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ABSTRACT
DYNAMICAL REARRANGEMENT OF SYMMETRY
Giuseppe Vitiello, Ph.D.
University of Wisconsin--Milwaukee, 1974

Under the Supervision of Professor Hiroomi Umezawa

In Quantum Field Theory (Q.F.T.), the invariance of the
theory is expressed as the invariance of field equations
under certain transformations of Heisenberg fields. Since
we are interested in physically relevant entities, we are
faced with the problem of how the original invariance of the
theory manifests itself at the level of observable (physi-
cal) particles. This is the problem studied in the present
work.

In our analysis we start by the fundamental assumption
that the set of physical field operators is an irreducible
set of operators realized in the Fock space of physical
particles. In Chapter I we give an outline of the self-
consistent method in Q.F.T. In this method a mapping (the
dynamical map) is introduced among Heisenberg fields and
physical fields. The role of this mapping in the theory is
fundamental since through it the dynamics described by the
Heisenberg equations manifest its effects at the phenomeno-
logical level. Through the dynamical map we can thus
express the Heisenberg field operators in terms of infields

by collecting all the matrix elements of Heisenberg



operators. In Chapter II, we show that this expression
takes a simple form when we use the path-integral to express
matrix elements. We then ask what kind of transformations
of infields reproduce the original invariant transformation
of Heisenberg operators. The invariance of the theory
requires that these transformations of infields are such
that they leave the free field equations invariant. When
the invariant transformations of the Heisenberg operators
appear in a different form from that of the infield opera-
tors, we say that a dynamical rearrangement of symmetry has
taken place. It is found that there is dynamical Tearrange-
ment of symmetry when spontaneous breakdown occurs. The
generating functional of the Green's functions is modified
by the addition of an infinitesimal e-term which fixes the
direction of the breaking. Since the dynamical rearrange-
ment of symmetry concerns the general structure of the
theory, we generalize our study to relativistic as well as
to non-relativistic problems. In each of them the

Goldstone theorem is proved and the role of the massless
Goldstone particles in recovering the invariance of the
theory is analyzed. It is found that these particles under-
go a transformation, the boson transformation, which leaves
the free field equations invarianf. A Goldstone-type model
is studied as an example of a model with Abelian symmetry.
The spontaneous breakdown of SU(2) symmeiry is also investi-

gated. We analyze a relativistic model (iso-triplet scalar



field) and a non-relativistic one (a ferromagnetic system).
In terms of the path-integral method the infield transform-
ations which induce the original SU(2) transformations of
Heisenberg operators are identified. It is found that the
algebra of infield transformations is the E(2) symmetry
group algebra. It is shown that the discrepancy of two
algebras is caused by ‘the local nature of the observation
in which one misses the infrared contributions. When the
total (integrated) infrared effects are considered, the
original symmetry group algebra is recovered. Exact
expressions of symmetry generators in terms of physical
operators are given,

An analysis of the spontaneous breakdown of gauge
theories is also presented. Massless unphysical modes are
found. Their role in recovering the invariance of the
theory is shown.

The dynamical rearrangement of symmetry is analyzed in
the framework of infinite unitarily inequivalent representa-
tions of the canonical variables. The occurrence of such
representations and their physical usefulness is studied
in Chapter III. A Q.F.T. for finite temperature is pre-
sented as an example and an application to superconductors
is given. 1In particular thé temperature dependence of the
critical value of the Ginzburg-Landau parameter which
separates type-II/1 from type-I11/2 is computed. Agreement

with experimental data is satisfactory.



Finally, a self-consistent formulation of the
itinerant electron ferromagnet is presented in the Appendix.
The pair approximation is used and the Goldstone boson
(magnon) is studied as bound state of fermions by means of

the Bethe-Salpeter equation.
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I. INTRODUCTION: THE SELF-CONSISTENT METHOD
IN QUANTUM FIELD THEORY

1.1. The problem.

In the understanding of natural phenomena a central
role has always been played by symmetry principles. This
is due to the fact that very often the discovery of a
symmetry principle means the possibility of a reduction to
a simpler and clearer order among many phenomena or among
many aspects of the same phenomenon, which is, after all,
the task of any science. However, it is not always easy
to recognize such symmetries. The reason for this
difficulty can be understood in the following way: the
fundamental symmetries can be distorted, "rearranged'" when
manifested at a phenomenological level. In particle
physics, for example, the concept of internal symmetries,
by which it is possible to group particles into families
is well known. For example, when Heisenberg [1] classified
protons and neutrons as "nucleons" it was clear that the
underlying symmetry between the nucleons does not manifest
as an exact symmetry, but as a''broken symmetry": the
charge independence is indeed violated by the electro-
magnetic interaction. In general, all the various symmetry
schemes and groupings, which are quite successful, also
appear to be in some way "approximate" symmetry schemes,

i.e. one has to disregard some phenomenological aspects,



e.g. mass differences, which violate certain symmetry
requirements. A way of looking at this situation is to
interpret the observed deviations from the exact symmetry
as a phenomenological distortion or rearrangement of the
basic symmetry. Other examples of rearranged symmetries
are easily found in solid state physics: the crystals
manifest a periodic structure, but do not possess the
translational invariance of the Hamiltonian of molecular
gas. Similarly, in ferromagnetism the original rotational
invariance manifests itself as full polarization and in
superconductivity and superfluidity the phase invariance is
the one that seems to disappear.

The crucial problem we are facing in the recognition
of a symmetry and which is the object of the present study,
is then an intrinsic duality of the description of the
nature: one aspect of this duality concerns with original
symmetries ascribed to "basic" entities, the other aspect
concerns the corresponding rearranged symmetries of
observable phenomena,

This duality in the description of nature was Tecog-
nized soon in the Quantum Field Theory as the duality
between fields and particles. Here, we are not going to
give the historical development of this concept; we
recall only, as an example, how fundamental this is in the
renormalization theory, where the distinction among '"bare"

and "observed" particles is central, i.e. among basic



fields and their "manifestation" in the presence of inter-
action, The approach we will use in the study of the
phenomenon of the rearrangement of symmetry is the so
called self-consistent method of Quantum Field Theory [2-4].
In this formalism the duality concept mentioned above plays
a central role; in fact it is the basis and the starting
point of the method.

In our analysis we will focus our attention mainly on
problems concerning the general structure of the theory.
Thus we will generalize our study to the relativistic as
well as to the non-relativistic Quantum Field Theory. 1In
the present chapter we give a brief account of the self-

consistent method.

1.2. The Fock space of physical particles.

Let us start1 by the fundamental assumption that the

states of a physical system can be represented by vectors

in a certain Hilbert space. Since we are interested in
physically relevant entities, we must be able to choose the
basis of the Hilbert space in such a way that any vector
of the basis is a state of our system of definite number of

physical particles, indeed such a number is one of the

1We will follow the approach for the construction of a
Quantum Field Theory presented by H. Umezawa in his
lectures at the University of Wisconsin-Milwaukee in 1972-
és. In the following we will use the natural units
H=¢c=1.



observables. At this point, however, we must specify what
Wwe mean by "physical particles": consider a scattering
process between two or more particles. We can distinguish
in such a process, a first stage in which we can identify
by convenient measurements the kind, the number, the
energy, etc., of the particles before they interact
(incoming particles); a second stage, i.e. the one of
interaction; a third stage in which again we can measure
the kind, the number, the energy, etc. of the particles
after the interaction (outgoing particles). What is ob-
served is that in such a process the sum of the energies of
the incoming particles is equal to the sum of the energies
of the outgoing particles; we will refer to the incoming
and to the outgoing particles as "physical particles" or
else as "observed" or "free" particles, where the word '"free"
does not exclude the possibility of interaction among them.
It only means that the total energy of the system is given
by the sum of the energies of the observed particles.
Furthermore, in analogy to the Quantum Mechanics, we
require that the energy of the physical particles is
determined as a certain function of their momenta. This
requirement needs some care as we will see later. In solid
state physics the physical particles are usually called
quasiparticles.

Let us now consider the problem of the construction of

the Hilbert space for the physical particles. First we



classify the state of a single particle by the suffices
(i,r), where i specifies the spatial distribution of the
state while r specifies other freedoms (e.g. spin, charge,
etc.). For brevity, we assume we are dealing with
particles of one kind only (e.g. only electrons, or only
protons, etc.). We must use wave packets to specify
spatial distributions, because plane waves like exp(ii-?)
are not normalizable. On the other hand, it is well known
that an orthonormalized complete set of square-integrable
functions {fi(i), i=1,2...} is a countable set. Thus, we
introduce the annihilation operators for particles and

their antiparticles in wave-packet states as

o
I

3 -
jd k £; (B)op
(1.1)

o
It

3 =
Jd k £, (K) 8y

where the orthonormalization condition for square-integrable

functions of fi(ﬁ) is

3, o* e _
fd k fi(k)fj(i) = 835 - (I.2)
Here fi(f) are the Fourier amplitudes of fi(;). In (I.1)
we omitted for brevity the suffix r, and we introduced the
annihilation operators o and Bi for physical particles

and their antiparticles of momentum i, with (anti-)



commutation relations:

(o, ofl, = 8CR-1)
(I.3)

By, 631, = 6 (k-)

and all other (anti-)commutators zero. As is well known
we have anti-commutation relations for fermions, and

} ) T +
commutation relations for bosons. ay and BE are the

hermitian conjugate of ay and BE'

Similarly, for e, Bi we have:

[}
On

.i..
(I.4)

+

and all other (anti-)commutators are zero. Then we assume

the existence of a physical vacuum state | 0> defined as

a;[0> =0

(I.5)

si|0> = 0

The Hilbert space of physical particles is now cyclically

Pt

constructed by repeated applications of @;, B; on [0>:

toT
cojoy — laiaj S



where c is a normalization constant.
In the following we consider for simplicity the oper-
ators a; only. By using the previous definitions, and

introducing the number operator Ni:

- T
Ni - aiai ’ (1'6)

we can write:

. ce > = /I, ceen,-1,...>
allnl, n n; |n1, n. -1,

ire

T
ailnl,... Niyyeo> = /ni+1 |nl,...ni+1,...> (I.7)

- LI - OII> = - *® ¢ w hd ‘..>
Nllnl’ ni» nllnl’ n .
where ]nl,...ni...> is a member of the orthonormalized

basis of our Hilbert space {]nl,nz...>}:

<n!,nY,...[ny,n,,...> = § 8 cee (1.8)
1°7°2° 1°72¢ nin1 nén2

Any other state of the system is a superposition of these

states

£ = n; c(ny,ny,..)|np,n .00 (I.9)
1

We used a simplified notation, where Inl,nz,..> means a

state of the system where n, particles are in the state



O

L associated by some rule to a given couple (i,r). In this
notation the vacuum [0> is |0,0,...>. n; can be any non negative
integer for bosons;0 or 1 for fermions. In this latter

case (I.7) give

]
<

- *® & w0 - '..> L 0 for -
allnl, n;, ng

(1.10)

[}
o

1l
e
.

aI[nl,...ni...> for n,;
Note that (I.7) and (I.10) are consistent with (I.3) and
(I.4). One can also prove that the vectors of the Hilbert
Space so constructed are fully symmetrical states in the
case of bosons and fully antisymmetrical states in the case
of fermions. Furthermore, we note that by repeated
application of s (and Bi) we can move from one member to
another in the basis {Inl,nz,...>}; however the operators
ag {and Bﬁ) do not map normalizable vectors on normalizable

ones, due to (I.3); indeed
+ 2 +
|ai]0>[ = <0]ai a§|0> = 6(3)

which is not finite. Before considering the problem of how
the annihilation operators ay and Bi operate on the vectors
of the Hilbert space, let us consider in more detail the
mathematical nature of this space.

We introduced the set



{[nl,nz,...>} (I.11)

and we used it as a basis of the Hilbert space (cf. eq.
(I.9)). If we require that our space must be a separable
Hilbert space, it is not correct to use the set
{Inl,nz,...>} as a basis, because it is not a countable
set. To prove this, let us consider for simplicity a
fermion system. Then, n; can assume only the values 0 or

1. Then, we consider the set of numbers
{O.nlnz...} » (1.12)

where n; -can assume only the values 0 or 1. Using the
binary system, we see that the set (I.12) covers all the
values smaller than 1, i.e. it is a noncountable set, On
the other hand, there is a one-to-one correspondence
between the set (I.12) and the set (I.11) and thus we
conclude that the latter is a noncountable one. Since the
set (I.11) for bosons is larger than the one for fermions,
in the case of a system of bosons the set (I.11) is also
not countable. To remedy this situation, let us observe
that it is very likely that we do not need states which
contain an infinite number of particles. The number of
particles can be as large as we want, but does not need to
be infinite. We introduce then a subset of (I.11) as

follows:
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{|n1,n2...> ) g n; = finite} . (I.13)
This set contains the vacuum |0,0,...>, but does not con-
tain states like [1,1,1,...> where n; =1 for all i.

We want to prove now that the set (I.13) is countable.
Consider the state Inl,nz,...> belonging to the set (I.13),

Since this state contains only a finite number of parti-

cles, there is an integer number 2 for which

n. = 10 for 1 > g
(I.14)

Then, to each vector of (I.13) we can associate two
numbers, i.e. £ and N = n;. For each product 2N, there
exists only a finite num;er of vectors in the set (1.13),
because for each &N we can distribute a finite number of
particles only in a finite number of states. This means
that we can label the vectors in the set (I.13) as Ea’ with
a =1,2,... in such a way that &N is not decreasing for a
increasing. The set (I.13) is thus countable. Now, we

can consider a linear space HF defined by

ey
b5 |
n
—t—
|y
1]
0t~ 8

2 -
. c £, glcal = f1n1te} . (I.15)

HF is separable because the set {ga} is countable. If

and E are vectors of HF
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-] o 2 . .
t = ] c.E_, I Jec.|° = finite (I1.16)
T a=1 #7° a=1 @
(=] w 2 . .
E= 7§ bg , ¥ |b_|° = finite , (I.17)
T a=1 R a=1 @2
the inner product is defined as
*
(2,8) = [ c,b, (I.18)
a

where we used the fact that {ga} is an orthonormalized set:

[
O

(ga'gb) = Cab

Since

= (£,8) = ] |c,|? = finite ,

the vectors of HF have finite norm. The linear space HF is
called the Fock space of physical particles,.

Now we come to the problem of how the annihilation and
creation operators operate on HF'

Let us assume that the particles under consideration
are bosons. The argument can be easily extended to the
case of fermions. Let us introduce the operators a; and P;

defined as
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94 = — (ai +GI)
(I.19)
| T
They satisfy the canonical commutation relation
[C{I,Pj] = 161:’ . (1020)

Since we are considering a finite number of particles (cf.
e.g. (I.13)), the present situation is very similar to

that in Quantum Mechanics. 1In particular the Hilbert space
in consideration is the oscillator realization of the
canonical variables q; and P;- We know that it is a
complete space and we can use the well known "unitarization"
and "extension" procedure in which one needs to consider

the operators

Uj(U) exp[lcpj]

(I.21)

1]

Vj(c) eXPtlcqj]

instead of P; and Qi3 © is a real parameter. To summarize
briefly this procedure, we consider the set D of all the

finite summations of basic vectors of HF:

D = {£§DJ 3

I} 122

c.E N finite} . (I.22)
a=1] a-a g

The set D can be proved to be dense in HF’ i.e. it is
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characterized by the following properties:
- every vector of D belongs to Hg.
- every vector of HF is either a member of D or

limit of Cauchy sequence of vectors in D.

The last property can be expressed as

£ = lim ¢ (I.23)

N-+eo

where £ is a vector of HF’ We introduce then

M
U‘;‘(o) )

2 (icpj)n (1.24)

n=0

where M is a positive and finite integer. Note that the
action of any power of oy and aI on a vector of the basis
gives another vector of the basis. Thus, the action of any
finite power of pj on vectors in D creates a superposition
of finite number of vectors in D, which is still a vector
of D. Then it can be proved that the sequence of vectors
U?(c)gén) has a limit for M + o; thus, we define the

operation of Uj(o) on D as
(D) _ i M (D)
Uj(UJEN éiﬂ Uj(o)gN .

Due to the unitarity of Uj(c),



14

lUj(G)ggl = legl (I.25)

from which we conclude that the operator Uj(o) is bounded,
and therefore its definition can be "extended'" on the whole
He in the following way: 1let £ be a vector of Hp; if it is
a vector of D, the action of Uj(c) on £ is well defined.

If £ is not a vector belonging to D, we can find in D a
Cauchy sequence {g&D)} whose limit is E; then, we define

the action of Uj(c) on £ as
Uj (@)g = Lin Uj(o)§£D) . (I.26)
00

In a similar way, we can define the action of Vj(o) on HF’

We therefore conclude that the Fock space of the physical

particles is a representation of the unitary operators

Uj(o) and Vj(o) with j=1,2,... We also introduce U(o) and
V(c) as
_ = (=] <
U(c} = exp|i [ o.p-
j=1 77
3 - (1.27)
V(o) = exp|i [ o.q.| ,
L j=1 7]

where we assume that only a finite number of cj are not

zero. The operators U(¢) and V(g) satisfy

U(a)U(t) = U(a + 1) (I.28)
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V(a)V (1)

V(o + 1) (I.29)

U(a)V(T) = expl[ic-T)V(T)U(a) , (I.30)

where (o+1) = ) (cj-Prj) and -1 = J 94Ty The relation
J j

(I.30} reflects the canonical commutation relation (I.20).

We observe that the knowledge of U(G) and V(&) can tell us

about pj£ and qjg, respectively, whenever such vectors

belong to HF. Indeed
PjE = -i[H%T U(&)JE (I.31)
J &=0
a6 = -i[agT V(G)Jg . (I.32)
J g=0

Our next observation is that the Fock space introduced
so far is an irreducible representation of the canonical
variables qj and pj, i.e. of the annihilation and creation
operators of physical particles [1,4,5]. In other words,
any operator which commutes with U(c) and V(o) is a
multiple of the identity operator. First, we can see that
a vector g of HF is the null vector, i.e. £ =0, when and
only when all the coefficients C, (cf. e.g. (I.16)) are
zero; one can see this from

(§,:8) = ¢, ,
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by using the orthonormality of the basis {Qa}. Then, by
using (I.5), we find that, if £ is a vector of HF’

a.E = 0 for all i ,
when and only when
£ =1clo,0,...> ,

where ¢ is an ordinary number. If A is an operator which

commutes with q; and P; for all i, i.e. with ay and aT for

i
all i, then

a;A10,0,...> = Aa.[0,0,...5> = 0,
A[0,0,...> = c|0,0,...> ,

with ¢ an ordinary number. Since any vector of the basis

(I.13) is constructed by repeated operations of aI, e.g.

n n
Inysngs..> = £(ng,n,,...0) (o) L 2. 00,0,.. .5,
(1.33)

with f(nl,nz,..) some function of n;, we have

Alnl,nz,...> = Clnl’n2""> ,

i.e., using (I.15),



7

AE = cg

for any £ in HF' This means that A = cI with I the
identity operator.

Let us note how the description of a system in terms
of physical particles naturally leads to canonical varia-
bles whose irreducible representation is the above defined
Fock space. As we will see in Chapter III, there exist
infinitely many inequivalent representations of the
canonical commutation relations, i.e. there are infinitely
many Fock spaces which are unitarily inequivalent to each
other [5]. This situation is peculiar to Quantum Field
Theory: here we deal with an infinite number of canonical
variables, contrary to what happens in Quantum Mechanics,
when one has a finite number of variables only. For this
reason, Von Neumann's theorem (6], which insures the
unitary equivalence of all representations of canonical
variables in Quantum Mechanics, cannot be applied to
Quantum Field Theory. 1In Chapter III, we will analyze this
problem in more detail. Here we want only to illustrate
the present situation by recalling that in our construction

of the Fock space we started by choosing in the non separable

Hilbert space whose basis is the noncountable set (1.11),
a separable subset whose basis is the countable set (I.13).
The root of existence of infinitely many inequivalent

representations is in the complete arbitrariness of our



18

choice: there are indeed infinitely many ways of choosing
a separable subset from the original non separable Hilbert
space.

As we will see, the fact that the Fock space of
physical particles is an irreducible representation of the
canonical commutation relations, and the existence of
infinitely many inequivalent representations of the
canonical commutation relations, plays an important role in
our analysis. Let us now rewrite our statements about the
energy of a state of the system in the language of the Fock

space. We consider a one-particle wave-packet state

1]

+ 3 *>. T
a;|0> jd k £; (K)ag|0>
Then, we introduce the energy operator Ho by requiring

Hoall0> = stk E, £, (k)a lo> . (1.34)

Since this should be true for any square integrable

function fi(f), we have
H ai]0> = E, op[0> . (1.35)
Thus, for a many-particle System

Hoa% ...a% [0> = (Ek +...+Ekn)a% R

0> . 1,36
1 ainl ( )
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Since Ek is real, we require that Ho is self-adjoint

T2
Ho = HO g (I.37)

From (I.36) and (I.37) we can derive

T
H,,ed1 = By op
(I.38)
[Hy,ag] = -Ey o -
From (I.36), for n=0, we find
H0|0> =0 . (I.39)
Putting
H =7 [a3% E, o3Tal + H (I.40)
0 r k "k "k 1 )

where we restore the suffix r, (I.39), (I.38) and (I.3)
give H1 = 0. Thus,
- 3 +r t
H, = E jd k Ey(op ag + BE BE) (I.41)

where we considered the operators B%, B%Talso. (I.36) and
(I.41) give exact meaning to the statement that the total

energy of a system is given by the sum of the energy of the
single "free" particles (cf. also (I.6) for the définition

of the number operator).
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In a similar way, we can introduce the momentum opera-

tor ﬁ as
0
Bo=] fd3k K(ef o} + 8378%) . (1.42)
T

Note that, although the operators Ho and 30 are well

defined only on the dense set D, the operators

exp[iHot] (I.43)
and

exp[iﬁoi] , (I.44)
with real t and §, are well defined on the whole HF' Let

us introduce the 'physical field" ¢(x) defined as

. .
¢p(x) = Jzzg;§7z [?(i)ai e L

m
-ik-X+iE, t
fvhef e K J :

(I.45)
In general, ¢ is a one-column matrix. The fact that the
energy Ek of a physical particle is a certain function of
its momentum means that the physical field ¢ (x} must solve

a linear homogeneous equation:

A(3)p(x) = 0 . (I.46)
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The differential operator A(3) is in general a square
matrix. The "wave functions" u(f) and v(ﬁ) are solutions

of

A(iKu(k) = 0 for k

AC-ik)v(k) = 0 for k

]
tT

4 k (I.48)

with ku = (f, iEk). The field ¢(x), as a superposition of
u(?) and v(i) represents a general solution of (I.46). In
relativistic theories the equation (I.46) always admits
solution of negative and positive frequencies. In non-
relativistic theories (e.g. solid state physics) the equa-
tion (I.46) can admit solutions of negative frequencies
only (i.e. there can be no wave function v(ﬁ)). The
equation (I.46) is called the free field equation. Since
we are not going to study the equation (I.46) in detaiil,
only the normalization of the wave functions are given

here:

E.3iE
uf(x) = u'(%) e -
(1.49)

1
<
]
~
=4
L
4]
-~

v (x)

*

l.e.
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Jd3x ui?x)r4(a,-§)v§(x) =0
-Jd3x u%T(x)F4(a,-5)u§(x) = arsa(K-I) (I.50)

-Jd3x v{*(x)r4(a,-§)v§(x) xarsaci-E)

where + is for fermions, - for bosons and the differential

operator P4(B,-§) is uniquely determined by A(a)z (71.

1.3 The Heisenberg fields and the dynamical map.

In section 1.2 we introduced the concept of free
field as one of the aspects of the duality in the descrip-
tion of nature. In the present section we introduce the
other aspect of this duality, namely, the concept of
Heisenberg field.

Although the physical particles undergo interaction
processes, the language we set up in section 1.2 cannot
describe such dynamical effects; the free field equations,
in fact, do not contain any information about the inter-
actions. Thus, we see that we need another source of
information to describe the dynamics of a physical system.

We assume the existence of basic entities, the Heisenberg

2For example, F4(3,-§) =Y, for the Dirac field and
P4(3;5) = 1'3; for the scalar field. Note also that in
(I.50) ui+(x) and v%*(x) are used for simplicity in place
of G%(x) = uif(x)n and V%(x) = v§+(x)nwhere n is the so
called hermitization matrix [7].
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fields, which satisfy basic relations characterizing the
dynamics, namely, the Heisenberg equations. Denoting the
Heisenberg fields by {wi(x)}, we can formally write the

"Heisenberg equations' as
g €q

Ay (39, (x) = F(y; (x)) (I.51)

where Ai(a) is a differential operator and F is some
function of {wi(x)}. (I.51) can be written in such a way
that Ai(a) can be made equal to the differential operator
in the free field equation for ¢ (cf. eq. (I.46)). The
Heisenberg equations describe the dynamical properties of

our system. Let us stress, however, that the equation

(I.51) is only a formal relation among the fields wi(x)
unless we define their operational meaning, i.e. unless we
specify the vector space on which they operate. In a
traditional approach to Quantum Field Theory, the Heisen-
berg field operators are defined on a Hilbert space which
is the Fock space of the so called "bare" particles. It is
well known, however, that such a space is unitarily inequi-
valent to the Fock space of physical particles [4,5). On
the other hand, since we can observe only physical
quantities, any kind of useful description of a system must
be related to such physical quantities. In the present
formulation, the only space we consider is, then, the Fock

space of physical particles. To give a physical meaning to
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the description in terms of the Heisenberg fields, we
introduce a mapping between such a description and the

description in terms of physical fields. For this reason

we require that the operators ¢i(x) must have well-defined

matrix elements among states of the Fock space of physical

particles Hp. Then we can read equation (I.51) as an

equation among matrix elements.

To express mathematically the mapping between the two
language levels we use in describing our system, we intro-
duce the so called dynamical map [2-4], i.e. an expression

of the Heisenberg field in terms of physical fields ¢j(x):

= 5 4 4
b0 =g 2000 +jzkjd HLARANCNINS

_ 4, {4, (.4
UICRINCAEE ng ey fate,fates £, 06500

95 (E1)0) (B0, (E5): +... (I.52)

where j,k,%... are indices for different physical fields,
X3 is a c-number constant, which is zero unless wi(x) is a
spinless field,3 Zij is a c-number constant called the
renormalization factor, the symbol :...: denotes normal
product, ¢ stands for both ¢ and ¢+, fijk(x,gl,gz), etc.

are c-number functions, and the dots denote terms which

3Intuitively, X3 is related to the square root of the
density of the “boson condensation.
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contain higher order normal products. We will refer to Xj >

Z fijk’ etc. as the coefficients of the dynamical map.

ij?
We now clarify the meaning of (I.52). Let us start by

saying that the equality in (I.52) must be read as an

equality among matrix elements between states of the Fock

space of physical particles, i.e. (I.52) is not an equality

among field operators, but an equality among matrix
elements.4 We will call such kind of equalities weak
equalities (or weak relations). Since {wi(x)} are defined
by the dynamical map (I.52), which is a weak relation, then
the Heisenberg equations (I.51) must also be read as weak
relations. In (I.51) we can have products of fields y(x).
Thus, we define these products through the dynamical map by

the following rule:

4 4 . .
L?Jd g, [ae, fijk(x,el,az).cpjcal)¢k(sz).] .

X [2ijd4cljd4c2 f;m(y,cl,cz):éz(clmm(cz):]

4 4 4 4

:¢j(g1)¢k(£2)::¢2(C1)¢m(C2J: (I.53)

etc.

4The presence of normal products in (I.52) is due to the
fact that we are indeed interested in the computation of
matrix elements.
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However, since products of y at a same point (x =y) may not

be well defined, we need certain limiting procedures as

lim ¢(x) ¢ (x+e) (I.54)
e>+0

- where the 1limit €+ 0 must be taken according to well-

specified rules. When (I.53) (together with well-specified
rules for same-point products) is used, we can calculate
matrix elements of products of wi(x) by calculating the
well-defined matrix elements of the right-hand side of
(I.53). Here we recall (cf. Sec. 1.2) the fact that matrix
elements of physical fields are well-defined for states
belonging to the set D dense in HF’ and by unitarization
and extension procedures, for states belonging to the whole
HF.

Let us observe that there is no problem of convergence
of the summation on the right hand side of (I.52) because
all the normal product terms are linearly independent.

To better specify the nature of (I.52) we need to
choose a particular class of physical fields {¢j} among the
infinite classes of such fields unitarily related to each
other. Our choice here and in the following will be that of
the incoming fields {¢§n}. As a consequence of this choice,
the coefficients in (I.52) must be of retarded nature,

i.e. the domain of time integrations in (I.52) must be from

-® to t . This is equivalent to requiring that the



27

physical incoming fields affect the Heisenberg fields wi(x)
only from the past.s We can see, then, that time integra-
tions in the dynamical map are well-defined only when
contributions from t +-« vanish; and this shows that in
taking the matrix elements of the terms of the map, it is

essential that the states are not plane-wave states, but

are wave-packet states (cf. eq. (I.1)).

To make this fundamental point more clear, let us
assume translational invariance in (I.52), i.e. let us
assume that the translation gu-+gu-+au in the physical
fields (we consider, as we said, incoming fields) {¢in(5)}
induces the translation xu-ncn-hall_l in the Heisenberg fields
wi(x). In general, the retarded functions fijk(x,gl,gz),

etc. will depend on the differences X-£ys X-E,, etc., and

we write them as
fijk(x-gl’x_E;Z) = e(tx_t‘g’l)e(tx-th)Fljk(x-El ’X-E’Z) (I' 55)

etc.
We consider now the matrix element <0[¢i(x)|a2an> as

an example. Introducing the Fourier form of Fizn(x'gl’x'EZJ

5A unitary transformation will leave the dynamical mapping
unaltered, while the coefficients of the map will be ¢
affected. If one would choose the outgoing fields {¢?u }

as physical fields, then the coefficients must have advanced
nature. We are assuming here the existence of a unitary

operator, the S-matrix, which transforms ¢1n o ¢OUt (cf.

(I1.80)).
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as

Fion(X-£psx-8p) =
(I.56)

1

4 (1) [,4_(2)
) [d D [d p Filn(pfl)P(ZJ)expl}ﬁi)(x_gl)u + ip(z)(X*Ez)u]:

en® Jen?

with p x 2 p-X - E t, and using (I.1), (I.45) and (I.49),

(I.52) gives:

fa%s (1) [44,02) (43, (1) (43, (2)

= |4 fdp - |dk " |47k
0fv. > = 77 72
O legey l(ZwJ4 J(2n34 J(2w)3 [(2v33

Fipn @08 u @@y, (2

.+(1) -+ .
>(1) (2) (%% q4, (*x 4, K78 et
£, (k¢ )£ (k )J_ ale, j_ d'e, e

-] L)

.Ez-imztz ipﬁl)(x"51)u+ip£2)(x"gz)u
e

t (£ <+ n)-term (I.57)

Where (%2++n)-term means the term obtained by exchanging g

with n; + is for fermions, - for bosons, W1(2) * MKI(Z)
t1(2) means tgltgz)' Now, we note that the relation

iEt

t ] oiEt
JdE j_m dt, £(E) e = JdE £(E) 17g

- (I.58)
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holds whenever f(E) is a square-integrable function; indeed,
when f(E) is a square-integrable function, due to the
Riemann-Lebesque theorem, we have
iEt1
lim JdE f(E) e =0 . (I.59)

t,+te

1

(I.58) and (I.59) also give

iEt
lim jdE £(E) — =0 (I.60
formoo 1iE-1ei )
and
iEt
1im JdE £(E) =—— = 27£(0) (I.61)
L++eo 1(E'l€)

In (I.58-61) the limit e-++0 is
As an extension of (I.60)
retarded function, its Fourier

written as

F(E) = 1lim F(E-ie)
g++0

with F(E) an analytic function

complex E.

understood.
we can say that if F(t) is a

transform F(E) can be

in the lower half plane of

By using (I.58), (I.57) gives:
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_ 1 2 d 'k d k
<0y (x) logo > = 'Jff*TJtz“jJ(Zw)S’ZJCZﬂJS/Z

1gn(k(lj El’E(ZJ’EZ)U(E(I))fQ(ﬁ(l))

1(f(1)+f(2)}§ -i(m1+w2)tx

e

2
u(k( ))f (k ) (El-wl-ie)(Ez-wz-ieT

t(2«=>n)-term . (I.62)

when Fyp (R e i gy« p o) 5Dy i 30

E(l), pgl) = iEl, 5(2) = ﬁ(z) and p£2) = iEz. As usual the

limit e++0 is understood. In a similar way we have

dE) [dE, [43, (1) (43, (2)
By l¥; () o> = (Zn) (zn7 (2 )3/2 377

(2w)

R e R ) v &My (k)2 (D)2 k(2D

1£n

i(-kD.x(2y .3 JLlugruplty

€ (Ey*w,-1e)(E, a0, 1e)

*
t (v+-u, f2++fn, Wytrwyg, m2++-m2)-term (I.63)

and
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i [d4k(1) [d4k(2) Jd4k(3)

Byl () |e o > = an’) 03 an 2 o372

F (-k(l),kfz),k(3)) V(i(l%f:(icl))U(ﬁ(z))fn(i(zJ)

ignm

i (-E (1)L (2),303)5 .2
u kg, @) & o

el(wl-wz-ws)tx
(E1+ml-ie)(Ez—wz-ie)(ES-ws—ie)

+ ... (I.64)

where Fignm(-k(l),k(z),k(3)) is the Fourier amplitude of
- B} - . (i) _ ;

Fiﬂnm(x El,x Ez,x 53) with k4 1Ej

terms where suffices are exchanged. Thus, we see how all

, and the dots denote

matrix elements of wi(x) can be obtained from (I.52).

Further examples are:

<OlwiCX)l0> =X (1.65)
_ ok

<0|¢i(x)|aj> = zij uj(x) (I.66)

<Bj[wi(x)]0> = zgj vj(x) (1.67)

etc.

where we used (I.49). There is no summation on repeated

indices, and
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u, (x) = J&—:% £; (Kup(x) (1.68)
In the previous examples, besides the fact that it is
essential for states to be wave-packet states, we see that
the time dependence of the Heisenberg fields (which means
of the matrix elements of the Heisenberg fields) is con-
trolled by the free energies; indeed the energy-like
wytw, (cf. (I.62)) is nothing but the balance of energies
of the initial and final free states. In this connection,
let us study the limits t-te of (I.52). As usual, the
relations and the limits we consider are weak ones, 1i.e,
relations and limits of matrix elements.

(I.65) and (I.66) show that

Lim (4300 - x; -] z3 0" 00) = 0 (1.69)

t+-m
Indeed, due to the retarded nature of the coefficients
fijl"" the limit t+-« excludes higher order terms (cf.
eq. (I.57)).

As in the LSZ method, we introduce
ag i (8) = - (20)°[a%% ul )T, (8,-8) (ps (x)-x. ) (1.70)
ij j 4> i Xi/ - :

The field (wi(x)-xi) is also called the interpolating field.
Use of (I.68-70), (I.45), (I.50) and (I.1) gives

. X
lim a;.(t) = 2%, o™ (no summation on i) (1.71)
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This shows that the interpolating field approaches (weakly)
the incoming field at t+-=, Note that once more the use of
smeared functions is essential: the linmit (I.71) would be
meaningless otherwise. To study the limit t++w of a, (t),

we note that (I.61) gives

iEt
. e _
Un rrpgey = 276 (E) . (1.72)

(I.63) gives:

dE, (dE 3.(2)
<BE|aij(t)lan> = (Zn)s[ff%f[ i [d3k(l)[?2:)

f;(_ifl)+ﬁ(2)) uf(-f(l)+ﬁ(2))F4(i(—k(13+k(2)),-ik)

12 (- k(l) E K(Z) ,E ) V(f(l))f (K(l)) (E(Z))f (K(Z))

i(wtw,~w,)t
1 2 X *
E . + (v++u f +~+f w.«+-w..w ++-u,, )
(Bl+w1-le)(52-w2-le) - r e n’l 1°72 2

(I.73)

where k(1) - (ﬁ(l),imi(l)), k(2) o (i(z),imK(ZJJ,
k= k(2 44, o = 0p(2), wy = wp(2), w = wp(l)_p(2)

Due to the argument given after the equation (I.61),

we can write
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1£n (1) +(2)
FD g 3@ gy o Bk B
Zni(w-El—Ez-ie)

12n

k(2 k) (1.74)

where the c,-term does not contain the factor 1/(w-E1-E2-ie).

Now, use of (I.74), (I.72) and (I.59) in (I.73) gives

lim <B, |a. (t) a_> =
t+oo RI l n

3.(2) 4
d°K W@y, (1) ,p(2)
‘Z"JSstk(l)[EEFY?TE By CEEE e (RS,

P4(i(-k(1)+k(2)),-ikjcinn(-i(l),-wl;i(z),mz)s(m+ml-w2)

V(K(l))f;(ﬁ(l))u(ﬁtz))fn(;(Z))

I+

%
(v++u, f2++fn’ WyFr-wy, w2++-w2) (I.75)
Note that the right-hand side of (I.75) is zero when
Wy <wqtu.

In a similar way, we can show that other matrix ele-
ments of a; (t) at t=+«= depend on factors similar to cinn

This means that, unless ¢,-terms vanish,

lim a..(t) # lim aij(t) . (1.76)

t++too 1] t+-w
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Defining the annihilation operators of outgoing particles
by
(t) = 73, out

lim aij ij aj (no summation on j) (I1.77)
t++w

(I.76) and (I.71) mean

(I.78)

The relation (I.78) shows how our definition of free parti-
cles does not mean that there is no interaction: (I.78)
shows indeed that the in-fields are different from the
out-fields and therefore that there exists interaction.
Let us stress how the description in terms of physical
particles given in Sec. 1.2 finds its expression in the
dynamical map properties. We will refer to the in(out)-
fields as the asymptotic limit of the interpolating fields.
We assume that in-fields and out-fields are related by

a unitary operator S, called S-matrix:

(1.79)

Then (I.78) shows that S is different from the identity
operator when and only when the factors Cil... vanish.
Introducing the out-field operator ¢OUt(x] as the operator

(I.45) with ag and By replaced by a%ut and B§Ut,
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respectively, (I.79) is written as

¢?Ut(x) =gl ¢i“(x) 5 . (I.80)

It is not difficult to prove (and we omit the proof for
the sake of brevity) that the vacuum state and the one-

particle state are "stable" under S-matrix operation, i.e.

S|0> = [0> (I.81)
and

> o= . > I.82
S]cxJ IaJ ( )

One can also express this by saying that one outgoing

particle state is equal to one incoming particle state:
a: [0> = |a.> = o | 0> (I1.83)

The physical meaning of (I.81-83) is evident when one
assumes that the probability for the reaction |b> +|a> is
given by ]<a—outlb>|2, which is equal to |<a]Slb>l2 (cf.
(I.79)J.6 We see indeed that (I.81-83) mean that no

reactions occur in vacuum or single particle states.

6The fact that the S-matrix elements involve only incoming
and outgoing fields makes a specific choice of the inter-
polating fields immaterial in the theory [8].
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Let us note that there is not necessarily a one-to-one
correspondence between the sets {wi} and {ﬁj}. Assume the
set of the Heisenberg fields has n members, while the set
of in-fields has m members. It could happen that the
asymptotic limit t-+-o of (wi(x)-xi) gives us a set of & in-
fields with 2<m. This means that for some values of the
index i, the asymptotic 1limit vanishes. In such a circum-
stance we say that we have & elementary particles and m-%
composite particles [2,3,4,9,13]. We see, then, that
composite particlé fields will not appear in the linear
part of the map (cf. eq. (I.69)). We will come back to this
point in the next section.

We observe that the Heisenberg fields wi(x) given by
(I.52} must satisfy the field equations (I.51), which des-
cribe the dynamics of the system under consideration.

This condition determines the coefficients of the map that
for this reason is called dynamical map; i.e., the mapping
among wi(x) and ¢i(x) will be different in different
dynamical situations, that is, for different Heisenberg
field equations.

We already observed that the time dependence of the
Heisenberg field is controlled by the physical fields in
each term of the map. This implies that the coefficients
of the dynamical map must be time independent. Let us
consider again the free Hamiltonian H0 given in (I.41). By

using the dynamical map (I.52) one can prove [2,4,9,10,11]
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that (cf.,e.g. (I.64) and (I.34))
<al [Hy,0; (0)1]b> = <af .2 y(x)|b> (1.84)

where |a> and [b> are any two vectors belonging to a set D
dense in HF. On the other hand, if one introduces the

Heisenberg Hamiltonian operator H such that
<al (H,9; (110> = <al § & w0 [b> (1.85)

by comparing (I.84) and (I1.85) we can write
H=H +W (I.86)

where Wo is a c-number constant. Indeed, in deriving
(I.86) we considered the fact that any quantity which
commutes with the irreducible set {¢§n} must be a c-number
constant. Due to (I.78), (1.86) does not imply that there
is no interaction. We observe also that (I.86), where H is
written in terms of wi, while HO is in terms of ¢j, is a
direct consequence of the dynamical map (I.52), and thus is
a weak equality.

Finally, we note that commutation relations among
Heisenberg fields do not need to be postulated a priori,
but can be calculated by using the dynamical map, and that

there is no reason to expect that such commutators reduce
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to the canonical commutation relations at equal time. We
have seen in Sec. 1.2 how the particle interpretation is
naturally connected with a canonical formalism, in which
one can represent the states of the system by means of
vectors in a Hilbert space. This space is an irreducible
representation of the canonical commutation relations and
the vectors of the space can be represented by a series of
integers corresponding to the number of particles present
in each state. In a traditional formulation of Q.F.T., the
particle interpretation essentially motivated the require-
ment for the Heisenberg fields commutators to be canonical.
However, we observe that there is no reason to require a
particle interpretation at the level of Heisenberg fields,
since the only experimentally observable particles are not
the so-called "bare' particles, but the physical particles.
For these reasons, in the present formulation of Q.F.T.,
the only vector space we are interested in is the Fock
space for physical particles on which any field operator
should be defined. Thus one is naturally brought to
express the Heisenberg fields through the dynamical map
(I.52). Here there arises the question about the existence
and the uniqueness of the map.

About the uniqueness, we can observe the following.
Suppose the map exists. As we saw, the dynamics, i.e., the
fundamental equations with specified boundary conditions,

will determine the map uniquely. Thus, the problem of the
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uniqueness of the map is the problem of the uniqueness of
the fundamental equations and this is, at the moment, an
unsolved problem.

The existence of the map is related to the existence

of an irreducible set of free fields, in terms of which any

other operator, and thus also the Heisenberg operators,
should be expressible. On the other hand, since in any
physical problem the free fields are viewed as a phenomeno-
logical realization of a certain dynamics, it is reasonable
to assume the existence of an irreducible set of such free
fields. Then, if a self-consistent computation will not
admit any solution, one could infer that the assumed
fundamental equations do not describe the interaction
accurately enough. In other words, the non-existence of
the map will give us some information about the choice of
the Heisenberg equations.

We can see, in any event, that the problems of the
existence and uniqueness of the map need a deeper under-
standing and a more careful mathematical analysis. In
particular, it will be very interesting to find necessary
and sufficient conditions for the existence and uniqueness

of the map.
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1.4 The self-consistent method

In the previous sections we have seen that the
experimental observations are described in terms of physical
particles language. The dynamics of the physical systems
is described in terms of Heisenberg fields, which are well
defined in the Fock space of physical particles through the
dynamical map. To build this Fock space we need to know
what is our set of physical field operators. However, this
set of physical field operators is determined by the
dynamics, and this already presumes the knowledge of the
Fock space of physical particles: we are clearly facing a
problem of self-consistency.

A similar situation is present, for example, in the
Lehmann-Symanzik-Zimmermann formalism [12], where the
incoming fields are the asymptotic weak limit of the
Heisenberg fields. However, to perform such limits one
needs the knowledge of the Fock space associated with the
incoming fields.

An outline of a self-consistent computation is the
following (2,3,4,9]: the starting point is to assume
certain free fields as candidates for our set of physical
incoming fields by appealing to physical considerations and
intuition. We then write the dynamical map (I.52). To
solve the problem of finding convenient coefficients for
the map, we consider matrix elements of both sides of (I.52)

leaving the physical energy spectra unknown. The Heisenberg
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equations (I.51), which are equations relating to the
matrix elements of wi(x), turn out to be a set of equations
for the expansion coefficients of the map. The solutions
of these equations will thus determine the map (I.52)
together with the energy spectra of the physical particles,
However, since the set of physical fields we started with,
could not be a complete set, the set of coupled equations
for the coefficients of the map could not admit any
consistent solution; thus we need a self-consistent adjust-
ment of the map. This can be done by introducing one or
more new elements in the set of physical fields. Then the
computation is repeated. The reason we need to introduce
more free fields to get consistent solutions, has its root
in our requirement that the Heisenberg fields must have
well defined matrix elements in the Fock space of physical
particles. This space is indeed an irreducibile representa-
tion of the canonical commutation relations among physical
field operators (cf. Sec. 1.2). This implies that any
other operator defined in this space must be a function of
the physical operators, or said in a different way, the
physical operators form a complete set.. .When the set of
physical infields we start with is not a complete set, then
there will be at least one operator @ formed by the
Heisenberg fields wi(x) whose asymptotic(weak) limit t+-w
commutes with all the physical infields. The asymptotic

weak limit of ﬁ thus locates a new incoming field called
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field of composite particles (cf. Sec. 1.3) [2,4,9,13].

This concept of compositeness is based on the irreducibility
of the set of physical fields. A successful example of
self-consistent computation is given by the study of the
deuteron [14,15]. Assume we are given a Heisenberg equation
for the nucleon field. As an initial set of physical fields
we use an isodoublet free Dirac field. We write the
Heisenberg nucleon field in terms of normal products of
the physical nucleon fields through the map. Then we
consider the equations for the matrix elements of the
Heisenberg nucleon field. We find that they do not admit a
solution, unless another member is introduced in the initial
set of physical fields. This new member turns out to be
identifiable with the physical deuteron. From what we said
above, we see that the deuteron can then be regarded as a
composite particle. This description of the deuteron has
led to reasonable agreement with the experimental results
for low-energy neutron-proton scattering when the experi-
mental value of the deuteron mass is used.

Until now, we have referred to the Heisenberg equations
as the only conditions to be imposed in finding the map.
It is clear, howevér, that the particular system under
study will require that other conditions be fulfilled.
Such conditions are to be analyzed case by case. A more

general condition [9) is that of the microcausality,7 which

7It is well known that local operators commute with each
other on a space-like surface when their positions do not
coincide.
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requires that equal-time (anti-)commutators of Heisenberg
fields are some polynomials of finite powers of space-
derivatives of 8 function. As we mentioned in Sec. 1.3, in
the self-consistent formulation these commutators must be
calculated (not postulated), thus the microcausality is a
natural constraint on the map.

In a relativistic theory the coefficients of the map
should be such that the Lorentz invariance of the theory is
preserved. In a non relativistic theory we do not need
such a condition. However, as we will see later, due to
the possibility of using certain transformations (i.e. the
boson transformations) we can still require that transla-
tional invariance must be satisfied.

Let us assume that the Heisenberg fields undergo a
certain transformation T which leaves the Heisenberg
equations invariant. Consequently, through the dynamical
map, the free fields will undergo a transformation T'. Due
to the invariance of the theory under T, the free field
equations must be invariant under T'. When the two trans-
formations T and T' have different forms, we say that the

symmetry is dynamically rearranged [3,4,10,11,16-20]. This

phenomenon will be analyzed in detail in Chapter 1II.

As we have seen the self-consistent method leads us to
the choice of a set of physical operators. This means that
in the self-consistent method we select a particular Fock

space for physical particles among infinitely many



45

unitarily inequivalent to each other. Thus our problem is

one of self-consistency among the Heisenberg field equations
and the Fock space of physical fields. The self-consistent
conditions are related to the particular boundary conditions
associated with the Heisenberg equations. 1In certain
respects, the self-consistent method is analogous to the
Hartree-Fock method where wave functions are self-
consistently chosen. An example of a self-consistent
computation has been presented for a relativistic model [9]

to which we refer the reader for more details.
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II. DYNAMICAL REARRANGEMENT OF SYMMETRY

2.1 Original symmetry and phenomenological symmetry.

As mentioned in Chapter I, many symmetry patterns,
which we can recognize in the physical investigation, appear
to be viclated to a certain degree in the actual observa-
tions; usually one says that, in such circumstances, the

symmetry is broken. This terminology suggests that the

symmetry invariances eventually present in the theory are
in some way lost at the phenomenological level. It is
clear, however, that the invariant properties of the
fundamental equations cannot simply disappear, since the
theory must be internally consistent [2]. As a matter of fact
in many cases we can recognize some symmetry patterns also
at the level of the observation (e.g. crystals, ferro-
magnets, etc.; cf. Sec. 1.1).8 Then, it is evident that
the analysis of the problem of "broken symmetry" requires
the study of the relation between original symmetry and
phenomenological symmetry; we are thus still facing the
problem of the mapping between the two languages used in
Quantum Field Theory: the basic or Heisenberg field
language and the physical field language. In the self-

consistent method, the connection between original and

8In this connection we note that the use of a terminology
as "hidden'" or "secret'" symmetry in place of "broken"
symmetry [21] is only relatively recent.
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phenomenological symmetry is quite obviously displayed
through the dynamical map. Furthermore, due to the non-
linear character of the dynamical map, which reflects the
non-linear dynamical effects, one naturally expects that
the original symmetries can manifest themselves through the

mechanism of dynamical rearrangement at the level of

physical fields. Indeed, to the comments on the dynamical
map (cf. eq. (I.52)) given in Chapter I, we should add
that the left and the right hand sides of (I.52) must have

the same symmetry properties, although not necessarily term-

by-term. To be more specific, let us consider a theory
which is invariant under the transformation of the

Heisenberg fields:

p(x) = ¢'(x) = Tly(x)] , (II1.1)

where we have dropped the subscripts for convenience. The
theory is said to be invariant under the transformation T
when the basic dynamical equations are form-invariant under

T. We can write the dynamical map schematically as

P{x) = ¢[s(x)] . (I1.2)

Then we see that the transformation (II.1) can be performed

only if the field ¢(x) undergoes a transformation S

o(x) > ¢'(x) = S[e(x)] , (I1.3)
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such that

Tlyp(x)] = ¢[S[e(x)1] . (II.4)

When the form of T is different from that of S we speak of

dynamical rearrangement of symmetry (3,4,20,11,16-20].

Note that (II.2-4) are weak equalities. Let us note that
from the above point of view the breakdown of symmetry is
interpreted as a dynamical effect in the sense that the
Lagrangian (or, if you want, the basic equations) is fully
invariant, while because of the dynamics, the symmetry can
appear in a different form at the physical level. In this

case one speaks of spontaneous or dynamical breakdown of

symmetry. Another approach is to assume a symmetry-
violating term added to the original invariant Lagrangian:

then one says that the symmetry is intrinsically broken.

In this latter case, however, it has been shown {19] that a
dynamical effect in the breaking of the symmetry can be
still present. For example, in the Nambu model [22,23] if
one introduces a bare mass term like moﬁw in the Lagrangian
to break the Ys-invariance, one finds that when the bare
coupling constant is larger than a certain critical value,
the asymmetric solution is still present in the limit

m, + 0.

In the following sections of this chapter, we analyze

peculiar features of the dynamical rearrangement of
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symmetry. The symmetries we consider are internal contin-
uous symmetries. If G is the symmetry group under which
the basic equations are invariant and Gi" is the symmetry
group associated with the physical fields, an important
question to ask is how the two groups are related to each
other. We will find cases in which G # Gin (cf. Sec. 2.5).
One reason why the observabile symmetry group Gin can
be different from the original symmetry group G is based on
the fact that any macroscopic observation on an infinite
system is a collection of local observations. Therefore,
there always exists a possibility that in each leocal
observation one misses an infinitesimal effect of the order
of magnitude of % (with the volume v +=). This missing
effect can be accumulated as a finite amount when it is
integrated over the whole system. Such a locailly

infinitesimal effect is called the infrared effect [24,25],

and when it is taken into account we can show that the

original symmetry group is restored.

2.2 Asymmetric ground states.

In Sec. 2.1 we introduced the notion of the invariance
of a theory under certain symmetry transformation as the
invariance of the Heisenberg equations under such a trans-
formation of the Heisenberg fields. The meaning of the
dynamical rearrangement of symmetry is that a basic

invariance of the theory cannot disappear but should be
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always present, although it could be manifest in a different
form at the level of physical fields. Essentially, the
invariance of a theory is understood as the invariance of
operator relations and has thus definitely an algebraic
character. Consequently, physical states may not possess
the symmetry properties of the basic equations. This is
what we actually observe in systems where spontaneous
breakdown of symmetry occurs: the physical vacuum or, in
the many body terminology, the physical ground state
exhibits certain asymmetries in spite of the invariance of
the theory [4,16-18,22,26,27]. (Note that the asymmetry of
the ground state is not necessarily of '"spatial' nature.)
Furthermore, systematic structure in the ground state is
recognizable as a manifestation of the dynamical rearrange-
ment of symmetry [16-18]. It is then reasonable to expect
that some kind of long-range correlation modes, which create
such systematic macroscopic patterns, are present in the
system. Let us recall that the symmetries under study are

continuous symmetries and let us assume for the moment that

there are no forces of Coulomb-type in our theory. In one
of the following sections we will analyze the case where
such forces exist.

Due to the long-range character of the correlation
modes, we can describe these modes as massless particles
existing among the physical particles.

The requirement that the theory must be invariant
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under the original transformation leads us to the invariance

of the free field equations under the rearranged symmetry

transformation of the physical fields. Thus we come

naturally to the study of the symmetry generator written in

terms of physical fields.

Since, as we said, in the case of spontaneous breakdown
of symmetry the vacuum no longer possesses the symmetry

properties of the basic equations, we have

DlO> # 0 , (II.5)

where the time-independent generator D is given by

D = stx j (x) . (II.6)

Here the integration is extended over all the (infinite)
volume and ju(x) is the Heisenberg current for which the

conservation law

Buju(x) = 0 (I1.7)

holds as a consequence of the invariance of the field
equation.
It is clear from (II.5) and the translational invar-

iance of the vacuum that the quantity

<0|DD[0> = jd3x <0]3_(x)]0> (11.8)
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is divergent. On the other hand, it is well known [5] that
if |a> and |b> are any two state vectors of the physical

Fock space H then

F’

<alexp{i6D}|b> = 0 ,  for any |a> and |b> , (II.9)

which means that exp{i®D}|b> does not belong to Hg. In
(II1.9) & represents symbolically the transformation para-
meters of the symmetry group in consideration.

Eq. (II.9) (and (II.5)) expresses the existence of
infinitely many unitarily inequivalent representations of
canonical variables in Q.F.T. Later we come back to this
problem. At the moment let us note that there is sponta-
neous breakdown of symmetry when the transformations under
consideration are not unitarily implementable [ 5,17,28}%.
Thus we need particular care in defining and using symmetry
generators. Our prescription will be the following: any
symmetry generators D (cf. (II.6)) will be understood as

the following space-time limit

D=1lim D = lim stx g(x)j (x) (I1.10)
g(x)>1 &  g(x)»1

with g(x) any square integrable function which is a solution

of the free field equation. The operator Dg is well-defined

as far as g(x) is square integrable. The limit g(x)+1 must

be taken only at the end of all the computation. We note



]

that the difficulty in defining the generators with g(x) =1
is not really important from the point of view of practical
computation since we always need to consider not the limit
of generator itself but only the limit of commutators of
generators. Note also that the prescription (II.10) is
equivalent to take a finite-integration volume in (I1.6)
and take the limit V-+o at the end of the computation [2,17,29].
By using the dynamical map, we write the Heisenberg
current ju(x), i.e. ju[w(xJ], in terms of the physical
fields ¢(x) : ju[¢(x)]. This shows that the space-time
dependence of ju is controlled by the physical fields. On
the basis of the previous considerations in the present
section we need to add to the set of physical fields also
the physical massless fields, say Bi(x), responsible for
the systematic structure of the ground state. Thus, we can
write ju(x) formally as ju[¢(x),B(x)]. Since the free
field equations are linear and homogeneous, thg simplest
choice for the transformations of the physical fields which
leave invariant the free field equations, is given by
linear transformations of the massive fields and by trans-

formations like
Bi(x) + Bi(x) tey o, ci_=c-number constant (II.11)

for the massless fields Bi(x). The symmetry generators
written in terms of physical fields will then be bilinear

in the massive fields and linear in the massless
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fields [17,18]. It is interesting to ask what is the most
general set of transformations which leave invariant the
free field equations. We can say that, if a transformation
introduces terms non linear in some physical field ¢i(x),
then in order that the transformation be invariant, each of
these terms should include a projection operator which
selects only energies on the single-particle energy
shell [30].

Let us note that as a consequence of the time-
independence of the symmetry generator, the bilinear part
of the generator can only be a function of fields with the

same masses [17,18]. This means that one cannot mix

particles of different masses without supplying energy.
Indeed the time independence of the generator means that it
cannot supply any energy. We can express this fact by
saying that there cannot be mass differences among physical
fields which belong to the same irreducible representation
of the symmetry group associated with phenomena [17,18].
This statement does not contradict the well known result
that mass differences do arise in a theory with spontaneous
breakdown of symmetry. The statement does not forbid the
occurrence of mass differences, it only states that parti-
cles with different masses belong to different irreducible
representations of the phenomenological symmetry group.
When there is spontaneous breakdown of symmetry, the

vacuum is not an eigenvector of the Ssymmetry generators.
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Therefore the generators must contain a linear part in the
Physical massless fields Bi(x). We conclude, therefore,
that when spontaneous breakdown of symmetry occurs, the
theory requires the existence of massless particles Bi(x).
Note that the transformations (II.11) are canonical if and
only if Bi(x) are bosons. The appearance of massless
bosons when symmetry is spontaneously broken is the content

of the so-called Goldstone theorem [26]. In the following

sections we will prove this theorem by using the path-
integral technique. It can be proved that the occurrence
of a term linear in the massless fields Bi(x) in at least
one of the generators is also a sufficient condition for
the spontaneocus breakdown of symmetry [17].

Since the transformations (II.11) are canonical, the
fields {Bi(x)+ci} have well defined transformation proper-
ties under the original symmetry group, or, in other words,
they form an irreducible representation of such a group.
Thus, in the presence of spontaneous breakdown it is
necessary that there be just enough massless bosons to form
an irreducible representation of the symmetry group [17].

The set of c-numbers {ci} can be considered as
dynamical spurions which alone carry the symmetry informa-
tion of the theory [4]). This can be seen in the following
way [17,18]. 1If we consider the vacuum expectation of

(B;+c;)

<0](Bi+ci)]0> = c5 (I1.12)
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it is evident that c; can be considered as the square root
of the Bose-Einstein condensation of the massless boson Bi'
In other words, through the transformation (II.11) a boson
condensation has been induced in the ground state of our
system: we recover in this way the systematic pattern of
the ground state. The spurion set {ci} is thus the carrier

of the original symmetry quantum numbers. The boson

condensation acts as a printing process of these symmetry
properties on the ground state. Note that this printing
does not require any supply of energy since the bosons are
massless. It follows from these considerations that the
original symmetry, i.e. the original conservation laws, can
be recovered only if one takes into account the quantum
numbers of these spurions [2].

Let us make a few more comments on the transformations
(I1.11). As already mentioned the symmetry generator D
(cf. (II.6)) should be defined by means of the prescription
(I1.10). Similarly, the transformations (II.11) should be

understood as the space-time limit of the transformations

Bi(x) - Bi(x) + g(x)ci (I1.13)

where g(x) is the function introduced in (II.10). The non
unitarity of the transformations (IT.11) or (II.13) confirms
the fact that the symmetry transformations are not

unitarily implementable in the presence of spontaneous
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breakdown of symmetry. In terms of physical Fock spaces
this means that the effect of the breakdown of the symmetry
is, via dynamical rearrangement, a shift from one Fock
space for physical particles to another unitarily inequiva-
lent Fock space for physical particles.

The transformation (II1.13) is called the boson trans-

formation {31,32]. Due to the presence of the c-number
function g(x), this transformation is particularly interest-
ing since the vacuum expectation value of (Bi(x)+g(x)ci)
will be space-time dependent: (II.13) will correspond to
the spontaneous breakdown of the translational invariance.
The boson transformation has been very useful in the so-
cailed "boson formulation of superconductivity" [32].

The transformation (II.11) can be viewed as a particular
case of (II.13), namely its limit for g(x)~+1.

In the next section we will prove that if the boson
transformation is performed, the resultant transformation
of the Heisenberg fields induced through the dynamical map
leaves the Heisenberg equation invariant [33].

The boson transformation has a very interesting
physical meaning: the dynamics of a physical system is
described by the basic field equations with given boundary
conditions. Different boundary conditions correspond to
different solutions of our dynamics. Each solution is
described in terms of states belonging to different

(unitarily inequivalent) Fock spaces. Since different
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ground states are related to each other by the boson trans-
formation with different choices of g(x), the boson
transformation relates the different dynamical solutions;
in other words the Fock spaces corresponding to the
different dynamical solutions are classified by g(x).

Let us note that in a very natural way the existence
of unitarily inequivalent representations of canonical
variables and the occurence of the spontaneous breakdown of
symmetry find a unified explanation in the framework of the
self-consistent formulation of Quantum Field Theory. For
this reason, we will treat in some detail the problem of
the existence of unitarily inequivalent representations and
its physical implications in Chapter III.

We close this section by noting that in the traditional
formulation of Quantum Field Theory the spontaneous break-
down of symmetry is still related to the existence of
unitarily inequivalent representations. The invariance of
the theory under a certain symmetry group is the invariance

of the canonical field equation

LI, 0 (x)] = 2% v(x) (II.14)

where H is the Hamiltonian. The invariance of the field

equation leads to

(D,H] = 0 (I1.15)
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where D is the symmetry generator. On the other hand, in
the presence of spontaneous breakdown of symmetry the
vacuum is not an eigenstate of D, which contradicts (IT1.15).
Here the "vacuum'" is the vacuum in the Fock space of bare
particles. To solve the contradiction one says that there
are many degenerate vacuums each of which is a vacuum of a
Fock space for bare particles unitarily inequivalent to
other Fock spaces. It is however not well established what
is the mathematical nature of a Hilbert space for bare
particles which should have the many inequivalent Fock
Spaces as subspaces. In the self-consistent formulation
these difficulties are bypassed by considering only Fock

spaces for physical particles.

2.3 Spontaneous breakdown of symmetry in the path-integral

formulation.

The path-integral or functional method [34] has been
very useful in the investigation of spontaneously broken
symmetries [35]. In this method symmetry transformations
can be induced simply by changes of the functional integra-
tion variables. It has been realized, however, that
special care is needed to be able to distinguish between
symmetric and spontaneously broken solutions [30,36]). The
reason for this lies in the fact that the field equations
are not sufficient to determine the solutions uniquely.

e

One needs to specify the boundary conditions of the problem;
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If a field theory model admits a symmetric and a sponta-
neously broken solution, the corresponding boundary
conditions are different. In the path-integral method one
considers the so-called generating functional from which
one can derive directly and unambiguously the Green's
functions of the theory. 1In such a method therefore, one
should be able to incorporate the boundary conditions in
the same expression of the generating functional, since the
knowledge of this functional is equivalent to the knowledge
of the field equation solutions. To be more specific let
us consider as an example a Goldstone-type model [26],
namely a complex scalar field model [11]. We assume that
the Lagrangian L[¢(x)] of the model is invariant under
constant phase transformations of the Heisenberg field:

+

o(x) +~ e g(x) . (I1.16)

In this model, for particular values of the parameters
appearing in the Lagrangian, one can obtain two different
types of solutions distinguished from each other by the

vacuum expectation values of the fieild

<0|g(x)]0> = ¢ . (11.17)

When ¢ = 0 the solutions are called symmetric, when c # 0
they are called asymmetric. For c # 0, unless one specifies

the phase of c, one has an infinite number of asymmetric
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solutions.

The generating functional for this model is given by
1 % .4 %
W1 = ¢ [raer tas emp i [atxmrac1 + ¥ 0 0

+ J(x)¢*(x)]} , (I1.18)

with
N = J[d¢][d¢*]exP{ijd4x L[¢(XJ]} . (IT1.19)

and where J(x) represents the field source.
Now we note that contributions to W[J] come from

. 'stationary points" in the ¢(x)-space, i.e. from points
where the exponential has an extreme value. These points
lie in a certain domain of the ¢(x)-space. Due to the
invariance of the Lagrangian under the phase transforma-
tions (II.16) when J(x} = 0, the domain of the stationary
points is a circle centered at ¢(x) = 0. The points of
the circle are related by the transformation (I1.16): the
functional average <¢(x)> over such a circle is zero when
J(x) = 0. Since in the path-integral method, the
functional average of a certain quantity F[¢(x)], i.e.
<F[¢(x)]1>, agrees with the vacuum expectation value of the
chronological products of o(x), T(FId(x)])), we see that

639 W{J] as given in (II1.18) can reproduce only the symmetric

solution.
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To obtain an asymmetric solution, we must thus modify
the definition of W[J) to include the appropriate boundary
condition. For example, W[J] will reproduce a broken
solution when we restrict the integration domain to these
points of the ¢(x)-space which have a non zero vacuum
expectation value. In other words, we should pick up the
points which give an asymmetric solution. To do this we
introduce an invariance breaking e-term in the exponent of
(I1.18) [30,33,36). e is an infinitesimal quantity to be
taken as zero only at the end of the computations. In the
case of the present model this procedure means to distort
the circle of stationary points with respect to the origin
and eventually to reduce it to a single point (for a fixed
phase of c in (II.17)). The e-term thus discriminates
among the boundary conditions. 1In the complex scalar

model we choose as e-term the function

fle(x)] = |¢(X)-v|2 (I1.20)

with v a non vanishing real constant. This term breaks the
phase invariance of the theory. In general the generating
functional W([J] for spontaneously broken solutions should

be

W[J] =

=Z[ =

[niaesrexp{sfatx Lo cor « § 5, 008,00 +
1

+ iEf[¢i(x)]]}
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where N is equal to the numerator of W[J] when Ji(x) are
all zero, and f[¢i(x)] is a functional not invariant under
the original invariant transformations of the theory. 1In
the case of the complex scalar model, W[J] in (II.18)

becomes:

W[J] = % J[d¢] [d¢*lexp{i[d4x[L[¢(x)] + J*(XJ¢(XJ +

- | 2
I+ ielow v/’ (IT.21)

with
& .4 . 2
N = J[d¢][d¢ ]exp{ljd x(L{¢(x)] + iel¢p(x)-v| ]} (I1.22)

Since each functional derivative 8§/8J(x) (6/6J*(x)) acting
on W[J] generates the factor i¢*(x) (i¢(x)), the vacuum
expectation value of any chronological product of ¢*(x)

and ¢(x), i.e. the Green's function, can be obtained by
repeated operations of §/8J(x) and G/GJ*(x) followed by

the limit J + 0. To investigate the symmetry pProperties of
the theory, we can thus derive the Ward-Takahashi identi-
ties [37] which express such properties. To this aim we
make the change of variables (I1.16) in the numerator of
(II1.21). Since the integral is unaltered by a change of

variables, we must have

=0 (I1.23)
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which at o = 0 leads to the basic identity

in4x<J2(x)¢(x) -Jl(x)x(x)>e’J = /7 ede4x<x(xJ>E,J (II.24)
The notation in (II.24) is as follows:
- 1 * . [ 44 ®
<F[¢]>J,e =N I[d¢][d¢ ]F[¢16Xp{ljd x[L[$p] + T ¢+
= 2

+ Jp + de|g-v| ]} (II.25)
1 .

$(x) = = [p(x) + ix(x)]
75 X

o J(x) = = (I, (x) + id,(x)]

VZ

It can be easily seen that J1 is the source of y(x) and J2

the source of y(x).

Further shorthand notations that will be extensively

used are:

<F[¢]>E = <F[¢]>e,J=0 (I1.26)
<F[¢]> = lim <F[¢]>E (I1.27)
£-+0

Before we proceed with the investigation of (II.24),

let us point out that

<y(x)> = 0
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due to the symmetry x(x) + -x(x) in the theory. Therefore
the vacuum expectation value of ¢(x) is due entirely to

that of y(x):

@p(x)> = = <px)> = L § (1I.28)
VZ '
The second equality in (II.28) defines the quantity ¥,

By successive functional differentiations of (II.24)
with respect to Jl(x) and (or) Jz(x), we can obtain all the
identities relating Green's functions in this model. For

example,
<Y(x)>_ =2 EVId4y x(x)x(y)>, (IT.29)

@), - AIx)>, =V ev[atzex(2)x) o) >, (11.30)

where

p(x) = p(x) - <p(x)>_ -

To rewrite these identities in momentum space, let us

introduce the Fourier transforms:

]

KIx)> = izn fap IOV )

e(x)e(r)> = i(zm ! fap &I (X V) 4 ()
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<X (xXIxyde(z)> = -(Zn)'SJd4p a'q a%r e ilpx*ay+rz)
X 5(P+q+T)Ax(P)AX(Q)Ap(T)Fxxp(p,q,r)

Here the metric used is 8oo = “811 * 1. The propagation

function Ax, has the form:

Z
A (p) = 1lim 5 § - + (continuum contributions)
X €20 -mx+1ea

|-

where Zx is the wavefunction renormalization constant of
the field x. The continuum contribution comes from states
with more than one particle. It can be shown [30,36] that
the e-term in W[J] generates the -iec prescription for the
free propagator. As is well known, the pole singularities
in the Green's functions are defined by putting an
infinitesimal imaginary in (n>0). Here we introduced

]

aX =< with ax a real constant (renormalization of ¢).

Eq. (II.29) implies that

7

v=v7 Xy with mi =0 (I1.31)
X

. . 2

v=210 with mx # 0

whereas (II.30) yields:

-1 -1 o i
Ax (p) - Ap (p) = vrxxp(O,p, p) . (I1.32)
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(:>* Eq. (II.31) is a statement of the Goldstone theorem

[26]: if Vv # 0, x(x) must be a zero mass field.

Eq. (II.32) gives the relation among the two propaga-
tion functions and the vertex function, and leads to
restrictions on the renormalization constants. Two
different cases can be distinguished:

2

(i) m, = 0. Then, since mi = 0 too (we assume V#0),

we obtain from (II.32):

Tyxo(0sPs-P) o =0 .
This possibility cannot be excluded without specifying the
. Lagrangian beyond the invariance requirement. A model for
which this situation occurs is the massless free scalar
model.
(ii) mg # 0. In this case (II.32) leads to the

following relations:

ﬁAx(p)rxxp (O,P,"P) 2 2 =1

va, ()T, (0P, R)| 5, = -1
Unless Fxxp(r,s,t),with r2 = s2 = 0 and t2 = -m2 s
vanishes, p becomes unstable: p —+ X * X.
From equation (II.31) and (II.29) we can now clearly

@!L* see that it is the presence of the eg-term that generates
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the asymmetric solution. We note also that the e-term
prescription is equivalent in this model to the replacement
J+J-iev in W[J]. One can then regard J-iev as a new
source J' and assume that J' does not vanish at t + + .
However such a prescription is not a general one, since,
for example, it cannot be applied to models involving
fermion fields or composite Goldstone bosons.

Let us now comment on the role played by v in creating
the spontaneously broken solution. At first sight,'eq.
(II.31) seems to indicate that Vv depends on v; we wish to
show, however, that Vv is insensitive to the magnitude of v,

as long as v # 0. Indeed, eq. (II.29) leads to:

) 4
WO = v efatyeota s>, (11.33)
and therefore, unless p(x) is massless too,

ERICIEE AR

and v is independent of v. Eq. (II.31) then shows that ax
is proportional to v. On the other hand, the phase of v is
crucial in picking out a particular spontaneocusly broken
solution. To see this, let us replace v by eiav in (II.21);
we can restore the e-term to its original form by a change

of variables ¢ + ela¢ and, since the Lagrangian is phase

invariant, the new generating functional will differ from
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the old one by the replacement
J(x)} + J'(x) = e*®J(x)

Therefore, if we denote with primes quantities refer-
ring to the new value of v, we have:
-~ 1 § ig~
1 = — ' =
v ﬁimW[J] e v
In other words, the phase of ¥ is controlled by the
phase of v. Since V completely specifies the soclution, we

can rephrase our result as follows: The phase of v deter-

mines the direction of the symmetry breaking, while its

magnitude is irrelevant, as long as it is finite ([33].

This is a very satisfying result, since it implies that the
e-term that we added to the action does not introduce any
arbitrary new constant. into the theory.

As already mentioned, the invariance of a theory
cannot disappear in the presence of spontaneous breakdown
of symmetry. This feature of an invariant theory is
expressed by the conservation of the local current corres-
ponding to the symmetry transformation. In the path-
integral formalism it is possible to derive Ward-Takahashi
identities for the divergence of the current by inducing
in the numerator of W[J] (eq. (II.21}) the local gauge

transformation
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1a(x)

¢(x) + e o(x) ,

which is not an invariant transformation for our model.
Through a procedure based essentially on functional
differentiations of W[J], which we omit for brevity, it is
possible [36] to verify the conservation of local current
even in the presence of spontaneous breakdown. Always by
using path-integral techniques, it has been possible [36]
to show that expansions of asymmetric Green's functions in
terms of symmetric Green's functions are expansions in
powers of e|v|. 1In the limit € +0, each term of the
expansions would approach zero. The expansion of
asymmetric Green's functions in terms of symmetric Green's
functions is then meaningless, as one might expect, since
they correspond to orthogonal Hilbert spaces due to the
spontaneous breakdown of symmetry. Thus, one cannot argue
about the renormalizability of the spontaneously broken
Green's functions on the basis of the properties of the.
symmetric solution. This means that one needs a new
perturbative scheme for the renormalization procedure of

theories with spontaneous breakdown of symmetry.

2.4 Dynamical rearrangement of symmetry and boson

transformations.

We are now ready to study boson transformations and

dynamical rearrangement of symmetry in the complex scalar
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model introduced in the previous section.

Our starting point is the dynamical map (cf. eq. (II.2))
and the possibility of expressing it in a compact form
through the path-integral formulation. This is due to the
fact that the matrix elements of local operators such as
¢H(x) can be obtained by suitable limiting operations
(e.g. those of the LSZ formalism) from the Green's
functions of the theory, while the latter are compactly
summarized in the generating functional. |

In the case of the considered Goldstone-type model,
there is only one asymptotic field, which we shall denote
by xin(x). It corresponds to x(x), the imaginary part of
the complex field ¢(x):

p(x) = [V+p(x)+ix(x)] (II.34)

1
V2

There is no asymptotic field corresponding to p(x),
since p becomes unstable in the presence of spontaneous

breakdown. (The decay p-+xy is dynamically and energetically
allowed.)

In the Fock space of the in-fields, we define the §-

operator by [30,33]:
S = <:exp{-iZ§Jd4x xin(x)f(x)x(x)}:> . (II.35)

The symbol K(x) denotes the d'Alambertian
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K(x) = —apa“

The arrow on K(x) signifies that it should be always acting
on x(x). Let us also remind the reader that the bracket on
the right-hand side of (II.35) denotes functional average,
not expectation value in the Fock space.

In a similar way, we can define the (unrenormalized)
Heisenberg field operator ¢H(x) by means of the formula:

S¢H(x) = <¢(x):exp{-i2;%[d4x xin(x)f(x)x(x)}:> (II.36)

This expression, which must be understood in the weak
sense, is the functional equivalent of the familiar LSZ
reduction formula. Apart from the factor S that appears on
the left-hand side it corresponds to the dynamical mapping
(II.2); S appears because the generating functional
produces time-ordered Green's functions, instead of the
retarded functions that should appear in an expansion in
terms of in-field operators.

Let us now turn to the boson transformation. To this

end, we introduce the in-field transformation:

xiHCX) > xin(X) + a(x) (I1.37)

where the c-number function a(x) satisfies the same field

equation as xln(x):
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K(x)a(x) = 0 (II.38)

The transformation (II.37) is called the boson trans-

formation (cf. eq. (II.13)). We want to prove that the
Heisenberg field ¢ﬁ(x) which is obtained through the
dynamical mapping (II.36) from the boson-transformed xin(x)
is also a solution of the field equation (cf. Sec. 2.2).

Let us start with the identity:

x(x)Q> = jd4x'<xcx)x(x')>q(x') (I1.39)

which is valid for any operator Q and suitable choice of
a(x'). Eq. (I1.39), together with (II.29) and (II.31),

impliesthe basic relation:

1 [at ek e -
X (I1.40)

lim V2 evjd4x u(x)<x(x)Q>E
e+0

since the limit e + 0 serves to pick up the zero-mass pole
and a(x) is a solution of the equation (II.SB).9 Next,
define a new functional average with space-dependent

e-term:

9Nakanishi [38] used equation (II,40)} with a(x) constant to
derive the Ward-Takahashi identities in the presence of
spontaneous breakdown by conventional field theory
techniques.
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<F 14 ()12, ()

(II.

-1 * {4 . 2
NY j[d¢][d¢ 1F[¢(x)1exp{1jd 2{LIo]+ie|$(2)-v(z) | }

with
* . { .4 . 2
N' = j[d¢][d¢ ]exp{ljd z[L[¢]+1e|¢(z)-v(z)| } (II.
and10 |
z%
v(z) = v|1+i X g(2) (II.
\

Then if we define the boson-transformed S and ¢H:

SIx P (x) *+ a(x)] =

(II.

<:exp{-iZi%Jd4x[xin(x)+a(x)lf(x)x(x)}:>

S¢H[x;xin(x)+a(x)] =

(IT.

<¢(x):exp{-i2;%1d4x[xin(x)+a(x)]f(x)x(x)}:>

we find with the aid of (II.40) and the definitions (II.

(I1.42):

1
10Note that z;/v is finite [33].
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41a)

41b)

42)

43)

44)

41},
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S (x)*a(x)] =
(II1.45)
C<:exp{-iZ'%Jd4x xin(x)f(x)x(x)}:>v(x)
and
Solx;x M (x) +a (x)] =
(1I.46)
C<¢(X)=exp{-iziajd4x xin(X)f(X)x(XJ}:>v(x)
The factor
7%
C = 1lim <exp{/7 ev X Jd4x a(x)x(x)}>E (I1.47)
e+0 2

comes from the denominator N' defined in (II.41b). Egs.
(I1.45), (I1.46) prove the assertion made earlier: the two
field operators ¢H[x;xin(x)] and ¢H[x;xin(x)+a(x)] differ
by e-terms, and therefore are solutions of the same field
equations. We can rephrase our result as follows: when a
theory allows spontaneous breakdown, there always exist
solutions of the field equations with space and/or time-
dependent vacuum; these solutions are obtained from the
translationally invariant ones by the boson transformation
(II1.37). Such solutions pPlay an important role in super-
conductivity [32], where the presence of persistent currents
breaks the translational invariance of the vacuum. Notice

also that the mass of the in-field does not change by the
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boson transformation because of (II.38). The situation can
be visualized as a local Bose condensation at the xin-level,
which induces the non-zero space-dependent vacuum
expectation value of ¢H(x).

We are now in a position to prove the basic theorem

about the dynamical rearrangement of phase symmetry in our

model: The only in-field transformation

)+ 0 (x,a) '(11.48)

which, through the dynamical mapping, induces a constant

phase transformation of the Heisenberg field ¢F(x), is the

boson transformation (II.37) with a(x) - const. [33].

Precisely speaking, the problem of dynamical rearrangement
in this model involves finding an operator iln(x,a), which
is a function of xln(x) and a phase parameter a, such that

the following two conditions are satisfied:
S[ii“(x,a)l = S[xin(X)] (I1.49)
Sou 1% 0x,0)1 = el%se, 1y P () (11.50)
The operators on the left-hand sides of the above

equations are defined through the dynamical mapping (II.3S),
(I1.36):

S[iin(x,a)] = <:exp{—i.A[iin(x,a)]}:> (I1.51)
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Sop %" (x,0) 1 = <¢(KJ=GXP{-1~A[iin(x,a)]}=> (11.52)
with

AR (x,0)] = z;%jd4x 73 (x, ) R (x)x (x) (I1.53)

In addition, since the transformation (II.48) must be
a symmetry transformation at the in-field level, we must

impose the condition:

K(x)% " (x,a) = 0 (I1.54)

The constraints (II.49), (II.50) lead to the following

conditions by differentiation with respect to ao:

~1in

<:(-i)Jd4z Z;% Eﬁ—séiiﬂl X
(II.55)
?(z)x(z)exp{-iA.[iin(x,a)]}:> = 0

and

.1 amin :
<¢(x):(-i)jd4z z " X (z.a) K(z)x(z)exp{-iA.[iln(x,a)l}:>
(II.56)
= i<¢(x):exp{-iA.[iin(x,a)]}:>
On the other hand, the basic identity (I1.24) of the

model, when evaluated with Jl(x) = 0 and Jz(x) =
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-Z;%iln(x,a)K(x),ll yields

4

< (-1)2*[az szi“(z,amz)(fr+p(z))exp{-iA [ii“cx,a)l}» =

. ] (I1.57)
<:(-i)[d4z %L K(x)x(x)exp{-ilA[iln(x,a)]}:>

. X
Eq. (II.40) was used on the right-hand side of this
relation. Since p(z) has no zero-mass pole and iln(z,a)
has momentum-space support confined on the hypersurface
k*=0 by virtue of (II.54), the left-hand side of (11.57)

is zero. Therefore
t-nfe'e Lrcoxwen{-1a 5o} =0 ansy
X

In a similar fashion, we can use the identity obtained

. . é . ) .
by applying -i( + i ) on both sides of (II.36)
6J1ixi GJzixi
to prove that:

00 (-0 [a*e L k@x@ren|-1 A % (x, 001}
X (1II.59)
o i<¢(x)=exp{-i A[iin(x,a)]}=>

Comparison of (II.55), (II.56) with (I1.58), (I1.59)

leads to the following necessary and sufficient condition

11We are allowed to use a gq-number source function because
of the presence of normal ordering in (II.57), (I1.59).
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This differential equation, with the initial condition

MM (x,0=0) = x™M(x) (11.60)
implies that: .
M x,0) = xTM(x) + ;% a (I1.61)
X

Clearly, this solution satisfies the requirement
(II.54)., The in-field transformation (II.61) must be

understood as the limit of the boson transformation

1ty » M) + f% ag (x) (11.62)
X

with g(x) a normalizable c-number function that tends to 1,

and satisfies
K(x)g(x) =0 .

For example, the transition from (IT.57) to (II.58) is
possible only if iln(x,u) on the left-hand side is under-
stood in the sense of (II1.62). The matrix elements of

s[xln+a], S¢H[x1n+a] are not the same as those obtained
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from S[xin+ag(x)], S¢H[xin+ag(x)] in the limit g(x) +1,
with g(x) a normalizable function. Of course, local opera-
tors like xin(x) are well-defined in the Fock space only
when they are smeared out by normalizable wavepackets.

This situation is closely related to the fact that the

generator of (II.61):

= stx xi™(x)

xb:x‘l <

is ill-defined, whereas

i, v 5 _in
Itg) = [alx ¥ 00 & x"0o)
X

is well-defined (cf. Sec. 2.2). In fact, the Heisenberg

field transformation is implemented through:

lim {aiulfg) ¢ch)e‘i“1(g)} = la by (x) (I1.63)
g+1

In summary, the phase transformation of the Heisenberg

field:
op(x) » e ¢y (x)

is induced by the in-field transformation

M) - xMx) o+ j% ag(x)
X
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with g(x) a normalizable solution of

K(x)g(x) =0

when the limit g(x) +1 is performed after all matrix
elements of ¢H(x) have been calculated.

The fact that the invariant transformation has differ-
ent forms at the level of the Heisenberg fields and the

level of the in-field expresses the dynamical rearrangement

of the phase symmetry. Our results show the crucial role
played by the boson transformation of the Goldstone field
in recovering the original symmetry of the Heisenberg field
operator (cf. Sec. 2.2).

Let us note that although the form of the original
transformation is different from that of the in-field
transformation, still the (abelian) phase group is
unchanged through the dynamical rearrangement of symmetry.
This result has been confirmed also in the study of the
Nambu model [22] and of superconductivity [30,32], There
are however examples [24,25,39] in which the non-abelian
symmetry group of the original transformations is differeht
from that of the physical field transformations. Examples

like these are studied in the next section.
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2.5 Change of symmetry group through dynamical rearrange-

ment of symmetry.

In this section we investigate the relation between
transformations of in-fields and those of the Heisenberg
fields in the spontaneous breakdown of a non-abelian
symmetry group, studying an iso-triplet Lorentz-scalar
field as an example in the Relativistic Quantum Field
Theory ([24] and a ferromagnetic system as an example in
many body [25]. *

There appear Goldstone bosons perpendicular to the
symmetry breaking direction. The symmetric associated with
the asymptotic fields proves to be not SU(2), but E(2),
which contains an abelian subgroup.

This subgroup consists of translations of the
Goldstone fields which leave the free field equations
invariant. We will also analyze the problem of how such
abelian transformations can induce non-abelian transforma-
tions of the Heisenberg operators.

By use of the path-integral method we derive the Ward-
Takahashi identities and the asymptdtic field transforma-
tions which induce the SU(2) transformations of Heisenberg
fields. We find that in order to achieve well defined
SU(2) transformations of Heisenberg fields, the space-time
independent translations of the Goldstone bosons which
induce them must be considered as certain limits of space-

time dependent transformations. The non-commutativity
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among these limiting processes is the origin of the non-
abelian nature of the SU(2) transformations.

The fact that the symmetry group associated with the
in-fields is not SU(2) but E(2) is due to certain infrared
effects. Since the vectors in the Hilbert space are
constructed from smeared asymptotic fields, some infrared
contributions become unobservable, leading to the change of

algebra mentioned above (cf. Secs. 2.1 and 2.4).

a) Relativistic Quantum Field Theory model.
We will consider a model with SU(2) symmetry. The
Lagrangian is assumed to be a function of an iso-triplet

Lorentz-scalar field $(x) and to be invariant under the

transformation

Fo0 > 1% i (11.64)
i.e.

LEE) = et ) (I1.65)

where ti is the 3 x 3 matrix:

(t3) 5k = dej5y (i,j,k = 1,2,3) (II.66)
and a; are real constants, and the {Eijk} are the SU(2)
structure constants,

The generating functional is
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Wil = g [tedres{ifatx (L Ge) « TooFe0

] (I1.67)
I Geo-hh)

with

v [adrexifatx (1) i G-t}

The e-term is introduced in order to generate the sponta-
neous breakdown of symmetry in the direction of v (cf.

Sec. 2.3). We can choose without loss of generality

v = (0,0,v) with v a real constant. Let us now perform the
change of variables (2.1) on the numerator of W[j]. Since
the integral must be invariant under such a change, one

must have:

which leads to

Jd4x <i J(x) t, $(x) + eV N $(x)>E ;=0 (I1.68)

>

where the notation (I1.25) has been used.
Repeated operations of 6/6J on (II.68) lead to the
Ward-Takahashi identities. We will here list some of these

relations which are used later on:
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95 (x)> = EVJd4y <¢,(x) 9, (¥)>, (I1.69a)
050> = ev[aty <, 6,005, (11.68b)
<¢!1(X) ¢1(Y)>E = <¢2(XJ ¢2(YJ>E (II.69C)

-ev[atz<s) (230, I85>,
(I1.69d)

<¢1(x)¢1(YJ>E - <¢3(x)¢3(YJ>E

and

-ev]d4z<¢2(Z)¢z(x)¢3(y)>5
(II.69%e)

<0, (x)0,(¥)> - <o5(x)d5(¥)>

where the notation (II.26), (II.27) has been used.

The identities (II.69a,b) lead to the Goldstone theorem:

when <¢3> #0, ¢1(x) and ¢2(x) must be massless fields. We
shall introduce ¥ by 1lim <¢3(x)>E = ¥. Since the propaga-

e~+0
tors of ¢1(x) and ¢2(x) are written as

Z. .
;0005 00> =1emfatp i e Iplew)

P +isai
(I1.70)
(i=1,2)
we find
Z.
v(e) =ie:vA¢ (e,0) which is, for e+0, ¥#=v Ei
i i

(I1.71)
(i=1,2)
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Here c.c. stands for continuum contribution, and A¢ (e,p) =
i
Zi/(P2+ieai). Now equation (II.69¢c) says that Z, = 1, (=2),

which is a result of a 1++2 symmetry in equation (II.66).
Recalling that ¢1 and ¢2 are massless, we find that an
arbitrary local operator Q must satisfy the following

relation (cf. eq. (I1.40)):

| =

lim evjd4y<¢i(y)Q> = -4

4 2
1in [ay -02r<0; 0>

"(11.72)
(i

1,2)

Applying this relation to (II.68), we have

e <

Jd4x <if 0t Fm)>; =4 jd4x(-3i)1631k<¢k(x)>J (11.73)

where <F>J means <F> with e+0.

§
83 (y)

£,J

Taking the derivative -i of both sides of

(I1.73), we obtain

e+ [aty <wiomedmims,
(I1.74)

L] F
= 1 =
Z

[a'y odyiey, <o, B005,

The expressions (II.73) and (II1.74) are the Ward-Takahashi
identities which are not explicitly e-dependent.
The identities (I1.69d) and (I1.69e) give us informa-

tion on the ¢3(x)-propagator. The symmetry requirements



87

alone cannot determine the mass of ¢3(x): both values
m; =0 and m, # 0 are allowed even when <¢> # 0. To study

this we introduce the following decomposition
05 (x) = p(x) + ¥(e)
with
<p(x)>E = 0.

Making use of the momentum representation of propaga-

tors and vertex functions defined as

<p(x)p(y)> = i(Zn)-4 Jd4p Ap(p)e"ip'x

and
<61 ()81 (e (2)> = - (2m) 8 [ap alq o 89, (P8 ()8, (r)
% F¢ s (p,q,r)exp{-i(px+qy+rZ)}6(p+q+r)
191P

the identity (II.69d) is rewritten, using equation (II.71)
for € # 0

N -1 - \F -
A¢1(P) - Ap (p) = ¥ r¢1¢1p (o, P, -p) (I1.75)

Since ¥V # 0, p is massless when and only when
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r¢1¢1p (0: P, 'P),p2=0 =0 (I1.76)

The massless scalar model L($(x)) = % 3u¢i(x)au¢i(x) is the
simplest example of this kind. We are not going to study
the possibility of a2 massless p-particle.

If p is massive, the vertex F¢1¢1p(o,p,-p) does not

vanish when p2 = 0., Unless T (p,q,r), with p2==q2= 0
¢1¢1p

and rz = -mg, vanishes, p becomes unstable due to the decay
P> ¢y +d,. In the following analysis we examine only this
case. We then have only two massless in-fields correspond-
ing to ¢l(x) and ¢2(x).

Let us note that ¥ is independent of the value of v.

This can be shown simply as follows:

= lim eJd4y <p(X)p(y)> = 0
e+0 €

Q>
1A

where p(x) is considered massive. The relations of
curFent conservation can be derived in the manner given in
reference [36].

Now we discuss which transformations of in-fields
induce the SU(2) transformations of the Heisenberg operators.
Since there exist only two in-fields, their transformations
are expected to be quite different from the original
transformation of Heisenberg operators.

We introduce the in-field operators ¢in(x) and ¢;n(x)

which satisfy the following free field equations:
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(-3201"x) = (2234 x) = 0 (11.77)

As we did in the previous section, we write the s-matrix S,

and the Heisenberg operator $H(x) as

S(¢in,¢§n) - <:exp{-iA(¢in,¢%n)}:> . (11.78)
and
shyxio™,03™ = <Feo s exp{-1a01% 43} (e
where

A" o™ = a'x 7% <026, ()

(11.80)
-%.in a2
FLTey () (-804, (x)]
We shall look for the transformation
- ' . - h'
07" Cx,0) = 0 (X352 ,04,017 (%) 027 (x))
. (1I1.81)

43" (x,2) = 0 (x3d,05,61" (1), 03" (x))

where X and the ®, are our choice of transformation para-

meters, and which satisfies the following requirements:

(-32301™ (x,0) = (0261 (x,2) = 0 (11.82)
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e e LW
S(e7" o5 ) = 8477, 45™)
(II.83)
Sop(x;07" L03" ) = e AT se(x;9l 4N
Taking 3/9A of the relations in (I1.83), we obtain
T )
s 907" (x,1)
<:-ijd4x A [ L (-a§)¢1(x3 *
ax
(II.84a)
B¢%n'(x,h) 2 - in'  in®
F T 36,00 [exp{- 1403 030 )5 = 0
and
in’
sy 997 (x,2)
<$(x):-ijd4x 773 1 (-32)¢1(x) +
"' A X
3 t
395" (x,1) L
2 (-8£)¢2(x)J exp{-iA(¢in ,¢;“ )}:> (II.84b)
A

.= <ia-t$(x) : exp{-iA(¢in',¢%n')}i>

On the other hand, with the following choice of source

currents

-2751 (x,0) (-0 )

g, (x)

-% . in! 2
~Z %5 (X,l)('ax)

J,(x)
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and

JS(X) =0

in (II.73) and (I1.74), we obtain the following identities:

< Id4x % (~B£)¢2(x) exp{-iA}:> = ¢ (II.85a)
< Jd4x ¥ (-32)4,(x) exp{-iA}:> = 0 (11.85b)

<tfats 2756l e, -2 2y0, 000 - 0" (6,2 (-2724, ()

(II.85c)
x exp{-iA}:> = 0
T ' S -
<o (x) -Jd y 7 (23,00, (y)exp{-iA}:>
= t1<$(x):exp{-iA}:>, (I1.86a)
N PL A e
G0+ [aty T 026, (r)exp-iad s>
(I1.86b)

= t2<$(x):exp{-iA}:> s
$e0 : [a'y 27563700 aBey o) - 630 00 -0 Py, ()
(I1.86¢c)

x exp{-1A}:> = t3<$(x):exp{~iA}:>

Here use was made of the relation
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Jafx i weahe e 0 w=1,2  ane

which comes from the fact that p is unstable. Comparing

(II.84b) with (II.86a,b,c) we find that

291" (x,3)

. .
- = aseb;'n x,2) - a, -ZY%- (II.88a)
and
in!
ad’z (x,l) = 1 ~
o = -a3¢i“ (x,2) + o E"g (I1.88b)

These conditions together with (IT.85a,b,c) are enough to

obtain (II.84a). Solving (II.88a,b) with the initial

conditions
61" (x,1=0) = ot
and
| 65" (x,3=0) = ¢3" ()
we have

¢in'(x,l) = ¢in(x)cosla + ¢;n(x)sinla

3 3

(II.89a}
-1

+ j% [o, (l-coskas)al-agl(sinlas)azl

and
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- . .
¢;n (x,A) = -¢in(x)sinka3 + ¢;n(x)cosla3
(IT1.89b)
v 3 [a"l(sinla Yo, + a-l(l-cosla Ja, 1l
EE 3 3’7 3 3772

Note that these transformations do not change the free field

equations. This is the dynamical rearrangement correspond-

ing to a rotation by the amount X /a%+a2+a3 around the

axis with directors (al,az,usj. Putting A = 1 in (II.83)
and (II.89a,b) we have

6y (01" (x,221), 937 (2, 251))

(II.90)

+ -

io. i
= e c-t

n in
o (07 (x), 957 (x))
The transformation (II.89a,b) is a combination of a
c-number translation and a rotation mixing ¢in(x) and
¢;n(x). The c-number translation must be understood as

the following limit of a space-time dependent transforma-

tion:

¢§“'(x,x) S [¢in(x)ccsla3-+¢in(x)sinla

g(x)+1 .

(IT1.91)
+ v -1 -1, .
Eg {as (l-cosAa3)a1 - ag (51nla3)a2}g(x)]

with

(-Bi)g(x) =0 (I1.92)
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This is because, in a rigorous sense, ¢in'(x) and ¢§n'(x)
in the identities (II1.85)-(II.87) must be considered as the
limits of smeared operators. In particular, (II.87) is not
valid unless Q is considered as an operator smeared by a
normalizable function.

It is worth noting that, even without taking the limit
g(x)-1, ¢§n'(x,l) satisfies the equation for ¢in(x). Since
an operator with exactly zero momentum is not defined, one
must consider the constant translational transformation as
a 1limit like (II.91). In this connection we study the
generator of the transformations (I1.89a,b):

<1

I(ay,ey,0p) = [axle, (- LRI e

(I1.93)

+ o (03" ei () - 1" (x) 02 (x))]

Though linear parts of this are not well defined (cf. Sec.

2.2), a smeared out generator

1(01»0!2.0!3;8) = JdSX[(*Gl flig ¢2(X) +32 zﬂv,; ¢1(x))*3)';:g(x)
(I1.94)

+ as(ign(x)¢in(x) - iin(x)¢§n(x))]

is well defined and also is time independent because of

(IT1.92). Then, (II.90) is understood as
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~il(a,y,5,,0,;8) . -
lin e 1 2IR 010,630 ) e
g(x)~+1

iI(al,az,as;g)

(11.95)

. >

= e 301,61 ()

We note now that any SU(2)-transformation can be expressed
as a successive rotation around the first, second and third
axis:

L+ >
la-t

ig,t, iB,t, iB.t .
. - e 171 P2tz Psts

e s
The previous discussion indicates that the limit g(x)-1
must be taken in each rotation. According to (II.89) the

above rotations are induced by the following in-field

transformations respectively:

fﬁn'(x) = 97" (x)
{ (II.96a)
in' _ ,in v
~¢’2 (X) = d’z (X) + ?1‘ Bl
61" (x) = oi(x) - g; B,
3 (II.96b)
63" (x) = 93700
and
01" (x) = 01" (x)coss; + 93" (x)sing,
(I1.96c)

=2
(oS 3
=3
~—
»
—
n

-¢in(x)sin63 + ¢%nc0583
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(II.96a) and (II.96b) show that each of these translations
of the Goldstone bosons corresponds to an independent

rotation. Generators of these transformations are given by

e -1in [ 4 G mee-30eiM ) (11.97a)
g(x)+1 /7%
03" =-tin [ el m-ittogmad (11.97b)
g(x)+1 2
and |
pin . . [céi“(x)@“m - 43 ()6 1M (x))a5x (I1.97c)

which form the algebra

[(nin pin. _
(07,0571 = 0
31037,03M = i py" (11.98)

in nin, _ . .in
[D37,D771 = i D,

. )

However, we know that the SU(2) algebra has the form
[Di,Dj] = iEijka (i,j,k = 1,2,3) (I1.99)

where Di are the generators for the SU(2) transformations

of the Heisenberg operators.



97

To investigate the change of the SU(2) algebra into
the E(2) algebra (II.98) we recall the fact than one needs
the limiting process g(x)-+1 in order to make the transform-
ations well defined. Since this limiting procedure acts as
a suitable infrared cut-off for the Goldstone bosons, we
expect that an SU(2) algebra may be recovered when we take
into account these infrared effects which are missing in
local observations. The following shows that this is
indeed the case. We start by decomposing the in-fields
into the sum of a non-zero momentum (or smeared) part plus

a small momentum (or soft) part

01700 = 477 00+ 41" () (i=1,2)  (I1.100)

Here n is an infinitesimal parameter which indicates the

order of the infrared cut-off; i.e.

. 4+ .
o1 (%) = %J dt e Mltl 630 (x) (11.101)

In terms of creation and annihilation operators of ¢;n(x),
¢}n (x) is written as
i,n

kx, .t -ik-%

in =+ k i
;" (%) = —0 X N ey efRXy 0 )

which, in the limit n+0, becomes

-

in .+, _  n ax ik-X% -ik-
¢i’”(xj.-2(2njg J/TE G(f)(ai e +a£ e x) (II1.102)
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We observe that ¢;nn(§) is independent of x in the limit
?
n+0 and is of order n.
Now we will evaluate the Heisenberg fields up to first
order in n. By the use of the fact that ¢;nn(§) becomes
2’

independent of X for small n, we have

S§(x) = <F(x) =exp{-iA(¢%n + 10 )}:>

i,s i,n
(I1.103)

!i 3 > i
= Py g(x) - i ZT [Stody, s (X)0y" - Stydy (43" ]

. « : Siacrein 41,
. SffH’s(x) = <p(x) .exp{ 1A(¢i,s)}‘> (I1.104)
Here we have used (II.77) and (I1.86a,b). Note that

lim [matrix elements of S$H(x)]
n-+0

= lim [matrix elements of S$H (x)]
n-+0 »3

because ¢inn is of order n. Multiplying both sides of

(I1.103) by s we have

Y . .
Py =y () -i ZT legdy s 00017, - t18y (83" )

(II.105)

eﬁb Since the generators Di are given in terms of $H(x) as



> -

D, = - % ijd3x B0 £, T, 3,00

they are expressed, to first order in n, as

1 .
Dl - Dl,s * %; D3,s ¢i?n
7’ :
i Dz,s * :; D3,5 ¢;?n
and
7% in in
s Ds,s"}; Dy,s 97,0 * Dg,5 43,1

where the Di s are given by
2

- _ 1 143 <+ 5
D; g=- 3 1Jd x $H,s(x) t; By §y(x)
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(II.106a)

(I1.106b)

(IT.106c)

(I1.107)

Since the operators Di g are supposed to generate the in-
3

field transformations (II.96a,b,c) in the 1limit n+0, we may

write them as

Dy, =[x iR mg, 0 - & 060

D, = -[a%s F G000 - 41 0og, ()
and

3,5 = -[*x G ool ox) - 03" el ()

(II.108a)

(IT.108b)

(I1.108¢c)
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where gn(x) is a function satisfying Bign(x) = 0 and

. _ . B =in
lim gn(x) = 1. Note that 1lim D1 lim Dl,s D1 s
in D, = lim D pi 15nn,  -"bin ang

im = lim = im = an
n+0 2 10 2,s 2 00 3,8 3

in _ _[;3. ,:in in _ :in in
03" = -[adx MGl - $irein o)
7%

= L7 in in -
- D3,5 ¥ [D1.5¢1,n ¥ D2,5¢2,n] Dy

to first order in n.

In order to discuss the commutation relations of the
{Di}, n must be chosen independently for each rotation,
since the limit g(x)+1 (i.e. n~+0) is taken in every rota-

tion. The following commutation relations are derived from

n

(II.108a,b,c) and the definition of ¢i eE

Dy 50 Dy 511 =0 (II.109a)
(Dy,s0 D3 501 =1 D) o (II.109b)
Dy g» Dy g = 1D, o, (I1.109¢)
Dy, Dy 1 = 1D, Dy, D, 1= -iD . (I1.110)
(D) g» 9y 0] = i g% 6(n'-n) , (II.111a)
Dy g» &g o1 = =i f% 8(n"-n) , (I1.111b)
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= 1 LI
[93,5, ¢1,n'] 1 ¢2,n' 8(n'-n) , (IT.111c)
= -7 t
(D3, g2 b5, el = -1 0y v 8(n"-n) . (11.1114)
Here sNs' is the common part of s and s' which is the

complement of n" = max(n,n').

Then we have

1 3
_ A in 72 in
[By,D,1 = [D1,5‘+:; D3,s ¢l,n"D2,s"F?; D3,s' ¢Z,n']
%

1
. rht in Z in
' - =
ie(n n){DS,s. _‘7 Dl,sl ¢1,n' “7_ DZ,S' d’z’nf}

1
) AL in z% in
- ' - — Ll
+ i8(n-n 3{D3,s - D1,s 41, D, s ¢2,n}
v v
= ] D3
1
74 in
[Dp,D31 = [D, ¢ + 5 P3 s 92,4 D3l
5
- in
= l{Dl,s *— D5 1,n}
= i D1
and
[D,,D,] = [D.. D. + 2t D in ,
H3 b 3 71,5 T U3,s 1,y
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Summarizing, we found that, although

[lim Dl’ lim DZ] =0, (IT.112a)
n+0 n'=+0
[D3, lim D1] = i 1lim D2 R (I1.112b)
n~+0 n+0
[Dy, lim D,J = -i lim D, , (I1.112¢)
n-+0 n+0
we have \
lim 1lim D., D.] =1 e... D. . I1.113
T, Pu %)t e, R

This shows that the infrared effect is responsible for the
difference of the two algebras, (II.98) and (I1.99): the
non zero value of [DI’D2] is due to the fact that the n-
limit and the commutation operation cannot be interchanged.

'Since all observable results are manifested through
the in-fields, the algebra (IT1.98) is the one which is
directly related to observations.

We have seen that two different sets of generators,
{Di} and {Din}, generate the same transformations of the
Heisenberg fields. To understand this we note that the
infrared term by which the two sets of generators differ is
global in nature although locally infinitesimal. Shch an
object commutes with any local operator but it may contri-

bute to the commutators among the generators.

The same situation is also found in the scale
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invariant theory [39]; if the algebra does not change,
massiveness of any particle is forbidden. A change of the
algebra is the reason why some particles become massive
when the scale symmetry is spontaneously broken. In the
present case, the SU(2) algebra changes into an E(2)
algebra: (¢in, ¢§n) forms a doublet of this algebra and
the ¢z field becomes a massive singlet of this algebra,
although this particle is unstable. In other words, the
Goldstone particles form a non unitary irreducible fepre-
sentation of the symmetry group E(2) associated with the
in-fields. Note also that the symmetry properties of the
theory under isospin rotation are solely carried by the
Goldstone particles at the level of physical fields (cf.
Sec. 2.2). The original SU(2) symmetry transformations are
recovered when we consider an infrared effect which is
missing in local observations.

Among the Ward-Takahashi identities, those which are
influenced by the e-term are the relations with the soft
boson limit., It is worth noting that these relations with
the soft boson limit manifest not the SU(2) symmetry, but
an E(Z) symmetry for the in-fields. This may be signifi-
cant when one studies relations in the soft pion limit in

particle physics,

b) The ferromagnetic systems.
Now we turn our attention to the case of a ferro-

magnet [25]. Our considerations are restricted to the
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T = 09K case.

The ferromagnetic systems are characterized by the

Lagrangian which is made of the electron field w(x).l2

vy (x)
v(x) =
v, (x)

The Lagrangian is invariant under the spin rotation

i6. x.
pix) e 1y i=1,2,3 (I1.114)

Here Bi are real parameters and Ai are the spin matrices

A, = 1 oy where Ui are the Pauli matrices.

i 7
The generating functional is

wi3,5om = g [tavayresp{ifatx L w01 + 3t eow o
#¥TEIm ¢ 5T s v sM i ars
+ Sés)(xJ n(x) - ieSéS)(x)]}

where

N==J[dw1[dw*]exp{ifd4x[1,[w(x)]- ies£3J(x)]} . (II.116)

lzw(x) is the Heisenberg electron field. 1In the following,
physical particle fields will be called quasifields or

simply quasiparticles,.
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Here Séa)(x) (0 = +,-,3) is the spin density which is made
of y(x). In the following we do not need the explicit form
of Sia)(x) in terms of y(x). The electron fields v, w+ and

their sources Jf

and J anticommute, while the sources of
spin fields j and j+ are c-numbers. Also Si(x) =
Sil)(x) s iséz).

The presence of sources j, j* and n for the spin
fields Séa)(xj are not required for calculation of the
Green's functions. However, use of j, j* and n makes it
possible to study the behavior of spin in ferromagnets
without specifying the explicit dependence of Sia)(x) on
y(x).

In writing down (II.115), we have in our minds both
the cases of localized spins and itinerant electrons. 1In
case of localized spin, the integration in the exponent of

(I1.115) should be read as

%Jdt[L[w(lel IR IIER REUCRE A RFLICHLIRICHIE
| (I11.117)
+ 55" ()3 0xp) 503 (xyInixy) - 16803 (x,)1

In general, for the case of localized spin the following

replacement is understood

fd4x F(x) =+ EJdt F(x,)

for any quantity F(x).



106

Let us now put J=0 and n=0 and perform the change of
variables (II.114) in the numerator of eq. (II1.115). When
6, are infinitesimal the change of variables (II.114) should

induce rotation of the spin fields:

(1) (1) - 9 g (k)
SW (x) + S¢ (x) 5 €ijk v (x) . (I1.118)
Here Eijk is the completely antisymmetric tensor:

sijk = (-1)P where p is the number of permutations of 1, 2,
and 3. Since a change of variables does not influence the

integration, we have

-0, (II.119)

This gives

Jatxete g G060 +5TE0) + tey, (00 - 37 G
(I1.120)
- ig ESlk]SE(x)>e,j =0 .

Operating 6/8j(y) and 6/6j+(y) on this and then putting

j=0, we obtain

[}
s

s>, = s s, (11.121)

[}
o

eJd4x<S£2)(x) sél)(yPE (11.122)
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[

s{P >, -

I
m

d4x<8£2)(x) s,f,z)(ybE . (I1.124)

We used the usual notation (II.25-27),

Let us now write

. . 4 .
) (i) I Y | -ip(x-y)
<Sl£1 (x) Sw1 (y)>_ = 1{;;;?1 e TPLXTY p; (P)
(I1.125)

1 1

“w_+*iga. D _+w -iga.
Porup*led; P, p &%

X

] + continuum contribution.

In eq. (II.125) wp is the energy of a quasiparticle which
is a bound state of electrons. We will prove that pi(p) #0
which proves the existence of such a bound state. The
continuum contribution comes from those states which contain
more than one quasiparticle. The spectral functions pi(p)
cannot be negative because Sii) are hermitian.

When we consider the case of localized spins, eq.
(II.125) should be replaced by

<s{M s x>, = iv J?ig) I(jiige PO
(I1.126)

1 1
[po-mp+1eai po+mp-1eai

X

] + continuum contribution

in which v is the volume of unit lattice and the integration

of E is confined to the domain
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where d is the lattice length. The equations (I1.123) and

(II.124) should be read as
<S'JES)(xk))e T Ejdt<s$i)(x2) séi)(xk3>s )

Also, operating (8/657(2))(s/67(y)) and (5/65(2))(8/65  (y))

on (II.120), putting then j =0 and subtracting, we obtain

;P sfP o, = s{P sP s
which gives
P1(P) = p,(p) ; a; = a, (I1.127)

The magnetization is given by guB<S£3)(x)> where up is

the Bohr magneton. We shall use the notation

M(e) = <S£3)(x)>e . (II.128)
together with

M= 1lim M(e) . (I1.129)
e+0

Equations (II.123) and (II1.124) then say that there should

be a bound state of gapless energy:
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w_ =0 at p=20. (II1.130)

Indeed equations (II.123) and (II.124) give

M(e) = iea(e,0) i=1,2 (II.131)

which can lead to non vanishing M with € +0, only when

wp = 0 at p = 0. We further have
= 2P
M= = (IT1.132)

In eq. (II.131) we used

1 1
po-wp"-lsai po.g.wp‘lEai

83(e,p) = o;(p) (11.133)
and in eq. (II.132) we put pl(OJ = pz(O) = p and a,=a,=a.
In the case of localized spins, derivation of eq.

(I1.131) requires the formula:

v B L _ (3
= § . (1I1.134
P E e (p) )

Summarizing, we have shown that the relation (I1.128)
along with non zero M requires the existence of gapless
bosons, i.e. the magnons. Note that without the e-term we
cannot realize the case M # 0.

Let us now calculate p. Since M is the local spin

density in the third direction, the total spin in this
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direction is NM where N is the number of lattice points.

Then the ground state expectation value of §2 is given by

<0]3%]0> = NM(NM + 1) (I1.135)

Assuming te <ty in eq. (II.126b) with i=1,2 and then per-
forming the limit terty (same results can be obtained by

assuming ty <tk), we find, using eq. (II.134) that

<01s) s o> = 0N, fori=1,2. (II.136)
Thus

<018%]0> = 20N + (NM)? (11.137)

Comparing this with (II.135) we get

D e % M (II.138)

This gives

%
M . & - (11.139)
202
p
(II1.138) also shows that a=1 (cf. (I1.132)).

To study the dynamical rearrangement of symmetry let

us introduce the field for the magnons

PR iﬁ-%-iwkt
B(X) = W Bﬁ e (II.140)



111

and
3 -iK.X+iw, t
L T b S k
B'(x) = =77 B} e (I1.141)
[(Zw) k

The commutation relations are

B(x),BT (11, ., = 6G-9
X

y
(I1.142)
[B(x),B(y)] = (BT (x),8T(y)1 = 0
(IT.140) and (II.142) satisfy the equations:
K3 Tx) = 0
(I11.143)
B(x)K(-3) = 0
with
K(B) = -1 2+
= -1 5p +ow) (II.144)

Here arrows on the derivatives indicate the directions in
which the derivatives operate.
We write also the free field equations for the quasi-

electron ¢(x) as

A o(x) = 0
(I1.145)

oT(IAC-) = 0
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Let us denote the S-matrix and the spin-density operators
for the Heisenberg electron field by § and S(i](x)

respectively. We write

St,67,8,8%) = <iexpi-ia(e,oT,B,8M)}:> (I11.146)
and

§51) (x,0,07,8,8%) = {1 () rexp (-3400,07,8,81) )15
(I1.147)

where

aco,ot,8,87 = [d4x{p‘%ch)K(3)s£‘)(x)
+ o755 (" k(-8B 0o + 275 T oa B v () (I1.148)

+ 275 Ao (0))

and i = 1,2,3.
Here Z is the wave-function renormalization of the electron.
(I1.147) together with (II.146) gives us the expressions of
the spin-density operator in terms of quasiparticles.l3

Our task is to study the following question: how do

¢, ¢+, B, B+ in (II.146) and (II.147) transform so that

131n the case of localized spins (IT1.146) and (II.147) are
still valid due to the time integration on the entire
domain (-=,+=) and due to the relation (I1.134).
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spin rotation of S(l) (¢,¢+,B,B+) is induced? Let us write
the transformed fields ¢e(x), ¢g(x), Be(x), Bg(x) as

bg(x) = 0(x,0,,0,07,8,8"))

-~

Bg(x) = B(x,8;,0,67,8,8)[ 1=1,2,3

etc. )

and require that they satisfy the equations for quasi-

particles (II.145) and (II.143):

A(B) ¢y (x) = 0
® K(3)B] (x) = 0
' (I1.149)
bg(xIA(-F) = 0
By (x)K(-8) = o,
and that
75, S(85:04.86,50) = 0 (11.150)
3 (1) t Ty 2 (k) T N
78, S (bga0g,Bg,80) = ey $U x 0,088, ,80)
(II.151)

We note that when the choices
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J(x) = -A(-B)og(x) 27% )
j(x) = -K(-ﬁ)B;(X) % | (II.152)
n(x) =0 )

are made, then W[J,j,n] becomes the transformed S-matrix
S(¢B,¢;,B8,Bg). By a computation similar to that for the
isotriplet model, we can then solve the equations (II.150)
and (II.151) [25]. Thus, we find the following transforma-

tions for the quasiparticles:

B (x) = B(x) + ie, (1 *
6 1*2

2
Bi(x) = BT () - 10, D

+ for 92 = 83 =0 (II1.153)
¢g (x) = ¢(x)
teoy o ot
¢ (x) = ¢ (x) J
M.
B(x) = B(x) - 6,0}
Bg) = Bi(x) - 0,7 | for 8y = 0, = 0 (I11.154)

¢g(x) = ¢(x)

o (x) = o7 (x) J
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-ig

Bo(x) =e ° B(x)

ig
Bg(x) = e 3ty

+ for 6, =8, =0 , (I1.155)

16,1, 172

¢g(x) = e ¢ (x)
-i8.2

HORENGERESS

Thus we conclude that the spin rotation for the electron
Heisenberg field is induced by the E(2) transformations
(I1.153-155) of the quasiparticle fields.

We now note that c-number translations in the trans-
formations for B in (II.153) and (IT1.154) must be understood

as the limit for f(x) +1 of the transformations

4
B(x) + Bo(x) = lim [B(x)-+if(x)el(%) ] (11.156)
£r1
. M, %
B(x) + By(x) = %lT B(x) - £(x)o, () ] (II.157)

respectively. Here f(x) stands for any square-integrable
function. Since Be(x) must satisfy the magnon equation, it
is necessary that f(x) satisfies the magnon equation. Note
that the magnon equations are invariant under the trans-
formations in (II1.156-157) even before the limit f(x) +1 is
taken, exhibiting the E(2) invariance of the theory.

The generators of the transformations (IT1.153-155)
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(with 61 and 92 replaced by Glf(x) and ezf(x) respectively)

are

5 .
= (%) stx[B(XJf(x)-+B+(X)f*(X)l

1

]
1 B [ -5 (ol

*x18" (050 x) - BT B0

(I1.158)

As was pointed out previously, presence of the function

f(x) is essential for sél) and séz) to be well defined. We

also note that the generators (II.158) are time independent

since f(x)

satisfies the magnon equation.

The generators (II.158) satisfy the following

commutation relations:

(1
[sf )

[5(3)

(s (3)

or, in terms of séi) = s£1) 1 séz)

(+
[s¢ )

[5(3)

4

,S£2)] - iMstfo(x)l2 = const.]I

,sél)] = istg2J »
,séz]] = —isgl)

,sé-)] = 2MJd3x|f(x)|2 = const.I

,séi)] = iséi)

(II.159)

(IT1.160)
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On the other hand, the spin operators S£+), Sg'J and 8(3)
satisfy the algebraic relations of SU(2), generating the

spin group (rotation group) transformations (IT.114):

[S(+),S(-)] = 25(3)

(I1.161)
s(3) () _

I+

H
w

where S(i) = S(l) * iS(Z).
Now we will study what causes the change of the

original spin-rotation algebra (II.161) into the algebra

(I11.160).1%

Let us decompose the magnon field B(x) into the sum of

two parts as
B(x) = Bt(x) + Bn(x) (II.162)

where Bn contains only momenta smaller than n while momenta
in Bt are larger than n. Here n is infinitesimal. There

are many ways of constructing such Bn, for example

+o0
B (x) = % J dt e Mt B(x) . (I1.163)

>=]

Using (II.140), we can write

14The algebra (II1.160) is properly denoted as h4 algebra
(40].
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B (x) = Ezil-g-jd4k 8, (K)By eik-x (I1.164)
w)

Here dn(k) is a function which approaches § (k) in the limit
n+0. Therefore Bn(x) is of order n and independent of x
in the limit n=+0.

As already done in the case of the isotriplet model,
using (II.147) we can write SS(i)(x,¢,¢+,B,Bf), up to the
first order in n to obtain:

»

s = sM o+ g o803 o)

s(2) iy

Y
st ) - i o -3 )
( (IX.165)
%
sy = sy e idp s 3D iy

- tys (1)
(B.*B )s:™ ()1 . J

Note that, in the limit n -+ 0, the matrix elements of

S(i)(y) are equal to those of sEiJ(y):

<i|sMyy 5

I

<ilstM s . (I1.166)
In particular, this for i=3 gives

<0[s3 3]0 = <015 iyy 105 = u . (I11.167)



119

@%; We can therefore write:
3
Sés)(y) =M+ SE Y (I1.168)

(I1.165) show that, when we express the spin-density opera-
tors S(i)(y) in terms of quasiparticles and then ignore the
infrared operators Bn and B:, we obtain sgi)(y). Therefore,
the space-integration of séi)(y) must be the generators in
(II.158) in which B(x) is replaced by Bt(x). Therefore, we

can write (II.165) as

i
sélJ - 5513-+(5%) (Bn+B:)s£3) (II.169)
O séz) - sgz) ; i(z—lﬁ)d(Bn-B:)sgs) (11.170)

s¢9) = 58 v i s B - s 8t M) (ramy

Here

stV = [ehxm, 0800 + 3T 08" ()

SEZJ =-i(%)1 stx(Bt(x)f(x) - B ()£ (x))
sés)==jd3x:¢+(x)13¢(x)f(x):-+Jd3x(M-B:(x)Bt(x))f(x)

according to (II.158). Here f(x) is the square-integrable

function which appeared in (I1.158) and which is extremely
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close to 1. The spin-rotation generators S(l] should be

given by Séi) in the limit £-+1.
Use of (II.168) gives

(1) , 1,% t,.(3)
St + (-Z—M-) (Bn"’Bn)St

1
sﬁl) + (f%) (Bn+B:):s£3):, etc.

because B ¢ =

way we can rewrite (II.169) and (II.170) as

4
st = s{ v oy (8, +87):s (30,

]
Séz) = séz) - i(f%) (Bn-B:J:SES):

where sél) and 5%2) are given in (II.158).

B, +B_. s is given in (I1.158).

In this

(I1.172)

Our task now is to show that the spin-operators s{1)

f

in (II.169-171) indeed satisfy the commutators for the

rotation group (II.161) when the limit £+ 1 is taken. We

first note the following commutation relations:
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[sél),séz)] . iMJ‘delf(x.) 12]
ORI O NN
SN CNEENORN ORI S

s$,3,01 = - )

s, 8l = dh% o L anas

s£8,8, 001 = -1l (x)

s£2,87 001 - -18h%e oo

03,8 001 = B, (x)

s 37001 = oo L

Here fn(x) is the infrared part of the square-integrable

function f(x):

f(x) = ft(x) + fn(x)

In other words, fn(x) contains only momenta smaller
than n and therefore has domain of range 1/n. Thus fn(x)
vanishes in the limit n + 0 because f(x) is square-integrable.
Let us note that, since we consider commutators of two
generators (i.e. two successive rotations) we need two

infrared cut-off n and n: two limits n+0 and n-+0 are to
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be performed successively. Let us assume that the limit
n+0 is to be performed before the limit n'+0 and therefore
assume that n >> n (we find a same result when we exchange
the order of two limits). To take care of the locally
infinitesimal effect, the space integration must extend to
infinity. We must, therefore, take the limit £ +1 before n
and n tend to zero in order to recognize the differences

between 5{1) and s{1). Using (11.172-173) we find
[sél),sﬁz)] = iMstxlf(x)I2
R R * . (3),
iz (fn(x)+fn(x)+fﬁ(x)+fﬁ(x)).st : (1I1.174)
5 5
G Gp-Bhs{ ik e et ()

Since n << n implies that lfﬁ‘<<‘fn| for the square-
integrable function f, we ignore fﬁ and f% in the second
term in the right hand side of (I1.174). Taking the limit
£+1, (I1.174) leads to

st (23 o g(3) (11.175)

where (II.168) and (II.165) are taken into consideration.

We also obtain

(50,5 o4 s (53 g(2)y o 5 () (11.176)
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c:; Thus we found that
lim lim 1im [s(l) s(J)] - ie.. s (II1.177)
n+0 f+0 £+1 ijk
while
Lim lim [s{,s{%)) = i M 11m JdeIf(x)Iz
£+1 -0 £21
= const.lI
1k [5(3) s(l)l = 1im 1lim i s (11.178)

f+1 7{-+0 f+1 #{-+0

Lin Lim (553 ,5{%)) = 1im 14m 1 s(1)
£+1 F>0 £21 §=0

@ where 7§ = minimum of n and 7.

Eq. (II.177), in which the limit f-+1 is performed
before the limit #+0 and n+0, corresponds to the rota-
tional group symmetry, while (II.178) correspond to the
E(Z) group symmetry. We have thus proved that the
differences between S(i) and s(i) are due to the infrared
effects: 1im £+1 and lim #i~ 0 are not commutable, The
infrared term, although locally infinitesimal, gives,
however, a finite global contribution to the commutators
of the generators S(i) of the electron transformation.
Its locally infinitesimal nature makes it, instead,
commutable with any local operator and thus it does not

contribute to the generators commutator for the quasi-
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particles, which are directly related to the (local)
observations.

Let us note that the E(2) symmetry (II.160) is related
with observable results, since quasiparticles are related
to observable energy levels. The fact that the magnons are
associated with the E(2) symmetry can be expressed by
saying that the magnons form an irreducible non unitary
representation of the E(2) symmetry group.

Although we assumed the electron model, all the argu-
ments in connection with the magnons are true in any model
for the spin, because we did not assume any specific form
of spin density operator S(i)(x). In case of the electron
model, quasielectron ¢ appears in addition to the magnons,
It is remarkable that under the E(2) transformations in
(IT1.153) and (II.154), ¢ does not change at all; magnon is
the only agent for the transformation generated by S(l) and
S(Z).

It is also easy to show that the E(2) transformations
of quasiparticles in (II.153-155) induce the spin trans-
formation on the Heisenberg operator of the electron L2
i.e. wH(xJ -+ exp(ieili)wH(x). To do this we use the path-

integral formalism to express wH(x) in terms of ¢ and B.
S, (x) = <p(x):expl-iA(4,sT,8,8T)]:
H = C pl-1 (d’:q) s Dy )]'>

We then perform E(2) transformations (11.153-155); this
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results in the spin rotation of ¥y- The proof for this
follows the same steps of argument for S(i)(x).

Dyson concluded [42] that interaction between low
frequency magnons is very small. We note that this is a
manifestation of the E(2) symmetry.

Indeed we proved (cf. (II.150)) that the S-matrix is
invariant under the transformation B -+ B + const. (cf.
(II.153-155)); this implies that the magnon operator B
always appears with its derivatives in the S-matrix, and
thus magnon interaction disappears in the zero momentum
limit. 1In this connection we note that the study of inter-
actions among quasiparticles requires the study of
Telations among vertices with many external lines. This
can be done by the path-integral technique, too [24,30,33,
36].

We analyze now the previous results in connection with
the Holstein and Primakoff [43] commutation relations for
spin operators,

Holstein and Primakoff in 1940 introduced a method to
diagonalize the Hamiltonian in the exchange interaction
model of a ferromagnet, by introducing second quantized
creation and annihilation operators a: and a, for magnons.
In terms of such operators, the spin angular momentum

operators are given by [43]
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sgt) = s 4 is(B L sy - aya,/28)" a,

si) - s(D) . is{%) - (25" ay (1 - aja,/28)"} (11.179)
*

Sés) =5 - aga, . J

Here S is the eigenvalue of the third component of total
spin and S(i), 5(3) satisfy the spin group algebra. The
operators a: and ap. satisfy the usual commutation relations
for bosons:

* *
dg8pr - 8,8y =8,

mn

*
[al,ag.]
(I1.180)

® %
fag,ajl = [a,,a;,] = 0 .

A crucial role in the Holstein-Primakoff method is played
by the approximation used in writing the Hamiltonian in

%
terms of a, and a,: essentially they neglected all terms

%
which were not bilinear in a, and a,. 1In this way they

L A
were able to construct a linear formalism suitable for
practical calculations. In this approximation, the factor
% 1
(1- alal/zsjﬁ in eq. (II.179) is put equal to 1; therefore

the operators s (%) are replaced by s(i) which are defined by

sé s (28)7 a, ]

si) - (28)* a, » (II.181)
*

s(3) - Sés) s S—-alagj

L
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These operators satisfy the following commutation relations

(3) ((+); o (M) )
[Sg ,Sl. I 51 6221
[553)’55:)] . -55')622. . (I1.182)
(37,5571 = 288y, = const.ls,,, |

where I is the unit matrix.

Let us now introduce

gla) _ Séa)

ro g

(I1.183)
(a)

5

=3 NC)
g L
with @ = +, -, 3 and s* = s(1) 4 ;5(2),
Since Séa) and sga) are the operators associated with

the position Xy s equations in (II.183) mean

S(a) = Z S(a)(xg)
% (11.184)

s(a) =7 s(aj(xg) .
L
Note that S(a) are the spin-rotation generators with the
algebra (II.161).

The operators sél) and 552) respectively generate the

"field transformations"
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-

. 5%
dg > ay iz} 8

b (for all 1) (I1.185)

. (5%
a, +a, - i(3) s, J

while 5(3) induces rotation around the third axis:
(I1.186)

Here Bl’ 6, and 63 are continuous parameters of the trans-
formations. Our previous results mean that without any
approximation, when we express the spin density operators
S(u)(xz) in terms of quasiparticles and sum them over all
the space points, then the result is not S(a) but s(a) with
the boson Heisenberg operator a, replaced by the free field
operator of the quasiboson (i.e. the magnon) .

Although our conclusion is that S(a) becomes :-;(mJ when
expressed in terms of quasiparticles, i.e. in the quasi-
particle picture, this does not justify the Holstein-
Primakoff approximation. In the Holstein-Primakoff article,
the operator a, acts as the Heisenberg operator and not as
an operator for quasiboson. When a, is expressed in terms
of the quasiboson, i.e. magnon B, the expression is a very
complicated one. In fact, a, is an infinite power series
in normal products of B and B*. Thus we are not considering

the linear approximation, which has been clarified by
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Dyson15

[42]. To establish the quasiparticle picture, we
need to consider infinite power expansions of Heisenberg
operators in terms of creation-annihilation operators of
quasiparticles (i.e. the dynamical map). Through this pro-
cess the quasiboson (magnon) emerges as a bound state of
electrons (cf. Appendix).

Finally, we recall that our arguments are completely
general; no assumption is made on the Lagrangian except its
invariance under the spin rotation transformation (I1.114);
furthermore, our study covers the cases of localized spin
(such as the Heisenberg model) and of continuous spin
distribution (such as the itinerant electron).

Although the path-integral method presents various
results which are independent of specific model and of any
approximation, it rarely helps us in computing model-
dependent quantities. In the framework of the self-
consistent method, an example of model-dependent calcula-
tion for ferromagnetism is given in the Appendix.

In closing this section we observe that in both the
examples studied, i.e. the iso-triplet model and the ferro-

magnetic system, the three-parameter SU(2Z) symmetry is not

15The representation considered by Holstein and Primakoff
is a nonlinear representation of the rotation group. We
have seen that if we express the spin-density operators in
terms of quasiparticles, this naturally leads us to the
linear representation of E(2) group.

For an analysis from the viewpoint of algebraic
realization of spin-wave theory see ref. [41].
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simply reduced to the cylindrical rotation symmetry of one
parameter, but is replaced by the E(2) symmetry of three
parameters. As already mentioned the E(2) symmetry is the
one which concerns observations and it can be detected

through low-energy theorems.

2.6 Spontaneous breakdown of gauge symmetry.

We have seen that spontaneous breakdown of symmetry
implies the existence of massless bosons, the Goldstone
particles, in the hypothesis that there are no long range
forces in the theory. Intuitively speaking, the phenomen-
ological systematic structure of the vacuum is due to the
presence of these massless bosons which act as long range
correlation modes.

In particle physics, it seems hard, however, to
explain the observed symmetry violations in terms of
Goldstone bosons since there is no experimental observation
of such massless particles. In non-relativistic phenomena
it is known [44] that the presence of the Coulomb interac-
tion affects the Goldstone theorem in the sense that the
excitation modes have finite mass. Intuitively, this fact
suggests that the role of the Goldstone mode in the
creation of the systematic structure of the ground state is
pPlayed by the long range Coulomb force. Following these
ideas, it has been shown [45] that in particle physics the

presence of a gauge field affects a spontaneously broken
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symmetry theory by eliminating the massless Goldstone parti-
cles (Higgs phenomenon). By taking advantage of the Higgs
phenomenon, a unified theory of weak and electromagnetic
interactions has been proposed [46] and many investigations
of spontaneously broken gauge theories have been done,
especially in connection with the renormalizability of such
theories [35].

It has been observed [47] that if long range forces
are present in the theory, the conservation of the total
charge associated with the symmetry transformation is not
valid, since surface contributions of the current do not
vanish. This fact invalidates the Goldstone theorem and
Goldstone particles completely disappear from the theory.
This situation is, however, unsatisfactory since the
Goldstone bosons play the crucial role of preserving the
local conservation of currents associated with the invar-
iance of the theory [2,4] (cf. Sec. 2.2), and the absence
of such Goldstone particles would make the theory internally
inconsistent from the point of view of the invariance
properties., For example, in the case of a chiral-gauge
invariant Nambu-type model, in which the helicity current
is coupled with an axial vector gauge field, Freundlich and
Luri€ [48] found that the gauge invariance vanishes
completely from the theory when expressed in terms of
physical fields. Obviously this conclusion is not

acceptable since the invarianqe of the theory cannot simply
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disappear and furthermore, it would be impossible the
dynamical mapping of the Heisenberg fields, which do trans-
form under chiral-gauge transformation, in terms of physical
fields all invariant under such a transformation. Starting
from these criticisms Aurilia, Takahashi and Umezawa [49)
found that, although a manifestly covariant solution of the
field equations is consistent only with the symmetric solu-
tion of the mass equation, however, there exists a non-
covariant solution associated with a long range mode which
plays the role of a Goldstone particle. In non-relativistic
theories a similar situation is found. 1In particular, in
superconductivity [32,50] it is found that a boson condensa-
tion is allowed also in the presence of Coulomb force; in
this sense the Goldstone theorem is still valid and the
gapless energy modes recover the symmetry properties of the
theory.

On the other hand, in the relativistic case Nakanishi
found that in the Landau-gauge formalism the theory can be
put in a manifestly covariant from and that the Goldstone
bosons are present as unphysical particles [51].

In the present section we analyze the Higgs phenomenon
by means of the path-integral technique, in which as usual
we do not need to specify the particular model. Our only
assumption on the Lagrangian L(¢(x),¢*(x),Au(x)) is that it
i1s invariant under global gauge transformation (first kind

gauge transf,)
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o(x) + X ¢(x) (II.187a)
AL(x) + A (x) (II.187b)

and under local gauge transformation (second kind gauge

transf.)

ieOA(x)

o(x) + e $ (x) (I1.188a)

Au(x) + Au(x) + BuA(x) . {I1.188b)

¢$(x) 1s a complex scalar field and Au(x) is a gauge vector
boson field; the constant o and the c-number real function
A(x) are the parameters of the gauge transformations (I1.187)
and (II.188) respectively; e, is a constant (charge). It

is also assumed that A(x) > 0. The generating func-

tional is [52)
1 * [ .4 *
W[K,Ju] =N J[d¢][d¢ ]HAu][dBJEXP{le x[Ll¢(x),d (XJ,AH(X)]

P ETEO0 + 8T XK+ I, GOA, () + BxHA (x)

(II.189)
+ ie|¢ (x) -v|2}
where N is equal to the numerator of (II.189) with
K=J = 0. The e-term is introduced to violate the first

u
kind gauge transformation (II.187). The term B(x)auAu(x)

is equivalent to the gauge condition a“Au(x) = 0; indeed
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j[dB]exp{in4x B(x)auAu(x)} = I, s, (x)) . (I1.190)

Let us introduce the notation

1

$p(x) = W{x)+ix(x)] ; K(x)==;% [K(x)+iK,(x)](I1.191)

1
V2
and assume v real and different from zero.

By performing the transformations (II.187) and (IT1.188)

in the numerator of (II.189) we obtain

ijd4x<K2(XJ¢(X) - K Gx(x)>g ¢ g
] ? 'l_l

(I1.192)

_ 4
= /2 evjd X <X(X)>5,K,Ju

1<0%Bx) - M, () + e (K, (W () - Ky (XG>, 4
Lt ) H

(I1.193)
= V2 Eve <x(x)>e,K,J
U
By operating 6/6K2(y) on (II.192), we have
Y(y)>_ = V2 ev jd4x <x(xIx(y)>, (I11.194)

By putting y(x) = ¥ + p(x), with <p(x)> = 0, we can see

that, if
lim <w(x)>E = lim V(e) = ¥V # 0 , (II.195)
e+0 e+0
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the x-propagator must have a massless pole (Goldstone

theorem):
<x(X)x(y)>, = E;i;I Jd4p e 1P(x-y) a,(,p)  (I1.196)
T
with
A (e,p) = Z L v E (e,p) (I1.197)
X Xip +isax X

where ZX is the wave-function renormalization of x(x) and
Ax(e,p) is the continuum contribution part of the propagator,

(I1.194) gives

V=+v2y (II.198)

xsn IXN

From (II.193), by convenient differentiations, we

obtain
i<aZB(x)22B(y)>_ = /7 eve <x(x)32B(y)> (11.199)
X Y E 0 y E ’

i<BiB(x)x(Y)>e*-eo<w(x)>86(x-y3= VT eve <x (x)x(v}>,
(I1I.200)
i<aiB(x)Au(y)>e - a5 (x-y) = /2 eve < (XA, (y)>_  (I1.201)

Let us note that, due to the symmetry y -+ =X

Au -+ -Au and B = -B, it must be <p(x)B(y)> = <p(x)x(y)> =

<p(x)Au(x)> = <x(x)> = <Au(x)> = <B(x)> = 0. By using
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(I1.198) and writing the propagators for fields A(x) and

B(x) in the momentum representation as

<A(x)B(y)> = z—i;z-jd4p e 1P (x-y) A g (D) (II.202)
2n

with A,5(p) = Ay, (-p), (II.199-201) together with (II.197)

give [52]
1 ~ h'
A,,() = 2 t———+ 4 __(p)
XX X[p +ieax XX
eoﬁ
8p, (P} = - —5——
Bx p +isax
" : (I1.203)
(egV) 1 1
Bgp(P) = —3 2 v
BB X p +iea P
X
. 1
bn, (p) = -ip
BA Z
H H P J

where we considered only lower orders in e and the term
1/p2 is defined as 1lim 1/(p2+in). It was also assumed that

n+0
AXA (e,p) does not have a pole term like pu/(p2+isax). Due
!
to (II.203) we can write the Heisenberg fields in terms of

“in-fields as follows:

L
x(x) = Z; xM(x) + ...
e v . e v .
B(x) = - E%— x T (x) + EE_ b™M(x) + ... b (I1.204)
X 2 X
- 7% ;in _ upin
AL(x) = 23 Ut (=) Exv a"b M (x) + .. J
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<:) We put

x> = Lo Jd4p e Pl Y] 1 (11, 205)
(2w) P +i1—:aX

DM b (y)> = L Id4p e P(xy) 2L (11, 206)
(2m) P +in

and
), b )1 = 0 (11.207)

Z3 is the wave function renormalization constant for the
field Uu(x) and bin(x) is a negative norm state. The
presence of this state in the theory can be ascribed to the

@ fact that we are using the gauge BuAu(x) [51,52). Eqgs.
(II.204) can be written also in the form

1 -1 \
X(x) = 25 X7 (x) + ...

e v e Vv .
b(x):B(x)-l-zo_ x(x)=?:__ bln(x) +
X
X

7 » (I1.208)
U, (x) =A (x) +—X— 3¥b(x)
H [ (eoﬁ)
A()i—[a“au — a¥y(x) = 22 uitx)
= x) + X) +—— 3"yx(x) = X
H (e V) e Vv 3w
0 ) ]
+ LI
@Ei where dots mean higher order terms.

Note that (II.193) for K = J, =€ =0 gives



138

-3%B(x) = 0 (1I.209)
which gives

2 in

5 M) = -aBeih

x) = 0 (II.210)

due to (II.204). Since auAu(x) = 0, (II.204) gives
in _ -
BuUu (x) 0 (I1.211)

To better understand the role played by xln and bin let us
study the dynamical rearrangement of symmetry. The free

n in
b

¥

field equations for our in-fields xl , U™ are the

eqs. (II.210-211). Assuming a mass m, for pln(x), the free

field equation for pln(xJ is

(-32 —mg)pin(x) =0 (11.212)

As usual we write the s-matrix S and the Heisenberg fields

as

5 = <=exp{—iAcxi“(xJ,pi“cx),bi"Cx),U§“(x))}:> (I1.213)

SAﬂ(x)==<Aucx):exp{-iA(xi“(x),oi“(xJ,bi“ch,U§“(x33}:>
(I1.214)
Sty () = <0 6 sexp{ 1A (x), 0T () b3 ) UER G0 o>

(I1.215)
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with
AGT ), (00,0 0,0 ) -

4 .-% in a2 =% _in a2 2
Jetiz i alx + 2% e (02wdy a6
1 -
p(x) + 2 bty a2)p e + 233 (x) (-2)uM (x) ]
e V x H x
We look now for transformations of the in-fields

X "0 = R0 A et b1, uiny
(II.217)
- - . - . . r
P )+ 03 ) = Bx, 25x 1M, 0™, by
etc. J

with certain parameter A, such that xin, p;n, b;n and Uin
satisfy the free field equations (I1.210-212) and such that

8 -
3% S(A) =0 (II.218)
5-3;1 SA}:(l,x) =§’x- [S(AS(XJ+AB“a(x))]=8“a(x)5 (I1.219)
31 S0y(0,x) = e, a(x) Sy, (x) (11.220)

where a(x) is a real c-number function.

We also used the
notation F(A,x) = F(xin(x),pin(xJ,bin(x),U;nl(x)). The
H
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equations (I1.218-220) can be solved by the same method
used to solve the equations (II.84) and (II.150-151) in
Sec. 2.5. In the present case, however, we first modify
W[K,Ju] given in the equation (II.189) by introducing the
term JB(x)azB(x) in the exponential. The introduction of
such a term does not modify the previous equations since in

the Ward-Takahashi identities the field B(x) appears always

2

with the derivative operator Bx. Then our choice for the

sources is

3 x) = 2% uit ) '

3 H X
K () = -22% ol (x) (-0 2-nd)
, (I1.221)
Kp(x) = -2 3 () (-02) + b1 x) (02
2 ) in 2
3%, (x) = - X_p (x) (-2.)
o7 j

When we assume that (-Bi)a(x) = 0, we find [52] the follow-
ing transformations for the in-fields:
in in 3
U, (x) ~» U, (x)
p M (x) + p™(x)
[ (II.222)

bin(x) N bin(x)

X+ xT el L oax)
7 J
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for A+1. This shows that the (local) gauge transformation
of the Heisenberg fields are induced through the boson
transformation of the massless in-field Xin.

Let us observe now that due to (II.209) we can define
the positive-frequency part B(+)(x) of B(x) and define the

physical states|phys> by [51]
B(*) (x) [phys> = 0 . (I1.223)

On the other hand, (II.203) shows that xln does not commute

with B, unless ¥ = 0. Thus

80 ()% ™ (x) [phys> = X" x)80) (y) [phys> + c|phys>
(I1.224)
where ¢ is a c-number created by the commutation of Xin and
B. Then, (II1.224) shows that xin(x) is a unphysical field

since
B0 () (M () |phys>) # 0 . (11.225)

In conclusion we have shown that in a spontaneously
broken theory a Goldstone mode is present even in the pre-
sence of a guage field, although this mode is unphysical.
It is due to these Goldstone (unphysical) particles that
the invariance of the theory can be consistently recovered
at the level of physical fields.

We considered above the case of an abelian gauge theory.
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It will be interesting to consider also non-abelian gauge
theories and to analyze the connection, if any, between the
unphysical Goldstone mode and the fictitious scalar field
introduced by Faddeev and Popov [54] in the perturbative

treatment of a Yang-Mills [55] field theory.
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IIT. INEQUIVALENT REPRESENTATIONS OF CANONICAL
COMMUTATION RELATIONS

3.1 Existence of unitarily inequivalent representations of

canonical commutation relations.

For systems with a finite number of degrees of freedom,
different irreducible representations of the canonical
(anti-) commutation relations are unitarily equivalent to
each other. This is the content of the well-known Von
Newmann's theorem [6].

In Quantum Mechanics, the number of degrees of freedom
is always finite for any system and the Von Neumann's
theorem holds. A different situation occurs in Quantum
Field Theory where systems have always infinitely many
degrees of freedom; it has been shown, indeed, that there
are infinitely many unitarily inequivalent representations
of the canonical (anti-) commutation relations [5]. This
feature of Q.F.T. has been widely studied [2,29,56,57], and
here we want to illustrate it by considering .a boson system
as an example [2,29,52]. The extension to the case of
fermions is straightforward.

We consider as hamiltonian of our system the following
one:

H = jdsk[mk(aiaﬁ +bfby) + vy (apb_y + bTzad)) . (111.1)
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The commutation relations for ag and bi are;

[ai,a§] - [bi,b§] = §(k-D) (I11.2)

and all other commutators zero.
We denote by HF(a,b) the Fock space cyclically built
by operations of a% and b% on the vacuum |0>>. This is

defined by
aﬁ|0>> = b§|0>> = 0 (II1.3)

HF(a,b) is an irreducible representation of (III.2).
Let us recall that ag, a%, bﬁ and b% do not map
normalizable vectors into normalizable ones (cf. Sec. 1.2);

thus, we need to introduce

a, = __Qi§77 f.(ﬁ)a+
(2m) 1 k

(I1I.4)

o
[}

&’k £. (K)be
i 7 |z 377 f1 b

with square-integrable functions fi(ﬁ).

We want to show that there exist infinitely many uni-
tarily inequivalent representations of (I11.2).

Let us consider the transformation (called the

Bogoliubov transformation)
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ag = ag cosh 8, + Bfi sinh 61
(III
by = By cosh By * afﬁ sinh @,
with
1]
cosh zek = -——E——
Y Wi Vk
(III.
v
sinh 20, = - —K__
Y BTV

It is easy to see that by using (III.5), (III.1) becomes

.5)

6)

H = jdsk Ek(aﬁag + Bﬁsi) + W, (II1.7)
with

Ek =VOJk-vk (III.B)
and

= 3 [ 2 7
Wo = Jd k [ Wy - Vg mk]
By requiring that
[ag,a}l = [BK,B%] = §(k-D) (1I1.9)

and all other commutators of o and B are zero, we see that
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(III.5) preserve the commutations (I1I1.2).

We introduce the operators

o = ( d3k £ (K)a+
i chﬂ)372 i k
r (ITI.10)
3
d 'k 3+
B_ = f.(k)B
i J(Zw)372 i k
By defining the (o,B)-vacuum |0> as
aE|0> = B§10> =0, (I1I.11)

we can construct the Fock space HF(a,B) by cyclical
operations of ai and BI on [0>, Since (III. 5) preserve
the canonical commutators (I11.2), HF(a,B) is also an
irreducible representation of (I11.2).

Let us now assume that there exists a unitary operator

G(8) which generates the transformations (III.5):

ag = 6(8)azG 1 (6)
(III.12)
by = G(8)BzG () .

In this hypothesis, one can prove that the |0> is related

to |0>> by

[0> = exp['G(aJIdsk log cosh ek] (III.13)

X exp[jdsk tanh Bka% bfﬁ]l0>>
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Since 6(3) = 6(i~:€)|i-I = =, (III.13) means that |0> cannot
be expressed in terms—of states of HF(a,b), unless B =0
for all values of k. This means that any state of HF(a,B)
cannot be expressed in terms of states of HF(a,b): the two
spaces HF(a,b) and HF(a,B) are orthogonal to each other.

We conclude thus that the transformation (ITI.5) cannot be

implemented by a unitary operator G(B), i.e. the two

irreducible representations of the canonical commutation
relations (III.Z) (or (III.9)), HF(a,B) and HF(a,b), are
unitarily inequivalent to each other. We alsec note that

oy and 81 are characterized by the parameter O defined in
(II1.6). By different choice of this parameter, provided
that the transformations (III.5) preserve the canonical
commutators (III.2), we can construct a different inequiva-
lent representation of (III.2). Thus, there are infinitely
many such representations. Note that the result (I11.13)
is independent of the choice of the parameter 8, except for
the case 6 = 0. It is also interesting to note that the
inequivalence of the representations is expressed in

(III.13) through the exponential in 6(3); since

1 3 Volume of the system
6(3)=——3[dx= ,
(2w) (2“)3

we see that the orthogonality of HF(a,b) and HF(a,B) comes
from the fact that the volume is infinite16 (i.e. there is

16

Note that in many body problems it is not unrealistic to
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an infinite number of degrees of freedom). Let us suppose
that our system has a finite volume: then in (III.13) the
factor exp[-ﬁ(ﬁ)] will not appear and furthermore the
integrations on the momentum % should be replaced by summa-
tions on a countable set of discrete momenta, say ﬁi‘ We
then see that when the volume becomes infinite, the
generator G(8) transforms vectors of the separable space
HF(a,b) into vectors with infinite number of quanta a and b
which belong to the non-separable Hilbert space H (cf.

Sec. 1.2). The space HF(a,B) is also a separable subspace
of H. The orthogonality between HF(a,b) and HF(a,B) is the
orthogonality between two different separable subspaces of
the non-separable Hilbert space H. We can think of |0> as
a state where a and b bosons are condensed. Since 0> is
translational invariant we can obtain a non-vanishing
density of bosons only if infinitely many of them are
condensed. Thus we conclude that a locally observable
boson condensation in a translational invariant system can
be achieved only by going to a space (HF(a,B)) unitary
inequivalent to the original space (HF(a,b)) where no
bosons are condensed. Note that, due to the orthogonality
between HF(a,B) and HF(a,b), a and B are not annihilation
operators in HF(a,bJ and a and b are not annihilation

operators in HF(a,B).

16(cont'd) s fs 5o s .

talk of "infinite" volume: at boundary surfaces
the potential is not infinite. Thus wave-packets can
spread outside and a continuous distribution of momentum
is allowed.
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Let us observe that the hamiltonian (IIT1.7) has the
form of the free particle hamiltonian (I.41) plus the c-
number W, . HF(a,B) is then the Fock space for physical
particles introduced in Sec. 1.2. Let us assume that in
choosing the parameter Bk in (III.S5), we use (III.7) as a
condition to be satisfied. Then we can look at the set of
operators {af,Bi} as the set of physical operators, and we
can read the transformation (III.5) as (simple) dynamical
maps. All the procedure to construct HF(a,B) is then
equivalent to the one followed in the self-consistent method
introduced in Sec. 1.4. We see in this way how the self-
consistent method is actually a procedure to select a Fock
space for physical particles (HF(a,B)) among infinitely
many unitarily inequivalent spaces (corresponding to
different ek). The selection is made By the requirement
that the free hamiltonian must take the form (III.7); this
requirement determines an appropriate ek’ i.e. it determines
the coefficients of the maps (cf. (III.5)). Since (III.S5)
are not unitary transformations we see that in general the
dynamical map is not unitary.17

Recall that in the self-consistent method the canonical
commutators (III.2) are not required a priori (cf. Chap. I).

In general, the condition (III.7) can be satisfied by many

17The unitarily inequivalence of Hp(a,b) and HF(a,B) is
known as Haag's theorem [5,58] in a relativistic Q.F.T.
However the same situation is present in non relativistic
theories, too [3,10,25,30,32,59].
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Gk, determined by different boundary conditions. The Fock
space HF(Bk) (EHF(a,B)) corresponding to each By is then a
realization of a different physical situation: thus, we
conclude that unitary inequivalence means physical inequi-
valence. While in Quantum Mechanics different choices of
Hilbert spaces give the same physical results (due to the
Von Neumann's theorem) in Quantum Field Theory different
(inequivalent) representations of the canonical commutation
relations give different physical situations. One example
of this is given by our study of spontaneous breakdown of
symmetry in Chap. II: different boundary conditions (c=0
in the symmetric case,c # 0 in the asymmetric one, (cf. eq.
(I1.17)) lead to different (unitarily inequivalent) Fock
spaces for physical particles. That is, we have a space
with the vacuum invariant (¢ =0 case) and a space with the
vacuum not invariant {(c # 0 case) under the original
symmetry transformation.

H. Umezawa, Y. Takahashi and S. Kamefuchi [29] have
also investigated the possibility of describing mass
spectra by relating different mass values to different
inequivalent representations.

Another example in which one could "use" the inequiva-
lent representations is the problem of unstable states in
Q.F.T. Spontaneously decaying particles are uncomfortable

objects in Q.F.T. since one does not know how to treat in
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a rigorous way unstable states18

[60]. Let us observe,
however, that any unstable state of mean life A, 1s stable
if "observed" in a time interval At < ). Suppose that one
could parametrize different inequivalent Fock spaces by
intervals At. Then, given At < A, it should be possible to
select a Fock space HF(At) in such a way that states of
mean life A are described as stable states in HF(At).
Physical results will be, in general, functions of the para-
meter At.

The occurrence of infinitely many inequivalent repre-
sentations has been also useful in the formulation of a
Q.F.T. at finite temperature [61]. This is the subject of

the following section.

3.2 Quantum Field Theory for finite temperature.

Quantum Field Theory methods and techniques have been
widely used in many body problems. One of the principle
reasons for this is the fact that states of a system with a
large number of interacting particles can be .described with
relative simplicity as vectors of the Fock space. On the
other hand, as Matsubara observed [62], the statistical
average <A> of a certain quantity A has properties similar
to the vacuum expectation value of A, A method of computing

the partition function Z by using the Feynmann diagram

L8Note that a one-particle state is "stable" (cf. eqs.
(I.BZ-SSJ)- '
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technique, and a Green's function method for Statistical
Mechanics are based on this observation [63]. However, it
should be noted that an essential feature of Q.F.T., namely
the canonical transformation technique, cannot be incor-
porated in the Green's function formalism. Indeed by a
canonical transformation one is able to change the repre-
sentation of the canonical variables, i.e. to go from one
Hilbert space to another one, and this is not possible in a
theory formulated in terms of Green's functions which
presume a specific choice of the Hilbert space. Further-
more, a canonical transformation U, which commutes with

the hamiltonian H, has no effect when trace operations are

involved, e.g.
Tri{A e BH) = 1riu-lay e BH; |

On the basis of the considerations in the previous
section, we will show that the above difficulties can be
bypassed [61] in a Quantum Field Theory for finite
temperature.

We start by observing that the field equations for
Heisenberg fields are temperature independent. Thus any
temperature dependence can be introduced only through
temperature dependent boundary conditions. On the other
hand, we want to construct a field theory which should give
us Statistical Mechanics results. Then, as a boundary

condition we require that vacuum expectation values of
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observables lead to the grand ensemble averages. Denoting

by A any observable, our requirement is
<0JA]0> = <A> (I1I.14)
with

<a> = 270 g)Tr(A e TBHy | B = o (I1I.15)
where Z is the partition function

z(g) = Trie BHy | (II1.16)

kB is the Boltzmann constant and the hamiltonian H includes
the chemical potential. The condition (II1.14) suggests to
us that the vacuum |[0> must be temperature dependent. Thus,
our problem is to parametrize the unitarily inequivalent
Fock spaces by using the temperature as parameter. Then
the boundary condition (III.14) will select the appropriate
space. Let us denote the temperature dependent vacuum as

[0(B)> and write (III.14) as
- --1 -BE
<0(B)[A|O(B)> = Z277(B) | <n|A|n> e n (I11.17)
n
with

Hin> = E |n> (III.18)
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<n|m> = 8 m (I11.19)

The state [n> is a temperature independent state belonging

to a Fock space Hg. It can be shown [61] that a convenient
way to construct the state |0(B)>, such that (III.17) is
satisfied, is to introduce a '"fictitious" dynamical system
identical to the one we want to study. Quantities associated
with such a fictitious system are denoted by a tilde. The

fictitious system is characterized by

f)i> = E_|n> , (I1I.20)
<fiffi> = § (I11.21)

where En in (III.20) and (III.18) are the same by definition.
We denote by |n,fi> a state of the space spanned by the

direct product of |n> and |fi>. We have

<fi,n{A|n',fi"> <n|A|n'>6~~,

(III.22)
<ii,n|Aln',m'> = <ﬁ|ﬁ|ﬁ'>6nn,
The state |0(B)> is then constructed as
-1 -BE /2
[0(B)> =12"2%*B) J e ™ |n,i> . (I11.23)
n

By using (III.22) and (III.23) we easily can verify that

the condition (III.17) is fulfilled. We note that in
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(III.23) the states [n> and |n> appear always in pairs and
that the function of the states |fi> is to pick up the
diagonal part of A (cf. eq. (III.29)). To better clarify
the previous construction of |0(B)> let us consider as an
example an ensemble of free bosons with frequency . The
extension to the fermion case is easy [61]. The hamiltonian

is

with

[a,a+1

1, [a,a]l =0 .

The Fock space Hg has vacuum |0> and state of n (n=0,1,2...)
bosons 1/vnl (a+)n|0>. The eigenvalues of H are nw. The

fictitious system is also considered:

fou ]
n
E
w2
—+
o
—
o
X
_l..
[ ="}
(]
[
—
o}
Y]
[ =)
[}
o

and we assume that
[a,3) = [a,iT] = 0
Eq. (III.23) is now

|o(B)> = Z'%(B)Z g™ BNW/2 n—lr (a*)n(a*)“|0,6> . (III.24)
n

By introducing
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u(B) = (l-e'B“)'% = /1+fBimi

(III1.25)
v(B) = (tae'”"-l)'!i = JfBiwi
G = -i x Tt
B = ie(B)(da-a'da’) (III.26)
with €(B) given by
cosh 8(B8) = u(B) , (I1I.27)
(III.24) is rewritten as
[0(B)> = V1-e BW exp(e"s"’/2 a+§+)|0,5>
(III.28)
Y | v(B) . txt ~
u " (8) exP[ﬁTET a'd }[0,0>
Temperature dependent operators can be defined as
-iG iG
a(B) = e Bae B u(g)a - V(B)§+
(II1.29)
-iG iG
i(B) =e Sae P = u)i- vip)at
Eq. (III.29) and (II1I.28) then show that
a(B)|0(B)> = a(B)|0(B)> = 0 , (I1I.30)

and we see that |0(R)> acts as a vacuum for a(B) and a(R).
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Consequently, the temperature dependent Fock space HF(B)
can be cyclically built from |0(B)>; a generic state is
(1//aTaT) (2" (8))™aT(8))™[0(8)>. We note that [0(8)> is
related to [0,5> by a Bogoliubov transformation, as shown
in (II1.28). Then, by modifying the parameter temperature
we can go from one representation of the canonical
commutation relations to another inequivalent representa-
tion: different (temperature dependent) boundary conditions
are thus incorporated in our formalism. Note also that
states of HF(B) are eigenstates neither of H nor of ﬁ;
however it can be shown that H = H - i is diagonal, which
tells us that the average energies <H> and <H> are equal.

The boson average number is given by
T _ .2
<0(B)a’alo(B)> = v (B) = £5(w) (II1.31)
which reproduces the well-known Bose-Einstein distribution.

On the other hand, it can be seen that for the one-particle

state we have

+ 1 ~ 1 +
a (B)|0(B)>=—=—— d|0(B)>=———— a"[0(B)>.(III.32)
I /fBiwj ¢l+fBiwi I

Furthermore (III.28) shows that in the vacuum state [0(B)>
the number of particles with and without the tilde is the
same. From (III.32) we see that a one-particle state is

built up from the thermal equilibrium state |0(B)> by
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adding one particle or by eliminating one particle with
tilde. Thus we can conclude that the particle with tilde
is a hole of the physical particle; in the equilibrium
state |0(B)> there are equal numbers of particles and
holes; one quantum excited state in |0(B)> can be created
in two equivalent ways: by adding a particle or by elimin-
ating a hole. It is very interesting that this excitation
process is temperature dependent (cf. eq. (ITI1.32)).

The previous considerations, which are analyzed in
detail in ref. [61], give us a physical interpretation of
the formalism presented. At T = 0, our physics can be
described by means of the space H2. Since there cannot be
thermal excitations, we do not need to consider states for
the "holes" (the tilde-states). As the temperature
increases excitation or condensation processes can be
induced. This introduces new degrees of freedom in our

system. These new freedoms are expressed by the introduc-

‘tion of the tilde-Fock spaces, which are unitarily inequiva-

lent to each other and to the original space H Indeed,

0
Fl
when it is considered that particles and holes carry

momentum, (III.28) should read as

lo(R)> = _E E:Elhe_k expltanh 6, af a73100,0> . (111.32)

The dependence of 0, on k is due to the dependence of w on

k (cf. eq. (III.25)). Then one has
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<0,0|0(B)> = % Eag%gi = exp|- % log coshg,]. (III.33)

As the volume V + =, we can use

Do V[t .
F 2o’ J

Then (III.33) gives for V + =
<0,0]0(8)> =0 . (III.34)

The value of the parameter 8y can be chosen in such a way
that the vacuum expectation values of the hamiltonian H and

of the number operator N = g aiai are constant.
k
One can also introduce the "thermodynamical potential"

Q = <0(B)| I- % K + HI1|0(8)> (I11.35)

where K is the "entropy" (divided by the Boltzmann

constant kBJ:
) . 2 _ 2
K= . [a%ai log sinh CI aiai log cosh Bk]
By imposing that

= =0, (III.36)
aek

one finds
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sinhe, = £p(ay) (II1.37)
which is a condition on Oy

By means of the present formalism one can also give a
description of quasiparticles at finite temperature with
spectra depending on temperature. The bound-state problem
can be treated by using the Bethe-Salpeter equation and in
superconductivity at finite temperature it has been
shown [61,32] that the Goldstone boson is a bound state of
two electrons with spin up and down. A detailed account of
the formulation of superconductivity at non zero temperature
is given in ref. [32]. A microscopic computation of the
boson characteristic function at non-zero temperature [64)]
gives reasonable agreement with experimental data for T not
too close to TC.

Let us consider the problem of first-order phase
transition at Hcl'

Recently, Auer and Ullmaier ([65] have experimentally
investigated the problem of phase transition at the lower
critical field Hcl in type-II superconductorﬁ. By measuring
the magnetization curves for many samples with different
values of «, the Ginzburg-Landau parameter, they have been
able to determine the temperature dependence of the
critical value of k. This quantity, which is denoted by Koo
separates type-II/1 superconductors, which exhibit a first-
order phase transition at Hcl’ from type-II/2 super-

conductors which exhibit a second-order phase transition.
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In some recent articles [66-69] it has been shown that
the problem of a first-order phase transition at Hc1 can be
theoretically investigated by means of the boson formula-
tion of superconductivity [32]. The magnetization curves
have been theoretically computed for many values of «;
these computations have shown that for values of k suffi-
ciently small a minimum of H in the B-H curves appears,
implying that the transition is first order. The limit
value of « for which the minimum disappears gives the
critical value Ko [66,68]. The interaction energy between
two flux lines has been computed [67,69]: it has been shown
that there is a critical value of k such that for r > K
the interaction is always repulsive, while for k < Ke the
interaction is attractive for a certain range of values of
the distance between the flux lines. 1In all these articles
the analysis was restricted to the case of zero temperature.
For temperature different from zero it is found that the
magnetic properties of type-II superconductors around Hcl
are very well described by the following form of the boson

characteristic function ([32,66,67]:
(k) = [+a(MEZ MK+ s(med (myi) 2 (III.38)
where o(T) is a function of temperature which is fixed by

the microscopic foermulation, and 8 (T) is a phenomenological

parameter. Eo in Eq. (III.38) is the BCS temperature-
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dependent coherence length: EO(T) = vF/nA(T). Since c(k)
is positive definite, so are of(T) and §(T) [32].

In order to compute o(T) we must calculate the Bethe-
Salpeter amplitude for the boson state; according to the
results of the general formulation, o(T) is given by the

following expression:

2.2 [.a
A 3 R
a(T) = - T -L-} , (I1I.39)
8 vg [321 R(E) | g=0
where
3 1-f -f £ -f
A d %k 1 + T- + -
R(R) = 2 ot (III.40)
3 J(2“)3 E.E. [ E,+E. E. E_] ,
v [ 3k (e [1ef,f £,-f
Ry = A T . (III.41)
T on3 EE  |TEE E-E

In eqs. (III.40) and (III.41) A is the coupling constant of

the BCS hamiltonian, and the symbols P €, stand for

£? T4

£ " Fraeyp 0 Be T Braag oogy T oL,

fk is the Fermi distribution function

-1
BE
fk=[l+ek] ’

with g = l/kBT, kB being the Boltzmann constant; E, is the
energy spectrum of quasifermions which has the well-known

form
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E, = /@i + a%(m)
with
1 2 .2
x = 7 (K7 - kg)

It should be noted that in the expression (III.39) it
is neglected the fact that at nonzero temperature the
collective modes have a finite life time; this effect be-
comes more important when T approaches the critical
temperature Tc.

Computations of the expression (IIT.39) show that o(T)

has the following form:
a(T) = a(0)[1-y(T)? , (II1.42)
where o(0) is the value of a at T = 09K [70]:
an
a(0) = TT (I1I1.43)

and

2 BE
2k, (T) @ tgh(=)
_ A{0) B 1 p) de
T) = T -—rﬁT i —=%E- T - I1T1.44
g [ } [KB } t J0 cosh (%;J E ( )

In the expression (III.44) t = T/Tc is the reduced tempera-

ture; KB(T) is defined as

kg(T) = A (T)/g (T) (III.45)
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where AL(T) is the temperature-dependent London penetration

depth [71]:

A (0] = af
oI Jo dge (III.46)

The integrations in (III.44) and (II1.46) are calculated
numerically.
According to the results of the boson formulation the

interaction energy between two flux lines is given by the

following expression:

2 S
E(d) ='§%z Jo KF(K)J_ (kd)dk , (I1I.47)

where ¢ is the unit quantum flux, Jo is the Bessel function,
d is the distance between the centers of the flux lines and

F(k) is expressed in terms of the boson characteristic

function as

F(k) = —ok) | (III.48)
ALk +c (k) :

Equations (III.47), (III.48) and (II1.38) lead to the

conclusion that a first order transition at Hc_-1 will occur

provided that the two following conditions are satisfied
[69]:

0 < §(T) < % o2(T) (111.49)
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kg(T) < kg (T) , (III.50)

where KBC(T) is given by:

Zom -eMtmogs Mzt sean?

a®(T)-45(T)

Condition (III,49) comes from the requirement that § must
be positive and that for k + = the transition is second-
order. KBC(T) gives the critical value for Kg which
separates type-II/1 from type-II/2. The agreement with the
experimental data is rather good up to t = 0.6 but becomes
worse for higher temperatures [64]. One of the principal
reasons may lie in the fact that we have neglected the
finite life time of collective mode; another reason may be
that the form (III.38) for the boson characteristic
function is not quite accurate for temperatures close to
TC.

It will be interesting to use the formalism of the
present section to extend the results for ferromagnetic
systems (Sec. 2.5 and Appendix) to finite temperature. In
particular, we hope to compute a value for the magnetization
which fits experimental data in a better way than the
presently available theoretical results. On the other hand,
since in our formulation the boson excitations are automa-
tically taken into account, it should be possible to

recover the T:"/2 dependence of the magnetization also for
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the itinerant electron model of ferromagnetism. While there

are reasonable theoretical arguments for the T:"/2 law in
the case of the Heisenberg ferromagnet, there is no proof
for the itinerant electron case. 1In this respect, it is
interesting to note the presence of the B'B term in the
spin density 5(3) (cf. eq. (II.158)). 1Indeed, the vacuum
expectation value of such a term at T # 0, for low temper-

- ature, immediately gives

<B+(x)B(xJ>T#0 « 13/2

(Recall that the T3/2 term in the case of the Heisenberg
ferromagnet comes from the a*a term in S(S) (cf. eq.
(II.181)) and see e.g. ref.[43])). Another theoretical
improvement using the above formalism would be to extend
the Landau phase approximation and to construct a theory
which excludes the existence of one and two dimensional

ferromagnets.
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APPENDIX:
SELF-CONSISTENT FORMULATION OF ITINERANT
ELECTRON FERROMAGNETISM

In Sec. 2.5 we have studied the dynamical Tearrange-
ment of symmetry in ferromagnetism by means of the path-
integral method. Our arguments were completely general and
both the cases of localized spin (Heisenberg model) and of
continuous spin distribution (the itinerant electron model)
were considered.

In this Appendix we study the itinerant electron case
in the framework of the self-consistent method by consider-
ing a practical model. The magnon, as a bound state of
electrons, will be treated by the Bethe-Salpeter equations.
In our computation we will consider the pair approximation,
i.e. we will consider only those processes which conserve
the number of fermion pairs.

We consider the hamiltonian [72]

H o= A[xie v, + wle@u, + whily,
(A.1)

RTCANER LI
where ¢+ 4 a@re the Heisenberg fields for the electrons:

by (x)

y(x) = (A.2)
¢, (x}
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and

2

e(3) = - f% ($2+-kF

(A.3)

with KF the Fermi momentum and m the electron mass. The
last term in (A.1) is introduced to eliminate the self-
energy of the electron.

Here we assume the equal time anticommutation relations

for the Heisenberg electron field P(x):

g ()05, 1,80, -t) = (g (v, () +
(A.4)

Vs ()b (x))E(t, -t ) = S (x-y)e

s and s' stay for 4+ or +. We recall that in the self-
consistent method one should not assume the canonical
anticommutators (A.4), but find by computation what are the
anticommutators for the Heisenberg electron fields. 1In
this sense our computation is not completely self-

consistent. Use of (A.4) leads us to the field equation
1 ~ ~
(e(3) +3 5 - Mo )p0x) =~ s - flogu(x) + wy(x) . (A.5)

Here o is the 3rd Pauli matrix, s is given by

t
t vy by
A : (A.6)
Sy VibyY,

n
1]
m
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and the term -ﬁcs added to both sides of (A.5) acts as
energy counterterm. Its presence is justified by the
fundamental requirement that the total hamiltonian H must
be equal, up to a c-number constant, to the free
hamiltonian (cf. Chap. I). In other words, the interaction
should not create any self-energy forlthe quasielectron.

This is equivalent to require that the quasielectron field

¢, (x)
¢(x) = (A.7)
¢, (x)

satisfies the free field equation

E(V2))¢(x) = 0 | (A.8)

+

=
ot

o bt

(

with

E(VE)

m

(e(3) - ﬂos) (A.9)

The anticommutation relations for ¢ (x) are

[¢(x),¢+(y)]+6(tx-ty) = 6 (x-y)I (A.10)

where I is the unit matrix.
Let us note that the quasielectron energy (cf. (A.9)

and (A.3))

Ek+,+ = (Ek + M) s (A.11)
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with
1 2 2
Ek = ?-H-l- (k kFJ ) (A.IZ)

can be positive or negative. We then associate with the

Positive energy the annihilation operator « and with

Kt,+
the negative energy the creation operator BTK+ 4 with anti-
H

commutators

logsofe 1, = t8g,8f.01, = s-Ds__, ; (A.13)

all other anticommutators are zero.

The quasielectron field ¢(x) is then written as

3

(2m)
(A.14)
ik.X-iE t
+ 1 k+,+
* B ke,s B0 B )] e ’
We now introduce the 2x2 matrix
S(x-y) = <0|Tlo6(x),e (10> , ' (A.15)

where T[...] means chronological product of the fields $.

S(x-y) is the Green's function of (A.8):

i(% 3%; * E(ﬁi))scx-y) = 6(x-y) I . (A.16)

We have
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S+(x-y) 0

S(x-y) = (A.17)
0 S,I,(x'}')

with

S11(x-y) = S, (x-y) = <0|TI6,(x),6] (x)1]0>

4
.| d'k 1 2 .2
) J iy R 0% - h-18)

+ o+ -

iK(X-¥)-1E(t_-t_)
1 2,2 1 Xy
" EE,te 2@k )] e

where the limit €+ 0 is understood and

= ki + 2nil (A.19)

Q4

(A.18) with + replaced with + gives Szz(x-y) = S+(x-yJ.

In the self-consistent method one has to find the
coefficients of the dynamical map in order to find the
dynamical solutions. In the present case our problem is to
express the Heisenberg electron field in terms of the quasi-
particles. We choose as candidates for quasiparticles, the
quasielectrons. Since we are mainly interested in quanti-
ties bilinear in the Heisenberg electron field we consider
the following dynamical map

T 01 = xGey) + [eafads 1D p,a5x, 0080,

(A.20)

* JdSQIdsp Tcz)(p,q;x,y)a§+ﬁg+ oo
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where dots denote other normal product terms bilinear in q
and B plus higher order normal product terms. In (A.20) we
exclude terms which do not conserve the spin of the quasi-
electrons. The coefficients of the map, which are c-number

2x2 matrices, are given by

<OITIW(x) 9T ()1]0> = y(x-y) (A.21)
<a3+|T[w(XJ,wT(y)]|aI+> = T(l)(l,l;x,y) (A.22)
etc.

Our problem is now to calculate the coefficients of the
map. We will derive the Bethe-Salpeter (B-S) equations and
try to solve them in the pair approximation. To find the

B-5 equation for x(x-y) we consider

AGIXGNIACE) =<0t 't )1 ]0oa 08y (a.23)
where

A3y = - [% g% + E(V)] ' (A.24)

Use of the field equation (A.S5) gives [72], in the pair

approximation,

X(ey) = SGe-y) -1[at Sx-8) thog-ulex' 15 (6-y) (A.25)

Here x' denotes a 2x2 matrix of elements
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Xil = A<0|¢I(X)¢+(x) |0>; X]g = -A<0]¢I(x)¢+(x) |0>,
(A.26)

Xgy = -A<0Luy (00w, () 0> =x33s xp, = ac0lvi )y, (x) 0.

Since the interaction does not create any self-energy for

the quasielectron, it must be

<O|TIv(x), 0t (y)1]0> = <0|Tio(x), 0T (¥)1]05 (A.27)

i.e., from (A.21) and (A.15),

x(x-y) = S(x-y) . (A.28)

(A.25) then shows that

e

M03 -ul + x' =0 (A.29)
l1.e.
A T
M =7 <0y  (X)azw(x) [0> (A.30)
b= g <olut oo (A.31)

(A.30) gives us the magnetization M which must be different
from zero for a ferromagnetic system. (A.30) is the
boundary condition under which the field equation (A.5)

must be solved. (A.3P) and (A.27) give
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-~

-3 <0|¢+(x)03¢(x)]0> (A.32)

i.e., by using (A.14) and the definition (A.19),

Q 3

A + d7k

1 = - -3 - A.33)
ZM JQ+ (27) (

(A.33) is called the gap equation. When (A.30) is satis-
fied, an energy difference 2M appears between spin up and
spin down quasielectrons. Let us study now the B-S

amplitude

G(x,y) =<j|Trw(x),v (y)] [i> - <0|TIy(x), T ()] f0>sij (A.34)

with the states |i> and |j> satisfying <i|j> = Gij' We

consider then the relation

ABI6GIACE) = aB{<ITE W 511> -

(A.35)
.1.

U UORUGHIRINITE B
By using the field equation (A.5), (A.35) gives [72]:

6x,y) = 6°(x,y) - ifa%s Sx-5)F(EISC(E-y) (A.36)
where the 2x2 matrix F(E) is

-AG,,(&,E) AG.,(£,8)
F(E) = 22 12 : (A.37)

AGZI(E’E) 'AGII(E:E)
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and Go(x,y) is defined as

620x,y) = <3 ITW 0,0 115> - <0l TI8(x), 07 (111056, (A 38)

This shows that G(o)(x,y) is different from zero only in

the following cases (s and s' are + or +):

|3> [1>

|0> (A.39)
c) |a_+’s> ]aI_E,S,>
d 83,3 ¢ 83 50>
In these cases, (A.38) gives:
= L > . .5 . 5
iq-x ip-.y -iE’t -i(E-EJ)t
G:slcxs}’:) = ) 3 Ggsl(R‘,E) € e e 2SS e LS
(2m)
(A.40)
where the notation is E = E; - Ej'
0 0 0 0
Gys Ciy 611 C12 TS
o o | T ) 0 ’
Gyt Gyy L1 622
and



X “&-p,s p,s' <0 Ez:Eﬁ-p,s *
in the case
S _ +=+_-a- . - .
El= _£+p,s<0, q=4-p; E“p,s, >0; E |E
in the case
s_ N += _+. ] o= -
By =EBpp 5205 4 t-p; E, 120 E By pos
in the case
S_ +_+ ‘+. . -
Ex"E-£+p,s <0; q=4%-p; Ep,s' <0; E=-|E

in the case

Writing G(x,x) as

G(x,x) = le;3 G(z,E) eil-X-iEt
T

(A.36) and (A.40) give
Gy, (2,E) = 69, (z,E) + Q l(se,E)G. . (2,E)
11 (% 11 (& 2E)G,y, (2,

12
G12(%:E) = 6),(%,E) - Q**(£,E)G,,(4,E)

Gp1 (2,E) = 63, (2,E) - @*1(x,E)G,, (2,E)
632 (8,E) = 63,(2,E) + @*3(2,E)G , (2,B)

where QiJ(E,E) is defined by

Bpst I

(a)
(b)
E_p,s.;

(c)

(d)
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-24p,sl7Ep 50

—£+p,sl+lEp,s'|;

(A.42)

(A.43)
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QM x) = ias ) (s 03) () -
(A.44)

. = . + .
SRTORS I LI GRS

’ a3t aE
(zm)” (2m)

with s(0) (x) = s5;,00; s x) = S,,(x); (cf. (A.18)). We
also introduce the notation G(l) = G12 and G(ZJ = 'GZI'
(A.44) and (A.18) gives:

~
3
11 QG g 1
Q" (%,E) = A -
x-  (2m)S BYE_4-Egy
Q.
Q; 3
12 QG 4% 1
(L,E) = -A
(&, v ()3 PEE,
Q
(A.45)
=+
3
21 Q
QeE) = Ak r - ¢ 0,eE)
5= (2m) +¥
Q
b
) 3
gy = A[M d k - 1_E
s (Zn) +4
Q
where E = E , and
=h, 4 Iki%[+,+
S )
Qp,¢ Q4 2 5 cose
(A.46)
~2  _1 .2 2. 2 .2
Q,},+ =7 (L7cos™8 - ¢ +4Q+,+) 5
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with Q+ ' given in (A.19).

Let us now turn our attention to the "spin current"

T3 () =7%[w*(x)$oiw(x) - ('V'wf(x))viw(x)l =

(A.47)
S S T (i) ..
Zmg [V V) o0 Gadw ()11, + ¢y i=1,2,3
and to the "spin density"
(i) _ ot _ + (i)
P (x) =¥ (x)o ¥ (x) = -Trlo,y(x)y ()f)lx=),+cp ' A4)

i=1,2,3

where c}l) and cgl) are c-numbers created by commutations

among ¢ and wT. Use of the field equation (A.5) leads to

TIWe + L oWy =0, i-1,2,5. (a9

We have, in any of the cases (A.39),

1T )i = - S el ¥ )0;6% (e, y)0 L,
(A.50)
+ 571 () i=1,2,3

with

7 x) =L [(ﬁx-%”y)Jd"a Trlo;S(x-E)F(EIS(E-yI11,

(A.51)
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where F(E) is defined in (A.37)} and can be written as

F(x) = EE%;E F(1,E) ell-X-iEt (A.52)

Similarly, we have

<31 ) 5> = -Tr 10,600,y 1, + 80 00, 101,2,3 (a.53)
with

6o (1) (x) = [in4E Tr (038 (x-E)F(E)S(E-Y) 1], - (A.54)

Use of (A.18) and similar equations for Szz(x-y) gives

~

m

6+(1) = .
’ S (2n)3 3 (zn)3 E+E-+'E++
+

s (2m)S  EYE_cEg

. [6; k3 G(l)(E!E)J

L (ZN)S E+E_+-B++

i ) _it-%-iEt {jQ+ &k y -6
(A.55)

. JQ; &Sk g G(l)(R,E)J

Q+ (2“)3 E+E_+-E++
+
2.2 ipe [ (A 43 G, (%,E)
63(3)(x) = . 1 A elI-x-lﬁt + _dk g 22 -
+

Q43 3 S11(4E)
J~_ (2“)3 E+E_+-E++
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In the same way,

~ 4
(il %-iEt JQ+ k¢ ,p) |
(23 FFE_-E,

~ o

Q

a (A.56)
<+ (2m)3 EFE_,"E.,
Q
etc.
We introduce next the '"free spin current"
T = et e¥oem0 - Gt xdeg 001 -
(A.57)
- - e (@I Trioge e o1, +c(D) i-1,2,3

and the "free spin density"

pgiJ(x) = ¢*(x)oi¢(x) = -Tr[oi¢(x)¢+(y)]x=y * C(;) ’

(8]
(A.58)
i=1,2,3.
Then
GV @15 = - g TrL@,-T 0,60 e (A.59)
<j|p£i)(x)|i> = -Tr[UiGo(x,y)]x=y . (A.60)

Thus
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7 o)

T+ a0

(A.61)

1]

p(i)(x) pgi)(X) + Gp(i)(X)

where f(i), Téi), p(i), péi) must be understood as the
corresponding matrix elements <j|f(i)(x)|i>, etc.

By using (A.43), (A.5), (A.B), (A.55), (A.56) and
(A.61) we can prove that the conservation law (A.49) is
still valid although we consider the current and the density

as expressed in the pair approximation in (A.61).

Let us note that, while

e v oS0 = - zifiele,-ele,) (A.62)

and similar equation for i=2, for i=3 we have

T L olP e =0, (A.63)

which is the conservation law for the "free spin current"

in the 3rd direction. We can show also that

o (1) (x) = (P () = 5p 3 () = 0. (A.64)
2=0 2=0 =0

We observe that, for the momentum % different from zero,

the gap equation (A.33) can be generalized as
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1= - AJQ+ d k 1 (A.65)
q, (2m)° w, + K2 2f
where w = 0. Then, by using (A.45),
*la=0
1+ ol2 3
Q*2(2,E) = (E+w,)A(%,E)
(A.66)
1+ Q* (2,E) = (E-w,)B(2,E)
where
A(£:E) = 'B('ly-E) =
(A.67)
) AJQ+ a3k 1 1
3
q; M7 uy - ELeam 2 -EZ. a0

Use of (A.43) and (A.66) shows that 63(1)(x), 63(2)(x),
Gp(l)(x) and Gp(z)(x) have poles at E = tw, {cf. (A.55) and
(A.56)).

2

we find w, « &

By solving (A.65) with respect to wy W 2

for small 2&; indeed

2
5
0y = o= (Q9-Q)) - & @ty | (A.68)
for small R&.

The fact that spin currents and densities, for i =1 and

2, have singularities at E = tw,, suggests to us that there

exists a boson of energy wy. We have then to modify the set
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of the quasiparticles by introducing the magnon field B(x).
Consequently, we must add terms containing the field B(x)
to the dynamical map (A.20). The terms we add to the right
hand side of (A.20) are

Jd3z T(13(z,x,y)3}-+Jd3£ T(ZJ(Q,x,y)BE ., (A.69)

where B3 is the annihilation operator of the boson quantum
(the magnon) and dots mean higher order normal product
terms. We are going to prove the existence of this boson.
On the basis of the arguments presented in Chapter I, the
boson quantum is a composite particle, i.e. a bound state
of electrons.

Let us study the B-S amplitude G(xl,sz obtained by
considering the states |j> = |0> and the one-magnon state

[i> = |B£>:
Gex,y) = T8 2, x,y) (A.70)

By a computation similar to the one for G(x,y) defined in

(A.34), we find

G(x,y) = -ijd4s S(x-£)F(£)S(E-y) (A.71)

with F(£) defined in (A.37). We can write

G(x,x) = E;l;g G(2,E) el%'X-iEt (A.72)
. |
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and obtain

_ ALl
Gll(E’E) = Q (ﬂsE)Gzz(gsE)

12 1
Glz(z,E) 'Q (lsE)Glz(Q:EJ G( )

(A.73)

(2

21
GZICZ'E) 'Q (Q,E)GZI(Q,E)

22
Gzz(R:B) = Q (lrﬁ)%aé§£sE)

/¢
which are the B-S equations corresponding to (A.43) (in

(A.73) there are no inhomogeneous terms). (A.73) together

with (A.66) gives

(B+a,)6 1) (2,E) = 0

(A.74)
(E-w,)62) (2,8) = 0

which are the wave equations for the magnon and show that

the magnon energy is tw, .

The computation of the magnon current ?éi)(x) and of

the "magnon density" pél)(x) is analogous to the one for

the spin current and density. We find

<03V x|, =

A.75
(zm)3 12 W (BT (2,00)-G777 (2,0,))
m
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<013 @ B,> =

it (A.76)
i T irex-iwpt (2) (1)
- W ? e w!‘(G (2,(&12)“"(3 (‘q’swz))
<0]p§1)(x)IBE> =
TN (A.77)
1 1% X-iuwgt (2) (1)
2—211-—)3- € (G (9-,0.)2)‘(; (f‘:mg))
<0lp{H x)[B,> =
A.78
] i iI-;-imkt G(z) , +G(1) . ( )
m € ( ( ’mlj ( ,(1)2,)) ’
with the conservation law
T x) + = oM (x) = 0 i=1,2 (A.79)
We write now the field B(x) as
' d31 11'}-iw2t
B(.X) = W Bf. e 5 . (A.SO)
with the commutation relation
Bx),B 1, ., = eGP . (A.81)
Xy

The free field equations for B(x) and B+(x) are then (cf.
(A.78))



(i g%- w,)B(x) =0, (i §%+-N£JB+(x)==o .

From (A.75-78) and (A.80) we see that

w

TP ) =- ﬁm — £GT T30 -T8" ()
900 = - E;—m ‘:-g g(1¥) [¥B(x) « V8" (x);
oM x) = ﬁm g(i¥) [B(x) + B (x)]
p]gz)(Jc) = - W g(iN)B(x) - BT (x))

where g(i?) is defined by

if-X-iw t iE-i-im t
g(i¥)e YUz g e s

with

lg(2)]? = (2v)3l<0lp(i)(x)lB£>|2 , i=1,2 .

It can be shown [72] that

(A

(A.

(A.

(A.

(A.

(A.

(A.

(A.
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.82)

83)

84)

85)

86)

87)

88)

89)

with A(L,ml) given in (A.67). Note that (A.83-86) satisfy

the conservation (A.79).

We also have
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<0178 18,5 =

P (A.90)
1 I 1I-x-1m£t
- — e wy (Gra(L,w,)-G,,(2,0,))
(2“)3 g2 2 11 L 22V,
<0|pé3)(x)|B2> =
1.7 . (A.91)
1 1% x-iw,
B { € (Gll(z’wl)-Gzz(z’wﬂ))
(2m)
However, since
22 a
1-Q " (2,E) # 0 at E = tw,,
(A.92)
11 _
1I-Q " (L,E) # 0 at E = twy,
from (A.73) we have that
Gll(l’ml) = GZZ(E’NL) =0 {A.93)

which means that the right hand sides of (A.90) and (A.91)
are zero., This tells us that there are no linear terms in
B or Bf in géS) and péS), i.e. 3&3) and pgs)'have terms

at least bilinear in B and BT. In the pair approximation,

however, such terms cannot be computed since B is a bound
state of electrons: terms bilinear in B and B represent
thus at least two pairs.

Let us now note that the hamiltonian (A.1) is invariant

under the spin rotation
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ieili
v(x) +~ e v(x) , i=1,2,3 (A.94)
where Ai = % ;- Generator of this transformation is19
g{i) o Z stx p{1) (x) = > stx v (e wx) (A.95)

When p( )(x) is written in terms of quasielectrons and
magnons, we can use the notation

pear () = pf ) + o () (A.96)

where the subscript F refers to quasielectrons.
At =0, (A.64) (in which a subscript F should be

understood) tells us that

o{l ) = o (x)  for i=1,2, at =0
(A.97)
piode) = 0l ¢ 0P at s

This results (cf. also (A.85) and (A.86)) agree with the
ones obtained in Sec. 2.5 if one assumes that in 0(3)(x)
only a term like B+(x)B(x) appears (cf.~eq. (1II.158})).
Note also that in the present notation % corresponds to M
in Sec. 2.5. Once more we find then that due to dynamical

effects the original symmetry is rearranged and the

19Here the prescription (II.10) is understood.
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original spin rotation symmetry group is changed into the
E(2) group. The difference of the energy 2M between spin-up
and spin-down quasielectrons forbids any mixing of them:
quasielectrons are frozen under spin rotation around 1 and

2 directions. The spin property is instead carried by the
magnon which undergoes a boson transformation: magnons
(i.e. spin wave quanta) are condensed in the ground state
which thus acquires the characteristic structure of ferro-
magnetism. The original invariance under spin rotation
manifests itself in the invariance of the free field

equations under the quasiparticles transformations.
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®quation for bacterial chemotaxis, To achieve ti
tompare the DLK experimental distributions with th
dicted by possible forms for the flux coefficient in the govern-
ing transport equation,

A review of the literature on both the experimental and
theoretical aspects of bacterial chemotaxis is first presented.
Most significant areas of research related to the bacterial
¢hemotaxis transport equation are discussed in detail here,

The s-dependence of the Keller-Segel chemotactic flux
coefficient is investigated by solving the governing partial dif-
ferential equation for the motion of a population of chemotactic
bacteria cells in a linear and steeply increasing gradient of at-
fractant and comparing the theoretical distributions with the
experimental data obtained by Dahlquist, Lovely and Kcshiand,
Both an analytic asymptotic solution and a numerical solution
are obtained for a simple s=* form of dependence, Based on
differences between the numerical solution and experimental
data, a more complicated s-dependence for the chemotactic

flux coefficient is indicated. A numerical solution of the re-
_aulting c?m is obtained for a dependence of the Brown-
Kp + 8)°2 form and found to be in excellent agree-
‘the experimental data of Dahlquist, Lovely and
a li and steeply increasing gradient of at-
is nlso shown that this form of the flux coefficient
observed travelling band phenomena. Thus,

e pre-
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In Quantum Field Theory (Q.F.T.), the invariance of the
theory is expressed as the invariance of field equations under
certain transformations of Heigenberg fields. Since we are
interested in physically relevant entities, we are faced with the
problem of how the original invariance of the theory manifests
itself at the level of observable (physical) particles, This is

the problem studied in the present work. . b
In our analysis we start by the fundamental assumption that

the set of physical field operators is an irreducible set of opera-
tors realized in the Fock space of physical particles. In Chap=
ter I we give an outline of the self-consistent method in Q.F.
In this method a mapping (the dynamical map) is introduced
among Heisenberg fields and physical fields, The role o!tbk
mapping in the theory is fundamental since through it the ¢
namics described by the Heisenberg equatio ;

fects at the phenomenological level. Through

map we can thus express the Heisenberg fi

berg operators. In Chapter II, we
takes a simple form when we use the

of infields reproduce the original inva
Heisenberg operators. The invariance o

the free field
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is computed.
factory.
Finally, a self-consistent {
tron ferromagnet is presente
proximation is used and the

jed as bound state of fermions by o
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equation,

AN APPLICATION OF CUMULANT TECHNIJUES TO
IRREVERSIBLE PROCESSES

WESTERFIELD, Robert Estel, Ph.D.
Georgia Institute of Technology, 1975
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In this work, we have developed a new approach to the prob-
lem of a simple system interacting with a quantum reservoir
-when the interaction can be described by V = AB, where A is

- an operator for the simple system, B is an operator for the
~ reservoir, After defining a cumulant expansion of the reduced
. density operator p, (t) for the simple system, we show that the
second cumulant is the only non-vanishing cumulant for a res-
~ervoir of non-interacting bosons. A scheme for obtaining suc-
X i to the equations of motion for p,(t) is
b the n'h tion is obtained from the
tion by the addition of a term roughly pro-
power of the probability that the sys-
& time interval of length tc, the -

~ sonically produced strain fi

We also extract the quality factor of fourth sound

resonances and the superfluid velocity at resonance,
We find that the superfluid fraction of liquid *He depends
approximately linearly upon reducéd temperature near the
second order phase transition. No discontinuity appeared in
the superfluid density as the cell crossed the temperature of
first order transition from “A” phase to “B” phase, The
measured directly from cell response is
f agreement with the values deduced from

fourth sound velocity, The quality factor of fourth sound resc.

nances is a weak function of temperature, and no values of
g. ouier than 65 were observed, We find that the maximum

superfluid velocity reached in this experiment was about 1 mse
sec™ !, Order No, 75-18,008, 162 pages.

must flow.

the
superfluid density
within ten percent o
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Several transition metal (i.e., Ni,Zn, xCr,0, &
and rare earth (lanthanum antimonides, TmCd, Pr.
pounds were investigated ultrasonically, the ch:
velocity being used as a probe, The coupling
sition metal and rare earth
Teller effect) causes readil)
velocity, - . | A
It is found that
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