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Quasi Invariant Measures,
Symmetric Diffusion Processes
and Quantum Fields x

by

Sergin Albeverio and Raphael Hgegh-Krohn

Institute of Mathematics
University of Oslo
Blindern, Oslo (Norway)

RESUME

On dérive plusieurs propriétés des mesures de probabilité quasi-invariantes,
en particulier on &tudie 1es propriétés de fermabilité, ergodicité, et des
perturbations des systémes associés. Ces ré&sultats sont appliqués aux champs
quantiques et on montre que pour les interactions polynomes & deux dimensions,
le vide physique restreint aux champ initial est une mesure de la classe
supérieure,

ABSTRACT

We show that for a large class of quasi invariant probability measures
on a separable Hilbert space with a nuclear rigging the Dirichlet form
vf.wg dp in Lz(dﬂ) is closable and its closure defines a positive

self-adjoint operator R 1in L,(dp), with zero as an eigenvalue to the
eigenfunction 1 . The connectio% with the hamiltonian formalism and
canonical commutation relations is also studied. We show moreover that

H is the infinitesimal generator of a symmetric time homogeneous Markov
process on the rigged Hilbert space, with invariant measure M . For
strictly positive M this process is ergodic if and only if M 1is
ergodic, which is the case if and only if zero is a simple eigenvalue

of H.

Moreover we study perturbations of H and M as well as weak limits

of quasi invariant measures and their associates Markov processes.
Finally we apply our results to quantum fiels. In particular we show that
for polynomial interactions in two space-time dimensions the physical
vacuum restricted to the & -algebra generated by the time zero fields

is a measure M in the above class of quasi invariant measures and the
physical Hamiltonian coincides on a dense domain of L,(p) with the
generator of the Markov process given by the Dirichlet™form determined

by ».

® Work supported by the Norwegian Research Council for
Science and the Humanities.
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1. Introduction

Within the general theory of Markov stochastic processes
with continuous time parameter and finite dimensional state
space the class of diffusion processes is of special importance
due to its connection with second order partial differential
equations. Since moreover every such Markov process is the
solution of a stochastic differential equation, one has a
beautiful interplay of the theory of partial differential equa-
tions, diffusion processes and stochastic differential eguations.
For this we refer to [1], [21, [3]. This paper introduces our
study of the extension of these subjects, and in particular of
the theory of Markov diffusion processes, to the infinite dimen-
sional case. For a more detailed account and further results
see [4].

We first mention shortly some previous work. A whole direc-—
tion of early studies, mainly connected with the names Friedrichs,
Gelfand and Segal, arose in connection with problems of quantum
fields and in particular of the representations of canonical
commutation relations, see e.g. [5]. A related stimulating
influence came from Feynman's path integral formulation of quan-
tum dynamics, see the references in [6]. Some studies dealing
with differential and stochastic differential equations in in-
finite dimensional spaces are in [7]-[11] and references therein.
Results from constructive field theory which are most related
to our subject will be mentioned below, Let us now summarize
the content of our paper.

In section 2 we start by assembling some facts about Gelfand's
representation of Weyl's canonical commutation relations by means
of probability measures on N' , quasi invariant with respect to
translations by elements in N , where Nc=KcN'is a real separ-
able Hilbert space with a nuclear rigging. References to previous
work on this representation are [5] and [12]. We then isolate a
class of quasi invariant measures, which we call measures with
first order regular derivatives and which in the finite dimensi-
onal case correspond to the density functions having L2 deri-
vatives. This class is suitable for the construction of the self-
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adjoint positive operator H associated with the Dirichlet
form Iv?-vg du and acting in the representation space Lz(du)
for the canonical commutation relations.

The relation of Dirichlet forms * with the canonical forma-
lism has been discussed, modulo some domein questions, by Araki,
in his algebraic approach to the Hamiltonian formalism and canoni-
cal commutation relations [13]., Some of our results in this sec-
tion can be looked upon as providing analytic versions of alge-
braic derivations of Araki.

The self-adjoint operator H mentioned above is the PFriedrichs
operator given by the closure of the Dirichlet form, first defined
on a dense set F2 of finitely based 02 functions. H 1is non
negative and has the eigenvalue zero with the eigenfunction
identically equal to 1 in L2(du). e-tH is a Markov semigroup
so that H is the infinitesimal generator of a time homogeneous
Markov process on N' with invariant measure W . Accordingly
we call H the diffusion operator associated with w . A
(possibly strict) self adjoint extension of H is the operator
i = v*v with domain equal to the domain of the closed gradient
operator v in L2(du) . Wehave H=H on P2 . e tH
also a Markov semigroup and in this case we have both time
ergodic and N-ergodic decompositions of u, L2(du), ﬁ and the
representation of canonical commutation relations,which coincide
for a class of measures W containing the so called strictly

positive measures. For such measures zero is a simple eigen-

is

value of H if and only if W is ergodic, which in turn is
equivalent with the representation of the canonical commutation
relations given by W ©being irreducible.

In section 3 we study perturbations of quasi invariant
measures J4 with regular first order derivatives and of the
associated diffusion operators. We also find sufficient con-
ditions for the stability under weak limits of the correspondence
between quasi invariant measures with regular first order deri-

*Dirichlet forms have also been considered in related contexts
in [31] and [32].
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vatives and the associated diffusion processes,

In section 4 we apply the general results of the preceding
sections to the case of quantum fields. Stochastic methods in
constructive quantum field theory are of course not new. It
suffices to recall the intervention of Doob's processes in
Nelson's early work and the development of Euclidean field
theory. For general references to constructive quantum field
theory see [14] as well as other contributions to this Colloguium.
Particular results with direct probabilistic implications are in
{151, [16] and [17]. Recently connections between problems of
quantum fields and the theory of stochastic processes have been
emphasized particularly by Klauder [18]. Coming now to our present
applications of the methods of sections 2 and 3 to the quantum
fields, we first remark that the diffusion operator associated
by the procedure of section 2 with the Dirichlet form given by
the Gaussian measure ®o of the unit process on
S(Rd)::I?(Rd)c:S'(Rd) coincides with the infinitesimal generator
of the Markov process of the free Markov time zero field.

Finally we consider the interacting fields in two space-time
dimensions, where the interaction is given by a polynomial of
even degree with sufficiently small coefficients. We first
show that the measure u , given by the physical vacuum, re-
stricted to the o-algebra generated by the time zero fields
has regular first order derivatives hence belongs to the class
of quasi invariant measures discussed in Section 2. By means
of the perturbation theory given in Section 3 and direct estimates,
we then show that the corresponding diffusion operator coincides
on a dense domain with the physical Hamiltonian.

ACKNOWLEDGEMENTS

It is a pleasure to thank Professors F. Guerra, D. Robinson
and R. Stora for the friendly invitation. The first named author
expresses his sincere thanks to the Institute of Mathematics,
University of Oslo, for the standing hospitality and to the
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2, Symmetric diffusiom processes.

2.1 The finite dimensional case.

Let us first consider the Schrddinger operator in o
-A+ 7, (2.1)

where V 1is the operation of multiplication by the potential
energy V(x) and A is the Laplacian in BY ., Under some well
known mild regulartty conditions on V (see for instance [19])
the operator (2.1) 1s a self-adjoint operator H on LZ(Rn,dx) .
The corresponding unitary group e_itH gives then the solution

of the initial value problem for SchrBdinger's equgtion in L2(Rn,dx).

Since we are interested in the infinite dimensional case, where RE
is replaced by a real separable Hilbert space K and L2(Rn,dx)
has no obvious counterpart, it is better to look for‘a realization
of the operator (2.1) in a more suitable space. This is possible
if we assume that H has at least one eigenfunction in LZ(Rn,dx)
and that H is, as a self-adjoint operator in LZ(Rn,dx) , bounded
from below, Again under some quite general regularity conditions
on V , the bottom of the spectrum of H will then be an eigen-
value E , so that H > E, and the corresponding eigenfunction

Q(x) will be positive almost everywhere. This follows from the
ergodicity of the Markov semigroup generated by the Laplacian and
for details about these known results we refer to [207]. We can

always normalize the eigenfunction (1 so that
[ 4

(0, = [ a(x)?ax =1 . (2.2)
Rn

Setting p(x) = a(x)° we then have that p(x) is the density of
the probability measure du(x) = p(x)dx om R® .
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Since i is in the domain of H it must (again under slight regu-
larity conditions on V) have locally integrable derivatives up to
second order. Now if f(x) is a smooth function of compact support

an easy computation, using aQ = (V-E)Q , shows that
[FF vt au = (£q,(H-E)tQ) , (2.3)

where 9 1is the gradient in R® . Hence the correspondence

f <=> f1 , which is a unitary equivalence between L2(Rn,dx) and
L2(Rn,du) , takes the quadratic form (f,(H-E)f) into the qua-
dratic form (£q,(H-E)fQ) = r?-f-vf du . Thus we see that the
operator H-E , looked upon as an operator in Lz(Rn,du), is ae-
tually the unique self-adjoint operator associated with the closure

of the Dirichlet form
fFT-vg du (2.4)
defined by the probability measure u . We recall that the rela-
tion between the operator H-E and the measure du = p dx is
given by
H-E = - o + (V=E) , (2.5)
where V is related to p through
%
4
V-E = —% . (2.6)
p

Note also that H-E 1is non negative and that 1 1is the eigen-
function of H-E in L2(Rn,du) to the eigenvalue zero. Under

smoothness assumptions on p , e.g. such that each component of

p(x) = 2245} (2.7)

is in L2(Rn,du) , it is possible to write H-E as a differential

operator in L2(Rn,du) , namely as
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- A - g(x)ev , (2.8)

If we define for x,a ¢ R"
’ x+a) _ dul(x+a
a(x,a) x 250 - difxg) (2.9)

p(x) = veux,a)| - (2.10)

we have that

Moreover

V(x)-E = %B(x)'s(x)+ %vx-a(x)= Aau%(x,a)|a=o . (2.11)

Viceversa, let us now suppose we are given an arbitrary
probability measure 4 on R? s quasi invariant with respect
to translations. Then, as well known, y is equivalent to
Lebesgue measure, hence du(x) = p(x)dx with p(x) > 0 almost
everywhere and (2.9) holds again.

Consider now the Dirichlet form associated with u B

IV? vg du , (2.12)

defined first on smooth f and g over R® . If this form turns
out to be closable, then its closure is the form of a unique self-
adjoint positive operator Hu , S0 that, with {,) being the

inner product in L2(Rn,du),

(£,8,9) = 79t au . (2.13)

We have thus defined a self-adjoint positive operator Hu starting
from the quasi-invariant probability measure u . Hu is an
operator in L2(Rn,du) and has zero as an eigenvalue to the
eigenfunction 1 . Let us remark that from Hu , by the unitary
equivalence of L2(Rn,dx) and L2(Rn,du) , we get also in
L2(Rn,dx) a self-adjoint operator. However only in the case

that p 1is smooth enough we have that this operator is of the
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form - A + Vu(x) » With a measurable function V, (given by
p-%Ap% or, equivalently, by the right hand sides of (2.11))\

Thus, whereas Hu in L2(Rn,du) is always defined as a positive
self adjoint operator, whenever the Dirichlet form associated with
p is closable, the expressioms (2.7), (2.8), (2.10), (2.11) and
in particular the potential Vu may or may not make sense as

measurable functions.

Example
Let n =3 and take du +to be the probability measure in H3

given by
o e-2mlx|

du.(x) = EV dx ,

We may verify that the form (2.4) is closable in L,(dw) , so that

Hu is well defined., In this case

o¥(x,2) = T£§£T o tlzve| x|

For x # 0 we see that Aaaé(x,o) = n° . In fact we may easely

prove that HH 1s a self adjoint operator such that, when re-
stricted to smooth functions f which are zero at zero, then

Huf = (-a+m2)f . However, Eu-mg , When represented in Lz(dx] .

-n| x|
has E_TET_ as an eigenfunction with eigenvalue —m2 , S0

H, - n° #-8 . In fact Hu—m2 form & one parametric femily of
self adjoint extensions of the restriction of -4 to functions

f € D(4) such that £(0) =0 .

One can now ask the question when is the operator Hu
the infinitesimal generator of a Markov semigroup i.e. when
does e'tHu have a positive kernmel. In this finite dimensional

case a very weak regularity condition on u 1is actually suffi-
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cient, see Section 2.6. A well known simple situation is the ome
in which Hu can be given in L2(Rn,dx) in the form -4 + Vu(x)
with a smooth function Vu(x) . The stationary symmetric Markov
process E&(t) in R? y given by the Markov semigroup e—tHu and
its invariant measure du , is then the unique solution of the

stochastic differential equation
ae(t) = p(&(t))at + dw(t) (2.14)

where w(t) is the standard Wiener process in R® and the
drift g(€) is given by

B(§) =V 1n o(8) (2.15)
where

au(x) = p(x)ax . (2.16)

p(&) is actually the osmotic velocity of Nelson's stochastic
mechanics and (2.14) is a case of the equation of Nelson's sto-
chastic mechanies, equivalent with the Schrédinger equation.

Por more details on this we refer to Ref. [21] and the references
contained therein, It follows from the methods in Ref. [21] that
the stochastic process &(t) is always a solution of (2.14),
although one can prove that this solution is unique only under
some conditions (e.g. boundedness or Lipschitz continuity and at

most linear growth at infinity) on the osmotic velocity, see {27,

We would like now to extend these results to the infinite dimen-
sional case of a real separable Hilbert space K instead of the
finite dimensional Euclidean space R? . From our arguments
above it is visible that it is convenient to start from a quasi
invariant measure 4 and then construct the associated Dirichlet
forms and in this way get a self adjoint operator Hu on the

relevant space L,(du) .
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2.2 Recalling the relation between quasi invariant measures on

rigged Hilbert spaces and canonical commutation relations.

The setting which we shall always use in the rest of this section

is given by a nuclear rigging, in the semnse of (5],
NcKcHhH',

where N 1is a real nuclear space densely contained in K and
N' is the dual of N , Moreover the inner product (x,y) in K
when restricted to N coinvides with the dualization between N

and N' .

Definition 2.1
We shall say that a probability measure u on N' is quasi
invariant if it is quasi invariant under translations by elements

in N, i.e, for any x € N the Radon-Nikodym derivative

a(8,x) = 9%&%§§1

exists. Then we have a(g€,x) > 0 for u-almost every £ ¢ W'

and

Jatg,x)au(e) = 1

a(g,x+y) = €(§+x.y)a(g,x) .
We recall in a Theorem the following well known results:
Theorem 2.1 Let K be a real separable Hilbert space and
NcEKcKN' be a nuclear rigging of K . Then:

1) Any quasi invariant probability measure W on N' defines two
strongly continuous unitary representations U(x) and V(x)

of the additive group N in the separable Hilbert space
H= Lz(du) » Y

—20—



2)

(U(x)£) () = eXZ8) £(g)

(V(D)£)(g) = oP(e,x)0(84x) .

U(x), V(x) satisfy the Weyl commutation relations
V(2)u(y) = BT g(y)v(x)

forany x and y in ¥ .

The function ((8) ® 1 in I,(du) is a cyclic element for

the representation U(x) .

Conversely suppose we are given two representations U(x) and
V(x) of ¥ by unitary operators on a separable Hilbert

space dJf such that x = U(x) is weakly continuous from XN
into the set of all bounded operators on 4t and such that
there exists a cyclic element Q for the representation U(x).
Suppose moreover that U and V satisfy the Weyl commutation
relations

V(x)u(y) = 1Y) ypvix) .

Then there exists a probability measure u on N' such that

U 1is quasi invariant, one has

(,u(x)) = [ X5 ay(q)
N
and the map U(x)Q <->.ei<x’g> gives an isomorphism of &
with Lz(du) . By this isomorphism U(x),V(x) are unitary
equivalent hence identified with the operators (U(x)f)(g) =
eX%8) £(g) and (V(x)£)(g) = z(g,x)a%(;,x)f(g+x) , where
z(2,x) is a measurable function on N' such that, for almost

every ¢ , |z(g,x)| =1 and
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(8, x+y) = z(g+x,y)z(g,x)
and z(g,0) =1 .,

In particular U(x), V(x) are strongly continuous.

Proof: Except for the strong continuity of V{(x) +this thearem
is first proven in {5]. The strong continuity of V(x) was

proven in Ref. [12],3), Theorem 3.3. O

We shall now use the following:

Definition 2.2 We say that a unitary representation (U,V) of
the Weyl canonical commutation relations is irreducible iff the
only bounded operators that commute with all U(x), V(x) , for

all x ¢ N , are the constants.

Remark: U has a cyclic element e.g. if (U,v) is irreducible,
See e.g.Theorem 6.2.6 and its Corollary in Ref, [12],2).

Definition 2.3 We shall call a quasi invariant probability
measure y on N' ergodic if the only functions in Lco(du)
which are invariant under all translations by elements of W

are the constant functions.

The following results are well known:

Theorem 2.2 The following propositions are equivalent:

1) The guasi invariant measure u is ergodic

2) all N-invariant measurable subsets of N' have either
J-measure zero Or one

3) the representation (U,V) of the Weyl canonical commutation
relations determined by u as in Theorem 2,1, 1) 1is irre-

ducible. a
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Remark: Any quasi-invariant measure u , not necessarily ergodie,
has an ergodic decomposition, in the sense that there exists a
standard Borel space Z , a finite measure dz on 2 and for

each 2z an ergodic measure uz(.) on N' such that
() = Juy(as .

Moreover, with Jf = L,(du) , g = Ly(dW, ) , one has the integral

decompositions

J’@=IJ€Z dz

@, = ju,n, a,
7 14

where (U,V)u and (U,V)u are the unitary representations of
z

Weyl's canonical commutation relations given by W resp. B, o

according to Theorem 2.1,1).

For more details see [12],3).

2.3 A suitable subclass of quasi invariant measures.

Let us start with an arbitrary quasi invariant probability

measure 4 on N' .,

From Theorem 2.1,1) we have in particular that, for each real +t ,
V(tx) is, for fixed x € N , a strongly continuous one parameter
unitary group acting in Lg(du) . Let 1iPx be its infinitesimal

generator, so that

iPx = s-1lim t7 1 (V(tx)- 1] , (2.17)
t-0

where the limes is the strong limes in L,(du) .

For each x ¢ N , Px 1is thus a densely defined self-adjoint

operator in L,(du) .
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Definition 2.4 A quasi invariant probability measure W on N
is said to have regular first order derivatives if the function
n(g) 2 1 is in the domain of Px for all x in N . Equiva-
lently, W has regular first order derivatives iff the strong

Lz(du) limit of t_1[a%(g,tx)- 17 as t ¥ 0 exists for all x

in N . We denote by @1(N') the set of a2ll such measures yu .

Remark: For u to have regular first order derivatives it is
sufficient that the weak L2(du)-1imit of t'1[a(§,tx)- 11 as

t¥0 exists.

From now on we shall always consider probability measures W on

N' with regular first order derivatives.

Proposition 2.3 For each u in the domain D(Px) of Px ,

the map x = Pxu 1is a linear continuous map from N into

Ly(du) .

Corollary Let |x|p s, p=1,2,... be the countable set of
norms that defines the topology of N . Then there is a p
such that x < Pxu is continuous in the norm |xlp sy i.€6. as a

map fom K into Lz(du) , where Kp is the Hilbert space with

P
norm | |p and N = n Kp .
P

Proof: Setting n(x) = |[(V(x)-1)u]] we get that n is sublinear
i.e. N(x+y) < n(x) + n(y) . Since u ¢ D(Px) , we have

lim 3 n(tx) = p(x) = [[Px-y . (2.18)

thvo
By the linearity of Px in x , p(x) 1is a seminorm on N .

By the sublinearity of n we get n(2x) < 2n(x) hence

2210 (272 %) 5 2% n(27Px) , so that

p(x) = sup 2" n(27"x) . (2.19)
n

_24_



Now n 1is continuous on N , so that p(x) is lower semicon-
tinuous and, being a seminorm, it is then bounded in some neigh-
borhood of 0 ([5], Ch.I,Sect.i, Th.1). This implies that

X = Pxu is continuous from N into J£ . This proves the
Proposition. The corollary follows from the proposition and

theorem 5 of Ch I, section 3.5 of ref. [51. a

It is now useful to exhibit the relation between the infinitesi-
mal generator iPx of translations in the direction x and

a quantity Bg(x) which, in the finite dimensional case K = R® .
reduces, as we shall see below, to the osmotic velocity or drift
coefficient of the stochastic equation (2.14)., In order to do

this we introduce the following

Definition 2.5 A quasi invariant probability measure u on N!
is said to be strongly I, differentiable if the strong IL,(du)
limit of t-1[a(§,tx)- 1] as t¥ o exists, for any given =xeN .
We call then g(g)x this limit, i.e.
p(8)x = s=1,- lim t'1[o.(g,tx)- 17 .
t{o

We have

Proposition 2.4 Let W be any quasi invariant probability

measure on N' , If u has regular first order derivatives,
then it is strongly 1L, differentiable and one has that the
function Q(g) ®m 1 is in the domain of Px , that pg(E&)x

exists and
2iPx(8) = p(8)x

for all x ¢ N .

Remark: This implies in particular that =x = g(g€)x is a linear

map from N into L2(du) . It is natural to denote this map
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itself by g(g) .

Proof: That W has regular first order derivatives is obviously
equivalent with the condition that %(u%(g,tx)— 1) converges in

L2(du) as t - O . Now we have that
la(g,tx)- 1) = La®(g,tx)- 1)(aB(5,tx)+ 1) (2.20)

and, by an easy consequence of the strong continuity of V(tx) ,
ui(g,tx) converges to 1 in L2(du) as tV0 . This then
gives that the right hand side converges in L1 . We observe
from (2.20) that i(PxnXg) = $8(&)x , and this proves the pro-

position. O
Another observation on the quantity B(8)x is the following

Proposition 2.5 If W 1is a probability measure on N' with
regular first order derivatives, then, for any fixed & € N' ,
the map x - g(€)x is a linear continuous functional on N

hence there exists an element E(g) in N' such that
<B(8),x) = 8(=)x
for 211 x in N . E(g) is thus & measurable map of N' into N'.

Remark: Since by the Remark following Proposition 2.4 the map
x = g(€)X is a linear map from N into L2(du) , it is natural

to identify §(g) and §(g) , and we shall do so in the following.

Proof: By the Corollary to Prop. 2.3 and by Prop. 2.4, x-g(8)x
is continuous from Kp into L2(du) . Use then the Abstract

Kernel Theorem (Theor.3, Ch.I, Sect.3 of ref. [5]).01

Remark: In the finite dimensional case K = R® we have
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n
8(8)x =72 p.(8)x, , where X, , i=1,...,n are the components
jo1d77% i

of x and aj(g) is defined as B(g) ©but with the translation
tx in a(8,tx) replaced by the translation te. , where e is
the unit vector in the direction of the j-th axis. B8(Z) is
thus in this finite dimensional case, for fixed & , a vector
with components aj(g) , namely the vector l%{%% , where p(g)
is the density of the quasi invariant measure W , i.e. du(g) =
p{g)dg . Since in the finite dimensional case g(g) 1is, as
remarked above, the osmotic velocity of the process of equation
(2.14), we shall call g(g) the osmotic velocity also in the
infinite dimensional case., Also in this case our aim is to study

the stochastic differential equation
ag(t) = p(g(t))at + aw(t) , (2.21)

where &(t) is a stochastic process with values in N' . 1In
this case w(t) 4is understood as the Wiener process on N'
given by the nuclear rigging NcKe N' ., By this we mean that
w(t) is the time homogeneous Markov process with state space N
and with transition probability function Pt(g,dn) determined
by prescribing that the Fourier transform

[ X% ™ p (0,an)
be equal to ;-E(X,X), for all x € N . That this defines indeed
a Markov process is easily verified, since the Chapman-Kolmogorov
equations for Pt(g,dn) are satisfied, Note that w(t) is in
fact the well known Wiener process studied by Gross, but for
the fact that Gross prefers to study it relative to a Banach
rigging BcKeB' . This is possible since w(t) actually takes

values in a dual Banach space B' such that KcB'eN' ., For
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the work of Gross see the reference [9].

We shall now examine the possibility of constructing the process

€(t) of equation (2.21).

2.4 Dirichlet forms associated with quasi invariant measures.

We shall consider subspaces of the Banach space C(N') of
continuous bounded functions on N' . Let E be an orthogonal
projection from K onto a finite dimensional subspace EK of

N and let €45€p9:0 058 be an orthonormal base in EK , where

m
m is the dimension of EK . Then for any u ¢ K we have

m
Eu = i21(ei,u)ei R (2,22)

Since e; ¢ N we have from (2.22) that E extends by conti-
nuity to a continuous projection N' - X given by ¢ -i?1<ei,§)ei.
We shall denote this projection again by E . We see th;s that
any orihogonal projection on K with finite dimensional range
in N extends continuously to a projection from N' into XN .
We shall say that a complex valued measurable function f defined
on N' is finitely based (on EN') if there exists a finite
dimensional subspace of N such that f(£) = f(EE) for all

€ ¢ N{ » where E 1is the projection from N' onto the finite
dimensional subspace. Let Fn(N') be the set for all functions
on N' which are finitely based and n-times continuously differ-
entiable on their base. For f ¢ F1 we define the gradient vf
in the obvious way, i.e, if E is such that f(€) = f(E€) and
EN' 1is finite dimensional in N , then (vf)(Z) is a contimuous
map from N' into (EK)* and, since EK is self dual, we may
consider vf as a map from N' into EK , PFor f and g

in F1 there is a common projection E of finite dimensional
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range in N such that f and g are both based on EN' , and
we then denote by (vE-vg)(&) the inner product of v¥(e) and
vg(g) in the natural complexification of EK . For any f ¢ P2

with base E , Af 1is defined in the natural way, so that

m 2 -
(af)(g) = 121 —5—2 F(x) , where T is the restriction of f to
. axi

the m-dimensional space EN', [ei] is a base in EN' ¢ N , and
x = {x;}, x; = (8,e;>, i = t,...,m . Finally if g(&) is the
osmotic velocity to u € JH(N') , then for any f ¢ P! with

- =
base EN', g(8)-vf(E) = ;r,8,(%) géf(x) . We thus see that the
J

operator HFZ given by

(HFgf)(é) = -af(8) - g(8)-v£(8) (2.23)

is well defined for all f ¢ F2 . We have the following

Theorem 2,6 Let u € 01(N') , then the Dirichlet form
Du(f’g) = Ivf-vg dy 1is defined for all f,g in P as a
sesquilinear, non negative and closable form. The closure of
the Dirichlet form is the form of a well defined self-adjoint
nonnegative operator H in Lz(du) , which coincides with

H on F2 and has the eigenvalue zero as the infimum of its

2
F
spectrum, with eigenfunction Q(g) ® 1 , H is the Friedrichs
extension of HF2 , thus the domain of Hé is the domain of

3u , wWhere EH is the closure of the form D .

Proof: By the observations preceding the theorem we knmow that

2 are well defined.

1
Du(f,g) for f,g € F and HFzg for g€ P
Since fyg are finitely based there exists a projection E
with finite dimensional EK c N , such that f,g are based

on it, Let {ei} be an orthonormal base in EK and set
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x; = (g,e;) for all & €N', i=1,...,m. We have

- bl S [P .2
ilvf.Vg t = 3 Jlim 3(F (e tey) -F(0): I (B)au

which by dominated convergence and the quasi invariance of u

is equal to

m
£ lim [F(8) 1(28-(5-te;) - 28-(8))a (g,-te;)au +
i=1 t§o ° °Ti i

m o) 1
+ I Yw [HOTEE) flale,-tey) - Dau

As t@ o , the first term converges to -I?-Ag dy , by dominated
convergence, and %(a(;,tei)- 1) converges to g(g)oei strongly
in L1 s by Prop. 2.4, hence the second term converges to

—I?a-vg du . We have thus proven that Du(f,g) . (f,HFzg) for
all £ eP', g€ F° , which shows in particular that the form

Du is closable. The rest follows easily. O

Theorem 2.6 permits to associate to any quasi invariant

probability measure on N' , only restricted to have regular first

order derivatives, a self-adjoint contraction semigroup e_tH A

where H 1is the unique self-adjoint operator associated with
the closure of the Dirichlet form Du given by u . In the

next subsection we shall see that e'tH is a Markov semigroup

ice. e ™f>0 forall £330, f¢Iyd), ie. e W g

positivity preserving.

2,5. _The Markov_semigroups generated by the Dirichlet forms.

Theorem 2.7 Any quasi invariant probability measure on N°
with regular first order derivatives gives rise to a Markov
semigroup e'tH s where H 1is the self-adjoint operator
associated with the Dirichlet form of Theorem 2.6. H is the

infinitesimal generator for a symmetric Markov process, with
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invariant measure u . We call H the diffusion operator

given by u .

Proof: Let M be a finite dimensional subspace of N , with

orthonormal base eq,...,e and let E be the orthogonal

m
projection from K onto M , Define for any f ¢ F2 based on M

Hyf = - ayf-8-9yf , (2.24)
where Iy = Evf and By = IyTyM - Then for any f,g € F2

m
(f,HMg) = _21Iei-vf e;*vg du . (2.25)
1=

The positive form on the right hand side is thus given by a
symmetric operator, hence it is closable and its closure is the
Priedrichs extension of HM s Wwhich we denote again by H, .
Obviously O < HM?I{ as forms. Using then the theorem on
convergence from below of symmetric semibounded forms (Theorem
3.13, Ch. VIII, Ref. [19],1)) we get strong resolvent conver-
gence of HM to H , hence by the semigroup convergence theorem
{Theorem 2,16, Ch, IX, Ref. [19],1)) we have strong convergence
of e_tHM to e-tH , uniformly on finite t intervals, when

A
MIN through the net of finite dimensional subspaces. Thus to
-tH

prove that e is positivity preserving it suffices to prove
_tHM

that e is positivity preserving. We have the direct

decomposition N' = I"I(-EM'L , where MY is the annihilator of M

in N' , By the continuity of E , the map (x,n) - xeénmn,
x €M, ne¢ ML is one-to-one and bicontinuous, hence we may
consider du as a measure du(x,m) on the product measure
space M x Ml . The quasi invariance of u and the finite

dimensionality of M yield du(g) = p(x|n)dx dv(n) , where
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p(xln) is, for almost every 1 , the quasi invariant measure
on M obtained by conditioning u with respéct to Mt , and

v 1is the measure induced on Ml by u . The correspondence
£(8) <> o(x|m)?¥ 2(x,n) (2.26)

gives a unitary correspondence between L2(du) and L2(dxx dv)

so that, in the sense of direct integrals of Hilbert spaces,

#= I)&n dv(m) . (2.27)
MJ.

where ﬂ% = L2(Rn,p(x|n dx).The correspondence (2.26) takes the
form (f,HMg) into a direct integrals of Dirichlet forms

Du(-[ﬂ)(f’g) , where du(x|n) = p(x|n)dx . Hence
Hy = [ Bav(m) ,
ML

where Hn is the self-adjoint operator associated with the

closure of the form Du(-ln)(f’g) . So we see that Hy gene-

rates a Markov semigroup if Hﬂ does so, where H operates

n
on ILy(du(+|n)) , which is a L, space over the finite dimen-
sional space R® . We can now use results of Pukushima [22]

to prove that e_ N is indeed a Markov semigroup. By Theorem
3.2 of [22], p. 56 (points a),c)) it is sufficient to prove

that 5u(-|ﬂ) is a Markov symmetric form and by Theorem 3.3

of [22], p. 58, this is so whenever Du(-lﬂ) is a Markov symme-

tric form on C1(M) + The latter is however easily verified.*

* For any f ¢ C1(M), 6 >0 choose a @, € 01(R), with
log(t)] < %, =5 < @,(t) < 1+6 and |5 9 ()] <1 for all

t€R and 9 (t) =t for all t € [0,11. Then o,+f¢C (R)
and Dﬂ(-]ﬂ)(¢6(f)'¢5(f)) < Du(-ln)(f’f) .
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Hence we have that Hn generates a Markov semigroup. Since
(N',u) 1is & regular probability space, an adaptation of
Kolmogorov construction associates to the Markov semigroup e_tH
an homogeneous Markov process with state space N' and invariant
measure u having H as the infinitesimal generator of its

transition probabilities. O

Remark: In [4] we show that the Markov process §&(t) given

by the Markov semigroup e'tH of Theorem 2,7 solves the

stochastic differential equation
ag(t) = p(&(t))at + aw(t) ,

in the sense of weak processes on N' , where w(t) is the

standard weak Wiener process on K .

2.,6__Some remarks on ergodicity.

Definition 2.7 A homogeneous Markov process T7(t) with state
space some measure space (X,v) is called ergodic if for any
measurable sets A,B with v(A) > 0 , v(B) > O there exists

some t > O such that Prfn(0)eA and n(t)eB} >0 .

Theorem 2.8 Let 1(t) be a homogeneous Markov process with
state space (X,v) and invariant measure VvV and suppose n(t)
is symmetric (i.e. such that the adjoint process n(-t) is
equivalent to it). Let H be the self-adjoint infinitesimal
generator of the Markov semigroup e'tH, t>0, in L2(X,v)

giving the transition probabilities of the process. Then the

following statements are equivalent
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1. N 1s ergodic.

2. e'tH has ergodic kernel (i.e. for any f,g >0, f,g# O in
Lz(x,dv), we have (f,e'tHg) > 0 for some t > 0) .

3. W 4, positivity improving (i.e. ety > 0 for any
£f>0, fe¢ L2(X,dv) and some t > 0) .

4, there do not exist any bounded multiplication operators
commuting with e~ |

5. Zero is a single eigenvalue at the infimum of the spectrum
of H , and the corresponding eigenfunction may be taken

to be identically equal to 1,

Proof: 2 - 1 1is evident. We prove 1 = 2 ad absurdum.
Suppose for some f,g >0 , f,g ¥ O we have (f,e'tHg) =0
for all t+ > 0 . Since e~ g Markov, this implies

(xy ,e_tHxB ) = 0 for all positive integers n,m and all t > O,
n m
where X, s %p are the characteristic functions of the sets
n “m

A, ® rxeX|f(x) 2%} » By ® [xeX|g(x) > %1 . But since
v(a ) >0 end v(Bm) > 0 for some n,m, the vanishing of the
acalar product contradicts 1 , which then shows 1 = 2 . The
equivalence of 2 with 3 is proven in [23]. Por the equi-
valence of 4 and 5 see e.g.[19]2), Theorem 10.3 and for the one

of 2 and 4 see e.g. [241. a

The Theorem applies in particular to the case where 0
and H are the Markov process and its infinitesimal generator
associated with a measure g 6691(N') and given by Theorems 2.6,
1 1
2,7. Note also that #, — < 48, , Py o
1 which are invariant under translations by

denoting the set of

functions in P

elements of N and gﬁo is the eigenspace to the eigenvalue

zero of H.
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Remark: Stronger results hold for a related operator A which
coincides with H on the dense subset F° of L2(du).* Ve
shall here briefly mention some of these and for more details
we refer to [4]. Let 01(N') be the subset of all measurable
functions on N' which are such that for any € € N' and any
x € N one has f(g€+ tx) in ¢! as a function of t . For
f e 01(N') we define the gradient in the x direction,
(x-v£)(-) , by (x-vf)(E) = é% f(eg+ tx)|t=o . Let uye@,x"),
then the adjoint of xev is -x? -pg.x , whose domain contains
01(N') , 8ince p.x is also defined on 01(N') , 8s one sees
from - $ip(8).xf(g) = (P-xf)(8) + ix-vf(€) . Thus (x-v) is
closable and we let now x¢v denote its closure. Let {ei} 5
i=1,2,..., be an orthonormal base in K with e; € N .
Define (£,f) m % [e,-vf]2 and 1f (£,f) <ee

u =111 2 u
denote by vf +the element in K @ L2(du) such that Jv?-vf du =
(f,f)u . We easily see that the adjoint v of v is densely
defined, hence V 1is closable and its closure, denoted by the
same symbol, is a map from L2(du) into XK ® Lz(du) with
domain Wl » (fe L2(du)|(f,f)u <e} .

Theorem 2.9 Let u € 0H(N') . Then H = v*v ig the unique

self-adjoint operator associated with the closed form (f,f)u =

2

Iv?-vf dyu and for any f'¢ F we have Hf=Hf = —pf-pg-vf

where H 1is the operator of Theorems 2,6, 2.7. H is non

negative and the infimum of its spectrum is the eigenvalue zero
with eigenfunction 1 . e'tH, t > 0 1is a Markov semigroup giving

rise to a Markov process &€ on N' with invariant measure y .

-~
* At the moment of writing it is an open question whether H
coincides on its domain as a self-adjoint operator with H,i.e.
whether F° is a core for H and H , for all u € GG(N').
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Proof: Hf = Hf for f € ¥  follows from (f,ﬁf): (f,f)u.The Markov

property of e~ g proven in the same way as for e 4p

Theorem 2.7. a

Clearly Theorem 2,8 applies to the case where the process
is E and the infinitesimal generator is B . In addition we

have here easily the following

Theorem 2,10 ILet u € @1(N') . Then L%nv(du) c.go , where
Li"(au) = [£€1,(au)|£(g+x) = £(€) for all x€N) and &,

is the eigensubspace of Hou L2(du) to the eigenvalue zero of ﬁ B
In particular if zero is a simple eigenvalue of i , them y is
ergodic and the representation of the Wéyl commutation relations
(U,V) given by u (Theor. 2.1, 2,2) is irreducible. The
N-ergodic decomposition of the Remark following Theor. 2.2 gives

also the direct decomposition ﬁ = Iﬁz dz , where ﬁz is the

Z
self-adjoint operator associated with the closed form (f,f)u 3

%
Moreover one has the time-ergodic decompositions

Ly(au) = JLQ(du('IV))dv
f= Jﬁv dv ,

where V 1is the Gelfand spectrum of the commutative C* algebra
of Tultiplication operators on L2(du) which commute with all
e~ tH » 4v the measure induced on V by u . The measure u{-|v)
is u conditioned with respect to the o-algebra generated by
Lcc(v) and ﬁv is the self-adjoint operator associated with
the closed form (f'f)u(-lv) . Zero is a simple eigenvalue of
Hv s the corresponding eigenfunction is positive almost every-

-

where, d% is the closure in L,(du) of LGD(V) .
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The proof is given in [4]. Moreover it is shown in [4] that

the time ergodic decomposition is in general strictly finer than
the N-ergodic one. An important case however where both decom-—
positions are equivalent is the one where u € @1(N') is
strictly positive in the sense that the densities p(x|n)

appearing in the proof of Theorem 2.7 are,for v almost all 7 ,
bounded away from zero whenever x is in any compact of one dimen-
sional subspaces M . A simple condition for this is given in

the following

Theorem 2.11 Let u be in GH(N') and be strictly positive.
Then the N-ergodic and time ergodic decompositions of Theorem 2.10
coincide. In particular the Markov process of Theorem 2.9 is
ergodic if and only if the measure y 1is ergodic in the sense

of Definitions 2.7 resp. 2.3. A sufficient condition for u

to be strictly positive is that 1 be an analytic vector for P.x
for 81l x ¢ N .

Proof: See [47]. O

Remark: In (4] other sufficient conditions for u +to be strietly
positive are given. Note that from Theorem 2.11 and Theorems 2.8
and 2.2 we have e.g. E ergodic <-> y ergodic <-> unique ground

state for H <> (U,V) irreducible.
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3, Perturbations of symmetric diffusion processes

Let N <K < N' be a real nuclear rigging of the real
separable Hilbert space K and let u € JH(N') in the notation
of Definition 2.4. Let H be the infinitesimal generator in
L2(du) for the corresponding diffusion process, given by
Theorems 2.6, 2.7. Let V(g€) be a real measurable function
on N' such that

Hy = H+V (3.1)

is essentially self adjoint and bounded below., Consider now
for k<1

k,1 k,1

H1’ =H+V? (3.2)

where
k if Vv(g) <Xk

vEol(e) =dv(e) if k< V(g) <1 (3.3)
1 if v(g) > 1.

Using well known theorems on monotone convergence of symmetric

semibounded forms (Theor. 3.13, 3,11, ch., VIII, Ref. [19],1))

we get
-l i,

s-lim s-lim e =e o (3.4)

k"-@ l-.+w
But e"tH is positivity preserving and by Trotter's product
formula -tHk'l _ EH _ lvktl =

e ' = st lim [e n e n ] (3.5)

n-eoc
-tgk?

we get that e is also positivity preserving. Hence,

by (3.4) and (3.5), e "Bl jg positivity preserving. We have
thus the following theorem.
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Theorem 3.1
Let H be the diffusion operator givem by u according
to Theorem 2.7 and let V Dbe a measurable real function on XK',

where N c K ¢ N' is the nuclear rigging. If

H1 = H+ V

-tH
is essentially self adjoint and bounded from below, then e 1

is positivity preserving. a

Hote that H1 is assumed to be bounded below, but contrary

to H 1t need not have any eigenvectors.

Remark 3.1 Theorem 3.1-holds in the same way for the case where
H 1is replaced by i s ﬁ being the self-adjoint operator given
by the form (f,f)u in Theorem 2.9 and the assumption being
that ﬁ1 = ﬁ-+V is essentially self-adjoint and bounded from
below. Under the N-ergodic decomposition of Theorem 2,10

V decomposes directly as V = jvzdz and we have then

fy = [fi,, dz with H,, = A+ 7V, essentially self-adjoint.
Moreover if u is strictly positive, then by Theorem 2.11 we
have that the N-ergodic decomposition coincides with the time-
ergodic d:composition induced by E . In particular the eigen-
value zero of ﬁ has multiplicity equal to the number of irre-
ducible components in the representation of the canonical commu-
tation relations given by w and this multiplicity is also the
same as the one of the infimum of the spectrum of ﬁ1 , if this

is an eigenvalue.

Theorem 3.2 Let H, H1, V be as in Theorem 3,1. Assume that
zero is a simple eigenvalue of H , If there is an eigenvalue

E, of H; such that H, 2 B, and H1 - V is essentially
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self-adjoint, then E1 is a simple eigenvalue of H1 . More-
over we may take the correspondent eigenfunction to be positive
almost everywhere.

-t(H,-E,)
Proof: By Theorem 3.1 e is a Markov semigroup.

By Theorem 2.8, points 1 and 5, we have that if, ad absurdum,
zero were not a simple eigenvalue of H1-E1 , then the Markov

process generated by H1-E1 would not be ergodic, hence

-t(H,-E,) )
(xg © xg) = 0 for all t >0 and the characteristic
functions x of some sets A,B with 0 < y(A) <1, O<cu(B)<1 .
-4(B) o
Since e is Markov, x,,xg &re projections in Lz(du)

onto- orthogonal subspaces which reduce H1-E1 . In particular

X itH1
Xp commutes with e

commutes with eitH , hence Xy is an eigenfunction to the

so by Trotter's product formula Xp

eigenvalue zero of H and since XA ¥ 1 +this contradicts the
assumption that zero is a single eigenvalue of H . Hence the

ad absurdum assumption is untenable, which proves the Theorem.
d

Remark 3.2 The same Theorems holds for the case where H, H1
are replaced by ﬁ, ﬁ1 « Moreover if W is strictly positive,
we have from the preceding Remark 3.1 that the general case where
Zero is not a simple eigenvalue of ﬁ can be reduced to the

case where it is a simple eigenvalue by using the ergodic

decomposition.

Consider now the operator H of Theorem 2.6. We have for

any f € F2

(HE) (8) = —(a£)(8) -8 (E)-v£(8) (3.6)

Assume again that zero is a simple eigenvalue of H &nd that

H1 = H+V has an eigenvalue E1 such that H1 > E1 s, then the



corresponding eigenfunction ¢ of H1 satisfies the equation
(9, (V-E))f) = (p,af+B-vE) (3.7)

for all f ¢ F2 » Where B 1is the osmotic velocity for H .
Let us normalize ¢ such that ¢ > 0 and Iwzdu =1 . ©Since o

is positive almost everywhere we also have that

V-E, = —ﬁ? +p- 2 (3.8)

v
q) ’
which gives the relation in the weak sense between the function
V-E1 and the eigenfunction ¢ . Since V 1is a multiplication
by a measureable function in L,(du) we have #2q cD(H) n D(V)e D(y)

and for any F ¢ F2 -

(Hy,f] = [H,f] = <2vf.v - Af (3.9)

on the domain F20 . Let us now assume that H, = H+V is
essentially self adjoint and that 0, =0 is in D(H) as well
as im D(V) , and that the measure du1 = Q2du has regular first
order derivatives with corresponding osmotic velocity By o

Let f ¢ 72 then fQ; is in D(V) since £Q, €D(V) 1is equi-
valent with Vfp ¢ Lz(du) . Now f is u-essentially bounded
and by assumption Vo € L2(du) so that f0, € D(V) . Moreover

by (%.9) we have

(H,£1Q; = -afQ, - 29f.vq, . (3.10)
That is

(H,£1Q, = -AfQ, - B,-v1Q, (3.11)

and -Af~pg,+9f ¢ L2(du1) ,» since the components of g, are in
L2(du1) by assumption. Hence, since @, € D(H) so that fHQ,
is well defined, we have that fQ, € D(H) . Because of

D(H;) > D(H) N D(V) we have therefore that fq, € D(H,) . But
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then again by (3.9) and (3.11) we have
H,fQ, = (H,f)0, + E,fq, (3.12)
Hyf0y = (-af+ Eq£)Q, - 8490 . (3.13)

Hence H1-E1 coincides on F2n1 with the unique diffusion

operator given by u; . We have therefore the following

Theorem 3.4
Let u € 001(N') and let H have zero as a simple eigen-

value. Let V be measurable and in L,(du) such that H; = H+V
1s essentially self adjoint with an eigenvalue E; such that

H1 > E1 . Then the corresponding eigenfunction ¢ is positive
4 - Aa.,e, and du1 = wzdu 1s quasi invariant., If moreover ¥y
is in .1’1(11') and 0, = @ is in D(H) n D(V) , then

F201 < D(H) n D(V) and on F201 we have that H,-E, coincides
with the diffusion operator given by wu; . a

Remark 3.3 The same Theorem holds also for the case where the
operator H is replaced by B , &8 given by Theorem 2.9, so
that accordingly H, is replaced by H1 = H+V ., In this case
by "the diffusion operator given by uq" we have to understand
the self-adjoint operator H,-E, given by the form (f,f)
a 1

—t(H1—E1)

according to Theorem 2,9, We recall that then e is

also a Markov semigroup.
We have also the following

Theorem 3,5 Let the assumptions be as in the previous theorem.
If in addition Hy = H+V is self-adjoint i.e. D(H1)= D(H) n D(V),
then H,-E; is the diffusion operator given by By .
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Proof: By the previous theorem we have that if H' is the
diffusion operator gemerated by Hq then H' coincides with
H1-E1 on F201 . Hence H' = H+ V- E1 on F201 , 80 by defini-
tion H' is the Friedrichs extension of H+—Y-—E1 on F201 .
Hence the domein of H'% is exactly the elements for which the
form (fn1,(H+V-E1)fn1) makes sense as continued from F201 .
From this it follows that

p(a'¥) 2 p(H) n D(V) . (3.14)

Now if H1 = H+V is self adjoint we have that

D(H,) = D(H) n D(V) . (3.15)

Therefore
D(H,) ¢ D(a'd) . (3.16)

Now by a well known theorem ([19],1), Ch.VI.Th.2.11) we have
that among all lower bounded self adjoint extensions of the
operator H,;-E, restricted to F201 only the Friedrichs exten-
sion has domain contained in the domain of the form i.e. in
D(H'%) . Hence by (3.16) H, is the Priedrichs extension.

This proves the theoz:em. (m ]

Remark 3.4 The above Theorems and Remarks lead us to consider
another type of perturbation of symmetric diffusion processes.
Let u € fh(N')and let p(z) > 0 be a measurable function that
is positive y -almost everywhere such that du' = pdp is a
probability measure. Then p' is obviously quasi invariant,
and let us now further assume that u' is in OH(N'). Ve get
then that the osmotic velocity g' for u' is given in terms
of the osmotic velocity g of u Dby

B'(g)x = xevlnp+8(8)ex, (3.17)

and the assumption u' ¢ 491(N') means then B'(8)x € LIy(du') .



We see this is the case if for instance vp% as well as p%e(g)-x
are both in L2(du) . For such perturbations we have the follow-

ing theorem.

Theorem 3.6

Let w and u' be two equivalent quasi invariant measures
in ﬂﬂn(N') which are strictly positive. Let ﬁ and ﬁ' be
the corresponding self-adjoint operators given by Theo:em 2.9,
then zero is an eigenvector of the same multiplicity for both
operators. In fact there is a natural one-to-one isomorphism
of the respective eigenspaces corresponding to the eigenvalue

zZero.

Proof: By Theorem 2.11 we have that the eigenspace for the
eigenvalue zero is in one-to-one correspondence with the set

of functions in IL,(du) which are invariant under translations
by elements in N . Since by assumption u and u' are equi-
valent, there is a natural one-to-one isomorphism between Lz(du)
and L,(du') , which takes N-invariant functions of L2(du)
into N-invariant functions of IL,(du') . This isomorphism

then induces a one-to-one isomorphism of the eigenspaces of ﬁ

and H' +to the eigenvalue zero. This proves the theorem. O

Let now g, Uy s 0 = 1,2y0.0.5 be arbitrary quasi invariant

measures in 001(N') and let Hu' H be the corresponding

Hn

diffusion operators , and ;u(t) , §u (t) +the corresponding
n

diffusion processes, as given by Theorems 2.6, 2.7. If the

u, € 601(N') converge weakly to some measure u , then Hu -H

n
in the sense that for any f and g ¢ F2 we have that

u

(an,Hu gﬂn) - (fQ,Hqu) . We do not know however whether
. Yn
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the §v (t) converge weakly to §u(t) , but we shall see that
if the ;un(t) converge weakly to some Markov process, then
under slight regularity conditions the infinitesimal generator
of this Markov process coincides on a dense domain with the
infinitesimal generator Hu » In fact we have the following

theorem,

Theorem 3.7 Let By € ¢P1(N') and suppose that, as n =cc,

n converges weakly to a measure u € ¢>1(N') . Then for all f

n
and g in F2 we have that

(fﬂun,Hungnun) - (fnusﬂugnu) .

If moreover the osmotic velocities en(g) of u, have compo-
nents uniformly bounded in L2 s i.e, for any x € N there is

a cg > 0 independent of n such that

[18a(8)-x)au (8) < 2

then, for any f and g in F2 , the expectation
E(f(%um(o))g(gu (t))) has a uniformly bounded second derivative
n

with respect to t , If moreover the process g, (t) converges
n
weakly to some procese mn(t) , in the sense that the joint

distribution measure of {;u (t1),...,;u (tk)] converges weakly to
n n

that
/of {n(ty),...yn(t,)} for any k and any ty<...< t, o then
E[(£(n(0))g(n(t))] ie a twice differentiable function of t and

- S ELE((0))e(n(8)) /4o = (£0,,H e )

for amy f and g in F2(N‘) . In particular if n(t) is a

Markov process, then Hﬂ = Hu on F2 , where H is the infinite-

n
simal generator of n .
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Proof. Since

(fa, ,H ga ) = | vT.vg a (3.18)
up' Up Uy i, ¥
the first convergence is obvious. Now, for f ¢ F2 we have

that fa, 1s in D(Hu )} and
n

H fQ = (-af-p v . (3.19)
Up Yp n Yn

By the assumption on f +there is a orthogonal projection PE

of finite dimensional range E < N such that f£(£) = f(PEg) 5

We then have

I8, 20, I < Ielp* T eglel, (3.20)

where c; = Cg are constants and €1recerey is an orthonormal
i

base of E in K and ||f], and |[|f]l; are the ¥2

and F1
norms of f respectively, the norm in ! being the natural one
induced by the C° norm on the bases. We recall that F" has
been defined in Subsect. in 2.4. We see that the estimate (3.20)

is independent of n , so that

-tHun
(£8, 1o "B ga, ) = E2(z, (0))g(e, (1)) (3.21)

Hn

is continuously twice differentiable with uniformly bounded

second derivative
-tHu
(H fo ,e D2H ga ). (3.22)
My My’ Un Up

LE S (t) converges weakly, we have in particular that (3.21)
n
converges and the limit is E[f(n(0))g(n(+))] . Since the

second derivatives are uniformly bounded the first derivatives
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-tH
- (5, 1, e “n &, ) (3.23)

converge uniformly to the first derivative of the limit. This
gives us then that

- HELE(0))e(n(t))]/, o = (£0,,E g0) . (3.24)

Now assume that n(t) is a Markov process, Then by the con-
vergence of the processes § =mn and their invariant measures
un = u we see that n(t) is homogeneous with invariant
measure y , and since the g“‘n are symmetric under time reflec-
tion 8o is n . Hence the infinitesimal generator Hn of n
is a positive self-adjoint operator in Lz(du) with qQ(.) = 1
as an eigenfunction of eigenvalue zero for Hn + Thus
-tH,
E(£(n(0))e(n(t)) =(fa,e " gn) . (3.25)

From [3.24) we then get that H =H on [m]
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4. The Fuclidean Markov fields as diffusion processes

The free BEuclidean Markov field in d+1 dimensions is the

generalized random field €(x) on Rd+1 such that

- ife(x)ux)ax,  <E(¥,¥)

ELelI 1= - (4.1)

where

(#)_q = [ %™ |8p) | %ap (4.2)

Rd+1

and _ a1 '

i) =m 2 eI y(xax (4.3)

and m >0 1is a constant called the mass of the free Euclidean
Markov field, If d =0 or 1 we have to take m > 0 in order
for (4.2) to be well defined. The right hand side of (4.1) is
obviously a continuous positive definite function on the real
nuclear Schwartz sbace S(Ed+1) so that (4.1) defines a measure

on its dual S'(Rd+1)

s i.e, the space of tempered distributions
on R¥™' . Hence the generalized random field E&(x) is a random
field of tempered distributions. It is well known that &(x)
is a Markov field, but we shall not need this property here.

Let o € S(RY) , then (g 8,)(Z,t) = o(F)+6(t-1) is in the

Sobolev space Jb_1 , in fact

(ve s ,006,) ;= o) 4 » (4.4)
where

(@09) 4 = | (F2n®)® 13(5)12 o (4.5)
with R

S4
3(3) = (2m) 2[e71PE g(R)az .
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Prom (4.1) we get that

. = -y = 1
EEel‘[g(x’t)q’(X)dx] e 7(%:0) 4 . (1.6)

Hence since the right hand side of (4.6) is a positive definite

continuous function on the real nuclear space S(Rd) we have

that the conditional expectation of the measure with respect to
the p-algebra generated by functions of the form <{&,p® 8.0

exists and defines & measure on S'(Rd) . The corresponding

random variable with values in S'(Rd) we have already denoted

by &(X,t). Hence t - £(X,t) is & stochastic process with

values in S'(Rd) - Let now p_ be the probability measure

on S'(Rd) whose Fourier transform is given by (4.6) , i.e. ,

1
1(g,p) = 7(®,)
je au (8) = e 4 -4 (4.7)
where <(&,p) is the dualization between S'(RY) ana s(rY) .
M, 1s then a Gaussian measure on S'(Rd) and we see easely that

it is quasi invariant with respect to translations from S(Rd) ,

in fact if
du, (5+p)
» = 08
a(g,p) -HE;TET_ (4.8)
then
‘( ? ) "2< * >
a(g,e) = e P OIS (4.9)
where
w3 = A §(3) (4.10)
and

(9,0)3 = @,op) .

Prom (4.9) it easely follows that U, has regular first order

derivatives and that the osmotic velocity g(Z) 1is given by

B(8)p = 2{wep,8) » (4.11)
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which is obviously in L2(du) .
It is well known that + - €(x,t) is a Markov process in
S'(Rd) : We shall see now that this process is the diffusion

process given by the nuclear rigging
s c 1,2%) e s' (&Y (4.12)

and the quasi invariant measure uo with regular first order
derivatives in the sense of theorem 2.7. We formulate this in

the following theorem

Theorem 4.0

Consider the nuclear rigging
s < 1,(&%) < 51 (&Y

and the measure u, on s'(rY) given by

. 1

(g, - zle,9)
Ie' ’ duo(§)=e 47 -'é-
Then He is quasi invariant with regular first order derivatives
and the diffusion process given by T and the nuclear rigging
by theorem 2.7 is the free Euclidean Markov field in d+1

dimensions.

Proof:

Since the free Euclidean Markov field induces a Markow process
t = g(X,t) on S'(Rd) » we have only to show that this process
has as infinitesimal generator the diffusion operator given

by theorem 2.6. By (4.1) we have that
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: —ijﬁ(i,o)m(:‘E)di+1j;('x’.t)q>2(§)ai‘:]

RIS i : - (4.13)
_ ~tw
org 1[(¢1’¢1)—é+(¢2,¢2)—*]-e§(¢1’e 42)_§
where
~t =t S e = o
(9106 wp)_y = I-ﬁ-— 94 (p)w, (P)dp (4.14)
and w(P) = 432+m . Taking the derivative of (4.13) with
respect to t at t =0 we get
- i(8(0),9) 1i(E(t),9,)
-5 e e 2" ai(e) [t =0
(4.15)

o -1(§(0),°P1> i (§(0),cp2>
e

= <¢1v¢2>] e du(g) .

From this it follows that for f end g in F(s'(RY)) we have
that

- & [T((0Ne(e(t))au(e) = [TE(E(0)) -9a((0))an(e), (4.16)

whi¢h proves that the infinitesimal generators coincide on F2 .

tH

Moreover let e~ O be the semigroup generated by the free Euclidean

Markov field, then we have the following well known formula

. -t
e-tl-b: e1<§!cp> s =zse i(g’e wq>> H (4-17)

where
. 18, _ e%(q”q’)-'k 18> (4.18)

Hence the linear span of qi<§’¢> for ¢ € S(Rd) i1s invariant
under the semigroup e~ %o and 1t 1s obviously dense in Lz(du) ;
therefore it is a core for the infinitesimal generator Ho.

Now this core is. obviously contained in F2 which proves the

theoren. []
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We shall now consider the case of one space dimension, i.e. d=1,
where the perturbations of the free Euclidean Markov field by

local interactions of different types have been intensively studied.
For simplicity we shall here restrict our attention to the poly-
nomial interactions., So let p(s) be a real polynomial for one
real variable s such that p(s) is bounded from below. We recall

(see e.g. [25]) that the Wick power : e?: (n)= I: g(x)?: n(x)ax ,
R
with h ¢ L2(R), is defined as the unique element in P(n) such

that for 81l ¢; € S(R) ,
n n
(:8%:(n), (@qs8)... 9 8)) = n j...j,n1e<yi-x)¢i(yi)h<x)dyidx ’
1=

where (4.19)
6(x) = % _l‘(p2+m2)-%eipx dp (4.20)

R
and P(n) B P(Sn)eP(sn'”,P(Sk) being the closed subspace of

L2(dp°) generated by polynomials of degree at most k on S'(R) .

Now if
2n X
p(s) = T ays (4.21)
k=0
we define as usual
2n k
:p:(h) = a8 :(h) . (4.22)
k=0

Since the sum is an orthogonal one, we easily compute
. 2 2 5 K
l:p:(n)]|3 = ok [fe(z-y) n(x)n(y)axay . (4.23)
=0

Let now HO be the diffusion operator generated by Ho and
the real rigging S(R) c L2(R) c S'(R) . We have seen that H,
is the infinitesimal generator of the Markov process given by
the free Euclidean Markov field. Let V1(§) be the real func-

tion in L2(duo) given by
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Vi o= pi(xg) s (4.24)
where %q is the characteristic function for [-1,1]. It is well

known, eee for instance ref. l414] 3),that
Hy = H +V, (4.25)

is easentially self adjoint and bounded below and has an isolated
simple eigenvalue E1 such that H1 > El . The corresponding
eigenfunction gl(g) may be chosen positive M, - 8lmost every-
where., The measure

au; = & au, (4.26)
is therefore equivalent with Hy s hence quasi invariant with re-
spect to tramslation in S . Now let 0, = g,0,, where no(.) = 1

in Ty(ap) .
Lemma 4.1

Let ¢ € S(R) and Pgp the infinitesimal generator for the
one parameter unitary group of tramslations by t¢p in L2(dp°) :
Then i[Pm,Hl] is a demnsely defined operator whose closure is
given by

TP E;T = :p':(xy9) + (5, (-a4n°)0) ,

where p' is the derivative of p and xl the characteristic

function for [-1,17 .

Proof: The proof follows immediately from the fact that
i[Py,H;] is the derivative at t =0 of ot tPey gAY _ ple

where

Hg_’ =H + CE, (~a+m2) ) ‘+-L-(Q,(-A+m2)qa) +1Dy8 (xq) (4.27)
and . 1 .

:pq,:(xl) . k21.ak I :(5+9) (x):dx , (4.28)
A |

with

- non .

! : (E+9)2(x): ax = j21(3):§J:(cpn'3x1) : L) (4.29)

-1 =
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Theorem 4,1

4y 1is a quasi invariant measure on S'(R) which has regular
first order derivatives. Moreover the components of the corre-
sponding osmotic velocity g, have L2(du1) norms which are

bounded uniformly in 1 if the coefficients of p are small enough.

Proof: Let ¢ € S(R) , then 819 1is equal to twice the deriva-
tive of PP at t =0, if it exists, so that gy ¢ is in
I,(du;) iff 0, € D(Pp) and

B1-9 = 2iPpQ; . (4.30)
Now -1
Ppa, = -(H,-E,)” ' [Pg,H;-E,]0; (4.31)
so that
H,-E,+C "
Pcpﬂl = —W(HI—EI*-C) [P¢,H1]Ql . (4.32)

But (H,-E+C)”'[Pp,H,-E1]a, is in the range of H -E, , hence
orthogonal to Q, . Now, for fixed C > 0, (Hl-El+())(Hl—E1)'1
is bounded in norm on the complement of 0 by a constant that
depends only on the distance my from El to the rest of the
spectrum of H1 . This distance my is called the mass gap for
Hy, and it is well known (see [267) that if all the coefficients
of p are small enough this distance is bounded from below by

a positive constant. Hence in that case (H]_—E:L+C)(H1—E1)_1 is

bounded in norm uniformly in 1 . Therefore

IPeq, || < C1H(H1-E1+C)"[Pw,Hll(Hl-El+c)"n1n, (4.33)

where C1 is a constant that depends only on p and C . By
lemma 4.1 it is therefore enough to prove that, if :p1:(h) =
:p':(h) + (5,(—A+m2)¢) , then

(H~B1+0) ™" :py: (xq9) (Hy-E +C) " (4.34)
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is norm bounded uniformly in 1 . But this follows from

to:py:(X9)

IA

C,(H -E+C) (4.35)

where C2 is independent of 1 . This is proved by resolution
of the identity from Ref. [27]. We also remark that recently
Glimm and Jaffe have proved similar inequalities for the polyno-
mially interacting fields with Dirichlet boundary conditions [281.

From (4.34) we have that

(Hy-Eq+¢) 2 rpyt (xg9) (8, -E +0) % (4.36)
is a bounded operator with norm independent of 1 . Hence
(4.33) is bounded with norm independent of 1 . This proves

the theorem. O

Now it follows from ref. [26] that if the coefficients of
p are small enough, then the process ;l(t) converges weakly
to a process &5(t) , however it is not known whether £&(t) is

a Markov process. Consider now for f and g in FZ(S')

-t(Hl-El)
(£Q,,e gfy) = E[T(8,(0))g(e,($))] (4.37)

which by the results of Ref. [26] converge to

(£a,e"Men) = E[T(g(0))e(g(t))] , (4.38)

where H 1is the physical Hamiltonian.

By theorem 4,1 and theorem 3.7 we have that (4.37) is twice
differentiable with respect to t and the first derivative
converges uniformly to the first derivative of (4.38). Hence
we have in particular that uy converges weakly to a measure u
which is actually the physical vacuum (3 restricted to the time

zero fields i,e.
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Iei(g.w) aa(g) = (a,ei$®8(00qy (4.39)

Now from (4.34) it follows by standard methods [29], [14],3)

+ :p1:(¢) < 02(H+C) (4.40)

and from lemma 4.1 that
ilPp,H] = :pqy: (o) . (4.41)

Hence in the same way as for ¥y we get that W has regular
first order derivatives in particular that W is quasi invariant,

Therefore we have the following theorem.

Theorem 4.2

Let u be the physical vacuum restricted to the g-algebra
generated by the time zero fields as defined by (4.39). Then u
is a quasi invariant measure with regular first order derivatives.
Moreover the physical Hamiltonian H restricted to an coin-

cides with the diffusion operator generated by u , by theorem 2.7.
Proof: This follows by what is said above and theorem 3.6.

Remark: Bounds of the form (4.35) and (4.40) have been recently
proved also for the Dirichlet boundary conditions on the fields
by Glimm and Jaffe [24]. Hence theorem 4.1 and theorem 4.2 will
also hold for the Dirichlet boundary conditions and their infinite
volume limits, which also exist, by the method of Nelson [ 3],
e.g. for arbitrary even polynomial p . In this case there is

no smallness condition on the coefficients of p .
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RELATIVE ENTROPY AND ITS APPLICATION

Huzihiro ARAKI

Research Institute for Mathematical Sciences
Kyato University, Kyoto, JAPAN

ABSTRACT

The properties of relative entropy are elaborated for a
general VYon Neumann algebra. This concept is applied to
establish that large class of 1 - dimensional quantum
spin systems has a unique KMS state.

RESUME

Les propriétés de 1'entropie relative sont é&laborées pour
une algébre de Von Neumann générale. Ce concept est utilisé
pour &tablir 1'unicité de 1'&tat KMS pour une grande classe
de systéme quantique de spin dans une dimension.
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Relatlve Entropy and Its Appllcations

Huzihlro ARAKIT

Research Instltute for Mathematical Sclences
Kyoto University, Kyoto, JAPAN

§1., Relative entropy

The purpose of this review is to show usefulness of
relative entropy by two examples of 1ts applilcatlions to
satistical mechanles.

For finite matrices, the relatlve entropy of non-negative

matrices o and p with unit trace (i1.e. density matrices)

1s defined by
S(a/p) = tr(plogp) - tr(plogo) (1.1)
which takes elther non-negative real value or +«~. It has the

followlng nice propertiles:
(1) Positivity: S(o/p) > O.
S(o/p) = 0 1if and only 1f p = o.
(2) Convexity: S(X01+(1-A)c2/lpl+(1-k)pz)

2 A8(oy/0q) + (1-X)S(02/02)-

(3) Lower Semicontinuity: If 1im |[p -p|| = lim]s -of= 0,

1im S(o,/p,) 2 S(a/p).
(4) Monotoniecity: S(Ey(0)/Eglp)) 2 S(a/p).
Here EN 1s a conditional expectation to a subalgebra N with
respect to the trace. (If the original matrices belongs to the
tensor product N@N', then EN 1s the partial trace trN,.)

For application, it 1is necessary to generalize this
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definltion to a von Neumann algebra M, which does not
necessarily have a trace. Let ‘f and Y be faithful normal
states, ¢ and Y be their cyclic vector representatives.

Then the relatlive entropy is defined by

S(¥ /¥) = =(¥, {log Ay 4}¥) (1.2)
>
in terms of the relative modular operator A@ y — 2 positive
. 3
self-adjoint operator glven as the absolute sguare
By g = (35 )" 5 (1
s,v = Sp9) Sy -3)

of an antilinear operator So ¥ s defined on Mé by
>

S@,T x¥ = x%¢ . (1.4)

The definition (1.2) does not depend on the choice of
representative vectors of states.
The relative entropy so generalized enjoys the nice

properties (1) ~ (4), where E is now simply the restriction

N
of the state to a von Neumann subalgebra N of M. The
monotonicity (4) is at the moment proved only for a certain
class of sub-algebras N, which include any finite dimensional
subalgebra for arbitrary M. This will be sufficient for our
applications.

The connection of the generalized definition (1.2) with
the original definition (1.1) is simple: For finite matrix
algebra M, a state ff 1s expressible through a density
matrizx py by $(x) = tr Py X; xeM. Then S(¥ /v) of
(1.2) 1s the same as S(pyp /pw) glven by (1.1). (The relevant
Hilbert space 1s M itself with the inner product (x,y) =
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tr(x®*y), ® and ¥ are, for example, vectors (p9 )l/2

1/2

and

(pw) , and AQ v is the left multiplication of Py times
H

the right multiplication of (pw)_l.)

§2. KMS condition

Our applications are centered on KMS conditlon, which
characterizes equilibrium states 1n statistical mechanies
and at the same time plays an lmportant role in purely
mathematical Tomlta-Takesakl theory 1n theory of von Neumann
algebras. This link enables us to apply the relative entropy
defined above in the language of Tomita-Takesaki theory to
statistical mechanies.

For a ¥-algebra M of finite matrices, the time
translation for a given Hamiltonian H 1s the following

one-parameter group of (inner) automorphilsms:

iter-itH

a (x) = e (2.1)

The corresponding equilibrium state proposed by Glbbs is

yg(x) = tr(e BHz)/tr(e7BH) (2.2)



where B 1s a real parameter (the inverse temperature). It
1s easy to verify that a state éf is the Gibbs state ff g
if and only 1f 1t satisfles the followlng KMS condition at

B8 with respect to a,: For each x and y in M, there

exlsts a function F(z) on the strip 0 < Im z < B

(02Imz>8 if B < 0), which is holomorphic inside the

strip, continuous and bounded on the strip and satisfies

F(t) =% (xa (y)), F(t+18) = Pla, (y)x). (2.3)

Gne of maln ingredients of Tomlta-Takesakl theory is that

the madular operator AQ S A¢ ® has the property that
>

@g(x) z e xe - H@ = log A@ (2.4)

s in M 1f xeM. Hence oty 1s a continuous one-parameter
group of automorphisms of M, called the modular automorphism.
(It 1s independent of the cholce of the vector representative
of the state ¥ .)

It 1s the cruclal link between Tomita-Takesaki theory
and statistical mechanics that 9’ satisfles the KMS condition
at B = -1 wilth respect to og, and thls property characterizes
the unidiformly bounded mapping + -+ oZ(x)e.M. This Implies, in
particular, that for an equilibrium state ?’ at inverse
temperature B for a time-translation Qs the mathematical
modular automorphism og colncides with «

-Bt*

of(ry (@) = 1y (a_g (@) (2.5)

where Ty is the cyclic representation associated with ?’.
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§3. Perturbation of states

The perturbation in physics is an addition of some operator
h to the Hamiltonian H. The resultling perturbation in the
Gibbs state is what we want to formulate. For finite matrices,

¥ (z) = tr(_eHx) is perturbed to

¢ P(x) = tr(e"™Px) (3.1)

where we have set B = -1 and omitted normalization factor
for computational simplicity. If necesslty arlses, we

consider

v=Pl | e = 1080P(1) (3.2)

which is automatically normalized.
For normal falthful positive linear functional SP

of a wvon Neumann-algebra M, the perturbed functional §Ph

for h = h#é€M 1s defined by

¥B(x) = (a(n), x8(h)), xeM, (3.3)

¢(h)

exp{(log AQ+h)/2}¢ . (3.5

Here ¢ 1s always in the domain of the operator preceding
it in (3.4). This definitlon reduces to (3.1) for finite
matrices and inherits properties obvious for (3.1):

(@) 9P = 9% ir and only 1f h = k.

(b) (9h)k - 9h+k , - (qh)-h .

(c) log A = log A6 +h .

o(h),®

Because of AQ¢ = &, the property (c) implies

S(P"/ @) = - g(n) . (3.5)
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This formula yields an important estimate. Let 90 be a
normal falthful state of M and h = h*€M. Let ¢ be

defined by (3.2) in terms of ?h. Then (3.5) implies
S(W/P) = - P(h) + log $7(1). (3.6)

By the property ¢ = (¢h)'h and (3.5), we also have

S(P/¥) = w(h) - 1og PP(1). (3.7)

Hence

S(W/ ) + S(P/¥) = v(h)- P(h) 2 2]nl. (3.8)

Since both S(¥/¢) and S(®/¢¥) are non-negative, each is
bounded by 2fn| .

The Infinitesimal generator of the modular automorphism
c: 1s something like Hamiltonlan and should be changed by
1h under perturbation of the positive linear functional
This i1s actually the case in the following sense:

In general

)1t -it

(D¥: DY), = (A” 8y (3.9)

1s a unitary element of M and intertwlnes the modular

automorphlsms for 9’ and ¢ :
(09 : D) of(x) (Dg: DY = of(x) . (3.10)

In terms of relative modular operator, this is the same as

(8,90 508y 7 = oF(x) . (3.11)
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By (c) we obtain
(@anyted (2 - F)},_y = 1Ubuxl, (3.12)
(a/at) (0 ¢™:D @), = 10 P":pP) of(n). (3.13)
The equation (3.13) at t = 0 actually characterizes P.

§4. Quasi-equivalence

Let = and be two representatlions of a C¥-algebra

1 2
. The quasi-equivalence of L and LY 1s one criterion

of how close they are and 1s defined by the following condl-
tions: the kernels (elements represented by 0) of Ty and
T, are the same and the *-isomorphism m,(Q) + m,(Q), Qe X
extends to a ¥-ilsomorphism of weak closures "1(“')" and
w2(01)". It turns out that this 1s the same as unitary
equlvalence up to multiplicity. (For commutative &, it
colncides with the notion of equilvalence of measures.)

If a representation w has an invariant subspace 60
(1.e. w(Q) 50‘: 50), then the restriction of the representa-

tlon to the lnvarlant subspace 1s called a subrepresentation

of w. If T, 1s quasi-equivalent to a subrepresentation

of s then T is sald to quasi-contain LY If L] and

L quasl-contaln each other, then they are quasi-equivalent.
A representation w which 1s minimal under the ordering

of quasl-containment (i.e. which quasi-contains only

representations quasi-equivalent to 1tself) 1s called primary.

A representation w 1is primary if and only if #( )" 1is a
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factor (i.e. has a trivial center).
The relative entropy can be used under certain
circumstances as a computational tool for judging quasi-

containment of representations through the followilng Lemma.

Lemma Let O be a C¥-algebra with an increasing

sequence of finite dimensional ¥*-subalgebras an whose

union is dense in . For two states ¢ and ¢y of A,

the cyeclic representation 1r9 assoclated with ¢ quasi-

contains the cyclic representation =« assoclated with ¢

¥
ir s( SPn/wn) 1s uniformly bounded for restrictions ¢

and ¢, of ¢ and Y to a, for all n.

Corollary If S(¢ /¢, ) + S(¥ /¥ ) 1s uniformly

bounded, then 119, and w " are quasi-equlvalent.
We note that S(wn/ 9n) and S( Son/wn) are monotonously
Increasing.

One can define relative entropy S(¥/¢) of two states

¢ and ¢ of a C¥-algebra @ 1n Theorem 1 by

S(¢/¥) = sup S(Ey(P)/Ey(¥)) (4.1)
N
where N runs over all finite dimenslonal ¥-subalgebras of

X and Eg(®P) and Ey(¥) are restrictions of & and
Y to N.



§5 Gibbs condition

By using the concept of perturbed functionals, we can
derive a useful property of KMS states (i.e. states satisfying
the KMS condition) under the followlng circumstances: Let
OU be a C¥-algebra generated by an increasing sequence of
finite dimensional ®*-subalgebras 0L n and L be a one-
parameter group of ¥-automorphisms of (Ol such that there

*

exists hn = hn € OC for each n satisfying in norm topolagy
(a/at)a (@) ] o = 1l ,Q] (5.1)

for all Qemn and decomposing as
h =u +w (5.2)

¥
with u = unet%n.

The Gibbs condition at B for a state F of O 1s

as follows:

(1) The normal extention of y’ to the weak closure




Ty (el)" 1s faithful.

(ii) The perturbation by Bwn yilelds a produect functional

relative to the tensor product decomposltlion @ = 0L11()(6!(]6£'),
Nk

¢ B ¢3¢ (5.3)

-Bu,

G =t —Bun n 0{ ( L
n,B(Q) z tr(e Q)/tr e > QEOL . 5.4)

The second condition (restricted to a maximal abelilan
subalgebra of G ) coincides with the condition given by
Dobrushin and Lanford and Ruelle for equilibrium states of
classical spin lattice systems (after an appropriate
identification). The condition (1) i1s needed to define
? wn’ which 1s, preclsely speaking, the restriction to

~ BTy (w.)
Ty ((L) of the perturbed state < ™" which 1s obtalned
from the normal extension 5; of ff to the weak closure

Ty (OL)".

Theorem 1 For a state ( of ot , the KMS conditilon at

g implies the Gibbs conditlon at 8

It 1s well-known that the condition (1) follows from
the EMS condition. The proof of condition (i1) is based on

1Btu -1gtu
(a/at)afP{my (e " Qe My =0 (5.5)

Bu,
for QeQpL, and il 5= jp , which can be verified for
t =0 from (2.5) implied by the KMS condition, (5.1) and

(3.12) and extended to general t by the group property
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and by

1Btu -1Btu
o™@ e Mqe  Peop (Qeor). (5.6)

The equation (5.5) implies oznn? = Ty aén) s, which easily
leads to the condition (i1). Q.E.D.

While we need only the direction of Theorem 2 in our
application, the converse also holds under some additional
assumptions on hn. Let D be a subset of OL consisting
of x = 1im X, Where {xm} i1s such that each x, belongs

to OC n(m) for some n(m) and [h ,Xm] is convergent

n(m)
in 0L . (It is the domain of the closure of the derivation,

say § , defined on vot, by (5.1).)
n

Theorem 2 If D contains at(DLn) for 211 n and

|t| < e for some € > 0 1independent of n, then the Gibbs

condition at B 1implles the KMS condition at B8 .

By a computation similar to the above proof of Theorem 1,

it follows from the Gibbs condition that
(a7at){of [mg (ag, ()1} o = 0 (5.7

for Qeu @ . If we have this for all Q in o ¢ (01,) for
|t] < e and every n, then we have 69 (rg (Q)) = 7 (a (@)

for Qeup, and lt] < e, which suffices to show ugwy—
n

“7“—Bt and hence the KMS condition for ?’ at B with respect

to at.
For the passage from (5.7) for Qé\_/otn to (5.7) for
n

Qeat(m_n), we use the assumption that Q€D if Q¢ at(otn),
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namely there exists %mecmn(m) such that 1im Qm = Q and

1im i [hn(m)’Qn] = QefL . Since (5.7) 1s equivalent to
(a/at){of (7y (@) - myp (a_g (@)} o =0 .  (5.8)

we obtain (5.7) for Q eat(éﬂn) by the following computation

(a/dt)of (my (@) o = %ﬁm{(d/dt)cz (T ()0}

lim{(a/at)my (a_ge ()0}

(a/at)my (a_p (Q))y g

where the 1limit exists (and is Q) by the choilce of Qm, the
second equality is (5.8) for Qm& (4 Qn and the two exchanges

of the 1imit and differentiation is justified by the convergence
of the derivative uniform in t because automorphilsms are
isometric. (It 1s the closability of generators of automorphisms.)
Q.E.D.

The condition of Theorem 3 is satisfied in the case of
quantum lattice system for which at has been shown to exist
(interaction exponentially decreasing at higher-body interaction,
which includes general finite-body interactions). The verifica-
tion can be done by a direct computation or by the analyticity
of at(Q), Qe("Ln, in ¢t.

§6 First application —— Uniqueness of KMS states

We consider the same situation as section 5, where dl,

Otn’ %5 hn’ u, and w, are Introduced.

—73—



Theorem 3 If "wn" is uniformly bounded, then KMS

state at any B 1s unique 1f it exists.

Remark The assumption of the Theorem is satisfied in
one dimensional spin lattice system when the total interaction
across a point is finlte. Since W, 1s a surface energy
essentially proportional to surface area, it is not uniformly
bounded in higher dimensional case.

Proof consists of several steps, first aiming at the
quasi-equivalence of all KMS states.

Step 1 Let & be any KMS state at B and ¥ , be
a weak accumulation point of the sequence of states

Xp = ﬁ,B®T

where T 1is the traclal state on 8 N 0‘-1'1 (any fixed state for each s
will do). By definition, there exists a subsequence n(m)

for each p such that

Um | (X gy = PlOLJ =0 .

Hence
3 G G
Lim ((3,(F 1), g V/Bp(F)) + SE(PI/E(F 1y o)
= Lim (SCE, (X () /B (P + (B (PI/E (xp gy}
> S(Ep(tfo)/Ep(’f)) + s(Ep(go)/Ep(‘fo))

where E, denotes the restriction of states toCl-p.
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Step 2 By the Gilbbs condiltion for ff s the monotoniclty
and the estimate (3.8), we obtain for n > p the following

bound, which 1s uniform In n by the assumption:

G
SEL (P2 /B (P)) + S(BL(PI/E (PR 0))

S(E (¥, /E, (&) + s(Ep(Lf’)/Ep(!"n))

fin

S/ P) + 8(P/y) < 28w

BwW BW
where §_ = g n(1)}-1? N given by (3.2) with h = BW .

Step 3 By Steps 1 and 2, the condition for Corollary
in Section 5 1s satisfied. Hence the cyclic representation
assoclated with any KMS state at B 1s quasi-equlvalent to
the fixed cycllc representation assoclated with ﬁf 0 and
thus mutually quasil-equivalent.

Step 4 The set of KMS states formsa compact convex
set. A KMS state ff is extremal in thls convex set if
and only if the assoclated representation is primary. Since
a compact convex set has an extremal point, all KMS state
50 must be extremal. Since a convex set conslsting solely
of extremal points is either empty or one-point set, we have

the uniqueness of KMS state. Q.E.D.

§7 Second applicatlion — Variational principle.

The Gibbs state (2.2) can be characterized also by the
following variational principle: Let P be the density

matrix of a state ef on a finite dimensional algebra M.
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Define

s(¢)

-tr(py log pp )  (entropy), (7.1)

E(Y)

‘f(H) (energy) . (7.2)

Then (70 g of (2.2) 1s the unique state 9’ maximizing
S(’-f )-BE(lf ), the maximum value beilng given by

PB(H)E log tr e BH (7.3)
In other word, the varlatlonal lnequality
Pg(H) 2 S(¥) - BE(Y) (1.4)

holds for all states 9’ and the equality 1s satisfiled 1f
_ G
and only if & —‘j’B .
In terms of relative entropy, this variational principle

1s nothing but the positivity:

S(Pg/¢) 20 (7.5)

where the equality holds if and only if ‘f = 60(3} .
For infinltely extended lattice systems, (7.1) and (7.2)

can not be defined. However the corresponding density can

be deflined:
S(¢) = 1m s )/, , (7.6)
e(¥) = 1m B(Y DIV, (7.7
_Bu
Pg = lim (tr e ")V, . (7.8)

—76—



where ‘f - 1s the restriction of sp to 0(,n, E(‘fn) =
l)o(un), V, 1s proportional to 1log (dimﬂ[n) (the volume)
and the limit 1s known to exists for any translationally
Invariant state ‘f for an appropriate sequence n’ The

variational principle 1s formulated as
pg 2 s(¥) - Be(Y) (7.9)

where a state ? eq 1s a solutlon of the varlational principle
1f the equality holds in (7.9) for { = ?eq'

For translationally invariant states, 1t has been known
for some time that any solution of the variational principle

satisfies the KMS condltion at B. The converse holds:

Theorem 4§ A translationally invariant KMS state 9’

at B 1s a solution of the varlational principle.

Proof By computation (same as the equivalence of (7.1)

and (7.5)), we have

Pg = S(¥) + pe(¢) = lim S(PE /P IV (7.10)

where (ffl 8 is given by (5.4). By Gibbs condition for
t]
® ana (3.8),

(¢S /P < hewll (7.11)
It can be shown that

Um||w ]l /v, =0 (7.12)
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essentially because "wn" is proportional to surface area
and the ratlo of surface area to volume tends to zero in any
dimension as the volume grows 1in a nice manner. This then

implies

lim s(tf'i,e/¥’n)/vn =0 (7.13)

and hence the varlational equallty for 'f . Q.E.D.
It 1s to be noted that the translational invariance of
? 1s not needed up to (7.13). The equation (7.13) can be

interpreted as the vanishing of the relative entropy density.
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I. Introduction

In this seminar I will talk about joint work with J. Yngvason [ 1, 2, 3] which

will appear in the Communications of Mathematical Physics.

Starting from a Wightman functional it is possible to get by analytic con-
tinuation to the Schwinger-points, i.e. the points with real space- and pure
imaginary time-coordinals, and where no two points coincide. On these
Schwinger points the Wightman functions are analytic and symmetric under per-

mutation of the coordinates.

K.Symanzik [4] has introduced the idea of viewing these functions as ex-~
pectation values of a commutative field, the so-called Schwinger field. In recent
years these ideas have become standard tool in constructive field theory, so
that it is interesting to ask whether this concept can be derived from Wightman’s

axioms.,

Having a set of W'ightma.n functions which is a positive linear functional over
some test-function algebra, for example __60 , we can compute the Wightman
function on the Schwinger points by analytic continuation. Because of symmetry
we might look at this set of functions as a linear functional defined on a linear
subspace of the symmetric tensor algebra over f (kd) which I will denote
by S(& ). That this functional is only given on a linear subspace is due to the
fact that these functions are only defined for non-coinciding points. Therefore
an extension of this functional is needed in order to get a functional on the whole

abelian algebra S(¥ ).
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A simple inspection of the properties of the Wightman functions on the
Schwinger-points shows that there is enough continuity to guarantee such an
extension by the Hahn-Banach theorem, But, at this point the problem enters,
namely, if we ask for extensions of a linear functional then we should look for
nice extensions, This leads us to the following question:

What are nice functionals on the algebra S(¥)?

On an abelian algebra the nicest linear functional are characters i.e. a

linear functional X with the property
Yxy) = A X

where x, y are elements of the algebra in question. Characters are very special
and give rise only to a one-dimensional representation of the algebra, If a func-
tional shall contain more information, than what one can expect from a character,
one gets a nice family of linear functionals by integrating over characters, i.e.

by investigating expressions of the form

Tw = [ Yoo dua)
A

where (A,,u ) is some measure-space.

Looking at the case of abelian c* -algebras then one knows that here every
linear functional is of this form. But, in the case of general abelian * -algebras
this is no longer true. The new feature which enters are pathologies which are
associated with commuting unbounded operators, If we restrict ourselves to those
functionals which are decomposable into characters, this is nothing else than

looking for functionals which are free of such patholagies.
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Originally Symanzik was thinking of Schwinger fields, this means, besides
being decomposable into characters he wanted the functional to be positive and
decomposable into sums of characters with positive coefficients. But we will
not ask for this property for two reasons. First, from the positivity in Minkowski-
space one gets only the so-called Wightman-positivity (see [5] ) and the positivity
for the Schwinger field cannot be derived from it. The Schwinger-positivity is an
additional hypothesis which we cannot expect to be shared by all field theories.

If we believe in the existance of non time-reversal invariant theories then we have
to get acquainted with the idea that the measure in I XA A /u (A) canbea com-
plex measure because reality of /(4 guarantees already time reversal invariance.
The second reason is purely technical. As we will see in the next section functionals
which are decomposable into characters with a positive measure fulfill some addi-
tional requirement which cannot be characterized purely algebraically and topo-
logically. Therefore the extension-problem requires additional tools which are
beyond the Hahn-Banach theorem. At least to me it seems completely hopeless

to deal with this problem in the near future.

What I will explain here can also be carried through for other test-function
algebras like for instance J) or the Jaffe space ? . Important is only the

nuclearity of the space,

This presentation will not contain any proofs, but, I hope I succeed in ex-
plaining some of the underlying ideas of the subject and the difficulties we had

to overcome.
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II. Review of previous results

In this section I will give a short report on the papers [ 1, 2] which are the
basis of the following investigations (see also the lectures in Strasbourg [6] ).
The part which is relevant for our purpose is dealing with the following question:
Let A he an abelian x -algebra containing the identity and @ be a state on A,
this means w is a positive normalized linear functional on A, what are the con-
ditions on @ such that it can be represented as an integral over characters with
respect to a positive measure. Looking into this problem one finds out that this
question has two different aspects which are not related to eachother and which

can be solved with different level of generality.

The first problem is the following: Given the state @ then we associated to
it, by the G.N.S. construction, a representation W, of the algebra A defined
on some common domain P, which is dense in the representation Hilbert-space

. If x is a symmetric element of A then the operator T (x) is generally
only a densely defined symmetric operator. Therefore one would like to find a
common extension ‘? (x) of all the operators T(x) in such a way thet
o() all the operators <"i]"(x) are defined on the same extended domain 5
/3) If x is a symmetric element of A then </F\"(x) should be essentially self-

A

adjoint on D
X) If /5 holds then we can construct the spectral projections of every ;l’(x)

and we would like to have that all these spectral projections commute with
each other.
This problem can be solved in full generality without using any topological re-

quirement. This is due to the fact that one understands the obstacle. This ob-
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struction is known from the finite dimensional moment-problem, Our result

says there is no other difficulty in the case of an arbitrary number of operators
than those which are known from the case of finitely many operators. The obstacle
which appears is the following fact discovered by Hilbert [ 7]: In two or more
dimensions there exist real polynomials P(xl. ) .xn) 2 o without being the sum

over squares of other polynomials, i.e.

0 ¢ Plx,...x )% ZIQx,...x ) °

where Qi are also polynomials. Since characters are associated to points of
the spectrum, a character has to be positive also on such elements. The result

dealing with this situation is the following

1I.1. Theorem

Let A be an abelian 4 -algebra with identity and let @ be a state on A,
then the following two statements are equivalent.
1) The representation T, of A defined by the G.N. S, construction has
) P
an extension ‘¥ on a common domain £  such that

- -
a) All T (x) are essentially self-adjoint on D for x = x*e A

b) If x= x* and y = y" then their spectral projections commute with each other.

2) e is positive on every positve polynomial, this means that if P( X,... )'h )20

for A‘ek and x =x*

1 1,...xn=x:1€Athen

(P(x xn) ) 2 o.

17 cce

The second problem is a measure-theoretical one. Assume the conditins of

Theorem II. 1. are fulfilled then the von Neumann algebra M generated by the
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spectral projections of all the T (x) will be a maximal abelian von Neumann
algebra having the vector & as cyclic and separating vector. The operators ‘?(x)
are then linear operators affiliated to this von Neumann algebra. Assume that

the Hilbert space abtained by applying Mio R is separable then one can repre-
sent w on u“ by a measure on the spectrum S of A this means M is identified
with £°’(s, M ). But you would also like to identify the algebra A with some
algebra of functions on S. For every single operator ‘? (x) it can be done, but

in general one can not do it simultaneously for all of A wothout some additional
continuity requirement on A, One technique which gives nice results is the so-
called nuclear spectral theorem [8, 9] . Since nuclearity is fulfilled in all examples
of interest we restricted ourselves to this situation. Before giving the result I

have to make some

II. 2. Remarks

a) The algebra in question will be the symmetric tensor algebra over ¥ , D
or any other nuclear test-function space. For simplicity I will restrict
my attention on S( & ).

b) On this algebra there exists a natural topology < defined by the topology
of the base space # . It is convenient to assume that the algebra S( £ is
complete in this topology. The reason for this is that every positive linear
functional is automatically continuous if the algebra is complete [10, 11] |

¢) If we have a character X on S(&) then under the hypothesis of b) it is
automatically continuous. Since F is a linear subspace of S(¥) we can
restrict X to f Therefore it defines an element & ¢ é”' and it turns

)
out that the characters are in one to one correspondence to elements of &
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via the formula

Xw (P(x" "n)) = ?(w(x,)’ s @ (X))
where P is a polynomial and X; ¢ y

d) If one wants to represent states subject to theorem II. 1. by means of integrals
over characters then there are two possibilities, one method is using the
spectrum of the maximal abelian algebra v‘f I talked about earlier, the se-
cond is the space f) by means of the correspondence mentioned under
In this case one generally gets cylindric measures on i , op the corresponding
dual spaces in question.

e) The assumption of nuclearity has some other advantage, namely the continuous
image of any nuclear space into a Banach space is automatically separable,

so that we don-t have to worry about the separability of the representation

space.

Jnder these assumptions we get the following result:

iI.3. Theorem: Let T be a linear functional on S() then the following

statements are equivalent

1) T is positive and fulfills the conditions of Theorem II.1. This means T

is positive on all positive polynomials.

2) T has a weak integral decomposition
Tex) = j X (x) 0!/4 A)
A
A
where
a) (./\,/u) is a standard measure space, M 2o and /u ni=1
b) Xa are characters on S(¥) /A -a-e

c) there exists a function C{A) 20 )

z

CQ) e £2 (-/\,(“ ) and continuous seminorms [ on N
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such that for x ¢ .?

%
X, ¢c@ p . ,n=1,2, ...

1
3) There exists a cylinder-measure ¥, on J: such that

T(‘P(’({’ soe Xu‘) bt Ip(w(xﬁ,"' w(xn‘)) va
% Y

with the property,that for every continuous polynomially bounded function £ onR
the integral
ff(w(nb-oew<na)dng

exist and is jointly continuous in Xjeeny € JO

Who is interested in more details about abelian algebras can find them in refe-

rence [2] and the papers of R. Powers [12, 13].

b od
III. _The algebra of functions on f (k ) and definition of a topology

Remember that we want to characterize functionals which have an integral
decomposition into characters. If such an integral exists then in view of theorem
1I. 3. it is also defined for a wider class of functions defined on ¥ g . So we are
looking for an algebra of functions “F on f y such that the following is ful-

filled

III.1, Conditions on F

a) “F shall be a ¥ -algebra
b) “F shall be a lattice in the natural order, so that we can decompose linear

functionals into positive ones.
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c) If possible SF should be such that positive functionals are automatically con

tinuous.

)
d) Every functional on “F should be representable by a measure on & via the

formular discussed in theorem II. 3,

)
e) “F shall be generated by S(&) and bounded functions on & .

Looking at all these conditions there seems to be one natural choice of
namely:

III, 2, Definition

We put ?={Ff

)

éﬁ - C ; there exists a continuous function g (4, A
n

on R which is polynomially bounded and x

flw) = q (X, (), e wan))}

By ﬁ'+ we denote the functions such that f(w) > 0,

100X, € S(¥) such that

In order to see that the other conditions are fulfilled we need some topology

on%'.

Since the functions f(w) are polynomially bounded one cannot use supremum

norms or seminorms. Natural candidates for norms or seminorms are objects
of the form

for a suitable family of functions F(w ). This family of functions shold also

reflect the original topology T defined on the abelian algebra S(#).
Our choice is the following: If p is a seminorm on S(¥#) we put
F(w) = sup {x (X, ) x € S(#) and plx) € 1}
P

A
The topology defined by these two formulas we denote by L . With these

notations we get @



P
I11.3. Lemma: If we restrict the topology *i" to S(&#) then every ¢ continuous

seminorm is also T continuous.

-
IT1, 4. Theorem:; For a linear functional T on F the following statements are
equivalent

~ -~
1) T is T -continuous

)
2) There exists a unique complex measure on a‘f such that f(f) = ff(c.)) dv,,

This theorem tells us that we have fulfilled exactly all requirements listed
under IHI.1. (To see that III. 1, c. holds one has to use theorem III. 3. and remark

II. 2.b). Therefore we have the following

II1. 5. Conclusion:
Let é& be a linear subspace of S(f) and t a linear functional on QZ :
Then t has an extension T to all of S(¥) such that T is representable by a

) -\
measure on & if and only if t is continuous with respect to the topology T/‘ Z.

IV. Restriction of this topology to the tensor algebra

Since we did know what we were aiming at it was not very hard to find the
algebra “F and the topology i‘ on it. But the real problem starts by trying to
characterize its restriction to S(#). Remember that S(y) is the symmetric
tensor algebra over y which is a graded algebra equipped with a topology well
adapted to the grading. But in the algebra ? the grading has completely dis-
appeared and essentially also the same is true for the topology ih\ . Now we have

to restrict Z to S (Y) and we can hope that we can handle problems only if there
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exists an equivalent formulation of ‘f r S(¥) which uses the terminology of the

original topology € , in particular the graded structure of S(&%).

The first result in this direction is the following

IV.1, Lemma: Let x= {xo, x x. 0,0 }e S(#) andlet T be the re-

1°°° 71

striction of T to S(#) then the family of the seminorms

o
x — 2 x|
;ao F

form a basis of this topology.

If we want to investigate this topology any further then we have to say how
the functions F (w )} look like.
The algebra S(&) consists of sequences {x R } where x. & f( Rld)
@ni. d o is
and if p are seminorms on f _ then P are seminorms on - 5«: ( Rld).

From this one reads of:

IV.2. Lemma: Functions of either one of the two forms define a basis for the
topology ‘E H

oo ° \j
1) Flw) = 2 (pv )
V=0

2) F(w) = i' (1+ P, wi)
V=4

where { Py } is a sequence of continuous seminorms on f ( Rd) with 9, <, ,

(-
and R, (w) =sup{|(‘9(¥)l 3 F’VW’S'(, xéf},

In the following we will take the second form for the functions F (), Then

we get for the n th component:
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IV.3. Lemma: There exists E“ >0 independent of the seminorms { Pv}

such that for a homogenious element x we get

X () | Xp ccn .
Sup lr-“—--l < su‘ow_'_‘__.:_____ = X,
A4 g -4 o
w T Pw @ T (£, ) FUis, p, 1)

V4 V=4

Remarks: 1) Since T is a homogenious element of degree n we also might

write the left hand side as

n
sup (T® <)o) .
w V=1 Py“")

2) In order to give an even nicer characterization of this topology we have to de-
fine the algebra S (&) carefully. Since we are looking for symmetric functionals
we can define it also on the usual tensor algébra _.Sf where it anihilates the ideal J

generated by all commutators, Therefore we put
) ¥
S = 7/7

also as topological space,
3) Since J is of a very special structure it is easy to see that graded structure

survives the passage to the quotient, this means

o0
S(#) < Z® S, (8) with
& S,
s - I Tn g
4) If P;.-.p, are seminorms on & then we define seminorms on Su(sp )

by
(P® @ p,) Wa) = Jnf  (RO--®p ) (Xury)
Symm. Une]ny@n

With this notation we get :
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el
IV.4. Theorem: The T topology on s(f) is given by the collection of the

following seminorms:
[~ -4

poa) = 2 (F’A@w""@wﬁ)gymwf"n) (*)

n=0

where {P\l} is a sequence of continuous seminorms on 5’ .

Remark: As I will indicate in the next section the topology defined by the seminorms
(%) of the last theorem is constructed in such a way that the product in S(§) be-
comes a continuous operation. The topology defined by these seminorms and the
topology are in the same relation as the original norm and the enveloping C‘ -norm
for Banach # -algebras. Therefore the result of this theorem is not true for arbi-
trary graded algebras. The nuclearity was an essential ingredient for the proof

of the theorem.

From this theorem one gets:

IV.5. Corollary: Let T = (To, Tl’ ...) be a sequence of tempered distributions
1 dn
Tnef('l? ) with T:u("4®"z"‘@xn)‘—I-'L(ané‘j’(r,_""@xf.‘)
d
for any permutation T and x; ¢ F (R") then the following conditions are
equivalent

1) There are continuous seminorms p , on f ( Bd) such that
[Tn(x4®...®xu) l £ PulXy) e p“_(xu)
) d
2) There exists a complex measure vw on (5" (R )h. such that

T, - (vewo oo dv,

n
n - factors

exist as a weak integral .
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V. Other interpretations of this topology

Before going to the application I will list for completeness sake other charac-

terizations of this topology ‘2‘ .

V.1, Theorem: On the algebra S(J§) the following topologies coincide

o)
1) The topology Z .
2) The strongest topology ¢, which is weaker than T such that the multipli-
cation is jointly continuous.
3) The strongest topology such that S(&) n <! is 2 normal cone ,

¥

4) The strongest topology such that S+(.¢) = closure of {Z X Xy , Xv€ ,f[‘?)}
is a normal cone.

Further properties are:

V.2. Lemma:
s{ ) is a complete nuclear vector space but it is neither barnolo-

gical nor barrelled.

Remarks: 1) For an arbitrary locally convex topological algebra it is possible

to construct the finest topology coarser than the given one such that the product
becomes jointly continuous. It is also possible to characterize the neighbourhood

of this topology in terms of the original ones, If the algebra is abelian, then the
formulas become simple and they are those which we used in theorem IV. 4.

2) The equivalence of the two topologies described by 3) and 4) of the last theorem
came as a surprise to us. From the treatment of the "infinite dimensional' moment
problem we did know that not every positive linear functional can be represented
by an integral over characters with a positive measure. But, since any positive

linear functional fulfillg the condition of theorem IV.4. automatically (iterated use
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of Schwarz’ inequality) it follows that it is an integral over characters but with

a sigh.ed measure.

3) In the case of non-commutative algebras the multiplicative and the normal
topology (2 and 4 of the last theorem are generally not identical (see e.g. J.Yng-

vason [14] )

VI. Continuity requirements for Wightman-functions on Schwinger points

Now it is easy to translate the conditions of corollary IV, 5. into the language
of Wightman functions. In the following y will denote points of the Euclidean space
Rd and S, (yl. . .yn) the analytic continuation of the n-th Wightman-function to
the Schwinger points. Note that these functions are only defined for non-coinciding
points and that they are real analytic functions on these points. Therefore the

necessary estimates are only concerned with the coinciding points and the points

at infinity. The result is the following

VI.1, Theorem: Let S, (yl,. : .yn) ,n=o0,1, ... bethe Wightman functions on
Schwinger points of a given quantum field theory, then the following are equivalent

)
1) There exists a (complex) measure )’w on .‘f ( Rd)h such that
Jf S'l("lf "'ﬂu) f‘sq'“z'\,) d“ b
n

[ (wow- @ dy,
{
%

for all test functions with an infinite zero at coinciding points.

R

2) There exist constants Cn > o, kn 30, Ln ? o such that
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'Sh_(.y”...yn)l é Ch‘

Zn z | d(Vtz“'V:J_kv* Y‘(X-;“'V:,,)va

V=2 i dipedd

where
_  max
Ay oY) = 14y lyi-yjl
and
_  min
Ty ey T if] Iyi_yjl

I want to conclude my lecture with some final

VI. 2. Remarks:

1) What the estimate says is the following: If k points are coming together,
then the singularity they produce shall be independent of the number of the other
n - k points as long as they stay apart.

2) If we forget for a moment the behaviour at infinity then these estimates are
fulfilled if there exists a Wilson-Zimmermann expansion [15] for operator pro-
ducts. On the other hand if this estimates are fulfilled it seems to me very likely
that one can derive from it the Wilson-Zimmermann expansion.

3) Very important is the fact the coefficients Cn in front of these estimates
are allowed to grow arbitrarily fast. In deed this freedom is necessary since
one can construct trivial Wightman fields where the coefficients increase as fast
as you want and which are representable by measures.

4) Looking at the behaviour of k points, it follows from Schwarz inequality that

the conditions for these points are fulfilled as long as they appear at one end of
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the Schwinger n-point function. Therefore it is tempting to try a general proof
for these estimates. The difficulty consists in proving some kind of crossing
symmetry for estimates.

5) The converse problem namely going back from the Schwinger points to the
Minkowski-space ist still an open one. There exist some sufficient conditions
due to Osterwalder and Schrader [16]. But since there a strong restriction on
the coefficients Cn is needed, I believe that this problem is not well understood

up to now.
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This talk will deal with some recent developments in the construc-
tion of ch§ models. These models are superrenormalizable. However,
in addition to the Wick ordering renormalizations which are sufficient

for the P(cp)z models, the Euclidean action requires

1) a linearly divergent, second order counterterm (corresponding
partly to a vacuum energy renormalization and partly to a

wave function renormalization)
2) a logarithmically divergent third order scalar counterterm
3) a logarithmically divergent mass counterterm
Hence the cutoff Euclidean Green's functions are given by

B g, e, £) = 270 (ae ) e e g6 Jo Vi
SK.A(fl' ’fn) zn:l\gi(fl) Q(fn)e K A)mo

N
|

-V,

= €, A
<KPA <e )!no
where

3 4 3
v = Ald x: -
ol j x:8, (x) ufd x5 (x) + V_
A A

_ 34 2 1 3 4 3 2\ 2.3 2
v, = %((XJ‘d x:§K(x;:) )mo s z((kfd x:§K(x):) )mo + ~ ém jd x:§x(x): R
A A A

The expectation ( . )m is taken with respect to the Gaussian measure
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on J:'R(R3) with mean 0 and covariance -A + mg. In other words,

formally

2
-%J‘VQ(x) +mZs (x)
¢y = normalization const.J-e o dg(x) .
m, x€R3

As for P(cp)2 models we introduce boundary conditions into the {Sl;' A}
by replacing -A with the laplacian -AaA having some boundary conditions
(e.g. periodic, zero Dirichlet data) on 9. In this event we always keep
the Wick ordering matched to the covariance but we hold the coefficient omz
of the mass counterterm fixed, (Say, for example, we always use the
amz appropriate to free boundary conditions.)

There are four different circumstances under which we have exis-

tence theorems.

Coupling Restrictions Boundary Conditions

w1 A 2 0 sufficiently small free, periodic, Dirichlet
m, > 0 sufficiently large

w2 A20 periodic

m0>0

lp.‘ sufficiently large

S1 A=z0 Dirichlet
mg >0

p=0

S2 A=z20 Dirichlet
mo >0

R#0
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Theorem I. [case W1 - MS, FeO 1; cases W2, Sl, S2 -FeO 2]

The no-cutoff limit

st (f ceef) = lim lim s* (£

—
A 1 oR3 ke oA 1° o)

exists in all the above cases. The {Sn} satisfy the axioms for Fuclidean Green's
functions of [OS 1, 2] (with the possible exception, in case S1, of clustering).
Hence they are the Fuclidean Green's functions of a uniquely determined
Wightman theory. (Again, in case Sl, the vacuum need not be unique.)

They are also the moments of a unique probability measure on J]:"((R3l'
Theorem II. [W1 - MS, FeO 1; W2, S2, FeO 2]

This Wighttnan theory has a non-zero mass gap in cases W1, W2,

and S2.
Theorem III. [W1-MS, FeO 1; W2, FeO 2}

The {Sn} are C* in A and analytic in p. Perturbation theory pro-

vides an asymptotic expansion for the Fuclidean Green's functions.

Three tools are used in the proofs of Theorems I, II, and III:
the cluster expansion, correlation inequalities, and the phase space cell

expansion,

The Cluster Expansion [GJS], [S] is a weak coupling (high tempera-

ture) expansion used to control the infinite volume limit in the weak
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coupling cases W1 and W2. It is based on the observation that if there
were no coupling between different unit cubes in a partition of space-
time, the infinite volume limit would be trivial. In particular, suppose
we partition space-time into disjoint unit cubes and use boundary condi-
tions having zero Dirichlet data on all surfaces of these unit cubes.

Then if supt {fl,---fn} < A where Al is a union of unit cubes

n = H n *m
$°(g)ee-f) = ,tf:3 SACATES

= H -l e ea -v
= Lim, 7 Galf)) e slE)e T Ay

m
AR Y

formally (since V - does not exist)

A, K=

-1,,-1 -V “Vieh
=1lim 2z 'Z (8(£.)""8(f )e Ny (e )
A=R3 A My 1 n mqg
A=A
formally
n
= sAl(fl --fn)
Of course we do not have this complete decoupling in practice, but in
the weak coupling cases W1 and W2 different cubes are exponentially
decoupled, i.e. the coupling between % and x, is roughly e-molxl-XZl
with m, large and this suffices.

In case W2, while m, need not, a priori, be large, the Goldstone

picture, in which the mass is the curvature at the minimum of the
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classical potential V(x) = M:4 + %mgxz - px, suggests that the mass
grows with p. By translating the field § » & + f and scaling we can
transform our original action having a large external field into an action
having zero external field, large bare mass and small bare coupling
constant., (These transformations are most conveniently executed when
we use periodic boundary conditions.) We can then apply the old cluster

expansion to the transformed theory to control the infinite volume limit.

Correlation Inequalities [N], [GRS] are used to give the infinite

volume limit in the strong coupling cases S1 and S2. Firstly, when we

have zero Dirichlet data on A, Nelson's moriotonicity says

n n
Si ) piricntet = Spt) ) pirichlet

if Ac A, fi 2 0, and p 2 0., It is important that, since we have a ¢4
theory, this inequality is true for full Dirichlet boundary conditions.
(We need to keep the Wick ordering matched to the covariance to do the
renormalization properly.) We now only need to get an upper bound.

This follows in three steps:

n
1) SA(fl- B 'fn)

n
Dirichlet = 5,7 L)

n'periodic

if fi 20, p20,
n
2) §,(£0+£) < SX(fl"-f )

n'periodic, p n’periodic, p'

iffizo, 0 < ps<p,
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| = @B e

n
3) ‘SA(fl fn)periodic, [T

by the cluster expansion in case W2 provided

we choose p' large enough.

All three correlation inequalities used above follow from the second Griffiths
inequality and the observation that the system on the right hand side of

the inequality is more ferromagnetic than that on the left.

‘The Phase Space Cell Expansion [GJ] is used to control the ultra-

violet limit. The extensive use of complicated boundary conditions in
the cluster expansion suggests that we use an ultraviolet cutoff based on

the representation

2.-1  mit,
(-8 + mp) (x,y) = Jdte 0 j'ny(dw)B(m)
0

Pi Y(dm) = conditional Wiener measure

. .

B(w) determines boundary conditions of the bare two point function. Fur-
thermore in the PSCE it is obligatory that we be able to introduce dif-

ferent momentum cutoffs in different regions of (Euclidean) space. To

this end we define an auxilliary Gaussian field
$tx) te (0o x¢R

whose two point function is given by
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2
(¥R, 7)) = 5(t - s)e OB (du)B(w)

Then our familiar field §(x) is given by

#(x) = jv(t, x)dt
0

and an ultraviolet cutoff field §K(x) is given by

§K(x) = Tdtﬁ(t, x) .
k-2

The latter statement is justified by the calculation

(3,08 0 < | ae ™0 A ()32

k-2

® . 2, 2
- J~ dat Id3p oIP" (x-¥)_-t(p+mf)
k-2

2,2, 2
- (3P (xoy) T8 (P *m0)
= [dpe S N
I P +m0

(Euclidean) momenta obeying pz > KZ is suppressed. Notice that even

in the presence of these cutoffs and with non-free boundary conditions,

1) the bare propagator decays exponentially with mass m,
2) the action is local.
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We use these cutoffs in the PSCE to derive ultraviolet uniform estimates
which can, in turn, be plugged into the cluster expansion to yield esti-

mates that are independent of both the ultraviolet and volume cutoffs.

For details see [FeO 1, 2].

Qutlook. The mathematical techniques developed so far seem to be suffi-

cient to allow us to carry over to ((;;4)3 models all the detailed analysis
of the P(q;)2 models. But (cp4)3 models also allow us to study some
aspects of quantum, field theory not present in P(cp)2 models, e.g. the

problem of ultraviolet divergences or the presence of Goldstone bosons

in (Eﬁ 2): models,
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Poetic Phenomena in (Two Dimensional) Quantum Field Theory:

Non-Uniqueness of the Vacuum, the Solitons and All That

Jirg Frshlich *
Department of Mathematics
Princeton University
Princeton, N.J. 08540

I. Introduction: The programm and the framework

I. 1 Outline of too big a programm:

My contribution to these proceedings is centered around the
construction and analysis of new Bose quantum field models
which are interesting from the following points of view:

1) For these models the construction of a vacuum sector theory
in the sense of Wightman requires some new methods which may

be of more general interest for quantum field theory and statis-

tical mechanics.

2) They are a fascinating laboratory for testing old and new

field theoretic coneepts and programms such as:

a) Ultraviolet renormalizations.

b) Accuracy (e.g. convergence or Borel summability) of pertur-
bation theory; [El, F1, 2].

c) Long range forces and non-uniqueness of the vacuum;[bl, Fﬂ

d) Long range order and spontaneous symmetry breaking; [§1]

e) Non-translation invariant vacuum states; [F@

f) Super-selection rules: The quantum soliton:
[p1, 2 5 Fu, 5 5 62 ; c2]

g) Goldstone bosons ; [€3, E3,L1).

Each circle of problems mentioned here may be considerably
clarified and sharpened by a concentrated effort of what one
calls mathematical physicists. Hopfully it will result in a

* supported by the US National Science Foundation
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disproof of "T ....'s Theorem : One can never learn anything

from the axiomatists".

Here I can of course at best formulate some of these preblems in
precise terms and report results which may be relevant steps
towards their solution. Nevertheless I hope my contribution is

adventurous enough to deserve being part of these proceedings.

Even if I restrict my analysis to (1) and (2)(b), (4d), (f)
the problems involved have a degree of complexity which makes
it impossible to present detailed arguments or proofs at this
place. I shall however strictly follow the convention that
whatever I state as a result (e.g.a theorem or lemma) has a
written proof which has been discussed with at least three

different mathematical physicists who have found no mistakes.

In the following I mostly study quantum field theories in two
space-time dimensions. Therefore, as statistics is a matter of
convention in two dimensions, I may consider only Bose field
theories. Some of the models can however be regarded, more na-

turally, as Fermi field theories, km],

I.2 HNetations:

The number of space-time dimensions is denoted by 4 ;
g - (3,6 ) is a point in RJ’ . We will be concerned
with the construction and analysis of models of a self

interacting, relativistic Bose quantum field

$05)= (4,65), - 44 ()

N
over m , with real, scalar components {é,‘ (EJ},‘.,. .
We set 4= (d, g)

In general N = 1,2 or 3 and 4 = 2. Occasionally we will menti-
on results for d=3.

d
The Schwartz space over IR_J' is denoted by {?(l )) ;

Jt.—. [-O,(Rd)]x” ,# is the real part of 'JC 5 .o"

and‘ﬂ/ are the corresponding spaces of N-component, tempered
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distributions. Finally{ is the tensor algebra over %
in the sense of Borchers; [31,0.1],

A relativistic model for g is a state oni (a sequence of
Wightman distributions) e = { wn (’” ey ?”) -
satisfying the Wightman axioms with the possible exc_:fption of
the cluster property (uniqueness of the vacuum) ;w* is then
called a Wightman state. It uniqualy determines a sequence

§;’ [ { S'” (?n""‘/ 7,‘)}”

nco
of Euclidean Green's functions (EGF) which are the restrictions

of the Wightman functions to the Euclidean region. Osterwalder
and Schrader have found sufficient conditions (Axioms (EOY-
(E4) of [01] ) for §¢ to be the EGF's of a unique Wightman
state @w

I.3 Euclidean field theory :

A field theory (a Wightman state) is called Symanzik-Nelson
(S-N) positive if and only if

(1) the EGF's S, (’”..._.Lf,._) are locally integrable
functions o 7&4", for allm;

(2) é’;p is a state on .z , i.e. the EGF's are the

vacuum expectation values (v.e.v.) of commutative, Euclidean
-,

covariant fields (also denoted by¢ ), whence the name: Eucli-

dean field theory.

Assuning ((1) and) (2) Borchers et al. have isolated necessary
and sufficient conditions for the EGF's to be the moments of

. . ) Lo 2 14
a Euclidean invariant probability measure c(v (#) on -0’
[BZ] . It is called a physical measure; see also [Nl, FSJ .

Euclidean field theopry establishes a famous connection bet-

ween q.f.t. and classical statistical mechanics, [43].

Theorem 1 : (Decomposition into pure phases)

Let d» be a physical measure. Then "almost all" components

of da’ ergodic under the time-translation group are physical

measures associated with a unique Wightman state satisfying
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all axioms including the cluster property; (i.e. Poincaré cova-

riance and S-N positivity are stable under the decomposition

into pure phases).

A detailed version of this theorem including "stability of
estimates"™ results have been proved in [FB] , where we also de-
rived sufficient conditions for the spontaneous breaking of

an internal symmetry assuming long range order (of relevance

for Section IV) and for d 9to be a physical measure.

I.4 The simplest S-N positive theory: The free field.

The free field? is described by a Gaussian physical measure
dv‘ with mean 0 and covariance (-4 f-m")-l. Here A
is the Laplacian and am the bare mass. Let A be a rectangle
in ﬂl‘. For the construction of interacting fields we must con-
sider "freefields™ with periodic, Dirichlet and Neumann bounda-
ry conditions (b ¢) at 9A; [ 63, ez]. The space of
real,N-component periodic c® functions and the space C‘:(A)x"
are also denoted by v4 » their topological dual by
' (without danger of confusion).

The "free field" with periodic,.--- b ¢ at ?9A is described
by the Gaussian measur-e.lonl' with mean O and covariance

(—AA + m")-’ where AA is the Laplacian with periodic, O-Diri-
chlet.... be at 9A.

I.5 Interacting fields

Let 'ZI (Z) be a formal interaction Lagrangian with-
out derivat_:l;ve coupling. For the construction of a relativis-

tic field ¢ with interaction {I Nelson has developped the me-
thod of multiplicative functionals; [N 1_7 : One defines the Eu-

clidean action by

- -

Uy (§) = [J 48 :4, (F): (%),
where the colons denote Wick ordering with respect to 51270
Let < . >0A denote expectation with respect to o{')’;.

04 3 .-> . - - 3
A model for a relativistic field ¢ with interaction .JZ_ is
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presently usually constructed in three steps,[Nl, QZ,SJ

Step 1 : Define - -
=t =Y (%)
= -4 F) A o,
dv (4) = (e * e dv° (¢)
o (#) = ¢ 2, e (3
rigorously as a measure on ¢/'. For d = 3 the definition of
a{v requires ultraviolet renormalizations [7?, ﬂl] and

as a consequence the measures Jv and JvA are presumably
mutually singular.

Step 2 : Show that the characteristic functlonals

CF TNy = [, dv, (5 F)
converge, as A /Rd for all f e -0’

)

Step 3 : Show that the measureg a{z’ obtalned from
i#F) (P&

the limiting functional <39 <’

is a physical measure; e.g. that its moments satlsfy the Oster-

walder-Schrader axioms [01]. (See also [FBJ ).

After having completed Steps 1 - 3 for a given interaction one
can start to investigate the physically more interesting pro-
blems described in (2), (b) - (g).

ITI An illustration of programms (1) and (2)Ca)(b)(d)(g) :
Construction of a field ¢ with a (¢ # ) — interaction

We first sketch a slightly non-conventional versiLELof Steps
1 - 3 for the construction of an interacting field 4 with

interaction Lagrangian

b 4 - a=h 2
L ($) = g($-4)°- 69" -4, @D
with })o,e’;o, M real, N=1, 2 or 3 and d = 2 or 3.
Our approach is best summarized as follows :"Controlling the
vacuum energy density (pressure) means controlling the theory".

It illustrates (1) and (2)(b). Details of results and proofs
presented here can be found in [?L,‘J.
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B ) o
Let A be 2 rectangle in R 5 f; the mementum lat-tice dual to

nedf
A, é. = {E‘}'..f § .{’E/- N ey Py _Z “ 5 (2.2)
and g (£)= {é: s 3 }w:_f.t =1

We introduce the "funny" Euciidean action
U (o6 @)= [d5 1g:(F F)*:6) - e’ (5)
-/4,4 &) - z g ey, (£},

where cC‘- - 1’2) _ ,-.’N for all i.

In three dimensions the correct definition of ZjA (‘)

requires introducing counterterms which are however indepen-

dent of &, s« and g (#); [ 7% #1].

IT.1 Step 1 of the construction :

We define the "funny" pressure

) -1 e, e, 2 (k) 2.

B (g )/h—s-ﬂ)}:‘ vy -f.’og <,E I8/ > L
where < - D> is the free field EXPeCtutan with
periodic be at 8A. For d=3 the definition of (=) involves

Pa

Ultraviolet renormalizatioms: (2)(a)! ; [#yx, #1],

Then Step 1 of I.5 can be reduced to proving bounds on

/31 (g) ) 40 E (k}) which are uniform in A, For N=1 such
bounds follow from [ M, ¢3, 227 (4= Z/ and from [7;,5'@])
(4:3) . The extension to N>1 is straightforward; [;rz].

The Fourier transform of the truncated (m+1)-point EGF asso-
ciated with the cutoff action UA(O) (516',/.4.) is then given

by
Sﬁt/ ("d// ‘ér/""/ ey 'éﬂ; "‘-,,H; ’é)
= J‘A (x‘.% é1-+£) s:u (Jf/én"")"(’f-l'éﬂ-/ ‘.“)’(2.5)
where
A amf{ }
- = — p] g[k}/
s, Gk, ) PR (; ) s o
and  J, (k)= /A/J’b,o . (2.8)

Relations similar to (2.5) and (2.6) were first used in [L2]
in a statistical mechanics context and rediscovered in [F§]

in the context of the # p. model.
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II.2 Step 2 of the construction : Lar'ge/« - expansion and

Lee-Yang theorem

For d=2, N=1 Spencer has proved the following result; [S'JJ.‘

Theorem 2 :

There exist constants cl, 02 such that for
/Im//<c,//23/./>c,_) g >0, 630) and
/5;/ <A t=2,---, nrd

e+l 7

R (n) (r)
f’;z Pa [J/"'//"/ £ (é/) =/ (})6’-1/‘) £ [é‘})
ed
exists and is rotation invariant. In /7#]an extension of this

theorem to d=3, N=1 is announced. Whereas in [ SZ, 77]
§(_§)= £, modeficutions of these results accounting for _s_(é)
#0and the extension to N>1 can be found in [FZJ .

The intuitive argument leading to Theorem 2 is as follows:

For simpicity we let € =0 and we set

1
7‘//= %4*(4/:)/; ) éxl= 5‘«)“:2/"')N‘

. . . (o)
Expressing the Euclidean action UA (;,d)/o) - see (2.3)-

as a functional of ;" and absorbing all quadratic terms in
the free Langrangian the dimension-less coupling constants of
the terms cubic and quartic in ;' are 0 ((7“‘2-)'/3) < 7
for ¢ » 7/ . Therefore the cluster expansion [03) 5'1; ?;7]

converges.

Theorem 3

For g>0 , 820 and for allAng andé. as in (2.2)
)

b (3,8, «, € (%)) is holomorphic in/u and §,--,E, .
for Re/u%aand /E‘-/< r‘('g)é)/a.)) (= 1,---, nrd,
where 5 (g, 61/‘) is positive for Re/u * 0 and is

independent of A.

Concerning the proof of Theorem 3 we remark: A combination
of the Lee-Yang theorem of Suzuki and Fisher [S2] with the con-
vergence of the rotator approximation of the (J’. ;’)z -
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theory [DSJ yields a Lee-Yang theorem for

A @je)/,.) Re (Zm)E(£)): Analyticity in/u for Re/u:# 0.

Combining this with analyticity properties of p, (g,8,,£k))
in g,-.--, E,,, and/u.for /Iﬂ/“/ < &4,

/Re/-»/> C, (see Theorem 2) and applying the Malgrange-

Zerner (generalized tube) theorem we obtain as a result Theo-

rem 3, Details can be found in [FZJ .

If we now apply equations (2.5) and (2.6) and Theorems 2, 3
we observe that Step 2 is complete for/a. * 0.

The existence of the limiting theories as/u/o and Ve N O
follows for N=1,2 from correlation inequalities [D3] and for
N=3 from uniform bounds by a compactness argument : see [F2].
Step 3 is routine ; (our approach makes the verfication of

the Osterwalder-Schrader axioms [Ol] particularly easy).

I1.3 The final result, an illustration of (1) and (2)(a)(b):

We aummarize these and other finings in

Theorem 4 :

For y>0 5 e > 0 and/g, real the Lagrangion (2.1) de-
termines a Wightman state w # satisfying the axioms with the
possible exeeption of uniqueness of the vacuum for/«= o.
For/«;é 0 the vacuum is unique, and the energy-momentum spec-
trum has a mass gap. For N= 1,2
-> -> —y
,&mw*swz and Lm0 =w?
Ao 4 g ATO P -

exist and are unique.
For N=1,2,3 d=2 and/lrf-#o the theory is uniquely determined
by its perturbation expansion; (Borel summability [El] and

analyticity in the bare parameters [FZ]).

Remarks : The ultraviolet renormalizations required in Theo-

rem 4 for d=3 are taken from [ G#, F¥, n1, S¢].

Further results - concerning equivalence of boundary cenditions,
f - and: Z, - bounds (for d=3!) cdn be found in [FZ], [su],
respectively.
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II.4 Spontaneous symmetry breaking [C%] :

For the constuction of soliton states for d=2 (Section IV)

we need

Theorem 5 :

Let d=2, N=1or2, g<1, € >1; [¢1].

Then wj, ;é A)f and
- —
#
=0l (46t)=-0t (460 > 0
whence spontaneous 93 —> - ﬁ! symmetry breaking.

For N=1 this theorem is due to Glimm, Jaffe and Spencer who
have proved the phase transition for ¢ f in an admirable
‘paper [Cl] .

The extension to N=2 requires only one new estimate which
is given in [?g] .

II.5 Concerning (2)(g) : Remarks about the Goldstone boson.

As a consequence of the Goldstone theorem [FZ] there is no
spontaneous ;’r—> -;? symmetry breaking for d=2, N=2 or
3, and 6=/¢=0_’

For d=3, N=2 or 3 and 6‘=/¢=0, g > 4 the YN -
expansion [b%] predicts that the O (N) symmetry is spontan-
eouslly broken and fér“"lym"‘ couples the vacuum to the
Goldstone boson one particle states. If this prediction is
valid for N=2 then, as a consequence of a deep observation

of [BQ] and of ;f-bounds settling domain problems [éu, Fg],
there exists a scattering theory for Goldstone bosons!
Interesting results for the two point function of the (;i-;’):
-theory on a lattice are proved in [L;] . We conclude Section
II with two problems:

1) Define "k-loop" contributions to the Vertex functions in

a non-perturbative way and solve the relation

"Goldstone expansion' Cluster expansion [b%]

1/N-expaneion [b@] Perturbation~expansion

--120—-



2) Derive monotonicity properties for 9% as a function of the
-—

number N of components of ¢ .

IITI. An illustration of programms (1) and (i)(a)(b)(c)

The quantum sine - Gordon equation

This section might be the most interesting one would we not
suppress all details. The methods involved here are too nume-
rous and complex to be even only sketched. The model we con-

sider is defined by a field equation :

(O+m*) $6ot)= e A :sin(edlt)+ 5):! , (3.1)
where d=2, N=1, m?> 0, A vreal, 0< 32‘5’ 47,
and @ e [o} 27[')_ Wick odering is done with respect

to a fixed bare mass 1. The interaction Lagrangian is

L, ($) = —& rcose g+ 6):, (3.2)

The following three equivalence theorems are not only amusing

but basic for the analysis of the s-G equation:

The Euclidean s-G field theory determined by (3.1) and (3.2)

is equivalent to

(A) A generalized, continuous spin ferromagnetic Ising model
[?q] , 80 that most of the statistical mechanics methods of

[C3, QQ,Q] apply.

(B) The theory of the two dimensional, classical, two-compo-
nent Yukawa —(m>o), Coulomb gas (m: a) , respectively, in
the grand canonial ensemble [Fl,%] , so that all the results
about these gases (see [TQ]) apply- The two theories are equi-
valent if one identifies sz with the exponential decay rate

of the Yukawa potential,A with the fugacity and €with the
charge of the point particles; (inverse temperature/8=]J.
Equivalence (B) is interesting for the hydrodynamics of vor-
tices of incompressible fluids in two dimensions which is
equivalent to the theory of the Coulomb gas,[l%].
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(C) The theory of a two component Dirac field 7[ (d= 2)
with interaction Lagrangian
P2 ;g - Tl - 2 .7 ; .
<, &)= J/z_;/‘}/‘, +tHdd: + 20V #4°,
where Vc (x) = .;E /X/ is the Coulomb potential in one

dimension. The free Lagrangian has no mass term. The equi-

valence identifies
47 = Py aty with —% e””3, ¢
:,}",f‘. with ¢ cos(e¢+ 6).‘! P "jo Ié *f’o_» with

:%‘; (Schwinger mechanism !) and sets

.i—_j___ 2 ez A_:
m {r 3’ T 7iqk s

For e2= 0 equivalence (C) has been clearly explained in [cu].

Results which are modified, simplified and generalized rela-
tive to [C%] hawe been found by many authors. For d=2 the fer-
mion-boson equivalence is a completely general fact :

It can be extended to the Yukawa model, fermion models with
non~trivial internal symmetries (yielding examples for confi-
ned quantumnumbers [?%]), etc.

The sine-Gordon theory illustrates the programms

I.1 - (1) : The crucial step: We use equivalence (B) to prove
that the vacuum energy denstiy is finite, (stability) [F?J
{(A) + [GS, Qﬂ} yield existence of Wightman states

{w, 16 < [oam)}for 5"<_:ri" [71,3], ana, by (B), of Gibbs
equilibrium states for the classical gases, [F3] .

I.1 - (2)(a) : Letm®= 0.For 4 < g% < &% the theory has
(non-super~) renormalizable V divergencies,[F3] . For £2= 4
it describes the free, massive Diracfield [Cl+, FlJ . For

822 a5 the theory seems to be meaningless,[cu, Fs_] .

2
I.1 - (2)(b) : If £€%2< 47  and m? =1¢e!/ > 0
d 14
there exists a A, (é', m)> O such that for VA A‘(‘-’M)

the pertur bation series for the EGF's converges

yielding a Wightman state Wy- The energy - momentum spectrum

has a mass gap and for g£2 <« goz < 47T an isolated one
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particle shell. This result is proved in [%%] and is based on
[q3,s3].

I.1. - (2)(c): Equivalence (C) leaves the value of the angle €
in the Lagrangian (3.2) undetermined; @ determines the value

of a universal, constant electric field which affects the dy-

namics of the field in a non=-trivial way so that we obtain

infinitely many inequivalent Wightman states {we ’ g e [o,z?t')}_
As fMf—> 0 all these stares become equivalent: The limiting
theory is chirally invardiant.

On a formal level all these and other phenomena have been
discovered and analyzed in [b%]. Rigorous proofs ("mathema-
tische Klugscheisseleien") are given in [T%].

Fascinating heuristic results on the mass spectrum of the
sine-Gordon equation which have the flavour of being exact

can be found in [b{]. The results of [?5 R D;] and [f%](where
the vacuum energy density and the anomalous dimension of }é are
calculated explicitly for €% = () ) suggest the

Conjecture: The mass spectrum and other quantities of the

sine-Gordon theory are explicitly calcuable.

IV. An illustration of program (2)(f): The quantum soliton

IV. 1 What is a quantum soliton?
A d
Every theory of a canonical scalar field ¢ = (%0-,..} 95”)

in two dimensions has the conserved currents

FAs)= 72 LY, F2G) = god b (5)

I

ﬂ’cg (5) 5 and hence the
N
{ &dfz J}éx‘gfad(¢‘(ﬁ,f} k¥=1.

Any vacuum sector in the sense of Wightman of such a theory is

) &)= 2, 4.(5)

conserved charges q

It

an eigenspace of ?? with eigenvalue @ . Until recently it
was never conceived that such a theory may have super-selec-
tion sectors on which

(A) the space-time translations are unitarily implemented,

forming a continuous unitary group which satisfies the rela-
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tivistic spectrum condition, and

(B) a?7é 0 , (i.e. it was not conceived that ?; can

be non-trivial).

In the following a sector satisfying (A) and (B) is called

a soliton-sector. A quantum soliton is a one particle state

in a soliton-sector.

We now know that theories possessing soliton-sectors exist;[?%ﬂ,
In order to be precise we must distinguish:

(e€) Soliton states = the vectors in a soliton-sector.

In general only two dimensional theories may have soliton
states.

95) Non-space-translation invariant vacuum states: Ground
states of the Hamiltonian which are eigenstates of Q with
eigenvalue 7é (0,----0) . Space translations are in general
not unitarily implemented on the sector reconstructed from

such a vacuum state. Presumably such states only exist for

d> 3

A rigorous analysis of («®) and a preliminary discussion of

95) are given in [Tﬁ].

IV. 2 General results about soliton-sectors:

For d=2 a general theory of soliton-sectors has been developped
in [ru]. The main results are :

1. Let w $ bea wightyan state onj??and d=2 . The theory
reconstructed from ¢ has soliton-sectors if and only if

it has at least two pure phases 2; Xs (see Theorem 1,I.3)

with
# (iét [;)) 7é w (}é& (f)) , for some

® &€ {j R N} s + technlcal conditions specified in [Fu]
(which are met in the models disucssed below).

This result emphasizes the connection between the existence
of soliton-sectors and the non-uniqueness of the vacuum,
(i.e. the existence of a phase transition).

2. For dﬂa 3 soliton-sectors do in general not exist,except
possibly in a theory with a dynamically broken, non-abelian
gauge symmetry.
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3. Under natural assumptions (see [FE]) which are met in

all models analyzed so far the vacuum - and the soliton-sectors
are labelled by the elements of a group which (as a consequence
of the Goldstone theorem [Eg]) is 1n general discrete. This
group is called the soliton-group. Using this group structure
one can construct field bundles [bl] which have non-vanishing
matrix elements between a vacuum - and a soliton-sector.

4. Let 1& be a soliton-state. Then

Lom b hGre)h D~ lom (A h Gyt D= <4, 8>
and hence, by (B), there is an o such that the function
<‘¢, 71& (x,-t.‘)f) has a kink. From this we conclude that

5. Parity is spontaneously broken in a soliton-sector. The
spectrum of the space-translation group is purely continuous.
6. If a soliton-sector contains one particle states, i.e.
quantum solitons, then the conjugate sector obtained by space-
reflection contains one-particle states, too, which are called
anti-solitons. A soliton-sector and its conjugate sector have
opposite atcharge. Any numbers of paitrs of solitons and anti-
solitons form a vector in a vacuum sector of the theory.

For detailed statements and proofs of these and other results

see [T{].

IV. 3 Applications to models
dividva 2 . .
D e [g(4.4)*-ed, ]“a - models with N= 1 or 2:
Theorem 6: Under the conditions of Theorem 5, Section Iﬁ?},
there exist (at least) two pure phase vacuum states a)*
-
and av* and associated with these one soliton - and one

conjugate anti-soliton-sector satisfying conditions (A) ana (B)

of IV.l. If ﬁé is a vector in a (anti-) soliton-sector which
is in the quadratic form domain of %{ [f) then
-

Lm (4 G le) > = a()if (4,6:4) =%, ¢,

X+

but 45”‘ <éf) 42(;16214;>

X—> ==

Il

“’f (Sé&/f/}= @) Y
+)
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Q1 f =c-'t)25ﬂd ) (Qz’f= 0)-

The soliton group has four elements {e, S,i) 4'} . We
-
label a)+¢ by the identity element e, w¢ by < , the

soliton-sector by & and the anti-soliton-sector by s .

With this labelling the soliton group has the multiplication

table: e s | <
e | e s 5| 1
s|sle|ldd|s
5|5|4|e|s
il €|5|s|e

As a consequence of the structure of the soliton-group we

obtain the following result: Assume that there exists a quan-
tum (anti-) soliton (one-particle state). Let Ns be the

number of solitons and IVE the number of anti-solitons in a
scattering state. Then on a vacuum sector of the

[g (‘;’;’)z_ 6’¢,2 2_ theory ’Vs_”s_' is even, whereas on the
(anti-) soliton-sector ”S_ /V;- is odd.

As an exampls): A two-soliton state is in a vacuum sector and
hence has @-charge O rather than 4‘)’% H

These and other results are proven in [Fu] where we give an
explicit construction for the soliton-states of these models
using * automorphisms. Our construction must be placed within
the algebraic framework of [Dl] .

For N =2 or 3 the_qphﬁysical interpretation of the soliton-
states of the ( . )2—6' B — theory is as follows:
For sim_glicity fognsiief this tl’ﬁ’or;]zbn a space lattice and inter-
pret ¢ as a polarization field. It then describes an aniso-
tropic, anharmonic dielectrig'ch_a,in which has two groundstates -
we plot the vector fields a]_f (f{ (x,f}/—.’

[*2 l—’f—ti—bl—"—-’l—.h’l—h»

44—44—04—4-—&-(—-@—4(-—:4—1@-4
(4

The soliton-states are obtained by twisting a ground-state by
a total angle 7 :
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TSN N

!—»\\\l’l/‘/lﬁ—i

For N = 1 the construction and interpretation of soliton-states
are more difficult; but see [Fu].

2) The sine - Gordon equation with mi=o0:

3
Llet Mm% =0 (€2< 1&} A real and E€ [0J~Zﬂ')},
Then the Lagrangian of the sine - Gordon theory studied in

Section IIT is invariant under the substitutions

$ —> 4+ _.a/;r:, we. (4.1)

It is plain that the symmetry (4.1) of the dynamics is spon-

taneously broken and that the theory has therefore infinite-
oo
ly many Wightman states { a)j }»n labelled by the

= -—ao

vacuum expectation value of the field: w" (f&/f})_g 2RI + consgt.
2 €

These states coincide however on the physical obserables gene-
rated by the fields:grad ¢ , T, f:mé—_,{-f. 751):1 /J’e [o,,zn:‘)}}
where ¥ is the momentum cancnieally conjugate to %. A soliton-
state of Q - charges coindides with mﬁf on all functions of
localized in {xqq -—_{} and with g 95 on the ones

- . 20t
localized in {x > +# 1}, for some me Z.

Let ;n be a function with

. - Zrr 2
M o () =0, f 5. G)= 25, grd g, < L(R).
A soliton-state of Q - charge 2 is obtained by applying the

"operator" e’z C},.) to on arbitrary vectoriﬁ in the vacu-

um sector reconstructed from w¢,any m .
n

Theorem 7 : ynder the above assumption there exist infinite-
ly many soliton-sectors satisfying conditions (A) and (B) of
IV. 1. They are eigenspaces of the charge Q with eigenvalues

2n 7T e Z. The soliton group is equal to /7 ,
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Remarks :

1. The isomerphism (C) of section III suggests that there

exist local spinopr fields (rather than just field bundles)

with non - vanishing matrix elements between the vacuum
sector and the Q - charge + 1 (anti - ) soliton - sectors.
See [b{] 0

2. The hard part in the proof of Theorems 6 and 7 is the
verification of corndition (A). See [?{] .
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RESUME

Le probléme de 1a construction d'une théorie euclidienne des fermions
qui contient les idées de probabilité analogues & 1a théorie pure des
bosons, est posée. On propose une solution qui est basée sur une inter-
prétation mathématique spécifique de l1a formule euclidienne de Mathews-
Salam en terme des algdébres de Clifford.

ABSTRACT

The problem of constructing a Euclidean theory for Fermions which
suitably incorporates probabilistic ideas analogous to pure Boson
theory iis posed. A solution is proposed which is based on a particular
mathematical interpretation of the Euclidean Matthews-Salam formula

in terms of Clifford algebras.

1) This work was partially supported by US NSF Grants GP 42850 and
MPS75-08578

2) J.S. Guggenheim Memorial Foundation Fellow.
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1. Introduction. The problem of constructing a Euclidean
theory for Fermions, which suitably incorporates probabilistic
ideas analogous to the pure Boson theory [9, 10], may be posed as
follows. Consider the Schwinger functions for a Dirac field
interacting with a Boson field. Let us suppress the dépendence of
the Schwinger functions on the Boson field variables and moreover
ignore, for simplicity, the problem of coincident Schwinger points.
Then the Schwinger functions, which are skew symmetric in their

arguments, define a linear functional
3 b
s: A(J RV > ¢

where V is an eight dimensional complex vector space (4 for ¥
and 4 for ¥), )J(Ru;vj denotes the Schwartz space with values
in V, and A(»f) is the algebraic exterior algebré over aJ .

We wish to find a probability gage space 7], (see [16] for

definition)with expectation function E, ‘and a linear map

ni A(d (BhM) >9m

such that
1.1) S = Een .

In the corresponding pure Boson theory the mep 1n is determined
by the Euclidean Boson field ¢ by the requirement that 7 = ¢
on )J(Ru) and n extends as a homomorphism from the symmetric
algebra over Af(Ru) to random variables.

Of course one wants a selution to 1.1) which is formally

Euclidean invariant and which, in its cutoff versions, is useful
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for removing cutoffs. The presence of a probability gage space
provides a setting within which one may hope to establish correlation
inequalities.

The solution to 1) which we propose here is based on giving
a particular mathematical interpretation of the Euclidean Mathews-
Salam formula [S5] in terms of Clifford algebras [17, 3].

In the Euclidean region the Mathews-Salam formula for a scalar

Yukawa interaction is informally given by

1.2) 8(XysennsXpps¥qsee-sdy) =

F 50 T () - ¥ ()0 (3y) - -0 (3)

TR B rmrat vt

[ (0262 + vl D) d*x - [P(o)a*x
-8

ad

where ¢ is a BEuclidean neutral scalar Boson field, and the fields
¥ and § are anti-commuting 4 component Euclidean Fermion fields.

That is, for all «,B,x and y,

[0 (x5 (], = [45(2), (3], = [Ty, T, = 0

The polynomial #(¢) may include renormalization terms as well as
a Bosan self-interaction. The meaning of the infinite dimensional
¢ 1integral as a Gaussian integral is well understood (at least with

suitable cutoffs in the jxw) term). Our purpose in this note is
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to describe how one can give a meaning to the factor in braces,
i.e. to the dy d§ integration, in such a way as to bring to
the foreground an underlying probability gage space and thereby
find a solution to 1.1).

If one informally carries out the dy d§ integration in 1.2)
one obtains expressions which can be justified in another way by
using the formalism developed by Osterwalder and Schrader {13].
These expressions are the basis for fundamental advances made
in the Y, theory by E. Seiler [18], 0. McBryan {7,8] and
Seiler and Simon [19, 20] .

In section 2 we discuss the meaning of I...dt d¥ for finitely
many degrees of freedom, establish its connection with Clifford
algebras and then discuss its meaning in infinite dimensions. In
section 3 we return to equation 1.2) and show how to apply
Section 2 to it.

We cannot say that equation 1.1) 4is the only way to formulate
the problem of Euclidean Fermion fields cum probability theory.
Other attempts, [2, 12, 13, 21],to find a Euclidean Fermi theory seem
not to have sought a solution to equation 1.1). For example,
Frohlich and Osterwalder [2] have described a number of natural
approaches to a free Euclidean Dirac field, but although they have
constructed a gage space (c.f. [2], Section V.1) there is no
linear connection between the Schwinger functions and expectations
of polynomials in the gage fields given, directly or indirectly,
in their work, even in the case of a free field, and consequently

no solution to 1.1) .
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2. The Berezin trace formula.

Let K be a finite dimensional complex vector space. We denote
by A(K) the exterior algebra over K. As is well known, if

xl,...,xm is a basis for K, then the products xi{\xié\"'Axij 5
1, (1, < ... < i; form a basis of A(K) where the product with

j = 0 1is to be interpreted as 1. AJ(K) will denote the linear

span of those products having exactly Jj factors. Then
2.1) A®) = T A

represents A(K) as a direct sum of subspaces. A"(K) has
dimension one. Choose an element o # 0 in Am(K). Now any element

u in A(XK) is uniquely of the form
2.2) u=ca+vV

where ¢ is a complex number and v 1is of degree 1less or

equal to m-1. That is, v € 2?;% AJ(K). We define
2.3) E (u) =c

when u 1is given by 2.2).
We assert that the linear functional .Ea is an analog of m
dimensional Lebesgue measure, and, in its infinite dimensional
versiocn to be described below, is the appropriate linear functional
for the role of f...dt d¥ in the Mathews-Salam formula, equation 1.2).
First, Ea is translation invariant in the sense that if u

is represented on the above basis, i.e. as a noncommuting polynomial

in the generators XyseeesXps and if we replace each xj in this
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expression by xj + aj, where aj is a cogplex number (times the
identity element of A(K)) then we obtain en element u, in

A(K) which deserves to be called the translate of u by

a = (al"f'gam)' For if the x‘,j were coordinate functions on R°

and u an ordinary polynomial in the x‘_j s then the above prescription
would indeed yield the translated function. But it is clear upon
expanding the resulting products that the highest degree terms in

u, are the same as those of u. Consequently Ey(u) = E (u,),

which shows that Ea is translation invariant. Moreover, Ea

behaves under a linear change of variables in similar way to
Lebesgue measure. Specifically, if A: K-> K is linear and
T(A): A(K) » A(K) is the usual (unique) homomorphism that extends
A  (thus I‘(A)xl/\x2 = AXyAAX,, etc.) then it follows immediately
from the definition of Ea and well known properties of the

determinant that
2.4) Ea(I‘(A)u) = (det A)Ea(u).

A suitably suggestive notation for Ea is as follows. Choose

@ = X A...AX; . Define f ldxj =0 and | xjdxj = 1. Then one

verifies easily that

2.5) E(w) = [ ... [ uwdxdx, ... dx

The preceeding discussion is largely contained in Berezin's
book [1] a2long with many other exterior algebra analogs of Lebesgue

measure notions. (E.g. Fourier transforms are discussed.)
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In our application to the Mathews-Salam formula the space K
will be an infinite dimensional space of test functions for the
Euclidean Fermi fields ¢ and ¥ . There is additional algebraic
structure on K which arises from the fact that the Dirac fiéld
is charged. The fact that the Fermi field is charged seems essential
for our methods. Schwinger has pointed out [14, 15] that successful
Euclideanization for Fermions depends on the field being charged.

We assume henceforth that K has an inner product ( , )
(linear on the right) and a conjugation J (i.e. an anti-unitary
operator with J2 = 1) and that a Hermitian operator q is given
on K which anti-commutes with J and satisfies q2 = 1. 1In the
applications J will interchange Euclidean test functions for
with those for T . q will be 1 on ¢ test functions and -1
on ¥ test functions.

With this structure there is a natural two form we A%K) which

may be constructed as follows. We let
2.6) <y = (Ix%,5) .

Then one sees easily that < , > is a symmetric, non-degenerate,
bilinear form on K while <qx,y> is skew symmetric. The latter
determines an element w of A2(K) in a standard way, but we
shall be explicit about this. The eigenspaces K+ and K_ of gq

for eigenvalues 1 and -1, respectively, span K and are

orthogonal. Moreover JK; = K_ because J anti-commutes with gq.
+

Let 8558 be a basis (not necessarily orthonormal) of K#.

We may identify X_ with the dual space of K+ by means of the
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bilinear pairing 2.6), which is non degenerate on _K+ X K_ because
JK+ =K_. Let fl,...,fn be the basis of K_ which is dual to
ey,...,e . That is, <ei’f;j> = 8y4- Define

o=l e ALy

We assert that w is independent of the choice of basis el,...,en.

In fact one can compute easily that

2.7) wxay> = 3 B (CegoxXt 5,30 <85, 8Xe s, 3)

= - 3 <ax,y>
and this establishes the independence of basis. Let
2.8) a = w/n!

Then a is a non zero element of maximal degree (namely 2n) in
A(K). The form w is an analog of the fundamental 2-form,
zidpi/\dqi s of classical mechanics and Ea is consequently the
corresponding analog of the Liouville measure lli(dpir\dqi) .

We shall not actually give a meaning to E(z in the infinite
dimensional case but, just as in the Boson case we must throw in
a "density." before passing to infinite dimensions. We replace the
Gaussian density e"Ix|2 where |x|2 is the "unit fom"” on K by

w

e where w is the above "unit 2 form" .on K. Thus we shall give

2 meaning in infinite dimensions only to the formal expression

2.9) u - Ea(ue'w) .
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Notation. If K is a complex Hilbert space and J is a
conjugation on K then Cl{K) will denote the Von Neumann

algebra generated by the operators {Cx + A_: x € K} where C

Jx’ X
and A, are the creation and annihilation operators on the skew-
symmetric Fock space over K. C.(K) 1is the Clifford algebra

over K and the function
trace(a) = (A0,Q)

defines a trace function on C(X), with respect to which one can
discuss the usual notions of non-commutative integration theory.

See [3, 11,16, 17] .

Lemma. TLet X be a complex Hilbert space, J a conjugation
on K and q a Hermitian operator which anti-commutes with J and
satisfies q2 = 1. Let K; be the two eigenspaces for q and let
A(K) Dbe the algebraic exterior algebra over K. Then there is a
unique linear map

8: A(K) > CUK)

such that

a.) 8(1) =1, 6o(x) = Cy + A for x in K.

JX
and b.) 8(uav) = 8(u)8(v) if u e A(K) or ve A(K#? .

We omlt the proof of this lemma (see [l4]) but we note that 6
is just a "charge ordering" map. Thus for example if x is in K,
and y € K_ then 8(xAy) is determined by a) and b) by means of
9@W1=4WM)=4WW@)=4%+AWH%+A&% In terms of
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the Euclidean fields ¢ and ¥ +the map 6 will put all factors
of ¢ to the right and change sign in accordance with Fermi
statistics, as we shall see in our application. In order to emphasize
the naturality of this map we mention that .it is a standard map in
the theory of Hopf algebras.

The following theorem in finite dimensions provides the basis
for the transition to infinite dimensions. The theorem is a variant

of Berezin's trace formula [1, Page 85] .

Theorem. ILet K be a finite dimensional inner product space

with J, g, w, 8 as above and a = o®/n! Then

2.10) Ea(ue_m) = trace{8(u)] .

We refer the reader to [4] for a proof.

With the motivation of 2.10) we are now justified in defining
the left side of 2.10) in infinite dimensions simply to be equal
to the right side, which as we have seen is meaningful even if
dim K = «. For one can reasonably expect that with this definition,
heuristic calculations based on any other (informal) interpretation
of Ea(ue_w) in infinite dimensions will have a meaningful and
correct statement in terms of the trace composed with’ 6. We shall
see that this is the case for the Mathews-Salam formula.

In closing this section I wish to emphasize the analogy with the
Boson case. The Gauss integral £n f(x)(2v)—n/2e_|x|2/26nK has a

simple meaning for n = » if one first lumps together the last
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-n/2€—|x|2/2 n

three factors (2w) d'x to form Gauss measure dv.

The first and third of these factors by themselves are zero and

meaningless respectively when n = «. Similarly 2.10) showus

that the expression Ea(ue_w) =l ... ue ™ %ax. ... dx =~ remains

1
meaningful when n = o 1f one first lumps together the factors

-w
e dxl I3 = dxm to get trace-8.
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3- The Mathews-Salam formula.

Although the integral, [...dydy, which Mathews and Salam
intended for use in 1.2) was a Gaussian integral (1.e. each
"coordinate" of § runs over (-w,«)), (c.f. [5, page 564] and
[6, page 127] nevertheless, informal calculations show that such
integrals (of polynomials times a Gaussian "function of anti-
commuting variables") yield the same moments as integrals defined
by 2.2) and 2.3). This happens partly because the transformation
property 2.4) is similar to that for the Lebesgue integral;

Te(a x)ax = (detd)[f(x)dx, and partly because of the form of the
integrand, a polynomial times exponential of a quadratic form.

We shall make some informal manipulations with the right side
of 1.2) for heuristic purposes, treating it as an infinite
dimensional version of 2.3). To begin with we note that in 1.2) the
Boson factor exp[ﬁf(m2¢2+|v¢|2)dux] 1s the exponential of the
"unit form" of the Sobolev space h/l and consequently the Boson
integral is the integral with respect to the normal distributicn
over the dual space (with respect to 12 inner product) jﬁﬁ_l .
In order to apply the preceding section it is necessary to have
the Fermion exponential factor playing the analogous role - the
"unit 2-form" for the appropriate one particle space of test

functions. To this end we make a change of variables. We put

3.1) V=(F+m+e)x

in 1.2), obtaining on the right (we suppress the Boson integration

henceforth. )
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3-2) %r[{(ff‘“m*"(xl))"(xl)} {(ﬁﬂb(xn)x(xn),]i(xnﬂ)----ttxen)]
e T F I ()02} ((Brure(x)) ¥ (018X 4yq pimio)y

The exponent in 3.2) is now the "unit 2-form" of a Hilbert space
whose dual space K; "over" which we integrate is the following.
If S denotes 4-dimensional Dirac spin space then Ka consists

I

of those generalized functions f from R to S such that

3.3) NelZ = N (Brmre) 2112,
L°(R"; $B8S)
is finite. Here ¢ 1is a classical time dependent field { whose
exact behavior can be chosen to reflect a momentum cutoff on the
Boson field, if necessary, and space time cutoff on the interaction).
The two summands of S in K; are for ¥ test functions and
¥ test functions. Thus the Buclidean theory is an eight component
theory just as the relativistic Mathews-Salam theory is. The
invertibility of (F+m+p) that is required in 3.3) has been proven
by Seller [18] for all ¢ in the pseudo-scalar Y2 theory. When
the Boson fleld is quantized we need it only for almost all ¢ .
Applying 2.10) and choosing the constant N to be equal to

det(g+m) (informally) 3.2) becomes
3.4) det(1+(ﬁ+m)_1¢) trace¢(6°[...])

where t‘:race‘:p represents the trace in the Clifford algebra over
K& and © is the corresponding map (which, properly put, maps
A(QZ(RM;SSS)) into (f(Ké)) . The expression [...] in 3.14)

denotes the similarly denoted expression from 3.2).
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Making the above transition from 1.2) to 3.2) to 3.4) leaves
us, after smoothing with test functions, a well defined quantity
on the right of 1.2) as well as on the left. Our main theorem
asserts that these are equal (in the presence of momentum and space
time cutoffs.) The proof first establishes equality for a fixed
time dependent external field ¢, by showing both sides satisfy
the same (Schwinger) differential equations and boundary conditions.

We have chosen in this note only one of several possible ways
to apply the general formalism of Section 2 to the validation of
the Euclidean Mathews-Salam formula, 1.2). By including the
interaction Ve¢ into the norm of the "local" (in Q space} one
particle space K¥ we arrive at a probability Hilbert algebra for
the total Fermion-Boson system which is a Clifford algebra bundle
over Q space. It is also possible to exclude the interaction
term from 3.1) and 3.3) so that K does not depend on g, and
instead include the interaction in a density back in (a completion
of) A(s!(Rh;SSS)). This would be a step closer to the formalism
of Osterwalder and Schrader [13]. We mention finally that we have
explored, but only superficially, the possibility of replacing
the change of variables 3.1) by one which is more symmetric between
¥ and § -

Such variations of the above method of applying the general
theory of Section 2 may conceivably prove necessary for the utility

of the formalism in constructive quantum field theory.
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The basic estimate we prove is a ¢j bound

(6D s:9d:m) < [n) D) € (D),

where b 1s real and H 1s a P(c}:)2 Hamiltonian. The constant C

depends only on the coefficients in P, while

(2) D(h) = 1+diam. suppt h.

In [1], we proved this estimate for an arbitrary semibounded polynomial
P, 1n the case of free boundary conditions. Here we establish (1) for
the Hamiltonian H = HL_E(HR,)' Hz denotes the P(gh)2 Hamiltonian
with Dirichlet boundary conditions at x=1{ and E(’Hz) is 1its vacuum
energy. ¥e prove (1) in a finite volume using the method of {6,4]. The
transfer of this estimate to the infinite volume limit L=oco0 1is
achieved by standard methods [2]. Certain extensions of the bound (1)

are noted in the concluding remarks. Results of this nature are used

in [3], and should have other applications as well.

Theorem 1. Let j<deg P. There exists a sequence Ev-*cn
(depending on D(h)) and there exists a constant C, depending only
on J and P, such that (1) holds for all heLoo with compact

support, and for H=H,  -~E(H,6 ).
"\, 1"\)

For an operator A, let E(A) =inf g(A) be its vacuum energy.
For simplicity we assume that suppt. h ¢ [-1,1] and Ihlw <1. In
case j=deg P, we also suppose that Ihlco is strictly smaller than
the leading coefficient in P. To prove the theorem, it is sufficient

to show that
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3) -E(Hzi- :¢j M):) < -E(Hz) +const.,

vhere the constant is independent of h and 2. Rewriting (3) gives

®) 0 < H -B(,) 3¢ (0): +eomst.,

from vhich (1) follows with H replaced by Hz"‘“’z)'

We remark that it is sufficient to prove
) -2, £ 107 (1)) < -EQE,_,) +const.

Let ﬂ; be the free vacuum with Dirichlet data at x=3if . Then we

have the linear upper bound

E(8,) =inf, <yl > /1)’

IA

2
o_ .0 o .o
<99.H9.91,> - I <9£ :P(p(x)) .nz>dx

A

2
I o)A +|1n(®R~x)| + |[1n(=H)|)dx
_z

o(2)

on the wacuum energy. It follows that E(Hl) has at most bounded
growth over some infinite sequence ["v"l”'v] of disjoint wnit intervals,

and so
(6) -E(H'_ _1) < -E(llz ) +const.
v v
Substituting (6) in (5) ylelds (3); (5) in turn follows from

3
-t(H,t: ) -tH,
1) <n: 5 (H!' ¢~ (b) ao) < oSt <q° 2-1 Q°

g) S e <Hy e -1
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as in {2, Lemma 5.4].

The desired inequality (7) is rewritten as a Euclidean integral.
The Euclidean integral is bounded as follows: The contribution for

x<~1 1is bounded by the L, norm of its conditional expectetion onto

2
the line x=-1. The contribution of the region x>1 is similarly

bounded by the L, norm of its conditional expectation onto the line

2
x=1. The contribution of the region -1<x<1 is bounded by its norm
as an operator acting between the two L2 spaces x=211. We assert

that the product of the first two contributions is exactly

o 'tHR,-l °
<Ql-1 s € Q£_1> s and that the third contribution is bounded by
o+
eccmst(t 1). Before proving these assertions, we digress on conditional

expectations, covariance operators, end Dirichlet boundary comnditions.

Lemma 2. Consider a Gaussian integral, with covariance operator C
and a single particle space K. Let Ko be a subspace of K and let
M (Ko) be the algebra of observables measurable over K 0" Let Ho

be the conditional expectation onto M(Ko). Then T, is the L,

projection of M) onto M () =and it is the second quantization
of the projection of K onto Ko. In other words, its Fock space

representation maps the n-particle states G(xl,... ,xn) onto the state

n
I E(i)e , where E(i) acts on the ith
i=1

projection of K onto Ko o

variable of 6, as the

Proof. Write the orthogonal decomposition K=K°+K1. Then the
assertions follow by the canonical isomorphism of Fock spaces

F®) 2 FR) ®_F&).

In the following we let KOCK denote functions with support in
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a given set XCRd. We regard C(x,y) as the kernel of an integral
operator C on Lz(Rd), and let Cp K be the integral operator on

L2 (x) formed by restriction of both :ar:a.bles of C(x,y) to Ko' (E.g8,,
if E <denotes the characteristic function of X and if L, (®) -ELZ(Rd),

then qK K =ECE.) TLet cK
0’0o ]
by restriction to Lz(x). (In the above example CK =EC,)

o

denote C acting on L2(Rd), followed

Theorem 3. Let KOCK as above, and let P denote the projection

of K onto Ko' Then
-1
(8) P = C .
K‘::’Ko cKo

Corollary 4. Llet Ko be the set of distributions in K with support
on the line x=a. Let C be time translation invariant, and let
Dp(x,y) be the Pourler tramsform of C(x,y,t-t') with respect to

t-t'. Then taking Fourier tramsforms in t, the kernel of P 1is
©®) P = Dp(a,a)-ll')p(a,x) .

Proof. Clearly P defined by (8) maps functions on Rd into

functions supported in X. Furthermore

2 -1 -1
P" = C (C CK )C
o ’Ko Ko ° ’Ko K

= P

-1

since the range of Cp lies in K, and Cp r K =C Thus
0’0 (]

K ,K_ °

0’ o

CK CK K -1 r Ko =1 FKO . Finally P 1s self adjoint, since for
o o” 0

f,gek, and with an L, 1inner product.

2
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<g,CPf> = <g,CCp o 'ch f>m= <g.c: cx K '14:k e <Pg, Cp > = <pg,C>
oo [] o 00 ] ]
Thus with the inmner preduct given by C,

<g,Pf> = <Pg,f> ,

This completes the proof of the theorem. The corollary is a epecial case,
gince in this case (‘.K K is a multinlication operator after Fourier
]

transformation in t.

Lemma 5. Let C, , =(-A, +m2) ), where A has Dirichlet data
!,12.2 2 o
on two parallel lines x-!.l, x-!.z. Let p be the Fourier transform

variable dual to t, and let u= (pz+m(2,):|',2 « Taking Fourier trans-

formation in the t varisble, we have

sinh(u(2,-x))
sinh (1 (2,-y))

1
coth(l (zz-y}) - cnth(l-l(l"'f-l))

1
n

cC=¢C (x,y) = ¢
2.12,2

sinh(u (x-zl))
sinh(u (y—ﬂl) )

1 1
U coth(u(®,~y)) + coth(u(y-%,))

and the top line holds for !.1<y<x<£2, the bottom for £, <x<y<2

1 2°

Proof. Direct calculation.

We note that nx has the kernel
o

ainh(U(2,-x))
—e:l.nh(u(lz-a)) N a<x<!.2
k(x,p) =
sinh(u (x-!.l) )
2.1 <x<a

|\ T
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In particular, when ecting on functions eupported in a<x<9.z; ﬂx is
0

is independent of !,1 .

We write the Euclidean integrand elp(—j': ff 2:1’(4»): +:67():) as
a product F‘_GF+, where G 1s supported in the strip -1<x<1, and
F; 18 supported in the strip between *1 and #2. For an interval
Ia{x: xl<x<x2}, let I, denote conditional expectation onto the

strip x€I. Then

n = GII

t-1,11%-%%% 1,115 = T, 117 -1,00)F-F+

- GlI(_m ,11 (F+]'l[_1’m)F_) .
By the Markov property, lI[_l m)r_ - lI{_l}F_ . Let £ -H{tl}Fi- . Thus

I ) = GfH

[-1,17F-CF = 6@ 37FE Lo, 11%+
-cff,.

From the above formulas, we see that the Euclidean integral (4) is
equivalent to the integral of Gf_f+, with covariance c_m(x,y),

-1<x; y<1l. Let F(xl) denote L,

9 of the Gaussilan measure space

defined over
KO = {f = th fl(P)}’

with cavariance

,1), resp. A_ = (-1,~-1) .

+ -4+2 »L c—!. 32-2
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We note that the Dirichlet data in the defirition of Ay is symmetric

about the line x=11. By our definitions,

2 2 o TtHiy
= = <
belpny = Belpany = Foy0e B
so the proof of Theorem 1 reduces to showing that G :F(l)+F(-1) 1is

a bounded operator.

Let F(0) be the L, space of Gaussian measure space defined over

2
the x=0 subspace {f=60f1(p)}, with covariance C-IL g'(0,0). In
£

the bound on G, an important fact is the inequality

1/2,-1/2
A-.t

-1
<
0 i C_R"!'(o’o) c_z’k(osﬂ)c_!"!(ﬂyil) _<. 1-& 1’

valid for £ large, as a consequence of Lemma 5. Let B:t be the above
operator. The first two factors on the right in Bt change the metric
in the =x=11 subspace from that given by A:I: to the metric given by
the covariance C—JL, 2(!1,:!:1) s vwhile the pext two factors in Bt glve
the projection of the x=11 subspace onto the x=0 subspace. By
Lemma 2, B:t is the single particle operator which yields the
conditional expectation H{O} : F(#1) +F(0), and by the above bound,
H{O} : F(#1) *F(0) 1is hypercontractive. This means that there is a
q>1, with H{O}IhtIqEF(O) for any hiEF(il), and

q
||11{0}|hi] “F(o) < llhtlF(n) . Thus with some r<om,
nondal < dlelHY=(ln_|%n,IHY1.
By standard bounds,

(“GIr)llr < econst(t+1) ,
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and by hypercontractivity,

q q,1/q qq1/4 1/q
CILR LN Ry LS (Ll POSTERSTLN ot

A

L FYR LH PP

This completes the proof of Theorem 1.

Remark 5. The condition hELm 1s stronger than is required. In

fact the bound
fGrdq < econs‘t(t-l-l)

1s satisfied if h has compact support and belongs to (R).

Lasa-3

Remark 6. The theorem may also be gemeralized by allowing a momen-

tum cutoff x 4n the perturbation. With bounds uniform in K,
0 ey -
)z < |h|mn(h)c(n+1).
Remark 7. One may also show that
.03 R .
.¢K1(h>. .¢K2(h). < luf p)ow) @)

where o(l)*0 as Kl,Kz-’cn, uniformly in b and %.
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The last two years have seen considerable progress in our under-
standing of the mathematical structure of quantum fields. In two areas,
the progress has been close to definitive, and the problems may be
largely resolved in the near future. These areas are (a) the
construction of more singular superrenormalizable models: Yukavaz and
¢g and (b) the detailed structure of P(¢)2 models which are close to
free theories, namely particles, bound states, analyticity, unitarity
in subspaces of bounded energy, and phase transitions. In two other
areas there has been progress, but the progress is far from being
definitive. These areas are (c) the structure away from the neighborhood
of free theories, and especially near a critical point and (d) results
which pertain indirectly to the construction of four dimensional models.
For the results in areas (a) and (b), we merely 1list recent references,

and we then turn to the open problems, including (c) and (d).
Yukawa,-Euclidean methods [Br 1, Sei, McE 1,2, Br 2, Sei-51]
¢g-weak coupling expansions [Fe-0Os, Ma-Sen]
P(¢)2-scattering [Sp 1, Sp-Zi]

P(¢)2-analyt1city [EMS]
P(¢)2-phase transitions [GJS 2,3]

The central problem of constructive quantum field theory has not
changed over many years (cf. [St-Wi; p. 168]): the construction of
nontrivial quantum fields in four dimensions. We explain how this
problem is related to critical point theory in four dimensions, and how
a number of simpler problems (of independent interest, and involving
two or three dimensional quantum fields) are related to this central

problem.

The simplest four dimensional interactions, ¢2 and Yukaw34 are
Tenormalizable, but not superrenormalizable. This means that the bare
and physical coupling constants are dimensionless. In addition to this
dimensionless constant, the field theory is parametrized by two or
more parameters with dimension of (length)_l. Namely, there are one
or more masses and an ultraviolet cutoff K. To make the exposition
explicit, we choose the ultraviolet cutoff as a lattice, and then

K 1'=e is the lattice spacipg.
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The goal of the construction is to take the 1imit K+, 1.e.
€+ 0. Because scaling is a unitasy cransformation, 2nd because scaling
multiplies all iengths by an arvitrary parameter s, the theory with ¢
small 2nd mass m=1 1is equivalent to the theory with €=1 and mass
small. In this equivalence, the test functions also scale, and so if
we choose E=1, a typical test function will have support on a set
of large diameter 0(m.l). Thus if ve choose €=1, we must focus
on the long distance behavior, i.e. on the distance scale 0(m_1) in
2 theory with small mass. It follows that the limit K+m, e-+0
which removes the ultraviolet cutoff is equivalent to the limit m-+0
with g=1, if in this latter limit we consider the behavior on the
distance scale O(m_l). This latter limit (correlation length‘m_l"m)
and distance scale is traditionally considered in critical point theories,
namely the "scaling limit" in statistical mechanics. Thus we see that
the critical point limit, with fixed lattice spacing e€=1, 1is
equivalent to the removal of the ultraviolet cutoff and to the
construction of a (continuum) quantum field (e=0). Since the long
distance (infrared) singularities are worse in two and three dimensions,
we see that critical point theories in two and three dimensions provide
a very realistic test for the mathematical difficulties presented by
four dimensions. Indeed the two and three dimensional infrared behavior
is typical of nonrenormalizable field theories. A simplification of
the two and three dimensional problem (and one which we hope will prove
to be minor) is that the critical point can be approached by Lorentz
covariant flelds satisfying Wightman axioms, in place of the lattice
theories introduced above, see [GJ5). For this reason, in two and
three dimensions, the spectral representation of the two point functionm
and (presumably) the particle structure and S-matrix theory canm be
used as tools to study the theories which are approaching the eritical
point.

Te construct the critical point 1limit, there are four essential
steps:

(1) mass renormalization

(11) field strength renormalization

(111) uniform estimates up to the critical point

(iv) nontriviality of the limit.
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The first three steps concern existence for this question we would be
happy to allow a compactness principle and selection of a convergent
subsequence, while hoping that the full sequence converged also. This
follows principles well accepted in other branches of mathematics (e.g8.
partial differential equations) vhere questions of existence and
uniqueness are often studied by separate methods. The last step
(nontriviality) depends upon the correct choice of charge remormalization.
We will see below that for the ¢4 interaction each step can be studied
independently of the others.

We now examine each of these four steps in turn. We will see
which portions have been solved, which portions seem feasible for study
at the present time, which steps are highly interesting in their own
right, independently of their role in a possible construction of ¢4,
and which portions seem to present essential difficulties and whose

resolution will presumably require essentially new ideas.

The first step, mass renormalization, is the step nearest to

completion. For a Aé +l mr2Jd>2 theory (or more generally for am even
P(¢) theory). the physical mass m 1s a monotonic function of m, for

0
a single phase theory [GRS]. This statement also pertains to a

lattice theory (as required for the four dimemsional program) if the
mass is defined as the exponential decay rate of the two point function.
For a v:bz theory at least, the mass m(mo) 1s differentiable [GI 2]
for m>0. The analysis of [Ba] suggests that m(m ) 1is continuous
for m=0; 1in the lattice case this has been r:l.gorously established

[J. Ro 2].

Assuming that the ¢2 mass 1s continuous for m>0 in a single
phase X¢ + R ¢ theory, then the mass renormalization is defined
ag the inverse function

2
m, = mg(m,).).
To see that m may take on all values, 0<m<o, we argue by
continuity. For m2+m , m+om also [GJS 1], and so we require a

0
critical theory (z=0) at the end mg = mg of the single phase

sC
region, with
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2
n(m) Y0 as mé&mg "

To be explicit, we define

Md) = 1 <6 G2
| x=y]|+c0

and

2 2,2 2, _
mO,c su21>{mo|l{(m0)>0 or m(ny) o} .

m,
The exdstence of a phase t(::ansition for a ¢4 lattice theory {Wel] and
for ¢: [6JS 2,3} shows that mg o 1s finite. Combining this fact
with the method of [GJ 2, Ba], it c;n be shown that m MO0 as
mgNm%,c [J.Ro 2], at least in the lattice case. We summarize the

problems of this section under the name: existence of the critical point.

For ¢§, one expects a simjlar structure for phase transitionms.
Assuming this conjecture and using the decay at infinity of the zero mass
free fleld, it follows that ld(mé’c) =0, but the question of whether
m(mg,c)==0 remains open. For ¢‘2‘ and for a lattice theory the
reasoning concerning M does not apply. In two dimensions the zero
mass free field two point function does not decay at infinity, and in a
lattice theory, the absence of a Lehmann spectral formula means that the
free field is not known to bound the lattice two point function.

For the Yulawa interaction, none of the above results have been
obtained. Major steps for the ¢4 interaction depend om correlation
inequalities, which are presumably nmot valid for the Yukawa interaction.
For the pseudoscalar Yukawa interaction, a phase transition associated
with a breaking of the ¢+-¢ symmetry may be expected on formal grounds.
For the scalar Yukawa theory, should one expect an absence of phase
transitions and mg’c = -0 ? Uhat about cases closer to strong inter-
action physica, such as one charged and one neutral fermion coupled to
three mesons (charged +1,0) ? In general the problem here is: to locate
the critical point. This problem is important because remormalizable
fielda (e.g. ¢2, Y4) are equivalent to lattice or ultraviolet cutoff
fieldas studied in the critical point 1imit. From this point of view,
one reason for studying phase transitions in field theory 1is as an aid
in locating the critical points.
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3
The second step is to introduce the renormalized field bren = zZ 0,

where Z 1is defined in terms of the spectral representation for the two
point function:

+f dp(a)

D6 G»" = 2
P +m >m p t+a

The essential problem is to show that Z#%0 for mw>0, or in other
words to show that for each field in a noncritical theory, there is a
corresponding elementary particle. Furthermore we expect only delta
function contributions to dp(a) (bound states) below the two particle
threshold a-= (Zm)z, an¢ for an even P($p) theory, the same should be
true below the three particle threshold, because of the ¢-+-¢ symmetry.
In this more general form, the problem could be called Hunziker's
theorem for field theory.

Ye now split the discussion of Hunziker's theorem into two
independent paths, which we call the repulsive route and the general
route. The repulsive route seeks to make maximum use of the special
features of the ¢4 interaction, in particular of the presumably
repulsive forces in this field theory. Since the ¢l" terms should
dominate for a P($) critical point which is not mear a tricritical
point, we expect that the main results obtained in the repulsive route
should be valid for genmeral P(¢) theories near critical points which

are not tri, or multicritical.

The repulsive route makes essential use of correlation inequalities.
An example is the absence of even bound states for single phase ¢4
theories [GJS 1, Fel, Sp 2]. However correlation inequalities by them—
selves camnot control the critical point behavior, because the ferro-
magnetic spin % Ising model on the Caley tree lattice has anomalous
approach to the critical point [Z1]. Thus correlation inequalities must
be used in conjunction with the lattice structure, as reflected in the
Tuclidean invariance and Hamiltonian structure of d) and ¢§ . A
proposed correlation inequality, I‘(G) <0, :melies that 4p(a) 1is
supported above the three particle threshold, in tke interval [(3!11)2,00),
and that Z;O [GI5}. Thus 1..(6)50 would completely settle step

two, following the repulsive route. Lowest order perturbation theory
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NG 6

for the one dimensional Ising model [J. Ro 1, Ro-Sy]. In view of its

suggests that <0 for weak coupling, and [’ <0 has been checked
iuportance here and in step three below, further investigation of this
inequality would be very desirable. Mumerical calculations in some

simple cases support the conjecture I‘(G) <0 [Is-Mar].

The general route 48 contained in and 18 substantially equivalent
to the problem of asymptotic conpleteness. In fact the problem of
step two -~ the existence of a (discrete mass) particle at the bottom
of the energy spectrum —- is equivalent at higher energies to the absence
of continuous mass spectrum beyond that assoclated with multiparticle
states. For weak coupling and bounded energies, the problem has been
solved using cluster expansions. (In [Sp-Zi], energles up to the three
particle threshold are allowed for even P($) interactioms). For other
reglons of convergence of the gluster expansion, large external field
[Sp 1] or lov temperature [GJS 2,3], the situation is expected to be the
same. Tor weak coupling but arbitrary energies, the present methods do

not apply.

Outside of the region of convergence of the <cluster expansion, the
problem seems to involve all major elements of structure of the field
theory, including the structure of the vacuum, bound states and
superselection sectors [DHR]. The relation of bound states and
superselection sectors to asymptotic completeness is well known, since
extra bound states as well as extra elementary particles in some extra
charge one superselection sector give rise to extra multiparticle
continuous spectrum. The relation of the vacuum structure of phase
transitions to solitons and superselection rules in two dimensions is contained
in [Go-Ja, DHN, Fr 3]. It 15 an old question to ask whether the
Goldstone picture provides a qualitatively correct picture of phase
transitions, and now we ask whether the ideas of [Go-Ja, DBN, Fr 3] are
sufficient to describe all superselection sectors for P(¢)2 fields.
Can the reasoning be reversed in the sense that 2Z=0 and suppt p(a) =

2
[m ,®) would imply existence of a new superselection sector?

On a less etherial level, we ask whether each pure phase for a
P(¢) interaction can be obtalned by an appropriate choice of boundary

conditions, as 1s the case in statistical mechanics. Can the
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FKG inequalities be used to prove convergence and Fuclidean invariance
of the infinite volume 1limit, for general P(¢) theories? See the
introduction to [GJS 3] for a further discussion of the Goldstone

picture of phase transitions.

The third step is a bound, uniform as the critical point is approached,
on the renormalized n-point Schwinger functions. We follow the repulsive
route in our reliance on correlation inequalities. For the ¢4 inter-
action, a correlation inequality reduces this problem to a bound on the

renorualized two point Schwinger function

(2) -1
s = <¢ren(x)¢ren(y)> = Z <P(x)(¥)> ,

4
[6J 1]. The reduction applies to all cases (¢£, ¢g and lattice ¢2)
considered here. It is convenient to choose the scale parameters so that

m=1 and €0, and then a sufficient bound on S(z) is e.g.

[S(Z)(x)dx < const.

with a constant independent of g, or more generally, IS(2)| « <
const. for some Yf'—norm|-| + 1ndependent of €. In the absence

of level crossings, the required bound on S(Z) 1s equivalent to a bound
on CDD zeros [GJ 5]. The conjectured inequality, F(5)_5o. would imply
an absence of bound states (and thus of bound state level crossings), and
of CDD zeros below the three particle threshold {GJ 5]. Thus r(© <0

would bound S(Z)
N3)

and complete the third step. This application of the
<0 inequality was derived in the context of the ¢2 interaction.
The methods extend without change to the ¢3 interaction. The adap-
tations of these methods to the lattice ¢4 interaction is an open

problen.

As a concluding remark on the repulsive route, wve mention that
considerable progress has been made in deriving new correlation inequali-
ties and in finding interrelations between, and simplified proofs of,
old ones. See {Sy, New 1,2, £l-¥ew, Du-Hew, El-Mo].
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Unfortunately, we have little to say about a possible general route
for the third step. 1In particular there 1s no argument for believing
(or disbelieving) that the phenomena considered above —- absence of
bound states and of CDD zeros below the three particle threshold —-
occur in the scaling limit approach to a ¢6 tricritical point. An
absence of level crossings between bound states and the elementary
particle and a bound on CDD zeros away from the elementary particle mass
wight be a general picture, and would yield a bound on the two point
function, but not on the general n point functions. In the approach
to a general P(¢) critical point which is not near a tricritical point,
the ¢A (zepulsive) critical behavior should dominate. Is there any
argument (even heuristic) which can be used to discuss bound states, CDD
zeros and/or bounds on the remormalized two point function in this regiom,
other than the proposed P(G) inequality?

The fourth step is the nontriviality of the limit. We hold n
fixed (for example mw=1) throughout the discussion and consider first
d=2,3 dimensions, then d=1 and finally d=4. Starting wittvl a
lattice field theory with A<w® and €>0, we have the definition
d<3)

¢4 ~field theory = lim.
e*0

We believe that

Ising model = 1iim (lattice spacing ¢)
Aro

scaling limit ¢4 field theory = lim Iim
Aroo >0

scaling limit Ising model = 1im 1lim.
) Ao

It is reasonable to corjecture that the ¢ and A limits above can be
interchanged and thus that the scaling limits of the ¢4 field theory
and the Ising model coincide. This conjecture is a variant of the
universality principle for critical exponents in statistical mechanics.
Because the Ising critical exponents are known to be nontrivial for

d=2,3, we can expect the scaling limit for ¢;, gbl:; to be nontrivial.

—165—



For d=1, all steps one-four have been completed [Is], including
interchange of the €-A 1limits. The one dimensional Ising mwodel is
already scale invariant, and so the €+0 1limit has a trivial form.
Control over the A+ 1imit is obtained from an analysis of anharmonic
oscillator eigenvalues and eigenfunctions in a neighborhood of the critical

oint m2=-m
poin o .

In d=4 dJdinensions the situation is somewhat different from d<é.
In terms of the Callan-Symanzik equatiomns, the sign of the crucial
function B(A) 1is reversed. This change in the sign of B has its
origin in the fact that A 1s dimensionless (and thus scale invariant}.
In terms of the above constructions, the scale invariance means that by
is not taken to infinity by an infinite scale transformation. Rather A,
the bare charge, must be chosen (renormalized) to yield some desired

value Aphys of the physical charge. We define the physical charge by

3

-2 -4 T
lPhys B Aphys Z X Z <¢(xl)°"¢(x4)> »

xl,xz,x3

o s€M) = -¢

where < >T denotes the connected, Euclidean Green's function

{(Ursell function). By Lebowitz' inequality,

0 <A

phys

We have taken advantage of the scale invariance of xphys to write it
as a function of the scale invariant parameters A and em. Recalling

that A= is the Ising model, we define

AI(em) = ).ths(m,em) 5

Also note that A =0 1s a free lattice field, and

0 = (0,€m) -

Aphys
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To simplify the discussion of renormalization, we suppose that
Aphys (A,em) 1s monotone increasing as a function of A for fixed em.

(However, we have no argument to support such an hypothesis.)

He claim that ) should be continuvous in A and em. Ve
(4) phys T -2
assume that G = <¢(xl)°"¢(x4)> Z is continuous in A and em.
Then mpper bounds on the two point function, suggested by perturbation
theory, substituted in the inequalities of [GJ 3] yield an integrable
upper bound for IG(4)| =-G(4), independent of A and em, for m
fixed, mw>0. Continuity of A

convergence theorem.

phys follows from the Lebesgue bounded

By definition, charge renormalization is the inverse function,

A= X(Xphys.em),

and by continuity, we can choose A=X(cm) so that Aphys =

)‘phys (A (em),em)) approaches any desired value in the interval

[0,A(0)1,

as em~+0, mf0. Nontriviality of the Ising model (in its critical
point 1limit) 1s the statement that AI(O) # 0. We conclude that the
tb: fields constructed here should be nontrivial if and only if the
critical behavior of the Ising model is.

According to conventional ideas, A()‘phys’em) +o as em-»0 in
order to ensure APhYS # 0 (infinite charge renormalization). In order
to discuss the long and short distance scaling limits of the cb: field,
we also suppose

AQA

Phys,s:m) A

as anNO.

2
In the context of the Callan-Symanzik equations, one changes my

followed by a scale transformation to keep m fixed. The decrease of
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2 2
o is called long distance scaling; the increase of L 1s called

short distance scaling. According to comventional ideas, there are two
fixed points to this transformation, the points Aphys'o, A phys-xl(o) .
The zero mass theories associated with these fixed points are scale

invariant.

At the endpoint )‘phys =0 (assuming x 1s finite), the field is
Gaussian [Newman]. Presumably it is the free field, invariant under the
above transformation group (the renormalization group). At the endpoint
)\=)\I(0), we expect the field theory to coincide with the long distance
scaling limit of the Ising model.

We now consider Aphys lying in the interval (O,AI(O)). For such
a theory, according to conventional ideas, the short distance behavior

phys = AI(O), while the long distance
behavior 1s governed by the fixed point Aths =0. We show that A
1s monotone increasing in its dependence on ny - Since Aphys is
dimensionless, and hence unchanged under scale transformations, this alse

is governed by the fixed point A

phys

shows that Xths decreases under long distance remormalization group
transformations and increases under short distance transformations, i.e.
B>0.

* *
Consider two values of the bare mass, LI satisfying (l!lo)2 <

%
oy Let m <m be the corresponding masses. By definition

[\

)‘phys = 1;8 Aphys(MXphys,sm),em)
* A QO Y,
Xp!zys - éig phys( (phys’sm ER ) .
* *
Since ¢ is a dummy variable, we replace it in }‘phys by em/m
* _ 2 *
)‘ph T 14m )‘phys()‘o‘phys’em /m ),em) .
>0
Since m/m* >1, we have by monotonicity of A in A and mono-

phys
tonicity of A in em that
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*
xphys 3 Aphys °
This completes the proof.

The statement that the charge renormalization is infinite is equiva-
lent to the statement that the lattice ¢2 field is free in its critical
point behavior (e.g. Z+1 as g-+0, with A=const.<m®). This is,

of course, an open problem.

The existence of ¢; and P(¢)2 fields suggests that the critical
point scaling linit exists for the corresponding lattice fields; in the
P(¢)2 case, tri- and multi-critical point limits should also exist.
Hore generally, we summarize the discussion up to this point by asserting
that a Euclidean quantum field is the critical point scaling limit of a
corresponding lattice field. In the limit of strong physical coupling,
the lattice field is replaced by an Ising model.

An alternate approach to nontriviality of the ¢2 field theory could be
based on existence of the classical limit -K-0. Scattering for H=0

known to be nontrivial. We thank Raczka for this comment.

is

Turning away from the construction of ¢z via critical point theory,
we note that recent work [Co, Fr 1] solves the (remormalizable but not
superrenormalizable) massive Thirring model in two dimensions. Does
this solution provide insight into the problems of charge and wave-
function renormalization? Can other solvable two dimensional models be
used as a starting point to prove existence of fields, for interactions

of the forn (explicitly solvable) + (superrenormalizable)?

BMost thinking in contemporary particle physics uses nonabelian
gauge fields and a Higgs mechanism as an ingredient. There are many
problems here, including a proof of the existence of a Higgs mechanism,

even in the lattice case.

We conclude by mentioning two other problems in mathematical physics
which may be related to the critical and nonrenormalizable infrared
problems considered above. First, the approach of Rolmogoroff to a
statistical theory of turbulence uses scaling arguments to deduce
exponents governing (short distance) asymptotic behavior. The second
problem is the divergence of the virial expansion for the tramsport
coefficients. Here the problem is infrared (slow decay of large time
correlations) and infrared. In some cases, the leading divergences can
be resummed, and the leading nonanalytic dependence on the density

explicitly determined, on a formal level, c¢f.[Ha-Co].
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. 4
RESUME  L'existence des transitions de phase pour les champs quantiques 7\‘?2

dans 1a région WDM1 de couplage nu est établie.

La brisure de symétrie pour 1'interaction lima->* 0 (¢4 -pY) est
aussi démontrée. On fait la distinction entre les transitions de phase
et la brisure de symétrie.

ABSTRACT The existence of phase transitions for"l\‘P4 quamtum fields in the

region\>>>1 of bare coupling is establfshed. Symmetry breaking for
the interaction M>% 0 ( -M{) is alsoproved and the distinction
between phase transitions and ‘symmetry breaking is emphasized.

1 - New Results

We prove the existencer of phase transitions for \cp: quantum fields

in the region A > 1 of bare coupling. The same methods apply in prin-

ciple to even )\P(cp)z models. We demonstrate the existence of long range

order in the (even) P(cp)z theory defined with zero Dirichlet boundary data.

(However, we restrict attention in this talk to Cp;}-) We also prove the

existence of symmetry breaking for the interaction

. 4
lim (¢ - ).
pto

As in statistical mechanics, where phase transitions may occur without

symmetry breaking [4], we expect phase transitions in certain quantum
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field models which do not possess a symmetry group, such as the
interaction

(¢Z = 02)4 + @3 - kP,
with g>> 1, e e« 1, p = p(¢,0)e Thus we emphasize this distinction between
phase transitions and symmetry breaking.

In a separate article [5], we give a cluster expansion for strong
{(bare) coupling of even cp: models. This expansion allows us to con-
struct two pure phases, each satisfying the Wightman and Osterwalder-
Schrader axioms, with a unique vacuum and with a mass gap.

In contrast to our detailed study based on the cluster expansion [5],
we present at this conference a simple, direct proof that phase transitions
occur. The details of this talk will be published separately [6]. An
alternative approach to the problem of phase transitions has been

announced in [7], but the proof has not appeared.

Theorem 1. Consider the X:cp4: + %m(z):cpzz theory with Wick
2 m2 m

ordering mass m_, bare mass m and zero Dirichlet boundary conditions.

0’ 0’

For )\/m(z) sufficiently large, there is long range order (lack of clustering).

Theorem 2. Consider the model

: 4 2 2
11m(x:¢2: 2 + %mo:q: T - o)
p0+ my mg

with Wick ordering mass m, and bare mass m. For )\/mg sufficiently

large, there is symmetry breaking, i.e.
lim ) > 0,
px0

where ( + ) denotes the vacuum expectation value. Likewise the model
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defined by p — 0- has () < 0.
Our proof of these theorems is based on a Peierls argument, similar

to the proof of phase transitions in statistical mechanics. The basic idea

is to study the average field

o(8) = [gx)ax
Y

where the average is taken over a unit square j in Fuclidean space-time.
The average (low momentum) field dominates the description of phase

transitions, while the error

w(x) - Q(x) = q)(A)’ x € 4.,

the 'fluctuating field" is estimated in terms of the kinetic part of the
action, %(vcp)z. Technically, we use cpj bounds to establish the estimates
which give the convergent Peierls expansion, and show the probability
of "flipping" values of @(A) is small.

In place of repeating the material in [6], we explain the classical
(mean field) approximation to the cp4 theory. This classical picture is

the basis for our convergent expansions about the mean field.

2. Classical Approximation

Consider a quantum field defined by the Euclidean action density

2 2 22
g : i) , = : ) Plep):
Bw) : o + V) 5 = :dw)” + e o2 ¥ PR
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Here : : , denotes Wick ordering with respect to mass ¢, and by conven-
a

tion we include a bare mass a in the free part of the action, %:(ch)Z + u.zq;Z:.

The classical approximation for the ground state of the field g is obtained by

regarding %(v:p)z as a kinetic term and | = %uijz + Pp) as a potential term.

Then in the classical approximation the vacuum expectation (mean) (@)

of ¢ equals P 2 value of ¢ which minimizes y. The classical mass. m,

is given by
2 _ _ 2
mc H Ull(¢c) = a + P"(CPC) .

In other words the classical low mass states of ¢ are those of a free field

with action density

. 2 2 2,
V.= i)+ 3 @-0) .mi .

For convenience, we choose the constant in P so that $(0) = 0. (The same
then holds for V.)
We expect the classical approximation to be accurate (up to higher

order quantum corrections) for those interaction polynomials ¥ such that
() v - ¥_ is small for ¢ - @, small,

and

(i) o% = m?.
C

We say that an interaction :P: 2 satisfying (i) and (ii) is classical.
a
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To understand the conditions (i) and (ii) concretely, we write Yp)

in terms of its Taylor series about ¢ = cpc, namely

uo) = Vip) + molp -9 )” + T Ao,
i=3

where

= @) V)

>
™
]

ey, iz3.

In particular, condition (i) is satisfied if

(1) 18 /m2| «1
ic ’

where i 2 3.

To achieve (ii) will normally require Wick reordering, and in prepara-
tion, we calculate the a dependence of the Wick constant

2 1 d’p
e(e) = Zn2 ] pe +a2”

Then

2
d Z 1 . d 2.-1
"2 = G [T rer = 4

where we interpret this formula as a Kk - o limit of cutoff equations in
which pz < xz. We expect that (ii) will be satisfied after Wick reordering

if
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(2) (Xi/mz)znilz(mz/az) wl, iz3.

In the following section we carry out this choice for the (p: model. The
classical approximation is also referred to as the Goldstone approximation

or the mean field approximation.

3. The cp4 Interaction

The conventional definition of the cp4 interaction is

4 2 2
HIH = Xwp s + :
(3) (L p % %mo::p %

2 2
Plep): + H .
() % %mom (2)

The weak coupling region )\/mz << 1 satisfies (1) and (2), and hence is
also a classical region. In this region P, = 0, m_ = mg. Thus the
classical picture of weakly coupled cp4' is a field with mean zero, and
particles of mass mc = m. The ¢ = -p symmetry preserves () = 0
as an exact identity, but we expect quantum corrections to give a physi-

cal mass
4 =m (1+0A/m%), A/m> o0
( ) m = mc( ( mc))r mc - .

In fact the weak coupling region is well understood from the cluster
expansion [8], which yields a Wightman-Osterwalder-Schrader theory for

2 _ 2
)\/mo <« 1, and m - m = o(k/mc).
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2
We now turn our attention to the region )\/m0 > 1.

In thia region :y: 2 given by (3) is clearly not classical, since both (1)
m
0
and (2) fail. In order to obtain a classical interpretation, we rewrite (3)

in terms of a new Wick ordering mass a satisfying

(5) az >> A >> m(z).

Then we write (3) as a new polynomial :kl(cp): > satisfying 1;1(0) = 0.
a

Thus
(6) :'[y(cp):l:rlﬁ + const, = :'u-l(cp):a2

= agpt - %m ;—%- émg)tpz.az
Here
Likewise
Q) =P1(cp):02 - :)@4 - (%Ln-:fz; * %uz - %m(z))pzlz
and

2 2
B1=P1+§acp -
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minimum at @ = ¢_ = 1.

(8)

We

the

For

larger solution determines a by the relation x =

By (5), the coefficient of cpz in 1!1 is negative, so 1!1 has a double

Here m_ and ¢ are related by

2
2 2 _ 6 a 2
m_ = 8\c = - zn;a- - Zmo.

now choose a so that m = a, as can be achieved by letting x solve

equation

2 [on

x=—12- 4nx - 2.
mo

x/m(z) sufficiently large, this equation has exactly two solutions. The

= (u./mo)z. The smaller

solution is spurious in the sense that is gives an interaction satisfying

(ii) but not (i).

one,

1.

Next we perform a scale transformation so the classical mass becomes
Since the Wick ordering mass transforms similarly, it also becomes

Thus after the scale transformation. we obtain an interaction polynomial

:1;2:1 given by

(9)

By (8), we see that g >» 1.

.-=-l 4 -3—Z'+'z‘
W) T BE P 3@ tEw

= o 3 z. L
= 'PZ'l + 3 e

Thus the interaction (3), in the strong

. i 2 :
coupling region )\/m0 > 1, is equivalent to the weakly coupled cp4 inter-

action (9), with a negative quadratic term, with bare mass 1 and with

Wick

mass 1. For the interaction (9), we find that
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(10) 9 = to, m_ =1,

>
[[]
[
=
N
s
>
"

o

Thus for o large, both (1) and (2) are satisfied and (9) is classical, It
exhibité the two phase classical approximation to strongly coupled cp:, since
P, has two possible mean field values. In our second paper [5], we
present a systematic expansion about the classical field P

combined with a Peierls argument to select a given phase. We find that

in each of two pure phases, the physical mass is positive.
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1. INTRODUCTION

In the constructive approach to quantum field theory, advanced
by Glimm and Jaffe and their followers [7,38,37,12,19,22,34,11,39],
a very important role is played by the so called ¢-bounds, firstly
established by Glimm and Jaffe for the Ple), theory in [9] , see also
[18,34]. These bounds allow uniform estimates on the Wightman functions
of a volume cut off theory as the size of the volume goes to infinity.
In the Euclidean strategy to constructive quantum field theory, based
on the development of ideas of Symanzik [36] and Nelson [26], the
Glimn-Jaffe ¢ -bounds have a very important consequence in the form
of exponential bounds for the Euclidean-Markov fields. These exponential
bounds were established by Frohlich [5] and are the neatest way to
complete the program of construction of the Schwinger functions, using
the Nelson monotonicity argument [26] , which relies on the correlation
inequalities established in [19].

The purpose of this note is to report on the exponential bounds
for models of statistical mechanics, suggested by the lattice approximation
to Euclidean quantum field theory [19] . Our main concern is to put these
bounds in a form which may be convenient for the 1limit as the lattice
spacing goes to zero for quartic interaction in three-and four-dimensional
space-time. We follow mainly the methods of references [15,18] and give
some detailed results for the three-dimensional case. The expression
of the exponential bounds derived by these methods involves in an essential
way the infinite volume energy density of the theory. As a consequence
all Schwinger functions can be dominated by the one point Schwinger fumction
in some external field. It is expected that this can be useful for the
cantrol of the lattice spacing going to zero for three and four-dimensional
quartic theories. The organization of the report is as follows. In Section
2 we introduce the lattice field models as suggested by renormalized
quantum field theory in the Euclidean formulation. These models are

represented by an array of continuous spins with polynomial selfinteraction
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and ferromagnetic nearest neighbor mutual interaction. We introduce
also, in Section 3, the transfer matrix formalism using a symmetrization
trick which will allow us to exploit the Euclidean symmetry of the
theory (Nelson symmetry) as in [15,18] . This trick could be used also
for other models of statistical mechanics, for example the Ising model,
in order to get a transfer matrix formalism without the need of periodic
boundary conditions or boundary terms.

In Section 4 we consider the energy density (or pressure) and
investigate its behavior in the infinite volume limit, extending the
Tesults of [15,18,19 ,20] to the present situation.

Section 5 contains the main results of this report in the form
of bounds for the perturbed energy, which are the lattice analogs of
the Glimm-Jaffe ¢ -bounds [9], and bounds for the exponentials of the
lattice fields, which are the extension of Fréhlich exponential bounds
[5] to the present situation.

In Section 6 we give some applications. In particular we establish
a very simple inequality for the long range order in function of the
derivatives of the pressure with respect to an external field, and we
discuss the role of field strength renormalization for quartic coupling
in four dimensions.

We will give only a brief sketch of all proofs, a more detailed
report will be published elsewhere.

In conclusion the author would like to thank the"U.E.R. Scientifique
de Luminy" and the "Centre de Physique Theorique du CNRS", and in
particular Daniel Kastler and Raymond Stora, for the kind hospitality
extended to himinMarseille, where part of the present work was performed.
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2. THE LATTICE FIELD MODELS

In the d-dimensional Euclidean space, ]Rd' , we consider the
lattice of spacing € , & 7zt , associated to the unit lattice, Zd' s
with the notations

d -
R 31:=.i“h,p.,ﬁm§ , X; € R,

d
Zn={ng, . 0} , ng=0,24,x2,.

w 2

4
R'oeZ'sxp sen |, (x), = €N, , <=4,.d, e>o.

%) “w ) 2% 2’
The number d plays the role of space-time dimension, so the physical
case is d= 4 , but we consider also the cases d=4,2,3 , according
to the practice of constructive quantum field theory and statistical
mechanics.
Following [19] , see also [17] , we introduce the free lattice
field (9&(1“) as the real Gaussian random process indexed by the lattice

I3 Zd , With mean zero and covariance given by
_i d
<Qxn) Qx> = Z; 5, (x,-%y) , xn,x, €€ Z° .

Here the free two point function is defined by
_d i&-(xh—x -)
Sebuxa) = @t [, N ) an
(0 3
where Cgs{& [ReR:, h,|<T/e ,i=4,..,d ] and
d
Iu;: )= m*+ G2 5_1 sl € }é&.} /Z)

v m24+B% s £50.

For the field strength renormalization constant we have Z, = 4
for d=4,2,3 , and 0<Z;s4 for @} , depending on the interaction.
It is expected that Z,—»0 as €-»0 in Lp:: in order to prevent
that all Schwinger functions vanish in the limit g¢—+»o0 . We find
convenient to introduce the field strength renormalization directly

in the "bare" field. It will be clear in the following the equivalence
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of this procedure with the customary one which introduces field strength
Tenormalization in the counterterms.

It is immediately seen [19] that the free lattice field can be
realized through an array of continuous spins q, > sitting at the

lattice points X with Gaussian single spin distributions
-2

2xp [-‘3 Zr s‘*(wh 24 €7) q:]

and ferromagnetic nearest neighbor coupling of the type
d-2
xp Zg €77,

where (n,n') is each couple of nearest neighbors on & Zd' . Each
random field @ (1n) is represented through qn

One easily recognizes that the single spin distributions and the

ferromagnetic couplings are the lattice approximation of the (formal)

expression

iz [ [ oy m¢*] dx

well familiar in the functional formlation of quantum field theory
(in the Euclidean region). This makes also clear the comnection between
our way of introducing the field strength remormalization and the
customary way, which is based on the introduction (among others) of the
counterterm
L (z-1)[ (rpf+ m¢*]
to the Euclidean free action demsity -'f[(V\o)"-f m"cfz] . In fact we have
1+(z-1)=2.

The interaction P(¢) modifies the single spin distribution by
a factor exp [- £2(P@+Re(@))] |
where P is the bounded below interaction polynomial and Rg(q) is a
polynomial containing the renormalization counterterms.

For the P({¥)2 theory only the counterterms coming from Wick
subtractions in P are necessary [12,19] . For the q:;' theory
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[6,10,2,28,3,25] one should introduce also a mass renormalization
counterterm necessary to cancel the divergent part of the selfenergy
graph e . For the Lp: theory the renormalized interaction is
expected to be of the fom ¢ Z, :q"'. + —é— ZESMéqz.
Unfortunately at present the expression of the vertex constant Z1 B
the field strength Z and the mass counterterm §w?¥ | is known only
by pertubation theory [21]. This prevents the actual study of the ultra-
violet limit ¢-0 , see however the interesting proposal of Schrader
for the renormalization of tl,': in these proceedings [31]. From now on
we will consider general quartic theories on a lattice of fixed spacing
€70 . We find convenient to add also a linear interaction of the
type -AY¢ . Is should be remarked that according to general wisdom,
relying on symmetry and power counting, the constant A is neither
renormalized nor affects the ultraviolet divergent contributions to the
renormalization constants. In the following we will suppose that the
renormalization constants are determined for A=0 , then the temm Ay
is added to the interaction, which results therefore linear in .

For this kind of interactions we can exploit all machinery of
statistical mechanics of ferromagnetic systems,

in particular the correlation inequalities of GKS and FKG
type [13,23,4] . For quartic interactions, using the Simon-Griffiths
results [35], we have also the possibility to exploit the correlation
inequalities of GHS [4], Lebowitz [24], u [1] and Newmann [27] type.
Also the powerful Lee-Yang theorem ]_30] is available [35] .

In particular the infinite volume limit can be obtained using
monotonicity arguments like in the Ising model theory. Since here the
interacting spins are unbounded it is necessary to have some a priori
bounds on the correlation functions. We will establish them in the
following in a form which looks promising for the limit €-»o0 .
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3. THE TRANSFER MATRIX FOR LATTICE THEORIES

Firstly we consider the free lattice field @ (xm) . Call
(0‘2»}*) the underlying probability space and let 2, , for £€€ & |
be the sub-o -algebra of J generated by the fields @;(xw) supported
by the hyperplane (x")«h =4 .

A1l spaces [P(Q,2¢,u) , t€¢ % | are isamorphic to the same
1*(aq, E,F) » 4€p<€ ® | 50 we can consider the natural injections

T FRIE) > B(QZ, k) , for teg 7.

Exploiting the Markov property of the lattice theory [19,17],
we introduce the semigroup e tHe - 3': J, , teew,
which acts on the LP(Q,% ,F-) spaces as ''transfer matrix" from one hyper-

plane to the other. The selfadjoint operator H, can be understood

as '"Hamiltonian" of the theory.

We now introduce a useful form of the transfer matrix for the
interacting theory through the following symmetrization trick. In order
to be able to draw pictures, we limit ourselves to the threedimensional
case in the following, but it will be clear how to extend our considerations
to the more general d-dimensional case (in particular the physically
interesting d=4).

Let us therefore consider R® and the lattice points x,e€Z3 .
We call vy , the center of the generic cube Aw,of side € , having
as vertexes nearest neighbors in ¢ Z3 . Let X, n€C(w) , be the
eight vertexes of A . Then for any 4 € G°(/R3) we introduce the
smeared field

R = T E,, T Gk -

Notice that for each n' the sun Zpecm) is a random variable measursble
with respect to the sub- G-algebra =, generated by the fields (g ()
with nel(m) , Moreover there is complete symmetry for the group which
leaves A, invariant, because only the value of h at the center A
enters in each expression.

The factor 1/8 is introduced in order to avoid overcounting
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because each point X of the lattice biliongs to 8 cubes. In general,
in d dimensions, the factor must be 2 .

Following the methods of [19] one can see that, in the limit ¢-9 ,
theright expression Q(F)=J-'€{I)F(l)4§ is obtained where @(f) is the
Euclidean-Markov field for the contimum theory on R% .

In general if P 1is a polynomial we put

Up = € Z =+ P(@am)

necint)
and if A is a region of R® union of cubes A, we define
Ua = % Uy
Now we are ready for the introduction of the transfer matrix in the
interacting case.

Let 4, ,.., &,4 be cubes contained between the planes x3=0
and X= €, and consider the collection §P3=§R, ..,PM} of associated
polynomials. Puf

U(iPZ)" %— Uij
then the transfer matrix associated to the collection EP] is given by
omeHEPI) _ 51 RC12 P W

Piling wp tf¢ 1layers, t€ € B' , and exploiting Markov property we
have also
_ P . -Z U
eiH(§ ‘/eg)' _eEH({Pﬂ)____jZe ek J—o,

where JPa} is the collection JFij43 , k fixed, #=4,., b . Finally
if we take the vacuum averages we have

N N P
<eHlit s = <o, et aGn3) gH(ERD) Q0>

where, by Euclidean symmetry (Nelson symmetry) we may take
§P. )= PP , R)= {ﬁ'jz} yehe. ,  or
iPa.} =i Pith}, {Pz} =%k}, ehc, , or
Pz §Rsrl, IR3=1R58), ohe.,

according to the direction of transfer we are interested in.

Notice that in our notation {P} is always a collection (of
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polynomials) depending on two parameters, associated to a layer of cubes Aéj :

4. THE ENERGY DENSITY OR PRESSURE

Given &,4,c € €Z*, we consider the parallepiped of sides a,b,c.

To each elementary cube Acjé , {=4, .. , e/t 24t oo S8 R,
<. s ¢/¢ , we associate the same polynomial P , By transfer in the
direction k, using the methods of the previous Section, we can define

the semigroup e_d{"’b - In particular we have for the partition function,

defined- by _ 5 Uij "
Z(a,dc)= <™ ik >,
. N /T?
the following expression 17 (a,4,c) = <30, © 20> .

We call a(a,b) the ground state of H b and E(a,b) the correspanding
energy Hog S2(a,8)= E(a,t)52(4,4).

-c E(a,¢
Therefore we havé “e-c H“—” = € #)

We define also the overlap function #(4,#) through

2 blf = sxp [-abylab)]
where | iy is the norm in (@, Z,R). By standard arguments [8,34],
we have (4,#)>0 and #(4,6)>0 .

Lemma 1 . The partition fimction Z(a,b,c) is symmetric in a,b,c € &£ Z*.
This symmetry follows easily from the considerations of the end of the

Previous Section.

Theorem 2 . The fimction 1logZ(a,b,c) is convex in a,b,c separately.
Proof.- The expression <0,e™ € Ha ¢, >, originally defined for ceg z,

can be easily extended to all ce R* through the spectral theorem. Then
the convexity of the logarithm is obvious. By restriction again to ceg Z*
and using Lemma 1 the theorem is proven.
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Theorem 3 . The expression (a,b,c)_llog Z(a,b,c) 1is uniformly bounded
in a,b,c.

This can be proven easily, using Nelson symmetry, as in the two-
dimensional case, see [18,16] . For the w‘; theory, with the right
counterterms, it can also be proven that the bound is uniform with respect
to the lattice spacing € , using arguments of Glimm and Jaffe [10] and
Park 28] .

Since we have Z(a,b,c) =1 if one among the parameters a,b,c
is zero, then the following theorems are simple consequences of theorems
2 and 3.

Theorem 4 , The following bounds and monotone convergence results hold:
- — -4

2) (afc)tl0g Z(a,8c)ccle = p (@ bey*log Z(a dic) |

b) ¢-1 th(Q,&.c) 4 —E(a,¢€) anr c> o0,

) -4£1E(a,¢) tala) = ”;H'P _.J-"'E{a,{,) M1—>m,

Q alala)ytodea awa—- @,

&) ~E(aé)<aboe  —E(a,8) «bala), adla) ¢ aXa .

Theorem 5 . For &'ze , 4,&'¢ € Z*, we have
—E(a', 4) ¢ - E(4,4) +@'-a)a(¥),
dia') < o(e) + @'-a) Ao«
By the same methods as in [18,16] we can also prove

Theorem 6 . There is a function 4, (a) and a constant 4f,  such that
for the overlap function #(Q,§) we have

"[M:") < M (a) for b large enough, and

HYalQ) & Y, for a large enough.
If we define R(&) &) and pla) through

—E(aé)=ac(f)rp(a ), da)=avx +pla)

then from theorems 4,5,6 it follows
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Theorem 7 . The non positive functions p(a; L) and J?,(a) are convex
and decreasing in a and bounded from below by

‘B(Q)e) 3-#4[2(4) and /g(g) 2=, .
Let us define

potd) = Liwe e ), R, = Livn Bra) .

Y-
Since dim l"}g(q;l-):ﬁ(o_) , we have also
o
plas ) 2Ba($) , 4 Mlb) < Ra() <O, R(2)2 foo,
- < < p B <
Y, $Rw SO, 'Zz-::: 4 R (4) /ch.

Let us remark that Theorems 2 - 7 are the natural extension to the
threedimensional case of the analogous results for the P(@): theory,
as presented for example in [18,16 ,34] . It is clear the central role

played by Nelson symmetry and Markov property. The extension of these

Tesults to general d-dimensional lattices is straight-forward.

5. EXPONENTIAL BOUNDS

This Section contains the main results of this report. Detailed
proofs will appear in a forthcoming paper.

The first theorem refers to a bound on the ground state energy
of a locally perturbed Hamiltonian. In Section 3, through the transfer
matrix method, we have defined the Hamiltonian H (¢ }) associated to the
two-parameter family of polynomials P$= {P:;] . Consider the following
geometric situation, with 4, 4, @', £ ¢’, @1,q, , 4., 4, € € &7

@ =@Qi+a'+A, , b=4H41+4'+ ¥, ,

T
&g é = <! , G2
L el
&
¢ p
4
4 ’
’& =
] i .
= — a
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€onsider c¢'= & and let {5} =} ‘Ft'j} be constants associated to the

cubes contained in the parallepiped Al@)4)¢) of sides (a',b',€) .

Given the interaction polynomial P consider the family of polynomials
{?”} associated to A (a,b,g) defined as follows

Pij(X)= POO)-fe5 X for cubes in A (a',b',€),
Pe; (X) = P(X) for cubes in A (a,b,£) but not in A(a',ble)-

Let H(a,b; if} ) be the associated Hamiltonian, then we have

Theorem 8 . For the ground state energy of H(a,b; {f}) we have the

following estimate
~E(aé;§f3)s L[E(@2b)+ E(a,24)] +
+ 4L [d@as)+o(2as)]+ % e dp(P-fi; X) .

Here -E(a,b) and o(a) are 1like those defined in Section 4, for
the interaction polynomial P , and da(@) is the pressure for the
polynomial Q . The sum .Zt extends to all cubes in A(a',b',€).
The proof of this theorem Jis not camplicated. It is based on the repeated
application of the rotation method, like in the proof of the Glimm-Jaffe
(p ~bounds for P(). given in [18]

Finally let us consider the exponential bounds, which follow
from theorem 8. Let K€ (5°(R3) with supp he A (a',b',c') and h20
and consider the smeared field @ (4) defined in Section 3 with the
symmetrization trick.

Consider the volume cut off expectation value for the exponential
of the field

1y

. ]
<e' >"=<Ja(_rz(a.h)3d,£(.(z(a,4)) é'zﬁUué e‘?g(k)> & E(a, $)
@ é)

pl
where Z,j% extends to all cubes in A (a,b,c') and UGk  is defined
like in Section 3 by means of the interaction polynamial P .

Then we have
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Theorem 9 . The following estimate holds
o e“’f“">¢lH <Y _Z €3 [olao (P~B(Yn) X ) — olao(P)]
wheTe &oo(@®) is the lattice pressure associated to the interaction
polynomial Q(X). For the finction @(@;4) we have

Lo G €(R;8) =0,
where £->e0 means both b1 and b2 ->e0 , the same for a — oo

Using Griffiths correlation inequalities Theorem 9 gives us bounds

in the infinite volume limit for all lattice Schwinger functions.

6. APPLICATIONS

In the P2 case no lattice cutoff is necessary. If we consider
an interaction of the type P=Q-AX with Q even and bounded below,
then the infinite volume limit for the half-Dirichlet Schwinger functions
ELQ] can be obtained through Nelson monotonicity theorem [26] - Then
the exponential bound in the form analé)gous to Theorem 9 is expressed
as follows.

Theorem 10 . Call < > the half-Dirichlet infinite volume limit for
the interaction P=Q-AX . For 4 € Co (R?) , h20, we have

<e?® 5 ¢ oxp [ [ ool P-A(X) — Aol P>] dlx

In the following we will need same properties of the pressure o 4
as a function of the external field A

Proposition 11 . Let o{w(A) be the pressure associated to the interaction
Q-1X with Q even bounded below. Then
a) WalA) is convex and continuous in =\ and increasing for A2,

b) The left and right derivatives, defined by

HEMY= Lo £ [da0) - aall-6)] | HOHA) = L £ [dethte) —deol)] |
£-50+ €»0"

exist for any A and are equal almost everywhere.
) For A20 we have
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H¥(AY = v et [am(ite) = V)] |
¢%0
therefore M“(A) is upper semicontimious in A
M@ ()= M¥(At0) , = Az0.

d) For A>»0 we have

nomy= gup £ [dw D~ Aw(A-€)]
therefore H®(A) is lower semicontinuous in A

MO = MP(A-0) , fn M50 .
e) M¥(x) and M™(A) are increasing in A for 120 , moreover
MO 20 falz20 | H7(N) 20 fa d>0.

f) We have also

MEA) € MM (A) € M) for A<d), and M®)= Hw).

g) tleoA)= Heo(=A) , MM (A) = - HY () -
h) If Q is a fourth order polynomial then M®#X(A)=HMA)=HA) for
A0 ,and M(A) is concave in X for ) 20O.

Properties a),...,g) are standard statistical mechanics results [30],
property h) follows from the classical Ising approximation of Simon
and Criffiths [35].

Like in statistical mechanics, see also [34], we have

Proposition 12 . For the infinite volume half-Dirichlet state < > we have
MY = <@(x)>= MO0)  Jo d>0.

Proposition 13 . (Simon [32])

a) The truncated two point finction 33 (x-1)= <¢N@(s)> - H/U"",
is decreasing to a positive constant ¢ oas jx-yl—> o .

b) The Wightman theory associated to the Euclidean state € > has a
unique vacuum if and only if 0 .

Now we can state our first main result of this Section

—198—



Theorem 14 . The long range order c2 is related to the right and left
derivatives of the pressure through
€2 ¢ MO ()2 - MNP fn Aso |
¢ € M¥(0)? fo =0 -
Remarks. M®’(0)= & ML) is the spontaneocus magnetization [3] -
We believe that the equalities hold, like in the Ising model, but
it seems very difficult to prove it in the quantum field theory case.
Let us sketch the proof of Theorem 14.
From the convexity of the pressure (Proposition 11) and
Proposition 12, we have

oy (M4 R) = 0l (M) € & [Bheo(r+B) -0 V)27 € £ M(142)

for Oéaéz,—z>0~
Put  L(x)= & ¥, (x), £>0, in Theorem 10, where X, is characteristic
function of the region A in R* . By Griffiths inequalities we have
in general s
"i oxp <@¥R)D* < Lexp @lh) > .
From Proposition 13, we have
LRAX)> = (cz(,\w- MZ(A)) 1z
therefore collecting all results _ —
L oaap [Z Al (s tin)t ] = cp [ £ ) Hli+ L) ]
If we take the logarithm, divide by |A) , let /A]l>= and then Z-0
we obtain immediately the results of the theorem.
A simple consequence of Theorem 14 and Proposition 13 is the
following

Theorem 15 . If the pressure is differentiable in A , i.e. Mq, =M,
then the Wightman theory, associated to the half-Dirichlet Q-AX ,
has a wmique vacuum,

In particular, since for quartic interaction Q and A#0 the

pressure is differentiable by a result of Simon and Griffiths [35] , see
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Proposition 11.h, we can have a simple proof of the following result
of Simon B'ﬂ , for which we do not use the Lee-Yang theorem but only

Theorem 15.

Theorem 16 . (Simon [34]) The Wightman theory, associated to the half-
Dirichlet Q-)\X , for Q of fourth order, has a unique vacam for A#0 .

This kind of proof is very similar to analogous results in
statistical mechanics [29].

Finally let us make few remarks about the role of field stremngth
renormalization in \Qz .

Let us consider the infinite volume limit of the lattice cut off
half-Dirichlet theory. Thewusing the analog of Theorem 9 in four dimensions
and exploiting the convexity of the pressure, like in the proof of

Theorem 14, we have

Theorem 17. Call < Py the infinite volume half-Dirichlet state
for the interaction Q- AX , then the following estimate hold

@y o Ml M(A+Z)

>
where

RecS(RY), 0chtncd LRl = Z 4 2(h) | HU+T)= <G, 1 .

This theorem shows that in order to get uniform bounds on the lattice
cutoff infinite volume Schwinger functions it is enough to control the
one point function (the magnetization) in the external field A. We
explained in Section 2 that the renormalization constants Zl’ Z and
éw? can be chosen to be independent of )\ , therefore by GIS
inequalities M(A) is concave in A for A2o . But M()\) must be
also increasing therefore by combining convexity and increase of M(J)

with Theorem 17, we have

Theorem 18 . If for some fixed value Mo >¢ the magnetization M(Ag
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goes to zero or infinity, as the lattice spacing €0 , then M()A)
must go to zero or infinity for all values of A0 . As a consequence
all Schwinger functions go to zero or infinity.

The last part of the theorem follows from the fact that
<Lxpl(B)>, >4 as E-o0 if M(X)-> 0 , or from
Griffiths inequalities if M(A) - oo .

This shows that it is enough to control the magnetization for
one value Ao >0 of ) .

As far as the uniform bounds are concerned the case MlAo)— o0
can be easily cured by an additional field strength renormalization,
which is equivalent to a chamge in the renormalization constants (21,Z,ém).

In fact let us suppose <@ (xm)Dy,—2 ©® as €20,
then define Cope = ZF Qg ,
where the additional renormalization constant Z§  is defined in such
a way that .

Mo = < Qru (Tn) Dy, = Z* <21y,
for a fixed Mo>0 . Then clearly Zg -0 as &=0 .

Therefore we have
< e‘(’m“)a - <e

2t () l'&ll.)>2'st< eM’K%” Sy

> & <e

Since < @um (7n) D, stays finite as ¢-20  we still have bounds

for Qe of the type given in Theorem 17.

As a matter of fact the real danger comes from the eventuality
<@(TN5?0as £ 50 , and the choice of the field strength renormalization
Z, with Z, -0 as €-0, should prevent this disaster. Unfortunately
1 and Swm?,

there is a choice of Z such that M(As) assumes a fixed value Mo>0.

at present we are unable to prove in general that for given Z

Nevertheless the form of the bounds given by Theorem 17 suggests that
this should be a relevant question in the future investigation of the theory.
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Critical Behaviour in Terms of Probabilistic Concepts

G. Jona-Lasinio

Istituto di Fisica dell'Universitd - Roma
Gruppo GNSM - Roma

- Résumé
Le comportement des phénoménes critiques est habituellement défini en
terme de singularité des fonctions thermodynamiques. D'un point de vue micros-
copique, il est naturel d'aborder les ph&noménes critiques directement en terme
de propriétés du procédé stochastique. Le but de cet article est de fournir
une caractérisation du phénoméne critique @ 1'aide de concepts et de méthodes
appartenant aux différentes branches de la théorie de la probabilité.

- Abstract

Critical behaviour is usually defined in terms of
singularities of thermodynamic functions., However from a mi-
croscopic stand point it is natural to approach criticality
directly in terms of properties of the stochastic process un
derlying the statistical description. The purpose of this pa
per is to provide a characterization of criticality using con
cepts and methods typical of various branches of probability

theory.

1. - Introduction

In recent years considerable progress has been made
towards a theoretical understanding of critical phenomena.
The concept of renormalization group has provided the key
ideas on which a very interesting qualitative and to a certain
extent quantitative picture of critical behaviour has been
built. From the mathematical stand point the techniques employ

ed are entirely heuristic and, at first look, rather esoteric.

Paper presented at the Intermational Colloquium on Mathematical
Methods in Quantum Field Theory - Marseille, June 23-27, 1975
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However it has been recently recognized that the renormaliza-
tion group approach is closely related to well known problems

in probability theory and that in fact implies a generalization
of some probabilistic methods.(l) What is involved is a syste
matic extension of limit theorems for stationary random fields,
Once this connection with limit theorems is established it be
comes very natural to exploit further the probabilistic point

of view., Behind any characterization of critical behaviour

there is the idea of long range correlations among the fluc-
tuating variables. Since the decay of correlations is related

to the ergodic and mixing properties of a stationary process
(considered as a dynamical system with respect to the transla
tion 9perator) it is natural to inquire whether it is possible
to describe criticality in terms of those properties. A question
in this direction was raised some time ago in the context of
Ising models by Di Liberto, Gallavotti and Russo(z) in a paper
dealing with the Bermoullicity of such systems. Since they

were able to prove Bernoullicity only away from the critical
point they considered the possibility of distinguishing criti-~
cal from non critical systems in terms of failure of the iso
morphism with a Bernoulli scheme. However it is now known that
the two-dimensional Ising model is Bermoulli also at the criti
cal point.(a) It 1s therefore necessary to look for a different
property. In the following we shall argue that failure of strong
mixing is what discriminates critical from non critical behaviour.
The strong mixing property is interesting because it is strictly
connected with limit theorems for the underlying random field.
Actually it is through limit theorems that one obtains a defi-

nite indication that strong mixing is the relevant concept in
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volved in critical systems, In this way the probabilistic in-
terpretation of the renormalization group becomes part of a
more articulate description in which criticality is characte-
rized directly in terms of properties of the stochastic pro-
cesses underlying the microscopic description of thermodynamic
phenomena.

The plan of the paper is as follows: in Section 2
we review the probabilistic significance of the renormaliza-
tion group and we introduce the concept of stable random
field which corresponds to the usual notion of fixed point
Hamiltonian. In Section 3, we discuss the notions of complete
regularity and strong mixing. In Section 4, we present the
argument showing that violation of strong mixing provides a
demarcation line between critical and non critical behaviour.
In Section 5, we give two concrete examples to illustrate va-

rious aspects of the problem.

2, - Stable Random Fields

To visualize the problem in a simple way, consider a
one-dimensional lattice at each point of which is associated
a real random variable XI‘.’ This system will be described by
a translational invariant measure }L in the space K:Tr R 4
where R is the real line. C.GZ
Construct now a new lattice by dividing the original
system into blocks containing L original variables and asso-

ciating with each block the random variable

¢ Me - E(MQ)
K | fh
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L —
=2 X
where MK ¢2-5/\K (8 //\K

Lomn i e B oeaen Bl omues B s IS menen B s 4
X
§

To the new lattice will be associated a new measure }‘L

which can be written symbolically

8 1
.)LL . H L )&
HE represents the transformation we have just described., If
g is properly chosen, it may happen that by repeating the
same operation indefinitely, we obtain convergence to a limit

measure

plo= bam  HIp .

L >

Clearly
14
}Afw = H,_ )Af,o (2.2)

These equations have to be interpreted in the sense of weak
convergence. Eq.(2.2) can be written also in analytic form. For
L = 2 for example we obtain that it is equivalent to the fol-

lowing system of equations for joint distributions

L) ! [} [
Pn(g'l"')g”)'-'al_'u U ngl. PM\ (%‘I'—gz’;‘""')%'TZU}SZI) (2.3)

where @ = Z‘f/z
(2.3) can be viewed as an analog for dependent variables of the

usual convolution operation on distribution functions.
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A measure satisfying Eq.(2.2) will be called a Stable

Random Field., The reason for this terminology is that in many

respects (2.1) and (2,2) represent the natural gemeralization
to random fields of the classical problem of probability theory
which consists in determining the limit distributions for sums
of identically distributed independent random variables. It is
easy to verify that if }.l?» reduces to a product of idem-
tical factors, i.e. it describes a set of independent variables,

Eq.(2.2) reduces to the usual definition of a Stable Distribution

v(ax) = L dx'y (ae-x) ¥ (4.X)

where ay, a,, a are positive real numbers. The solutions of this

2
equation are easily found in terms of characteristic functions

-c|H¥
-_F(r)zec” 1ed <2

For Ol = 2 (¢ = 1) the solution is the normal distribution while
for o] #2 (g = OZT) we obtain distributions with infinite va-
riance. This property will be important later. All the distri

butions which have a given Vi as limit distribution, define

the domain of attractiom of V‘( .

In the present context the interesting case is when

)A!a, is not a product. In such a case /-‘-!o corresponds to a
scaling invariant system and this is the reason why Stable

Random Fields are relevant to critical phenomena. The aim of

a theory of Stable Random Fields is to classify the possible
solutions of Eq.(2.2) and to calculate their domain of at-

traction, i.,e, to determine for each P all the measures )4

which under the liwmit process (2.1) tend to floa . The domain
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of attraction to a large extent corresponds to the physicist's
notion of universality class. To develop such a theory is the

refore a task of great practical significance,

3. - The Lattice as a Dynamical System(4)(5)

To develop further our analysis we need an auxiliary
concept: this is the notion of abstract dynamical system. An

abstract dynamical system is a triple (K}}L,T) where (K,}l)

is a measure space and T a measure preserving transformation.

For our lattice system the space K was introduced in the pre-
vious section. A point X in K is an infinite sequence of

real numbers

x='“')x_|)XO)X1;"‘

T will be the shift operator whose action on K is defined by
X =X’
! / /
[
X'= "‘IX-I)XO}XII' S
'
Xi_ Xc-:
b
We shall use the notation Zd for the (”-algebra ge-

nerated by sets of the form

{X‘:IEAIJ""}XI;GAU\} agh¢.--giug b

where A is a Borel set on the real line,
]
The description of the lattice as a dynamical system
is interesting within our context because it leads to a very na-

tural characterization of criticality, In the physicist's con-
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ception the critical point is associated with the idea of long
range correlations which in the language of stochastic proces-
ges means a stronger dependence of the random variables X(‘ if
compared with non critical situations. In the theory of stocha-
stic processes it is customary to introduce a hierarchy of de-

grees of dependence for the X *

. in terms of mixing properties

of the dynamical system (K,)L, T) . For our purpose the following

properties appear as the relevant omes
a) Mixing
im -— (A) (ES) =0
un g (ANR) - MAR
A€ Z_:.
B e ?‘_"_M
b) Strong Mixing
lim Sup I)A(AHB) —)*(A))A(B)l =
T e
BEZ:

= lim CA(n) =0
n-—» o

O{(n) is called the mixing coefficient.

¢) Complete Regularity

. 1 —0
Let ’Vl( ) be a function measurable with respect to Z_ and
-0

(2)

-0
lyl a function measurable with respect Z"M . Assume that

E(/Vl(n) =E('Vzm) =0
=(19")-=(11) -

[
.
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where E denotes the expectation value. Functions hav-

ing these properties clearly define Hilbert spaces with respect
to the scalar product induced by E « With an obvious no-
tation we indicate these spaces H~:n and H:Q « A system is then

completely regular if

lim Sup I E (/?m /?(zl)) -

n—>e e H°

@, 4
wreH,

= lim g(M) =0
N~y o

S’(ﬂ)is also called the maximal correlation coefficient, a), b), c)
describe situations of increasing statistical independences*
As we will show in the next sectiom our previous de-

scription of the critical point in terms of Stable Random Fields

implies a violation of property b) (and therefore of property c))

i.e. at the critical point lim Q(M) #o .
n —> o9

4. - Violation of Strong Mixing

We begin by collecting some facts which are immediate

consequences of the description presented in section 2. Accord
ing to our point of view a measure is critical if ?=2'u HY
M Mo L0 &

is non trivial in the sense that it is not a product measure.,

*)

In the literature the term '"complete regularity”" is sometimes
used for different properties, Here we have followed the ter-
minology of ref.(5).
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So we expect }Aso to have a non trivial covariance function.

This implies that

L L
lim E(‘SK 'SK,) = Finite K # ! (4.1)
L-» oo
A straightforward argument then shows that for this equation to

held it is necessary that

% [ E(Xl X.)) - E(X,)zj = Infinite (4.2)

Therefore the existence of }Aw implies the usual physicist's
picture of long range correlations.
Furthermore if EGX‘ -E(x(-)rj ts finite one also ob-

tains that

Il.i-n;oo E (lgi ,7') = Finite (4.3)

Therefore the 1imit distribution for a one-block variable has
finite variance,
We now outline the argument leading to (4.2) and (4.3).

From the definition of the block-variable f we have
{at1)L

L L (avi)L
L ol Z_lxl._ E XL) ,,._.HX' _E( XJ)
E ( $o ‘fm) =B Lf/;(Z“ _Z'i ,)_9/;_ =

=<2 2 R(i-)
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where  R(i - §) = E(x,x) - E(x.)>
i%j i

Therefore

L=t

E(S: f:) = —‘?—.' Z R (e) (4.4)
R N WY
Since g}l Eq.(4.2) follows immediately by requiring that the 1i
mit L —» 0O be finite,
Similarly __ L L -
() =F Z%':X"'E (£.%) XX~ EEZX)

L&/ 2 L-?/z

L-1
=% [LE(x-E6N)  +2 ;:'(L-e)R[e)] @

From the previous discussion the second term in brackets

divided by L‘ isfinite for large L. Thus from the finiteness of
L

the variance of x, it follows that also the variance of ? is

finite as L => 00 .

To show that Eq.s.(4.2) and (4.3) imply violation of strong
mixing we need some connection between mixing properties, long ran
ge behavior of correlations and limit theorems.We first notice that
from the scali ties'® of E(S047) for 1 it foll

rom aling properti o kil o ?ﬂl or large n it follows
s —’ - -
that asymptotically R (C) o ( .
From the analysis of complete regularity carried out in

ref.(5) we can easily see that the following proposition holds

-a
I-1If R(t)-[:w! with ad 1, then (K, , T) violates complete
regularity.

A critical system with 9} 1 therefore violates complete

regularity. The limiting case g = 1 cannot be decided in general.
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The commection with strong mixing is now given by the

(4) (5)

two propositions

II - If (K,)b, T) is a Gaussian process, then®™ (1)< &€ () £ 2T ol(n)

This means that for a Gaussian process strong mixing and
complete regularity coincide and violation of the latter implies

violation of the first.

III - If (K, M, T) is strongly mixing then the limit distribution of

(8
the one-block variable 'g is a stable distribution. If the lat-

ter distribution has exponent ® , then the normalization factar

/
is Lkh{L) where h(L) is a slowly varying function as L=> &

This theorem takes care of non-Gaussian criticdl processes.
Consider in fact a general process with a non-Gaussian one-block 1li-
mit distribution. Since, as we have seen in section 2, all the sta-
ble distributions except the Gaussian, have infinite variance, Eq.
(4.3) and the above theorem imply violation of strong mixing. Of
course the finiteness of E ('Xc'E(X') |z) is physically quite na-
tural., Some comments are in order. The last case is usually consi-
dered as the most interesting for physics. This belief is based on
experience with the remormalization group. A paradigmatic case is
the two~-dimensional Ising model where one has indications that the
one=block limit distribution is non Gaussian and non stable.(7) Al-
though our analysis was carried out im the ome-dimensional case there
seems to be no reason of principle forbidding its extension to
higher dimensional systems,

As a further comment we would like to point out the inte
rest of the second pa.t of theorem III, It states that for strong

mixing systems the normalization factors for the block-variables
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are essentially the same as for the independent variable case,
This means that even if the one-block distribution is Gaussian,
an unconventional normalization is already a sufficient sign of
violation of strong mixing.

For non critical systems we expect strong mixing to
hold, Considering again Ising models, it has been shown in (7)
that the central limit theorem is valid away from the critical

. . ¢ 1.
point and t at./AO, reduces to a product measure for‘g 1

5. = Examples

In this section we discuss two explicit examples (A.
and B, below) of non Gaussian processes. The first, as pointed
out elsewhere,(s) provides a nice example of a process leading
thb a non Gaussian Stable Random Field. The second example shows
that it is possible to violate complete regularity without vio-
lating strong mixing. However in this case a pathology arises be=-
cause it will not be possible to obtain a non singular one-block
distribution function and a finite two-block correlation function
using the same normalization for the block variables., Therefore

it does mot exist a ¢ leading to a semsible /lgo )

¥

A. This is a process well known to probabilists = , One starts

from a sequence of independent variables

=) ?-1) ?o, ?1)---'

normally distributed with unit variance. Then one constructs the

Gaussian process

-1
Yj = Z lKl-afK_‘_j

Kz-00
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which is characterized by the correlation function
: Y _— . .11-2a
R(i - j) =E(y,y,) > Ii-il
L A
The next step consists in considering the sequence

2
X =y = E(y?) (5.1)
j j i

The correlation function of (5.1) behaves asymptotically as

R([)2—> qu"’a
[/
and for a<g is not integrable. It can be shown that the norma-

lized sums L
ffL" Z._f Xe

o~L

where (U'L)“:_—_ E(IZ_LXJ?) , for % Zad -'Z do not satisfy the
central limit t:heoi:-e'm as L—=>&® | The characteristic function

of the limit distribution of KL can be calculated explicitely and
it turns out to be non Gaussian and with finite variance. The se-
quence (5.1) therefore violates strong mixing. For the details

of the calculation the reader is referred to (4) pag.384.

Since all the expectations of the form E(xixz... xn), ny 2,
can be calculated explicitely in terms of R({) it is not difficult
L L
to obtain also E(SK.;SK,_;'"SK.) as L=y 60 , i.e. it is possible

L : : =
to know all the moments cvf/4“° where in this case? = 4 (1-a).

9
B. The following model is due to DaVydov.( ) Consider a Markov

chain whose states are the integers. The transition matrix is
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defined as follows
Pamer = P—M.,-M—I = da Mo
PM;O =P—M,D = '—&M Mmoo

Poo =9 do=% 0< Y, < |

The probability of obtaining the state O after exactly n steps

is
foo =0

:F:(,:@M-l —(gM mnzz

with (;o=(3|= 1, BA\= 0(, d;... ql-l « This chain has a statiomary
distribution if Z~@ﬁ<”. The model is specified further by
o

chosing

_2-5
5::0: Am 2 0eSei (5.2)

If ?i is the state of the chain at time i, consider the new pro-

cess
x, = g(fi) (5.3)
vhere (k) = -g(-l) =1+ 1 g(0) =0

Gtearly Ixilvg 2, It can be shown that the correlation function
for the sequence (5.3) behaves asymptotically as R({) —> |{] -

18 => o0
However strong mixing is not violated. The distribution of the nor-
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melized sums 4
L2 X
g e =l
— B'--

"L3'

converge to a stable law with exponent & = 1 +$ and BI;-—P'n L—
On the other hand the variance of 2 X, has the asymptotic form
ot —> 1~

L= -
Therefore if (J "is taken as the normalization factor we obtain =
finite two-block correlation but the one-block limit distribution

becomes singular,
In a subsequent paper in collaboration with M.Cassandro
we shall consider multidimensional processes and give additional

examples,

I wish to thank-G.Gallavotti for discussing on several

occasions the ideas presented here.
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The :cp‘z: Field: Infinite Volume Limit and Bounds on the Physical Mass*
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RESUME On construit Ta Timite de volume infini des f‘cncté’cns de Schwinger
et des fonctions caractéristiques d'un champ :<° : pour 1&54
modéles P(?)2 pairs. On &tablit les bornes pour P(w@) = A
On utilise les bornes 4r déduiEe une borne supérieure pour la
masse physique de (A ‘Fo + 5 *°), dans la région d'une phase
unigue et une relation entre la masge physzque et 1a moyenne ( <P)
pour chague phase pure d'une théorie (A )2 v

+apl -,

* to appear in the Proceedings of the International Colloquium on Mathematical
Methods of Quantum Field Theory, Marseille, June 1975.
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In this article we report results involving the :cpz: field. We construct
the infinite volume limit of Schwinger functions and characteristic functions
involving the :cpz: field in even P(cp)2 models. We then establish bounds
on <:cp(x)z:> for P(o) = )‘cp4+ Ocpz-p.cp . These bounds are used to derive an
upper bound on the physical mass of (A cp4+ lJcpz)2 in the single phase region
and a relation between the physical mass and the field expectation <p> in each

pure phase of a ()\cp4)2 theory.

1. The Infinite Volume Limit for the :lpz: Field in Even Pl ]2 Models.

Wick powers involve polynomials containing infinite negative coefficients.
For this reason correlation inequalities for Wick powers appear to be consider-
ably more difficult (see Guerra, Rosen, Simon [4]; for small coupling Wick
powers have been studied by Schrader [9] by means of the cluster expansion).
We study the properties of the simplest Wick power, :tpz: . As :cpz': differs
from cpz only by an "infinite constant', we explore this fact to obtain the infinite

volume limit of Schwinger functions and characteristic functions involving the

:th: field in even P(cp)2 models (with maybe a linear term, as in [4]).

By ¢ we denote the free Euclidean field with mass m >0 in

2 space-time dimensions, @(f) = Scp(x)f(x)dzx s 2: (g) = S:cpz(x):g(x)dx .

We write < F(¢)>A = SF(QP) exP {- SA:P(CP(X)):dZX}duo

s

Sexp{- SA: P(op {x)): dzx}duo
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where P 1is an even polynomnial bounded from below, AC R2 , po is the

Gaussian measure associated with ¢, and F(¢p) is a functionof o .

We are mostly going to work with Half- or Full-Dirichlet boundary conditions

HD
[4] and we will denote the respective finite volume expectations by < > ,

A
< >]; . £ will denote the set of infinitely differentiable functions on R? with

compact support, JS(A) the subset of functions in 5 with supportin 4,

and o’ the set of infinitely differentiable functions in RZ which decrease

faster than any inverse power at infinity.

An application of Griffiths inequalities [4] yields:

Theorem 1: Let g€ S(A). Then

2 2
a) <&'® .(g))i-ID < <e'? ey g2 0

A

2 2
< .(g)%iD > <ei® :(g)i if g<0

b) If Ach ,

2 2
<e'? '(g’%\ms <e'® ‘(g)%D if g=20

2 2
Rl -(g)71\-I-D2 <e® -(g)>lf\}D if g<o0 .

(g)>:\3 in the case

2
We also study the Full-Dirichlet expectation < ¥ D

P(ep) = ch4 + ocpz (with maybe a linear term, as in [4]), where : :D denotes

Wick ordering with respect to the Dirichlet covariance SA D - We will use

S for the free covariance, As

:cpZ:D(go = 1p2:(g) + SA[S(x-x) - 8§ plx x)]egxa’x |
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and [S(x-x) - SA, D(i,x)] € LP (A, dzx) for all p<e
with [S(x-x) - SA pl* x)]~0 as A” r? [4].,

it follows that

2 2
lm , <e'® :D(g)%) = lim, <e'¥ ’(g)f
AR AR

if the limits exist (and if one of them exists so does the other). It suffices

We then have

:97:(g)D
therefore to consider <e&'® ° gﬁ :

Theorem 1’ : Let P(p) = hcp4 + crcpz , and g€bB(A). Then

2
a) <e'cp '(g)%) < <e’ < <e

2
@ :(g){m if g=20

9%(g),
A

2 2 2
<e'? -(g)>;\3 3 <e'® =(g)71\'ID s <eo'® :(g)i if g<0

b) If Ach,

2 2
<e'? ’(g)%)s <e'? '(g)iD, if g=0

2 2
<i?HBD, o@D g<0
A A
;02 (@HD _ :9%:(g)D 2, o2

According to Theorem 1b (1'b), <e'® 8 >A (< &P g>A , P@)=ip+ton)
is monotone increasingin A for g2 0 and monotone decreasingin A for
g<0, A containing the support of g. The study of the infinite volume lirnit
is completed by obtaining bounds uniform in A.

Theorem 2: Let g¢€ 49(1\0) s Wwhere AO is a finite union of unit squares,

—226—



and let ADA - There exists a continuous norm || "s on o such that
given 0<c <o there exists 0<d<e such that "g"s <c implies
:0%:(g) HD
|< &P e >I\ lS d. Moreover d depends onlyon ¢ and is independent of
A and A .
o

To prove the theorem we use

3

c02: c0?: o2
|<e.cp .(g)%\-ID| < (< & @ .(2g+)>}\-ID) (<e-.cp .(Zg_)%—ID)

where g, . g are the positive and negative parts of Re g, the real
part of g(Reg=g+-g » By 8 20,g+g =0). The first term is
estimated by an argument of Frohlich [1] . To estimate the second term we

use the fact that

2 2
<o i® :(Zg_)%-ID < <ei® :(Zg_)%-I.D

0"
for all AD Ao (Theorem 1b) .

Theorems 1 and 2 lead to the infinite volume Schwinger functions via Vitali's
theorem, as discussed by Frohlich [1].

. 2 2 HD
Theorem 3: Let f f gl,..,ng.D. Then <cp(f1).....q>(fn).cp .(gl)...:p.(%n)i

oty
converges as A/ R2 , and there exists a continuous norm || "s on o such
that the infinite volume Schwinger functions satisfy the bound

l<o(g). - -2 ):0% (8- - 0 stg B oI5 Pat g Tl Ul ol

for some constant ¢ . Moreover, they satisfy the Osterwalder-Schrader
axioms and thus can be analytically continued to Lorentz invariant Wightman

functions.
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Remark: Theorems 2 and 3 are also true for the Full-Dirichlet expectations

4 2
when Pp)=Ap +0¢ .

For further details see Klein and Landau [5]

. Bounds on <:co[x]2:>

From now on we will denote by < >=lim < >,
A’RZ A

From Theorem™3, < :cpzz(g)> ] 1im2< :cpzz(g)i exists and by translation
AR

invariance <:cp(x)2:> is a finite number Yy = <:cp(0)2:> . The integration

by parts formula [3] gives us: *

<o’y +< (s 0o % P y:d’yy = < ({s, e 01 Plo(y):a’y)®x =0

With P(p) = )\cp4 + 0‘cp2 - pp we get

2 2
< :p(x) 3 +12 <SSA(x, y)xpz(v):dZYi + ZUSSA(x, Y)zd yz0
Taking the limit as A~ R2 and using translation invariance we have

Lemmal: Ina (ch4 + crcp2 - p,l:p)2 infinite volume theory with either Half or

Full-Dirichlet boundary conditions,

1 [}

2
<p@> 2 o= — T
s 2m mZ+ (3\/p)

* Here we use Full-Dirichlet boundary conditions; SA (x,y) is the Dirichlet
covariance and the Wick ordering : : is with respect to SA(x, y) . In the
Half-Dirichlet case there is a slight modification due to the fact that the Wick

ordering is done with respect to the free covariance,
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Remark: Our proof of Lemma 1 depends crucially on the translation

invariance of the infinite volume expectation. The same proof gives a lower
bound on < :cp(x)2:> for a finite volume theory with Full-periodic boundary
conditions (i.e. the Wick ordering is with respect to the periodic covariance)

since omne again has the required "translation invariance.

Similar methods also prove the following two lemmas. We will write

~ i 2
glp) = Selpxg(x)d x5 :9°(g): = olg) - <cp(g)2>0 , where <> denotes the

free (no interaction) expectation, i.e. P=0.
Lemma 2: Let g€b. Ina ()@4-}1@)2 infinite volume theory with either

Half or Full-Dirichlet boundary conditions.

~ 2
2 3¢ .2 Iz 2 a2 2
<zplg) : >+ 5 \dp <:p(0)7:>2 g(0) <op(0) >
w S ( 2! (2))2

Lemma 3: Let 0<gé€f. Ina (Acp4+ ccpz- p:p)z infinite volume limit theory

with either Half or Full-Dirichlet boundary conditions,
~ 2 2
l<:0(@)% > | < 3 (0)2 {a+a /Tl'mi))< :9(0)%1> +(0 /2mm’) }

+ lz Sdzp ]“5(2)|2|61< :cp(O)z: >+o] .
2n 2 22
(P +m))

In particular |< :cp(g)z: >| remains bounded as g+ 6 .

For further details see Klein and Landau [6, 5].
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3. An Upper Bound on the Physical Mass of (hp4+ocpz)2 in the Single Phase Region.

We use a small distance limiting procedure lim <:p(x)p (y):> rather
x-y|*0

than the more usual large distance behavior lim <@(x)p(y)> to obtain
X~y =X

information on the physical mass. Lemma 3 tells us that

|<:o=)o(y): >l = | S(x-y) - Sm (x-y)l remains bounded as |x—y|-’0 , where
[

S(x-y) is the covariance of the infinite volume theory and Sm(x-y) denotes the

covariance of the free field with mass m . The most general such covariance

S(x-y) is given by the analytic continuation of the Kallen-Lehmann representation:

@™

J R
See-y) = { dp(m) @a)" s _(x-y) +<pF + 2 a-0780x-y)

()} (14+m2Z)N j=0
© 1 1
where dp (m) <o and S dp(m)ln= <o (restriction particular to two
0 2.NH 0 m
(I+m")

space-time dimensions). The bound of Lemma 3 imposes further restriction

on the form of S.

Lemma 4: Let 0<gtclh, Sg(x)dzx =1, gn(x) = nzg(nx) R

-]
2
Suppose |< :cp(gn) > I <c forall n. Then S(x-y)-= S dp(m)Sm(x-y) +<cp(0)>2+a )
0

@ -1
where g dpo(m) =1, S dp (m) |1n m|<'=° . It follows that 1im<:cp(gn)z:> exists
0 0

n—to

my

and equals 2171‘ Sodp(m) lnH + <cp(0)>2 +a

4
In the case of 2 (A + cmpz)2 theory in the single phase region, <(0)>=0

and a=0. We then have
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Lemma 5: Let S(x-y) =S dp(m)Sm(x) » my 20, S dp(m) =1.

™ ™

Let 0<g€l, Sg(x)dzx =1, gn(x) = nzg(nx) . If lim <:cp(gn)2:> =y, then
n-+eo

™ gAY

with equality holding if and only if p= 6(m-n11) .
)

Let us prove this lemma. We assume inl> 0 (otherwise there is nothing

to prove). Let

) 2
stg,) = {stx-ylg g (na*xa’y = <v(e )®>

Since S dp(m) =1, S(gn) < Sm (gn) with equality holding only if p= 8(m-m;) .
m- 1
1

Mg

i _1 = [
Thus y < lim [Sml(gn) - Smo(gn)] —ann . This finishes the proof.

&

We now want to combine Lemma 5 with the lower bound of Lemma 1. The
technical complication that arises is the identification of <:cp(x)2:> with

lim <: cp(gn)2:> . One may formulate the problem as follows: Is it true that
nte

lim lim_<:op(g )2:> = lim_lim <:9(g )2:>(= <:cp(0)2:>) ?
n-oe AR o AR n-e n

It is interesting to notice that we don't need the equality, it will suffice to show:

Lemma 6: Let 0<gc¢lB, Sg(x)dzx =1, gn(x) = nzg(nx) . Ina (lcp4+6cp2— u.cp)2

infinite volume theory with either Half or Full-Dirichlet boundary conditions,

lim <:plg ) %> 2 <:p(0)’:>

n-+o
The proof uses the existence of the infinite volume limits, Griffiths

inequalities and the translation invariance of the infinite volume theory. We
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would like to remark that using the methods in Klein and Landau [5] plus the

results of Glimm and Jaffe [2] we can prove equality.

We are now ready for
. NP 4 2 . g
Theorem 4: Consider the infinite volume (\p +0@ ) 2 theory in the single
phase region, obtained with either Half or Full-Dirichlet boundary conditions.

Let m denote the physical mass and m_ the bare mass. Then
phys [}

m
- ths g
H —m < ex {moz Y /n)}

. 4 - :
In particular mphys < m fora (o )2 theory in the single phase
region.

ii) In the case of Half-Dirichlet boundary conditions and 020, one also has

m
phys 1+20
m_ <J n_:%

The proof of part i) follows from Lemmas 1, 3,4, 5 and 6. To prove part

ii) we use the equivalence (A, o, m )~(, O, mc) if

2 2 2
T " ™Mo E2N o
g= — + > In ;o—z which is valid for Half-Dirichlet boundary conditions

For further details see Klein and Landau [6].

A Relation between m and <®> in each pure phase of a (kq:4iz theory.

Phys

We now use the techniques of sections 2 and 3 to obtain information relating

the physical mass mphys and the field expectation <@> in each pure phase
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4
of (A )2 . More precisely, we consider first a 3@4 - poy interaction with

p>0. Then it is known (Simon [7]) that the ground state is unique. Let mu‘
be the physical mass and < 9>, the field expectation. Then

lim m ,<cp>+=1i.rn <>

rnhs
L AN S )

The limits exist since both m and <cpi are non-negative and monotone
1%

decreasing as p~0. <cpi decreases by the Griffiths inequalities and m

decreases by the GHS inequalities (Simon [8]). Our result is

2
Theorem 5: 2;1._ < exp {2'T< cp>l|_, }

s 1+(1'rm§ /3%)

and consequently

2
mphzs < exp { 2rr<cp?'_ }
™, 1+(1'rm(2)/ 32)

Remark: Note that in contrast to the result mphzs <1 for ()‘cp‘t)Z in the

m
o

single phase region, we see that it is possible for mghxs tobe >1

m
o

provided <q>>+ is sufficiently large.

To prove Theorem 6, we recall that the uniqueness of the ground state

implies a =0 and thus

S{x-y) = S dplmis_(x) + '<cp(0)>§
m
u

in the representation of Lemma 4. We may assume mu >0,
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From Lemma 2

lim <: cp(g)z:> + 3% <:cp(0)2:> 2<cp(0)>2
g6 mme K °

Thus from Lemma 6

(1431 ,) lim <:p(g)?i> 2 <p(0)F
mm g6 H a

It follows that

@ <cp(0)>Z
Hnig dphn)[snﬁg)-snégﬂz'igﬁgfi
g*8*m [ o

3

An application of Lemma 5 now completes the proof.

For further details see Klein and Landau [6].
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CONVERGENCE OF THE VACUUM ENERGY DENSITY, -~BOUNDS AND
EXISTENCE OF WIGHTMAN FUNCTIONS FOR THE YUI(I\Ir{A2 MODEL

0liver A. McBryan

Department of Mathematics
Rockefeller University
New York, N.Y. 10021

RESUME : On &tudie la théorie de Yukawa & deux dimensions.
On obtient 1a convergence de 1a densité d'énergie du vide EL /8.
On montre les bornes —tf’:

Wy (D > £9(F) £ c(f) (Hg -Eg#1)
et les bornes de Frohlich pour les fonctions génératrices.
Dans la Timite du volume infini, les champs satisfont les
bornes correspondantes, les champs de Boson sont auto-adjoints
pour k?rée] et les fonctions de Wightman existent comme distributions
tempérées.
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Cogvergence of the Vacuum Energy Density, ¢-bounds and

1.
Existence of Wightman Functiens for the Yukawa2 Model

)

Oliver A, McBryan*
Department of Mathematics
Rockefeller University
New York, N.Y. 10021

and
. = = *%
Ecole D'Ete de Physique Theorique,

74310 Les Houches, France
Abstract: We study the Yukawa quantum field theory in two dimensional
space-time. Denote by Hz the Hamiltonian for volume £ suggested by
perturbation theory (to second order) and by E the corresponding vacuum
energy, El = inf spectrum H%' For each finite % we show that the subspace
of vacuum vector(s) 92 for Hl is not orthogonal to the free vacuum QO'
As a consequence we obtain convergence of the vacuum energy density Ei/l
(and of the euclidean pressure) as the volume £ tends to infinity. We
also prove ¢-bounds, uniform in the volume, dominating time-zero fields by

the Hamiltonian:

|, ()]s 26(E) < e(f) (Hy-EpHD),

as well as corresponding euclidean statements — Frohlich bounds for the
generating functions. In the infinite volume limit, the fields satisfy the
corresponding bounds, the boson fields are self-adjoint for real f amd the

Wightman functions for the theory exist as tempered distributioms.

1 This paper expands on material presented at the International
Colloquium on Quantum Fields, C.N.R.S. Marseille, June 1975.
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I. Introduction

We study the Yukawa model for boson-fermion interactions in two

space-time dimensions. Formally the finite volume Hamlltonian is given by:

L/2
- 1,22 02 0x): - 22
B, = H0+>.HI()Z,)—2 A sz J-z/z dx :¢°(x): - A"8E, (2),

o/2
1.1) HI w®) = J dx o (x),
/2

2 . B
bmy, = -m 7 [apel 7, 6E, () = —<HI(2')H01HI(2)>O’

where ¢,) describe free boson, fermion fields with masses uo,m respec—

0
tively. The logarithmically divergent renmormalization constants 5m§

GEZ(_!,) are required because of ultraviolet divergences in the vacuum energy
and boson mass. All of our results apply equally to a pseudoscalar Yukawa
interaction. The Hamiltonlan (1.1) has been studied by Glimm [1,2] and by
Glimm and Jaffe [3,4] who showed that HR, may be defined as a limit (in
the resolvent sense) of corresponding momentum cutoff Hamiltonians HR,;K B

They show that the resulting operator H, is self-adjoint and bounded below

£
and that the vacuum energy Ey = inf spec H!, is an isolated eigenvalue of
finite multiplicity: For further details on the Hamiltonian formulation we
refer to Glimm and Jaffe [5]. Schrader [6] has shown that |E£] is bounded
by constx% and thus Qg = —ER'/R. 1s bounded uniformly in &. Other proofs
of this result, using euclidean or semi-euclidean techniques, have been

given by Brydges [7], McBryan [8], by Simon and Seiler [9] and by Magnen

and Seneor [10]. The principal results of this paper are to prove ;:onvergence

of ap as £+® and to show that the time-zero boson and fermion fields

are bounded by ’ﬁf, EH!L'ER,’ uniformly in the volume.

Theorem 1: The energy density a.!' = -E£/2. converges to a finite limit
¢, as £+,
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1
Theorem 2: Let fscgo (R7), suppt £ C(-%/2,%/2), £>1. Then for a

constant C and a sultable Schwartz space norm |"f|", both independent of
2 and f,
a.2) £, (], 0 < clll] @ .

For the ferml fields the bound (1.2) is trivial since lpa(f) is a
bounded operator for feL2 (,Rl). An immediate consequence of Theorem 2 is
the existence of infinite volume Wightman functions as tempered distributions
and existence of infinite volume Green's functions, see Glimm and Jaffe [11]
and Nelson [12]. We also obtain self-adjointness of the boson fields ¢(f),
£ e,J(RZ) real, on the physical Hilbert space, [11]. The proofs given in
[11] require only a slight modification because our bounds (1.2) involve
E
There are corresponding euclidean versioms of Theorems 1 and 2. For

Vet
<SZO,e ’ Qo>, we obtain

the Schwartz space norm |

[ rather than the Ll norm.

the euclidean pressure o Il = (tL)_lz
s

convergence as the space-time volume tf goes to Infinity (for the definition

t,00  Pr,p =
of Z. I3 we refer to McBryan, [8], and below):
s

Theorem 3: The euclidean pressure o e (tl)'lzt

converges to a as
t, % o

t,2+00 in any direction.

The euclidean version of the ¢-bounds are Frohlich bounds, [13], on the

generating functional for boson Schwinger functions:

-v -v
50®®) = Linm e SPe?Bg 5/ e t’£90>

t>mo

Theorem 4: For each f€C8° (R2) there is a constant c¢(f) with

Sl(edj(f)) < ec(f), uniformly in £ .

More genmeral bounds of the same form apply to generating functionals

which include also fermion operators. The bounds in Theorem 4 follow
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directly from Theorem 2 and the Feynman-Kac formula in the same way as for

P (¢)2 models.

In the case of the P(d:)2 model, Theorem 1 has been proved by
Guerra [14], using Nelson's symmetry, and Theorem 2 by Glimm and Jaffe [11];
an alternative proof of Theorem 2, using Nelson's symmetry, has been given
by Guerra, Rosen and Simon [15]. Our proofs for the Yukawa2 model also use
Nelson's symmetry, but there are two complications. It has not been shown
that the finite volume vacuum(s) 92 for HR- are not orthogonal to the
free vacuum Qo . The requirement that 420,9£> # 0 seems to be important
for the proof of Theorems 1,2 using a Feynman-Kac formula connecting the
free euclidean and relativistic Fock spaces. A second complication in the
Yukawa case 1s the presence of finite second order wave-function renormaliza—
tion terms in the Feynman-Kac formula which necessitate some care in the
use of Nelson's symmetry. Both problems would presumably be avoided by a
more natural Feynman-Kac formula for the Hilbert space defined by the
Wightman functions for Hl’ which already incorporates the wave-function

renormalization.

The principal technical estimate in this paper 1s a proof that
PJLQO # 0 where Pl denotes the projection operator onto the vacuum states
of sz
Theorem 5: The vacuum overlap PR,QO is nonzero for each finite & .

Our proof of Theorem 5 applies also to the ]I-‘(_d))2 model and in that
case provides an alternate to the original proof of Glimm and Jaffe [16]
~tH,
which used positivity preserving properties of e 2 . Our proof requires

only the Feynman-Kac formula and Euclidean invariance.

We prove Theorem 5 in section II and Theorems 1-4 in section IIL., For
further details on the euclidean formulation of the Yukawa model in the

Matthews-Salam representation we refer to Seiler [17] and to McBryamn [8,18],
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while for the definition of euclidean fermi fields and of the cutoff

Feynman-Kac formula we refer to Osterwalder and Schrader [19].
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II. The Vacuum Overlap
We begin this section with a brief discussion of the Feynman-KRac formula
for the Yukawaz model, see [19]. The renormalized momentum cutoff euclidean

action for this model is given by

2 t/2 ¢ 2/2 2
- s NP 2. 2,0 . .2
vt,z;K - >"VI,t,rL;K' "2 GmK f—t/Z J—g/z d x.‘PK(x) i 2 <'v1,t,!.;|<' s
t/2 , %/2
- 2_ y(2) (€8] 2 _ 2,-1;.2 ,2 -1
Vie 0 = J—t/Z J-z/z =¥ @Y @ (), Smt = - fap D).

Here ¢,W(i) are the momentum-cutoff euclidean fields defined im [19], and
we have denoted by K a momentum cutoff only in the space direction. Let

X and X' denote vectors in the positive time subspace é: of the euclidean

Fock space and let W be the unitary map defined in [19] from é; into the

o
relativistic Fock space - F . The Feynman-Kac formula takes the form:

~tHy W (t,2)

-V
@.1) (e “fuxt) = @ut/%x,e BEgt 20y, , t>o0,

where WK(t,l), the wavefunction renmormalization to second order, denotes
the difference between the Hamiltonian and Euclidean vacuum energy renormali-

zation constants

2
N <:V

2 = A
H H "H >t - — H
< I,%;k 0 I,k 2 I,t,%;k

2

A >

WK(t,J'L)

2.2)
~tH
Y =2¢a_ 0
= A<hp . B G-e O)E

>
I,03K

Ut is the unitary euclidean time translation by t and © is the unitary

involution defined in [19]. 1In order to exploit euclidean covariance, we
will need a form of (2.1) in which the momentum cutoff K has been removed.
The right-hand side of (2.1) is well-defined as k->oo and equals

-tH
(WX, e "yx') .  Also from (2.2) we see that WK(t,Z) converges to the
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-tH

finite constant W(t,R) =22<pg H(_)z(l—e 0y To treat the euclidean

H > .
I,% I,%
scalar product in (2.1), we first integrate out the fermions, using the
Matthews-Salam representation, and then we may pass to the limit k-+o

explicitly, [17). First we introduce some notation.

_f/"

Let +

denote the unlon for 0<n<oo of the sets of all sequences
F= {Fl, R A ,Fn} with elements ‘E::i():h are ordered pairs F_ (= )(ir, £,
where 1_€{0,1,2} and where f.€ #_1?_,_ 1f 1.=0 or f€ N;?+® c?
if 1 =1,2 (#::13_ = {f ELZ(RZ’ (k2+m2)3d2k) : £(x) =0 for xy < 0}), and
where 1f fr=0 for some T, then fr=0  for all riro . For any pair

Fr = (ir’fr) we define euclidean fields:

1,)

Y@, 1,.=12,

LD =Jd2x<l>(X)f(x), 1,.=0, or J(F) = Zjdzxw T
[+3

r a

and to each sequence F we assign the number n(F) = sup{r: fr#O}, a vector

X(F) in £+ by:

n (F)
X(F) = [, [ = I JE),

r=1

and a Schwinger function for the action V. 2ok by:
v

-v
2K,
S:,Z;K('F) = <QO'Z(F)e o Q> .

It is also convenient to define charge conjugation of a sequence F by

C:F"FC where F., if 41_=0, and

Fe,am+-r = Fr Fe,n(@)+1-r - G-ipYofn)s
if ir#O. We allow the inhomogeneous Lorentz group L(a,A) to act on F

by defining L:F>F where F _ = (ir,fL,r) and fL,r(x) = fr(L_]'x),
=0, £ ,@ =s®Wa D, -1, o £ @ -s@'La Y, -2,
where S(A) are the unitary rotation matrices defined in {19]. For con-
venience we let © denote time reversal, and we denote hy Ft’ F_l_’ a time

translation by t and a rotation by %’ respectively.
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Using the definition of the unitary involution € we can rewrite (2.1)

as

-tH

- ~W (t’R')
GX(F),e  BNEED) = S K

Fera,c,00%e/2® «

t,l;k
Seiler, [17], has shown that euclidean Schwinger functions comverge as K>+

and thus we obtain the limiting Feynman-Kac formula

-tH

2.3) (WX (F),e Jwa(rv ) -w(t,%)

P 1
- St,l(FtIZ,C,e’FtIZ)e

We now restrict the choice of allowed test functions to the subset :/_1’2(:_,'/:
of sequences such that each fr(x) has support in {x: %520, x1>2'/2}. By
an elementary generalization of the Reeh-Schlieder theorem, [20], vectors of
the form X(F), FEZ,L are total in £+ . Theorem 5 will follow easily

from the following lemma, in which we have used the notation Ox to denote

a space reflection,

Lemma 6: For fixed £, and Fe_?:_ Y then for all t>0:
k]

“tH —3tH
@.5 le = *wx®i? < le = *

—%tnL
Qlle WX(Fc,e n|.
X
Proof of Theorem 5: From the existence of vacuum vectors for H!.’ we know

and since W

that P, £#0. Thus since {X(F) :Fe } are total in g
R +,2 +

maps £+ into a dense subset of ;',' [19], it follows that there is an

F(l) 6.3/:_ 2 such that P!lWX(F('q')) # 0. From the functional calculus we
s
have
-,
PR. = st-lim e »
trm
tE

and thus multiplying both sides in Lemma 6 by e and letting t-—o00:

2 Q) ()
0 < frama O < e glizgmag g ¥
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proving that the vacuum overlap Pzﬂo 1s nonzero.

Proof of Lemma 6: We apply the Feymman-Kac formula (2.3) to the left-hand
side of (2.4), rotate by /2 and apply (2.3) again in reverse to obtain:

—tH,

-~ L
X e  WKE®) = 8y By oo | Fyyy PO

-8

= R ,e CWR(F

-W(t,L)HW(L,t)
t/2,¢,0,],-2/2"Fe/2, | ,~2/200° -

Using the Schwartz inequality to bound the scalar product, followed by
applying the Feynman-Kac formula (2.3) to each term, a further rotationm by
-W/2, and finally application of (2.3) once more to each term leads to

- tHz

0 0w
(WXCF),E wx(r)) .<_ ne Htn()lle tWX(Ft/Z,C,e,l,—’:/z’rtlz,l,‘zlz)"

x e—W(t,z)W(z, t)

= % —w(tsﬂ')
= zz,t!ssz,t(FtIZ,C,e,l,C,G’Ft/Z‘,_I_,C,B’FtIZ,C,B,J_,Ft/ZsJ_ €
;’s ¥ —W(t,L)

= Ze g :,z(Ftlz,e,ex'Ftlz,c,ex’Ftlz,c,e’F:/z) e

—-tH -tH
@ppe ) OE(G o SPe  HX(Eg g EN*
X X

where In the third line we have used the fact that C commutes with
translations and rotatioms; zt 3 represents the partition fumetion
g

V.8,
@y 7R .

—246—



III. Convergence of ay and the ¢-bounds

The linear upper and lower bounds [6~10] for E, ensure that the sequence

2
e, = -EE/!' 1s bounded. Thus to prove Theorem 1 it suffices to show:

Lemma 7: There is a positive constant ¢ such that a! =Za, - ¢/2 1s a

L]
2 2
monotone increasing function of & .

Proof: Because of the nonzero vacuum overlap we have

—tH
-E, = lim% @, e 290) .
t2o0

Now let 0<a<1. Then using the Feynman-Rac formula (2.3)

-tH
al _ -W(t,al)
(Qo,e Qo) = zt,a.!?,e
—W(t,a!,)
= Za.!l,,t:e
-afH

= @gee tno)e-W(t,aZ) +W(aL,t)

-%H

t,
= @pe )

ae-W(_t,a!L) +W(ak,t)
a -W(t,al) +W(al,t) - aW(2,t)
9,

ae—w(t,al) +W(al,t) -aW(L,t)

= Zt,!,

_tnz
= (ﬂos e no)

ae-w(t,az) +aW(t, ) +W(al,t) — aw(e,t)

where we have used the inequality (e,A“e) < (e,ae)a, 0<a<1l, Thus

+1im £ L{W(E,al) +aW(t,L) +W(al,t) -aW(2,00} .
o

By 2y

Since W(t,2) is bounded uniformly in t, it follows that the first two

terms in the bracket do not contribute. For the other terms note that
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-4E, -afH,

Wak,t) - aW(L,t) = <& tﬂaz(l—a-i'-ae —e Om >

(1-a) <H1,1:“(_)2111,\:>

= (1-a)ect
for some constant c¢. Thus
-Eaf < —a.Ez+(1-a)c N
from which we conclude that a;'E-(E2+c) /% satisfies
0<a<l1l, all &,
u.;' = a—% < s:paz<m .

It follows that a.i is monotonically convergent to a finite limit 0y and
clearly ap also converges to this limit.

The proof of Theorem 3 is now immediate, for from the previous argument

we have for O<a,b<1:

< 73 W(L,at) -bW(R,at) +bW(at,2) - abW(t,)
Zag,bt S Zpg® )
-1
aat,bf- < at,1+ (abt?) "{W(bL,at) -bW(R,at) +bW(at,) - abW(t,2)}
< at 2 + (abrl)_l{ (1-b)cat + (1-a)cbR}.
>
" = _e_c .
Thus ct’z = at’ Rt s 1s momotonme increasing in each variable separately
”
and since at,£ is bounded in t,%, both at,z and at’z converge to a

limit as t,2+>o. By inspection of the equations above it is clear that

this Iimit is Gyt

The ¢-hound of Theorem 2 is a special case of a more general result

for polynomial perturbations of H!. - Our proof is similar to that of
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Guerra, Rosen and Simomn, [15,21], for the P(¢)2 case, but requires a some-
what different treatment because we do not have convergence of BL H

2'(0"2'“@) to a finite limit.
Theorem B: Let W(f) = f dxf(x):Q(9(x)): where (1) f 1s measurable non-
negative with “flm <1 and suppt f = [a,b] (ii) H!,+Q2. is semi-bounded
2 = -
for all , Wwhere QR. "“[-2/2,2/2])’ Then for [a,blC(=%/2,2/2), £>1,

(3.1) W(£) C B, + const(lal +b] +1),

with the constant independent of £ or f. Whemever Oc€ [a,b], |a|+|b]

may be replaced in (3.1) by |b—a|.

Proof: We first suppose f to be a sum of step functions:

m
Sl i§1fix[ai—1,ai](x>’ El2l <8 a5 S = Siop S0I<T2 5

with 0_<_f1§1. Defining HR,O‘) EH!,+>‘QJL we obtain from a euclidean

rotation of the Feynman-Kac formula:

-t (Hp+H(£)) —35(2+2a)Ht m -(ay-ay_5)H (£)
0> QO> = Qo,e MTe
i=1

-3%{2-2b)H -
. ¢ tno>eW(R.,t) W(t,2)

Taking logarithms, dividing by t and allowing t>o0 we conclude:

(3.2)  -E@ +W(£) < 3 +1£1(a -3, e (£) +e,

2422 20 2 i

. -1 -
= - g >,
where & ) J1L1m 2 ]1:,(111().)), c 11.1:1+ :1p <EI, 2110 g We now

consider E r>0. TFrom equation (3.2) with f=0 we have:

L¥r ?

“Eorr

A

-!5132—!517.2+ram +4 c
(3.3)

—E£+ra.m +c,
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while from the monotonicity of ui we obtain:

-E = -E£+ Ob-r)az_r ","‘z

2-r
(3.4) = —E£+ (R-1) (a;z’_r-ai+c/(2,-r) -c/R) —r(a.i+c/£)
e —rui .

Applying the estimates (3.3), (3.4) to (3.2):
b 3
_E(H2+H(f)) < —E2+izl(ai - ai—l) (aw (fi) - um) +3e

(3.5)
+ @+ |b| —a+|.=.1|)((1.‘_D -og)/2 .

Note that e, (0)] -e is concave in ) and vanishes for ) =0 so that
a, (fi) <fia (1). Also by the monotonicity of tge> 0< ("m -‘%,)/z <

(am -ui)/Z, 2>1. Thus for a suitable constant independent of £ wor £f:

-E(H, +W(H) < —E2+const(lfl|l+ la| + || +1),

and since [f]; < [b-a| (for [ | <1), Theorem 8 follows by a limiting
argument. In the case that O€ [a,b] we obtain |b—al in place of

l]a| +|b] 1n the last equation as is evident from the last term im (3.5).

Corollary 9: Tet f be measurable, non-negative, lf"m< o and with

suppt £  (-2/2,2/2), £>1. Then

- < cllglfl @,

where C 1s independent of £ or £, and || £]|| =||(1+|x|)3f(x)||m .

Proof: Applying Theorem 8 for -"Tfl—- we obtain, with a constant independent
@

of f£,f:

WE < const(]a|+|b|+1)|]fl|m(ﬁ2+1) .
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(x) so that

(o o]
Now decompose f£(x) = _Eofi(x), £, = f(x)x{i_l,i]

-W(Ey)

{ A

const(2+2|i|)|fnm- (ﬁ£+1)

A

const (1 + Iil)_zl @+ le)sfi(x)llw (ﬁl"'l)-

Summing over 1 gives
-W(E) < const (J (1 + |1] )—z)supl a+ lxl)3fj|oo Cﬁ£+1)
i i
= const|| £]|| (ﬁz+l).

Remark: In addition to Theorem 1, where we have taken Q(¢) = ¢ in
Corollary 9, we may also take the case of Q(¢) = -_'.-:¢2(x): by results of

McBryan [22] and of Simon and Seiler [23], obtaining

£:0%:(6) < constlll£lll Bpra) -

Note added in preparation: Seller and Simon have also announced these

results at the Colloquium on Quantum Field Theory, CNRS Marseille, June 1975.
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RESUME On donne un résumé de la méthode WKB semi-classique. La m&thode
est appliquée pour trouver des solutions non-perturbatives des
équations de mouvement non-1linéaires classiques avec interac-
tions de plusieurs modéles. En particulier les solutions avec des
propriétés de particule.
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This is an overview of the semiclassical WKB
method which has been developed by R. DASHEN, B. HASSLACHER
and myself, in Ref. 1 and which can be applied to finding
solutions to field theories which are inaccessible to pertur-

bation techniques.

In particular, it is possible to find solutions
to the full non-linear interacting classical equations of
motion of various models, which behave like bound, stable field
configurations in space-time, with particle properties. The
question arises as to whether these solutions survive the pro-
cess of second guantization. In Ref. 1, we give a method for
answering that question, the accuracy of which depends both on
how much one knows about the classical problem, and the strength

of the coupling constant, in direct proportion.

Our method is based on the works of KELLER,
GUTZWILLER and MASLOV, who developed a general semi-classical
formalism for use in atomic physics. These techniques are directed
toward the computation of energy levels, or particle masses in
field theory. We approach the problem through the quantum
action principle in the Feynman path integral representations,
since this provides the most natural connection between the clas-
sical problem and its second quantized analogue. Also, since
we start from a Lagrangian formalism, any divergences that emerge

can be handled by standard renormalization techniques.
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For weak coupling, it was found that time-inde-
pendent classical solutions are interesting L2 . In the weak
coupling limit, our WKB quantization of static solutions to
classical field equations is equivalent to a number of other
schemes. The difference comes when one contemplates classical
motions which cannot be reduced to a time independent field.
That such solutions are interesting should be obvious from
the fact that the Bohr orbits of hydrogen are not time-inde-
pendent solutions to classical equations of motion but rather
are motions which are periodic in time. The real power of WKB
method is the quantization of motions analogous to Bohr orbits.
To find an example of how the semi-classical method works in

field theory, we have studied the sine-Gordon eguation in one

space and one time dimension.3 It is defined by the Lagrangian

mlo
%: —-%- (au.‘f)z + X [COS (‘f%) s IJ

(1)

and is completely solvable at the classical level : there exists
an algorithm : from which all solutions to the Lagrange equations
for CF can be constructed. In particular, to apply our quantiza-
tion method, we look for classical solutions which become parti-

cles when guantized. There are two types of these :

First, there is the soliton (and the antisoliton)
which is a solution that is time independent in its rest frame.
The other, which we call the doublet, is a soliton-antisoliton

bound state. In its rest frame, the doublet field oscillates
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periodically in time. Doublet solutions exist for a continuous
range of classical enerdies. The WKB method will quantize the
doublet energies, yielding a discrete spectrum of particle

masses.

The particle spectrum of the sine-Gordon Hamilto-~
nian turns out to be the following. The soliton and antisoliton
have a mass M = 8m/y" , where y' = [A/mzl / [1 - X/Bnmf]

The doublet produces the remaining series of states at masses

16m ny'
Mn = sin —
Y’ 16
n=1,2,3 ....... <8m/vy"’ (2)

The original "elementary particle” of the theory i$ the n = 1
state in eq. (2). As A > 0, K' vanishes, and one easily sees
that M, approaches the weak coupling mass, m + O (A 2) , of
the elementary particle. Notice that, according to eq. (1,2)
there is a finite number of doublet states. As the coupling ¥y'
increases, the states disappear one by one. What happens is that
they decay into soliton-antisoliton pairs. This may be seen

by observing that when the n - b state disappears, Mn is
just 16 m/y ' , or twice the soliton mass. At y' = 8n , the

n =1 . or "elementary particle" state itself breaks up and
disappears from the spectrum ; only solitons and antisolitons

remain.

The weak coupling behaviour of Mn is quite

interesting. Expanding, one finds :

M1 A
M =nM - — (——)2 (m®-n)+0 (A7)
6 16m?

m v'! 1 A
M= —  sin =m[1-—( y2l+ 0a? )
S (2 16 6 16m?

(3)
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which corresponds to a non-relativistic n-body bound state

made up of n particles with physical mass M .

This is the same as one finds upon solving the

n-body Schrddinger equation with 6 - function potential ob-
tained from the (f“ term in the interaction Lagrangian. Thus,
for weak coupling, the doublet states can be thought of as
bound states of n "elementary particles". Of course, n cannot
be too big. When Y'n is greater than 8m , the state breaks
up into a soliton-antisoliton pair. In fact, for y'n large
(but less than 8T ), the states are probably best thought of as

soliton-antisoliton bound states.

The semi-classical calculation suggests that all
states with Y'n 1less than 87 are stable. The mass ratio as
given by eq. (2) and the symmetry of the Lagrangian under ? - -‘f’
account for the stability of then= 1,2,3 states. It takes further
symmetry to keep the n = 4 state from decaying into two n =1
states. At a classical level, the sine-Gordon equation has an
infinite number of non-trivial conserved quantities 3. If as
conjectured, these survive in the gquantum theory, they would
provide enough quantum numbers to stabilize all the bound states :

the S-matrix, as conjectured in Ref. 4, would be pure phases.

We have also extended our work on the *" theory
in two dimensions. This system is not exactly solvable. For
small coupling, however, one can find the analogue of the sine-
Gordon doublet states. We obtain a formula like (3) with a dif-

ferent coefficient of n® -~ n . The interpretation is the same
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except that we no longer know what happens for strong coupling.
It isareasonable speculation, however, that for large An

the states break up into a kink - antikink pair. Although our
results for the qf theory are neither as complete nor as

elegant as those for the sine-Gordon case, we regard this cal-
culation as important. It shows that the method is not restricted
to special, classically solvable equations like the sine-Gordon

system.

Coleman 2 has obtained the remarkable result that
the sine-Gordon system can be mapped into the massive Thirring
model. The relationship between the sine-Gordon coupling A

and the four-fermion coupling g of the Thirring model is
A 1
—_— = , or y'= 8n/(1 + 2g/w) . What are the
4mm? 1+g/7
fermions ? They are almost certainly the solitons. To see this,

we observe that at y' = 8 = , the Thirring model coupling g va-
nishes. This is just the point where the n = 1 state unbinds.
For ¥' slightly less than 87 , the four-fermi coupling is

weak and attractive. There will then be one non-relativistic
fermion-antifermion bound state. Summing diagrams in the Thirring
model, one finds that through order g*® , the mass MB of the

bound state is given in terms of the fermion mass Mf by

+ 0(g")
4

Identifying MB with Ml’ and Mf with the soliton mass

8m/ y' , we compare this to
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2M (soliton) - Ml o ag?

Y
= 2(1 ~ sin —)= g% -
16 L

+ 0 (g%)
M (soliton)
(5)

where we have used Coleman's identification of the coupling
constants. It is remarkable that both the g2 and g?® terms
agree. We have not computed beyond order g? in the Thirring
model. For y' > 8 7 » the four-fermion coupling is repulsive

and there is no bound state.

Coleman also finds that the theory is singular
at A/ m? =8 1 . At this point, Y' goes to infinity and

it is evident that our semi-classical solution is also singular.

The agreement between our approximation and

Coleman's precise results suggests that WKB may be exact for

the mass spectrum of the sine-Gordon equation. This is not beyond
the realm of possibility. Recall that the Bohr-Sommerfeld quan-
tization conditions give the energy levels of hydrogen exactly.
To investigate this question, we have gone to the weak coupling
regime, and carried out an exact calculation of Mz/ M1 through
order (A / m?) * . This is done by summing Feynman diagrams in

a way which is equivalent to solving the Bethe-Salpeter equation.

The exact result is
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2M. - M X 4 X 12 1 X
1 2 y s
=(—)12+-(— 13+ (—-—)( )+ 0(2%)
M 16m? % 16m? I ¥ 16m? )

One can easily calculate the same quantity using
eq. (2) for Eland Hé . Expanding, one finds that the coefficients
of 22,3 and \* are identical. This is a highly non trivial
result : to get the exact order AN term, one has to keep two—
loop diagrams in the kernel of the Bethe-Salpeter eguation.
We can show that the agreement in order A" is special to the

sine-Gordon equation, and will not occur in the generic case.

As argued above, we conjecture that eq. (2)
gives the mass ratios of Lagrangian (1) exactly to all orders of
perturbation theory. It does not, however, give the absolute
masses exactly as a function of the bare mass, as can already

be seen in lowest non-trivial order (order.az).

We have also investigated a model which contains
fermions and developed a general method for handling them in se-

mi-classical calculations.

Specifically, we have used a WKB method to compute
the particle spectrum of the Gross-Neveu model. It is in two

dimensional space-time and is defined by the Lagrangian.
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» Tk, 2 < mY
e e L S g(kz;:l‘lJ i ) 7

The model thus contains N fermions coupled symmetrically through a
scalar-scalar interaction. We will generally surpress the particle type

indices k and use the notation

I

P8y = Zagld gy

(8
v o= 2R )
k

The model is renormalizable (g is dimensionless), Yg invariant and
formally scale invariant. For large N one can sum the leading sets of
diagrams and establish that in this limit the model is asymptotically free.
Gross and Neveu6 also found that Enp develops a vacuum expectation value
so that Yg invariance is spontaneously broken. In the process the dimen-
sionless coupling constant g is traded for an arbitrary dimensional param-
eter g <T|u.p> and disappears from the theory., The end result is that the
theory contains no dimensionless parameter other than the number of
fermions N. Consequently, any physical dimensionless quantity such as
the ratio of two particle masses can depend only on N, This rather striking
phenomenon, whose ultimate origin is the renormalization group, will be
present in our WKB calculations. We can take this as an indication that

semi-classical methods are compatible with renormalization group ideas,

Following Gross and Neveu, we find it useful to replace(7) by
L = $ify + gopy - > (9)
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where we have used the notation of (8) and have introduced a neutral

scalar field ¢. Using the equation of motion
o= g¢ (10)

the Lagrangian in (9) becomes equivalent to that in (1.1). Our WKB method
is based upon the evaluation of certain functional integrals by a stationary
phase approximation. It is not obvious how to use a stationary phase method
when there are integrations over anticommuting fermion fields, The ad-
vantage of the Lagrangian in ¢  is that the fermi fields enter bilinearly
and can be integrated out of the problem leaving an effective action contain-
ing only the boson field ¢ . We then do the o-integration by stationary
phase. To do this we must find space-time dependent fields ¢ around.which
the effective action is stationary. This effective action is non-local and
highly non-linear but it turns out to be possible to find stationary points.
The first such example was found by Callan, Coleman,Cross and zee! It is
analogous to the kink in the qJ4 theory or the soliton in the sine-
Gordon equation, i.e., it is a particle-like solution which is time-inde-
pendent in its rest frame and which has a peculiar topology. We have
found a large number of further stationary points of the effective action.
In particular, we find solutions which are particle-like but have a non-
trivial time dependence in the rest frame. The WKB method then quantizes
these classical solutions producing a spectrum of particle masses,

The kink-like solutions produce an exotic sort of particle which

probably has no counterpart in four dimensions. However, the vast
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majority of our solutions are not kinks. They correspond to less exotic
objects such as the original fermion, fermion-antifermion bound states

or multifermion bound states. Such states surely exist in four-dimensional
theories and we would conjecture that in four, as well as in two dimensions,
there is a correspondence between classical field configurations and particle
states. Assuming this to be so, it remains to be seen if such a correspon-
dence can be effectively exploited.

Below we will describe the particle spectrum of the model as given
by our WKB calculation. To interpret this spectrum we will need to know
something about the symmetries of the model. The Gross-Neveu model has
an obvious U(N) internal symmetry. Actually it has an O(2N) symmetry
of which U(N) is a subgroup. This may be seen as follows. Choose a

y J_

: . 0 g .
Majorana representation for the y matrices y =o’, y =i o and write

k) _ (k) . (k)
LA TR Y (11)
(k) (k) - . ;
where qul and LIJZ are hermitian two component spinors. The Lagrangian

then takes the form

= i) 2 ), (k)3 () (k) & (k) (k) @ (k)
L- {;‘("’1 ot TV e T et T L Y2 )

2
(k) (k) (k) (x) A
-go'§ (q;l o-y 4;1 +IIJZ o'ytpz ) -3 (12)

which is hermitian and non-vanishing because the 's anticommute. When
written in the form 12, it is clear that the Lagrangian is invariant under

(k)

orthogonal transformations on the 2N component vector ¢j s k=12, ... N,
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j=1,2. The fermion number operator Q = f QJ+¢ dx has non-trivial
commutation relations with other generators of O(2N). Therefore a
non-trivial representation of O(2N) will contain states with more than
one value of Q. Hence we may expect, for example, that some fermion-
antifermion states will be degenerate with fermion-fermion states. The
¢ field is an O(2ZN) scalar while § is an O(2N) vector. The only other
O(2N) representations which we will encounter are the totally antisym-
metric O(2N) tensors of rank n, < N. The number of states in a multi-
plet corresponding to such a tensor is no! (2N - no).' /(2N)! . Scalars
and O(2N) vectors are special cases of completely antisymmetrical tensors
of rank n, = 0 and ng = 1 respectively.

Because of our inability to evaluate certain Gaussian functional
integrals we have not been able to carry through a complete WKB calcula-
tion in the Gross-Neveu model. What we have been able to do is a sort of
zeroth order calculation which, in ordinary potential theory, is analogous
to using the quantization rule § pdq = 2nw rather than the more accurate
fpdq = (2n+1)w. [In the sine-Gordon equation the analogous approxima-

A L I N
tion is equivalent to setting y' = ) I 1- 2 = 3 }. Even
m L m

8mm
with this approximation our results should become exact in the limit of

large N and are probably qualitatively correct for any N greater than 2
or 3.

We find the particle spectrum shown in Fig. (1). There is a large,
unexpected degeneracy beyond that required by O(2N) symmetry. This

degeneracy might be real or it may be an artifact of our zeroth order
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calculation. There are supermultiplets listed by a "principle quantum
number™ n=12,... <N, The common mass of the states in the nth

supermultiplet is

n=12...<N (13)

where % is the vacuum expectation value of . We see that ratios of
masses are independent of g as they should be., If n is odd the super-
multiplet is composed of fermions and contains O(2N) representations
corresponding to all completely antisymmetrical tensors of rank n, =
}, 3, 5... <n. For example, the n =1 state is a fermion belonging to

a vector representation of O(2N). This is the "elementary particle" of

the theory. For large N,

M = g9, (14)

which agrees with the result of Gross and Neveu. The n=3 supermultiplet
contains an O(2N) vector which is some kind of excited state of the ele-
mentary particle and a completely antisymmetrical O(2N) tensor of

rank 3. The latter is a bound state of three fermions and/or antifermions.
The supermultiplets with n even are composed of bosons and contain O(2N)

antisymmetrical tensors of rank n =0, 2, 4... < n. For example, n=2

0
contains an O(2N) scalar and an antisymmetric tensor of second rank. The

tensor is 2 set of two body bound states with fermion-fermion,antifermion-

antifermion and fermion-antifermion quantum numbers. The O(2N) scalar
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is a different sort of object. It may be thought of.as a particle associated
with the o field, At the n = 4 level there is an excited o, a state which

can be thought of 2s an excitation of the second rank tensor at n= 2 and a
new state corresponding to a completely antisymmetrical tensor of rank 4.
This new object is a bound state of 4 fermions and/or antifermions analogous
to the 2 and 3 particle states found at levels n = 2 and 3. The pattern con-

tinues in the same way for n=5, 6.,.,. onup to N,

The quantumn numbers of the states in our spectrum are not unex-

pected, In the limit of large N the leading exchange is @ sum of bubbles,
In the non-relativistic limit, this exchange produces an

attractive 6-function potential. Such a potential will produce bound states
only in channels where the spacial wave function is completely symmetrical,
For fermions this means that the O(2N) wave function must be completely
antisymmetrical, i.e., an O(2N) antisymmetric tensor.

For large N the bubble exchange is weak6 and a Schroedinger equa-

tion calcualation is valid. In this way one finds a binding energy which agrees with

that computed from (13)

2
3 1
IEBI = an-Mn = Ml (ﬁ)/(n - n) +.0(;3) (15)

to the indicated order in N-l. These non-relativistic bound states corre-

spond to the states with n = n. They are the lowest stafes with given O(2N)

0
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quantum numbers and are consequently stable, Eq. (15) is valid only if
n/N is small. For n and N both large the binding energy per particle is,
in units of M1
ke ki WY ain( 2 2)
a M, o N 2 (16)
which for n/N ~ 1 shows binding by a finite fraction of the rest mass. Thus

strong binding can occur even for large N.

The bubble exchanges are not the only impor

tant interaction for large N. For fermion-antifermion interactions in an O(2N)

single state the annihilation bubbles are dominant. The sum of these bubbles
leads to an interaction which is marginally attractive. In leading order in N,
Gross and Neveu found a o bound state at the fermion-antifermion threshold.
It is presumably the n=2, O(2N) singlet state discussed above. We find that
it is bound in the next order in N-Z. This disagrees with a detailed diagram-
matic calculation by Schoenfelcl8 who finds that the bound state remains at
threshold to this order. We do not understand the origin of this discrepancy.
In any case there is a weak attraction between fermion-antifermion pairs in
an O(2N) singlet state., One might therefore imagine that th¢ particles in

the model will be made up of 2 number of fermions and antifermions paired

"“valence'" fermions and antifermions

into O(2N) singlet states plus further
in an antisymmetrical tensor state. Our particle spectrum is consistent
with such a picture,

The particle spectrum ends at n = N where the mass is MN =

2Ng :rO/n. The mass of the Callan-Coleman-Gross -Zee kink is (in our zeroth
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approximation) Mki.nk = Ngo’olw. Thus the NP state is just at the kink-
antikink threshold. Higher mass states would be unstable against decay
into kink-antikink pairs.

There is a striking similarity between the sine-Gordon equation and
the Gross-Neveu model. In the zeroth order WKB approximation the particle
spectrum of the sine-Gordon theory is given by Mn = [m 2 /n] sin (wn/2£)

where § = Bnmzlk, plus a soliton at mass M S mfw. With the

soliton
identification N —§£ the energy levels are identical to those of the Gross-

Neveu model. The particle content of the levels is of course very different
in the two theories. There is no doubt an underlying reason for this corre-
spondence between the theories but we do not know what it is. However, we
can use this correspondence to try and gueds what would happen if we could

do a complete WKB calculation. In the sine-Gordon equation the result of

2
the complete calculation is simply to replace A/m" in the zeroth order

A

-1

2 ] which is equivalent to making the replace-
m 8vm -

ment £ ~ £-1. The analogous replacement in the present model would be

formula by i [1 -

to replace N by N-1 in Eq. (1. 7) and in the formula for the kink mass.
The theory would then be singular at N=1. One expects such a singularity
since at N=1 the Gross-Neveu model can be Fierz transformed to the usual
Thirring model which contains a single massless fermion. Our zeroth order
calculation is certainly not valid for N as small as 1,

If it were to turn out that a full WKB calculation differs from the
present one only by changing N to N-1 then the extra degeneracy in the mass

spectrum would presumably be real and a consequence of some underlying
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dynamical symmetry. Another possibility is that in 2 complete WKB calcula-
tion the masses within a supermultiplet will be split by terms of order N Z.
If this happens, the n=2 singlet state might remain at threshold to order
N-z in agreement with Schoenfeld.

While the finer details of our appreximate semiclassical spectrum
are clearly not to be taken too seriously, the qualitative picture of 2 rich
spectrum organized into some kind of supermultiplets is almost certainly
correct. This unexpected wealth of particle states seems to be a consequence
of the asymptotic freedom of the theory. The detailed form of the classical
o field which correspondsto a quantum bound state suggests that the binding
mecbanism is not a direct interaction between the bound fermions but rather
is some kind of vacuum polarization effect. The fact that the theory is un-

stable in the infrared is most likely the reason for this.
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Let {Xj : 3 =]”...,N} be random variables with joint

distribution
) N N X
kT J- x- + Z h-x- 3 >
() Zm o hy o z BESR S 33 J-l;[l Py(xs)
J<k=1 j=1

The measures pj are assumed to belong to the set € of even
probability measures which satisfy fexp(bxz)dpj(x) £ « for
some b > O3 we consider only the ferromagnetic case (ij >0

for all j,k) and assume that the ij's are small enough so

that
N N N
(2) Z(hl,...,hN) E‘rN exp Z ijxjxk + Z hJ.xJ. j]-;[l dpj(xJ)
R J<k=1 J=1
is finite for all real h;,...,hy. Such a family of random

variables constitutes a (finite) general Ising model with pair
ferromagnetic interactions (ij) in an external magnetic field
(hj); spin-1/2 Ising models correspond to the choice of each

pj as the Bernoulli measure,
(3) b(x) = (B(x-1) +b6(x+1))/2 .

Most results about Ising models were first proved in the
spin-1/2 case. Some of these results, such as the Griffiths-
Kelly-Sherman inequalities [Grl,KS] and the Fortuin-Kastelyn-

Ginibre inequality [FKG], extend to all general Ising models
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[6i,GRS). Most results however, such as the Lee-Yang Theorem
[LY], the Griffiths-Hurst-Sherman inequality [GHS], the
"Gaussian" inequalities of [N3], and other inequalities
[L,Pe,Syl}, do not apply to arbitrary general Ising models
but rather rely heavily for their validity on the specific
character of the pj's in (1).

There 1s one class of general Ising models to which
basically all spin-1/2 results extend; this class consists of
those models in which each pj can itself be constructed from
spin-1/2 models. Based on Griffiths! method of analogue spin
systems [Gr2] and its extension in [SiGr], we follow [N3] and
deflne a measure p in € to be ferromagnetic if there is a
sequence of spin-1/2 Ising models {Xj(n) s 3J =J,...,N(n)} (as
defined by (1)) with hj = 0, and some choice of lj(n) > 0 so
that

N(n)
) E explir i Kj(n)xj(n); - [ exp(irx)dp(x)
j=1

as n-os» for all real r while

n) 2
(5) E([N§: Rj(n)Xj(n) <K
J=1

for some K independent of n. We then have [N3]:
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THEOREM 1. Let {X;j :Jj=1, ,N} be a general Ising model

defined by (1) with each pJ. ferromagnetic; then

(6) Re hy > 0 for all j => Z(hy,...,hy) #0

(this is the Lee-Yang property),

(7) hy>0 forall j= 33108z (n,, - +shy) /0,30 30, < O

for any 1i,j,k (this is the GHS inequality), and

(8) hj =0 forall j=> E(le---Xjn) < E(zjl---zjn)
for any n,;]l, . .,,jn, where '{Zj} is a jointly Gaussian family
of random variables with zero means and covariance identical
to that of {Xj} (these are the Gaussian inequalities of [N3]);
the inequalities of [L,Pe,Syl] are also valid.

Some important known examples of ferromagnetic distribu-

tions are [Gr2,siGr]:

9) v(x) = [6(x-n) +5(x-n+2) + -+ +86(x+n)]/(n+l)
(x/28) , x| <a
(10) av/ax =
0 ., Izl >a
(11) 4&v/dx = const. exp(—a.xll'+bx2) 3 a>0, bER .
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It 1s an unsolved, and presumably difficult, problem to effec-
tively characterize the class of ferromagnetic distributions.
We can obtain as a corollary of Theorem 1 some necessary con-
ditions for a measure to be ferromagnetic; the determination
of a reasonable set of sufficient conditions would be of con-
siderable interest.

COROLLARY 2. Suppose p in € is ferromagnetic and X is a

random variable distributed by p; then
(12) E(exp(hX)) = 0 => h = ia for some a€R ,
(13)  a31logE(exp(hX))/an3 < 0 for h> 0 , and

(14) Ex®) ¢ {3 g3 .
2mm!

We conjecture that the distribution
(15) dv/dx = const. exp(-a cosh x+bx2) 5a>0, bER

is ferromagnetic; as we shall see below, this distribution is
known to satisfy (12) for b > 0 and (13) for all real b.
Inequality (14) is known as Khintchine's inequality and was
first obtained for sums of independent Bernoulli random
variables [K]; when p is in £, Khintchine's inequality is a
consequence of (12) [N2]. Another distribution which we sus-

pect may be ferromagnetic is
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(16) dv/dx = const. }: (4n4ﬂ2e9x/2—6n2ﬂe5x/2)exp(—n2we2x) H
n=1

as explained in [N3], this dlstribution is related to the
Riemann zeta function in a standard way and for it, (12) is
equivalent to the Riemann Hypothesis. Some numerical calcu-
lations have been performed which indicate that this dis-
tribution satisfies (13) [al.

The study and classification of ferromagnetic distributions
is not only useful for Euclidean quantum field theory (as in
[SsiGr]) but also has important applications to the theory.of
(block-spin) scaling limits of ferromagnetic Ising models.
Consider, for example, a translation invariant spin-1/2 Ising
model, {cg i € €Zd}, with pair ferromagnetic interactions in zero
external field at its critical point and let us suppose that
this infinite system was obtained as the thermodynamic limit
of finite-volume systems with free boundary conditions so that

E(og) = 0. The block spin variables of [GJ] are then given by

v (2) = 4~%/2
E€C

%

X

where £ is an integer and x € Zd

edge length £ in R, It follows from the GHS inequality [N3]

labels some hypercube Cx of

or from the Lee-Yang Theorem [N2] that if p is chosen so that

E(vx(z)z) < K for some finite constant K independent of &£,
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then {vx(m)} = ifg {vx(lk)} exlsts in an appropriate sense for
some subsequence lk-ew. Furthermore, the distribution of each
vx(w) [or of any positive linear combination of them which has
finite variance) 1s ferromagnetic and any finite subset of
them, {xj = v, (%) :3=1,...,N, satisfies (6), (7) and the
inequality of (8) with Z(hl,...,hN) replaced by E(exp(zhjxj)).

We now concentrate on glving conditions on the pj's
(other than being Ferromagnetic) which yield Ising models for
which (6) and/or (7) and/or (8) will be valid. For the Lee-
Yang property, Theorem 3 below is "best possible"; for the GHS
inequality, Theorems 4 and 5 seem fairly good but are probably
not definitive; and for the Gaussian inequalities (8), there
are presently only conjectures. We say a distribution p in €
belongs to the class § if a random variable X distributed by
p satisfies (12); the following theorem is from [N1].

THEOREM 3. Let {XJ. :j=1,...,Nf be a general Ising model
defined by (1) with each pj in £; then the Lee-Yang property
(6) is valid.

Polya was particularly interested in distributions
satisfying (12) because of thelr relation to the Riemann
Hypothesis; he consequently obtained many examples of dis-

tributions in £ including [Po; pp. 241,277] (15) for b > O and:

N av/a (const. (l_x2q)(a—1) , Ixl <
v =
() * ]0 s le >1
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(18) dv/dx = const. exp(—axuq-kbxzq-kcxe) )

>

a>0, b€R, c>0, qg=21,2,.., .

With @ = 1, (18) yields (11) while (17) is the one-dimensional
marginal distributlon of uniform surface measure on the unit

sphere in R23+l

(for 2a+l an integer). As we shall see below,
the distributions of (17) satisfy inequality (13) for a > 1 so
that they are suitable candidates for being ferromagnetic.

Polya also obtained various sorts of sufficient conditions for
a distribution to belong to {; for example, an absolutely con-

tinuous measure v in € belongs to £ if it satlsfies either of

the following conditions [Po; pp. 187,1911]:
(19) av/dx is nondecreasing on (0,1) and vanishes on (1,=).
(20) dav/dx 1is nonincreasing and concave on (0,®).

Our final example of a distribution in § can be shown, by
direct calculation, not to satisfy (13) and it is therefore

not a ferromagnetic distribution;
2 2
(21) dv/dx = const. (l+ax“)exp(-x</2) ; a > 0

Conditions on the pj's which are presently known to yield
a GHS inequality are more complicated than those needed in

Theorem 3 for the Lee-Yang property; in the following definition,
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we follow [E,EMN,Sy2]. Given p in &, let X% (@ =1,...,1) ve

four independent random variables distributed by p, and let
b1

¢ = = BaBXﬁ, where
B=1

(22) B

N =

1 1 -1 -1

(23) El ]l e®*™)>o0
a=1

I

for any cholce of nonnegative integers ml, AP | T

THEOREM 4. [SM,EMN,Sy2]. Let {x:j :5=1,...,& be a
general Ising model defined by (1) with each Pj in G_; then
the GHS inequality (7) is valid.

The proof of Theorem 4 is based on first showing that the
xj's satisfy a multivariate version of (23) which in turn
implies the validity of the GHS inequality; as shown in
[SM, Sy2], these multivariate inequalities also imply the
Lebowitz inequalities of [L]; 1t also follows from the multi-
varlate inequalities that all ferromagnetic measures belong
to G_. A class of distributions belonging to G_ was isolated
in {E] and independently in [Sy2]:
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=
7y
(24) dv/dx = const. exp(-V(x)) 3 V = }: akx“k entire ,

k=1

a €R, a >0 (k>2) .
These distributions are special cases of the following more
general result [EN,EMN].

THEOREM 5. An absolutely continuous measure v in €

belongs to (_ if either of the foliowing conditions is

satisfied:

(25) av/dx = const. exp(-V(x)) ;\Tecl(R),V' convex on (0,)
or

(26) dv/dx = {zonSt' SRR :z: ;: 3

V€Cl(—A,A),V' convex on (0,A) .

The example of (21) shows that the class £ is not con-
tained in G_; we give below an example which shows that Q_ is
not contained in {. Before going on to that example, we
briefly consider the situation as to general Ising models
satisfying the Gaussian inequalities (8). At the present
time, there is no condition on the pj's, other than their
being ferromagnetic, which is known to imply (8); there are

however several conjectures. It was conjectured in [EMN] for
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example that each p j belonging to Q_ is sufficient to imply
(8); we further conjecture (based on the results of [N2])
that each p':i belonging to § is sufficient as well.

The next proposition is based on fairly straightforward
calculations [EMN].

PROPOSITION 5. Let v, (x) =ad(x)+ (1-a)(6(x-1) +5(x+1))/2
for 0 £ a < 1 and let X be a random variable distributed by
V,3 then X satisfies (12) iff 0L a < 2, X satisfies (13) iff

0<axg £, and X satisfies (14) iff O <ax £; moreover v_ is

o]

ferromagnetic iff 0 < a < %, v, belongs to £ iff 0 < a < 3,
and v, belongs to §_ iff 0 < a < %.

We then have as an immediate consequence of Theorems 1,
3 and 4.

THEOREM 6. Let {XJ. :j=1, ...,N} be an Ising model
defined by (1) with each pj(x) =ab (x) + (1-a) (6(x-1) +8(x+1))/2;
then for 0 < a < 1 and any choice of (nonnegative) ij's, {Xj}
satisfies the Lee-Yang property (6), the GHS inequality (7),
the Gaussian inequalities (8) and other spin-1/2 results as
in [L,Pe,Syll; for 3 < a <% {Xj} satisfies the GHS inequality
and the Lebowitz inequalities of [L] for any J.

jk
not satisfy the Lee-Yang Theorem for an arbitrary choice of

's but does

ij's; for $<ac< 1, {Xj} satlsfies neither the Lee-Yang prop-
erty nor the GHS inequality nor the Guassian inequalities for

arbitrary ij' S.
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As explained above, we conjecture that the Gaussian
inequalities remain valid for the model of Theorem 6 with
% < a < § based on the fact that the pj's belong to G_. In
any case, Theorem 6 is already an interesting result in that
it gives, for i< a < %, a general Ising model whose indi-
vidual spin distributions are not ferromagnetic but which
nevertheless satisfies the GHS inequality. The validity of
the GHS inequality here, can therefore not be established
simply by using the spin-1/2 result together with Griffiths!
analogue spin method; it is instead based on Theorem 4 in an
essential way. The phase properties and critical phenomens
associated with three valued spin Ising models should be much
richer than those of spin-1/2 models; for example, they should
exhibit (at least for a close to 1) phase transitions at non-
zero external field with corresponding triple points and a
tricritical point at some particular value a* of the parameter
a [BEG]. As long as the GHS inequality is valid, a phase
transition can occur only at zero external field [Pr]; thus
by Proposition 5 and Theorem 6, a tricritical point can only
occur wilth a* 2_%. It is our hope that this preliminary
result will prove useful in further investigations of such
models. We note that without Proposition 5 it would follow
from the Lee-Yang property only that a* > % and we further

note that mean-field calculations actually give a* = 2 [BEG].
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RESUME : On présente Ta quantisation canonique de 1a théorie des champs classique
non linéaire relativiste. On montre d'abord que la théorie posséde une
structure algébrique, ensuite on donne une représentation par les Qpéraz,
teurs de cette structure. La construction des champs asymptotique IR P
est donnée en méme temps qu'une forme explicite de 1'opérateur de diffusion.

Abstract

The canonical quantization of nonlinear relativistic
classical field theory is presented, First it is shown that
classical field theory possesses an algebraic structure pre-
cisely such as the quantum field theory in L.S.Z. formulation.
Next an operator representation of this structure is given
and the explicit\ form of a local interacting relativistic
quantum field @ is obtained. TheAconstruct/:l\on of asymptotic
local relativistic quantum fields éin and @th as well as

an explicit form of scattering operator is also given,
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Introduction

There is an impressive progress in >\ @4 quantum field
theory in two and threedimensional space time due to the recent
results of Glimm and rJaf:E'e [11 Feldman and Osterwarder [2]
and Magnen and Seneour [3]

In case of )\@ theory in four-dimensional space-time
two distinct approaches were recently proposed: the first one
of Glimm and Jaffe [41 and Guerra [5] is based on the use of
statistical methods and four-dimensional Is:.ng model; the
second one, proposed by Schrader [6], is based on the Wilson-—
Zimmerman operator product expansion, In both approaches a se-
ries of fundamental mathematical problems must be solved before
one is able to prove the existence and nontriviality of )\ @4
theory.

It seems therefore useful to analyse other alternative
approaches of constructing )\ guantum field theory. Particu-
larly sttractive is an approach based on the second quantiza-
tion of classiecal )\ (?4 theory. This approach was proposed
and developed by Se“‘al in a series of papers ]:? .The present
work summarizes recent results obtained in this domain by the
Warsaw group.

The recent progress in the domain of nonlinear relativistic
wave equations , due mainly to Morawetz and Strauss [8], al-
lows to prove that on the manifold of solutions of these equa-
tions there exists the algebraic structure, precisely such as tnat
postulated on quantum level e.g. in L.S.Z. formalism [9]. Thus
the problem of construction of relativistic interacting and a-
symptotic quantum fields is reduced to the problem of construction
of operator representation of classical algebraic structure BO].
This problem is solved in Sec., IIT and IV. It is interesting that
this method of quantization of classical field theory provides
a certain form of generalized normal ordering for products of
interacting fields which is local and rela.tivisticﬂﬂFi_nally, the
explicit form of quantum scattering operator is derived and its
various properties,like relativistic covariance nontriviality,

analyticity in coupling constant etc. are analysed. EIQ.]
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II. Sympleclic Structure of Classical Nonlinear Field Theory.

Consider the nonlinear relativistic wave equation

(O+m®) ()= NG°(x) | N <0, x=(t,z)e R, /24/

with the initial conditions

d(0y2)=y(x) , [1(0,2)="(2). /2.2/

It was shown by Morawetz and Strauss [8] that for every given Cauchy
data ((f,'IT) from the Banach space (3: (defined in App. A) there exists
the unique solution q) (i)of Eq./2.1/ and the pair @xn@) and

@ &(1) of the solutions of the free Klein~Gordon equation such that
ou

(Pm(tz) <= 0tz T = @M (f,z) »  /2.3/

in the energy norm given by the formula
186,91 = (@[T [V +mid )] /2.4/

The Cauchy data }E(Lf' )'IT) may be used as canonical variables.
— o
Let |'(5) be a functional over the space j . We say that the functio-
nal F possesses a Frechet differential at a point 5 if there exists

a linear continuous map DF[}]( ) of the space F  into R1 such

that F(3+34) F(s) D F[§] + T(j j ) /2.5/

where 1T (3 liﬂll =
%"“;‘0 EA 0. /2.6/

The value of DF[S] Jon a givenjf ¥ is called the differen-

tial of the functional F and defines t"-e Frechet derivative c"-/d-

DF[?}] (54) 5 )34> < 5 Yy > + <L)"4> 2.
Hence the Frechet derivative JK is in general an element of the

dual space ?; to ‘?

The Poisson bracket {F) G’} of two functionals over the space

g: is formallly defined by the formula
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(=)
%—- {E (LE)a.nd

=
(5 ydd
the Poisson bracket may be written in the form

{FaY=DGI31(3,) = - DF[31(30) /2.9

where for a functional X we set 3)( a«):—;(' Hence we see that a

Poisson bracket of two smooth functiorais is well defined if either

iF i& J 59/
{F,6h=] (00 7y ~ o ) /2
Ez..F T

Ir 97 is the Paul:L matrix 6,=[P3'| then

M

SF or 5& is an element of the carrier Banach space 3: 5

A, Interacting Fields,

We now derive the explicit form of of commutator fuzction for
interacting classical fields. Denote by A)[ot,bj |®] the Green function
of the linear equation "

@+m)ul) = VE@up) , V=326,  /210/
satisfying for tx=1,5T the initial conditions :
Rlra,rgldl=0 , (3 Inz,myl81=-5(z-y). /2.11/

The function A can be written in the form of the series

abﬂglcﬂ NES u})«» /2.42/
+Z (3>~) f J A(’i 14)45 () A (22s) - @(:e“)azhj Axp-di,,

,.-
'Ih:.s sSeries, when smeared out with the function c-(- )ES R)ls conver=

gent in the energy norm: indeed t
1 ! r T
WAL, T LMl exp [Wi sup | V(z )] dt' ]

Now we have
Theorem 2.1. The interacting classical field @(1) is a local field

which satisfies the following comerutation relations

@), dy)= X [xnyidl. 4 /2.43/

Proof. The proof of Theorem 2.1 follows from Proposition 4 and

Eq./3.5/ of {9)One may however zive a direct proof which is very
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instructive., Indeed using the general expression/z.g/for the Poisson

bracket and Eg./21/one finds -

@, +m®) {86), gy = 37§ &) {F @), By}

Moreover using the fact that @(%ZF&((}J and H{OIZ):F[z)we find

(802, 50,400 , 2%,{402),§09))= -7%ay)
Hence, by Egs /2-'10/ and /Z.AH/we obtain
(0@, dw) = A [xyle]
If o and A are space-like separated then by virtue of /2 12/
A[’X IQ] O Hence the interacting classical field q? is local.
It also follows from the formula /2 12/t11at @(I) is a canonical

field. Indeed 1f€ =t then all terms on r.h.s. of/Z.IZ/vanJ.sh. hence

[¢t2), 0,9 F=0 /2.14/
If we take derivative ;  of both sides of Eq/213/and set f,;:{'ij

then only the first term on r.h.,s, of Eq./Z_IZ/survives and we have

{‘17(“ [Tle, )Y = 5(z- il /2.45/

B. Asymptotic Flelds.

For the analysis of properties of evolution and scatterins
operator it is useful to introduce a family Q 'M('C(aaof free fields,
It was shown in [g] that for a fixed U the fumctions @( ) and
H(J() ) on a hyperplane t:‘t belong to the Banach space of initial
data and therefore the pair (@(T,~), ﬂ(’[‘;))may be used for the construce

tion of a new field @T (‘t, _1) by the formula

Beltr)==fa e, 2 MM(e,y) by o)l a-y) G y)ay | /2167

We have in the energy norm [§]:

Lim @ = . . /2477

T*‘w out
Using Egs./2.1%/ and /2.15/ and formula /2.16/ one obtains

{8.6), G.4)Y= ala-y), /248/

i.e. T1 is a local canonical free field. Moreover we have :



Theorem 2.2 The fields @fﬂ,(’i) end, @0“(1) satisfy the following

commutation relations

{@mtk"), d.u)= A= m). /2.13/
/For the pr:of 100k{9]’f’heorem 3/

It follows from /Z.lg/that asymptotic fields, similarly like

interacting and @T fields are local canonical fields.

C. Relativistic Covariance.
The nonlinear equation /2.1/ may be derived from the following

lagrangian density:
, FOogM 1Y 4 2.20/
L6) = 72 (9,0 +mt§Y) -4 ¢, /
Using the standatrd technigue one derives the following form for the
energy - momentum tensor associated with the density /Z 2 0/
7
= L -~ X
Twix)= §,0870)-q,, L6, /2.24/
Let 5} be a space-like surface in the Minkowskj space. Then the
integrals N —
= VT szds (2 Typ=Xy | )/2.2
RubY= [ a8 Ty My (8)= ) 7 (2 IpXy o ), /227
are constants of motion. One verifies, using Egs. /2. {4/ and /11.15/
that the quantities /2.22/ satisfy the standard commutation relations
for generators of the Poincare Lie algebra and the scalar field.
Using the free lagrangians &lt\(x) andiout(X)one derives the corres-

ponding expressions for generators of Poincare group for "in" and

*out" fields, We have:

Proposition 2.3. The generators of Poincare group for interacting
"in" and "out" fields, as functionals of initial data satisfy the

following equalities
m out out

in _ _
P =P = P, Muw® Muy = Muy » V= 0,4,2,3./223
/For the proof cf. Balaban and Raczka mo]§ec. L/
It is instructive to derive the equalitg'zy'c)in?.;ectly to see how the

bilinear in fields generators for "in" or "out" representation can

coincide with quatrilinear in fields generators for interacting re-



presentation, We show this in detail for the generator E, . By virtue
of Eq./2.22/ for a space-like surface g(t) perpendicular to the time
axis, we have
2 4
3 > 1T, 1N ) ( /2.24
Po(sm~i§dx(ﬂ PR+ mT -3 (8, 1) /

9(t)
We shall evaluate the expression /2.24/ for ‘{f-é o, For the interaction

term A utilizing the fact that [dt *mawulfiﬂIZ Hél £ C ana
that gc(3 é (’f 1) is smaller than the total enersy E we have
S ¢ gman [G160[d72 8" and  (utd’2 § ¢ E [dbmarlor’¢ EC.
Hence there exists a sequence -[{ \} T4* -0 such that

§d*x 7 (£, )t—:":; 0
Hence by virtue of Eq /2.4/ we obtain:

Lm P (60)= Lim 4 1L, )ME 218, (¢, )u

to-co t=»-20

n
Because Po is time independent we have Pa B P1 The derivation

[
of Eq./2.23/ for remaining generators may be performed in a similar

mamnner.

D. Scattering Operator and Analyticity in Coupling Constant,
It follows from Theorem 2,2 that the scattering operator defined

in the space ? by the forrmula S; él?éoué is canonical. In addition

since , .
1uele = [ @) =28 = 2R = 19,1, /2.25/
the S-operator is isometric,

It was proven in [13} that the scattering operator is Poincare

invariant on F i.e. for every (a)/\)eg) we have :
Uy S =S Uy, /2.2¢/

For further applications of classical theory on quantum level
it is crucial to know the analyticity properties of the scattering
operator with respect to coupling constant )\ and injtial data ((f"n)

For positive coupling constant the energy operator
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1 4
p = (o3 [£ (Mgl m'd 1) -5 7]
comsists of two parts with opposite signs, Hence the solution @E&)
can increase arbitrarily and the asymptotic fields do not exist for
all initial data from (}_. Therefore one cannot expect the analyticity
of S with respect to the coupling constant }\ for all initial
data from ,} . However, if one restricts oneself to the space

defined as the closure of the smooth free solutions in the norm
- { %2 su t2 :
Nelly = sue, . Cnéa + (1+1¢1%) 4P 19L¢,2)1) /2.27%
then YC .} and for small initial data we have

Theorem 2.4. Consider S as the operator S: (éITI))\)-’@,uk"ith the

domain D

D={ (8, M) | ne Y, neCh, [N g0y <7

and with range Y. Then S is complex analytic on this domain v
/For the proof cf, Raczka and Strauss [14}/

It can be also shown that S cannot be analytic in >\ for al1
initial data from 3. For details see [ 14 7.

It is very interesting that the inverse scattering problem can
be solved in the nonlinear relatiwvistic field theory for large class
of interactions. Im particular in >\ @4 theory we have

Theorem 2.5, The coupling constant >\ is determined by the scattering

h= lim ea W (S (l£§m)) Sle @”‘)) /2.28/
£=04

where W is the Wronshian .

W(Ew) = [’z (2¥ -2 dy)(ta)

/for the proof cf. Morawetz and Strauss [_|3]/

operator

The formula /2.2 g/:i_mplies that for A# 0 S is the nonlinear

operator., In fact if S would be linear then
W($@eg,)  S(eg,)) = 2" W, 8,) = 0
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The nonlinearity of S implies that Scattering is nontrivial
in classical theory of self-interacting scalar fields. It should be
stressed that in quantum case this problem is for te time being open.
/see Wilson [15] and Rgczka E16] for a discussion of this problem/

We conclude this section pgiving a very impressive result of
classical field theory
Theorem 2.6. Let F (§) be the interacting term in Eq. /2.1/given by
an analytic function defined in the neighbourhocod of the origin,
which is odd and FJ(O}=O Then F is determined by S.g/For the proof
cf. Morawetz and Strauss [431/

Thus the inverse scattering problem is solved completely in

classical nonlinear field theory.

III. Operator Representation of Symplectic Structure.

We have shown in Sec.II that the algebraic structure of clas-
sical nonlinear relativistic field theory expressed in terms of
Poison brackets is precisely such as that postulated in quantum field
theory e.g. in formalism of lehman, Symanzik and Zimmerman. In parti-
cular the asymptotic fields @Gn and §ouf are relativistic, local and
canonical and interpolating field @ is relativistic and local.
Moreover the representation "in" interpolating and "out" of Poincare
group coincide. Hence if one finds an operator representation of sym-
plectic structure one will 1lift all desired properties of asymptotic
and interacting fields onto operator level and one ohtains a model
of interacting quantum field theory. We shall now ccastruct this ope-
rator representation of the Lie algebra of Poisson brackets.

It will be evident from the next considerations that in case of
nonlinear field theory the most important role is played by a vector
space SE of functionals over the spaces; , defined in the following
manner.

- T @
Definition 1. A functional F over J belongs to if
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iy FelC™ ) .
ii7 D*F[3] (54)51)..-; 3!4) is bovnded on bounded subsets of T
i1/ Dk (6,_%_’;)(51)52)_”)5k)e?)k=0,4,2)..- \4

it F, Ge%tnen {F, ] is well defined and also belongs

to 82 : indeed by virtue of /2.9/ one obtains

&%{F,rxwz %oml (5¢) = Dslg cfm(m +

which is an element of? S:|.m:|.1arly for [4 1 2 .we have !

DS’-a'é{F (X} [51 (54) 514) D 525 G[ﬂ@ﬁ}p ;}») D 52()' F[}]éq)gv /}k)

which is also an element of ? . Therefnre {f— CT}E-Q Similarly
{{F) (;(})H& is in 52 if F,(Jf,H G-(iz Consequently the vector spacegz
is a Lie algebra under Poisson brackets.

We now construct two convenient carrier spaces. We take as the
first carrier space a linear space of C°° functionals V(;) on (J\’

with the topology defined by the system of seminorms

Iyl = sup sup D™y 31 (34,000, 3m )l m=0,1,../5.1/

Bym 3¢B 13 uF\<4

where B is an arb:.tra.ry bounded subset of‘; Since this space re-
sembles Schwartz space E(R we shall denote it by the symbol E (T).

The second space K(T) 1s the linear space 52_ C E(r}‘j

with a topology defined by seminorms

m 2
“'\Y“'KB - ';VPB l? iu:é{ u 15 D WE}](}M ")57"\)“7/3 /
We now give the‘gre\presentatlon oif Lie algebra _gz in these

spaces, We denote for the sake of simlicity by Dp the first order

differential operator given by the formula

D= 1,4’z 2 (e - ) /5.5/
Theorem 3.1. Let F be in ﬁ Then the operator ;‘\ associated with a
given functional F by the formuila

Flsl=Fl31-%DFI[31(3)+iDe /3.4/

defines the continuous map of the spaces E (‘}_) and .K(CY) into

itself, If F1 G’GQ then for YV in EOF’]{ we have



[F,GIy=i{F Gy, /3.5/
/For the proof cf.['iO]Theorem 1/ -
One readily verifies using /3.4/ that if Fe_gP and 9(-) is C
enen Q(F) =38 (F)+<'F) LF-FI, /3.6/
NN AN
The formula /3. 6/ implies that - #(F) in general, Hence the

n
quantization formula /3.4/ applied for a product @ of fields gives

some"remormalization" counter terms. /Cf. Sec.VI/

IV. Construction of Interacting and Asymptotic Local Quantum Fields.
Let @[_:LN,TT] be a solution of the dynamical equation /2.1/.
Fa)
We begin the construction of a quantum field @(‘6)2) by quantizing
A

first the free field @t (f,;:g).Let @'L’ (:f)‘) denote the operator field ob-

T B It alua] = S 4l BoLE, 1) 0], e SR,

by formula /3.4/. Then we have
Theorem 4.1. The operator field @ ({7 OL for any 1 E(Q?w)and

oL(: S(R‘) is the continuous mapping of the spaces E(g’-)a.nd j’{(/'}—)mto

itself and satisfies on each of these spaces the commutation relations:
< 2 . 3 .3
L. (44, 0, (r,8)] = fdad’y d@)A(tr, 24)A4), a1/

The field @T ({,J—) is the strongly continuous function of T and t v
/For the proof cf.[id] Theorem 2/
Remark 1. For simplicity of notation in the fol’ owing we shall write

formulae /4.4/ and similar formula in the unsmeared form:

[éf((i)j @C(‘j)} :/\L A (1"(:)> .

The operator field §T plays the basic role in the deternination
of the quantum evolution operation (/((IL T;) and the quantum scattering
operator S. These problems will be considered in Section VII

We now describe the quantum interacting field associated
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with the classical field Q[a, q’,‘ﬁ]/\by the form la /3.4/,
Theorem 4.2. The operator field @G’ o[,)is the continuous mapping of
the spaces EQ}) and j{(‘}—)into itself and satisfies in the distribu-

tion sense on each tf these spaces the commutation relations

j ey e R
[0@), fil=t [yl Q] /4.3/
~
where Ax[i'lé I @] is given by formula /2.12/. The map t> @({’J)is
strongly continucus, v
/For the proof cf.[iO]’I‘he/o\rem 3/

Corollary 1. The field @(1) is local i.e.
Le8), §T1=0 # (=-9)* <0, /4.4/

and satisfies on 8@01:' {}{G)the canonical commutation relations

A AN oy A
L8060, ly)T= i ™2-4) [862),864)]= (N6, Thy)Fo

Proof, /4\ 5/
Ie (1“@1( 0 then by formula/2.12/ A}‘[i,tj@]q) Similarly, if
tys qu; then 3(,143)[11") [§]=4§°2 (2-4)

The formulae /4.5/, /4.3/ ana /2.12/ show that the inter-
acting field has the same distributional character sa the fres
field i.e. they represent the operator valued distributions of S ’(Eyty'pe.
Let us note , however, that by Theorem 4.2 (t. L)y p{eS(RBis the
continuous function of t . @ ’ Mjl )

One can easily verify that the regularity properties of @

QT) @m and (ﬁw* fields will not change if we take initial conditions

3in=(tn, Mp) at fp=~c0.
/c£.[A0] Remark 1 to Lemma 5 of App. A/
This implies that all assertions of Theorems 4,1/ and /4.2/ remain
true also for this case.

We now find an equation of motion for the quantum field
A A
@(1). Acting on the field @@() by the operator O+m* ana
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~
using Egs. /2.1/ and /3.4/ one finds that d) (1) satisfies the

following dynamical equation

A 4
@+m®) § (2)=» ¢ (). /4.6/
By virtue of I&q. /3.6/, the interaction term in Eq. /1.6/ is
automatically renormalized: consequently, Eq. /9.06/ represents a meanin §
ingful equality on the space(}{. It should be stressed, however,
that the dynamical equation /4.6/ loests its primary meaning as a tool
for description of a dynamics of interacting quantum fields: in fact
the quantum interacting field is mot obtained by a solution of Eq.
/4. 6/ but is constructed independently from the classical selution
@ (i) by formula /3.4/.
It s instructive to apply the present quantization method
in case of the free field equation (D{-’ml) @c(—:()=o In this case

the solution (Pc [(T,?-_]J,'iﬂis given by the formula
B, Le1 )0 ==[alt,2-4) mg)dy + foe £) (834 )ulg) dy

-~
Applying the formula /3.4/ one obtains the quantum field @o(:()

which satisfies the following commutation relations
A P
L8.8), &) 1=ia(2-y)

Calculating in the standard manner the creation and ammihi-
lation operators one easily verifies that the equation a\ %:O
is satisfied by the Poincare invariant functional '\.Vo éf,ﬁ)Z’f and
that the n-particle states are represenaed by polynomials in cano-
nical variables, Restricting the field @0 to the irreducible sub-
space generated from the vacuum by means of creation operators one
obtains a realization which is identical with the conventional
Bargmann-Segal representation.

Similarly, the quantization /3.4/ of external field problem

@+m?) & ()= Ve (=) /4.7/
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provides by restriction to irreducible vacuun secbor of E /@:)the
conventional theory.
/For details see Raczka an} Viadimirov [17] /a

Let @1],\%)0() and @mlt(t’“() be the operator fields obtained
from classical solutioms éwftji}q”f[]and ‘Pouf [E,aL, (.(’I'ﬁrespectively by
formula /3.4/. Then we have
Theorem 4.3. For every '\V& f,@:) or K(_?) in the strong topology

of these spaces we have

le @T({ DL)'\f’ (/f?in({;t?()'q//\ /48/

T»350
The operator fields @ (f =L and Qouf U JL) T resent the

continuous mappings of the spaces E("}') and K(’:T') into themselves

and satisfy on each of these spaces the commutation relations
A A
[ ), &, )] =ialxy) /4.9/
out sut

/For the proof cf.[‘i’O]Theorem 4 and 5/

V. Relativistic Covariance ,

Let (J a2)= @m[ofg) and ﬁm{g]: ”m@“) be initial condi-
tions for classical free field @ (_'() Let @3 [1] repressent ini-
tial conditions at {Zp-"“-’G’ for the interacting field @ (Z‘C which sa-
tisfies Ba. /2.1/ The map (a, l\) > Uia )in the Banach space T given
by the formula (U@\A) Q”)@ P, (A1 (1—0\))def1nes the continuous re-

presentation of the Poincare group in the space ?. The elements

(U@A,A) qs.m3 (O) 1) and | U(o)/\) ﬂm) (o) ,31) /5.1/

define the element 3”\‘((&“,'{]"“) after the transformation. We shall
denote the transformed element /5. 1/ by the symbol U(a'/\) 5”‘
The map (a M- U{ in the space e T given by the

formula
A

(Vo ¥) Gu) = v (U;:,A) 3in) /5.2/
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defines the continuous representation of the Poincare group
m € or K(F).

We now show the covariance property of the quantum field é‘
A
Proposition 5.1. The field b(l) has the following transforma-
A

tion properties relative to the representation (a,/\)v U(a,/\) of the

(G 20 Vom ¥) (3.) = O (Axs0) ¥ (5.

/For the proof cf. DO},Proposition 6 /
By virtue of proposition 2.3 in the classical field theory we
tul

have a:“: P/A: f}:“ and M;\v: /V\/MV: M/M\/ hence by virtue of /3.4/we ob-

tain
A A
N - sut

A olAt

Do = My = Myy = Moy /547
B‘/‘ P/V\ P/ ) M s s / A

By Zgs. /5.4/ and /3.4/ the quantum generators P/M and M//(\/

are represented by the first order differential operator only.

Consequently, the vacuum state \Vo defined by the formula

P/"”l/o:(? ) M/"V Yo=0 , L3
is given in KG:) by the functional %(%’ﬂ')-ff{ Hence by /5.5/

the interacting and the asymptotic quantum fields have the same

vacuum '\Vo mj((g:J . The elements of the Wightman domain given

by the formula

V{6 ota) = [T 8000, 5.6/

v
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by virtue of Eg. /3 4/ are represented hy the sums of products
of Frechet derivatives of the classical field é . Hence the
Wightman domain as well as the Fock space Hn\ of’ @ field are

subspaces of the carrier spaoeKG

VI. Generalized Normal Ordering For Interacting Fields
The formula /4’. 6/ shows that the present quantization method

provides a certain normal ordering which is given by the formula

N (3" 6r)= B (=), Vo)

Using the formula /3.6/ we find that =
& (8= (4-n)$"®) + n §" @) 6 @) /6.2/

The DoOwers N @ Uam local with respect to the quantum field Q)(x
and all other powers N(q;m n,m = 1,2,3, .. Indeed we have

Theorem 6.1. The gquantities N(.@ )(‘E o( o[CS R)are continuous
maps of the spaces E(q_ and ]{G mto themselves and satisfy the

[N(@“)(x), N@m)(%] = {nm @ﬂ%(q) @m("{;) A)‘[x)uj | @)]) /63/

)
where O [1,% l@] is the commutator function for jinteracting field
given by the formula /2'42/V/F°r the proof cf,Balaban and Raczka [11]/

If x and y are space-like separated then by virtue of /2.12/

A)[x)(/} I@I:Oand we have

[NE™) () NE™ =0, /6.4/

The ordered powers N(Q )@) are Poincare covariant. Indeed:

QM T3N3 (O, ) (7)Mot

/6.57
The formula /6.4/ and /6.5/ shows that the ordering /6.1/ satisfies

the most important requirements which are usually imposed on a nor-
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mal ordering for interacting fields in the axiomatic quantum field

theory.

VII. Quantum Scattering Operator

Let @r(f,jl_)be a free classical field, whose initial data

for JC=T are determined by the interacting field i.e.
- — 7-1
boln2)=2(n,n) , Miltz)=N ), dad

The time evolution of @f_(_’c)z) is given by the one-parameie r group
[

T T
ch which is generated by the free hamiltonian H

WO (02 [Me +198 " + m e ] (£,2), /72/

Indeed by virtue of Egs. /2.14/ and /2.15/ we have

{@h =26, /%.3/

Let I:I.t be the quantum operator corresponding to H by virtue
of formla /3.4/. Then we have :

A
ot
Proposition 7/\1. The global transformation t-» Ut generated by

the operator H in the carrier space EG is given by the formula 55,,.)

0%y (3] '“P{ f (M“ U 3 1) de Yy Ul 5], e/

where H' = H' - DE{L a.nd U is the classical transformation in the

space T generated by the hamiltonian vector field associated with HT .
/For the proof of. Balaban and Rgezka [11] /
Let @,.. (1) be the quantu.m field associated with the classical
field @ (1 ‘Smce the map @ -9¢ conserves Lie bracket structure of
T T T ~
Poisson bracket Lie algebra, the field @T by virtue of Eq, /12/
is a free local relativistic quantum field ,In particular, by virtue
A A
. : ] T
of Eq. /7.3/ the time evolution of @’E’ is given by the operators V{

defined by Eq. /7.4/
A

(05 8.(07) ) (6.2)= 8, (ert' ) frs/

—306—



Proposition 7.2. The fields @ ({ :()and @T G )are connected by

the transformation \/ (,T TO) i € o/\

@ (t,2) = V(T,Te) @»c (ba) V- (T\TC)) /7.6

given by the formula ’__ Al

» S i )l U
V(Tstc) = U(l{-tg) (T.-T) - (T-To) (7e1) . /F 7/
~
The operator U(T)To\i\/('toit)satisfies the following equation
7 A - )
WU =-i H Le (RN VT), /78
where . _ A 3 /4‘\ ('ﬁ ,
Hot L0 (7,1 :-Sdl‘ b, (5,3
in o 4 Lo .
Eqs. /7.6/ = /7.8/ hold in the sense of strong operator popology in 8(
/For the proof cf. Balaban and Rgczka BQ] ./
Equation/7.8/ is the evolution equation for the evolution operator
U (T,To))which in conventioral quantum field theory is formally de-
rived by the passage to the "interaction picture". It is usually
solved by a formal construction of Louville~Neuman perturbation se-
ries, which in four-dimensional space-time is divergent. In the pre-
sent approach the action of the evolution operator U(,T,Tv}j_n the
carrier space EK‘;, can be explicitly calculated. Indeed using the fac
that the evolution operator is giw;\ex:nas the prj)\duct of two one~para-
neter groups of time translation Uc'(_'( v and UJU_T) by virtue

of Eq. /7.7/ and /5’%_21:/ one Obtains .
U(‘c,ro)xyg}:up{ig ﬁ"“’(@[ro,-lm.)s])d{} [ua 3], /7A0/
0

We derive now the action in the carrier space of the quantum

o
scattering operator. This operator is defined in the space g(i)by

$=tm  U(r,0 o) | VERLY

T o0
Ty2-00

A
Theorem 7.3. The quantum scattering operator S is given by the

Cw)(3)=v(s5) /712

the formula

formula:



PAS
where S is the classical scattering operator. The operator $§ is
invariant under the action of the Poincare group and satisfies the

condition A ~

Ay _
) @xn\s - Qo""f b 4

/For the proof cf. Balaban and Rgczka [12] /

/743

It follows from formula /2.28/ that S is nontrixial in /\ qu
theory. This implies that the quantum scattering operator /7.12/
is also nontrivial,

It was shown is Section II,D that the classical scattering
operator is nonanalytic in >\ for all initial data from ? . Hence
by virtue of forrmula /?.12/ the quantum scattering operator is also

nonanalytic.

VIII. Discussion
A, The results of the present work can be extended to a large
class of nonpelynomiml .analytic interactions F:Gﬁ) satisfying the
conditions 1-_ ¥ ]
i/ FE)~0@%) for 220
1/ FE)~ 0(27) forlz e
i1i/ mizt+zFE) 20

P
It is interesting that there exist certain power interactions F{@:]@

¥
1 <‘p 45/3 for which the global solutions exist but asymptotic field

@out does not exist: consequently there is no scattering operator either

[19 ii/] . Even worse can occur: if the function G@) = XQF(v)dv is

negative somewhere and the initial date are sufficiently large, then the

solution blows up in finite time [19 i/]: bence there exists only finite

time dynamics, These facts illustrate the richness of non-linear field theories.

Since every quantum field theory in the limit ‘ﬁ-)() should give
a classical field theory the nonexisterce of classical scattering o-

perator may serve as a test for admissible quantum interactions, It
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4
may also serve as a tool for proving the nontriviality of )\ @n )?132/

and 4 quantum field theories, E ”’]-

B. The present realization of interacting and asymptotic quantum
fields is given in a topological vector space 6(,?) or j’( C-F )of
smooth functionals over the space ? of initial data, The present
approach will be completed if one would be able to introduce a scalar

product of the form:
W) = § W) Vel ) ety )
F

where/M(") should be a measure invariant with respect to the action
of Poincare transformations /5.2/ and the scattering operator /7 IZ_/
This would gusrantee that scattering operator and Poincare group
are represented unitarily., Since the manifold of solutions is para-
metrized by the Banach space ? of initial data the integral
represents in fact a Feynmann type integral over all histories.

There is one invariant mesasure with respect to Poincare group
and scattering operator given by Dirac measure &(}) : it leads how-
ever to a trivial physical theory. The existence of other invariant

measures is, for the time being, open.

C. It is interesting that in cases when a given quantum field
problem can be solved explicitly in Fock space and in the present
formalism)the obtained results coincide. For instance consider the

problem of a quantum scalar field in the external time-dependent

@m*é () =V (=) b /8.3,

Solving the class&cal equation, performing the quantization /3.4/

potential

oonbta.ined solution @B) (P,Tl] and restricting the obtained field
to the vacuum sector one obtains precisely the onventional
second quantized field and the unitary scattering operator /for

details cf. Rgczka and Vliadimirov [_]77./
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IX. Appendix

We summarize bere the properties of the Banach space 'BF which is
a carrier space for solutions of Egq.(2.,1)., Let @o(x) be a solution of
the free Klgin-Gordon equation, whose Caucby data at t = O coincide with
that of & . Define 3'_1 as the space of free solutions such that
¢O(O,x) =lf’(x) = @(O,x) has third derivatives in Ll(RB) and second
derivatives in L2(R3) s while ”0(0,1) = {T(z) =n(0,z) has second de~
rivatives in I, (Ra) and first derivatives in L2(R3 ). Then every

element of‘;l is finite with respect to the following norm [8] H
B 1 i 2
HEI= sopl QU+ svpideal s { suptdlt,2)l
t s 4 o X
(4.1)

The Banach space 3'_ of initial conditions used in this paper is the com-

—
pletion of j_l in the norm (A.1),
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In the course of this colloquium we have heard a great deal
about perturbations of dynamics in one way or another but, up till now,
nothing about group cohomology. I hope to redress the balance a little
because I have gradually come to the conclusion, which is surely by no
means original, that group cohomology is intimately related to perturbations
of dynamics. In order to convince you that this conclusion is sound, I shall
try and provide partial answers to the following three questions.

1) Why does cohomology arise in discussing perturbations of
dynamics ?

2) Where does cohomology play a role ?

3) How does one solve the cohomology problems that arise here ?

None of the heavy machinery of cohomology will be required and
for the most part it will suffice to consider the first cohomology of the
additive group of the real line. Instead I shall illustrate my theme by
referring to three concrete problems in quantum theory : superselection
sectors, stability and bounded perturbations of dynamics.

But before turning to these questions, I have to say something
about dynamics. A rather general way of looking at dynamical systems is to
think in terms of the set of continuous homomorphisms between two topological
groups, Hom{H,G) . Whilst there is little point in actually working at this
level of generality, it helps to get things in perspective to talk a little
in these terms. The group H s the dynamical group ; if you are a mathema-
tician your favourite dynamical group is likely to be Z , the group of
integers, alghough, for a physicist, dynamics begins at R , the real Tine,
representing the time evolution of the system. There are, of course, a number
of other candfdates such as the group of space-time translations or the Poin-
caré group. However H is always some rather small group with a relatively
well understood structure. G , by contrast, is a rather large flabby group
whose structure is complicated and much less well understood. It might, for
example, be the group of homeomorphisms of a topological space, the group of
diffeomorphisms of a manifold, the group of measure-preserving transformations
of a measure space, the group of unitary transformations of a Hilbert space
or the group of automorphisms of a Cx-a]gebra. A1l these examples have a common
feature : they may be thought of as the group of symmetries, or automorphisms ,

75/P.738
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of some underlying space X : G = Aut X .

Perturbation theory means looking at the set Hom(H,G) from the
point of view of a fixed basis element U of Hom(H,G) , the unperturbed
dynamics. Group cohomology lies at the very root of perturbation theory.
If U € Hom(H,G) denotes the perturbed dynamics then the appropriate
variable for perturbation theory is

(1 I, = U ULs)”, se H.

I" is a continuous function from H to G and satisfies

s
(2) e = T o s,t € H.
(3) re. = 1,
s -1
here if g € G ,se H,then q = US)g W)y |, e is the identity

element of H and 1 the identity element of G . Eq.(2) and (3) define what
is meant by a l-cocycle on H with values in G . A1l cocycles arising here

will be continuous, and I write [ € Z:l (H,6) , where the subscript
U 1is written to remind one that the action of H on G determined by U
appears in the definition of a cocycle. Two l-cocycles [ and r are said
to be cohomologous I ~ ™' if there is a ge G such that

) s Ry, seH.

The set of cohgmo1og¥ classes is denoted by H:l( H, G) . Z:‘(H » G) has
a base point " , [ =1 , se& H , corresponding to the absence of a
perturbation and a cocycle cohomologous to r is called a coboundary.

The set of coboundaries is denoted by B:, (H,G).

0f course all this is just a change of language ; ZL (H,G6) is

75/P.738
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Hom(H , G) in disguise and H:‘(H ,G) merely identifies dynamics which are
transforms of one another under some element of G , i.e. under some symmetry
of the underlying space X .

As an example to illustrate these ideas, take H = iR and
G = WU(#) the unitary group of a Hilbert space #  1in the weak operator
topology. This is the setting for elementary quantum mechanics. Dynamics is
given by a continuous 1-parameter unitary group U , U(t) = eitH , H is the
Hamiltonian. A perturbed dynamics is given by U'(t) = eitHI

cocycle is

and the associated

itH' _itH
N, = ¢ e te R

r is a coboundary if and only if H and H' are unitarily equivalent.
The cohomology classes are the unitary equivalence classes of self-adjoint
operators and these are characterized by spectral multiplicity theory [1] 8
Scattering theory also gives us one sufficient condition for a cocycle to be

: : itH ity
a coboundary : if a wave operator Q4+ = lim e e

i

is unitary thens [} = (1, etH .Q;e““t” = Q, [tflt)-i.

exists and

Superselection Sectors

In considering perturbations of dynamics, one usually wishes to
impose restrictions on the class of perturbations. In the theory of super-
selection sectors in elementary particle physics, the characteristic restric-
tion on the perturbations is that they are localized in some sense because
they correspond to the addition of localized "charges" to the system. If one
looks for Poincaré covariant sectors, one deals with 1-cccycles [ over
the Poincaré group 2] with values in the unitary group U[CL) of the
observable algebra OL . In the description of superselection sectors
given in [2 s 3] the locality restriction may be expressed as follows :

5) M oe %{aw’)nawﬁ}' LeP.

75/P.738
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Here the union is taken over all double cones (9 , L9’ denotes the space-
like complement of (9 and the observable net O — &.(0O) is supposed
realized concretely on the Hilbert space f@o of the vacuum representAation .
With such a cocycle [* , there is an associated localized morphism Pr of
the observable algebra given by a pointwise norm limit as L tends spacelike

to infinity ([2 ; Lemma 3.1} and [3 ; Footnote 7] ) :

(6) petn) = Nm AT Ace.

Here ¥# s the filter generated by the filter basis with elements

FIO) = fLef « LY e O'F . If L U (L) implements the Poincaré
automorphisms in the vacuum sector, L - FL Uy, (L) implements the Poincaré
automorphisms in the representation T,°pPq . Hence the perturbed dyna-
mics can be reinterpreted as the original dynamics of states in some other
sector 1) . Two such cocycles [7 and ™' are cohiomologous if there is
a unitary V € g OLL©) such that l"i_' = y! =, (v) . This implies
from (6) for the localized morphisms that p..(A) = v"PF(A)VIAwL.

In fact ™~ 1’ if and only if the representations wopn/ and Teopn
are unitarily equivalent ({2 ; Lemma 1.3] and [3 ; Lemma 2.2] ) so that
the superselection sectors can be described in terms of cohomology classes.

This description of superselection sectors does not cover all
cases of interest because one implicitly assumes
a) that charges can be strictly localized or equivalently that one can get
away with strictly local fields in a Hilbert space with positive-definite
metric. This is a result of taking the F\_ strictly bilocalized in the
sense of (5) .

b) that there are no spontaneously broken gauge symmetries. This is a conse-
quence [4] of the duality assumption in the form C{(8) = &' .

A suggestion as to how to modify duality to allow for spontaneously
broken gauge symmetries may be found in [4] . From the point of view of the

D To simplify the discussion, I am suppressing the fact that 7,0 pa, is,
in general, reducible and corresponds tc a mixture of sectors.

75/P.738
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1-cocycles what happens, roughly speaking, is that the cocycles [° which
reflect the spontaneously broken part of the gauge symmetry, although they
are not coboundaries in U(&) , become coboundaries in the larger
group U(EL”)

It is not yet clear how to modify things to take care of the charges
which, as in the case of electrodynamics, cannot be strictly localized. An
attractive possibility from a mathematical point of view is to look at cocycies
which are asymptotically bilocalized in the sense that given A €8 and £>70
there exists an F € ¥ such that

(7) b (M)A - Ax il < &, L,L ¢ F

Much of the algebraic structure survives this generalization. Thus one can still
use (6) to define "quasilocalized" morphisms pn and the Poincaré auto-
morphisms are still implemented by L - F‘L ULy in the representation .oP

As a final remark, if ad l"L denotes the inner automorphism gene-
rated by [ , and we look at the cocycle ¥ , X, = ad T, , which takes
values in Aut &0 , we see that (6) may be looked upon as an attempt to
show that ¥ _ 1is a coboundary by taking a 1imit over the left-invariant
filter % on the Poincaré group. This parallels the use of wave operators
to show that cocycles are coboundaries which was discussed above.

Stability

We turn now to the question of the behaviour of fixed points under
perturbations of dynamics. If U & Hom(H, Aut X) denotes the unperturbed
dynamics and x € X with U{(h)x = x , for h € H then x 1is said to be
stable if there is a neighbourhood W 2 U and a smooth mapping <&.N-=X
such that

(8) Vih) V) = V), he H Ve ¥

2

and dlu) = = . To make this notion precise, we have to say what is
meant by smooth. Very often smooth can be taken to imply continuously diffe-

75/P.738
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rentiable in some sense and then there is a weaker condition, infinitesimal
stability, which, being a linear condition, is easier to analyse than stabi-
lity. Under certain circumstances it turns out that infinitesimal stability
is sufficient to imply stability. The point I wish to make here in general
terms, without burdening the discussion with precise definitions, is that
infinitesimal stability has a cohomological interpretation.

In treating infinitesimal stability one deals with infinitesimal
perturbations of dynamics. This involves changing the coefficient group in
the definition of cocycles Ifr'om the infinite-dimensional Lie group G = Aut X
to its Lie algebra LG which has ar underlying structure of a vector space
and hence of an Abelian group. An infinitesimal perturbation of dynamics is
thus an element of Z} (H,Z6) . Z'U(H,:f(‘v) has itself the structure
of a vector space under pointwise operations. Since G = Aut X there is a
natural linear mapping ¥ , say, of £G into TXX , the tangent space
of X at x . Since U{(h)x =x for he H, TxX carries~an indoced linear
representation of H and 4  induces a linear mapping ¢ , say, of
z :4 (H,4L6) into ZL" (H ,TXX) . 4"5 meps coboundaries into coboundaries
so that we have an induced linear map :}-# s Say, of H:; (H,£B6) into
H:JI (H, TXX) . The infinitesimal stability condition is that $*= 0, in
other words that the image of Z[ (H,£G) under ¥ is contained in
B, (H,T.X).

As an example of these considerations, I shall formulate an infini-
tesimal stability condition for an invariant state «  under a strongly
continuous 1-parameter group o  of automorphisms of a Cx-algebra & .

Let DerGL denote the real Banach space of symmetric derivations of 6

if deDer@ s let °d € DerOL be defined by ‘d(a) = oo (A), AEBL .
As an infinitesimal perturbation of dynamics, I take an element of Z; (R, Der@) ,
i.e. a continuous mapping d of R into Der &  such that

9) ‘{s + sdt - ‘i5+t , s,t e R

Let [wl denote the real Banach space of Hermitian linear functionals which
are normal functionals of the representation generated by c¢o . If fel[w]

75/P.738
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then °f € [w] , where F(A) = fo (R . There is a linear mapping
\T« of Z;(R, Derf) into Z;(R,[m]) defined by

(10) q;(d)s (A) = t.ocls (n) s Ae &,

4 maps coboundaries into coboundaries and one may define < to be
infinitesimally stable if +* » the induced mapping from H;(R,mva)
to H;(R, Lwl) , is zero.

In order to see what is involved here, let me sketch one way of
computing the first cohomology of the real line with coefficients in a Banach
space. Let B be a Banach space and s -+ U(s) a strongly continuous
representation of 'R by isometries of B .

Let & denote the infinitesimal generator of U : D(§) = { $¢B: s> Us)&
is nom differentiable } .

If e D) then §& = lim ' (us)3-3).

One may compute the cohomology in three steps.

T _

a) Given ~IeZLLﬁ3,B) define £ = ‘E‘L‘sts‘ and set «_kls =
§s+U(s)§—§. Then &' 4is a differentiable cocycle and one sees that every
cohomology class contains a differentiable cocycle.

b) If ¥ dis a differentiable cocycle then

(11) 'S_Ds = K: UU’.)‘J;: cdt

where ¥  denotes the derivative of ¥, at s=0.

c) A differentiable cocycle ¢ 1is a coboundary if and only if ¥ =8§&
for some & ¢ D(§)

This establishes an isomorphism of HL (R, B) and the quotient space
B/R(&) , where R(S) denotes the range of & .

Note: that the above steps are so simple that the proof holds in more general
contexts where B is no longer a Banach space. In practice there is still

75/P.738
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the problem of giving a good characterization of R{&) . For examples
of how to compute the first cohomology of more general Lie groups with
coefficients in a Hilbert space, the reader may consult Araki [5] .

Using the above characterization of cohomology, one sees that
an invariant state is infinitesimably stable if and only if for
each d € Dertl such that s-—> 54 is norm continuous, there
isa ¢ [e) such that llcod - s (4 -4) >0 as s—o.
If one takes ©L to be a simple C”-a]gebra so that each derivation is
inner and uses (11) one sees that w is infinitesimally stable if and only
if for each h = h* ¢ €L there is a $e [l such that

S
(12) T§ e(te(m), A1) dt

1}

$os M- $(ay AclL.

Eq.(12) may be recognized as the stability condition used by Haag, Kastler
and Trych=Pohlmeyer [6;Prop. 21 in deriving the K.M.S. condition.

Bounded Perturbations

In this section we consider a natural class of rather weak pertur-
bations of l-parameter groups of automorphisms of a C*-a]gebra. If & s
a C*-algebra with identity, ULE) will from now on denote the unitary

group of COL endowed with the norm topology. 1f « and o’ are
l1-parameter groups of automorphisms of &  then «' §s said to be a
bounded pertubation of o« if IIO("__ -x |t >0 as t >0 . This
definition together with the results of this section are taken from {7].
Passing to the cocycle variable ¥ ', ¥ = ot'tot,:' s, teR s

one sees that studying the bounded perturbations of & is equivalent

to studying Z:( (R, Autll) where Autfl s given the norm topolégy.
For simplicity, I shall only discuss here the case that 6 s a von Neumann
algebra Wt and that « is a weakly continuous 1-parameter group of
automorphisms of Wil . Since, by a result of Kadison and Ringrose [8;Thm.7],
every automorphism ¥ of ®( with 1¥- 1< 2 1is an inner automorphism

Zy (R, AL = Z4 (R, T.o1t) , where In¥L  denotes the
subgroup of inner automorphisms. It turns out that it is actually the weakly
dense C*-a]gebra kL1 of elements of ¥  having a norm continuous

orbit, which is important here :

75/P.738
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W= { At @t (R) is nonncontinuous}

=]
The simplest way of expressing the main result is to suppose, as one may,
that At is realized on a Hilbert space # , where « . is imple-
mented by a continuous l-parameter unitary group : o (R) = e’tHA e"tH
A e¥W . Thenif &' s a bounded perturbation of « |,

«L (R) = e i B e‘itH' , where H' may be chosen to have
the form
(13) H = vHV' &,
with Ve U(N) and b = h¥ ¢ Wi . Conversely if H'

e
has the form (13) then A = e1tH Ae H defines a bounded pertur-

bation of . Of course one can also express this result in a way which
makes no reference to an underlying Hilbert space [7:Thm 4.8] )

Let me say a few words about how this result is obtained, stressing
the cohomological parts of the argument. One has an exact sequence of groups:

1 — u(s) = UM — TN — {1
where 5 denotes the centre of W{ . The first step in the proof is to

show that ¥ , which is a continuous map fron R to Ta¥{ , may
be 1ifted to a continuous map U from K to UMW) :

Xl: = o«{ub teR

»

Now U s not necessarily a 1-cocyle but, and this illustrates a typical
feature of cohomology, the deviation z of U from a 1-cocyle,

-1
(14) z(s,t) = Ugwglud) b, , steRr
is itself a 2-cocycle with values in u(?n‘) . 30: 3 a0, >

(15) Z(s,t) zls+b,u) = o (2(t,w) z(st+w), stuec R .

75/P.738
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Now, one can show that if ®« is a strongly continuocus 1-parameter group
of automorphisms of an Abelian C*-algebra @ , then H:(IR,uteL))= 0.
This implies that there is a continuous function 2 R — U3

such that

-1 _
(16) 20s.8) = Ag, P wx (AT, s, e R
Hence if one sets My = A Mg , se R then

r e Z, (R, uat.) and
(17) ¥, = ad Ty, te R,

The final step is to analyse Z;(‘?.ﬂleﬂ) where «  is
a strongly continuous l-parameter group of automorphisms of a Cx-algebra
ol . In the problem at hand one takes O =W, . One finds that
Z‘o( (R,uten) may be regarded as a homogeneous space under
the action of  JU(EL) | the inhomogeneous unitary group of &L . JULY
is the group of pairs (W, V) with VEULX) and h=W*ell
and the law of composition

(18) (h,V) (W, v = (wevi'v?' vy .

To find a pair  (W.V)  which corresponds to a given
r ¢ Z‘:( (R, wen) » one picks Ve W) such that
l—,l

L = vt r't «, () s L¢R » 1is adifferentiable cocycle and

then defines h = -vid 'y yv' . The h and V which
de ¢ k=0

appear here, for a = i, » are of course those which may be
used in (13).
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Introduction

In Guerra-Rosen-Simon [l6] we advanced the idea that the

methods of statistical mechanics play a vital and natural role in

boson quantum field theories. 1Indeed, the last three years have seen

a tremendous infusion of techniques from statistical mechanics. 1In

particular, I would mention the following areas:

a)

b)

c)

d)

Correlation inequalities: For a recent review, see Simon [32].

Expansion techniques of Glimm, Jaffe, and Spencer: See e.q.,

Glimm-Jaffe-Spencer [10] ("high temperature"), Spencer [34] ("low
fugacity"), Glimm-Jaffe-Spencer [12] ("low temperature"), and, for
applications to (¢u)3 ; Feldman-Osterwalder (4] and Magnen-Seneor

[23].

Lee-Yang Theorem (¢” theories): The original result of Simon-
Griffiths [33] has been applied and extended by a number of
authors (e.g., see Dunlop-Newman [3] for a Lee-Yang Theorem for

multi-component fields).

Dynamical instability and phase transitions: We now know that the
(¢u)2 model exhibits a phase transition (see Jaffe [20] and

Glimm-Jaffe-Spencer {11]). In general the results and techniques
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that have been developed in the investigation of the set of pure phases
in the Ising model serve as a useful guide for ¢3 models.

Although I shall have a little to say about a) and c) below,
the main question that I shall discuss is the role of boundary condi-
tions (B.C.) in the P(¢)2 model. For complete details I refer you
to Guerra-Rosen-Simon [18]. Just as in statistical mechanics, one
expects that B.C. are fundamental in the definition of equilibrium
states, and are connected with the existence or nonexistence of phase
transitions (I am referring to "% B.C. "). Actually I shall not dis-
cuss these difficult questions but shall instead concentrate on
"classical" B.C., namely free (F), Dirichlet (D), Neumann (N), and
periodic (P).

More precisely, consider the free boson field ¢ with

Gaussian measure duo with covariance operator G0 = (-4 +m(2))_1 (for
a discussion of Euclidean Q space consult e.g., [31]): we have
J ¢(f)¢(g)du0 = (f ,Gog) (1)
Q
for £ ,g e N = H_lCRZ) , the Sobolev space with inner product (1).

The standard strateqgy for constructing an interacting field theory is
to restrict to a bounded region A CJR2 , to modify the measure duo

by a non-Gaussian factor depending on fthe fields in A ,

-U -U
_ A A
dvA = e duo /f e duo 7 (2)
and then to take the limit A > R? . For the P(¢)2 model,
UA = I :P(¢(x)) :dzx . However there is no a priori reason to use
A

"free" B.C. on the Gaussian part of the measure in (2) and we could
replace duo by a Gaussian measure dpi corresponding to the covar-
lance X _ X 2. =1

Gy = (=43 +m) (3)
where AX is a self-adjoint extension of AFCE(A) with "X " B.C. on
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the boundary 30 of A . 1Indeed it was Nelson's discovery [24] that

brand X B.C. (namely Dirichlet) lead to monotonicity properties of

the interacting measure (2). Thus we generalize (2) to
X
=U
av¥ = const. e M ap¥ (4a)
A A
or to
HX U x
dvA = const. e dpA (4b)

where in (4a) Wick subtractions in Ui are made with respect to dpi
and in (4b) (Half -X B.C.) Wick subtractions in UA = Ui are made
with respect to dui = duosz ; here EA is the o -algebra
generated by the fields in A .

A rather general class of covariances (3) is suitable for
field theoretic purposes. It is natural to impose one regularity con-

o et ) X
dition on this class: for some constant c) < «

A
X X
Gy = ¢y G, (5)
as operators on L2(A) - One can prove [18, Theorem II.6] that if GX

A
satisfies (3) and (5), then for all f,q e C:(A) i

X _ D X
(£ 1 G, 9) =(f 1Gyg)t BA(eaAf 'eaAg)

where BX is a bounded, positive definite quadratic form on NaA ’
the subspace of N = H_lCR2) consisting of elements with support on
34 ; here e is the self-adjoint projection in N onto NBA .
In addition to the choice of covariance, we may also wish to
choose a free field with nonzero mean which is specified by a linear
functional on NaA (see [18]). However, for the purposes of this

lecture, I shall specialize to mean zero, A a rectangle, and

X=F,D,N,P .

The Pressure is Independent of B.C.

The freedom to choose different B.C. provides considerable
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flexibility in the study of the thermodynamic limit. Certain opera-
tions and assertions are trivial with one choice of B.C. and incon-
venient or impossible with others. Obviously, then, it is important
to know what objects are independent of the choice of B.C. in the

thermodynamic limit. Consider the pressure in the P(¢)2 model

-U
X_ 1 X _ 1 A X
U.A = m Ln ZA = TA—[- in [ e duA ’ (6a)

or the half -X pressure,

-U
JHX 1 HX _ 1 f e A dux (6b)

A S TAT P EA T TAT A

The pressure should depend on the B.C. only through a surface effect
in finite volume A and should be independent of the B.C. in the

infinite volume limit. This is our first main result:

Theorem 1. Consider the P(¢)2 theory where P is any semibounded
polynomial. For ¢ =D ,N,P ,HD ,HN or HP , the limits

@l = 1im oY all exist and equal o = lim a
© A ©

Ao A

At

Remarks. 1. The existence of the limit a_ =1lim a, was established
Ao

by Guerra [14].

2. The limit A > «» may be taken in the sense of van Hove [30]

(except of course for P and HP B.C.).

3. It is possible to prove a more general result of this sort for
nonzero means (provided the means do not grow too quickly) and for

the class of covariances specified by (3) and (5).

The corresponding result has been well studied in classical
and quantum statistical mechanics. Our approach has been largely
influenced by Robinson's work in quantum statistical mechanics [29].
Related results have been obtained by Novikov [26] and Ginibre [9];

see also Fisher-Lebowitz [5] and [30] for results of Fisher and
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Ruelle. Baker [l] has proved the analogue of Theorem 1 for lattice

boson models.

Conditioning Inequalities

First let me recall some basic facts about extensions of

(-4 +m§)cm(A) with different B.C.:

Lemma 1. Let A be an open region in ZR2 (rectangular if P B.C.

are considered). Then, as operator inequalities on L2(A) ,
D N
GA < G0 <G, , (7)
D P N 8
Gy = G, =G, (8)
If A1 and A2 are disjoint open regions and A = int(T&1 u 12) then
cf <e oG |, (9)
1 2
P:>c od (10)
A A A
1 2
where @ denotes direct sum according to the decomposition
12 =12 e L2(r,) .
1 2
This lemma is an immediate consequence of the theory of
quadratic forms (see [21] or [18]). In fact, it is most convenient to

define Gi via the quadratic form associated with (-Aﬁ +m§) u

We now invoke the theory of conditioning [16, 31] which allows
us to deduce inequalities between Q space expectations from operator
inequalities among covariances such as (7) - (10). 1In particular we

obtain the following transcription of the inequalities of Lemma 1:

ZP
2 AN (11)
A 7 A
A
If A= :|.nt(A1 u A2) ’ A1 n A2 = ¢ , then
N N N ) : o
z. < 2 Z (Submultiplicativity of N B.C.) (12)
A Al A2
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R (Supermultiplicativity of D B.C.) . (13)

The familiar relations (12) and (13) lead (together with appropriate
D
bounds) to the convergence of aﬁ > ag and aﬁ > O (see, e.qg.,

[30]1). The lattice of inequalities of (11)

D N (14)

is basic to our proof of Theorem 1: the strategy is to show (a)
“E < a, and (b) ag > o, . Then the equalities “2 = az = az = aE
follow by "bracketing". I shall sketch the proof of (a) below; the
proof of (b), while similar, is a little more involved (see [18]).
Before going further, we should ask whether Z§ is finite
[that ZR sz, < exp(0(|A|)) is the well-known "linear lower bound“].
One way of showing that Zﬁ < » 1is to establish the regularity condi-
tion (5) for N B.C. For then by conditioning [c is the constant

i in (5)

where the superscript cF indicates that the covariance in the
measure (and in the Wick subtractions) is cG0 . If we make a change

of variables ¢ - clﬁ ¢ then we obtain

2 = f exp(—fA:§(¢):)duo

%

where the new polynomial §(y) Z P(c®y). Hence the case of N B.C.
reduces to that of F B.C. and we are done. The verification of (5)

for N B.C. is non-trivial [18] and we omit the proof:

Lemma 2. If A is a rectangle, then Gﬁ < CX Go.
We remark that it is possible to prove this inequality for
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more general regions than rectangular A ; for instance, for circles
or star-shaped regions with c? boundaries [18]. On the other hand,

there are regions A for which the inequality fails.

Properties of the Classical B.C.

It is instructive to look at the lattice approximations [16,
§IV] to the measures dui . With each site né e 522 we associate a
spin q, taking values in R ; the spacing parameter & > 0 . The

free lattice measure on the infinite lattice &Zz is (formally)

-1 .AFq
duz = const. e 23 dg

where the infinite matrix Az is defined by

2

- ) (15a)

2.2 2
. = +. -
g*A g moé iqn n z (qn q

T
<n,n'> n

2.2 2
(m06 +4) I qa, - z qnqn' (15b)
n <{n,n'>

where the notation <n ,n's indicates a sum over nearest neighbours.
If we now restrict duz to the set of lattice sites in the rect;ngle A
we obtain the (rigorous) lattice measures dui's = const. e_i—q.AAq dq
as follows. For D B.C. we drop the coupling terms 9,9, Aacross

A (think of the sites 9 outside A being frozen to zero):

qabg = ms?+4) g - z q.q

n nn' (16)
n in A £n,n’> in A

where by n in A we mean né ¢ A and by <n ,n'> in A we mean
that the sum is over nearest neighbours with no¢ ,n'é in A . For
N B.C. we drop the coupling terms (qn -qn,)2 across 9A since

this simulates zero normal derivative:

a-njq = m2s® 3 al+ 3 I (gm0’ . (17)
n in A &n,n'> in A
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To obtain P B.C. we simply introduce couplings 9,9, between
boundary spins at opposite edges:

P 2.2
QA g = (m 8" +4) r 4 9.9

- T (18)
nin A B <n,n'>P inp R

where the notation <n ,n')P indicates actual nearest neighbours or
sites at opposite e@ges of the rectangle A . The case of F B.C. on
0A is the most difficult to write down (see [16, §IV]). An examina-
tion of (16) ~ (18) shows that the measures d”i,& are all ferro-
magnetic in the sense that the off-diagonal entries of Ai are non-
positive; however, some B.C. (F ,P ,N) are more ferromagnetic than
others (D). (See Application 2 below for a discussion of the result-
ing correlation inequalities.)

In support of my contention that flexibility in the choice of
B.C. is useful, let me list some of the advantages of each of the

classical B.C.:

Free B.C. are simplest to calculate with since G0 is diagonal in

momentum space, Go(x yy) = (21r)_2 Jelk'(x_y)(k2 +m(2))_:L dk .

Dirichlet B.C. provide the easiest way of introducing barriers be-
tween regions of space (as in the cluster expansion [10]); the point-
wise inequality Gﬁ(x ,y) < Go(x ,yY) leads to particularly simple
estimates. As can be seen from (16) D B.C. play the role of "free
boundaries" in ferromagnetic spin systems; hence D B.C. are most
suitable for correlation inequality arguments (e.g. Nelson's
monotonicity theorem [24] and relations between D Schwinger

functions and other B.C. Schwinger functions as described below).

Periodic B.C. are "closest" to the infinite volume theory in the
sense that P states are translation invariant. P B.C. are best for
implementing transformations of the field or measure such as a mass

shift or ¢(x) » ¢(x) + ¢ (see e.g. Spencer [34] and [18]). P B.C.
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in the "time" direction of the free measure give a trace formula, as
first pointed out by Hoegh-Krohn [19]; for instance, if A is the

rectangle (-%/2 ,%/2) x (-t/2 ,t/2) ,

-U
ZHP = [ e A duﬁ

A
-t HEP
= Irfe )
L Hg 2
Tr (e [
HP P HP . .
Here Hl = Ho 2 + HI 9 where HP denotes free Wick subtractions.
r r

Neumann B.C. The submultiplicativity of N B.C. ("repulsion" between
regions) leads immediately to infinite volume estimates given a finite
volume estimate. For example, suppose A1 is a unit square and A a
union of unit squares; then by (12) and (11)

X N N -
oy < aA < %y (Linear lower bound).

1

Proof that “3 < o

We realize N B.C. in a passive picture by "changing co-

ordinates". More precisely, we write
G, = G0 + &G

where, by (7), 6G is a positive operator on L2(A) ; and we realize
the N B.C. field as

o) = o + 69 . (19)

In (19), the right side is a sum of independent Gaussian processes, ¢
and d¢ , with zero means and covariances G0 and G respectively.
We denote the expectation for the process ¢§ by > .

If R c A are rectangles, we introduce the "pressure" with

interaction in R and N B.C. on 3A by
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A
NAGy o1, <e'*“§'
ER R g
where X 2 0 and
vt = I 2 () = (x)dx
R
with Wick subtractions made with respect to Gﬁ . The pressure in

with F B.C. is

L ~AUgp
aR(J\) = TRT log Le >

where UR = I :P(¢):(x)dx with G0 Wick subtractions.
R

Suppose that the sides

of R are a distance r = |A|" i

from those of A , for some

fixed n in (0 ,% ; and

suppose that A » « in the

sense of Fisher (see [30]) so

that in particular the diameter of A , d(A)

R

s 1is of the order of

% : ) . n+%
[A]® . It follows that the area of the corridor [A\R| = o(|A]" 2)

We now prove that uE < a_ in two steps:

Step 1 (Strip removal) For any XA > 1 there is a constant ¢ such

that

1
N N,A n-z
ay s ap’ T (/A + ca]” 2

step 2 Lim o}t (0) = o (1) .

Ao

Combining these two steps we obtain

lim o} < a_(A)/A

Ao

(20)

(21)

for any A > 1 . But a (X) is convex in A and therefore continu-

ous so that we may take A + 1 in (21) to deduce that
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8z

e, <o .
Proof of Step 1. By Holder's inequality (1/x +1/A' = 1)
<e A > <e—AU 1/)\ -A' UA\R>/7\' 2
But by the linear lower bound
a UA(R> < OUMRD _ eo(|1x|“+%) . (23)

(20) follows from (22) and (23).
It is possible to prove a stronger result than Step 2 (taking

A =1 without loss of generality):

Step 2' (Principle of not feeling the boundary)

lim —eTT =1. (24)

Proof. Let D ={e /4e

e ¥ - e¥ ¢ %|x—y|(e_x-+e_y)
we obtain
1 -Uglﬂ “Ug _Ug’h
Ip] < 5 Llsu] (e +e )>/@ > (25)
_ N,A _.4a .
where 48U = UR - UR . Say that P(y) =y . Aan explicit calcula-
tion yields
5 d g-i .
L8u°> = 1 ey s f f G, (x-y)“7) sc(x ,y)) dxay (26)
=1 %3 Jrlr

where the 4 j are combinatorial factors. It is easy to see by the
’

method of images that for all x,y in R

-2m,r
|6G(x ,¥)| s const. e ° . (27)

Since Go(x-y) has only a logarithmic singularity we deduce from (26)

and (27) that for some constant a
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-2m_r
o2y < a’|rj? e 0.

By hypercontractivity (see e.g. [24]) we can extend this to an

estimate on the IP norm "GUHP = (|6ul3>1/p for p22:

da/2
lsul, < @-1%2|eu),
-m.r
< a(p—l)d/2|R| e 0 . (28}
Next we apply Holder to (25):
N, A N, A
a/2 -mr - -u
Io| = ap®?|Rle * e * . /he ® |, (29)
| L ey
where we have used the fact that |e R“p, < e Hp. by condition-
_NoA
. . . R O(!R])
ing. (29) looks a little unfortunate since |e "p' ~ e
However, we note that by interpolation for 1 < p' < 2 ,
: 42
Del o 7 el = dil, 218l /P .
'Ug'A o(|r]) 'Ug'A
Now |e "2 < e by the linear lower bound and |e . "1
> e_o(IRI) by Jensen's inequality. Thus if we choose p = |R| we
obtain
A oo
R
le ® Mg zlle ® s 2URD/R L O
a/2+1 —2m0r
so that by (29) ID| s comst. |R| e

‘which goes to zero as R » »

Convergence of the Lattice Approximation

The main justification for saying that the lattice measures
dui s (defined by (16) - (18)) correspond to X B.C. is the proof of
r
convergence as § - 0 . In [16] we proved convergence for X =F ,D .

When A is a rectangle a similar proof for X = N ,P may be based on
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taking Fourier transforms with respect to the eigenfunctions of

—AX + mg (see [18] for definitions and details):
Theorem 2. Let o =P ,N,HP ,HN . Suppose h, ,... ,h_«¢ c:(A) .

. o7
As § - 0 the lattice Schwinger functions SA,6(h1 s W ,hr) con-
verge to the continuum Schwinger functions

UO’

[omy)-eepmpe * ad
(h1 PRSI 'hr) = = .

-U
A o
I e duA

a
Sy

Remarks 1. For convenience we assume that 6 - 0 through a sequence
of values (e.g. 6j = 2/(23 +1)) so that the sides of A 1lie midway

between lattice points.

2. Thus we obtain correlation inequalities for X B.C. (see Applic.

2 below).

We now turn to some consequences of Theorems 1 and 2 (for

further details see [17] and [18]).

Application 1. Gibbs Variational Equality

In [16] we were able to establish only the Gibbs variational

tnequality: for any weakly tempered translation invariant state f
s(f) - p(f,P) < a_(P) (30)
where s(f) is the entropy density, p(f ,P) the mean interaction,

and ao_(P) the pressure as a function of the semibounded polynomial

P . Given Theorem 1, we can prove equality [18]:
sup [s(f) -p(f ,P)] = a_(P) (31)
£

where the supremum takes place over all tempered, translation invari-

ant states f .
The Gibbs variational equality was one of the main goals of

Robinson's work [29] on the independence of the pressure on B.C. in
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quantum statistical mechanics. Our proof of (31) is patterned after
his. In essence one considers states fD constructed by carving up
2 into a union of large squares and defining fD as the (averaged)
product of Gibbs states for each square with Dirichlet B.C. Since
such fD factor, the calculations may be simply performed and one

finds that
sup [s(£2) -p(£2 ,p)1 > Loy . (32)

Clearly the desired equality (31) follows from (30), (32) and the fact

that az =a .

-

Application 2. Correlation Inequalities

The ferromagnetic nature of the lattice theories with X B.C.
[see (16) —(18)) and the lattice convergence result of Theorem 2 imply
immediately by the methods of [16, 33] that all the correlation in-
equalities known for free B.C. hold as well for X B.C. Thus we

have for B.C. g=F,D,N,P ,HD ,HN ,HP :

a) Griffiths-Kelly-Sherman inequalities [8] for P(x) = Pe(x) - ux

where Pe is even and u > 0 .

b) Fortuin-Kasteleyn-Ginibre inequality [6] for arbitrary (semi-

bounded) P .

c) Griffiths-Hurst-Sherman [13], Lebowitz ([22], and Newman [25] in-

"

equalities if P(x) = ax + bx2 - ux, a>0, p=0. For

example [25],
|<e® )5 | < exp(s, (|Re f|)+%Sz'T(|Re £], [Ref])]

where Sj is the j -point Schwinger function and 5, T(x ' Y)
r
=8,(x,y) -8, (x)8, (y) -
d) Ursell6 (Cartier [2], Percus [27], Sylvester [35])

Us(x1 PP ,xs) 20
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if P(x) = ax* + bx2 .

In addition the Lee-Yang theorem holds for the above B.C. if
P(x) = axu + bx2 - ux [33].

What about the basic lattice (14)? It is natural to conjec-
ture that the Schwinger functions for different B.C. are related as

in (14). However it seems possible to relate only D B.C. to the

others:

Theorem 3. [18] If P(x) = Pe(x) - ux , 4 2 0 then

HD HX _
Sy s S, X=F,N,P . (33)
If in addition deg P < 4 , then
D X
Sy < 8, X=F,N,P . (34)

Discussion. As remarked above in the discussion of the lattice ex-

pressions (16) -(18), F , N and P B.C. are more ferromagnetic than
D B.C.; hence (33) follows from the second GKS inequality (see e.g.
[16, §V]). For X (as opposed to HX) B.C. , a change in B.C.

involves a change in Wick ordering; in the special case when
deg P = 4 , this change involves only a quadratic term and can be

controlled; hence (34) (see [16, Theorem V.20B]). As for inequalities

among other B.C., consider S?P and SﬁN . An examination of (17)
N P

and (18) shows that for some n , 0 < (AA)nn < (AA)nn , but, on the

other hand, for some n ,n' , (Aﬁ)nn, < (Aﬁ)nn, < 0 . Thus neither

of P or N is more ferromagnetic than the other and an inequality

ﬁp SSXN seems doubtful. Similarly it is tempting to conjec-

ture that SﬁN is monotone decreasing in A (SXD 18 monotaone in-

like &

creasing); however such a result can at best be true only for some

values of the coupling constants.

Application 3. Mass Gap for Nonzero External Field

. L 2
Consider the (a¢ +b¢ —u¢)2 model (similar arguments hold
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in d=3 dimensions (see Frohlich [7])). For large |u| , Spencer
[34] proved that the infinite volume theory with P B.C. exists and
has a positive mass gap. According to the Goldstone picture, however,
there should be a unique infinite volume state with positive mass gap
for any u = 0 . By adapting " a¢u +b¢2 _—
an argument of Penrose-Lebowitz u>0
[28] for finite range lattice
spin systems that was based on
the Lee-Yang theorem and the 3 > ¢
theory of subharmonic functions, \\x_///

Guerra-Rosen-Simon [17] proved

unigque minimum
this result: with positive curvature

Theorem 4. Let P(x) = axu + bx2 -ux, a>0, p=0. Then the

infinite volume (Dirichlet or half-Dirichlet) P(¢)2 theory has a

positive mass gap.

Remarks. 1. Our methods also establish the following: Suppose a >0
and b are such that up =0 is not a limit point of the (purely
imaginary) roots of
zilt(u) = J exp[— J :a¢'+ +b¢2 -ué :dx]dui =0
Lxt
for sufficiently large £ ,t . Here X=P or D and duf is the

free measure with X B.C. on the strip [-%/2 ,2/2] xR . Then the

infinite volume (Dirichlet) a¢q + b¢2 theory has a mass gap.

2. The reason that Theorem 4 may be considered an application of
Theorem 1 is that (at the time of writing of [17]) we had to make
a transition from P states (which we knew existed only for large
|u] ) to D states (which existed for all u). To this end we

R < Si , and the equality of the one-

used the inequality (34), S
point P and D functions in the infinite volume limit (a conse-

quence of Theorem 1).
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3. Subseguently Frohlich [7] has shown that the existence of a
acb‘4 + b¢2 - u¢ theory for one value of u implies existence for
all u (overcoming the difficulty referred to in the above Remark)

and he has given a simple proof of Theorem 4.

Application 4. 1Identity of Certain States

Under the hypotheses of a uniformly positive mass gap in the
space cutoff £ and the existence of the infinite volume limit, it is
possible to prove the identity of HX states for P(x) = Pe(x) - ux
theories [18]. The proof is based on the idea that (in statistical
mechanics language) the correlation functions are related to the
tangent plane to the pressure functional; hence if the pressure is
independent of B.C. the same should be true of the correlation func-
tions, for almost all values of the thermodynamic variables (where the
pressure has a unique tangent plane). The best result of this type is

due to Frohlich who proves (among other things):

Theorem 5 (Frohlich [7]). Consider the P(¢)2 model with
P(¢) = atjbl‘t + b¢2 - 4 where u = 0 . The infinite volume D ,P ,HD,

HP Schwinger functions are identical.

One expects that this result remains true for the value u =0,
since, even if the infinite volume state is nonunique, the D ,P ,HD,
HP theories will all be an exact average of the (presumed) two pure

states in order to have <¢(0)> = 0 .

Application 5. (Covariances of and Bounds on a_

By working with the appropriate B.C. it is easy to establish

certain covariances of the pressure under a) scaling, x > Ax ;

b) field translations, ¢(x) + ¢(x) + c ; c) mass shifts, mo - m0

(for details see [18]).
Using these covariances, we have shown that the bound of [15]

(deg P = 2n) ,
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a (A) < const. A(log l)n

as the coupling constant A - < 1is best possible in the sense that

(18]

am(x) > const. A(log A)n N

The proof follows a suggestion by R. Baumel (private communication)
and is based on a variational calculation with the mean of ¢ and the
bare mass as parameters.

In [18] we also obtain a bound on a_ as the subdominant

. S _ 2n 2n-1 e
coupling constants go to : 1if P(x) a, X+ oa, ¥ +
+ a, with a,n > 0 fixed, then
2n .
o (P)| < const. [1L + } Ja .lzn/J) (35)
j=1 2n-j »

Since the interaction polynomials for X and HX theories
differ by lower order terms with only logarithmically divergent co-

efficients, (35) leads to the equality azx = ai of Theorem 1.
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N© 248 — Les méthodes mathématiques de la théorie quantique des champs

n
A possible constructive approach to ¢,

R.Schrader

Institut fir Theoretische Physik
Freie Universitdt Berlin
1 Berlin 33,Arnimallee 3
Germany

y
Abstract: We suggest a constructive (euclidean) approach to ¢, using

multiplicative renormalization.

Résumé : On suggére une approche constructive (euclidienne) pourtl): qui
utilise 1a renormalisation multiplicative.

Talk presented at the International Colloquium on Mathematical Methods
of Quantum Field Theory, Marseille, Jume 23-27, 1975.
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Using euclidean methods's, constructive quantum field theory
has obtained a considerable control over superrenormalizeable field
theories (see e.g.[lél+). Thus it seems to be consensus among con-
structivists that time has come to take a closer look at field
models which are renormalizeable but not superrenormalizeable. The
purpose of my talk is to propose an approach which is based on multi-
plicative renormalization.

Although Zimmermann[}é] has added greatly to the understanding
of multiplicative renormalization using ideas of Wilson on the short
distance behaviour in operator product expansions, in my point of view
multiplicative renormalization has up till now not been able to arouse
the interest of the mathematically inclined physicist, at least not in
proportion to its importance.

So my intention will also be to argue that multiplicative re-
normalization could be made into a powerful tool in comstructive (euclidean)
quantum field theory.

Since the content of my talk will not consist in presenting re-
sults as in outlining a possible constructive program for ¢: » I will make
no effort in presenting the material with mathematical rigour. The
listener, however, who feels uncomfortable, may translate everything
down to two space-time dimensions, where most objects "defined" below
will exist.

The ¢: theory, the relativistic field theory of scalar, massive
bosons in 4-space-time dimensions, is a good candidate of a renormalizeable
but not superrenormalizeable theory. For two or three space-time dimensions
the euclidean approach is well understcod (see e.g.[S],[?],‘?l) in

terms of a measure

+) See also the contributions to these proceedings.
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feo dpm’
where /‘. is a Gaussian measure with mean zero and covariance
(-A+ m2)_1 . V is the euclidean action determined by the interaction
and contains the counterterms. The Taylor series expansion of the
exponential in the moments of this measure leads to the Gell-Mann-Low
series in the euclidean region.

The success of the euclidean formulation is roughly based on
the fact that estimates on e ' are possible which do not rely on per-
turbation theory.

Now for superrencrmalizeable theories it is possible to incor-
porate the counterterms into V using additive renormalization. In the
framework of additive renormalization, for theories which are renormalize-
able but not superrenormalizeable an infinite series (in the coupling
constant) of counterterms is necessary. Hence the definition of V
even after the introduction of cut-offs becomes difficult. Now by
the very definition of a renormalizeable field theory, there are
(module numerical factors) only a finite number of operators appearing
in the set of counter terms. Collecting the terms of the same operator
form is the first step leading to multiplicative renormalization. This
suggests the use of multiplicative renormalization in constructive
quantum field theory. To see how this may be done we assume there
exists a. ¢ theory which we control through multlpllcatlve renormallzatlon
and we ask the question: If there is a measure }lon Y (Q)whose
momentg are the euclidean Green's functions, what should the measure
look like? The answer is easy and may be obtained through the so called

field equations. For the euclidean Green's functions they read as follows:

_349_



Zy (—avwm®) S G00 $lyy - G lyndd
-2y Sw? <« DLy Pty - G lyw)>
+ 42 2By < :’¢3:‘(x) Ply)--- ¢ (yn)>
=) Slx-yi) < $ly) fly) - ynd =0

t=t

The notation is as follows: &+ » denotes the expectation w-r-t the

measure/q_ d.e v = S* d/h.¢is the Euclidean field, i.e

¢(£) = S{(r)¢f¥)d¥ is the linear function

t
Q)+ § — (2 2)

1
on f ( I‘).: ! denctes normal ordering wer-t da, i.e

;q:‘;(x) - L Plx) Dlx) Pliy) i

=%

= Ui @tx) gun) Plxy) - Bl < Glr)plx,>

;- x
- ¢(x;) < (ﬂx«) ¢‘*a}> = ¢(*‘1)< ¢[x4) ¢(Xg)>

WA is the physical mass, A the renormalized coupling constant,Z.(04 Z3$ 1)

is the amplitude renormalization constant and 2430 the vertex function
renormalization constant. 8\\::13 the mass counter term. They are given
explicitly (e.g. by Zimmer'mannLLG ) in terms of (on-shell vacuum) ex-
pectation values of the relativistic fields. Also the two-point function
is normalized on-shell in the usual way.

Zimmermann's analysis, however, easlily carries over to the so
called intermediate renormalization[l‘] » where the two point function
is normalized at zero momentum. This renormalization will of course be
more convenient for the euclidean approach.In perturbation theory it differs
from the standard on-shell normalization only by a finite multiplicative

renormalization.The result is as follows
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(p) = 2wy Se”'” @ (x) ekx
(p) = (™' < ¢lo) duxrs Ax
- (27)" ¢ ¢(o)$(o)>
o (pt) = (2m) <:dito) Blp)> AP

(2)

¥ o= “W) <i¢™: (o) Groy ST T

He]:'e<>IPI denotes the usual one-particle irreducible amplitude. Then

Let

D o2

2, =¥
2;‘ = 41 - Q’J\'i:q 0‘ ( a’) (3)
£=%!8w. = "l)%q (d(o)—\uo((o))

dl(r,‘\) = 9.%" M(r‘l)

In the intermediate renormalization the two point function is normalized

with

by the condition
-1
2y Bl 2
(p7) T P 4w )
for small p2. Of course, in this renormalization m2 will not be the
physical mass (the physical mass will be smaller).Also Zy will not
necessarily be smaller than 1. The measure I leading to the field

equations is then given by normalizing

d;/.,l 3 e—)\iqs @“:(g“&x + N '&qu) (g)o({:()
¥ Gﬁ/‘“‘ (Qg,\u)

Here d;.: (Z, 1) is the Baussian measure on f(as with mean zero and
covariance [gh( b 4m al . Now dus To the relations (4), W is implicitly
defined: The right hand side of (5) is given in terms of quantities
depending on . In physical terms we may say the vacuum (i.e p) is
stable under the interaction to which it is associated. This has the

smell of a Hartree-Fock self-consistency condition. We note that a
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similar point of view has been stressed and elaborated in a recent
paper by Chang L2]

Mathematically this picture of course invites to a formulation
as a fixed point problem. We now present such an approach: The set
‘k of all even, translation and rotation invariant ferromagnetic

A

measures onf { Q )is defined to consist of all probability measures
v of the form

(Sckv')—'oQV'
ﬂ?'= .exY;{- A-Z:,, S: q>"':(x)¢L¥ 4 g_g: C{?z Ax}.
2

6)
&/‘o (B3, w)

Here A ,m, 3,Z are now arbitrary positive numbers and € is real. ¢ :
denotes Wick-ordering w.r.t. du (Z n) For such v the Griffiths E7
and Lebowitz [8] inequalities as well as the Lee-Yang theorem [1'4] hold.
Since our aim is to construct theories parametrized by A and m,
those parameters will stay fixed in what follows. Hence(%- looks like
(R+)2x’\k . In analogy to the gquantities X(p), a(p?),y »Z, etc.
obtained from u (see (4) ) to each v we may associate corresponding

quantities. We indicate the v dependence by the suffix v .

In addition we define

- (2 r) TPl
}M'v > _W < ¢‘°) ¢(°)} (7)
By Griffiths first inequality
( >
<éux) dLy)>, 20 o
such that ~
Sy (e} =0 ©
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Using in addition the Nelson-Symanzik positivity condition

0<3,(p s 4,(0) (ioy
In particular ~ \
~ 4 A, -i’ 9 B, >
~ 4y lo) 4,(0) QT,,; dv(r) lr“o =0 (11)

Also by the Lebowitz inequality and a strong version of the Marcinkiewicz

theommE.O]
)M‘V >0 (12)

Now if Y is of the form given by (6), then a- Zu and Z3 may be

recovered by the formulae

}2|' = )w"v 2..V (13)

-1 ] (1)
?3 = 92?‘3(\0‘) ,rt_o -4)'20 O(V(O)
In particular we have
(\22,? > 9 (15)

We define for V ¢ § , €  real and 2,90 a new measure

g =g(9 ,E,;a) by setting _
s =(S "'ﬁ') ' G(g‘
&?' = e')?h.vj-" q’y:‘v(x)atx +

(AU

Y; @tv (x )ekx

°~
: J/‘(Q;)m) (18)

By Griffiths second inequality

& dgtor 20

2 2 <
o7 Ag(a)~0

(18)
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and we expect

inf B (o)=o ; sup K (o) =w (19)
P [o]

2, g

X ] 23t 3 23 .
inf = &K (p*) | =03 sup — B, (p?) | = (20)
o & ap? P ~ 3p2 Y 2_

2, > Pi=o g2 % p*=o

This leads us immediately to our central conjecture: There are (unique)

ENOR 'z"3=%‘3(v> sucht that for§' = Q (v,EW), Zy(v) ) we have
B, (0) = n 2 (21)
D 'y (pZ;:l | =1
‘a-]_oz ° p*=o 22)

Thus € and 'Z\; play a rdle similar to lagrange multipliers. They serve
to satisfy the subsidiary conditions (21)-(22), The map T : V=0
then maps? into ifself.

Let u be a fixed point, ji.e. u =Ty . Then by (2i) and (22) we

have the intermediate renormalization. Also by (11)

Aren,u = A (23)

and in particular we have a solution of the field equations (1)-(3)
with €= €(p) , 27 E;(u). The relations (21) (for.§=u) and (23) are
of particular interest. (23) guarantees the non-triviality of the
theory thus obtained. The result (21) allows an estimate of the two-

point function as a tempered distribution. By Griffiths inequality:

1< 4(f) Peaspl =1f 200y qty) < 12 §ty) o0 Aty |
€ oy VL (g (y) | < L GLy)on Ax oty
= sep 1200 | Jgey 14y -Z/“(o)

(24)
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By arguments due to Glimm and Jaffe[H] , the higher moments may then
also be estimated thus establishing the temperedness axiom for the
euclidean Green's functions[tq . Collecting our results we have est-
ablished what we hoped for : Z,+ is responsible for the relation (21),
i.e. A is the renormalized coupling constant and 23 and =23§;m2'are
responsible for the right renormalization of the two-point function.

Thus we have formulated the renormalization program (in the frame-
work of multiplicative renormalization) as a combination of a fixed point
problem and an implicit function theorem.

We note that the perturbative expansion of the solution (1)-(3)
in A gives the usual additive renormalization in the BPHZ framework.

How could this now be made rigorous? One could start with lattices
on a 4-dimensional torus. This would preserve translation invariance which
was essential in deriving (11). Then the corresponding maps T should con-
structed. This requires the verification of our central conjecture. We have
already been able to prove the properties (19) and (20). A good analysis of

T (such as continuity properties etc.) should then lead to fixed points.

As in[ﬁ] s for the resulting moments one could then choose a convergent
subsequence (qua districutions), when the torus becomes infinite and the
lattice spacing zero. The limit distributions are then the moments of a
measure by Minlos' theorem [ﬁ]. If in addition the relations (21)-(23) are
preserved in the limit, the theory will be nontrivial. This point is rather
subfle for the following reason: The method suggested here is not restricted
to a particular space-time dimension. In particular one could look at the
nonrenormalizeable (¢“)s theory. We expect that in the lattice approximation
everything that may be done in 4 dimensions also may be done in higher

dimensions. Hence the difference between (¢‘,~ and (¢): should show up
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in the fact for (¢")s it is impossible to retain the relations (21)-(23)
in the limit. In other words, the limit theory always becomes trivial.
Returning to the 4-dimensional case, since the physical positivity con-
dition holds on the infinite lattice (see appendix), presumeably only
the rotation invariance and the mass gap remain to be verified in order
to establish the Wightman axioms [11] .

We note that at several places nonuiqueness might come in. First
the solution &= (v), z3='i'é(v) of the normalization problem might
not be ynique, leading to different T . Secondly the fixed point (if it
exists) might not be unique and thirdly convergent subsequences need not
have the same limit. As a consequence the parameters A and m would not

be sufficient to characterize a theory.
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Appendix

In this appendix we prove the physical positivity condition
2
(see[ll] ) for euclidean bose fields on the lattlcez . The proof
L Y

—

for arbitrary Z (d> 1) is analogous. Let 2 2') be the Hilbert space

of all sequences g {f‘\ ‘l‘z '£J&¢such that (.Q 2 ) =

a Z (‘e i \ O . Let & be the selfadjoint operator

(A£\A = -Z;‘ A . L“?A (a1)

such that A‘ o and let m )o We define :e to be the completion of

z (2 )wlth the norm
<:e g’ = (‘e ('4""”“) 3@)‘“@2)

We denote by < » the corresponding scalar product. We define a unitary

involution A} on u
(92); = £

Aﬁj = (o, 1) Jor §= (§e,44)
Let furthermore eg4 be the orthogonal projection in x on the closed

subspace inx spanned by all fexwith €i 2 O vhenever _T .‘9 0.

with

Lemma e_e and e + €. are positive operators onjc . Equivalently 4’-
is pogitive on e +:< and e_x respectively.
Proof : We give a direct proof. Define the Fourler transform
‘((kn“a) = (l“l) £~\
J€ 2

(L)

such that

ﬁ‘ \%’(u.,\..;\‘dn,a\.,= ) . \9;\t

-T.q 562’
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=i

Then (-4 +m2) goes over into the multiplication operator A given

by the function

-1
(‘t-l cosl, -2cmk, wl)

(A5)
We also defme the partial Fourier transform by ‘\ ‘
£ ( 59\‘4.\\ = (21” ‘el
Let f€ e, ¥ such that £ 0 for 3, <0. Then
+4T W A
<925 =00 T Lk N'“‘)
h TR Jo e
° (a6)
Cﬁ( \o-’« '[ ) ® &“. dh‘ A6

G-2cak, -2 conle, 4wt

We now use the following formula (seeLl rel. (3.6.13) ) for x.(( and W &2
L3

COAmX Ay = ﬂl’ (A - v ')\'V\l
-7 A- ¥ tax (1-1“)"!\ X

(a7)
Defining x-(kA ) = 2 < ‘
Y=2cah +wt
k) = W & |
(4- ¥ k) ®
1 - - 3 ’% (A8)
(lh) = (4- %)) 5,
we may continue (A6) as r(“ )

<£, 99> =, Suu. ) g )38 Teke) 2\ ) dl,

-fow.) HOR g(u 1 dle,20

Pt =L Plerteny AL

39?’
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This proves the lemma, since the discussion for e_  is analogous.
Elaborating further on (A9) it is possible to relate it to the
minimal dilation picture as in[lS] 3
By second quantization (see e. gtl]t&] Ea})
E-_‘:g r.(ct)i 9=P(4}) satisfy
Et = 9 E:-.-' e-' and we have the

Corollary: E A E_and E_ E 4 are positive. Equivalently © is positive on
the range of E n and E_ respectively.
This is the physical positivity condition for the free Bose

3
field on the lattive z . For the interacting case the positivity

follows as e.g in [12]01:- [13].

—359—



References

1.

10.

11.

Bjoerken,J. and S.Drell
Relativistic Quantum Fields; Mc Graw Hill, New York, 1965

Chang, S.J.
Quantum Fluctuations in a Field Theory , I-The Stability
of the vacuum; Fermilab Pub.-75/23-Thy.

Feldman,J.S. and K.Osterwalder v
The Wightman Axioms and the Mass Gap for Weakly Coupled (¢)3
Quantum Field Theories; Harvard University preprint, 1975.

Glimm,J. and A.Jaffe "
A remark on the existence of ?., Phys.Rev.Letters 33,u40-441 (1974).

Glimm,J., A.Jaffe and T.Spencer

The Particle Structure of the Weakly Coupled P(*)‘ Model and other
Applications of High Temperature Expansions, in: Constructive
Field Theory, eds. G.Velo and A.Wightman; Springer Lecture Notes
in Physiecs, 1973.

Gradshteyn,I. and I.U.Ryzhik

Tables of Integrals; Academic Press, N.Y.1965.

Guerra,F., L.Rosen and B.Simon

The P(’)z Euclidean Quantum Field Theory as Classical Statistical
Mechanics; Ann.Math., to appear.

Lebowitz,J.L.

GHS and other Inmequalities; Comm.Math.Phys.35,87-92 (1974).

Magnen,J. and R.Seneor ¢

The Infinite Volume Limit of the (?) Model; Ecole Polytechnigue
Paris, preprint 1975, 3

Newman, C.

Moment Inequalities for Ferromagnetic Gibbs distributions, preprint 1974

Osterwalder,K.andR.Schrader
Axioms for Euclidean Green's Functions, I and II;

Comm.Math.Phys. 31,83-112 (1973) and to appear in Comm.Math.Phys.

—360—



12,

13.

14,

15.

16,

Osterwalder, K. and R.Schrader
Euclidean Fermi Fields and a Feynman-Kac-Formula for Boson-
Fermion-Models; H.P.A.46,277-302 (1973).

Schrader,R. and D.Uhlenbrock
Markov Structures on Clifford Algebras; J.Funct.Anal.18,369-413 (1975).

Simon,B. and Griffiths,R.
The ( ):Field Theory as a Classical Ising Model; Comm.Math.Phys.33,
145-164 (1973).

Velo,G. and A.S.Wightman, eds.

Constructive Field Theory; Springer Lecture Notes in Physics, 1973.
Zimmermann,W.

Local Operator Products and Renormalization, in "Lectures on

Elementary Particles and Quantum Field Theory" eds. Deser,Grisaru
and Pendleton, MIT Press , Cambridge, 1970.

—-361—






Colloques Internationaux CN.R.S.
Ne 248 — Les méthodes mathématiques de la théorie quantique des champs

FUB HEP 9/June 1975

Massive Thirring Model and Sine-Gordon Theory
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Abstract

The Hamiltonian of the massive Thirring field y(x) is
related to a Sine-Gordon Hamiltonian for the Boson field
¢(x), which generates the Boson ghost WB(E) of the Fermion
field. An analogous relation permits the calculation of
all thermodynamic correlation functions of the Littinger

model.

Résumé
On 1ie 1'bhamiltonien du mod&le de Thirring avec 1'hamiltonien Sine<Gordon,

Une relation analogue permet de calculer toutes les fonctions thermodyna-
miques de corrélation du modéTe de Littinger,

—363—



In this note we present results concerning the

relation between the massive Thirring model (resp. the
Luttinger model) and the Sine-Gordon Theory. Coleman [17]}
established equality of certain time ordered Greens
functions of the two theories in the sense of Feynman
perturbation theory in the mass (Thirring model) and the
cosine term (Sine-Gordon theory). He recovered the fermion
charge structure in the Sine-Gordon theory only through an
ad-hoc zero mass limiting procedure. An operator identity
between free massless Boson and Fermion fields - the Boson
Fermion reciprocity-allows to connect the two theories (on
the level of operator identities{2] Similar methods have
been applied in discussing the Luther-Emery model[3]

The following notation will be used. W (m;x) denotes
the free massive Fermion field in two dimensional space time
with periodic box cut-off L,

P . .
Wim,xy = {L\__ Z (%\A (e_"‘! UM,y oy + it U lm, ey °:.<==\)
. x
where

wixY= X°® = (m*s x‘\y‘ , x= g‘_ﬂ —}_ >N integer.

wim,xy = [;n\bn-:nil_’k (::_ y Wetm,xy e ¥ wimx)

x$=x°8\ , ¥° ___(? ;) ¥ (: ?).

°

The current is defined by

PO = TV R ) | e e,

with the charges

-
Qr= Xd: x\‘ki‘,*\‘
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In case m=o we write WAl = WLM-O.L\)
—zn LeR
Wegn = ;—. (e Wezaacse) + @ 5 ueem atan)
" s .

woes = (e""‘)-&m (2 Y* vteny .

© () ™m->o

It is useful to introduce light cone variables,
Ug = %=X | T ma~n

Jo = @+t | Ge= L (@%TQM.

2
On the Hilbert space Lot square - summable sequences

the unitary shift operator U is defined by

(Ug) (n)=g(n+1) , ge{i 1 )

The selfadjoiht charge operator Q is defined by
(Qg)(n) = ng(n)’

with natural domain D(Q). Let furthermore L2 be the Hilbert

space of square integrable functions on the circle,

=
{.a>= %‘_ Sdu E T ey,

The Fourier transformation maps 22 unitarily on to L2;

K x
FHon= Ze™ 4m | G =(F) fos™™ .

2

The shift operator is diagonal on L“ and the charge operator

the differentiation,
- .
(U = e {(M\‘ «Q%\(u\ = -\%&3\;\
The Boson-Fermion reciprocity can be formulated as
follows: Let W(x) be the Fermion Fock field and j*w\ the

corresponding current. There exists a Boson field

Ry = b )= &y (1)
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$oav= LY kR (0 con v k) (2)
L= t™®>o

with k=%\r\ ,0 integer, so that

: LA
fer= = S by + 1 Qe , T4, (3)

The representation of b1 in the Fermion Fock space g is
reducible,[q,QJ:o; in every charge sector the representation
of t? is irreducible and Fock (&}

Conversely let t? be a free massless , real Boson field
on Fock space S-" given by formulas (1) (2). Define the space
Ta(tet™e ® with the charge operators
Q-=- (eMe4, Q. =(1aQl® A
and the charge shift operators
W= (Lather , U,= laWI®

Then W(xya= WF(;\Q W“(x_) defined by

We o = U expl- 22w (Qe-1a) +ivQ,) )
\V%-k!\- -}ticxp-lﬁ‘\.ﬂ%\ %)

is a free massless Ferﬁion Fock field.

Instead of N4 (x) we could have used the Boson field
X_O_t_\- §+(>£\+ &_Qg . The two fields have the same commutator.
The Fermion ghost \\’F()i\ of \\)%\ gets formally simplyfied if

one introduces the infinitesimal generator By of Uy ,

F -
‘{‘,OL\ = %X -Lv(W Qe + 2% %Qy *Pt\ (6)
The identity of w* given by (4) and (6) is a non-trivial
operator statement.

The operators H: and H® defined by

—366—



-
W= Sax TWEI 00
oW
U = Llax 1idemi® ey + LB g GRRYY
°
are selfadjoint on their natural domain and »elated by
Kronig's identity 5,4],
HE = WD« Xqtaaly, (1)
This identity follows directly from (3) and from the relation
-
= w facs flagie, (8)
In Fermion Fockspace the charge shift operators can
be expressed in terms of the Fermion field, the potential %

and the charges Q, by just reading equations (4)(5) backwards.

The result is

Q C + 0
+'\.J=_.1'r+_-._.]

where #.: (#.;) denotes the positive (negative) frequency part

of +|‘, . This is the periodic box version. of the % -field

as discussed by Lowenstein and Swieca[b,?] , which in turn is a particular
solution of the Thirring model (Klaiber's solution for the
parameters Xa@ = ﬁ‘_ﬁ])

The Wightman functions for the field \V(&\ are

T W) Y tpod>
o Woabyr Wigny = oo T T (10)

T vty t:.»\_T} 0 RN
n kY

mg

The Wightman funetions of Wi(x)
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’
converge in j’ towards those of the Fermion field Wx) with
no cut-off. The Wightman functions not invariant under the

two dimensional gauge group R2, ‘{pp — exp-Wo. . W t®) vanish.

Now we discuss the massive free Fermion field
and its Boson counterpart ¢ . The field ¥ (n) and the mass-
less Fermion field YW are related by a unitary transformation
W(m) in Fockspace,

W (n)= W(m) ¥ W(m) ! (11)

The definition of the mass perturbed Hamiltonian requires an

additive renormalization

(Ho+ M) g = Lm (HSM 4 MA-ERY (12)
[N

Ao
M =m Idx s @r:on
[-]

where A denotes an ultraviolet cutoff and the limit is in the
=

norm resolvent sense. W(m) maps the Fock space vacuum into
-1 )

the ground state Q. (m)=W(m) XL of (H +M)  and E =

= (_Q__Lm\, (HF: + MA) _Q.tm\) . It turns out that
[
H., .= S«h T (0 ) Wamss b= \Mm\(\-\f +M\m\d oy

The operator (H§+H)ren can also be defined as follows

(13)

L
¥
Q-\.A-M]M = S‘K W, (W"(-i,\* +m\"\3\0l\’ (14)
°
where N denotes the normal product of the Fermion wperators

defined by

N oo wep) = Wion Wy — (Qoey 9% 00 W Q). (15)
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In terms of Boson operators the renormalized

Hamiltonian takes the form
L

\\-\i*mma L g“ N, (B2 3eg) * AR LR i) o
|

o
v o, Wm x®
r T L‘,Qr + ﬁ:u N, cos(fx Qm\i—i‘t(&,«-\__u.tQ@).
The domain of definition is the W-l(m) image of the domain

D(Hm) of the selfadjoint operator H,. The derivation of (16)

makes use of a slight generalization of Kronig's identity,
L v

fae N @ v = & Sa‘ LI A R R\ (17)

° ° bl

The Hamiltonian (\-\:«VM )ren is up to the term ’-‘El‘.Q‘.
the direct integral of Sine-Gordon Hamiltonians and
commutes with Q=Q++Q_

It is remarkable that already the free massive Fermion field
gives rise to the thetry of a boson field which is rather com-
plicated. As an operator in the Boson Fock space (“E “1)ren
is just outside the range of validity of the theory developped
in ref.[g] The Fermion Wightman functions converge again for
L—»>e (as elements in 3') towards those of the massive Fermion
field without cut-off.

The Hamiltonian of the Luttinger model (respectively
the Thirring model with box cut-off in case of local inter-
action) is given by
H = \'\: + W N \'\r - Sd\uly ihu\x‘\y\'g‘lm-y\ (S8R

o

or in terms of the Boson field

W e \-\? ~ %Q‘m\ R, QA-

W (19)
-3
W = -2 favay 1 doo ¥lpn + & o0 e Ve
o
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whepe V denotes the Fourier transform of V(x). The Hamiltonian
H can be diagonalized by a Bogoliubov transformation which
can be implemented by a unitary transformation W(V) in Fock
space g if[u] i[kq(k\\z<w . The ground state of the inter-
acting Hamiltonian is given by Q.&V\=W(VT‘_Q. and the

thermodynamic n-point functions by [163

T ﬁl qle‘)}a (th"i» /Tr e Ph= 8[?\— 5Z]WET.,->T-T L_%“'f’"ﬁ .5)

e+
- _.__——— ,B , ‘t t, K r)
1 qz#o ,Q‘I t, A )l _{3:47 ?2; ’51 I 7R (-, 4%

(20)
— 2 3 N S -
n % %DP@‘BF) A SZSJIG;)‘J/ Sc,-t)l'zf("')' 'Cy(,l)
Wi
4 i ) e—/i T [: Py g, ) w;(ﬂZg.(\fj{,xJ))
4 Z R ——am L (2 st L&
her N T Tt Tj=-
Here we have used the abbreviations
” vt
Yo =20, wa= 4 0= 1T
=5 v )]VL
S = (o ) B[4 (04
-E.lu
Qa (r; ty, %) = l.m)’z Z % "”'l“( (gt = -94)) -
" 1
h‘r‘"'/ﬂ, ! S

TSy

%‘Ltl(*l“ = 2 -:-E‘e,qa(-;(wﬁe -4x)) L
GEL

~F
1f kV) is not in 32 the Bogoliubov transformation
is not implementable in Fock space g% . This is the case in

the Thirring model with the Ham_iltoni\an (Vot\ - %ng ¥ = /11-)
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Heyy = H‘( v+ L (@ +Q: +KQ+Q.)
¥ =
. (21)

HYep = HE - by fan /a4l #s

°

However there is an incomplete tensor product space 3((3\
contained in the complete tensor product space . over the
Boson oscifllator spaces so that the renormalized Hamiltonian
Hg‘x‘ru\. is selfadjoint on a domain ])q)c IL&) for I¥le1.
Furthermore there exists a unitary transformation W(Y) which

implements the Bogoliubov transformation and maps the ground

state of HECK)M into the Fock space vacuum,

Win: Bogpr— = 8 O gne Wnla (22)
\AILY\ diagonalizes H(x\fe“)

-t
WO HE g, 00 Wit = JTy> HE, (23)
The representation of the canonical commutation relations in
H(Y) is non Fock. The Fermion field \Y(x) is not well defined
on the ground state Il(g) . This calls for an infinite wave
function renormalization if one wants to compute
n-point functions. The (wave-function) renormalized field in

2 () is defined by

Yo td= Yoo Ve, ey (2u)

8 LN .
= = -t (%D,
“fé“cp s ¢ (exp ar ) (e
NY denotes the Wick ordering with respect to the operators
W(Y\J‘C(k\W(x\ or else subtraction of the _Q(y) -expectation
values. The n-point function is given by the Fock space Wightman

functions of the field

W B pon Won ™ 1 —J;\P’m esexP—tJa(ic‘:"x+{d-%?]E , (25)
L
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where d denotes the scaling dimension of the exponentiated
fields and is related to the coupling constant ¥ by
d2(x)=(l+x)/(1-x). They converge towards the corresponding
Klaiber solutions of the Thirring model only if one drops

the factor in front of H, in (23). This amounts to an additiomal
(finite) wave function renormalization of W (x) [11] .

For simplicity we deal now with the addition of a
mass to the Thirring model (rather than the Luttinger model).
The massive Thirring model with periodic box cut off is
formally given by the Hamiltonian H(y,m) = H(})+M. For ¥
in the interval -1€Y¥ € o the renormalized Hamiltonian

Huyomi o= My + M
ren Ten [, " (26)

-
A 2 . ™ .
W Mequ Wit = = X*‘ Y cos[sin&. qnxw;t (R T.“«‘Q'\'ii
Q
can be shown to be a selfadjoint operator by using techniques
which are analogous to those used in ref.[Q]. For Y outside

this interval different methods are necessary‘}f].

Now we return to the question of relating the massive
Thirring model and the Sine-Gordon theory. The operator
identity (4)(5) does not lead to am equivalence of the
Thirring Hamiltonian and a Sine-Gordon Hamiltonian for the
Boson field(? (x) since in (26) there are terms present re-
flecting the charge structure of the Fermion Fock space.
Neglecting the term %{u‘Qw -which one might éxpect to be
a good approximation for L large-one remains with a Hamiltonian
ﬁgg;n\ which can be represented by a direct integral over

the spectrum of the operators lLt)
k-

- ® =
Hogmy = S d, de_ Hog,mys,s), (273
[+ ]
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Here ﬁ(ign;u,';) is a Sine Gordon Hamiltonian for the Boson
field Q)
If one treats the mass term as a perturbation as in

111, one has to compute

<TT_§°3<>9.\T{ e cosU-?ﬁQ(g.) + 7_'\:9.3‘-. > (28)
Due to the presence of the charge .shift operators U.,- Q'AQ-LP‘
only terms
(T\'_Eegom-‘i W : oexp LB Fxd eyt > (29)
with zk“’ contribute to (28). This is the same restriction
as in ref.[i}. There it was the result of a zero mass limiting
procedure. In a pure periodic box-cutoff Sine-Gordon theory
other terms would contribute to the N-point functioms.

Results on quasiclassical approximations to the
Sine-Gordon theory[}é]can be applied to the Hamiltonian
EKan;u~‘u_\- The point spectrum in this approximation is

given by the soliton-antisoliton and the. bound state masses.

It is a pleasure to thank P.K.Mitter for several

stimulating discussions.
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The Bethe-Salpeter Kernel in P(g), *

Thomas Spencer +

Harvard University
Cambridge, Mass. 02138

RESUME Le but de cet exposé est d'expliquer comment &tendre 1'expansion
du "cluster” pour cobtenir Tes propriétés fortes de décroissance
d'un et de deux noyaux P.I. (particule irréductible).

Pour comprendre 1'importance de telles estimations on explique
premiérement la relation entre les propriétés de décroissance des
noyaux r - P.I. (r =20, 1, 2) et ie spectre de masse et 1a
matrice S .

ABSTRACT

The purpose of this talk is to explain how to extend the cluster
expansion [1] to obtain strong decay properties for one and two P.I.
(particle irreducible) kernels. The details of these estimates are
presented in [2]. See also [3] for related results. Since the proof
of the estimates is somewhat complex we shall only sketch the main
ideas behind the proof. To understand why such estimates are impor-
tant we shall first explain the relation between decay properties of the
r - P.I. (r = 0,1, 2) kernels and the mass spectrum and the S-matrix.

Throughout the talk P is a positive even polynomial and )\/mg is small,

* Supported in part by the National Science Foundation under Grants
MPS 73-05037 and MPS 74-13252.

* Present address: Rockefeller University, New York, N.Y. 10021.
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The Mass Spectrum

Let us first consider the case r = 0 and define S(X) to be the
0
Schwinger function of the points X = {xl ® oip xn}, }\:i = (xi,xil). Then it

is clear that

-od(X, Y)

IS(Xu Y} - S(X)S(Y)l < O(l)e c>0

implies that the vacuum is unique and that there is a unique vacuum.

Here

d(X,Y) = min |z -y]|.
x€X, y€EY

For the case r = 1 let I’(p) be the inverse of the two-point function

in momentum space, i.e.
1) S(PIT(p) = 1.
The 1.P.L kernels we consider are defined by
2
) K(x,y) = Ty(x - y) - my + 8,
and for n > 1
3) (X, Y) = S(X U ) - [S(X, % (x - )S(y, Y)dxdy - S(X)S(Y) -

In perturbation theory k(X, Y) is the sum of all graphs which are one
particle irreducible in the X - Y channel. This means that X and Y

can not be disconnected by cutting a single internal line. Thus we omit
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graphs of the form

XMY

Let m be the physical mass and let ¢(A\) - 0 as X -» 0. It can be shown

that a decay of the form

4) J(x, )| < o(n)e” 2

implies that

(5) Spect M N (0,2m-¢) = {m]},

and in particular

(6) S(pi=1,24r;nl,z+ J‘oﬁ—
2(m-¢)

Hence by the Haag-Ruelle theory there is an isometric S matrix.

Let us establish this form of S(p) from (4). Note that (4) implies
that I’(p) is analytic in p2 = pg + pf for lpl < 2(m - €). Hence S(p) is
a meromorphic function without zeroes for ‘p‘ < 2(m - ¢), But between
any two poles of S there is at least one zero because S must vary
continuously from - to +m Hence there is at most one pole for
‘p‘ < 2(m - ¢). We refer the reader to [4] for a complete proof of
(5).

To obtain information about bound states and scattering we need to

analyze the two particle irreducible Bethe-Salpeter kernel K(x1 e x4).
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In perturbation theory K is the sum of all connected graphs which are
two particle irreducible in the {xl,xz},{x3, x 4] channel and whoge external
lines are amputated. Here are some typical graphs which contribute to

the sum (for X(p4):

><x X X x

However these diagrams do not contribute

x x
1 3
x, X, N .

2 4
Now suppose
@) IK(xl...x4)| < @(x)e-(m-e)dz(x)
where
® d,(x) = |x(l)-xgl+ |xg- 2\ +2 ‘x?+xg-xg_x:‘

and &x) is a finite measure in x. This estimate together with the fact

that
Q. eitHep (Qe(y)a

span the even subspace of energy less than 4m - €} [3] yield the following
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results:

(a) The mass spectrum is discrete below 2m.

(b) The mass operator restricted to the even subspace of energy
less than 4(m - ¢) has no singular continuous spectrum,
{c) The S matrix is unitary on the even subspace up to energies less

than 4(m - ¢).

Remarks: Bound states exist for the interaction cp6 - q;4 but there are
no bound states of mass < 2m for )\cp4, see [1,5). The presence of bound
states for weak coupling is a result of the fact that we are in one space
dimension. Quantum mechanics indicates that they would not be present

in three space dimension for weak coupling.

‘We now describe briefly how results (a), (b), (c) follow from (7).
This is work done in collaboration with F., zirilli [6]. Many of our

techniques appeared several years ago in a paper of Bros [7]. Let
D(xl,xz, x3, x4) = S(x1 e x4) - S(xl, xz)S(x3,x4)

(9)
Do(x1 ces x4) = S(xl,x3)X(xZ, x4) + S(xl,x4)S_(x2, x3)

and then by definition K satisfies

(10) D = Dy + DyKD .
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Here D (as well as DO and K) acts as an operator via

(Df)(x,, x,) = In(xl, X, %3, % ilx,, % Jdx dx,

After Fourier transformation and analytic continuation (10) is the analogue

of the resolvent equation in quantumn mechanics. To see this fix

£ = (xZ - xl)/Z and N = (x4 - x3)/2

and define

T= (x, tx -xl)/Z.

37 %2

0 0
Then using the Feynmman-Kac formula (with z1 =7 =g =0)

(a1 [Dign, ve’ " Zar
= ,[<Q'°P0('§ l)wo(gl)E_leU + 'Hleu]ch ('fl - ﬂ])cpo('fl + ‘f)l)n)d‘fl-

The 'l'1 integration corresponds to restricting the Hamiltonian H to the zero
momentum subspace. To obtain our results (2), (b), and (c) we study

the behavior of D(z), z = r +i€c as ¢ Y0 with 0 < r £ r(m - ¢), Estimate
(7) implies that K(z) is a compact perturbation of D(z) and is analytic

for |z| < 4{m - ¢)*. We apply the analytic Fredholm theorem to the

equation

D(z) = Dy(z) + Dy(z)K(z)D(z)
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to show that Do(z) and D(z) have the same singularities as ¢ ¥ 0 apart
from possible poles corresponding to bound states. Do(z) is easy to
analyze using the form (6) for the two-point function and (a), (b), (c)

follow in a straightforward manner.

The Expansion

The cluster expansion is a perturbation about a decoupled theory.
We achieve our decoupling by inserting 0 Dirichlet boundary conditions in
the covariance (or propagator). LetT be a union of lattice line segments
and define op to be the Laplacian with Dirichlet boundary conditions on
2 2.-1 2
. If Xi are the components of R~ - T ther (-Ar+m0) leaves L (Xi)
invariant so that events localized in distinct Xi are independent.

Equivalently
2,-1
(-ap+mQ) " (%, y) = 0

whenever x and y belong to different components. For a subset of integers

IC Z let A be abbreviated A[. We define an interpolating set of co-

(IXR)

variances by the formula

(12) Cltxy) =B I I - £)-a +ma) " (x, )
I i¢I

Note that C(t) = (-A+mz)_l ift, =1 foralli. Ift =0ands =ixR

separates x and y we have

(13) C(t,x,y).= 0.
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Hence ti measures the coupling across the line Ii

We now explain how to extend the cluster expansion to the one-particle
irreducible kernel k(x,y). The Bethe-Salpeter kernel can be analyzed
similarly. ILet dyp(t) be the Gaussian measure of mean zero and

covariance C(t). If Q is a polynomial in ¢ we define

o V(A)

Qdel(t)
(14) (Q) (t) = v »
A [T
and
(Q)t) = 1lim {Q) (1),
MRr2 A
where

V(A) xj :Plep (x)):dx .
A

Similarly we define

(15) Kt xy) = [T - ¢t Ixy)

where
j’r(t, % y)(Plykp(x') Xt)dy = §(x - x') .

The 2.P.I. property of k(x,y) is reflected in the following important

observation
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r

(16)

k(t, x, =0 =0,1,2
S ( y) - T
1 i

whenever the line zi = i x R separates x and y. This identity is easy to

see in perturbation theory, e.g. in first order

3 of I
(17) <Lt x, v) r I citx, ) + ..
d"i ti=0 dti ti=0

It may be rigorously established by a straight computation in the lattice
approximation and then taking the lattice limit, see [2]. With this

identity and Taylor's formula

1 o1 (n)
f(1) = £§0) + £(0) + ... J‘ m{f (t)dt
0
we can express k in the form
(18) K(x, y) = ljt n L i]k(t x, y)dt
] - 3 3 iy .
yosisxo B dti

0

At this point we turn to estimates on derivatives in ti. Essentially we
must show that each factor d/dt yields a factor of e™™, It is difficult
to estimate these derivatives directly.

Hence we illustrate our approach by considering an analogous problem.
Consider parameters (|.|.i) 1 € Z (similar to 'ti) which measure the local

strength of an external field localized in the strip |x0 -i] £ 3 Let
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{ Hm)

denote the expectation with respect to the interaction

v +z;piJ' o olx)dx .
i |x -i‘s%
For large m, the cluster expansion proves that (Q)(n) is bounded and

analytic for |p.i|: < M. Thus if we apply the Cauchy formula as in [8]

rj _
| = o
p=0 . icl

At oeTi {(Q)(p)dp|
L 1

(19) ln L
i€l

=1 M Tconst.
icl

We remark that if one were to compute the derivatives directly
(nlI‘)'. unconpnected Schwinger functions would appear so that a term by
term estimate would be useless. The analyticity method has the can-
cellation of these terms built into it. To apply this method to k(u,x,y)
we express k(p) as a convergent Neumann series of Schwinger functions.
This allows us to trans;l.ate bounds on S(i,X) to bounds on kiy, x, y).

To extend this technique to the t variables we are forced to intro-
duce an auxilliary parameter h = (h(a)) because ( )(ti) is not analytic

in t. We define an expectation

{ Xb,t)

which is apalytic in h and such that
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ma= | =5 ymy
h=0

icl oty h=0

Here Bh is a differential operator in h. T e key estimate is to show that
|(Q>(h(a)t)\ < Const.
e+(m0-e)d(a).

lh(a)‘ < We refer the reader to [2] for details.
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