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Abstract We prove the spin-statistics theorem for massive particles obeying braid
group statistics in three-dimensional Minkowski space. We start from first princi-
ples of local relativistic quantum theory. The only assumption is a gap in the mass
spectrum of the corresponding charged sector, and a restriction on the degeneracy
of the corresponding mass.

1 Introduction

The famous spin-statistics theorem relates the exchange statistics of a quantum
field with the spin of its elementary excitations (22). Namely, it states that in the
case of Bose/Fermi (para-) statistics there holds

e2πis = sign λ ,

where s is the spin of the particles and λ is the statistics parameter of the fields.
In (4) a derivation from first principles without any non-observable quantities such
as charge-carrying fields was found. However, basic input to this derivation was
that the charge be localizable in bounded regions. In (2), Buchholz and Epstein
extended the theorem to massive particles carrying a non-localizable charge. In
the purely massive case, such charges are still localizable in space-like cones (3),
i.e., cones in spacetime which extend to space-like infinity.1 The analysis of Buch-
holz and Epstein was carried out in four-dimensional spacetime, in which case
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1 More precisely, a space-like cone is a region in Minkowski space of the form C = a +
∪λ>0λO, where a is the apex of C and O is a double cone whose closure does not contain the
origin.
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λ is a real number associated with a unitary representation of the permutation
group (λ > 0 corresponding to Bosons and λ < 0 corresponding to Fermions). In
three-dimensional spacetime, however, it may occur that the permutation group is
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replaced by the braid group, in which case the statistics parameter is a complex
non-real number. The phase in its polar decomposition is called the statistics phase
ω ,

ω :=
λ

|λ |
. (1)

In the case of non-real λ (i.e. ω 6= ±1) one speaks of braid group statistics and
calls the particles Plektons or, if the corresponding representation is Abelian,
Anyons. Related to this phenomenon, in three-dimensional spacetime the spin of a
particle needs not be integer or half-integer, but may assume any real value (“frac-
tional” spin). In fact, the occurrence of braid group statistics is equivalent to the
occurrence of “fractional” spin (7; 10).

In the present article, we prove that in this case the spin-statistics relation

e2πis = ω (2)

holds, starting from first principles and only assuming the following conditions on
the mass spectrum. We consider a charged sector of a local relativistic quantum
theory in three-dimensional Minkowski space, containing a massive particle with
mass m > 0 and spin s∈R. We assume that m is separated from the rest of the mass
spectrum in its sector by a mass gap. We further assume that there are only finitely
many “particle types” in its sector with this mass, and that they all have the same
spin s. As a byproduct, we prove that the familiar symmetry between particles
and antiparticles holds also in this case: Namely, that there is an equal number of
antiparticle types (in the conjugate sector) with the same mass which all have the
same spin s ∈ R (Proposition 1).

It should be noted that a “weak spin-statistics relation”,

e4πis = ω
2, (3)

is known to hold (7; 10) under quite general conditions in the case of braid group
statistics. It should also be noted that the strong spin-statistics relation (2) has been
proved in (11) and in (14), but under a non-trivial hypothesis amounting to the
Bisognano-Wichmann property, or modular covariance, of the charged fields (11)
or the observables (14), respectively. In the present paper we do not need this
hypothesis. In fact, we shall show in a subsequent paper (15) that the Bisognano-
Wichmann property may be derived from first principles in a purely massive the-
ory with braid group statistics, using the results of our present analyisis.

Our derivation will largely parallel that of Buchholz and Epstein (2). The
crucial difference between the four-dimensional case considered in (2) and the
present three-dimensional case lies in the structure of the Poincaré group and the
irreducible massive representations of its universal covering group, which have
been heavily used in (2). In particular, in four dimensions one has the so-called
“covariant representation”2, in which locally generated single particle wave func-
tions have certain analyticity properties which are exploited in the proof. In three
dimensions, however, there is no “covariant represention”, and in the well-known

2 This is a tensor product of the spin zero representation of the Poincaré group with a finite-
dimensional representation of the (covering of the) Lorentz group.
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Wigner representation the wave functions are not analytic. As a way out, we use
here an equivalent representation found by the author in (17), which exhibits pre-
cisely the required analyticity properties. On the other hand, the representation of
the translation subgroup in three dimensions does not differ essentially from that
in four dimensions. Hence the results from (2) which use only the translations can
directly be adapted to the three-dimensional case. This concerns in particular our
Lemma 1 on the two-point functions.

The article is organized as follows. In Sect. 2 we specify in detail our frame-
work, assumptions and results. In Sect. 3 we recall a result of Buchholz and
Epstein (2) concerning analyticity of the two-point functions in momentum space,
and extend their result on the particle-antiparticle symmetry to the present case.
In Sect. 4, finally, we prove the spin-statistics theorem.

2 Framework, Assumptions and Results

We now specify our framework and make our assumptions and results precise.3

States and Fields Denoting the quantum numbers of our sector collectively by χ ,
the space of states of the sector corresponds to a Hilbert space Hχ . It is orthogo-
nal to the vacuum Hilbert space H0 which contains a Poincaré invariant vector Ω ,
corresponding to the vacuum state. Hχ carries a unitary representation of the uni-
versal covering group P̃↑+ of the Poincaré group in 2 + 1 dimensions, denoted by
Uχ , satisfying the relativistic spectrum condition (positivity of the energy). Fields
carrying charge χ are bounded operators from the vacuum Hilbert space H0 to
Hχ . The linear space of these fields will be denoted by Fχ .

Localization Fields are localizable to the same extent to which the charges are
localizable which they carry. In the case of braid group statistics, the charges can-
not be localized in bounded regions of spacetime (4), but they can be localized, in
the massive case, in regions which extend to infinity in some space-like direction,
namely, in space-like cones (3). Now the manifold of space-like directions,

H := {e ∈ R3, e · e =−1}, (4)

is not simply connected in three dimensions (in contrast to the four-dimensional
case): Given two space-like directions, there exists an infinity of non-homotopic
paths in H from one to the other, distinguished by a winding number. It is precisely
this fact which enables the occurrence of braid group statistics in three dimensions
(see the remark after Eq. (15) below). To realize such statistics, the fields which
create a charge localized in a given space-like cone C need additional information:

3 Recall that in the case of braid group statistics there is no canonical way to construct a
field algebra from the observables (18). But our framework, using a restricted notion of charged
fields, can be set up starting from the standard assumptions (12) of local relativistic quantum
theory on the observables plus weak Haag Duality, together with our assumptions on the mass
spectrum. For the convenience of the reader, we sketch in Appendix A how this may be done
and indicate the relation with the notions used in the literature (3; 5; 8).
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Namely, a path in the set of space-like directions H starting from some fixed ref-
erence direction e0 and “ending” in C.4 We shall sketch this concept, which has
been introduced in (9), in a slightly modified form introduced in (16). We say that
a space-like cone C contains a space-like direction e if

4 Two other possibilities are: To introduce a reference space-like cone from which all allowed
localization cones have to keep space-like separated (this cone playing the role of a “cut” in the
context of multivalued functions) (3); or a cohomology theory of nets of operator algebras as
introduced by Roberts (19; 20; 21).
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Fig. 1 Ĉ denotes the set of space-like directions contained in C, in the sense of Eq. (5). (C, ẽ1)
is equivalent with (C, ẽ2), but inequivalent from (C, ẽ3)

C + e ⊂C . (5)

We say that a path ẽ in H ends in C if its endpoint is contained in C in the sense of
Eq. (5). Two paths ẽ1 and ẽ2 starting at e0 and ending in C will be called equiva-
lent w.r.t. C iff the path ẽ2 ∗ ẽ−1

1 (the inverse of ẽ1 followed by ẽ2) is fixed-endpoint
homotopic to a path which is contained in C. Figure 1 illustrates this concept. By
a path of space-like cones we shall understand a pair

(C, ẽ) , (6)

where C is a space-like cone and ẽ is the equivalence class w.r.t. C of a path in H
starting at e0 and ending in C. (We use the same symbol for a path and its equiva-
lence class.) We shall use the notation C̃ for a path of space-like cones of the form
(C, ẽ). Such paths of space-like cones serve to label the localization regions of
charged fields. Namely, for each C̃ there is a linear subspace Fχ(C̃) of Fχ , called
the fields carrying charge χ localized in C̃. This family is isotonous in the sense
that

Fχ(C̃1)⊂Fχ(C̃2) if C̃1 ⊂ C̃2. (7)

(We say that C̃1
.= (C1, ẽ1) is contained in C̃2

.= (C2, ẽ2), in symbols

C̃1 ⊂ C̃2 , (8)

if C1 ⊂C2 and the corresponding paths ẽ1, ẽ2 are equivalent w.r.t. C2.) The vacuum
Ω has the Reeh-Schlieder property for the fields, i.e. for any path of space-like
cones C̃ holds (

Fχ(C̃)Ω
)– = Hχ , (9)

where the bar denotes the closure.

Covariance There is a representation αχ of the universal covering group P̃↑+ of the
Poincaré group P↑+ by endomorphisms of Fχ , which implements the unitary rep-
resentation Uχ in the sense that

αχ(g̃)(F)Ω = Uχ(g̃)F Ω (10)

holds for all g̃ ∈ P̃↑+ and F ∈Fχ . It acts covariantly on the fields in the following
sense:

αχ(g̃) : Fχ(C̃)→Fχ(g̃·C̃). (11)
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Fig. 2 (C1, ẽ1) and (C2, ẽ2) satisfy the hypothesis under which Eq. (15) holds

Here, g̃ · C̃ denotes the natural action of the universal covering of the Poincaré
group on the paths of space-like cones, defined as follows. Let g̃ = (a, λ̃ ), where a
is a spacetime translation and λ̃ is an element of the universal covering group L̃↑+
of the Lorentz group, projecting onto λ ∈ L↑+. Then

g̃·(C, ẽ) := (g·C, λ̃ ·ẽ), (12)

where λ̃ ·ẽ denotes the lift of the action of the Lorentz group on H to the respective
universal covering spaces. Note that a 2π rotation acts non-trivially — it maps, for
example, (C, ẽ3) in Fig. 1 onto (C, ẽ1).

Conjugate Charge There is a sector with the conjugate charge χ̄ , for which all of
the above-mentioned facts also hold. We shall denote the corresponding objects
by Hχ̄ , Uχ̄ , Fχ̄(C̃), and αχ̄ , respectively. In particular, Fχ̄(C̃) is a linear space
of operators mapping H0 onto Hχ̄ . There is a notion of operator adjoint, which
associates with each field F ∈ Fχ an adjoint field operator F† ∈ Fχ̄ , satisfying
(F†)† = F and preserving localization, i.e.(

Fχ(C̃)
)† = Fχ̄(C̃). (13)

The operation of adjoining intertwines the representations αχ and αχ̄ in the sense
that (

αχ(g̃)(F)
)† = αχ̄(g̃)(F†). (14)

Statistics There is a complex number ωχ of modulus one, the statistics phase of
the sector χ , which (partly) characterizes the statistics of fields. Namely, suppose
C̃1 = (C1, ẽ1) and C̃2 = (C2, ẽ2) are such that C1 and C2 are causally separated,
and the path ẽ1 ∗ ẽ−1

2 goes “directly” from C2 to C1 in the mathematically positive
sense.5 (Note that this condition is independent of the choice of reference direction
e0. Figure 2 shows an example satisfying these conditions.) Then for Fi ∈Fχ(C̃i),
i = 1,2, there holds

(F2Ω ,F1Ω ) = ωχ

(
F†

1 Ω ,F†
2 Ω

)
. (15)

Note that the hypothesis under which Eq. (15) holds is not symmetric in C̃1 and
C̃2 just because of the condition on the paths ẽi. Without this condition, Eq. (15)
would imply ωχ ωχ̄ = 1. But ωχ and ωχ̄ are known to coincide (11), hence Eq. (15)
would be be self-consistent only for ωχ =±1, excluding braid group statistics.

5 “Directly” means that it stays causally separated from the cone C2 once it has left it; and
“mathematically positive sense” means here the right-handed sense w.r.t. a future pointing time-
like Minkowski vector.
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Assumptions on the Particle Spectrum We consider a particle of strictly positive
mass m and spin s in the sector χ , and assume that {m} is separated from the rest
of the mass spectrum in the sector χ by a mass gap. We further assume that there
are only finitely many “particle types” in the sector χ with this mass, and that
they all have the same spin s. More technically, let Pχ be the energy-momentum
operator in the sector χ , i.e. the vector operator which generates the spacetime
translations in the sense that Uχ(a) = exp(ia ·Pχ) for a ∈R3, and let Mχ := P2

χ be
the mass operator in the sector χ . This operator has as an eigenvalue the mass, m,
of our particle. Our assumptions then are:

(A1) The mass m is strictly positive.
(A2) m is an isolated point in the spectrum of Mχ .
(A3) The restriction of the representation Uχ to the corresponding eigenspace is

a finite multiple of the irreducible representation with mass m and spin s.

It is gratifying that the assumptions (A1) and (A2), together with the standard
assumptions on the observables plus weak duality, imply the validity of our entire
framework. In particular, they imply that the charge χ is localizable in space-like
cones (3) and allow for the determination of the statistics phase ωχ (namely, they
exclude the so-called infinite statistics, λ = 0 (6)).

Results Under the above assumptions (A1) through (A3), we shall prove that the
strong spin-statistics relation (2) holds in the case of braid group statistics (The-
orem 1). As a byproduct, we prove that the familiar symmetry between particles
and antiparticles holds also in this case. Namely, it is known that the mass spec-
trum of the conjugate sector χ̄ coincides with that of χ (6), and that the spins
occurring in the eigenspace corresponding to mass m in the sector χ coincide with
those in the conjugate sector χ̄ modulo one (11). What we show is that the spins
actually coincide as real numbers, and that the degeneracies in the conjugate sec-
tors χ, χ̄ coincide — in other words, that the corresponding ray representations of
the Poincaré group are unitarily equivalent (Proposition 1).

3 Momentum Space Two-Point Functions and Particle-Antiparticle
Symmetry

Buchholz and Epstein’s proof of the spin-statistics theorem in four dimensions
relies on their result on the two-point functions in momentum space (2). The latter
result extends straightforwardly to the present three-dimensional case, because
it has been derived under precisely our conditions of covariance (11), the Reeh-
Schlieder property (18), commutation relations as in Eq. (15) and a mass gap
around m > 0, without referring to the representation of the Lorentz subgroup
(which makes the crucial difference between three and four dimensions).

To state their result, some notation needs to be introduced. Fixing a Lorentz
frame, spacetime points are written as x = (x0,x), and the Minkowski scalar prod-
uct reads (x0,x) · (y0,y) = x0y0−x ·y, where x ·y denotes the standard scalar prod-
uct in R2. The positive and negative mass shells H±

m are the set of momentum
space points p = (p0, p) satisfying p2

0− p · p = m2 and p0 ≷ 0, respectively. The
unique (up to a factor) Lorentz invariant measure on H+

m is denoted by dµ(p). The
complexified mass shell Hc

m is defined as the set of k = (k0,k1,k2) ∈C3 satisfying
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k2
0 − k2

1 − k2
2 = m2. Buchholz and Epstein consider a special class of space-like

cones, namely, those of the form

C = C′′, (16)

where C is an open, salient cone with apex at the origin in the rest frame (which
we shall occasionally identify with R2), and C′′ denotes its causal completion. For
a cone C of this form, let its dual C∗ be defined by

C∗ :=
{

p ∈ R2 : p · x > 0 ∀x ∈C–\{0}
}

. (17)

Buchholz and Epstein use regularized fields, for which the functions g̃ 7→αχ(g̃)(F)
are smooth. The set of smooth fields carrying charge χ and localized in C̃ shall
be denoted by F ∞

χ (C̃). The Reeh-Schlieder property (9) still holds for the smooth

fields, also on the single particle space. More precisely, let E(1)
χ be the spectral

projector of the mass operator corresponding to the eigenvalue m, and let H
(1)

χ be
its range, i.e. the corresponding eigenspace. Then there holds(

E(1)
χ F ∞

χ (C̃)Ω

)–
= H

(1)
χ . (18)

The result of Buchholz and Epstein on the two-point functions, in the present
context, is the following:

Lemma 1 (Buchholz, Epstein) Let C1 and C2 be causally separated space-like
cones of the form (16) such that C12 := C2 −C1 is a salient cone, and let C̃1,C̃2
be such that the hypothesis of Eq. (15) is satisfied. Then for any pair of fields
Fi ∈F ∞

χ (C̃i), i = 1,2, there exists a function h which is analytic in the region

Γ := {k = (k0,k) ∈ Hc
m : Imk ∈ (C12)

∗ } (19)

and has smooth boundary values on the mass shells H±
m satisfying(

F2Ω ,Uχ(x)E(1)
χ F1Ω

)
=

∫
H+

m

dµ(p)h(p)eip·x, (20)

ωχ

(
F†

1 Ω ,Uχ̄(x)E(1)
χ̄

F†
2 Ω

)
=

∫
H+

m

dµ(p)h(−p)eip·x. (21)

Proof Replacing the factor “sign λ” in Eq. (2.2) of (2) by our ωχ , Buchholz and
Epstein’s proof can be directly transferred to the present setting, since it uses only
the conditions of covariance (11), space-like commutation relations (15), Reeh-
Schlieder property (18) and a mass gap around m > 0. ut

The lemma immediately implies the existence of antiparticles with the same
mass m as the particles in the sector χ (which had been established in this gener-
ality already in (6)). Moreover, it implies a complete symmetry between particles
and antiparticles, valid also in the present case of braid group statistics in three
dimensions:
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Proposition 1 (Particle-Antiparticle Symmetry) The spins and multiplicities of
the single particle spaces H

(1)
χ and H

(1)
χ̄

coincide. In particular, the restriction

to H
(1)

χ̄
of the representation Uχ̄ is equivalent with the restriction to H

(1)
χ of the

representation Uχ .

Proof The proof requires only a slight modification from that of Buchholz and
Epstein. Namely, the role of the square of the Pauli-Lubanski vector as a Casimir
operator is, in 2 + 1 dimensions, played by a scalar operator, the so-called Pauli-
Lubanski scalar (1; 13) which is defined as follows. Let U be a representation of
the universal covering of the Poincaré group in three spacetime dimensions, let L0
denote the generator of the rotation subgroup in the representation U , and let Li
be the generator of the boosts in direction xi, i = 1,2. Let further Jµ be the vector
operator Jµ = (−L0,L2,−L1). The Pauli-Lubanski scalar of the representation U
is defined as

W := Jµ Pµ , (22)

where Pµ are the generators of the translation subgroup in the representation U . It
has the following properties (1; 13): it commutes with the representation U , and
has the value

W =−ms1 (23)

if, and only if, U contains only irreducible representations whose masses and spins
have the product value ms. Considering now the representations Uχ and Uχ̄ , we
denote their Pauli-Lubanski scalars as Wχ and Wχ̄ , respectively. The key point is
that for each field F ∈ F ∞

χ (C̃), there is a field δχ(F) ∈ F ∞
χ (C̃) such that, due to

covariance (10), there holds6

Wχ FΩ = δχ(F)Ω . (24)

The same holds for the conjugate sector χ̄ . Let now, for i = 1,2, C̃i and Fi ∈
F ∞

χ (C̃i) satisfy the hypothesis of Lemma 1. Then

E(1)
χ

(
δχ(F1)+msF1

)
Ω = E(1)

χ (Wχ +ms1 )F1Ω = 0

by Eq. (23). Lemma 1 and the Reeh-Schlieder property (18) then imply that also

E(1)
χ̄

(
(δχ(F2))† +msF†

2

)
Ω = 0. (25)

6 Namely, δχ is the “derivation” on F ∞
χ defined by

δχ (F) :=− d
ds

d
dt

2

∑
µ=0

αχ

(
λ̃

(µ)(t)T (se(µ))
)

(F)
∣∣
s=t=0,

where T (·) is the translation subgroup, e(µ) are the unit vectors in the given Lorentz frame,
λ̃ (0)(−t) is the rotation subgroup, λ̃ (1)(t) is the boost subgroup in direction e(2) and λ̃ (2)(−t) is
the boost subgroup in direction e(1).
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But by Eq. (14), the adjoint of δχ(F2) is δχ̄(F†
2 ), and therefore (δχ(F2))†Ω =

Wχ̄ F†
2 Ω . Then Eq. (25) reads

E(1)
χ̄

(Wχ̄ +ms1 )F†
2 Ω = 0.

This shows that only spin s occurs in the single particle space H
(1)

χ̄
, as claimed.

The proof of the claim that not only the spin, but also the multiplicity n coincides
then proceeds precisely as in (2). ut

4 The Spin-Statistics Theorem

We now prove the spin-statistics theorem. Our line of reasoning parallels that of
Buchholz and Epstein (2), which uses heavily the representation of the covering
group of the Poincaré group. Since this representation has completely different
(analyticity) properties in three dimensions, the corresponding details have to be
worked out differently in the present case.

By our assumption (A3), the representation Uχ

∣∣H (1)
χ is equivalent to n copies

of the irreducible representation of the universal covering group of the Poincaré
group with mass m > 0 and spin s ∈ R. Let us denote this representation by U .
It acts on the Hilbert space L2(H+

m ,dµ)⊗Cn, elements of which are functions
(“wave functions”)

ψ : H+
m ×{1, . . . ,n}→ C, (p,α) 7→ ψ(p,α)

with finite norm w.r.t. the scalar product

(ψ,φ) =
∫

H+
m

dµ(p)
n

∑
α=1

ψ(p,α) φ(p,α).

The representation U acts in this space as(
U(a, λ̃ )ψ

)
(p,α) = eisΩ(λ̃ ,p) eia·p

ψ(λ−1 p,α) , (26)

where λ is the Lorentz transformation onto which λ̃ projects, and Ω(λ̃ , p) ∈ R is
the Wigner rotation. The latter satisfies the so-called cocycle identities

Ω(1, p) = 1, Ω(λ̃ λ̃
′, p) = Ω(λ̃ , p)+Ω(λ̃ ′,λ−1 p), (27)

and for the subgroup r̃(·) of rotations (which is not isomorphic to SO(2) but to R)
holds

Ω (r̃(ω), p) = ω for all ω ∈ R, p ∈ H+
m . (28)

By Proposition 1, Uχ̄ is also equivalent to this representation. Thus, there are iso-
metric isomorphisms Vχ and Vχ̄ from H

(1)
χ and H

(1)
χ̄

onto L2(H+
m ,dµ)⊗Cn,

which intertwine the representations Uχ

∣∣H (1)
χ and Uχ̄

∣∣H (1)
χ̄

, respectively, with
U .
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Following Buchholz and Epstein, we now fix two causally separated (paths of)
space-like cones C̃1, C̃2 as in the hypothesis of Lemma 1, and pick n smooth field
operators localized in either one of these cones, Fi,β ∈ F ∞

χ (C̃i), β = 1, . . . ,n. We
then consider, for i = 1, 2, the wave functions

ψi,β := Vχ E(1)
χ Fi,β Ω and ψ

c
i,β := Vχ̄ E(1)

χ̄
F†

i,β Ω (29)

in L2(H+
m ,dµ)⊗Cn, and complex n×n matrices Ψi(p) and Ψ c

i (p) defined by

Ψi(p)αβ := ψi,β (p,α) and Ψ
c

i (p)αβ := ψ
c
i,β (p,α) (30)

for p∈H+
m . We assume that the matricesΨi(p) are invertible for p in some open set

on the mass shell. (This is possible due to the Reeh-Schlieder property.) Lemma 1
asserts that for each pair α,β there is a smooth function hαβ , analytic in Γ , such
that

hαβ (p) =
n

∑
γ=1

ψ2,α(p,γ)ψ1,β (p,γ)≡ (Ψ2(p)∗Ψ1(p))
αβ

,

hαβ (−p) = ωχ

n

∑
γ=1

ψc
1,β (p,γ)ψ

c
2,α(p,γ)≡ ωχ (Ψ c

1 (p)∗Ψ
c

2 (p))
βα

,

where the star ∗ denotes the matrix adjoint. (Note that this implies that the matrices
Ψi(p) and Ψ c

i (p) are invertible for almost all p.) In other words, by Lemma 1 the
smooth matrix valued function on the mass shell

p 7→Ψ2(p)∗Ψ1(p) =: M(p) (31)

has an analytic extension into the subset Γ of the complexified mass shell described
in (19), with smooth boundary value on the negative mass shell given by7

M(−p) = ωχ (Ψ c
1 (p)∗Ψ

c
2 (p))T , (32)

where the superscript T denotes matrix transposition. Buchholz and Epstein now
proceed to show that, in the case of Bosons and Fermions, the wave function
matrices Ψ1(p) and Ψ2(p)∗ separately have analytic extensions. This is not so in
the present case. However, we show that their transforms under certain boosts
behave analytically in the boost variable, which exhibits the underlying modular
covariance and is sufficient for our purpose.

Let us recall the relevant geometric notions. We denote the one-parameter
group of boosts in 1-direction by λ1(·), acting in p-space as

λ1(t) =

cosh(t) sinh(t) 0
sinh(t) cosh(t) 0

0 0 1

 . (33)

This matrix-valued function has an analytic extension into C satisfying (12)

λ1(t + iθ) = ( j(θ)+ isin(θ)σ)λ1(t), (34)

7 The letter p shall be reserved for points on the positive mass shell, so −p is on the negative
mass shell.
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where j(θ) = diag(cosθ ,cosθ ,1) and σ maps (p0, p1, p2) to (p1, p0,0). In par-
ticular,

λ1(±iπ) = j, (35)

where j≡ diag(−1,−1,1) acts as the reflection of p0 and p1, leaving p2 unchanged.
Note that j maps H+

m onto H−
m and satisfies j2 = 1 .

From now on we shall suppose that the dual of the “difference cone” C12 con-
tains the negative 1-axis, that is:

R−×{0} ⊂ (C12)
∗ . (36)

In this case, for any p ∈ H+
m and any z in the strip

G := R+ i(0,π), (37)

the point λ1(−z)p is in the subset Γ of the complexified mass shell described in
Lemma 1. (This is so because its imaginary part is the image under σ of a point in
the past cone, hence of the form (q0,q) with q ∈ R−×{0}.) Hence by Lemma 1
and Eq. (31), for fixed p ∈ H+

m the smooth matrix-valued function

t 7→Ψ2(λ1(−t)p)∗Ψ1(λ1(−t)p)≡ M(λ1(−t)p) (38)

has an analytic extension into the strip G, and, by Eqs. (32) and (35), its boundary
value at t = iπ is

M(λ1(−t)p)|t=iπ ≡ M( jp) = ωχ (Ψ c
1 (− jp)∗Ψ

c
2 (− jp))T . (39)

We need analyticity of Ψ1 and Ψ2 separately. However, it turns out that it is not
Ψi(λ1(−t)p) which is analytic, but rather the matrices Ψi(t; p), i = 1,2, defined by

Ψi(t; p)αβ :=
(

U(λ̃1(t))ψi,β

)
(p,α) (40)

≡ eisΩ(λ̃1(t),p)
Ψi(λ1(−t)p)αβ . (41)

Here, λ̃1(·) denotes the unique lift to L̃↑+ of the one-parameter group λ1(·). The
Wigner rotation factor in the last equation is independent of α,β and i, and there-
fore cancels in Eq. (38). Hence Eq. (38) implies that

t 7→Ψ2(t; p)∗Ψ1(t; p)≡ M(λ1(−t)p) (42)

has an analytic extension into the strip G with boundary value given by Eq. (39).

Lemma 2 For any p ∈ H+
m , the smooth matrix-valued functions t 7→Ψ1(t; p) and

t 7→Ψ2(t; p)∗ extend to analytic functions on the strip G with smooth boundary
values at the upper boundary R+ iπ .

(Note that Ψ2(t; p) is analytically continued after conjugation.)
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Proof The proof uses the same reasoning as (2, Sect. 3). Let us denote, for brevity,
f1(t) :=Ψ1(t; p), f2(t) :=Ψ2(t; p)∗ and h(t) := M(λ1(−t)p). We know, by Eq. (42),
that t 7→ f2(t) f1(t)≡ h(t) has an analytic extension into the strip G. The equation

f1(t + t0)αβ =
(

U(λ̃1(t))Vχ E(1)
χ αχ(λ̃1(t0))(F1,β )Ω

)
(p,α)

shows that f1(t +t0) is of the same form as f1(t), with F1,β substituted by αχ(λ̃1(t0))
(F1,β ). Now for t0 sufficiently small, λ̃1(t0)·C̃1 still satisfies (together with C̃2) the
hypothesis of Lemma 1 and condition (36). Hence, the same reasoning as above
shows that there is a matrix-valued function ht0(t) analytically extendible in t into
the strip G, such that

f2(t) f1(t + t0) = ht0(t) (43)
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for t0 sufficiently small. Smoothness of F1,β implies that f1 is smooth and that
ht0(t) is smooth in t0. The above equation implies that

f2(t)
d
dt

f1(t) = ĥ(t) :=
d

dt0
ht0(t)

∣∣
t0=0. (44)

The last two equations imply the following differential equation for f1:

f1(t)−1 d
dt

f1(t) = h(t)−1 ĥ(t). (45)

The right-hand side is meromorphic in the strip G and continuous on its closure
G– (up to isolated points). Hence f1 can be integrated along any path γ in G–
starting from the real (=lower) boundary, as long as the path does not cross zeroes
of the determinant of h(z), yielding an analytic extension f1,γ along γ . If γ crosses
a zero z0 of det h(z), we make use of the following observation: Eq. (43) implies
the relation

f1(t) = f1(t + t0)h(t + t0)−1 h−t0(t + t0), (46)

which extends from real t to values in the strip G, along the path γ . Since the zeroes
of det h(z) are isolated, the determinant of h(z0 + t0) is non-zero for t0 sufficiently
small. Thus, the function f1,γ can be continuously (and hence analytically) con-
tinued into z0 by the (analytic extension of the) above equation. Hence, f1 extends
analytically along any path into the strip. But the latter is simply connected, hence
the analyic extensions are independent of the paths, proving the claimed analyt-
icity of t 7→Ψ1(t; p). Smoothness of the boundary value at R + iπ follows from
Eq. (46). Analyticity of Ψ2(t; p)∗ ≡ f2(t) is shown along the same lines. ut

Lemma 2 allows for the definition of “geometric Tomita operators” acting on
the matrix-valued functions Ψ1 and Ψ2. Namely, we define for p ∈ H+

m ,

Ψ̂1(p) := Ψ1(t;− jp)|t=iπ , Ψ̌2(p) :=
(

Ψ2(t;− jp)
)∣∣

t=iπ , (47)

where complex conjugation is understood componentwise. (Note that Ψ1 is first
analytically continued to t = iπ and then conjugated, while Ψ2 is first conjugated
and then continued.) We now have

Ψ̂1(p)∗Ψ̌2(p) = {Ψ2(t;− jp)∗Ψ1(t;− jp)}T ∣∣
t=iπ

by definition. But the function in curly brackets coincides, by Eq. (42), with
M(−λ1(−t)
jp) whose analytic continuation into t = iπ is M(−p) by Eq. (35). Using Eq. (39),
we therefore have

Ψ̂1(p)∗Ψ̌2(p) = ωχ Ψ
c

1 (p)∗Ψ
c

2 (p). (48)

We want to find a relation betweenΨ̂1 andΨ c
1 , constituting a Bisognano-Wichmann

property on the single particle level (Proposition 2). The proof of this relation
relies on the fact that the matrix-valued function Ψ̂1 transforms under Lorentz
transformations (close to unity) just like Ψ1 (Lemma 3). The proof of this transfor-
mation behaviour is the crucial and difficult point in our analysis, since the Wigner
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rotation factor spoils the analyticity needed for the definition of Ψ̂1. Observe that
for λ ∈ L↑+ sufficiently small, λC1 is contained in a space-like cone of the form
(Cλ

1 )′′, which satisfies, together with C2, the hypothesis of Lemma 1 and the con-
dition (36), R−×{0}⊂ (C2−Cλ

1 )∗. Let U12 be a neighbourhood of the identity in
L↑+ consisting of such λ . The set of λ̃ ∈ L̃↑+ which project onto U12 has an infinity
of connected components, differing by 2π-rotations. Let now Ũ12 be the one con-
taining the identity. This ensures that for λ̃ ∈ Ũ12, the paths λ̃ ·C̃1 and C̃2 have the
correct relative winding number so as to satisfy the hypothesis of Eq. (15). Then,
for λ̃ ∈ Ũ12, the wave function8

ψ
λ

1,β := U(λ̃ )ψ1,β ≡Vχ E(1)
χ αχ(λ̃ )(F1,β )Ω (49)

is of the same form as ψ1,β , with F1,β substituted by αχ(λ̃ )(F1,β ), and Lemma 2
applies, asserting that the matrix-valued function

t 7→Ψ
λ

1 (t; p)αβ :=
(

U(λ̃1(t))ψλ

1,β

)
(p,α)

has an analytic extension into G, with continuous boundary value at R+ iπ . This
allows for the definition of

Ψ̂ λ
1 (p) := Ψ λ

1 (t;− jp)|t=iπ , (50)

in analogy with Eq. (47).

Lemma 3 There is a neighbourhood Ũ of the unit in L̃↑+ such that for all λ̃ ∈ Ũ
and p ∈ H+

m there holds

Ψ̂ λ
1 (p) = eisΩ(λ̃ ,p)Ψ̂1(λ−1 p) . (51)

Proof The claimed equation is equivalent with

eisΩ(λ̃1(t)λ̃ ,− jp)
ψ1,β (−λ

−1
λ1(−t) jp,α)

∣∣
t=iπ

= e−isΩ(λ̃ ,p) eisΩ(λ̃1(t),− jλ−1 p)
ψ1,β (−λ1(−t) jλ−1 p,α)

∣∣
t=iπ . (52)

Now the function t 7→ eisΩ(λ̃1(t)λ̃ ,q) has branch points in the strip G, see Lemma C.1
of (17). Hence none of the (t-dependent) factors in the above equation possesses
an analytic extension into the strip by its own. However, we have constructed
in (17) a function living on the mass shell which compensates the singularities
of the Wigner rotation factor. In Appendix B, we adopt the results of (17) to the
present situation, leading to the following assertion (cf. Lemma B.2). Let

u π
2
(p) := eis π

2

(
p0− p2

m
· p0− p2 +m+ ip1

p0− p2 +m− ip1

)s

and (53)

ω(λ̃ , p) := eisΩ(λ̃ ,p) u π
2
(λ−1 p). (54)

8 We use a superscript λ instead of λ̃ , which causes no confusion since we have a one-to-one
correspondence between U12 and Ũ12.
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Then the function t 7→ ω(λ̃1(t)λ̃ , p) has an analytic extension into the strip G for
all λ̃ in a neighbourhood Ũ0 of the unit. Further, at t = iπ it has the boundary
value

ω(λ̃1(iπ)λ̃ , p) = eiπs eisΩ( jλ̃ λ̃0 j,p) u
(

j(λλ0)−1 jp
)
, where (55)

u(p) : =
(

p0− p1

m
· p0− p1 +m− ip2

p0− p1 +m+ ip2

)s

. (56)

Here, λ0 := r(π/2) is the rotation about π/2, and λ̃0 := r̃(π/2), where r̃(·) is the
unique lift to L̃↑+ of the one-parameter group of rotations. Further, λ̃ 7→ jλ̃ j is
the unique lift (23) of the adjoint action of j on L↑+ to an automorphism of the
universal covering group. To apply this result, we rewrite the claimed Eq. (52) as
follows:

ω(λ̃1(t)λ̃ ,− jp) ·φ(−λ
−1

λ1(−t) jp)
∣∣
t=iπ

=
(

e−isΩ(λ̃ ,p)
ω(λ̃1(t),− jλ−1 p)

)
·φ(−λ1(−t) jλ−1 p)

∣∣
t=iπ , (57)

where

φ(p) := u π
2
(p)−1

ψ1,β (p,α). (58)

Lemma B.2 then asserts that for λ̃ ∈ Ũ0 the first factor ω(λ̃1(t)λ̃ ,− jp) on the left
hand side of Eq. (57) is analytic in G and has the boundary value

eiπs e−isΩ(λ̃ λ̃0,p) u
(
− j(λλ0)−1 p

)
(59)

at t = iπ . (Here we have used that the Wigner rotation satisfies the identity

Ω( jλ̃ j, p) =−Ω(λ̃ ,− jp), (60)

see (17, Lemma B.2).) Similarly, the first factor e−isΩ(λ̃ ,p) ω(λ̃1(t),− jλ−1 p) on
the right hand side of Eq. (57) is analytic, with boundary value

eiπs e−isΩ(λ̃ ,p) e−isΩ(λ̃0,λ−1 p) u
(
− j(λλ0)−1 p

)
(61)

at t = iπ . Due to the cocycle identity (27), this coincides with the boundary
value (59) of the first factor on the left hand side of Eq. (57).

We now know that for any λ̃ ∈ Ũ := Ũ0 ∩ Ũ12 both sides of Eq. (57) are
analytic in the strip G, and the same holds for the first factor on each side. Further,
we know that the boundary values at t = iπ of the first factors coincide. It follows
that the second factors, namely the functions

f1(t) = φ(−λ
−1

λ1(−t) jp) and f2(t) = φ(−λ1(−t) jλ−1 p), (62)

also have an analytic extension into the strip. It only remains to show that their
boundary values at t = iπ coincide. To this end, note that the analyticity of the two
functions (62) holds for all p ∈ H+

m and λ in the projection of Ũ onto L↑+, which
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we shall denote by U . Hence we can analytically continue the function φ into the
subset

Γ0 := {λλ1(z)p : p ∈ H+
m ,z ∈ G,λ ∈U }

of the complexified mass shell Hc
m along paths of the form λλ1(z(t))p. Now a

straightforward calculation shows that every k = λλ1(z)p ∈ Γ0 can be uniquely
written in the form k = rλ1(iθ)r−1q, where r is a rotation, θ ∈ (0,π) and q ∈H+

m .
By restricting λ to a smaller neighbourhood if necessary, one can achieve r ∈U .
Letting θ go to zero then defines a deformation retraction of Γ0 onto the mass
hyperboloid. Hence Γ0 is simply connected, which implies that our analytic con-
tinuation of φ is path-independent, yielding an analytic function φ̂ on Γ0, contin-
uous at the real boundary H−

m , such that f1(z) = φ̂(−λ−1λ1(−z) jp) and f2(z) =
φ̂(−λ1(−z) jλ−1 p). But the points −λ−1λ1(−iπ) jp and −λ1(−iπ) jλ−1 p coin-
cide, namely with −λ−1 p, hence f1(iπ) = f2(iπ). This completes the proof. ut

Proposition 2 The following “Bisognano-Wichmann property” holds: There is a
regular n×n matrix D such that for all p ∈ H+

m there holds

Ψ̂1(p) = DΨ
c

1 (p). (63)

It will become clear in the proof of Theorem 1 that D is isometric.

Proof The proof goes again along the lines of (2), but uses our Lemma 3. Let p
be in the dense set of points satisfying detΨ c

1 (p) 6= 0, and let D(p) be the matrix

D(p) := Ψ̂1(p)Ψ
c

1 (p)−1.

Due to Eq. (48), D(p) is independent of the specific choice of operators F1,β from
which Ψ̂1(p) and Ψ c

1 (p) are constructed. In particular, for λ̃ ∈ Ũ12, we may substi-

tute F1,β by αχ(λ̃ )(F1,β ) as in Eq. (49), yielding substitution of Ψ̂1(p) by Ψ̂ λ
1 (p)

and of Ψ c
1 (p)αβ by

Ψ
λ ,c

1 (p)αβ :=
(

U(λ̃ )Vχ̄ E(1)
χ̄

F†
1,β Ω

)
(p,α).

Hence we have

D(p) = Ψ̂ λ
1 (p)Ψ

λ ,c
1 (p)−1 = Ψ̂1(λ−1 p)Ψ

c
1 (λ−1 p)−1 = D(λ−1 p).

(In the second equation we have used that, by Lemma 3, Ψ̂ λ
1 (p) and Ψ

λ ,c
1 (p) have

the same transformation dependence on λ̃ , namely Ψ
λ ,c

1 (p) = eisΩ(λ̃ ,p)Ψ c
1 (λ−1 p)

and Eq. (51).) This shows that D(p) is locally constant, and, since p was arbitrary,
constant.

ut

As a corollary, we get a relation between Ψ̌2(p) and Ψ c
2 (p).

Corollary 1 For all p ∈ H+
m there holds

Ψ̌2(p) = e2πis DΨ
c

2 (p). (64)
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Proof Let us choose our paths C̃1 and C̃2 so as to satisfy C̃1 = r̃(π)·C̃2, where r̃(·)
denotes the one-parameter group of rotations in L̃↑+. (This is compatible with the
hypothesis of Lemma 1.) Then the wave function

ψ
π

2,β := U(r̃(π))ψ2,β ≡Vχ E(1)
χ αχ(r̃(π))(F2,β )Ω (65)

is of the same form as ψ1,β , with F1,β substituted by αχ(r̃(π))(F2,β ). Hence,
Lemma 2 allows for the analytic extension into t = iπ ,

Ψ̂ π
2 (p)αβ :=

(
U(λ̃1(t))ψπ

2,β

)
(− jp,α)|t=iπ .

Now the group relation λ̃1(t)r̃(π) = r̃(π)λ̃1(−t) implies that

Ψ̂ π
2 (p)αβ =

(
U(r̃(π))U(λ̃1(−t))ψ2,β

)
(− jp,α)|t=iπ

≡ e−iπs
(

U(λ̃1(−t))ψ2,β

)
(−r(−π) jp,α)|t=iπ . (66)

(In the last equation we have used relation (28).) The group relation r(−π) j =
jr(π) and the identity f (−t)|t=iπ = f̄ (t)|t=iπ , holding for the analytic extension
of a function f̄ , yield

Ψ̂ π
2 (p) = e−isπ Ψ̌2(r(π)p) . (67)

On the other hand, Proposition 2 asserts that

Ψ̂ π
2 (p) = DΨ

π,c
2 (p), (68)

where Ψ
π,c

2 (p) is defined just as Ψ c
1 (p) with F†

1,β substituted by αχ̄(r̃(π))(F†
2,β ).

But using Eq. (28) yields Ψ
π,c

2 (p) = exp(iπs)Ψ c
2 (r(−π)p). Hence, taking into

account that r(π) = r(−π), Eqs. (67) and (68) imply the claimed Eq. (64). ut

This implies our main result, the relation between spin and statistics for anyons
and plektons:

Theorem 1 (Spin-Statistics Theorem) The spin s and statistics phase ωχ are
related by

e2πis = ωχ .

Proof Substituting Eqs. (63) and (64) into Eq. (48), yields

D∗De2πis = ωχ 1 ,

since the matrices Ψ c
i (p) are invertible for almost all p. Uniqueness of the polar

decomposition then implies the claim, and also implies that D is isometric. ut
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A Justification of the Assumptions

We assume the standard assumptions on the algebra A of local observables (12) plus weak Haag
Duality of the vacuum representation (3, Eq. (1.11)), and consider a covariant representation πχ

of A which is strictly massive in the sense of our assumptions (A1) and (A2). As shown in (3),
πχ is then localizable in space-like cones, i.e., equivalent to the vacuum representation when
restricted to the causal complement of a space-like cone. One can then enlarge the algebra of
observables to the so-called universal algebra Auni (9; 8) and find an endomorphism ρ of Auni
such that the (unique lift of the) representation πχ is equivalent to the representation π0 ◦ ρ ,
where π0 is the vacuum representation of Auni acting in a vacuum Hilbert space H00. The
endomorphism ρ is localized in some specific space-like cone C0 in the sense that

ρ(A) = A if A ∈Auni(C′
0), (A.1)

where C′
0 denotes the causal complement of C0. The endomorphism ρ has a conjugate ρ̄ such

that ρ̄ρ contains the identity representation ι of Auni (3). We shall choose a corresponding
intertwiner R ∈ Auni, with the normalization convention of (5), i.e. R is not isometric but sat-
isfies R∗R = |λχ |−11 (5, Eq. (3.14)). Associated with ρ is the statistics operator ερ , which
describes the interchange of two charges localized in causally separated space-like cones. Using
the notions of our Sect. 2, it is constructed as follows. We fix the reference direction e0 so as
to be contained, in the sense of Eq. (5), in C0. Let C̃1 = (C1, ẽ1) and C̃2 = (C2, ẽ2) be paths of
space-like cones satisfying the hypothesis of Eq. (15). Let further Ui, i = 1,2, be (heuristically
speaking) charge transporters which transport the charge ρ from C0 to Ci along the path ẽi. This
means the following. Ui is an intertwiner such that Ad Ui ◦ρ is localized in Ci (instead of C0)
in the sense of Eq. (A.1), and at the same time is an observable localized in Ii, where Ii is a
space-like cone (or the complement of one) containing the complete path ẽi(t), t ∈ [0,1], in the
sense of Eq. (5). Then

ερ := ρ(U∗
1 )U∗

2 U1ρ(U2). (A.2)

The corresponding statistics parameter λχ and statistics phase ωχ are then defined by the rela-
tions

φ(ερ ) = λχ 1 , ωχ =
λχ

|λχ |
, (A.3)

respectively. (They depend only on the equivalence class of ρ , i.e., on its sector χ .) Here, φ is
the left inverse of ρ , that is a positive linear endomorphism of Auni satisfying

φ (ρ(A)Bρ(C)) = Aφ(B)C, φ(1 ) = 1 . (A.4)

It can be expressed as (3; 5)

φ(A) = |λχ |R∗ρ̄(A)R. (A.5)

(The factor |λχ | appears here in contrast to (3) because we have chosen the normalization con-
vention of R as in (5).)

We now identify the objects and notions of our Sect. 2 within the frame indicated above
and with objects derived within this framework in (5; 3; 9; 8). Our sectors χ and χ̄ are just the
equivalence classes of the representations π0 ◦ ρ and π0 ◦ ρ̄ , respectively. Our Hilbert spaces
H0, Hχ and Hχ̄ are the fibres {ι}×H00, {ρ}×H00 and {ρ̄}×H00 of the vector bundle H
of generalized state vecors introduced in (5), see also (3), respectively. The respective scalar
products are inherited by that of H00. Our vacuum vector Ω is identified with the Poincaré
invariant vector Ω0 inducing the vacuum state:

Ω = (ι ,Ω0) ∈ H0.

The spaces of our fields Fχ and Fχ̄ are defined as the subspaces {ρ} × Auni and
{ρ̄}×Auni, respectively, of the field bundle F introduced in (5). A generalized field opera-
tor F = (ρ,B) ∈Fχ then acts on a generalized state vector (ι ,ψ) ∈H0 as

(ρ,B)(ι ,ψ) := (ρ,π0(B)ψ) ∈Hχ .
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The adjoint F† of a generalized field operator F = (ρ,B) ∈Fχ is defined by

(ρ,B)† := (ρ̄, ρ̄(B∗)R), (A.6)

where B∗ is the C∗-adjoint of B in Auni.
The notion of localized generalized field operators has been introduced in (5) in the case of

permutation group statistics. The extension to the case of braid group statistics needs a refine-
ment, which has been introduced in (9), see also (8). There, K denotes the class of space-like
cones or causal complements thereof, and a path in K is a finite sequence (I0, . . . , In), Ik ∈K ,
such that either Ik ⊂ Ik−1 or Ik ⊃ Ik−1, k = 1, . . . ,n. We say that such path starts at C0 if I0 = C0.
The relation to our notion of paths of space-like cones, Eq. (6) is as follows. Our (C, ẽ) corre-
sponds to a path (I0, . . . , In) in K starting at C0 if ẽ, considered as a path in H, has the decom-
position ẽ = γn ∗ · · · ∗ γ0 such that γk(t) is contained in Ik in the sense of Eq. (5) for all t ∈ [0,1]
and k = 0, . . . ,n. With this identification, our space of localized fields Fχ (C̃) is defined as

Fχ (C̃) := Fχ ∩F (C̃),

where F (C̃) is the space of generalized field operators localized along C̃ as defined in (9; 8).
Fχ̄ (C̃) is defined analogously. The fact that the adjoint preserves localization, Eq. (13), is just
Eq. (6.37) in (3) (which strengthens Lemma 4.3 in (5)).

Our representations Uχ and αχ of the universal covering group of the Poincaré group in Hχ

and Fχ , respectively, are defined as follows. Let U(g̃) and α(g̃) be the representations in H
and F as defined in (5, Eqs. (4.3) and (4.4)) in the case of permutation group statistics, and (8,
Eqs. (2.18) and (2.19)) in the case of braid group statistics, respectively. Then we define

Uχ (g̃) := U(g̃)
∣∣Hχ and αχ (g̃) := α(g̃)

∣∣Fχ .

The covariance condition (11) is just Eq. (4.7) in (5). Our Eq. (14), relating the adjoint, αχ and
αχ̄ (defined analogously), is just Eq. (4.20) in (5). The fact that Eqs. (11), (13) and (14) also
hold in the case of braid group statistics has been shown in (16).

Our Eq. (15), fixing the significance of the statistics phase ωχ , corresponds to Eq. (6.5) in
(5) in the case of permutation group statistics. But since we are not aware of literally the same
equation in the literature in the case of braid group statistics, we give a direct proof, transferring
their arguments to this case.

Lemma A.1 Let C̃1 = (C1, ẽ1) and C̃2 = (C2, ẽ2) be paths of space-like cones satisfying the
hypothesis of Eq. (15). Let further Fi = (ρ,Bi) ∈ Fχ (C̃i), i = 1,2. Then there holds Eq. (15),
namely,

(F2Ω ,F1Ω ) = ωχ

(
F†

1 Ω ,F†
2 Ω

)
.

Proof (ρ,Bi) ∈Fχ (C̃i) means that there are unitary charge transporters Ui satisfying precisely
the hypothesis of Eq. (A.2), and that Ai :=UiBi is an observable localized in Ci, i = 1,2. Denoting
ρi := Ad Ui ◦ρ , we then have

ρ(B∗2)ε
∗
ρ ρ(B1) = ρ(B∗2U∗

2 )U∗
1 U2ρ(U1B1) = ρ(A∗2)U∗

1 U2ρ(A1)
(A.7)

= U∗
1 ρ1(A∗2)ρ2(A1)U2 =U∗

1 A∗2A1U2 =U∗
1 A1A∗2U2 =B1 B∗2.

(We have used that ρi are localized in Ci in the sense of Eq. (A.1) and that A1 and A∗2 commute
due to locality of the observables.) Applying the left inverse φ to Eq. (A.7), using the explicit
formula (A.5) for the left inverse and taking into account that φ preserves the C∗-adjoint, yields

λ̄χ B∗2 B1 = |λχ | R∗ρ̄(B1B∗2)R .

Using this equation, we get

(F2Ω ,F1Ω) = (Ω0,π0(B∗2 B1)Ω0 ) = (λ̄χ )−1 |λχ | (Ω0,π0(R∗ρ̄(B1B∗2)R)Ω0 )

= ωχ (π0(ρ̄(B∗1)R)Ω0,π0(ρ̄(B∗2)R)Ω0 ) = ωχ

(
F†

1 Ω ,F†
2 Ω

)
,

since (λ̄χ )−1|λχ |= ωχ . This completes the proof. ut
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B An Analytic Cocycle for the Massive Irreducible Representations
of P̃↑+ in 2+1 Dimensions

In (17), we have shown that the Wigner rotation factor exp(isΩ(λ̃ , p)) is non-analytic in the
sense that the function t 7→ exp(isΩ(λ̃1(t)λ̃ , p)) has singularities in the strip G for any fixed
p ∈H+

m and λ̃ ∈ L̃↑+ in a neighbourhood of the unit. These singularities are in fact branch points
if s is not an integer (see Lemma C.1 in (17)). However, we have constructed a function u(p)
living on the mass shell which compensates the singularities of the Wigner rotation factor. In
more detail, our function is given by

u(p) :=
(

p0− p1

m
· p0− p1 +m− ip2

p0− p1 +m+ ip2

)s

, p0 := (p2
1 + p2

2 +m2)
1
2 . (B.1)

(Note that p0 − p1 is strictly positive for all p ∈ H+
m , hence the argument in brackets lies in the

cut complex plane C\R−
0 . The power of s ∈R is then defined via the branch of the logarithm on

C\R−
0 with ln1 = 0.) We then define a map c : L̃↑+×H+

m → C\{0} by

c(λ̃ , p) := u(p)−1 eisΩ(λ̃ ,p) u(λ−1 p) . (B.2)

In group theoretical terms, the map c(·, ·) : L̃↑+×H+
m → C\{0} is a cocycle which is equivalent

to the Wigner rotation factor. To state its analyticity properties, we need some more notation.
Let W1 be the wedge region

W1 :=
{

x ∈ R3;x1 >
∣∣x0∣∣}, (B.3)

and let the reference direction e0 be specified as e0 = (0,0,−1). Denote by W̃1 the pair (W1, ẽ1),
where ẽ1 is the equivalence class of a path in H starting from the reference direction e0 and
staying within W1 in the sense of Eq. (5). If ẽ is a path in H ending at a direction e contained in
W1 in the sense of Eq. (5), and ẽ is equivalent to ẽ1 w.r.t W1, we write

ẽ ∈ W̃1. (B.4)

Let further ẽ0 be the constant path at e0. We found the following result.

Lemma B.1 (17) Let λ̃ be an element of L̃↑+ such that λ̃ ·ẽ0 ∈ W̃1 in the sense of Eq. (B.4). Then
for all p ∈ H+

m the function

t 7→ c(λ̃1(t)λ̃ , p)

has an analytic extension into the strip R+ i(0,π). This extension satisfies the boundary condi-
tion

c(λ̃1(iπ)λ̃ , p) = eiπs c(λ̃ ,− jp) (B.5)

≡ eiπs c( jλ̃ j, p). (B.6)

(The very last equation is not contained in (17), but follows directly from the identity (60) and
the fact that the function u satisfies u(− jp) = u(p).)

Let us rewrite this result for the present purpose, namely, the proof of Lemma 3. Lemma 3
needs an analyticity statement for λ̃ in a neighbourhood of the unit (namely the set Ũ12), whereas
the set of λ̃ satisfying the hypothesis of Lemma B.2 is not a neighbourhood of the unit (since
e0 is at the boundary of W1). To this end, we fix a Lorentz transformation λ0 which maps e0

into W1, and let λ̃0 be the (unique) element of L̃↑+ over λ0 such that λ̃0 ·ẽ0 ∈ W̃1 in the sense of
Eq. (B.4). (For example, a rotation about π/2 would do.) We then define

uλ0(p) := eisΩ(λ̃0,p) u(λ−1
0 p)≡ u(p)c(λ̃0, p), (B.7)

and a corresponding cocycle

cλ0(λ̃ , p) := uλ0(p)−1 eisΩ(λ̃ ,p) uλ0(λ
−1 p) . (B.8)
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Lemma B.2 i) Let λ̃ be an element of L̃↑+ such that λ̃ λ̃0·ẽ0 ∈ W̃1 in the sense of Eq. (B.4). Then
for all p ∈ H+

m the function

f (t) := eisΩ(λ̃1(t)λ̃ ,p) uλ0(λ
−1

λ1(−t)p) (B.9)

has an analytic extension into the strip R+ i(0,π), continuous at the boundary. At t = iπ , this
extension has the boundary value

f (iπ) = eiπs uλ0(− jp)cλ0(λ̃ ,− jp) (B.10)

≡ eiπs eisΩ( jλ̃ λ̃0 j,p) u
(

j(λλ0)−1 jp
)
. (B.11)

ii) If λ0 is the rotation about π/2, then the set of λ̃ satisfying the hypothesis of (i) is a neigh-
bourhood of the unit. Further, in this case uλ0 is given by

uλ0(p) = eis π
2

(
p0− p2

m
· p0− p2 +m+ ip1

p0− p2 +m− ip1

)s

=: u π
2
(p) . (B.12)

Proof Ad i) By definition of the cocycle cλ0 , f (t) coincides with uλ0(p)cλ0(λ̃1(t)λ̃ , p). Since
our definitions imply the identity

uλ0(p)cλ0(λ̃ , p) = u(p)c(λ̃ λ̃0, p) (B.13)

for all λ̃ ∈ L̃↑+, we have

f (t) = u(p)c(λ̃1(t)λ̃ λ̃0, p). (B.14)

Lemma B.1 then asserts that for λ̃ λ̃0·ẽ0 ∈ W̃1, this function is analytic in the strip G, and has the
boundary value

f (iπ) = eiπs u(p)c(λ̃ λ̃0,− jp). (B.15)

Using u(p) = u(− jp) and once again Eq. (B.13), yields Eq. (B.10) of the lemma. On the
other hand, substituting Eq. (B.6) into Eq. (B.15) and using the defining relation (B.2), yields
Eq. (B.11) of the lemma.

Ad ii) A rotation r( π

2 ) about π/2 maps e0 into the interior of the wedge W1. Hence the set
of λ̃ satisfying the hypothesis of (i) is a neighbourhood of the unit. Further, the corresponding
λ̃0 is just r̃( π

2 ), where r̃(·) is the lift of the one-parameter group of rotations to L̃↑+. Hence
Ω(λ̃0, p) = π/2 by Eq. (28). Together with r( π

2 )−1(p0, p1, p2) = (p0, p2,−p1), this implies
Eq. (B.12). ut
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