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A parable of dimensionless units
Bert has a turntable operating at a rotation frequency of 

331

3
 revolutions per minute. His friend, Ernie, asks Bert, ‘At 

what frequency is your turntable rotating?’ If Bert were to  
answer ‘0.555 Hz’ Ernie would know the rotation frequency. 
Similarly, if Bert were to answer ‘3.49 radians per second’, 
Ernie would know the rotation frequency. And, if Bert were to 
say ‘200 degrees per second’, Ernie would be well informed. 
On the other hand, if Bert were to respond ‘the rotation fre-
quency is 3.49’, we would all agree that Ernie would not know 
the rotation frequency. Nor, would a response of ‘3.49  per 
second’ be useful to Ernie, any more than a response of 
‘200 per second’. In order to convey useful information, Bert 
must tell Ernie the units in which he is reporting the rota-
tion frequency, including the so-called dimensionless units of 
cycles or radians or degrees. The current formulation of the SI 
specifically allows the units ‘radian’ or ‘cycle’ to be replaced 
by the dimensionless unit ‘one’, and it allows both radians 
per second and cycles per second (Hz) to be replaced with 
inverse seconds. Clearly, if Bert had followed this prescrip-
tion, allowed by the current SI, he would have left Ernie in the 
dark about the rotation frequency.

If Bert had given an uninformative response about the rota-
tion rate, Ernie might have asked ‘what is the concentration 
of oxygen in the air you’re breathing?' Bert could respond 
‘about 1025 atoms m−3’ or ‘5 × 1024 molecules m−3’. These are 
clear answers. A factor-of-two ambiguity would arise if he had 
not specified the entity being counted; in fact, the current SI 
says that ‘atoms’ or ‘molecules’ are dimensionless units that 
should be set equal to ‘one’. If Bert had said ‘5 × 1024 m−3’, 
Ernie might have interpreted that as being the atomic den-
sity and wonder if oxygen deprivation had compromised his 
friend’s mental acuity.

Such situations allowed by ambiguous units are unten-
able, which is one of the main points of this paper. Fixing the 
problem is not going to be easy, as evidenced by the fact that 
it has persisted for so many years after the institution of the SI 
in 1960. This situation has led to such problematic pronounce-
ments as ‘the radian and steradian are special names for the 
number one …’ [1]. One starting point is to recognize that 
replacing radians or cycles or similar dimensionless units 
by ‘one’ leads to trouble, and replacing molecules by ‘one’ 
in expressions for molecular concentration may also lead to 
trouble. These and similar arguments are made explicit below, 
as are our suggestions for a revision to the SI that goes a long 
way toward solving the problem1.
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1 The hypothetical conversation in this section is not meant to suggest that 
there actually was such a conversation between Albert Einstein and Ernest 
Rutherford.
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1. Introduction

The International System of Units (SI) defines units that are 
used to express the values of physical quantities [1]. In the 
foreseeable future, it is expected that there will be a redefini-
tion of the SI based on specified values of certain fundamental 
constants [2]. This constitutes a dramatic change with one of 
the consequences being that there will no longer be a clear 
distinction between base units and derived units [3, 4]. In view 
of this change, it is timely to reexamine units in the SI and 
their definitions. One goal is to ensure that all such units are 
coherent, i.e. they comprise a coherent system of units.

In the current SI, various quantities are designated as being 
dimensionless. That is, they are deemed to have no unit or 
have what has been called the coherent derived unit ‘one’. In 
some cases this designation leads to ambiguous results for 
these quantities. In this paper, we examine units in the SI that 
are considered dimensionless and other units not presently 
included in the SI that might be added to bring it into closer 
alignment with widespread scientific usage.

2. Units and dimensional analysis

In general, units are used to convey information about the 
results of measurements or theoretical calculations. To com-
municate a measurement of a length, for example, the result 
is expressed as a number and a unit, which in the SI is the 
meter. The number tells the length in meters of the result of 
the measurement.

For simple algebraic calculations involving units, one 
can write out the expression and separately collect the units, 
which may be replaced by an equivalent unit for convenience. 
For example, the kinetic energy E of a mass m = 2 kg moving 
at a velocity v = 3 m s−1 is calculated as

 = = = =− −E
1

2
mv

1

2
(2 kg) (3 m s )

2·3

2
kg m s 9 J,2 1 2

2
2 2 (1)

where J is the symbol for joule, the SI unit of energy. This 
calculation illustrates the important principle of the SI that the 
units are coherent. That is, when a combination of units is 
replaced by an equivalent unit, there is no additional numer-
ical factor. For equation (1), this corresponds to the relation

 =−kg m s J.2 2 (2)

The notation q = {q}[q] for a quantity with units distinguishes 
between the unit [q] and the numerical value {q} [5]. For 
example, for the speed of light, we have c = 299 792 458 m s−1, 
where {c} = 299 792 458 and [c] = m s−1. Evidently both of 
these factors depend on the system of units, but the product 
{q}[q] describes the same physical quantity. The factors {q} 
and [q] separately follow the algebraic rules of multiplica-
tion and division, which allows for a consistent dimensional  
analysis and conversion between different units.

In terms of this notation, the calculation in equation (1) can 
be written as

 =E E m m v v{ } [ ]
1

2
{ } [ ] ( { } [ ] )2 (3)

or

 = =−E m v m v{ } J
1

2
{ } { } kg m s

1

2
{ } { } J .2 2 2 2 (4)

In this way, calculations are separated into a purely numer-
ical part and one involving units. For non-trivial equations, 
working separately with only the numerical values provides 
a practical way of carrying out the calculation. In particular, 
when mathematical functions such as exponential, trigono-
metric, or Bessel functions are involved, the arguments are 
necessarily numbers without units, and calculations are done 
with only the numerical values. This is further simplified if 
a coherent system of units is used, so there is no additional 
numerical factor.

Physical science is based on mathematical equations, 
which follow the rules of analysis spelled out in numerous 
mathematical reference works. Generally, in mathematical 
reference texts, distances, areas, and angles, for example, are 
all dimensionless. On the other hand, in physical science, one 
uses units.

One consequence of this difference is that mathematics 
provides no information on how to incorporate units into 
the analysis of physical phenomena. One role of the SI is to 
provide a systematic framework for including units in equa-
tions that describe physical phenomena.

3. Angles

Angles play an essential role in mathematics, physics, and 
engineering. They fall into the category of quantities with 
dimensionless units in the current SI, which leads to ambigui-
ties in applications. This issue has been widely discussed in 
the literature, and arguments are given on both sides of the 
question of whether angles are quantities that should have 
units [6].

In part because units are rarely considered in mathematics, 
the unit of radian for angles is rarely mentioned in the math-
ematics reference literature, just as the meter is also rarely 
mentioned. Units are unnecessary in purely mathematical 
analysis. By the same token, caution is necessary in drawing 
conclusions about units based on purely mathematical con-
siderations. For example, in the current SI, it is stated that 
angles are dimensionless based on the definition that an angle 
in radians is arc length divided by radius, so the unit is sur-
mised to be a derived unit of one, or a dimensionless unit. 
However, this reasoning is not valid, as indicated by the fol-
lowing example. An angle can also be defined as ‘twice the 
area of the sector which the angle cuts off from a unit circle 
whose centre is at the vertex of the angle’ [7]. This gives the 
same result for the numerical value of the angle as the defini-
tion quoted in the SI brochure, however by following similar 
reasoning, it suggests that angles have the dimension of length 
squared rather than being dimensionless. This illustrates that 
conclusions about the dimensions of quantities based on such 
reasoning are clearly nonsense.

Regardless of whether we view angles as having dimension 
or not, they can be measured and the results can be expressed, 
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for example, in units of degrees, radians, or revolutions. In 
elementary plane geometry or daily life, degrees are usually 
used, and it is intuitively familiar to think of a 45° or 90° angle 
and the fact that 360° is a complete revolution. In this case, the 
unit is degrees and [90°] = °.

In calculus and physics it is convenient to use radians or 
rad for angle units. The angle in radians between two lines 
that cross at a point is the length of circular arc s swept out 
between the lines by a radius vector of length r from the 
crossing point divided by the length of the radius vector. The 
angle θ is thus given by

 θ = s

r
rad, (5)

which corresponds to {θ} = s/r and [θ] = rad.
The conversion between radians and degrees follows from 

the relation 360° = 2π rad, which gives, for example,

 
π π° =

°
° =90

2 rad

360
90

2
rad, (6)

where the rules of algebra are applied to the units to cancel 
degrees from the equation.

In this context, units for angles obviously play a useful 
role. As with any measurable quantity, a given angle will 
have different numerical values depending on the units in 
which the angle is expressed. Units such as degrees or radians 
are converted to other units by algebraic calculations as in 
equation (6).

We consider the consequences of a consistent treatment of 
units for angles in the following. For an infinitesimal segment 
of a plane curve, the change in angle dθ of the tangent to the 
curve is proportional to the infinitesimal change in position ds 
along the curve, where we define the constant of proportion-
ality to be the angular curvature C:

 θ = C sd d , (7)

where C has units of rad m−1. Evidently, the angular curva-
ture is a measure of the amount of bending of the segment 
of the curve. (This is different from curvature of a graph in 
elementary calculus or the curvature in differential geometry 
both of which are dimensionless and do not involve angles.) If 
an angular radius of curvature R is defined as

 R
C

= 1
(8)

then

 
R

θ = s
d

d
. (9)

The quantity R with units m  rad−1 should be distinguished 
from r in equation (5) which has units of m. If the curve is a 
portion of a circle, then we have

 
R

θ = s
, (10)

in analogy with equation  (5) and R = r{ } { }. In fact, equa-
tion (5) is the same as equation (10) if the replacement rad → 1 
is made.

This extends naturally to steradians for solid angle, abbre-
viated sr, for which an infinitesimal solid angle subtended by 
the area da on the surface of a sphere is given by

 
R

Ω = a
d

d
,

2 (11)

which has units rad2. Table 1 compiles a number of quantities 
involving angles and the associated units.

In applications, angles appear in the exponential and trig-
onometric functions, and these functions are defined for an 
argument that is a dimensionless number, i.e. the numerical 
value of the angle expressed in radians. The exponential func-
tion is given by its power series

 = + + + …x
x

e 1
2

,x
2

(12)

and the relation

 = +y ye cos i sinyi (13)

follows from the series expansions of the cosine and sine 
functions. The unit ‘radian’ cannot be included as a factor in 
the arguments of these functions, because every term in the 
power series must have the same unit.

The connection of these functions to angles follows from 
the fact that equation (13) is a point in the complex plane on 
the unit circle at an angle θ = y rad in the counter-clockwise 
direction from the positive real axis. The periodicity of the 
function eiy fixes the unit of the angle to be [θ] = rad, because 
both the angle θ = y rad and the function eiy go through one 
complete cycle as y = {θ} ranges from 0 to 2π. The choice of 
any other unit for [θ] would not align these two periods.

However, it is the general practice in physics to write the 
exponential function of an angle θ = y rad as eiθ rather than 
eiy or ei{θ}. In fact, in carrying out calculations, scientists do 
not usually distinguish between θ and {θ}, which amounts to 
treating rad as being 1.

This reveals a conflict between consistent application of 
dimensional analysis and common usage. A consistent applica-
tion of dimensional analysis is needed in order for the SI to be 
used as the basis for any computer algebra program that takes 
units into account [8, 9]. This is likely to be an increasingly 
popular way of doing calculations, and having a consistent 

Table 1. Quantities involving angles and their units.

Quantity   Expression Units

Angle θ rad

Angular curvature C
θ=
s

d

d
rad m−1

Angular radius of curvature R
C θ

= = s1 d

d
m rad−1

Infinitesimal arc length R θ=sd d m

Infinitesimal angle
R

θ = s
d

d
rad

Solid angle Ω sr

Infinitesimal surface area da m2

Infinitesimal solid angle
R

Ω = a
d

d
2

sr = rad2
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foundation is necessary to prevent errors. For such applica-
tions, it is important to use the numerical value of angles when 
expressed in radians, θ/rad, in exponential and trigonometric 
functions as well as more general functions of angles in math-
ematical physics to avoid errors of 2π which might otherwise 
occur. (For example, one could confuse Hz and rad  s−1 as 
described in section 4.) On the other hand, for general use in 
printed equations following the common practice, the argument 
of the exponential and trigonometric functions is simply written 
as θ, which corresponds to replacing rad by 1. Of course, this 
replacement can only be done for the unit rad, and not revo-
lutions (cycles) or degrees, replacements that would introduce 
numerical factors. In this sense, the unit rad is a coherent unit in 
the SI, whereas revolutions and degrees are not.

4. Periodic phenomena

Periodic phenomena in physics include rotations of an object, 
cycles or repetitions of a wave, or a series of any regular, 
repetitive events. Such periodic phenomena are characterized 
by a frequency whose units can be an angular factor or a cycle 
divided by time. In the SI, cycles/second = cyl/s is named 
hertz or Hz, and

 π= =− −1 Hz 1 cyl s 2 rad s ,1 1 (14)

where the second equality follows from the fact that one cycle 
and 2π radians each correspond to the period of a periodic 
phenomenon. Hz may be viewed as being equivalent to rota-
tions per second, but often, ‘rotations’ is used for mechanical 
motion and ‘cycles’ is used for waves.

We note that if cycle is not included in Hz, and radian is 
replaced by 1, both of which are indicated in the current SI 
brochure, then equation (14) would be nonsense.

The traditional symbol used for angular frequency is 
ω, which is understood to mean the frequency in units of 
rad s−1, while the symbols ν or f are used to denote frequency 
expressed in hertz. The relation between the numerical value 
of a particular frequency expressed in Hz or rad s−1 is given by

 ν ω
ω

π
= =−

−
−

{ } [Hz] { } [rad s ]
{ }

2
[Hz] ,Hz rad s

1 rad s
1

1

(15)

or

 
ω

π
ν=

−{ }

2
{ } ,rad  s

Hz
1

(16)

where the second equality in equation  (15) follows from 
equation (14). As already noted, radians behave as coherent 
units for the SI, so we make the identification ω ω=−{ } { }rad s 1 ,  
where the curly brackets with no subscript indicate that the 
numerical value corresponds to a coherent SI unit. However, 
a consequence of this convention is that the unit Hz is not 
a coherent SI unit as indicated by equation  (16). This is in 
conflict with the current SI where Hz is treated as a coherent 
SI unit, only because cyl is replaced by ‘one’. Since this leads 
to an inconsistency, we propose that the SI be modified in 
such a way that Hz is neither treated as a coherent SI unit nor 
replaced by s−1.

We note that if both rad and cyl are replaced by ‘one’, as 
allowed in the current SI, then equation (16) takes the form of 
the (questionable) relation

 ω π ν= 2 ;
? (17)

we employ the symbol =?  to emphasize that the equation  is 
only true with those inappropriate replacements. In fact, the 
correct equation is given by equation (16) which only involves 
the numerical values. We recognize that when people write 
equation (17) as an equality, they mean what is stated in equa-
tion (16). In other words, when for a given frequency people 
mistakenly write ω is equal to 2πν, they correctly mean that 
the numerical value in radians per second of ω is 2π times the 
numerical value in hertz of ν.

A basic equation  for waves is the relation between the 
wavelength and the frequency. This is generally written

 λν = c, (18)

where λ is the crest to crest wavelength and c is the wave 
velocity, which for electromagnetic radiation in free space is 
the speed of light. From the requirement that units on both 
sides of an equality must be the same, and the conventions 
that c has the unit m s−1 in the SI and ν has the unit Hz, equa-
tion (18) implies that the unit for λ is

 λ
ν

= = =− − −c
[ ]

[ ]

[ ]
m s Hz m cyl ,1 1 1 (19)

which has a self-evident intuitive interpretation. Neither Hz 
nor m  cyl−1 is a coherent unit. For a ‘coherent’ version of 
equation (18), that is, an equation in which c has the unit m s−1 
and the frequency has the unit rad s−1, we write

 �ω = c (20)

which implies that the reduced wavelength �  has the units

 �
ω

= = =
−

−
−c

[ ]
[ ]

[ ]

m s

rad s
m rad

1

1
1 (21)

and that

 
λ

π
=

−

{ }
{ }

2
,

m  cyl 1

� (22)

where as before, the absence of a subscript on the curly brackets 
indicates that the numerical value refers to coherent SI units, 
which in this case are m rad−1. Again, when the relation

 �
λ
π

=
2

?
(23)

is treated as an equality, what is meant is equation (22).
Another quantity associated with waves is the wave vector

 
�

=k
1

. (24)

It has units of radians per meter or rad m−1. (The magnitude of 
the wave vector is to be distinguished from the wavenumber 
λ−1 used in spectroscopy.) With these units for k, the covariant 
phase kx − ωt for a wave propagating in the x direction, where 
x is a coordinate and t is the time, is homogeneous in the unit 
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rad. This is consistent with the quantum mechanical expres-
sion for momentum.

In classical mechanics, rotational motion of a rigid body 
can be described by an angle θ about a fixed axis of rotation as 
a function of time t, an angular velocity ω

 ω θ=
t

d

d
, (25)

and an angular acceleration α, given by

 α ω θ= =
t t

d

d

d

d
.

2

2
(26)

Evidently, θ, ω, and α have units of rad, rad s−1, and rad s−2. 
Units for other quantities associated with rotational motion, 
such as the moment of inertia, may be deduced from the defining 
equations. As a rule of thumb, in order to obtain a coherent set 
of units it is necessary to take the radius r that appears in such 
expressions to be the angular radius of curvature R with units 
m rad−1 defined in equation (8). Table 2 lists various quantities 
associated with rotational motion of a point mass at a distance 
r from the axis of rotation, the relevant equations, and the cor-
responding units. A longer list is given by Eder [6].

In electromagnetism and quantum mechanics, the product 
ωt of angular frequency and time often appears in the expo-
nential function. This is similar to the case for angles as dis-
cussed in section 3. In quantum mechanics for example, it is 
conventional to write

 ω−e ,ti (27)

where actually what is meant is

 ω−e .ti{ } (28)

Here, as for angles, it is common practice to treat rad as ‘one’, 
which does not lead to problems if rad is a coherent SI unit.

5. Counting quantities

Many scientific applications involve counting of events or 
entities. For example, in radioactive decay, events occur at 

random times, but still have a well-defined rate when aver-
aged over a sufficiently long time with a large enough sample. 
The result of a measurement, where decays trigger counts in 
a detector, is counts/second or cnt/s. The SI unit for activity 
of a radiative sample is becquerel or Bq, meaning decays per 
second, which is related to counts per second through the 
overall detection efficiency. However, in the current SI, it is 
said that the becquerel has units of s−1, which means that the 
decay or count in the numerator is dropped. Here we take 
issue with this prescription and argue that the unit ‘decay’ or 
‘count’ should be retained, because it provides information 
about the number that precedes it in the expression for the 
quantity. In addition, since the current SI replaces both Hz 
and Bq by s−1, the distinction between these units is lost and 
sometimes leads to the dangerous and sadly mistaken use of 
Hz, which refers to periodic cycles, for the rate of random 
events. (Non-radioactive decay e.g. decay of excited atomic 
states, is similarly a random process and is properly mea-
sured in decays per second, but not traditionally in Bq, and 
certainly not in Hz.)

This is a special case of counting in general. Things that 
can be counted include events, such as decays or clicks of a 
detector, and entities, such as atoms or molecules. For such 
countable things, it is useful to include a designation of what 
is being counted in the unit for the corresponding quantities. 
Quantities involving counting are not restricted to numbers 
and rates. For example, if in a certain time interval there are 
D = 200 decays = 200 dcy and the detector registers N = 20 
counts = 20 cnt, then the efficiency η of the detection is

 η = =N

D
0.1

cnt

dcy
. (29)

Conversion between the count rate and the decay rate may be 
made using the detection efficiency as a conversion factor. For 
this detector, if a count rate of Q = 73 cnt s−1 is observed, it 
indicates a decay rate Γ given by

 Γ
η

= = =
−Q 73 cnt s

0.1 cnt/dcy
730

dcy

s
.

1

(30)

In this case, the detector efficiency has units, unlike the rec-
ommendation of the current SI where it would be simply a 
number. The units provide useful information in a form that 
can be incorporated into calculations.

Counting also applies to entities such as atoms or molecules. 
The average number density n of molecules in a given volume 
is the number of molecules M divided by the volume V

 
M=n
V

, (31)

which in the current SI has units of m−3. However, this is 
another case where specification of what the density refers 
to is useful. This would make the number density consistent 
with other forms of density, such as mass density or charge 
density, which have units of kg m−3 and C m−3, respectively. 
For number density, the unit should be mcl m−3, which fol-
lows naturally when M has the unit mcl, where mcl is the 

Table 2. Quantities involving rotational motion and their units.

Quantity   Equation   Units

Angular velocity ω θ=
t

d

d
rad s−1

Angular acceleration α ω θ= =
t t

d

d

d

d

2

2
rad s−2

Velocity R R
θ ω= = =v

s

t t

d

d

d

d
m s−1

Moment of inertia R=I m 2 kg m2 rad−2

Angular momentum Rω ω= =L I m 2 J s rad−1

Torque N = Iα J rad−1

Energy
ω=E I
2

2

J

Centrifugal force R
R

ω= =F m
mv

c
2

2

N rad
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suggested unit for the number of molecules. For macroscopic 
numbers of molecules or atoms, it is convenient to use the unit 
mole or mol, where

 = … ×1 mol 6.02 10 ent,23 (32)

where ent is the suggested symbol for entity. This expression 
makes it clear that the mole, which is the unit of amount of 
substance, is not just a number, but a number of entities. This 
relation can be used as a conversion factor between number 
density and molar density, which differ only in their units. As 
an example

 
= × =

… ×
×

=

n 2.5 10
mcl

m

1 mol

6.02 10 mcl
2.5 10

mcl

m

42
mol

m
.

25
3 23

25
3

3 (33)

The presence of units makes the conversion more clear than it 
would be if the unit mcl were absent from equation (33) as the 
current SI prescribes, and for polyatomic molecules removes 
any ambiguity about whether atoms or molecules are being 
counted.

A list of suggested unit names for events and entities is 
given in table 3. Other items can be named as needed.

6. Fundamental constants

Fundamental constants are parameters in the equations  that 
describe physical phenomena and have the units that are nec-
essary for dimensional consistency. The CODATA recom-
mended values and units for the constants [10] are based on 
the conventions of the current SI, and any modifications of 
those conventions will have consequences for the units.

For example, the equation

 ω= ℏE (34)

relates E, the energy of a photon, with its angular frequency ω. 
These quantities are related through the Planck constant ℏ, and 
for the equation  to be dimensionally consistent, taking into 
account the modifications of the SI under consideration, the 
unit of ℏ must be J s rad−1, or more suggestively, J/(rad s−1). 
This is in contrast with the CODATA tabulated value for ℏ 
which has the unit J s. Similarly, the equation

 ν=E h , (35)

where ν is the photon frequency in hertz, implies that the 
unit for h is J Hz−1. Both J s rad−1 and J Hz−1 reduce to J s 
in the current SI, but they are distinct when units are treated 

consistently. The two expressions for the photon energy for a 
given frequency imply

 ω νℏ = h , (36)

and together with equation  (16) lead to the conventional 
relation

 
π

ℏ =
−h

{ }
{ }

2
,J Hz 1

(37)

between the numerical values of the Planck constant expressed 
in different units. One often sees

 
π

ℏ = h

2
,

?
(38)

but as before, when equation  (38) is treated as an equality, 
what is meant is equation (37).

Another basic constant involving ℏ is the reduced Compton 
wavelength of the electron �C given by

 � = ℏ
m c

C
e

(39)

which has the units

 � = ℏ = −
m c

[ ]
[ ]

[ ] [ ]
m radC

e

1 (40)

consistent with equation (21). Similarly, the Bohr radius a0 is 
related to the reduced Compton wavelength by

 � α= a ,C 0 (41)

where α is the dimensionless fine-structure constant, so that

 = −a[ ] m rad ,0
1 (42)

which is consistent with the use of the angular radius of cur-
vature for mechanical rotational motion. For the Rydberg con-
stant, the definition

 
α
π

=∞R
a4 0

(43)

suggests the units

 =∞
−R[ ] cyl m 1 (44)

in order to be consistent with the Rydberg formula

 
⎛

⎝
⎜

⎞

⎠
⎟

λ
= −∞R

n n

1 1 1
.

1
2

2
2 (45)

A corresponding angular version of the Rydberg constant is 
given by

 
α=∞R
a2

,
0

(46)

with units rad m−1, where

 π=∞ ∞R R{ } 2 { }. (47)

The expression for the fine-structure constant α in the current 
SI is given by

 α
π

=
ϵ ℏ
e

c4
,

2

0
(48)

Table 3. Quantities involving counting and their unit symbols.

Quantity   Unit symbol

Events evt
Number of counts cnt
Number of decays dcy

Entities ent
Number of molecules mcl
Number of atoms atm
Number of particles pcl
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where e is the unit charge and ϵ0 is the vacuum permittivity 
(electric constant). The ℏ in that expression may be seen to 
arise from the form of electromagnetic interactions in the 
Schrödinger equation as follows. For the hydrogen atom

 
⎡
⎣⎢

⎤
⎦⎥

ψ ψ+ =p
x x x

m
V E

2
( ) ( ) ( ) ,

2

e
(49)

where ∇= − ℏp i , V(x)  =  −  e2/(4πϵ0∣x∣), ψ(x) is the wave 
function, and E is the energy eigenvalue. If the coordinate is 
written as a dimensionless factor times the reduced Compton 
wavelength of the electron = ℏ∼x x m c/ ( )e , then the equation is 
of the completely dimensionless form

 
α ψ ψ∇− −

∣ ∣
=∼

∼ ∼
∼ ∼∼ ∼
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(50)

where =∼
E E m c/ e

2 and ψ α ψ ℏ∼∼ x xm c( ) ( / )e . However when an 
inverse radian is included in ℏ, equation (48) must be modified 
in order for α to be dimensionless. This can be done, although 
not uniquely, by using the freedom in the definition of elec-
trical quantities as discussed by Jackson [11] in his appendix 
on units and dimensions. If replacements to the definitions of 
the unit factors given by k1 → k1/rad and k2 → k2/rad are made, 
then there is no change to the SI form of the Maxwell equa-
tions other than the modification of the units of ϵ0 and μ0 to be

 ϵ =
ℏ

= − −
⎡
⎣⎢

⎤
⎦⎥

e

c
[ ] C J rad m .0

2
2 1 1 (51)

and

 = ℏ = − −⎡
⎣⎢

⎤
⎦⎥e c

[μ ] kg m rad C0 2
1 2 (52)

where μ0 is the vacuum permeability (magnetic constant).
We now turn to constants related to counting. The Avogadro 

constant NA is the number of entities in one mole which can 
be written as

 = … × −N 6.02 10 ent mol ,A
23 1 (53)

in accord with equation (32). Evidently, this constant can be 
viewed as the conversion factor between entities and moles. 
It also provides the relation between the molar gas constant 

= …R 8.31   J mol−1 K−1 and the Boltzmann constant k, which 
is thus given by

 = = … × − − −k
R

N
1.38 10  J K ent .

A

23 1 1 (54)

Similarly, the Avogadro constant relates the Faraday constant 
F = 9.64… × 104 C mol−1 to the unit charge, which can be 
written as

 = = … ×  − −e
F

N
1.60 10 C ent .

A

19 1 (55)

Evidently, this expression allows for an explicit conver-
sion between number density and charge density, which 
takes the form [ρ] =  [C m−3] =  [en], with n as defined in 
equation (31).

Table 4 gives a partial list of fundamental constants that 
are affected by the explicit expression of radians or entities; 
the pattern for including such units in other constants where 
appropriate should be clear. On the other hand, the majority of 
constants remain unchanged.

7. Conclusion and recommendations

Modifications of the SI to eliminate the incoherence that 
results from dropping so-called dimensionless quantities 
have been identified and discussed. There is some lati-
tude in how the modifications might be taken into account 
by users of the SI. However, one conclusion that is not 
optional is that the unit hertz cannot be regarded as a 
coherent unit of the SI, in contrast to its designation in the 
current form of the SI, where cycles are ignored and Hz 
may be replaced by s−1.

At the same time, we have shown that the unit radian 
can play a useful role in providing consistency of units and 
should be regarded as the coherent unit for angles in the SI. 
Therefore, we recommend that quantities involving rotation, 
angles, or angular frequencies be reported including radians 
as a unit. However, we do not recommend that one change 
the common practice of writing expressions like cos ωt to the 
more pedantic form of cos {ωt}. It would be too disruptive 
to make it a requirement of the SI to distinguish between an 
angle and its numerical value.

For units involved in counting, the prevailing practice is 
to include them in expressions for such quantities. This is 
in contrast to the current SI, where they are omitted. Here 
a consistent formulation for the use of such quantities is 
provided.

With regard to fundamental constants, publications of the 
CODATA Task Group on Fundamental Constants are based 
on the current SI [10]. We recommend that future listings 
of values of the fundamental constants give complete units, 
including radians and counting units in order to provide a 
guide for a consistent use of the constants, particularly by 
computer programs that include units. Users of the constants 
may still choose to omit either radians or counting units, but 
including them in the listed values would encourage users to 
use them coherently if they choose to.

Table 4. Fundamental constants and their units.

Constants   Symbol   Units

Reduced Planck constant ℏ J s rad−1

Planck constant h J Hz−1

Electron reduced Compton  
 wavelength

C� m rad−1

Electron Bohr radius a0 m rad−1

Rydberg constant ∞R rad m−1

Vacuum permittivity  
 (electric constant)

ϵ0 C2 J−1 rad m−1

Vacuum permeability  
 (magnetic constant)

μ0 kg m rad−1 C−2

Avogadro constant NA ent mol−1

Boltzmann constant k J K−1 ent−1

Elementary charge e C ent−1
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