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1. Introduction

At first sight the soft interactions at high energies occur at long distances where one needs to

use non-perturbative QCD. Since our poor understanding of non-perturbative QCD, we are doomed

to use pure phenomenological approaches, which might or might not reflect the features of our mi-

croscopic theory: QCD. The scattering amplitude in perturbative QCD is governed by the exchange

of the BFKL Pomeron [1]. It has been shown that the interaction of the BFKL Pomerons generates

a new dimensional scale: saturation momentum Qs (Y )[2, 3, 4, 5], which increases with energy (see

Figure 1), and produces a system of partons, which are non-perturbative by nature, however, the

QCD coupling in this system of partons is small (ᾱS (Qs) ≪ 1). This new phase in QCD: Colour

Glass Condensate(CGC), can be treated theoretically (see book [6] for a review). The main idea of

our approach to soft interactions at high energies, is that the high energy amplitudes are determined

by this CGC phase. In other words, we assume that the main contribution to the soft interaction

at high energies stems from the perturbative BFKL Pomerons, and their interactions, which can

be treated theoretically, using the CGC approach. However, we cannot avoid using some phe-

nomenology, which reflects the structure of the hadrons. In terms of the BFKL Pomerons we have

to introduce a phenomenological description for the interaction of the scattering hadrons with the

BFKL Pomerons. This description is a source of the non-perturbative dimensional parameters,

which reflect the long distance physics. We have extended our model to also describe electron-

proton interactions at HERA energies, and show that the BFKL Pomeron successfully describes

both soft [7, 8] and hard interactions [9] at high energy.

2. Scattering near the unitarity limit

In the Regge limit of pQCD, when s ≫ Λhard , as the energy increases, the parton density

becomes more dense, and the scattering amplitude A(s,t) grows. As long as densities are not too

high, the growth is described by the BFKL evolution equation. The density becomes higher as

A(s,t) → 1, and one enters the "saturation" regime (see Figure 1), where the BFKL evolution fails.

Non-linearities lead to saturation + unitarization of A(s,t). The Balitsky-Kovchegov equation [10],

is the simplest and most accurate way to describe the saturation regime of QCD. It is non-linear

and resums QCD fan diagrams in the LLA (leading log approximation).

3. Phenomenological input

A deficiency that has to be overcome, is the fact that the BFKL Pomeron does not lead to

shrinkage of the diffractive peak, and has no slope for the Pomeron trajectory. This can be cured by

introducing a non-perturbative correction at large impact parameter, which also assures satisfying

the Froissart-Martin bound for σtot [13].

In our model we fix the large b (impact parameter) behaviour by assuming that the saturation

momentum has the following form:

Q2
s (b,Y ) = Q2

0s(b,Y0)e
λ(Y−Y0)andQ2

0s(b,Y0) = (m2)(1−
1
γ̄ )[S(b,m)]

1
γ̄ (3.1)

with S(b,m) = m2

2π e−mb and γ̄ = 0.63 = 1 − γcr
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Figure 1: Guide to the various evolution regions (from a talk by Jose Daniel Madrigal) [11]

The parameter λ = ᾱSχ (γcr)/(1−γcr), in leading order of perturbative QCD (λ = 0.2 to 0.3)

The parameter m is introduced to describe the large b behaviour, it determines the typical

sizes of dipoles inside the hadron. There are two additional scales m1 and m2, which describe two

typical sizes in the proton wave function. One can associated these with: (i) the distance between

the constituent quarks; size of the proton Rp ≈
1

m1
. (ii) m2 can be associated with the size of the

constituent quark; Rq ≈
1

m2
. Altinoluk et al [14] have proved the equivalence of the CGC/saturation

approach and the BFKL Pomeron calculus for a wide range of rapidities Y ≤ 2
∆BFKL

ln
(

1
∆2

BFKL

)

.

4. Dressed Pomeron in the MPSI approximation

=

a)

G3P

Y’

c)b)
g (b)i

Figure 2: a) Dressed Pomeron in MPSI approximation. b) reduces to c) after integration over the positions

of G3P in rapidity. Wavy lines describe BFKL Pomerons, double wavy show dressed Pomerons, red blobs

denote the amplitude for dipole-dipole interactions. The grey blobs stand for triple Pomeron vertices, while

black blobs show the hadron-Pomeron vertex gi(b).
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Since the typical rapidity is O(Y −Yi)≈
1

∆BFKL
, only large Pomeron loops with rapidity O(Y )

contribute at high energies → can sum such loops using MPSI approximation [12].

For the BFKL Pomeron λ = 4.88ᾱs while ∆BFKL = 4ln2ᾱs ≈ 0.2.

The resulting Green function of the Dressed Pomeron is given by:

Gdressed
IP (Y −Y0,r,R,b) =

a2

{

1 − exp(−T (Y −Y0,r,R,b))

}

+ 2a(1−a)
T (Y −Y0,r,R,b)

1 + T (Y −Y0,r,R,b)

+ (1−a)2

{

1− exp

(

1

T (Y −Y0,r,R,b)

)

1

T (Y −Y0,r,R,b)
Γ

(

0,
1

T (Y −Y0,r,R,b)

)

}

(4.1)

T (Y −Y0,r,R,b) =
ᾱ2

S

4π
GIP (z → 0) = φ0

(

r2Q2
s (R,Y,b)

)1−γcr
= φ0S(,mb)eλ(1−γcr)Y (4.2)

where T (Y −Y0,r,R,b) denotes the BFKL Pomeron in the vicinity of the saturation scale.

z = ln(r2Q2
s (b,Y )) , a = 0.65 and γcr ≈ 0.37

In addition to describe the vertices of the hadron-Pomeron interaction, we need to introduce

four constants: gi and mi (i = 1,2).

gi (b) = gi SIP (mi,b) with SIP (mi,b) =
m3

i b

4π K1 (mib)

SIP (mi,b)
Fourier image
−−−−−−−−−−→ (

m2
i

q2+m2
i

)2

This has the same form as the electromagnetic form factor of the proton and leads to the correct

e−mb behaviour at large impact parameter and q−4, at large q, as required by QCD.

The opacity is given by

Ωi,k (Y ;b) =

∫

d2b′
gi

(

b′
)

gk

(

b−b′
)

Ḡdressed
IP (Y )

1 + 1.29Ḡdressed
IP (Y )

[

gi

(

b′
)

+gk

(

b−b′
)

] , (4.3)

where Ḡdressed
IP (Y ) =

∫

d2 b′′ Gdressed
IP (Y ;b′′) .

5. Basic formalism for two channel model

Following Good-Walker [15] the observed physical hadronic and diffractive states are written

ψh = α Ψ1 +β Ψ2 ; ψD = −β Ψ1 +α Ψ2; where α2 +β 2 = 1 (5.1)

Functions ψ1 and ψ2 form a complete set of orthogonal functions {ψi} which diagonalize the

interaction matrix T

Ai′k′

i,k =< ψi ψk|T|ψi′ ψk′ >= Ai,k δi,i′ δk,k′ .

The unitarity constraints can be written as

2ImAi,k (s,b) = |Ai,k (s,b) |
2 +Gin

i,k(s,b) (5.2)

At high energies a simple solution to this equation is

Ai,k(s,b) = i

(

1− exp

(

−
Ωi,k(s,b)

2

))

(5.3)
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λ φ0 g1 (GeV−1) g2 (GeV−1) m(GeV ) m1(GeV ) m2(GeV ) β

0.38 0.0019 110.2 11.2 5.25 0.92 1.9 0.58

Table 1: Values of parameters obtained from the fit to the soft interaction data.

Gin
i,k(s,b) = 1− exp(−Ωi,k(s,b)) . (5.4)

Gin
i,k(s,b) denotes the contribution of all non-diffractive inelastic processes.

For the combinations of amplitudes corresponding to the different observables see [7]. The

values of the parameters determined from the fit to the soft interaction data [7, 8] is given in Table

1.

6. Deep inelastic (Hard) scattering

To introduce "Hard Interactions" we consider DIS: where the physical observables are:

The transverse and longitudinal DIS cross sections

σT,L (Q,Y ) = 2

∫

d2b NT,L (Q,Y ;b) (6.1)

and the inelastic structure function

F2 (Q,Y ) =
Q2

4π2αe.m.

{

σT + σL

}

(6.2)

Q denotes the photon virtuality, and Y = ln(1/xB j),

xB j is the Bjorken x, and b denotes the impact parameter for the scattering of the colourless

dipole of size r with the proton.

The observables for DIS can be re-written using

NT,L (Q,Y ;b) =

∫

d2r

4π

∫ 1

0
dz |Ψ

γ∗

T,L (Q,r,z) |2 N (r,Y ;b) (6.3)

N (r,Y ;b) denotes the scattering amplitude of the dipole and z is the fraction of energy carried by

quark. b is the impact parameter for the scattering of the colourless dipole of size r with the proton.

|Ψ
γ∗

T,L (Q,r,z) |2 is the probability to find a dipole of size r in a photon with the virtuality Q, with

transverse or longitudinal polarization. This splits the calculation of the hard scattering amplitude

into two stages:

a) calculation of the wave function and b) estimates of the dipole scattering amplitude.

The wave functions are:

(Ψ∗Ψ)
γ∗

T =
2Nc

π
αem ∑

f

e2
f

{[

z2 +(1− z)2
]

ε2K2
1 (εr)+m2

f K
2
0 (εr)

}

(6.4)

(Ψ∗Ψ)
γ∗

L =
8Nc

π
αem ∑

f

e2
f Q2z2(1− z)2K2

0 (εr) (6.5)

and ε2 = m2
f + z(1− z)Q2.
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Since we take into account the contribution of the heavy c-quark we introduce a correction due

to large mass of this quark: xB j → xB j

(

1

1+
4m2

c

Q2

)

or Yc = Y − ln
(

1+4m2
c/Q2

)

In describing the saturation phenomena and fitting the strong interaction data, we assumed that

the QCD coupling is frozen at some value of momentum µsoft.

For DIS we take into account the running QCD coupling: Hence,

F2 (Q,Y ) =
Q2

4π2αe.m.

{

ᾱS

(

Q2
)

ᾱS (µ2)
σ lightq (Q,Y ) +

ᾱS

(

Q2 +4m2
c

)

ᾱS (µ2)
σ charmq (Q,Yc)

}

(6.6)

where µ denotes the typical mass of the soft strong interaction µ ∼ 1GeV and

ᾱS

(

Q2
)

ᾱS (µ2)
=

1

1 + βᾱS (µ2) ln(Q2/µ2)
(6.7)

with β = 3/4.

We considered the strong interaction data ( see [8, 16] for details) for energies W ≥ 0.546TeV ,

while the experimental data from HERA ( see [9] for details) were measured for lower energies

10.7 ≤ W ≤ 301 GeV. Therefore, it is necessary to include secondary reggeons which provide a

substantial contribution. They are parametrized as follows:

σIR (Q,Y ) =

∫

d2r

4π

{

(Ψ∗Ψ)
γ∗

T + (Ψ∗Ψ)
γ∗

L

}

AIR r2

(

Q2

xB j Q2
0

)αIR(0)−1

(6.8)

with Q0 = 1GeV .

The final expression for F2 is :

F2 (Q,Y ) =
Q2

4π2αe.m.

{

ᾱS

(

Q2
)

ᾱS (µ2)
σ lightq (Q,Y ) +

ᾱS

(

Q2 +4m2
c

)

ᾱS (µ2)
σ charmq (Q,Yc) + σIR (Q,Y )

}

(6.9)

The values of the parameters determined from a fit to the HERA data , are given in Table 2.

7. Parameters of the DIS fit to data

We introduce an additional set of new parameters for DIS: mq-mass of the light quark, which

we assume to be of the order of the constituent quark mass (∼ 300MeV ), and the mass of charm

quark (mc = 1.2÷1.5GeV ). µ which we believe will be of the order of 1 GeV, and in addition we

introduce two new parameters AIR and αIR (0) for the secondary Reggeon contribution. The values

of the parameters, given in Table 2, are determined from a fit to the relevant HERA data [19], and

compared to the DIS data in (see Fig.3).

8. Conclusions

We have reviewed our model for high energy soft and hard interactions. We show our results

for the parameters determined for the soft and for the combined (soft + hard) data in Table 3 and

5
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Figure 3: F2 versus x at fixed Q. The red curve corresponds to Fit I (strong interactions only), while the blue

curve describes Fit II (strong interaction plus DIS). Data is taken from HERA [19]
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Figure 4: The energy behaviour of σtot , σel and the slope Bel in our model. Fit I (soft data only) and Fit II

(soft + hard data). Data are taken from Ref.[19]
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Fit mq(GeV ) mc(GeV ) αS(µ) µ (GeV ) AIR(GeV 2) αIR(0))

I 0.3 1.25 0.263 1.2 2.34 0.55

II 0.2 1.2 0.34 1.25 5.44 0.56

Table 2: Values of parameters obtained from fit to DIS data: Fit I refers to values obtained for new parame-

ters associated with F2 while keeping parameters for the soft data fixed. Fit II refers to a joint fit to soft and

DIS data [19].

W σtot σel(mb) Bel single diffraction

(TeV) (mb) (mb) (GeV−2) σ smd
sd (mb) σ lmd

sd (mb)

0.576 62.3(60.7) 12.9(13.1) 15.2(15.17) 5.64(4.12) 1.85(1.79)

0.9 69.2(68.07) 15(15.05) 16(15.95) 6.254.67) 2.39(2.35)

1.8 79.2(78.76) 18.2(19.1) 17.1(17.12) 7.1(5.44) 3.35(3.28)

2.74 85.5(85.44) 20.2(21.4) 17.8(17.86) 7.6(5.91) 4.07(4.02)

7 99.8(100.64) 25(26.7) 19.5(19.6) 8.7(6.96) 6.2(6.17)

8 101.8(102.8) 25.7(27.4) 19.7(19.82) 8.82(7.1) 6.55(6.56)

13 109.3(111.07) 28.3(30.2) 20.6(20.74) 9.36(7.64) 8.08(8.11)

14 110.5(111.97) 28.7(30.6) 20.7(20.88) 9.44(7.71) 8.34(8.42)

57 131.7(134.0) 36.2(38.5) 23.1(23.0) 10.85(9.15) 15.02(15.01)

Table 3: Predicted values of cross-sections and Belastic for different values of energy. The results of fit II,

are shown in parenthesis.

Fig.4. We have demonstrated that the Colour Glass Condensate/saturation approach, which is the

only reasonable candidate for the effective QCD theory at high energies, can be viewed as the basis

for the description of typical hard and soft processes. This occurs, as the CGC/saturation approach

predicts that at high energy, the system of partons is produced with the typical new scale: saturation

momentum, which increases with energy. This means that short distance interactions contribute to

the processes, which previously we used to consider as being due to long distances physics.

This statement is supported by the description of three type of the processes described by our

model: quasi elastic scattering [7, 8, 19], multi particle generation [17, 18, 19] and deep inelastic

scattering [9, 19] . This is the only model on the market today which is successful in doing so.
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