
provide it here for completeness. Consider the Fefferman-Graham expansion of the bulk
metric,

G

`2
=
dz2 + ḡαβ(x)dxαdxβ +O(z2)

z2
, (6.49)

where the xα = (t, xi) are the boundary spacetime coordinates, and where for generality
ḡαβ(x) is a static, but not necessarily ultrastatic, representative of the boundary geometry.
The following pair of flows Σ±λ , where the surfaces Σ±λ are constant z surfaces with

z±(λ) =
1(

1
ξ ± c

)
e
λ
2 ∓ c

, (6.50)

start at λ = 0 with z±(0) = ξ, and reach the conformal boundary as λ → ∞. The point
is then that these are sub(super)-solutions of IMCF, the existence of which is sufficient
for an existence theorem in [87] to apply, and guarantee that their weak flows will reach
the conformal boundary. Sub- and supersolutions to IMCF have flow velocities that are
faster or slower than 1

K respectively. The flow velocity can be calculated to be

dz±

dλ

∣∣∣∣ ∂∂z
∣∣∣∣ =

`

2

(
1± cz +O(z2)

)
, (6.51)

while the mean curvature of a constant z surface is

K =
2

`
+O(z2). (6.52)

For any c, we can choose ξ small enough, such that these flow velocities are always
greater than or less than 1/K respectively, so these are sub- and super-solutions to IMCF,
and their existence tells us that we can construct weak flows starting at a point, or start-
ing at a horizon, that reach the conformal boundary (subject to the above caveat that the
topology of the initial surface must match the topology of the boundary).

6.4.2 Hawking Mass at Conformal Boundary

We now know that the flows will reach the conformal boundary, so we can discuss what
the asymptotic value of mH is for these flows in this limit. Taking the c = 0 case in (6.51),
we see that to lowest order in z, a solution to IMCF is provided by constant z surfaces
flowing according to

z(λ) = z0e
−λ

2 +O(z2). (6.53)

This means that in Fefferman-Graham coordinates, to leading order, constant z surfaces
flow to constant z surfaces. Now consider a general IMCF that is approaching the con-
formal boundary. In the coordinates (6.49), a surface in the flow at any given λ will have



116 Chapter 6. Vacuum Energy

some profile
z = f(λ, xi). (6.54)

However, if we redefine our z coordinate z → z z0
f(λ,xi)

+ O(z2), then this becomes a
constant z surface to leading order. In fact we can construct our entire Fefferman-Graham
coordinates adapted to the surface. Using the z coordinate as the defining function in our
extraction of the conformal boundary metric, the flow in this way picks out a particular
conformal frame on the boundary. Without loss of generality, let us therefore assume that
we have chosen our coordinates in (6.49) adapted to the flow in this way. To higher order
we can write

G

`2
=
dz2 + ḡαβ(x)dxαdxβ

z2

−
(
ḡR̄αβ(x)− 1

4
ḡR̄(x)ḡαβ(x)

)
dxαdxβ

+
z

3c
ḡ 〈Tαβ〉 dxαdxβ +O(z2),

(6.55)

which is (6.3) generalized away from the ultrastatic frame. In particular, ḡR̄αβ is now
the Ricci tensor of the full conformal boundary spacetime, and ḡ 〈Tαβ〉 is the vev of the
stress-energy tensor in this frame.

In this adapted frame, the Hawking mass is calculated on a constant t, constant z
surface. For this we need the mean curvature

K =
1

2
σij

d

dn
σij = −1

2

z

`
Gij

d

dz
(Gij)

=
2

`
+
z2

2`

(
ḡR̄− 2 ḡR̄tt

)
− 1

2c

z3

`
ḡ 〈Tij〉 ḡij

(6.56)

where σij is the induced metric on the constant z surfaces and we have used the outwards
normal derivative d

dn = − z
`
d
dz . If we write the boundary metric as

ḡ = −ω(xi)2dt2 + h̃ij(x
i)dxidxj , (6.57)

then we can replace the spacetime Ricci scalar with the Ricci scalar of its d−1 dimensional
spatial slices h̃R̄ using the Gauss Equation

ḡR̄− 2 ḡR̄tt = h̃R̄. (6.58)

The induced metric on the constant z flow surfaces Σ, is to leading order σij = `2

z2 h̃ij , so
we can write its Ricci scalar as

ΣR =
z2

`2
h̃R̄. (6.59)

Using the tracelessness of the stress tensor we therefore get

K =
2

`
+
`

2
ΣR+

1

2c

z3

`

ḡ 〈Ttt〉
ω2

(6.60)
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so that the Hawking mass of this surface can be written as an integral on the spatial slice
of the conformal boundary in the frame specified by hab

mH =
2`

c

√∫ √
h̃

∫ √
h̃
ḡ 〈Ttt〉
ω2

. (6.61)

This equation is written in the frame adapted to this particular IMCF. We can recast
this in terms of the optical frame by Weyl scaling the metric by a factor of ω−2. Written in
this frame, the Hawking mass becomes

mH =
2`

c

√∫ √
h̄ω2

∫ √
h̄
ρ

ω
, (6.62)

where ρ is now the energy density in the ultrastatic frame. We see that asymptotically,
mH does not tend to a universal value, but depends on a positive function ω(x). We do
not know this function a priori, it depends on the details of the flow.

IMCF on Global AdS

We might suppose that maybe IMCF always picks out some preferred conformal frame,
and so we would be able to determine what the function ω should be in general. We
can demonstrate that this isn’t the case by solving IMCF on global AdS. IMCF only cares
about the geometry on the spatial sections. For global AdS, these take the form

gAdS
`2

=
dr2

1 + r2
+ r2

(
dθ2 + sin2 θdφ2

)
. (6.63)

This is hyperbolic space, which is homogeneous and isotropic. This means that the space
looks the same if we move our centre r = 0 to any point. Also, it means that spheres
centred around any point are going to evolve into larger spheres centred around the
same point under IMCF. However, this does not mean that all IMCF that start as small
balls around a point have the same asymptotics. The symmetry is broken by the redshift
in the full space-time metric

G

`2
= −(1 + r2)dt2 +

dr2

1 + r2
+ r2

(
dθ2 + sin2 θdφ2

)
. (6.64)

The red-shift picks out a natural centre where it is maximized, so only small balls that
start at the origin in these coordinates asymptote to spheres over which the red-shift is
constant. To figure out what happens when we start the flow at a more general point,
we write AdS in coordinates centred around a point a distance z away from the point of
maximum redshift. As we have discussed, the spatial sections still look the same, but the
redshift changes

G

`2
= −

(√
1 + z2

√
r2 + 1− zr cos(θ)

)2
dt2 +

dr2

1 + r2
+ r2

(
dθ2 + sin2 θdφ2

)
. (6.65)
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We have chosen the polar axis to run through the point of maximum redshift.
Now, we can look at what conformal frame is picked out by a flow of surfaces starting

from a small ball near r = 0. Since the flow will consist of spheres centred around this
point, we see that the frame that is going to be picked out is

ḡ = −
(√

z2 + 1− z cos(θ)
)2
dt2 + dθ2 + sin2 θdφ2, (6.66)

and we see we get the boundary geometry in a frame which isn’t ultra-static. The function
ω in (6.62) is therefore

ω =
√
z2 + 1− z cos(θ). (6.67)

By choosing different points at different z at which to start our flow, there is a whole
class of different functions ω that we could find. We would expect that in less symmetric
spacetimes then AdS, the dependence of ω on where you start the flow would be even
more complicated, and there is no reason in general to expect any special frame to be
picked out.

6.4.3 What IMCF can tell us

Even though there is this unresolved ambiguity in the asymptotic value of mH , we can
still use the flow to derive some interesting constraints on the energy density. As we’ve
discussed above, a crucial feature of even the weak solutions of flows in [89] is that the
topology of the surfaces is unchanged along the flow. Where we can start a flow and have
it reach the conformal boundary therefore depends on the topology of the boundary.

If the boundary has spherical topology, then we can start the flow on a small sphere
centred around a point. For a vanishingly small sphere, mH → 0, so we have in this case

2`

c

√∫ √
h̄ω2

∫ √
h̄
ρ

ω
≥ 0, (6.68)

for some undetermined function ω. For this to be true for some ω > 0, we must have that
the energy density ρ ≥ 0 somewhere. This result holds regardless of whether or not we
are at finite temperature, and regardless of whether there are any horizons in the bulk.

For other topologies we can’t start the flow on a small sphere, so we instead start
it on a horizon. Since the topology doesn’t change, this relies on their being a horizon
component in the bulkH whose topology is the same as the boundary B. This gives

If gB = gH = g, ∃ω s.t. 2`
c

√∫
ω2
∫ ρ̄
ω ≥

√
`2

4πcS
(
16π (1− g) + 1

πcS
)

where g is the genus and S is the entropy of the horizon. For a torus g = 1, this im-
mediately shows again that ρ ≥ 0 somewhere, however for g > 1 this is only true if
S > 16π2c (g− 1).

We can take the zero temperature limit of these results to derive constraints on the
vacuum energy density. For a spheres, the result caries forward straightforwardly and
we find
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If g = 0 then ρ ≥ 0 somewhere.

For a torus, we need to start the flow at a horizon, so we need to add the condition that the
spacetime is the zero temperature limit of a finite temperature spacetime with a horizon
of toroidal topology

If g = 1 and at small finite temperature the bulk has a horizon with gH = 1 then ρ ≥ 0

somewhere.

This condition holds, for instance, for periodically identified Poincare AdS, but not for
the AdS soliton, where, indeed, the energy density is negative definite. A bound at zero
temperature for g > 1 is in principle possible by adding an additional requirement.

If g > 1, at small finite temperature the bulk has a horizon with gH = g and as T → 0,
S → 0, then ρ ≥ 0 somewhere.

Unfortunately, the example we know about, which is AdS-Schwarzschild with hyper-
bolic slices, doesn’t satisfy this condition.

6.5 Discussion

In summary, we have been able to derive several bounds on the Casimir energies of 2 + 1

dimensional holographic CFTs in the universal sector. Firstly, we found that the Casimir
energy is non-positive, and unless the space has constant curvature it is strictly negative
E < 0. We were then able to show that there are certain regions on the boundary where
the total energy contained therein must be negative. In particular, at the point where the
Ricci scalar in ultrastatic frame is minimized, the energy density must be non-positive.
Finally, for the case where the boundary has spherical topology, and under certain con-
ditions for higher genus, we showed using IMCF that the energy density couldn’t be
negative everywhere.

Given the form of the regions in which the total energy had to be negative, it is tempt-
ing to guess that the region where the energy density is positive will be centred somehow
around the point where the Ricci scalar in ultrastatic frame is maximized. Indeed, it can
be shown quite simply that if the bulk solution is such that the optical Ricci scalar is max-
imized on the boundary, then at this point ρ > 0. However, there is no reason for this to
be true generically, and in general we don’t have much to constrain the region in which
ρ > 0.

We were able to generalize the upper bounds on the energy density to the case where
there was in addition a massless scalar in the bulk. This generalization was possible
because we found that there was a quantity L = R − (∇φ)2 that satisfies a minimum
principle like the optical Ricci scalar R does in the universal sector, and where

∫
∇2L is

related to the free energy. It would be interesting to figure out whether there is a general-
ization of this quantity to other types of matter, as this would allow us to generalize the
bound to holographic CFTs deformed by other types of sources. We have been unable to
find one so far.
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In higher dimensions, there is still a minimum principle, which comes from the in-
equality

∇a
(
∇aR
Zd−3

)
≤ 0. (6.69)

This can be integrated as before to give a sum of an integral at the conformal boundary,
and horizon integrals. The horizon integrals again give terms that vanish as T → 0, but
now the boundary integral has divergences. For a general boundary, we cannot therefore
write down a bound using these same methods, but there may still be energy bounds
when you choose specific boundary geometries where the divergences vanish.

This upper bound on the Casimir energy can be contrasted with a lower bound like
the positive energy theorem for asymptotically global AdS spaces in [90]. In that case,
they fix the conformal boundary to be a round sphere and prove that the energy is
bounded from below by the global AdS solution. Whether it is possible to put a lower
bound on the energy for generic boundary spacetimes remains an open question, but, for
example, in [33] it is conjectured that the AdS-Soliton is the minimum energy solution
when the conformal boundary is a flat torus.
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Chapter 7

Temperature Gaps

In Chapters 5 and 6 we explored how the bulk geometry can tell us about properties of
vacuum states in holographic CFTs. We now want to explore finite temperature states.
In 1.7.2 we discussed black hole bulk states with round spheres on the boundary, and in
1.7.3 we discussed black hole states on a torus. In both cases there is a one parameter
family of black holes, which can be labelled by the horizon area, and there is also a bulk
solution with no-horizon that can be taken at any temperature. There can be a phase
transition between these finite temperature bulks with and without horizons, and this
can be interpreted in terms of a confinement/deconfinement transition in the CFT [3, 32].

There is an interesting difference between the stories on the torus and the sphere.
While on the torus, the temperature of the horizon can be made arbitrarily small, on
the sphere there is a minimum temperature that you can reach, below which there is no
black hole solution. This minimum temperature is simply a function of the radius of the
boundary sphere. In this chapter we want to explore how the existence of this minimum
temperature, and the size of the resulting ‘temperature gap’, depends on the geometry
of the boundary more generally. We will therefore be exploring what we can say about
AlAdS static black hole solutions to Einstein’s equation with general conformal boundary
geometries.

We won’t be able to derive a bound, but we will be able to provide some evidence
that one exists. We will conjecture that, for universal sector solutions, the minimum
temperature is bounded by the value it takes when the boundary is an Einstein space.
Since temperature is a dimensionfull quantity, we need to normalize it by some length
scale in the boundary geometry. The simplest quantity to take would be the volume,
but we can see from the example of the torus, where we can have finite volume but no
minimum temperature, that a bound in terms of volume doesn’t hold in general. We will
argue instead that the correct length scale to use is, like for the energy gaps in Chapter 5,
the minimum value of the Ricci scalar. The conjecture is that

minT 2 ≥ dmin R̄

4π2 (d− 1)
(7.1)

where min R̄ is the minimum value of the Ricci scalar on the boundary in the ultrastatic
frame. This bound is only non-trivial when min R̄ > 0. Also, we will add a massless
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scalar and conjecture that a generalized version of the same bound holds,

minT 2 ≥ dmin L̄
4π2 (d− 1)

(7.2)

where we have replace min R̄ → min L̄, with L̄ = R̄ − ∂iφ̄∂iφ̄ defined again in the ultra-
static frame, as in (6.19).

We will start in Section 7.1 with the known solutions when the boundary is Einstein,
which generalizes the specific cases from 1.7.2 and 1.7.3. In Section 7.2 we will then derive
a bound for small black holes when the boundary is more general, which will provide
our main motivation for (7.1). In Section 7.3, we will examine the behaviour of large
black holes as further evidence of the conjecture. We will then test a couple of different
cases. Firstly, in 7.4 when the boundary is a product of spheres we can construct the bulk
black hole solutions by numerically solving a system of ODEs, and then in 7.6 when the
boundary is a deformed sphere, we can solve the PDEs to construct bulk solutions using
the numerical techniques from Chapter 2. The work presented in this chapter was done
in collaboration with Toby Wiseman.

7.1 Einstein Boundary Metric

We discussed in 1.7.2 black holes where the horizon and the spatial section of the confor-
mal boundary were both round spheres, and in 1.7.3 the case where they were both tori.
More generally, we can take any d − 1 dimensional Einstein space Σd−1, and write a set
of black hole solutions which take the form[91]

ds2 = −f(r)dt2 +
`2dr2

f(r)
+ r2 Σh̄ijdx

idxj (7.3)

where Σh̄ij and xi are the Einstein metric and d − 1 coordinates on Σd−1. The function
f(r) depends on the ΣR̄, the constant Ricci scalar of Σd−1

f(r) =
ΣR̄`2

(d− 1) (d− 2)
+ r2 −

rd−2
0

(
ΣR̄`2

(d−1)(d−2) + r2
0

)
rd−2

. (7.4)

So there is a one a parameter family of black holes, labelled by r0 which is the size of the
horizon. The temperature for these solutions is

T =
1

4π

r0

`

(
d+

`2 ΣR̄

r2
0(d− 1)

)
. (7.5)

If ΣR̄ ≤ 0 this temperature can be brought all the way down to zero, but if ΣR̄ is positive,
then there is a minimum temperature

minT 2 =
dΣR̄

4π2 (d− 1)
. (7.6)
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This tells us is that the minimum temperature normalized by the Ricci scalar, minT 2

ΣR̄
, is the

same for all Einstein conformal boundary metrics. If instead, for instance, we normalize
by the volume, then

minT ΣV
1
d−1 =

√
ΣV

2
d−1 ΣR̄

2π

√
d

d− 1
. (7.7)

The quantity ΣV
2
d−1 ΣR̄ is the Yamabe invariant[92] of Σ, and will depend on the precise

Einstein manifold1.

7.2 Small Black Holes

Let’s consider a particular conformal boundary geometry, taken in the ultrastatic frame.
We assume that for this conformal boundary there is a bulk vacuum solution with no
black hole horizons which satisfies the same assumptions we made when we were con-
sidering energy gaps in 5.4; namely that there are no asymptotic regions other than the
conformal boundary. In particular, this means that the redshift Z, as defined in (5.53) is
bounded. The prototypical example of such a bulk is global AdS.

Now, let’s consider a small spherical black hole in this geometry. In the zero mass
limit a small black hole behaves like a massive particle on the background of the vacuum
solution[93, 94, 95]. This means that it will follow timelike geodesics in the spacetime.
Potential points where you can insert a small static black holes can be therefore be found
by finding static geodesics in the vacuum spacetime. Using the optical geometry, the
geodesic equation takes the form

d2xi

dτ2
+ Γijk

dxj

dτ

dxk

dτ
=

1

2`2
∂i
(
Z2
)

+
2

Z
∂jZ

dxi

dτ

dxj

dτ
. (7.8)

A static geodesic therefore sits at a stationary point of Z. The small black hole will be
dynamically unstable if this geodesic is unstable, and these geodesics are stable only if
the stationary point of Z is a maximum. We will therefore consider black holes inserted
at local maxima of the redshift, which we will denote Z?.

In [93], a technique for constructing these small black holes in a series called matched
asymptotic expansion is discussed. There are two regions, a near field and a far field.
The far field is the vacuum solution plus linear corrections due to the massive particle,
and the near field is the vacuum Schwarzschild black hole plus corrections due to the
curvature scales in the vacuum geometry. The near field is then matched on to the far
field.

To lowest order, this means that near a small black hole the metric is Schwarzschild.
We can therefore write down the relationship between the temperature and entropy.
However, the temperature we write down in this way is the temperature measured with

1For instance, in 4 dimensions we can compare S4, where
√
V R = 8

√
6π, and S2×S2 where

√
V R = 16π,

both of which are Einstein spaces.
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respect to the local proper time. With respect to the CFT time coordinate this is red-shifted
by Z?. For small black holes we therefore have that

T 2
CFT(S) =

`2

Z2
?

T 2
Sch(S) =

`2R?
d(d− 1)

T 2
Sch(S), (7.9)

where we have used Einstein’s equation written in optical frame (5.54) to replace Z? with
the optical Ricci scalar at this point R?. Then, recalling that R is minimized on the con-
formal boundary, and that on the conformal boundary it is proportional to the boundary
Ricci scalar, we can bound the temperature of a small black hole as a function of the
entropy

T 2
CFT(S) ≥ `2 min R̄

(d− 1)(d− 2)
T 2

Sch(S). (7.10)

This discussion of the temperature of small black holes is based on a discussion of their
energy we published in [72].

The main thing we would like to observe here is that it’s the minimum value of the
boundary Ricci scalar that bounds the leading order behaviour of these small black holes.
What’s more, this bound can only be saturated if the optical Ricci scalar is constant ev-
erywhere, and hence the boundary has constant Ricci scalar. The behaviour in (7.10) is
precisely the leading order behaviour, for instance, for AdS-Schwarzschild black holes.
This bound tells us is that if we start from AdS-Schwarzschild and deform the conformal
boundary away from a round sphere, the temperature at fixed entropy for the small black
holes is pushed up, so long as we normalize by the minimum value of the boundary Ricci
scalar. While there is no sign of the minimum temperature in this leading behaviour, this
is the first indication that some sort of bound is plausible, and that min R̄ enters naturally.

7.2.1 Addition of a massless Scalar

As further evidence that any bound should be in terms of the minimum Ricci scalar,
we note that this generalizes quite naturally with the addition of a massless scalar. The
argument for a small black hole on a background with a non-trivial scalar field carries
through unchanged. The black hole now needs in addition to be small enough that the
stress tensor for the scalar field is negligible on those scales. The optical form of Einstein’s
equation then imply

T 2
CFT(S) =

`2

Z2
?

T 2
Sch(S) =

`2L?
d(d− 1)

T 2
Sch(S), (7.11)

where L = R − (∇φ)2 as introduced in Chapter 6. Again, this can be bounded by it’s
minimum value on the boundary, and we have

T 2
CFT(S) ≥ `2 min L̄

(d− 1)(d− 2)
T 2

Sch(S) (7.12)
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so that the temperature normalized by the minimum value of the boundary L̄ = R̄ −(
∇̄φ̄
)2 is bounded.

7.3 Large Black Holes

At the other end of the spectrum, very large black holes can be treated using Fluid-
Gravity[39, 38, 40]. To leading order, the black holes look locally like planar-AdS-Schwarzschild
black holes. To be more precise, consider the metric and scalar field

g0 =

(
`2

z2

)(
dz2

f(z)
− f(z)dt2 + h̄ij(θ)dθ

idθj
)

φ0 = φ̄(θi)

(7.13)

with f(z) = 1 − zd/zd0 , and where h̄ij is an arbitrary d − 1 dimensional spatial metric
with coordinates θi which describes a spatial slice of the conformal boundary. These
spacetimes have a horizon at z = z0 with temperature T = d

4πz0
. If dΣ2

d−1 is flat space, and
φ is constant, this is planar AdS-Schwarzschild (1.40) and satisfies Einstein’s equation.
Otherwise, we find that

Lττ +
d

`2
g0
ττ = 0

Lrr +
d

`2
g0
rr = 0

Lij +
d

`2
g0
ij = R̄ij − ∂iφ̄∂jφ̄ ≡ L̄ij .

(7.14)

where R̄ij is the Ricci tensor of h̄ij . If
∣∣L̄ij∣∣� ∣∣∣ d`2 g0

ij

∣∣∣, then this is approximately a solution

to Einstein’s equation. Since d
`2
g0
ij = d

z2 h̄ij , this means that
∣∣z2L̄ij

∣∣ � 1 everywhere. For
this it is sufficient that

∣∣z2
0L̄ij

∣∣ � 1 or equivalently
∣∣L̄ij∣∣ � T 2. So this approximation

holds whenever the temperature is large compared to the curvature of the boundary and
the gradients of the scalar source.

This metric is the zeroth order term in a series, with higher order corrections sup-
pressed by inverse powers of the temperature, and positive powers of the curvatures.
This is the fluid-gravity gradient expansion. The structure of the gradient expansion
means that at each order we only need to solve ODEs in z, sourced by the θ derivatives
of the lower order terms. Boundary conditions can be applied to these corrections so that
they don’t change the temperature, or the geometry on the conformal boundary. They
will however affect the horizon metric. The metric on the horizon in the full solution will
therefore be given in an expansion as

Hgij
`2

=

(
4πT

d

)2(
h̄ij +O

(
ΣR

T 2

))
. (7.15)

This universal behaviour exists for large black holes independent of the choice of bound-
ary metric.
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We can find the next to leading order corrections to this behaviour. Motivated by the
Einstein space solutions (7.3), we write down an anzatz2

ds2 = −f(r)dt2 +
`2dr2

f(r)
+ r2h̄ijdθ

idθj − λ(r) ˜̄Lijdθidθj +O(∂3)

φ = θ̄(θi) + γ(r)∇̄2θ̄(θi) +O(∂3)

f(r) =
L̄`2

(d− 1)(d− 2)
+ r2 −

rd−2
0

(
L̄`2

(d−1)(d−2) + r2
0

)
rd−2

.

(7.16)

where ˜̄Lij is the traceless part of L̄ij . This anzatz solves Einstein’s equation to second
order in gradients on the boundary, where the functions λ(r) and γ(r) satisfy ODEs

−`2 =
1

2

d

dr

(
λ′(r)f0(r)

)
+
d− 5

2
λ′(r)

f0(r)

r
+ 2λ(r)

f0(r)

r2
− dλ(r)

−1 =
d

dr

(
r2f0(r)γ′(r)

)
,

(7.17)

where f0(r) = r2 − rd0
rd−2 . The horizon radius r0 is related to the temperature through

r2
0 =

(
4πT`
d

)2 − 2`2L̄
d(d−1) +O(L̄2), and so the metric on the horizon is given by

Hgij
`2

=

((
4πT

d

)2

− 2

d(d− 1)
L̄

)
h̄ij −

λ(r0)

`2
˜̄Lij +O(∂3). (7.18)

Taking the determinant of both sides of this equation, we can find an expansion for the
temperature

T =
d

4π
σ

1
d−1

(
1 +

1

d(d− 1)
σ−

2
d−1 L̄+O(σ

−4
d−1∂4)

)
, (7.19)

where σ =
H√g

`d−1
√
h̄

is proportional to the entropy density. Unfortunately, this expansion
doesn’t give us access to the minimum temperature, since this will occur in a regime
where the expansion parameter is O(1). However, it is interesting to note that if we take
this formula at face value, and throw away all the potential corrections, it would imply

T ≥
√

min L̄
2π

√
d

d− 1
, (7.20)

which is precisely the bound we are proposing. This happened because, by comparing
with (7.5), we can see that (7.19) is actually exact when the boundary is Einstein, so all
the higher order corrections in this case must vanish.

What is perhaps more interesting to note is that it is again this quantity L̄ which is
controlling the leading order behaviour. In particular, we can use it to bound the leading

2The Einstein space solutions with the replacement R → L, to first order in curvatures satisfy the tt, and
the trace of the ij components of the equation. That’s why this anzatz is possible.
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order behaviour of the temperature as a function of entropy density

T ≥ d

4π
σ

1
d−1

(
1 +

1

d(d− 1)
σ−

2
d−1 min L̄+O

(
σ−

4
d−1∂4

))
. (7.21)

There is also an integrated version of this relationship

T ≥ d

4π

(
HA
Ā

) 1
d−1

(
1 +

1

d(d− 1)

(
HA
Ā

)− 2
d−1

min L̄+O

((
HA
Ā

)− 4
d−1

∂4

))
, (7.22)

where HA and Ā are areas of the horizon and the conformal boundary.

7.4 The Product of Spheres

In [75], the case where the conformal boundary is time×S1×S2 is considered, and black
hole solutions with horizons that share this topology are constructed. This boundary
metric has constant positive Ricci scalar, but it is not Einstein, so you can’t immediately
write down analytic solutions. They found solutions numerically by solving the sys-
tem of ODEs corresponding to Einstein’s equation for static spacetimes that respect the
SO(2)× SO(3) symmetry of the boundary. They found that there is, like for the positive
Ricci scalar Einstein metrics, a minimum temperature black hole.

We have reproduced these results, as well as repeated the same calculation for a
boundary S1 × S3, and the results are shown in Figure 7.1. We have compared the Ricci
normalized temperature to the corresponding Einstein space solutions for S3 and S4. We
find that the minimum Ricci normalized temperature goes up compared to these spaces,
which is consistent with our conjecture. These examples also illustrate why we can’t use
volume normalization. Taking any given one of these black hole solutions, we can freely
scale the S1 factor. This scales the boundary volume and horizon area, but does not effect
the surface gravity of the horizon. By scaling the S1 in this way, we can make the volume
normalized temperature arbitrarily small, while the Ricci scalar normalized temperature
is unaffected.

For d = 5, we can also consider the case where the boundary is S2 × S2. This case is
perhaps more interesting, as we have a whole one parameter family of conformal bound-
aries, labelled by the ratio of the sizes of the two S2 factors. As a result, there is a two
parameter family of horizons labelled by the radii of the two S2 factors in the horizon
metric. The temperature as a function of the two radii of the horizons is shown in Figure
7.2. When the two radii are equal, the boundary is Einstein, and there is a one parameter
family of analytic solutions. We find that the maximum temperature occurs along this
one parameter family. In this case it is true regardless of whether we use volume or Ricci
scalar normalization.
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FIGURE 7.1: The R normalized inverse temperature as a function of hori-
zon Ricci scalar, compared between Sn−1 × S1 and Sn. Each line is drawn
through 500 points that have been found numerically. We see in each case
that the dashed line non-Einstein space solution has a larger minimum
temperature then the solid line Einstein space solution. We can also see
the universal behaviour of large black holes towards R̄→ 0.
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FIGURE 7.2: The inverse temperature for S2 × S2, as a function of the two
radii of the horizons.
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7.4.1 Numerical Solution of the ODEs

The ODEs which are solved to find the black hole solutions when the conformal bound-
aries are products of spheres are solved with the aid of Mathematica[57]. We write the
metric in normal coordinates which take the form

ds2 = dr2 − φ0(r)dt2 +
∑
j

φj(r)dΩ2
nj , (7.23)

where the choices of values of nj determine which conformal boundary we are solving
for. The equations of motion consist of one second order equation for each φj and an
additional first order constraint equation, whose derivative is implied by the other equa-
tions.

We take r = 0 to be the horizon where φ0(0) = 0. The other φj(0) then control the
size of the horizon, φj(0) = ρ2

j . The equations are singular here, so we need to step out
to a small radius r = ε. We series expand the equations and the constraint to order ε2

to get initial values and first derivatives at r = ε consistent with the constraint. In this
expansion, the second derivative φ′′0(0) is undetermined, and corresponds to the surface
gravity of the horizon. Because of the scaling symmetry, we can without loss of generality
fix φ′′0(0) = 2.

We then integrate outwards using the second order equations to large r. The φj(r)
eventually start growing exponentially, but their ratios go to constants, and these ratios
tell us the boundary geometry. The numerical integration is terminated when we detect
that these ratios have become effectively constant.

7.5 Linearised Perturbations of a Sphere

In this section and the next, we are going to look at the specific case where the spatial
section of the boundary is a d − 1 sphere, but with a deformed metric. In addition, we
will add a massless scalar field, which will be non-homogeneous over the sphere. When
the scalar field is turned off, and the boundary metric is a round sphere, we have the
AdS-Schwarzschild solutions. In this section we will consider linear perturbations to
these bulks.

To begin with, we will deform the boundary metric without turning on the scalar
field. We will consider deformations to the metric in Lorentz gauge. So, if we write our
boundary metric as

ḡ = −dt2 + Ωijdθ
idθj − εδh̄ijdθidθj (7.24)

where Ωij is the d− 1 dimensional sphere, then we require

∇̄µδh̄µν =
1

2
∇̄νδh̄, (7.25)
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with covariant derivates taken with respect to the unperturbed boundary metric. The
boundary Ricci scalar picks up a shift from this perturbation

δR̄ = ε

(
δh̄R̄

d− 1
+

1

2
∇̄2δh̄

)
. (7.26)

So, traceless perturbations where h̄ = 0 don’t shift the Ricci scalar.
When we solve the bulk Einstein’s equation with this peturbed metric on the confor-

mal boundary, there will be a family of black hole bulks with a Hawking temperature
which varies with their entropy. For any choice of δh̄, we can therefore consider the func-
tion T (ε, S). When ε = 0 this will be the AdS-Schwarzschild black holes, but as epsilon
is varied the temperature as a function of entropy will be deformed in some way. Be-
cause of the rotational symmetry, we can expand δh̄ in modes on the sphere. This leads
to separation of variables in the bulk equations, and for each mode, we can solve a sep-
arate ODE to find the perturbation to the bulk. In particular, there is a homogeneous
perturbation where δh̄ij = λΩij , which simply scales the boundary spatial sections. This
change in boundary volume is simply equivalent to a change in temperature, and this
is the deformation that moves us along the one-parameter family of AdS-Schwarzschild
black holes.

All other modes have
∫
δh̄ = 0, so they will not affect the boundary volume or the

black-hole entropy. In particular, it also follow from (7.26), that they will satisfy∫
δR̄ = 0. (7.27)

This means that either δR̄ = 0 everywhere, or min δR̄ < 0. Since the perturbation isn’t
affecting the Hawking temperature of the horizons, if min δR < 0, then for the minimum
Ricci scalar normalized temperature

δ
T (S)√
minR

= −1

2

T (S)

minR3/2
δminR ≥ 0 (7.28)

at any fixed entropy. In particular, this would mean that the minimum temperature nor-
malized in this way would go up, so we see that these linear perturbations are consistent
with our conjecture.

In the other situation, where to linear order δR̄ = 0 everywhere, there is no linear
shift in the minimum temperature normalized in this way to first order. We have to go to
second order in ε to figure out whether it goes up or down. This gets complicated, and
we haven’t been able to prove anything in general about this special case.

However, another scenario we can consider is perturbing the massless scalar. To first
order, a scalar field simply satisfies

∇2φ = 0 (7.29)
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on the background. The coupling to gravity through the stress the tensor is only O(φ2),
specifically

T̃µν = ∂µφ∂νφ, (7.30)

where T̃µν enters into the equations of motion as

Rµν +
d

`2
gµν = T̃µν . (7.31)

If we consider a perturbation to a black hole space time in the form of such a scalar field,
the first order solution to (7.29) obviously doesn’t affect it at all. However, this then feeds
back at second order through (7.31) to source a backreaction on the metric. This backre-
action can be expanded in modes just like the original gravitational perturbations above,
but this time the modes are sourced by the corresponding modes in T̃µν . In particular,
the homogeneous mode that can shift the temperature and entropy of the horizon will
no longer simply move us along the AdS-Schwarzschild family of solutions. These equa-
tions will be sourced by the homogeneous part of T̃µν .

The source term for the backreaction is

T̃ = (∂rφ)2 dr2 + ∂iφ∂jφdθ
idθj (7.32)

and the homogeneous part of this is

T̃H =

∫
(∂rφ)2 dΩd−1

Ωd−1
dr2 +

∫
Ωij∂iφ∂jφdΩd−1

(d− 1) Ωd−1
dΩ2

d−1. (7.33)

Note that unless the scalar field is a constant, this homogeneous component is always
non-zero, and both T̃rr > 0 and T̃Ω > 0.

We can take an anzatz for the homogeneous backreaction on the metric

g = −f(r)dt2 +
(
1 + ε2a(r)

) `2dr2

f(r)
+
(
1 + ε2b(r)

)
r2dΩ2

d−2, (7.34)

where φ ∼ O(ε). Using this anzatz, we can find an integral solution for the backreac-
tion, without knowing the precise form of φ. This involves solving a second order ODE
for a(r), with the function b(r) then determined. We solve the ODE subject to bound-
ary conditions that fix the horizon and boundary areas. These boundary conditions are
equivalent to b(r0) = 0 and limr→∞ b(r) = 0. The solution for the perturbation to the
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minimum temperature bulk is

a(r) =
2
(
(d− 1)2r2−2dr2d

0 − (d− 1)2
(
r2 + r2

0

) (
r0
r

)
d + r2

0

) (∫∞
r x3

(
1−

(
r0
x

)d)
T̃rr(x) dx

)
(d− 2)r2r2

0

(
(d− 1)

(
r0
r

)
d + 1

)
2

−
d
(
(d− 1)2r2−2dr2d

0 − (d− 1)2
(
r2 + r2

0

) (
r0
r

)
d + r2

0

)
T̃Ω(∞)

(d− 2)2r2
(
(d− 1)

(
r0
r

)
d + 1

)
2

+
(d− 1)d

(
r0
r

)
d
((

r0
r

)
d − 1

)
T̃Ω (r0)

(d− 2)
(
(d− 1)

(
r0
r

)
d + 1

)
2

,

(7.35)

where r0 = `
√

d−2
d . Note that from the expansion of the scalar field near the conformal

boundary (6.26), T̃rr ∼ O(r−6) so
∫∞
r x3

(
1−

(
r0
x

)d)
T̃rr(x) dx is finite. From this we can

extract the shift in temperature

δT 2

T 2
=

2
∫∞
r0
r3
(

1−
(
r0
r

)d)
T̃rr(r) dr

dr2
0

− T̃Ω(∞)

d− 2
. (7.36)

Now we note two things. Firstly, the integral is positive, and secondly the boundary
quantity T̃Ω(∞) is related to shift in L through

T̃Ω(∞) =

∫
(∇φ̄)2

(d− 1)VΩ
= −

δ
∫
L

(d− 1)V
(7.37)

Putting this together yields a bound on this temperature shift

δT 2

T 2
≥
δ
∫
L∫
L
≥ δminL

minL
. (7.38)

This shows that the shift in minimum temperature normalized by the minimum value
of L increases to linear order for all scalar perturbations, which is consistent with our
bound.

7.6 Deformations of Spheres

So far we have only been able to consider explicit examples when the boundary metric
is either highly symmetric, or an Einstein space, as well as certain linear perturbations
to some of these cases. As further tests of this conjecture, we use the numerical methods
introduced in Chapter 2 to examine the spectrum of black holes when the conformal
boundary is a deformed sphere. We take the cases where d = 3 and d = 4 and the
conformal boundary is, in ultrastatic frame3,

ds2 = −dt2 + s(θ)
2
d−1
(
dθ2 + sin2 θdΩ2

d−2

)
, (7.39)

3The power to which s(θ) is taken is chosen for convenience so that the measure,
√
s, is just proportional

to s(θ).
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so these are deformed spheres with an SO(d − 1) symmetry group maintained. If s(θ)
is constant, then the boundary is a sphere, and the bulk black holes are the global AdS-
Schwarzschild black holes. In addition, we will add a massless scalar field with a profile
on the boundary

φ = φ̄ (θ) . (7.40)

There are two functions worth of freedom in the choice of boundary conditions here,
so we restrict ourselves to a four parameter family4

s(θ) =
1

1−
(
1− 2

d

)
ε

(1 + λ cos θ + ε cos 2θ)

φ̄(θ) = λ2 cos θ + ε2 cos 2θ.

(7.41)

In Figure 7.3 we plot the minimum temperature for some choices of purely metric
deformations, so λ2 = ε2 = 0, and a range of values of λ and ε are considered. Regardless
of whether we normalize by the volume or the minimum value of the Ricci scalar5, the
temperature is minimized when λ = ε = 0.

In Figure 7.4 we plot the same for some choices of purely scalar deformations, so
λ = ε = 0, and a range of values of λ2 and ε2 are considered. Now it makes a big differ-
ence whether we just normalize using the boundary geometry, or involve the boundary
value of φ by normalizing by the minimum value of L. The volume normalized min-
imum temperature goes down if you move away from AdS-Schwarzschild, but the L
normalized temperature is minimized for λ2 = ε2 = 0.

Finally, the distinction between the two normalizations is made clear by looking at the
mixed deformations in Figure 7.5. In these plots λ = ε2 = 0, and the other two param-
eters are varied. The minimum L normalized temperature always goes up away from
global AdS, whereas the volume normalized temperature goes up or down depending
on whether the metric deformation or scalar deformation is larger.

7.6.1 Numerical Solution of the PDEs on Deformed Spheres

We solved the bulk equations using the techniques of Chapter 2, which we used in Chap-
ter 4. Again, initial solutions were found on a desktop, and then the full parameter scans
were done using Imperial College’s HPC[70]. The metric anzatz we take is

ds2 =
4

(1− r2)2 (r4dt2F (r, θ) +
(
r2dt2 + dr2

)
H(r, θ) + 2rdrdθ sin θL(r, θ)

+M(r, θ)(dθ2 + dΩ2
d−2 sin2 θ) + S(r, θ) sin2 θdθ2),

(7.42)

so that the holographic coordinate r runs between 0 ≤ r ≤ 1, with r = 0 being the
horizon, and r = 1 being the conformal boundary. The two dimensional domain of our

4The prefactor in s(θ) ensures that the total volume of the space is fixed. This is purely for convenience,
since we are going to normalize all temperatures by length scales in this geometry anyway.

5For this normalization, we have to restrict ourselves to those deformations where R > 0 everywhere.
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FIGURE 7.3: The change in minimum temperature as compared to an un-
deformed sphere for the metric deformations. The inner dotted line is the
region whereR > 0, and the outer one is the region where the deformation
is non-singular (s(θ) > 0 everywhere).
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FIGURE 7.4: The change in minimum temperature as compared to an un-
deformed sphere for the scalar deformations. The dotted line is the bound-
ary of the region where L > 0

PDEs is then characterized by
0 ≤ r ≤ 1

0 ≤ θ ≤ π
(7.43)

There are three special points where this coordinate system breaks down, so we need
to make sure we impose smoothness explicitly. These are the horizon r = 0 and the two
poles of the sphere θ = 0, π. We will choose our coordinate lattice such that smoothness
at these points is imposed automatically, and the only boundary condition we will need
is the one that fixes the boundary metric at r = 1.

We use Chebyshev polynomial pseudospectral differencing in the r direction and
Fourier spectral differencing in the θ direction. For the r coordinate we build in the as-
sumption that all our functions are even under r → −r, which automatically imposes
smoothness at the horizon r = 0. As described in Chapter 2, we take an even number of
points in the total lattice (so in particular there is no point at r = 0), project the derivative
matrix on that lattice to even functions, which gives us an effective matrix for the points
on that lattice for 0 < r ≤ 1.

For the θ lattice, we note that the solutions we are looking for are both periodic with
period 2π, and also have a symmetry θ → −θ. They therefore admit a cosine expansion

a0 +
N−1∑
n=1

an cosnθ, (7.44)
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which builds in smoothness at the poles. We use this expansion to construct the deriva-
tive matrices, using the lattice points

θn =
π

2N
+ n

π

N
. (7.45)

For d = 3 we use a reference metric where

F (r, θ) =
2
(
r2 − 3

)
r2

0

(
r2

0 + 1
) (
r4 − r2 +

(
r4 + 3r2 + 6

)
r2

0 + 2
)

(r2 + 1)
(
3r2

0 + 1
)2 (

(r4 + 3) r2
0 + (r2 − 1)2

)
H(r, θ) =

2
(
r2 + 1

)
r2

0

(r4 + 3) r2
0 + (r2 − 1)2

L(r, θ) = 0

M(r, θ) =
1

4

(
r2 + 1

)2
r2

0(s(θ)))

S(r, θ) = 0

(7.46)

and in d = 4 we take

F (r, θ) = −
8r2

0

(
r2

0 + 1
) (
r4 + 2

(
r4 + r2 + 1

)
r2

0 + 1
)

(r2 + 1)2 (2r2
0 + 1

)2 (
2 (r4 + 1) r2

0 + (r2 − 1)2
)

H(r, θ) =

(
r2 + 1

)2
r2

0

2r4r2
0 + r4 − 2r2 + 2r2

0 + 1

L(r, θ) = 0

M(r, θ) =
1

4

(
r2 + 1

)2
r2

0(s(θ)))

S(r, θ) = 0

(7.47)

These are chosen so that if λ = ε = 0 then these are the vacuum AdS-Schwarzschild
solutions parametrized by r0.

7.6.2 Convergence Tests for PDEs

We focus here on the 4 dimensional solutions. We look at the vacuum AdS solutions,
along with 3 metric deformations, 3 scalar deformations, and 3 mixed deformations. We
take the smallest, and the largest black hole we found in each of these deformations and
find these solutions at a range of resolutions. To start off with, we stick to pseudospectral
interpolation in the radial direction, and the Fourier differencing in the angular direction,
where we run at resolutions from 10×10 to 40×40, with the radial and angular resolution
increasing together.

The first thing to check is that the equations of motion are satisfied on the solutions.
We look at the trace of the offset of the Ricci scalar ∆R, and the offset of the Ricci tensor
squared ∆Rij∆R

ij , from the values implied by Einstein’s equation. These are shown in
Figure 7.6.
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FIGURE 7.6: Agreement with Einsein’s equation at various resolutions. We
see that as the resolution is increased, the agreement improves.
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FIGURE 7.7: Shift in solution from resolution to resolution using pseu-
dospectral interpolation. The decreasing size of the shift at increasing res-
olution demonstrates convergence.

The next thing we check is whether the shift in solutions from resolution to resolution
converges for high resolutions. What we do is interpolate all the solutions, and evaluate
them at all the points on the largest lattice. We then compare the solutions at successive
resolutions, and plot the largest shift at any of these points from resolution to resolution.
These are shown in Figure 7.7 and show convergence.

Finally, we focus on the expansion of our solutions near the conformal boundary. We
extract the energy via a FG expansion. This energy depends on the third derivatives of
our functions at the conformal boundary. The shift in energy from solution to solution
is shown in 7.8. Here we see an issue, as these do not converge. This suggests a lack of
smoothness at the conformal boundary, which would come from logarithmic behaviour
in our boundary expansion much as in Chapter 4.

Pseudospectral interpolation is very sensitive to this lack of smoothness, so we in-
stead move to finite difference interpolation. We use sixth order finite finite difference in
the radial direction, and we repeated these tests at fixed angular resolution (40 points)
and with x resolutions varying from 150 to 450 points. A few examples of this are shown
in Figure 7.9. With finite differnce interpolation, we expect a power law interpolation, so
we fit lines through log-log plots of the shifts versus the resolution. The slope tells us the
order of convergence, as discussed in Chapter 4. We see that the bulk quantities converge
much faster than the boundary energy, which is consistent with a lack of smoothness at
the boundary. At the resolutions we have considered here, the error on the R and Rij is
limited by φ resolution. We demonstrate that these are still fine using finite difference by
increasing the φ and X resolution together. Figure 7.10 illustrates this using fourth order
finite difference at X resolutions ranging from 30 to 180 points in steps of 30, where the
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FIGURE 7.8: Energy Shift for pseudospectral interpolation. Here we see a
potential issue with convergence. This is due to a lack of smoothness at the
boundary, and is resolved by moving to finite difference.

φ resolution increases from 10 to 60 points in steps of 10.

7.7 Discussion

We have presented evidence for a bound on the minimum temperature of AdS black
holes as a function of their conformal boundary geometry. We conjectured the bound
(7.1), relating this ‘temperature gap’ to the minimum value of the Ricci scalar on the
boundary geometry (in the ultrastatic frame). Below this temperature, one would ex-
pect there to be some finite temperature bulk solution with no horizons, like global AdS,
which would correspond to a confined state in the CFT. As with the transition from AdS-
Schwarzschild to global AdS, this transition could generically occur at some temperature
above the minimum temperature black hole, but this ‘temperature gap’ acts as a lower
bound on the transition temperature, and so a lower bound on the former translates into a
lower bound on the latter. We also conjectured that this bound generalizes with the addi-
tion of a massless scalar in the bulk. The minimum temperature would then be bounded
by the minimum value of L̄ as in (7.2).

This bound is very non-trivial from the point of view of the CFT. We can consider
the CFT in a finite temperature canonical ensemble, and think of varying the boundary
geometry and the classical source for the marginal scalar φ̄. The conjectured bound (7.2)
would tell you, for instance, that for all geometries and sources where L̄ > 0 everywhere,
there is a phase transition between a confined and a deconfined phase at some finite
temperature.
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FIGURE 7.9: Energy Shift and Bulk Function Shift for Finite Difference In-
terpolation. TheX resolution is increased on it’s own, with the φ resolution
fixed at 50 points.
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FIGURE 7.10: Agreement with Einstein’s equation for Finite Difference In-
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Unlike the bounds in previous chapters, we have no proof. The behaviour of small
and large black holes in Sections 7.2 and 7.3 illustrate how L̄ enters naturally into T (S),
and how min L̄ bounds the behaviour in both of these extremes. The examples of space-
times where the boundary is a product of spheres, and the linear perturbations of AdS-
Schwarzschild are then consistent with this bound. Finally, the numerical solutions we
constructed in 7.6.1, illustrated that this bound is comfortably satisfied on the full solu-
tions to the unlinearized equations for certain deformations of AdS.
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Chapter 8

Summary

We have explored various ways that features of the bulk geometry in AdS/CFT can re-
flect and constrain physical properties of the dual CFT. In Chapters 3 and 4 we found
that a certain large scale limit in a holographic CFT could be related to a throat-like in-
frared region in the bulk. The source terms and boundary geometry in this limit were
the boundary conditions for equations that determined the geometry which in turn de-
scribed the large scale limit of the CFT state. Holographic CFTs are therefore constrained
to have a certain relationship between the large scale limit of inserted sources, and the
corresponding limit of one-point functions, determined by the solutions to these equa-
tions.

The extremal horizons which describe a particular class of these large scale limits are
well understood, with many examples of near horizon geometries known analytically.
However, this is not the case for the scale invariant singularities we discussed in Chap-
ter 4, and it would be useful to study these in more detail. In particular, to demonstrate
explicitly that these are ‘good’ singularities, we could take these bulks to finite temper-
ature and find the corresponding black hole solutions. Also, it would be interesting to
add other matter fields to the bulk, so that we can explore these singularities when the
large scale limit of the CFT source terms is something other then a metric deformation or
a chemical potential.

In Chapters 5. 6 and 7 we then considered the bulk descriptions of holographic CFTs
on spacetimes with compact spatial sections. We found that the existence of the bulk
geometry could be used to bound the energy gap of scalar fluctuations, and we gave
evidence to suggest that it could also bound a temperature gap, below which the CFT
would have to be in a confined state. This bound was given in terms of the minimum
value of the Ricci scalar on the boundary. We also found that we could prove that for
certain types of bulk geometry, the vacuum energy must be negative. What’s more, the
energy density at the point corresponding to this minimum value of the Ricci scalar in
the CFT had to be non-positive as well. In addition, we used IMCF to show that in many
cases the energy density had to be positive somewhere.

The results we derived applied in the universal sector of any holographic CFT. The
fact that we could generalize most of our results with the addition of a massless scalar
suggests that there could be similar types of bounds outside of the universal sector for
particular combinations of bulk matter fields. Also, there are most likely many more
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holographic results to be found in the universal sector using techniques similar to the
ones we have used here.

For a particular class of CFTs, AdS/CFT rephrases the complicated problem of curved
space QFT in terms of a classical geometric problem in a bulk geometry, the Einstein’s
equation. This allows us to use simple geometric tools to derive surprisingly powerful
results. Even forgetting the fact that these CFTs are strongly coupled, these results would
have been very difficult to derive using only QFT tools, since they give constraints on the
properties of these curved space QFTs as a function of the geometry they live on. For the
energy gap bound in Chapter 5 there were hints that the result might be applicable to a
wider class of CFTs, and in particular we were able to derive the bound for a free scalar.
It would be interesting to understand more generally under what conditions the bounds
we have explored here could be derived in non-holographic CFTs, and to what extent the
results depend on the existence of the bulk geometric description.
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