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Universitat Autònoma de Barcelona

Thesis advisor: Dr. Rafel Escribano

A thesis submitted for the degree of

Doctor of Philosophy

Bellaterra, Juliol 2016





A la Montserrat i en Rafael,

us en devia una.





El més bonic del mar
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L’escrit que el lector té entre les mans és el fruit del meu pas per l’Institut de F́ısica

d’Altes Energies. Han estat quatre anys d’aquells que passen d’allò més ràpid però
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Introduction

The Standard Model (SM) of particle physics is the best theory for describing all

known particles and their interactions we have in Nature so far. It is a renormalizable

quantum field theory, based on the gauge symmetry group SU(3)C⊗SU(2)L⊗U(1)Y ,

which describes strong, weak and electromagnetic interactions1, through the exchange

of gluons, W± and Z bosons and photons, respectively. Despite the SM does leave

unexplained phenomena2, it has successfully described a huge amount of experimental

results and predicted a large variety of phenomena. In the framework of the SM,

predictions for physical quantities arise from using perturbation theory expanding in

terms of the coupling constant of the considered interaction. As a matter a example,

in quantum electrodynamics (QED) the expansion is performed in terms of αQED and

perturbation theory has led to predictions with astonishing precision. For instance,

the QED prediction of the anomalous magnetic moment of the electron is the most

precisely verified prediction in the human history, it is know to an accuracy of around

one part in one billion. The reason of the success of perturbative tools applied to

QED lies on the magnitude of the coupling strength αQED which, as it is rather

small, the higher the order of a term the lesser their contribution it will be and, as a

consequence, infinite series can be approximated quite well by a finite sum. However,

this method is no longer valid to describe strong interactions in its full glory. In

quantum chromodynamics (QCD), the theory of strong interactions in the SM, the

coupling strength αs depends very much on the energy regime we want to explore. At

high-energies (or equivalently, at very short distances), the strong coupling αs is small

and, consequently, the quarks and gluons interact weakly behaving like free particles.

This outcome is known as asymptotic freedom [1, 2, 3]. Thus, physical observables in

this energy regime can be suitably described by means of a perturbative expansion in

1The SM describe strong and electroweak interactions i.e. three of the four fundamental forces of
Nature. The remaining force, the gravity, is completely separate from the SM, but instead described
by Einstein’s general relativity. This is one incentive to look for physics beyond the SM.

2The standard model does not accommodate phenomena such dark matter, dark energy, neutrino
masses or the matter-antimatter asymmetry of the universe.
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Introduction

powers of αs, the so-called perturbative QCD (pQCD) approach. On the contrary, αs

at low-energies (or equivalently, at large distances) becomes larger, thus invalidating

the use of perturbative techniques and making impossible to find isolated quarks and

gluons in Nature so far. Instead, one observes hadrons (baryons and mesons), which

can be considered as bound states made of quarks and gluons. This is the peculiarity

of the strong force that does not decrease but grow with distance which, based on our

experience with the electromagnetic or gravitational forces, causes a counterintuitive

scenario. This is a consequence of the so-called confinement mechanism, which has not

been mathematically proven yet3. Therefore, the low-energy region requires another

approach to be described. Numerical QCD simulations on the lattice or the S-matrix

theory method are two examples that have provided interesting and useful results

to deal this regime. On the lattice QCD side, it has been possible to determine

from first principles some of the QCD input parameters such quark masses or the

strong coupling constant among other things while the S-matrix theory, based on

mathematical guidelines such as analyticity, unitarity and symmetry arguments, has

given rise to the dispersion relation techniques we will widely employ in this thesis.

Another possibility is an effective field theory where the hadrons become the relevant

degrees of freedom. Chiral Perturbation Theory (ChPT) [5, 6, 7] is such effective

theory for mesons which, based on the chiral symmetry, encodes the relevant dynamics

occurring in the low-energy domain of QCD. It is described in terms of eight pseudo-

Goldstone bosons, three π, two K and the η, as the relevant degrees of freedom and

organized through a double perturbative expansion in momenta and quark masses.

ChPT is predictive when the energy (or momenta) and masses of the mesons is small

compared to the chiral symmetry breaking scale, in this case of the order of one GeV.

From a phenomenological point of view, it has successfully been applied for describing

lots of processes involving π and K but much less for the η. Actually, the η entering

in ChPT is not the physical ones but rather a part of it corresponding to the octet. In

reality, the η meson has a second component, coming from the pseudoscalar singlet,

which is not systematically included in ChPT. A plausible framework to describe the

dynamics of the physical η and η′ mesons is the extended large-Nc limit of ChPT [8]

which includes the pseudoscalar singlet η1 and considers also the number of colors

in the expansion. From the experimental point of view, there is a series of ongoing

experiments e.g. BELLE-II, BESIII [9], CrystalBall@MAMI [10], KLOE@DAPHNE

and WASA@COSY [11], with the study of the phenomenology associated to the η

3In fact, under the name of ”Yang-Mills existence and mass gap”, its proof belongs to one of the
so-called seven Millennium Problems [4].
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and η′ among their main objectives. Fruit of this experimental activity in the field,

we are entering into a precision era on the η and η′ system which makes the physics

of both mesons a question of great theoretical interest which should result in having a

better and more complete knowledge of strong interactions at low-energies. The main

goal of this thesis has been devoted to deal with some phenomenological applications

involving the η and η′ mesons.

This thesis is structured as follows. The first two chapters are dedicated to discuss

the theoretical basics relevant for presenting the processes investigated in the rest of

the work. Chapter 1 is devoted to provide a brief overview of the theory of strong

interactions with particular attention on the description of the low-energy realm, while

chapter 2 is reserved to present the concept of dispersion relations where we derive

the Omnès equation in good detail. Then, we will go on to discuss the topics studied

in this thesis which is divided into two main parts as summarized below. Finally, we

collect and discuss the most important results obtained in the dissertation in chapter

9.

Hadronic tau decays

In part I of this work, we will analyze different semileptonic decays of the tau lepton.

Such processes provide a clean and advantageous framework for investigating QCD

in the non-perturbative regime since half of the process is purely electroweak and,

therefore, free of uncertainties at the required precision. Tau decays constitute an

ideal scenario for understanding the hadronization of QCD currents as well as for

determining the physical parameters, mass and width, of the intermediate resonances

that drive the processes. The strong dynamics is codified in the hadronic matrix

element which in turn is represented in terms of form factors whose parameterization

is of utmost importance for having a good understanding of the decays.

First, in section 3 we will analyze the experimental measurement of the invariant

mass distribution released by the Belle Collaboration on the exclusive decay τ− →
K−ηντ [12] and predict the decay τ− → K−η′ντ for which only an upper bound for

the branching ratio exists. The analysis have been performed by means of dispersion

relations after a proper description of the participant form factors based on ChPT

including resonances as explicit degrees of freedom. The results for the mass and

the width of the K∗(1410) we have obtained in our study [13] appeared to be in

accordance with those from the K∗(892) dominating mode τ− → KSπ
−ντ obtained

in previous works [14, 15]. This fact motivated us to perform a combined analysis of

3
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both decays channels afterwards [16] with the main goal of improving our knowledge

on the K∗(1410) resonance parameters.

The combined analysis of the experimental decay spectra of τ− → KSπ
−ντ and

τ− → K−ηντ is done in section 4. We have obtained the physical K∗(892) and

K∗(1410) resonance parameters defined by the pole position in the complex plane.

The mass and the width of the K∗(1410) have been determined with a substantial

improvement as a main result and discussed prospects of improvement for Belle-II.

We have also investigated possible isospin violations in the low-energy form factor

parameters as the K−π0 vector form factor enters the description of the K−η decay

mode. In this respect, we emphasize the necessity of making available the acceptance

corrected spectrum of the transition τ− → K−π0ντ [17], as it would allow to further

investigate the source of those isospin violations.

We close the first part of the thesis with the study of the decays τ− → π−η(′)ντ in

section 5. These processes occur via isospin violation and belong to the so-called sec-

ond class currents unseen in Nature so far. Our study [18] is focused in the represen-

tation of the required vector and scalar form factors which is based in ChPT including

resonances. Following the analytical properties of a form factor, we have discussed

elastic and inelastic unitarity corrections in the parameterization of the required scalar

form factor while the vector form factor has been extracted in a model-independent

way benefited from existing data on the well-known π−π0 one [19]. According to our

results, their discovery may be possible at forthcoming hadron facilities Belle-II and

BESIII thanks to the increased luminosity respect to predecessor laboratories. In this

section, the form factors entering the description of τ− → π−η(′)ντ decays have been

also applied to describe the semileptonic η(′) → π−`+ν` (` = e, µ) decays since they

are related by crossing symmetry.

Phenomenological applications of Padé approximants

Regarding part II of the thesis, we will begin with a brief introduction to the mathe-

matical method of Padé approximants (PA) in chapter 6, where we sketch their most

important features and provide some pedagogical examples.

The usefulness of PA as fitting functions have been extensively illustrated in

literature, see e.g Ref. [20] aimed at describing the pion vector form factor. In

Refs. [21, 22, 23], PA have also shown a remarkable ability in describing the ex-

isting experimental data [24] on the single virtual pseudoscalar transition form factor

(TFF) γ∗γ → P (P = π0, η and η′), extracted from the reaction e+e− → e+e−P in

the space-like region. Regarding the experimental measurement of the transition form

4



factor of double virtuality, γ∗γ∗ → P , it is still an experimental challenge which may

be unveiled in the near future. These TFF have recently attracted a lot of attention,

both from the experimental and theoretical sides, since enter the determination of

the pseudoscalar-exchange contribution to the hadronic light-by-light scattering part

of the anomalous magnetic moment of the muon, aµ, whose SM prediction results

in (3 − 4) standard deviation difference with the current experimental value. It is

then clear that a good description of these TFF is indispensable in the SM precision

physics era.

The time-like region of these TFF can be accessed at present meson facilities either

through the single and double Dalitz decays P → `+`−γ and P → `+`−`+`− (` = e

or µ). Here it lies our interest in these decays which we will examine in section 7

by means of a data-driven approach based on the use of Padé approximants applied

to π0, η and η′ TFF experimental data in the space-like region. We anticipate the

remarkable ability of the PA as obtained from fits to the space-like region in describing

the time-like regime. Our predictions are in accordance with those decays measured

at present time. We hope our work also to serve as a motivation for the experimental

groups to pursue the unmeasured one.

Finally, in section 8 we will perform a combined a analysis of both space-and

time-like experimental data on the η′ transition form factor benefited by the recent

measurement on η′ → e+e−γ released by the BESIII Collaboration [25]. The reason

why PA applied to the time-like region work so well will be discussed. Our combined

study allows for the extraction of the low-energy parameters of the TFF as well

as their values at zero and infinity momentum transfer with substantial improved

precision. The impact on the mixing parameters of the η − η′ system will be also

addressed.

5



Chapter 1

Theoretical framework

The intent of this chapter is not to discuss QCD in its totality but rather to provide

the sufficient theoretical background relevant for presenting the topics investigated in

this thesis. We have tried hence to highlight the most important aspects regarding

the theory of strong interactions providing details where they are needed for later use.

Nonetheless, the interested reader is referred to Refs. [26, 27, 28, 29, 30] to deepen

on the subject.

1.1 Quantum Chromodynamics

Quantum Chromodynamics is the theory aimed at describing the strong interactions

among quarks and gluons. The most general QCD Lagrangian reads

LQCD =
∑
f

q̄f
(
i /D −M

)
qf −

1

4
Ga
µνG

µν
a , (1.1)

where the sum runs over the six quark flavours, f = u, d, s, c, b, t, for the up, down,

strange, charm, bottom and top, respectively. M represents the quark mass matrix

and it is given byM = diag(mu,md,mc,ms,mt,mb), where m stands for the mass of

the specific quark flavour.

The covariant derivative keeps the kinetic term in Eq. (1.1) invariant under local

SU(3)C gauge transformations and is given by

Dµ = ∂µ − igs
8∑

a=1

λa
2
Aaµ . (1.2)

The interactions among quarks and gluons emerge due to the gluon field Aaµ entering

the covariant derivate while the strength of the interaction is dictated by the strong

coupling constant gs (commonly referred as αs ≡ g2
s/4π). The color index a runs

6



1.1. Quantum Chromodynamics

Quark flavour Mass
u 2.3+0.7

−0.5 MeV
d 4.8+0.7

−0.3 MeV
s 95± 5 MeV
c 1.275± 0.025 GeV
d 4.66± 0.03 GeV
d 173.21± 0.51± 0.71 GeV

Table 1.1: Quark masses as given by the pdg [37].

from 1 to 8 due to the SU(3) group has eight generators, λa, known as Gell-Mann

matrices [31] satisfying

[λa, λb] = 2ifabcλ
c , (1.3)

where fabc are the structure constants of the group, which are real and antisymmetric.

Finally, the non-abelian field strength tensor containing the gauge gluons fields Aaµ is

defined by

Ga
µν = ∂µAaν − ∂νAaµ + gsf

abcAbµAcν , (1.4)

which enters Eq. (1.1) squared, thus leading a kinetic term for the gluon field as

well as self-interaction terms among three and four gluon fields proportionals to gs

and g2
s , respectively. The responsible for the appearance of self-interactions among

gauge fields is the last term of Eq. (1.4) as consequence of the non-Abelian nature of

QCD. This feature becomes a change of paradigm respect QED, since this property

is not present there. It is then reasonable to think that the existence of self-gluon

interactions may be the responsible of two capital features of QCD that are not present

in QED either: asymptotic freedom and confinement. These two effects can be better

understood if we take a look at Figure 1.1 where we provide a graphical account of

the behaviour of the strength of the strong coupling αs as a function of the energy

scale of the interaction. From the figure we can clearly differentiate two regions. On

one side, asymptotic freedom occurs in the high-energy region where the coupling

strength αs is weak and quarks and gluons behave, inside the hadrons, almost as

free particles. In this regime, perturbation theory techniques are allowed to make

predictions on measurable quantities such cross sections or decays widths. In other

words, interactions can be accounted for through a perturbative series expansion

around the free theory in terms of the coupling constant. As in this domain the

strength of the coupling is small, the importance of the contributions decreases quickly

with increasing the order, thus giving a fast convergence of the series. This leads to

the so-called perturbative approach to QCD (pQCD). On the other side, the coupling

7



Chapter 1. Theoretical framework

Figure 1.1: Behaviour of the strong coupling αs as a function of the energy scale Q
[GeV] (the image has been borrowed from Ref. [32]).

constant asymptotically grows at low-energies which leads the quarks become more

and more tightly bounded. In fact, if one try to separate a quark-antiquark pair the

force joining them increases. At some moment, it is energetically favorable to create

a new quark-antiquark pair that recombine into two mesons and so one and so forth.

This is known as confinement and explains why it is not possible to find isolated

quarks and gluons in Nature but hadrons instead. The size of the QCD coupling at a

typical hadronic scale ≈ 1 GeV, αs(1 GeV) ≈ 0.5, indicates that the low-energy realm

of QCD can not be adequately described my means of a perturbative expansion in

terms of αs since it becomes larger. At first sight the situation may seem worrisome:

we have written down the QCD Lagrangian Eq. (1.1) for describing the interactions

among quarks and gluons which can not account for what we really see in Nature so

far, the hadrons. This fact gave birth to Chiral Perturbation Theory, the effective

field theory aimed at describing the low-energy region of QCD for mesons. We devote

section 1.2 to introduce the most important aspects and equations of ChPT useful

for the development of the thesis.

1.1.1 Symmetries in the QCD Lagrangian

In the SM, fermions and gauge bosons acquire mass via the Brout-Englert-Higgs-

Guralnik-Hagen-Kibble mechanism [33, 34, 35, 36], usually also known in short as

8



1.1. Quantum Chromodynamics

the Higgs mechanism. However, the Higgs field is certainly not the responsible for

most of the visible mass in the universe, made essentially of protons and neutrons,

but rather QCD. In other words, the contribution of the quark masses to the mass of

proton is negligible and almost the entire proton mass arise from the energy binding

the quarks together, the so-called binding energy. Actually, this phenomenon also

occurs in the hydrogen atom for example, where the isolated mass of the proton plus

the isolated mass of the electron is slightly different than the mass of the two entities

combined, because the energy due to the interaction among them influences the mass

of the entire system. In the hydrogen atom this effect is tiny but inside a nucleus

the interaction energy is large and can not be neglected. This is a consequence of

what the famous Einstein’s equation E = mc2 is telling us. It is then reasonable to

associated the mass of the proton mp ≈ 1 GeV as ΛQCD, the scale that determines

the strength of strong interactions. ΛQCD splits up the six quarks given in table 1.1

in two groups. One formed by the u, d and s quarks whose masses lie below ΛQCD

and another composed of the c, b and t quarks with masses above ΛQCD. These two

sets are called accordingly light and heavy quarks. As low-energy QCD deal with the

physics occurring below ΛQCD, we will only consider the light quarks as the explicit

degrees of freedom entering the QCD Lagrangian in the following and ignore the

heavy quarks henceforth.

The QCD Lagrangian Eq. (1.1) can be re-expressed in terms of the left-and right-

handed components of the quark field, qL = PLq and qR = PRq, by means of the

helicity projection operators

PR =
1

2
(1 + γ5) = P †R , PL =

1

2
(1− γ5) = P †L , (1.5)

which fullfil

PR + PL = 1 , P 2
R,L = PR,L , PRPL = PLPR = 0 , (1.6)

yielding

LQCD = L0
QCD + LmQCD , (1.7)

with

L0
QCD = q̄Ri /DqR + q̄Li /DqL −

1

4
Ga
µνG

µν
a (1.8)

LmQCD = −q̄LMqR − q̄RMqL . (1.9)

The reason to split Eq. (1.7) into two pieces is that while the first term, L0
QCD,

do not mix left-and right-handed quark fields, the second LmQCD, which involve the

quark mass matrixM, do mix. In the so-called chiral limit, where the quarks masses

9



Chapter 1. Theoretical framework

are neglected, only the L0
QCD term in Eq. (1.7) is allowed and the QCD Lagrangian

remains invariant under the transformations

qL → ULqL , qR → URqR , (1.10)

where

UL = exp

(
−i

8∑
a=1

θLa
λa
2

)
exp−iθ

L

, UR = exp

(
−i

8∑
a=1

θRa
λa
2

)
exp−iθ

R

. (1.11)

Therefore, in the chiral limit Eq. (1.7) exhibits a global U(3)L⊗U(3)R symmetry, the

so-called chiral symmetry since the transformations act on the left-and right-handed

components independently. The symmetry group U(3)L⊗U(3)R can be rewritten as

U(3)L ⊗ U(3)R = SU(3)L ⊗ SU(3)R ⊗ U(1)L ⊗ U(1)R , (1.12)

to study the conserved currents corresponding to each of the sub-groups. There are

9 left-and 9 right-handed currents that led the L0
QCD Lagrangian invariant

Lµ,a = q̄Lγ
µλa

2
qL , Lµ = q̄Lγ

µqL , Rµ,a = q̄Rγ
µλa

2
qR , Rµ = q̄Rγ

µqR , (1.13)

which according to Noether’s theorem are conserved

∂µL
µ,a = ∂µL

µ = ∂µR
µ,a = ∂µR

µ = 0 . (1.14)

These currents are however usually given in terms of vector and axial-vector currents

via the linear combinations

V µ,a = Rµ,a + Lµ,a = q̄γµ
λa
2
q , V µ = Rµ + Lµ = q̄γµq , (1.15)

Aµ,a = Rµ,a − Lµ,a = q̄γµγ5
λa
2
q , Aµ = Rµ − Lµ = q̄γµγ5q , (1.16)

which lead the corresponding conserved charges

Qa
V =

∫
d3xV 0,a(t, x) , QV =

∫
d3xV 0(t, x) , (1.17)

Qa
A =

∫
d3xA0,a(t, x) , QA =

∫
d3xA0(t, x) . (1.18)

The global phase transformations with θL = θR belong to U(1)V ≡ U(1)L+R while the

ones with θL = −θR to U(1)A ≡ U(1)R−L. Then, the singlet vector charge QV can

be interpreted as the conservation of the baryon number arising from the invariance

of the QCD Lagrangian under U(1)V symmetry transformations yielding

B =
1

3

∫
d3xq̄γ0q =

1

3

∫
d3xq†q , (1.19)

10



1.1. Quantum Chromodynamics

which assigns 1/3 for quarks and -1/3 for antiquarks leading B = 0 for mesons and

B = 1 for baryons. On the contrary, the singlet axial vector current Aµ obeying

U(1)A symmetry transformations remains conserved at the classical level but brakes

down upon quantization leading

∂µA
µ =

3g2

32π2
εµνρσGµνa Gρσa . (1.20)

This phenomenon is known as the axial anomaly of QCD and will be further discussed

in section 1.5. Regarding the octets, the vector-and axial vector-currents V µ,a and

Aµ,a, associated to SU(3)L ⊗ SU(3)R symmetry are conserved both at the classical

and quantum level. In all, the QCD Lagrangian in the chiral limit, L0
QCD, is therefore

invariant under transformations of the symmetry group

SU(3)L ⊗ SU(3)R ⊗ U(1)V . (1.21)

However, if the quark mass matrix term LmQCD in Eq. (1.7) is also allowed, the QCD

Lagrangian is not invariant under SU(3)L ⊗ SU(3)R symmetry transformations any-

more leading to the chiral symmetry breaking phenomenon. Consequently, the vector

and axial vector currents are not conserved

∂µV
µ,a = iq̄

[
M,

λa
2

]
q , ∂µV

µ = 0 ,

∂µA
µ,a = iq̄

[
M,

λa
2

]
γ5q , ∂µA

µ = 2iq̄Mγ5q +
3g2

32π2
εµνρσGµνa Gρσa . (1.22)

So far, we have seen that the explicit source of the chiral SU(3)L⊗SU(3)R symmetry

breaking arise from the quark masses and since these are small the chiral symmetry of

QCD is usually referred as an approximate symmetry. Actually, the QCD dynamics

at low energies can be described by means of a perturbative expansion in terms of the

small quark masses. Notice that for equal quark masses, mu = md = ms, the eight

vector currents V µ,a are conserved since [λa, 1] = 0. We would also like notice that the

quark masses induces a new source of U(1)A symmetry breaking on the singlet axial

vector current Aµ apart from the anomaly and that the QCD Lagrangian remains

invariant under U(1)V symmetry group in any case.

1.1.2 Spontaneous chiral symmetry breaking

Regarding the meson spectrum, in an exact SU(3)L ⊗ SU(3)R flavour symmetric

world one may expect the particles collected in the same multiplet to have the same

spin and masses. In the real world, the flavor symmetry is basically broken due to

11



Chapter 1. Theoretical framework

the large mass of the strange quark compared to the up and down quark masses.

Because of that we do not expect the particles in the same multiplet to have exactly

the same mass. Moreover, the associated charges Qa
V and Qa

A as obtained in Eq. (1.18)

transform under parity, respectively, as a vector and axial vector operators

Qa
V → Qa

V , Qa
A → −Qa

A , (1.23)

and are time independent i.e. they commute with the massless QCD Hamiltonian

[Qa
V , H

0
QCD] = [Qa

A, H
0
QCD] = 0 . (1.24)

Consider the eigenstates |φ〉 of H0
QCD with eigenvalues E

H0
QCD|φ〉 = E|φ〉 . (1.25)

Then, since Qa
V and Qa

A commute with the H0
QCD (cf. Eq. (1.24)) one would expect

the states Qa
V |φ〉 and Qa

A|φ〉 to have the same energy E carrying opposite parity (cf.

Eq. (1.23)). This means that for each particle with specific spin (J) and parity (P )

quantum numbers, there should exist another one with the same spin but opposite

parity both of them with the same mass. However, by looking at the meson spectrum

in table 1.2, we see that there is no trace of such a symmetry in nature so far since

the masses of the pseudoscalar particles (JP = 0−) are drastically different than the

scalar (JP = 0+) one. The solution to this puzzle was provided by Vafa and Witten

JP Particle Mass (MeV) Quark content

0− π0 134.9766 (uū− dd̄)/
√

2
π+, π− 139.57018 ud̄, ūd
K+, K− 493.677 us̄, ūs
K0, K̄0 497.614 ds̄, d̄, s

η 547.853 (uū+ dd̄− 2ss̄)/
√

6

η′ 957.78 (uū+ dd̄+ ss̄)/
√

3

0+ a0
0 ∼ 980 (uū− dd̄)/

√
2

a+
0 , a

−
0 ∼ 980 ud̄, ūd

K∗+, K∗− ∼ 892 us̄, ūs
K∗0, K̄∗0 ∼ 800 ds̄, d̄, s

f0 ∼ 980 (uū+ dd̄− 2ss̄)/
√

6

Table 1.2: Mass spectrum of the lightest mesons according to pdg [37].

[38], who proved that the vector charges Qa
V annihilates the vacuum, and by Nambu

12



1.2. Chiral Perturbation Theory

and Lasinio [39, 40], who proved that the vacuum is not invariant under the action

of axial charges Qa
A,

Qa
V |0〉 = 0 , Qa

A|0〉 6= 0 . (1.26)

Consequently, as the full symmetry of the (massless) hamiltonian is not shared by

the ground state (vacuum), the chiral SU(3)L ⊗ SU(3)R symmetry is said to be

spontaneously broken down to the subgroup SU(3)V ,

SU(3)L ⊗ SU(3)R
SCSB−→ SU(3)V . (1.27)

In that case, there is no need for the masses of the pseudoscalar and scalar particles

to be equal. According to Goldstone’s theorem [41, 42], for a global continuous sym-

metry of the Lagrangian, the theory must contain a massless and spinless particle

for every spontaneously broken generator, the so-called Goldstone Bosons. In our

particular case, as we have eight axial charges that do not annihilate the vacuum

one expect eight pseudoscalar Goldstone bosons to appear. Actually, since SU(3)V

is an approximate symmetry which is broken by the presence of the quark masses,

in the real world one would expect the Goldstone bosons to acquire small masses via

the symmetry breaking parameter. Thus, they are usually called pseudo-Goldstone

bosons. Therefore, from the above discussions, the pseudo-Goldstone bosons must be

light pseudoscalars transforming as an octet under SU(3)V . This is actually what is

inferred by looking at the particle spectrum in table 1.2, the eight lightest mesons

(three pions π± and π0, four kaons K±, K0 and K̄0, and the η) become the best can-

didates for being the pseudo-Goldstone bosons associated to the spontaneous chiral

symmetry breaking (SCSB) SU(3)L ⊗ SU(3)R
SCSB−→ SU(3)V . The next task is then

to build a low-energy theory involving these pseudo-Goldstone bosons as dynamical

degrees of freedom.

1.2 Chiral Perturbation Theory

Effective Field Theories (EFT) are the appropriate theoretical tool to describe physics

below some energy scale Λ. The idea of EFT is to take into account the relevant

degrees of freedom for the problem at hand i.e. those states with m � Λ, and

integrate out the heavier one M � Λ from the action. An interesting fact is that we

do not lose track from that heavier states at all since the information is contained

within the couplings of the resulting effective Lagrangian. The classical example of

an EFT is the Fermi theory of weak interactions as the low-energy realization of the
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Chapter 1. Theoretical framework

SU(2) ⊗ U(1) electroweak SM where the information of the high-energy dynamics,

carried by the W boson, is encoded within the Fermi coupling constant.

The general method to construct effective Lagrangians with spontaneous sym-

metry breaking was proposed by Callan, Coleman, Wess and Zumino [43, 44] who

provided a suitable manner to parametrize Goldstone bosons. For the case that con-

cern us, we would like to write down an effective theory for describing low-energy

QCD. Of course, it must contain the same symmetries as QCD i.e. Lorentz invari-

ance, parity and charge conjugation, but with mesons as explicit degrees of freedom

rather than the quarks. The standard choice to collect the pseudo-Goldstone fields is

through (see e.g. Ref. [45] for a detailed derivation)

U(Φ) = exp
(
i
√

2Φ/f
)
, (1.28)

where

Φ =
∑
a

λa√
2
φa =

 1√
2
π3 + 1√

6
η8 π+ K+

π− − 1√
2
π3 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

 , (1.29)

is a 3 × 3 SU(3) traceless matrix and f a constant which we will discuss later. The

matrix U(Φ) under SU(3)L ⊗ SU(3)R transforms as

U(Φ)→ gRU(Φ)g†L , (1.30)

with gL,R ∈ SU(3)L,R. Once U(Φ) is defined, the low-energy effective Lagrangian

realization of QCD can be obtained. Chiral Perturbation Theory (ChPT) is such

effective theory for QCD [6, 7] and it is formulated in terms of the matrix field U , its

derivatives ∂µU and the quark mass matrix M. These building blocks of the ChPT

Lagrangian count as

U = O(p0) , ∂µU = O(p) , M = O(p2) , (1.31)

which determines the order of any term built from the meson fields and the quark

masses. Thus, the ChPT Lagrangian can be organized in terms of increasing powers

of momentum (or equivalently in powers of derivatives) and quark masses

LχPT =
∞∑
n=1

L2n = L2 + L4 + L6 . . . , (1.32)

where the subindices accounts for the expansion order. As soon as the momentum

of the mesons become comparable to Λ, the predictiveness of the χPT Lagrangian
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1.2. Chiral Perturbation Theory

is questioned. The scale Λ is usually settled to the energy region where resonances

arise as new degrees of freedom since resonance poles cannot be reproduced by a

polynomial expansion series. As the ρ is the lightest resonance, it is reasonable to

consider its mass as an estimate of the CHPT range of validity ΛχPT ∼Mρ.

Because of Lorentz invariance, only even chiral orders are possible. The lowest-

order Lagrangian O(p2) contains the minimum number of derivatives and in the chiral

limit i.e. neglecting the mass term, reads

L2 =
f 2

4
〈∂µU †∂µU〉 , (1.33)

which by taking the expansion of Eq. (1.28) in powers of Φ

U = exp
i
√

2Φ

f
= 1 +

i
√

2Φ

f
+

1

2!

(
i
√

2

f

)2

Φ2 +
1

3!

(
i
√

2

f

)3

Φ3 . . . , (1.34)

∂µU =
i
√

2

f
∂µΦ− 1

f 2
∂µΦ2 − i

√
2

3f 3
∂µΦ3 . . . , (1.35)

we get

L2 =
1

2
〈∂µΦ∂µΦ〉+

1

12f 2
〈(Φ(∂µΦ)− (∂µΦ)Φ) (Φ(∂µΦ)− (∂µΦ)Φ)〉+O(Φ6/f 4) ,

(1.36)

where the first and second terms stand, respectively, for the Goldstone kinetic terms

and a tower of interactions increasing in the (even) number of pseudoscalars.

However, the lightest mesons do not experience only interactions among them-

selves but electroweak one as well. Moreover, one should also incorporate the explicit

breaking of the chiral symmetry through the quark masses. All this can be achieved

by adding to the massless QCD Lagrangian, L0
QCD, quark couplings to external clas-

sical fields vµ (vector), aµ (axial-vector), s (scalar) and p (pseudoscalar), such that

the Lagrangian reads

LQCD = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q . (1.37)

By separating the quark fields into its left-and right-hand parts, qL and qR, and

defining the corresponding left-and right-handed external fields as

rµ = vµ + aµ , lµ = vµ − aµ , (1.38)

the Lagrangian in Eq. (1.37) can be rewritten as

LQCD = L0
QCD + q̄Lγ

µlµqL + q̄Rγ
µrµqR − q̄R(s+ ip)qL − q̄L(s− ip)qR . (1.39)
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Chapter 1. Theoretical framework

Notice, that by comparing Eq. (1.39) with the Lagrangian of the electroweak Standard

Model, one can deduce the couplings of the quarks to the external fields rµ and lµ to

be

rµ = eQAµ ,

lµ = eQAµ +
2√

2 sin θW
(W †

µT+ + h.c.) ,

s =M ,

p = 0 , (1.40)

where the quark-charge (Q) and the quark-mass matrix (M) are defined by

Q =
1

3
diag(2,−1,−2) , M = diag(mu,md,ms) , (1.41)

while T+ is a 3× 3 matrix containing the relevant Cabibbo-Kobayashi-Maskawa ele-

ments

T+ =

 0 Vud Vus
0 0 0
0 0 0

 . (1.42)

The Lagrangian as given in Eq. (1.39) is invariant under SU(3)L⊗SU(3)R⊗U(1)V

symmetry transformations provided that the externals fields transform as

qL → gLqL ,

qR → gRqR ,

lµ → gLlµg
†
L + igL∂µg

†
L ,

rµ → gRrµg
†
R + igR∂µg

†
R ,

s+ ip → gR(s+ ip)g†L ,

s− ip → gL(s− ip)g†R , (1.43)

with gL,R ∈ SU(3)L,R. In order to preserve local invariance the gauge fields vµ and

aµ may only appear either through the covariant derivative

DµU = ∂µU − irµU + iUlµ , DµU
† = ∂µU

† + iU †rµ − ilµU † , (1.44)

and through the field strength

F µν
L = ∂µlν − ∂νlµ − i[lµ, lν ] , F µν

R = ∂µrν − ∂νrµ − i[rµ, rν ] . (1.45)

Finally, the most general locally chiral invariant Lagrangian at lowest order describing

the strong, electromagnetic and semileptonic weak interactions of mesons reads [6, 7]

L2 =
f 2

4
〈DµUD

µU †〉+
f 2

4
〈U †χ+ χ†U〉, (1.46)
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1.2. Chiral Perturbation Theory

where χ = 2B0(s+ip) parameterizes the explicit chiral symmetry breaking. Therefore,

at leading order in the chiral expansion the theory is fully determined by Eq. (1.46) but

for two low-energy constants: the couplings B0 and f which require to be constrained

from experimental data or extracted by direct computation on the lattice. The latter

is related to the pion decay constant in the chiral limit fπ, while the former accounts

for the strength of the quark condensate in the chiral limit.

By taking one derivative of the classical action, S2 =
∫
d4xL2, with respect to lµ

or rµ we find the conserved left-and right-handed currents defined by

JµL =
δS2

δlµ
=
i

2
f 2DµU

†U =
f√
2
DµΦ− i

2

(
Φ
↔
Dµ Φ

)
+O(Φ3/f) , (1.47)

JµR =
δS2

δrµ
=
i

2
f 2DµUU

† = − f√
2
DµΦ− i

2

(
Φ
↔
Dµ Φ

)
+O(Φ3/f) , (1.48)

or similarly the vector-and axial vector-one

JµV,A = JµR ± JµL =

{
JµV = −i(Φ

↔
Dµ

µ Φ) parity invariant (even # of Φ);

JµA = −
√

2fDµΦ parity violating (odd # of Φ) .
(1.49)

Indeed, for the pion to vacuum matrix element of the axial current we have

〈0|(JµA)12|π+〉 = 〈0| −
√

2f∂µπ
+|π+〉 = i

√
2fπp

µ , (1.50)

which fixes the coupling f to the pion decay constant, f = fπ = 92.21 MeV, whose

experimental value is usually extracted from the well-known pion decay π+ → µ+νµ.

Regarding to the constant B0, it is related to the quark condensate by taking the

derivative with respect the external scalar source s

q̄jLq
i
R = − δS2

δ(s− ip)ji = −f
2

2
B0U

ij , (1.51)

q̄jRq
i
L = − δS2

δ(s+ ip)ji
= −f

2

2
B0(U †)ij , (1.52)

which leads

〈0|q̄jqi|0〉 = 〈0|q̄jLqiR|0〉+ 〈0|q̄jRqiL|0〉 = −f 2B0δ
ij . (1.53)

Taking s = M = diag(mu,md,ms) and expanding in powers of Φ in the absence

of external fields (vµ = aµ = p = 0), the second term in Eq. (1.46) is quadratic in

the fields and thus contains the mass term for the mesons plus additional interaction

proportional to the quark masses. For computational purposes, it is useful to provide

the Lagrangian in terms of Φ

L2 =
1

2
〈∂µΦ∂µΦ〉+

1

12f 2
〈(Φ(∂µΦ)− (∂µΦ)Φ) (Φ(∂µΦ)− (∂µΦ)Φ)〉

+B0

{
−〈MΦ2〉+ (1/6f 2)〈MΦ4〉

}
+O

(
Φ6

f 4

)
, (1.54)
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where the third term reads

−B0〈MΦ2〉 = −B0(mu +md)π
+π− −B0(mu +ms)K

+K−

−B0(md +ms)K
0K̄0 − B0

2
(mu +md)π

2
3

−B0

6
(mu +md + 4ms)η

2
8 −

B0√
3

(mu −md)π3η8 . (1.55)

Notice that the π3 and η8 states are mixed via an isospin violating term propor-

tional to π3η8. Consequently, in the isospin limit mu = md this term vanishes. The

diagonalization of the π3, η8 mass matrix is given by the rotation(
π0

η

)
=

(
cos ε sin ε
− sin ε cos ε

)(
π3

η8

)
=

(
π3 + εη8

−επ3 + η8

)
+O(ε2) . (1.56)

Setting

ε =

√
3

4

md −mu

ms − m̂
, m̂ =

mu +md

2
, (1.57)

the mixing term in Eq. (1.55) vanishes and the π3 and the η8 states become

B0

2

{
(mu +md) + 2ε

mu −md√
3

}
(π0)2

−B0

2

{
mu +md + 4ms

3
− 2ε

mu −md√
3

}
η2 +O(ε2) . (1.58)

Therefore, the quadratic mass terms in Eqs. (1.55) and (1.58) provide the meson

masses in terms of the quark one [46]

M2
π± = B0(mu +md) , M2

π0 = B0(mu +md) +
2ε√

3
B0(mu −md) +O(ε2) ,

M2
K± = B0(mu +ms) , M2

K0,K̄0 = B0(md +ms) ,

M2
η8

= B0
mu +md + 4ms

3
− 2ε√

3
B0(mu −md) +O(ε2) . (1.59)

At this order, the responsible for the small mass difference between neutral pion, π0,

and the charged ones, π±, is the π0η8 mixing accounting for SU(2) flavor symmetry

breaking effects. Therefore, in the isospin limit, where mu = md = m̂, the pions and

kaons are degenerated in mass leading

M2
π = 2B0m̂+O(mu −md)

2 , M2
K = B0(m̂+ms) +O(mu −md) ,

M2
η8

= 2B0
1

3
(m̂+ 2ms) +O(mu −md)

2 , (1.60)

which satisfy the well-known Gell-Mann-Okubo relation [31, 47]

4M2
K = 3M2

η8
+M2

π . (1.61)
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1.2. Chiral Perturbation Theory

Finally, from the relation of the quark condensate in Eq. (1.53) and the pion mass in

Eq. (1.59) one gets the Gell-Mann-Oakes-Renner relation [46]

f 2
πM

2
π = −1

2
(mu +md)〈0|ūu+ d̄d|0〉 . (1.62)

1.2.1 Next-to-leading order Lagrangian

The construction of the next-to-leading order Lagrangian in the chiral expansion, L4,

proceeds with the same building blocks and preserving the same symmetries than the

lowest order one L2. It is given by [6, 7]

L4 = L1〈DµU
†Dµ〉2 + L2〈DµU

†DνU〉〈DµU †DνU〉
+L3〈DµU

†DµUDνU
†DνU〉+ L4〈DµU

†DµU〉〈U †χ+ χ†U〉
L5〈DµU

†DµU
(
U †χ+ χ†U

)
〉+ L6〈U †χ+ χ†U〉2

L7〈U †χ− χ†U〉2 + L8〈χ†Uχ†U + U †χU †χ〉
−iL9〈F µν

R DµUDνU
† + F µν

L DµU
†DνU〉+ L10〈U †F µν

R UFL,µν〉
H1〈FR,µνF µν

R + FL,µνF
µν
L 〉+H2〈χ†χ〉 , (1.63)

where

F µν
R,L = ∂(vν ± aν)− ∂(vµ ± aµ)− i[vµ ± aµ, vν ± aν ] . (1.64)

Notice that the number of low-energy constants (LEC’s) has increased considerably

respect L2. Concretely, at order O(p4) we have 12 LEC’s (L1, . . . , L10, H1,2) to be

determined though the terms proportional to H1 and H2 do not involve pseudoscalar

fields and are therefore not directly measurable. The rest, parameterize our lack of

knowledge about low-energy QCD in analogy to f and B0 of L2. A priori, they

should be calculable in terms of QCD parameters such heavy quark masses or the

QCD scale ΛQCD. However, in practice one should resort to phenomenology to infer

them. In general, the number of free parameter increases drastically with the order

of the chiral expansion so that for L6 there are 143 free couplings implying that the

predictive power of the theory is rapidly lost with higher orders.

As in any quantum field theory, quantum loops must be taken into account. For

ChPT, loops with Goldstone boson propagators in the internal lines generating non-

polynomial contributions with logarithms and threshold factors arise. Considering

the Lagrangian expansion of Eq. (1.32), the diagrams that contribute at order O(pd)

are dictated by the chiral dimension counting relation [5]

D = 2 + 2L+
∑
d

Nd(d− 2) , (1.65)
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where L is the number of loops and Nd the number of vertices coming from O(pn)

operators. With the previous receipt at hand we have that the leading D = 2 con-

tributions are obtained with L = 0 and d = 2 i.e. only tree-level graphs with L2

contribute. At order O(p4), one has two different possibilities: tree-level contribu-

tions from L4 with L = 0, d = 4 and N4 = 1 and one-loop graphs coming from the

L2 Lagrangian with L = 1 and d = 2. Regarding these loops, they are divergent and

need to be renormalized. These divergences are absorbed in a renormalization of the

coupling constants of the Lagrangian L4 as (in D = 4 + 2ε dimensions)

Li = Lri (µ) +
Γi

32π2

(
1

ε
− ln(4π) + γ − 1 + lnµ2

)
, (1.66)

Hi = Hr
i (µ) +

Γ̃

32π2

(
1

ε
− ln(4π) + γ − 1 + lnµ2

)
, (1.67)

where [6, 7]

Γ1 =
3

32
, Γ2 =

3

16
, Γ3 = 0 , Γ4 =

1

8
, Γ5 =

3

8
, Γ6 =

11

144
, Γ7 = 0 ,

Γ8 =
5

48
, Γ9 =

1

4
, Γ10 = −1

4
, Γ5 =

3

8
, Γ6 =

11

144
,

Γ̃1 = −1

8
, Γ̃2 =

5

24
. (1.68)

Once renormalized, the constants Lri (µ) depend on the scale µ whose running is given

by

Lri (µ2) = Lri (µ2) +
Γi

16π2
log

(
µ1

µ2

)
. (1.69)

Of course, the physical observables can not depend on µ. That is, the µ dependence

in the renormalized couplings Lri (µ) is canceled by that of the one-loop amplitude in

any observable.

The convergence of the ChPT series expansion as in Eq. (1.32) is restricted to low-

energies, typically for
√
s ∼ 500 MeV, although this energy depends very much on the

process under evaluation. Note that at higher energies the lightest well-established

resonance, the ρ with mass Mρ ' 770 MeV, induces a pole in the T−matrix which

cannot be reproduced by a power expansion. In this sense, the masses of the resonance

states put an upper limit to the ChPT series and also give us an idea of the scale

ΛχPT over which the ChPT power series is constructed

O(p4)

O(p2)
∼ p2

Λ2
χPT

, (1.70)
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1.3. The 1/NC expansion in Chiral Perturbation Theory

with ΛχPT ∼Mρ. Hence, in order to explain physics from ΛχPT on, one may explicitly

incorporates resonances as active degrees of freedom into the description respecting,

of course, chiral symmetry and its breaking as Resonance Chiral Theory does [48].

This theory will be discussed in section 1.4.

1.3 The 1/NC expansion in Chiral Perturbation The-

ory

As we have seen in the previous sections, in ChPT the expansion involves the mo-

menta and masses of the pseudo-Goldstone bosons. We finished the last section by

showing up the limitation of χPT for describing physics beyond ΛχPT which occurs

as soon as the momentum of the pseudo-Goldstone become comparable to ΛχPT and,

unfortunately, there is no other parameter within ChPT to build the expansion upon

for extending it to higher energies. However, ’t Hooft suggested to generalize QCD

from three to NC colours, to employ and SU(NC) gauge group accordingly and pro-

posed to expand QCD in terms of the 1/NC parameter [49]. The idea is to study

QCD in the limit of large number of colours NC � 1 by keeping the product αsNC

as a O(1) constant. This imposes αs to scale as 1/NC (or equivalently gs as 1/
√
NC)

as we will see in the following by inspecting the gluon self-energy as given in Fig. 1.2.

Let us recall first the QCD Lagrangian Eq. (1.1) from which one can read off the

QCD vertices and see that both the quark-quark-gluon coupling and the three-gluon

vertex are O(gs) while the four-gluon interaction is O(g2
s). The gluons are NC ×NC

matrices in colour space and, hence, they have N2
C − 1 ' N2

C components. On the

other hand, the quarks have NC components. Consequently, for large-NC there are

more gluon than quark states which translates in a bigger importance of gluon con-

tributions respect to the quarks one. By means of the the Feynman rules we then

see that the second diagram in Fig. 1.2 behaves like g2
s while the first one diverges

going as g2
sNC . As we want the gluon self-energy, entering the β-function, to be finite

in the NC → ∞ limit the following redefinition is in order: gs → gs√
Nc

. With this

redefinition at hand, now the quark-quark-gluon coupling and the three-gluon vertex

are O(1/
√
NC) while the four-gluon interaction is O(1/NC) implying the first and

second diagrams in Fig. 1.2 to be O(1) and O(1/NC) in the 1/NC counting, respec-

tively. One can construct diagrams with a larger number of loops and prove that,

quark-loops are suppressed by 1/NC and that non-planar gluon topologies i.e. they

cannot be painted on a plane without cutting or jumping over a propagator, are even

more suppresed O(1/N2
C). A further indication of gluon dominance in QCD is that

21



Chapter 1. Theoretical framework

Figure 1.2: Gluon (up diagram) and quark (down diagram) one-loop contributions to
the gluon self-energy.

the contribution of the gluon-loops to the low-energy behaviour of the strong coupling

constant is larger than the quark-loops. Actually as NC increases the QCD theory

becomes more confining since this feature is mainly due to gluon interactions.

However, the idea of using 1/NC as expansion parameter is sometimes questioned

in the sense that for NC = 3 is not very small. One cannot exactly know how large NC

should be for the expansion to be a good approximation but one can always appeal

to phenomenology to see what happens. In this respect, there are many phenomeno-

logical facts that find their only explanation on large-NC arguments supporting the

1/NC expansion for QCD. The main results are:

• Suppression of the q̄q sea and exotic q̄qq̄q states: This is due to the fact that

there are more gluon states (N2
C) than quarks states (NC) as discussed before.

Therefore, in the NC → ∞ limit the q̄q sea disappears. Regarding the q̄qq̄q

exotic states, in the NC → ∞ limit q̄q mesons do no interact and, hence, they

can not join to form a exotic states.

• Zweig’s rule is exact in the large-NC limit classifying mesons in nonets. The

axial anomaly disappears and flavour U(nf )L ⊗ U(nf )R is restored [50].
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1.4. Resonance Chiral Theory

• Two body meson decay dominance: Meson decay are of O(1/
√
NC) while

meson-meson scattering amplitudes are of O(1/NC).

• In the large number of colours limit, under some assumptions, U(nf )R⊗U(nf )L

symmetry breaks spontaneously down to U(nf )V leading an spectrum of n2
f

pseudo-Goldstone bosons [50].

Next, we would like to reassess ChPT by means of the new tool, the 1/NC ex-

pansion, we have introduced in this section. The global dependence of the O(p2)

Lagrangian is O(NC): the fields, the masses and momenta are all of them O(1) while

f is O(
√
NC). The U(Φ) as given in Eq. (1.34), generates a power expansion in terms

of Φ/f giving the required 1/
√
NC suppression for each additional meson field. Inter-

action vertices with n mesons scale as ∼ f 2−n ∼ O(N
1−n/2
C ). Then, since L2 has an

overall factor of NC and U(Φ) is NC-independent, each loop computed with the chi-

ral Lagrangian will have a 1/NC suppression. At order O(p4), the chiral Lagrangian

presented in Eq. (1.63) contain ten couplings to determine the low-energy dynamics

of the pseudo-Goldstone bosons. Large-NC QCD claims that terms with single trace

are of O(NC), while those with two traces of O(1). Therefore, one would say that

L3, L5, L8, L9 and L10 are O(NC), while L4, L6 and L7 are O(1). Regarding L1 and

L2 it can be demonstrated that, after a bit of algebra, are also O(NC). Although it

is not possible to compute the values of Li from QCD, the 1/NC expansion tell us

which are the dominants fully characterizing hence the ChPT coefficients up to order

O(p4). This is further corroborated by looking at table 1.3, where we provide the

phenomenological values for the Li’s in the Large-NC limit from where we see they

follow the pattern suggested by the 1/NC counting rules.

1.4 Resonance Chiral Theory

As we have seen in section 1.2, ChPT is the effective field theory of QCD valid below

some energy scale ΛχPT , close to the masses of the resonances. By construction,

in effective theories the information on the heavier degrees of freedom, M > ΛχPT ,

is encoded within the coupling constants which in turn determine the interactions

among the lighter degrees of freedom. In particular, this means that the constants Li

of the L4 Lagrangian will receive contributions from the interactions with resonances.

Our next goal is then to build an effective Lagrangian including resonances as degrees

of freedom respecting the QCD symmetries as well as the SU(3)L ⊗ SU(3)R chiral

symmetry. This is the avenue followed by Resonance Chiral Theory (RχT) which
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Li(Mρ) Value (×103) O(NC)
L1 0.4± 0.6 O(1)
L2 1.4± 0.3 O(NC)
L3 −3.5± 1.1 O(NC)
L4 −0.3± 0.5 O(1)
L5 1.4± 0.5 O(NC)
L6 −0.2± 0.3 O(1)
L7 −0.4± 0.2 O(1)
L8 0.9± 0.3 O(NC)
L9 6.9± 0.7 O(NC)
L10 −5.5± 0.7 O(NC)

Table 1.3: Phenomenological values of the Li(Mρ) [51] couplings as compared to its
order in the 1/NC counting.

can be understood as a link between the chiral and asymptotic QCD regimes which

has been proven to be a very useful tool to describe QCD dynamics at intermediate

energies ∼ (1−2) GeV. RχT uses the 1/NC expansion of QCD in the large number of

colors as a guideline to organize the expansion. Therefore, at leading order just tree-

level diagrams contribute while loops yield higher order effects and hence they are

suppressed. The Lagrangian can be organized according to the number of resonance

fields in the interaction terms

LRχT = L2 +
∑
R1

LR1 +
∑
R1,R2

LR1R2 + · · · , (1.71)

where Ri stands for the resonance multiplets of the type V (1−−), A(1++), S(0++)

and P (0++), and where the dots denote operators with three or more resonance fields

which we neglect for the purpose of this work. The first term in the right-hand side

of Eq. (1.71) contains the operators without resonance fields (cf. Eq. (1.33)). The

second term corresponds to the interaction terms with one resonance given by

LR1 = LV + LA + LS + LP , (1.72)

where

LV =
FV

2
√

2
〈Vµνfµν+ 〉+

iGV

2
√

2
〈Vµν [uµ, uν ]〉 , (1.73)

LA =
FA

2
√

2
〈Aµνfµν− 〉 , (1.74)

LS = cd〈S8uµu
µ〉+ cm〈S8χ+〉+ c̃dS1〈uµuµ〉+ c̃dS1〈χ+〉 , (1.75)

LP = idm〈P8χ−〉+ id̃mP1〈χ−〉 , (1.76)
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1.4. Resonance Chiral Theory

and where

uµ = iu†DµUu
† , f± = uF µν

L u† ± u†F µν
R u , χ± = u†χu† ± uχ†u , (1.77)

with F µν
L,R defined in Eq. (1.64) and u(Φ)2 = U(Φ) (U(Φ) has been defined in

Eq. (1.28)).

We write down the first vector and scalar nonets since they are important for the

processes considered later on in this thesis. In matrix notation they are written as

Vµν =

 1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω1 ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω1 K∗0

K∗− K̄∗0 − 2√
6
ω8 + 1√

3
ω1


µν

,(1.78)

for the vector fields, and

S8 =

 1√
2
a0

0 + 1√
6
σ8 a+

0 κ+

a−0 − 1√
2
a0

0 + 1√
6
σ8 κ0

κ− κ̄0 − 2√
6
σ8

 , (1.79)

S1 = σ1 , (1.80)

for the scalar one.

For the sake of clarity, expanding the Lagrangian involving vector and scalar

resonances in Eq. (1.76) in terms of Φ we get

LS =
2cd
f 2
〈S8(∂µΦ)(∂µΦ)〉+ 4B0cm[〈S8M〉−

1

4f 2
〈S8(Φ2M+MΦ2 + 2ΦMΦ)〉]

+
2c̃d
f 2
S1〈(∂µΦ)(∂µΦ)〉+ 4B0c̃mS1[〈M〉 − 1

4f 2
〈(φ2M+MΦ2 + 2ΦMΦ)〉] ,

(1.81)

and

LV =
iGV√
2f 2
〈Vµν [(∂µΦ)(∂νΦ)− (∂νΦ)(∂µΦ)]〉 , (1.82)

where we have used χ = 2B0M and neglected other external fields (vµ = aµ = p = 0)

The third term in Eq. (1.71) contains the kinetic terms,

LR=S,P
kin =

1

2
〈5µR85µ R8 −M2

R8
R2

8〉+
1

2
〈∂µR1∂µR1 −M2

R1
R2

1〉 , (1.83)

LR=V,A
kin = −1

2
〈5λRλµ5ν R

νµ − 1

2
M2

RRµνR
µν〉 , (1.84)

where

5µR = ∂µR + [Γµ, R] , (1.85)
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with

Γµ =
1

2
{u+[∂µ − irµ]u+ u[∂µ − i`µ]u†} . (1.86)

The exchange of these resonances have an important impact on the low-energy

dynamics of the pseudo-Goldstone bosons. Below the resonance mass scale, p2 �M2
R,

the singularity associated with the pole of the resonance propagator can be replaced

by the corresponding momentum expansion as of

1

p2 −M2
R

= − 1

M2
R

(
1 +

p2

M2
R

+

(
p2

M2
R

)2

+ · · ·
)
. (1.87)

Hence, the exchange of virtual resonances generates pseudo-Goldstone bosons cou-

plings proportionals to powers of 1/M2
R which should be embodied in ChPT. In other

words, at lowest order in derivatives, this gives predictions for the O(p4) couplings of

χPT. By integrating out the resonances i.e. going from RχT to χPT, at O(p4) the

χPT couplings in Eq. (1.63), Li, are saturated by the resonance exchange parameters

(masses and couplings). After a matching procedure one finds [48]

L1 =
G2
V

8M2
V

− c2
d

6M2
S

+
c̃2
d

2M2
S1

, L2 =
G2
V

4M2
V

, L3 = − 3G2
V

4M2
V

,

L4 = −cdcm
3M2

S

+
c̃dc̃m
M2

S1

, L5 =
cdcm
M2

S

, L6 = − c2
m

6M2
S

+
c̃2
m

2M2
S1

,

L7 =
d2
m

6M2
P

− d̃2
m

2M2
P1

, L8 =
c2
m

2M2
S

− d2
m

2M2
P

L9 =
FVGV

2M2
V

,

L10 = − F 2
V

4M2
V

+
F 2
A

4M2
A

, H1 = − F 2
V

8M2
V

− F 2
A

8M2
A

, H2 =
c2
m

M2
S

+
d2
m

M2
P

. (1.88)

As we can see from the above relations, we are left with too many unknown

parameters to predict all the chiral couplings Li. Consequently, the predictive power

of this theory may be questionable. In principle, these parameters should be inferred

from fits to experimental data. However, by invoking some short-distance constraints

from QCD i.e. RχT must match the OPE at high-energies, together with demanding

two-body form factors of hadronic currents vanish at large momentum transfer, one

can find some useful relations among the couplings which considerably diminish the

number of free parameters as we will see in the following.

On one hand, the V octet mass MV , can be suitably approximated by the ρ

mass while the vector couplings FV and GV can be obtained, respectively, from the

decays ρ → e+e− and ρ → ππ. The values are FV = 154 MeV, GV = 53 MeV
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and MV = Mρ = 770 MeV [48]1. On the other hand, at leading order in 1/NC , the

calculation of the two-pion vector form factor within RχT leads [52]

F ππ
V (q2) = 1 +

FVGV

f 2
π

q2

M2
V − q2

, (1.89)

which by imposing that it should vanish at q2 →∞, the resonance couplings satisfies

FVGV = f 2
π . (1.90)

Similarly, the axial current between one pion and one photon is characterized by the

axial-vector form factor [53, 54]

F πγ
A (q2) =

F 2
A

M2
A − q2

+
2FVGV − F 2

V

M2
V

, (1.91)

which requiring also to vanish at q2 →∞ implies the relation

FV = 2GV . (1.92)

Then, inserting the previous equation into Eq. (1.90) leads

FV = 2GV =
√

2fπ , (1.93)

that is, we get the FV and GV in terms of the pion decay constant.

Once the vector parameters FV , fπ and MV are known, the axial one FA and MA

can be subsequently deduced from the Weinberg’s sum rules [55]

F 2
V − F 2

A = f 2
π , M2

V F
2
V −M2

AF
2
A = 0 , (1.94)

obtained after the requirement that the two-point function of a vector correlator

between left-and right-handed quarks in the chiral limit vanishes faster than 1/q4 at

high-energies. The values are FA = 123 MeV and MA = 968 MeV [48], respectively,

but also can be derived by introducing Eq. (1.93) into Eq. (1.94) leading

FA = fπ , MA =
√

2MV , (1.95)

that is, we get FA and MA in terms of the pion decay constant and the mass of the

vector multiplet MV .

Regarding the scalar sector, we consider the Kπ scalar form factor [56]

FKπ
S (q2) = 1 +

4cm
f 2
π

(
cd + (cm − cd)

M2
K −M2

π

M2
S

)
q2

M2
S − q2

, (1.96)

1For a recent determination of GV and Mρ see, for example, the global U(3)⊗U(3) meson-meson
scattering at one-loop analysis of Refs. [57, 58] and also Ref. [59].
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which upon the demand to vanish at q2 →∞ one obtains the restrictions

cm − cd = 0 , 4cdcm = f 2
π . (1.97)

This gives a prediction for the scalar couplings in terms of the pion decay constant

cd = cm =
fπ
2
. (1.98)

For the pseudoscalar parameters, we invoke the difference of two-point correlation

functions of two scalar and two pseudoscalar current. The resulting ΠSS−PP (q2)

correlator vanishes as 1/q4 at large energies with a small coefficient. Demanding this

behaviour one gets [60]

8(c2
m − d2

m) = f 2
π , c2

mM
2
S − d2

mM
2
P ' 0 , (1.99)

allowing to express the pseudoscalar coupling and mass in terms of pion decay con-

stant and the mass of the scalar multiplet MS as

dm =
fπ

2
√

2
, MP '

√
2MS . (1.100)

Regarding the singlet exchange contributions, they can be expressed in terms of

the octet parameters using large-NC arguments leading [48]

MS1 = MS , |c̃d| =
|cd|√

3
, |c̃m| =

|cm|√
3
, MP1 = MP , |d̃m| =

|dm|√
3
. (1.101)

Therefore, turning to examine the low-energy χPT couplings at lowest-order in

1/NC , Eq. (1.88), one observes that they can be expressed in terms of just three

parameters fπ, MV and MS by means of the use of Eqs. (1.93), (1.95), (1.98) and

(1.100) as of

2L1 = L2 =
1

4
L9 = −1

3
L10 =

f 2
π

8M2
V

,

L3 = − 3f 2
π

8M2
V

+
f 2
π

8M2
S

, L5 =
8

3
L8 =

f 2
π

4M2
S

,

L4 = L6 = L7 = 0 ,

H1 = − 5

16

f 2
π

M2
V

, H2 =
5f 2

π

16M2
S

, (1.102)

with all non-zero Li being of O(NC) while L4, L6 and L7 vanish since they are

subleading constants in the 1/NC expansion.

In table 1.4 we compare the phenomenological values of these couplings given

in the second column together with the ones predicted by the resonance exchanges
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shown in the last two columns depending whether inputs values (penultimate column)

or short-distance QCD constraints Eq. (1.102) (last column) are considered. We can

see that the assumption of resonance saturation has given a remarkable prediction for

Li such that there is no reason to include additional resonance multiplets looking at

χPT at O(p4). We would like to notice that the η1 is usually integrated out from the

χPT Lagrangian. In that case, the coupling L7 gets a contribution from η1 exchange

Lη1

7 = − d̃2
m

2M2
η1

. (1.103)

i Li(Mρ) O(NC) V A S S1 η1 Total Total∗

1 0.4± 0.6 O(1) 0.6 0.0 −0.2 0.2 0.0 0.6 0.9
2 1.4± 0.3 O(NC) 1.2 0.0 0.0 0.0 0.0 1.2 1.8
3 −3.5± 1.1 O(NC) −3.6 0.0 0.6 0.0 0.0 −3.0 −4.9
4 −0.3± 0.5 O(1) 0.0 0.0 −0.5 0.5 0.0 0.0 0.0
5 1.4± 0.5 O(NC) 0.0 0.0 1.4 0.0 0.0 1.4 1.4
6 −0.2± 0.3 O(1) 0.0 0.0 −0.3 0.3 0.0 0.0 0.0
7 −0.4± 0.2 O(1) 0.0 0.0 0.0 0.0 −0.3 −0.3 −0.3
8 0.9± 0.3 O(NC) 0.0 0.0 0.9 0.0 0.0 0.9 0.9
9 6.9± 0.7 O(NC) 6.9 0.0 0.0 0.0 0.0 6.9 7.3
10 −5.5± 0.7 O(NC) -10.0 4.0 0.0 0.0 0.0 −6.0 −5.5

Table 1.4: V,A, S, S1 and η1 contributions to the Lri coupling constants in units
of 10−3. Last column shows the result as obtained by employing the relations of
Eq. (1.102).

1.5 Inclusion of the η′

The standard QCD Lagrangian as written in Eq. (1.1) has actually an extra term

which is connected with the U(1)A anomaly. Including this term, the most general

QCD Lagrangian becomes

LQCD =
∑
f

q̄f
(
i /D −Mf

)
qf −

1

4
Ga
µνG

µν
a − θω , (1.104)

where ω is referred the topological charge density which can be written as

ω =
αs
8π
GG̃ , (1.105)

with GG̃ = εµναβGµνGαβ the product of the gluon field strength tensor and its dual.

Similar to the SU(3) flavor symmetry breaking we have discussed in section 1.1.2,
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Chapter 1. Theoretical framework

if the QCD Lagrangian in the chiral limit (M → 0) was invariant under U(1)A

symmetry transformations, q → exp[iεAγ5]q, this would tell us the existence of a

ninth Goldstone boson. However, the presence of a quark-mass term breaks down

again the U(1)A symmetry promoting the ninth Goldstone boson to become a pseudo-

Goldstone boson with a small mass. Looking at table (1.2), the best candidate for

this would be the η′ at first sight. However, the η′ mass, mη′ ∼ 958 MeV, is too

large for a pseudo-Goldstone boson. The resolution of this paradox is related with

the emergence of an anomaly, the U(1)A symmetry is broken, even in the massless

case, by the dynamics of QCD itself i.e. due to the presence of the third term in

Eq. (1.104) which leads to a non-conservation of the singlet axial-vector current as

we showed in Eq. (1.22) (see Ref. [61] for a detailed derivation). This makes the η′

too heavy and difficult to be accepted as the ninth Goldstone boson associated with

the spontaneously broken U(1)A symmetry. Nonetheless, there exist some approaches

that include the η′ within ChPT as the ninth Goldstone boson. An example is the

large-NC limit [62] we have discussed so far. In this framework, the third term in

Eq. (1.104) is expanded in powers of 1
NC

whose contribution will vanish for NC →∞.

In this limit, the contribution of the axial anomaly to the η′ mass disappears letting

the η′ mass to be comparable with the other pseudo-Golsdstone boson masses. In the

large-NC limit within ChPT, this breaking is introduced through [63]

L(1/NC ,p
0) = −f

2

4

a

NC

(
i

2

[
log(detU)− log(detU †)

])2

= −1

2
m2

0η
2
1 , (1.106)

which is 1/NC-suppressed with m2
η0

= 3a/NC , where a is a parameter to be fixed from

the experiment.

The standard power counting employed in SU(3) ChPT we have discussed in

section 1.2 and summarized in Eq. (1.31) is no longer valid in U(3) ChPT due to the

large mass of the singlet η1. Nevertheless, one can still accommodate the singlet η1

into the description by assigning the same counting to 1/NC , the squared momenta

p2 and the light quark masses mq in order to have a systematic combined power

counting. This combined expansion in terms of three variables can be counted by δ

scaling as [8, 64]

p = O(
√
δ) , mq = O(δ) , 1/NC = O(δ). (1.107)

In the large-NC framework, the effective U(3) ChPT Lagrangian which simultaneously

includes the pseudo-Goldstone bosons octet π,K, η8 and the singlet η1 as dynamical

fields was introduced in Refs. [8, 63, 64, 65].
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1.5. Inclusion of the η′

Leading order

At lowest order in the δ expansion i.e. O(δ0), the U(3) ChPT Lagrangian has the

form

Lδ0

=
f 2

4
〈DµUD

µU †〉+
f 2

4
〈U †χ+ χ†U〉 − 1

2
m2

0η
2
1 , (1.108)

where m2
0 is the U(1)A anomaly contribution to the η1 mass, and now

U = exp

(
i
√

2Φ̃

f

)
, (1.109)

with

Φ̃ =

 1√
2
π3 + 1√

6
η8 + 1√

3
η1 π+ K+

π− − 1√
2
π3 + 1√

6
η8 + 1√

3
η1 K0

K− K̄0 − 2√
6
η8 + 1√

3
η1

 . (1.110)

Notice the counting of Eq. (1.108) [66]: the first operator is O(NC , p
2), the second

O(NC ,mq) and the latest, accounting for the anomaly, is O(N0
C , p

0), where U is

counted as O(1), f 2 ∼ O(NC) and m2
0 ∼ O(1/NC). The effective Lagrangian has

then an overall factor of NC .

With the inclusion of the singlet state η1 into the description and assuming SU(2)

symmetry i.e. mu = md = m̂ implying no mixing between the neutral pion state π3

and η8, χ = 2B0M reads

χ =


◦
M2

π 0 0

0
◦
M2

π 0

0 0
◦

M2
K −

◦
M2

π

 , (1.111)

where
◦
M2

φ (φ = π,K) denotes the bare mass at O(p2). Therefore, the bilinear terms

coming from the lowest-order ChPT Lagragian in Eq. (1.108) becomes

Lδ0

=
1

2
∂µπ

0∂µπ0 + ∂µπ
+∂µπ− + ∂µK

+∂µK−

+∂µK
0∂µK̄0 +

1

2
∂µη8∂

µη8 +
1

2
∂µη1∂

µη1

−1

2

◦
M2

π (π0)2 −
◦
M2

ππ
+π− −

◦
M2

KK
0K̄0 −

◦
M2

KK
+K−

−1

2

(
4

3

◦
M2

K −
1

3

◦
M2

π

)
η2

8 −
1

2

(
m2

0 +
2

3

◦
M2

K +
1

3

◦
M2

π

2
)
η2

1

+
8√
18

( ◦
M2

K −
◦
M2

π

)
η1η8 +O(Φ4) . (1.112)
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Similar to π0 − η mixing in Eq. (1.55), the mass term proportional to η1η8 in

the previous expression, which accounts for SU(3) flavor symmetry breaking effects,

induces a η8−η1 mixing. Therefore, the masses of the two physical η and η′ states are

obtained as follows. We collect the octet and singlet fields in the doublet ηTB ≡ (η8, η1)

and express the quadratic mass term making use of a matrix notation as

−1

2
ηTBMηB , (1.113)

where

M =

(
M2

8 M2
81

M2
81 M2

1

)
, (1.114)

with

◦
M2

8 =
1

3
(4

◦
M2

K −
◦
M2

π) ,
◦
M2

1 = m2
0 +

1

3
(2

◦
M2

K +
◦
M2

π) ,

◦
M2

81 = −2
√

2

3
(
◦

M2
K −

◦
M2

π) . (1.115)

The physical η and η′ mass eigenstates are obtained after diagonalising the mass

matrix M with and orthogonal transformation

ηB = RT · ηP ≡ RT ·
(
η
η′

)
, M = RT · Mdiag ·R , (1.116)

where

R ≡
(

cos θP − sin θP
sin θP cos θP

)
. (1.117)

The resulting η and η′ masses and the angle θP at lowest order are [57, 66]

◦
M2

η =
m2

0

2
+

◦
M2

K −
1

2

√
m4

0 −
1

3
4m2

0∆ + 4∆2 , (1.118)

◦
M2

η′ =
m2

0

2
+

◦
M2

K +
1

2

√
m4

0 −
1

3
4m2

0∆ + 4∆2 , (1.119)

sin θP = −

√1 +
(3m2

0 − 2∆ +
√

9m4
0 − 12m2

0∆ + 36∆2)2

32∆2

−1

, (1.120)

with ∆2 =
◦

M2
K −

◦
M2

π .

The parameterization of the mixing phenomenon among the physical η and η′

mesons is not unique. It can be also described by means of the quark-flavor basis

rather than by the octet-singlet ones we have shown here. Appendix A is devoted to

discuss the relation between the octet-singlet and quark-flavor bases.
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1.5. Inclusion of the η′

Next-to-leading order

Calculations at next-to-leading order in ChPT require to consider the tree level dia-

grams of order O(p2) and O(p4), together with contributions coming from the mass

and wave function renormalizations which should be accounted for to the same order.

In fact, the mass renormalization affects only the mass terms coming from the leading

order Lagrangian Eq. (1.46) and not the masses coming from the kinematics of the

corresponding process i.e. from derivative terms. In addition, one-loop graphs con-

taining the imaginary parts required by unitarity should be also taken into account.

At one-loop, the expressions of such renormalizations can be found, for example, in

the global meson-meson scattering analysis of Refs. [57, 67] for SU(3) ⊗ SU(3) in

ChPT and U(3) ⊗ U(3) in ChPT with resonances, respectively. For consistency of

the present work, we report here the mass and wave function renormalization for

pions and kaons leading in large-NC , which enter the processes we will analyse in

sections 3,4, and 5, and discuss the case of the η8 and η1 in more detail afterwards.

That is, in the ChPT language of counterterms, the contributions coming from L4

and L6 vanish since these couplings are subleading in large-NC as shown in table 1.3.

The same applies for loop contributions, since graphs computed from the chiral La-

grangian have a 1/NC suppression for each loop as we have discussed in section 1.3.

Therefore, the bare pion and kaon fields entering the Lagrangian are connected with

the renormalized ones as

φ = Z1/2
φ φren , (1.121)

where φ = π,K and the wave function renormalization given by

Z1/2
π = 1− 4

◦
M2

π

f 2

cdcm
M2

S

, Z1/2
K = 1− 4

◦
M2

K

f 2

cdcm
M2

S

. (1.122)

In L2, the masses from the mass matrixM correspond to the bare O(p2) masses (cf.

Eq. (1.111)). At order O(p4) in large-NC , these masses are shifted by linear terms

in L5 and L8 couplings whose connection with the resonance parameters was given

in Eq. (1.88). We re-express the bare masses of the pions and kaons
◦
Mπ and

◦
MK ,

respectively, by the physical ones at order O(p4) through the relations

M2
π =

◦
M2

π

[
1+

8
◦
M2

π

f 2

cm
M2

S

(cm − cd)
]
, M2

K =
◦

M2
K

[
1+

8
◦

M2
K

f 2

cm
M2

S

(cm − cd)
]
, (1.123)

or, what is the same, for computations at O(p4) we shall perform the replacements

◦
M2

π →
◦
M2

π

[
1− 8

◦
M2

π

f 2

cm
M2

S

(cm − cd)
]
, (1.124)
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◦
M2

K →
◦

M2
K

[
1− 8

◦
M2

K

f 2

cm
M2

S

(cm − cd)
]
, (1.125)

in the mass matrix M Eq. (1.111). For illustrative purposes we also provide the

correction of the physical decay constants at O(p4)

fπ = Z−1/2
π f , fK = Z−1/2

K f . (1.126)

In this manner, in the amplitudes with terms of order p4 (and higher), we transform

the f constants appearing in the denominator of the amplitudes through

1

f 2
→ 1

f 2
π

1 +
8
◦
M2

π

f 2
π

cdcm
M2

S

 ,
1

f 2
→ 1

f 2
K

1 +
8
◦
M2

π

f 2
K

cdcm
M2

S

 , (1.127)

and hence we will write fπ,K instead of f .

For the case of the η8 and η1 the situation is more involved since not only the mass

term mix at O(p4) but also the kinetic ones. Working along the same line as for the

O(p2) we make use again of a matrix notation and parameterize the mixing following

the description as given in Refs. [68, 69]. The quadratic term in the Lagrangian reads

L =
1

2
∂µη

T
BK∂µ −

1

2
ηTBM2ηB , (1.128)

with

K =

(
1 + δ8 δ81

δ81 1 + δ1

)
, M2 =

(
M2

8 M2
81

M2
81 M2

1

)
. (1.129)

The elements of the mass matrix are now

M2
8 =

◦
M2

8 + ∆M2
8 , M2

1 = m2
0 +

◦
M2

1 + ∆M2
1 , M2

81 =
◦

M2
81 + ∆M2

81 , (1.130)

where
◦
M2

i (i = 8, 1) is the O(δ0) quark-mass contributions to the octet and singlet

masses we have already obtained in Eq. (1.115), while ∆M2
8 , ∆M2

1 and ∆M2
81 modify

the lowest order values of the mass-matrix elements.

To first order in δ8, δ1 and δ81, the kinetic matrix K can be diagonalised through

the redefinition

ηB = Z1/2T · η̂ ≡ Z1/2T ·
(
η̂8

η̂1

)
, Z1/2 · K · Z1/2T = I2 (1.131)

Z1/2 =

(
1− δ8/2 −δ81/2
−δ81/2 1− δ1/2

)
. (1.132)

In the η̂ basis the mass matrix takes the form

M̂2 = Z1/2 · M2Z1/2T , (1.133)
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where

M̂2
8 =

◦
M2

8 (1− δ8)−
◦

M2
81δ81 + ∆M2

8 , (1.134)

M̂2
1 = (m2

0 +
◦
M2

1 )(1− δ8)−
◦

M2
81δ81 + ∆M2

1 , (1.135)

M̂2
81 =

◦
M2

81(1− (δ8 + δ1)/2)− (m2
0 +

◦
M2

8 +
◦
M2

1 )δ81/2 + ∆M2
81 , (1.136)

to first order in ∆M2. Similar to Eq. (1.116), the physical mass eigenstates at NLO

are obtained after diagonzalising the mass matrix M̂2

ηB = RT · ηP ≡ RT ·
(
η
η′

)
, M̂2 = RT · Mdiag ·R , (1.137)

with the rotation matrix R defined in Eq. (1.117). Therefore, the matrix from the

bare to the physical basis is given by ηB = (R · Z1/2)T · ηP with

R · Z1/2 =

(
cos θP (1− δ8/2) + sin θP δ81/2 − sin θP (1− δ1/2)− cos θP δ81/2
sin θP (1− δ8/2)− cos θP δ81/2 cos θP (1− δ1/2)− sin θP δ81/2

)
.

(1.138)

In large-NC ChPT,

δ8 =
8L5

f 2

◦
M2

8 , δ1 =
8L5

f 2

◦
M2

1 +Λ1 , δ81 =
8L5

f 2

◦
M2

81 , (1.139)

and

∆M2
8 =

16L8

f 2

( ◦
M4

8 +
◦

M4
81

)
, (1.140)

∆M2
1 =

16L8

f 2

( ◦
M4

1 +
◦

M4
81

)
, (1.141)

∆M2
81 = 2

◦
M2

81

(
16L8

f 2

◦
M2

K +Λ2

)
, (1.142)

while in RChT,

δ8 =
8cdcm
M2

S

◦
M2

8

f 2
, δ1 =

8cdcm
M2

S

◦
M2

1

f 2
, δ8 =

8cdcm
M2

S

◦
M2

81

f 2
, (1.143)

and

∆M2
8 =

8c2
m

M2
Sf

2

( ◦
M4

8 +
◦

M4
81

)
, (1.144)

∆M2
1 =

8c2
m

M2
Sf

2

( ◦
M4

1 +
◦

M4
81

)
, (1.145)

∆M2
81 =

16c2
m

M2
Sf

2

◦
M2

81

◦
M2

K . (1.146)

For a study of the η−η′ mixing up to next-to-next-to-leading-order in U(3) ChPT

we refer the reader to Ref. [66].
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1.6 Anomalous sector

We would like to notice that both the leading-and next-to-leading-Lagrangians, L2

and L4, always involve an even number of pseudo-Goldstone bosons. This would

mean that allowed QCD processes such as π0, η → γγ, η → π+π−γ or KK̄ → 3π,

which are odd in the number of mesons, cannot be described by χPT. Moreover, L2

and L4 are invariant under chiral transformations which is in contradiction to the

quantized theory of QCD which is not U(1)A invariant. Therefore, we need some

additional term to account for this explicit U(1)A symmetry breaking including an

odd number of pseudo-Goldstone boson fields. The solution was obtained by Wess,

Zumino and Witten [70, 71] through the term LWZW of the order O(p4). For a formal

derivation of this Lagrangian and wider discussions on this topic, the interested reader

is referred to Ref. [28, 29, 72, 73]. For future practical purposes, we only quote here

the interaction Lagrangian relevant for describing P → γγ with P = π0, η, η′

LPγγ = − αNC

24πfπ
εµναβFµνFαβP , (1.147)

since enters the description of the single and double Dalitz decays, P → `+`−γ and

P → `+`−`+`− (` = e, µ), we will study in section 7. In the previous equation NC is

the number of colors, εµναβ the Levi-Civita tensor and Fρσ the electromagnetic field

strength tensor, and the corresponding invariant amplitude reads

M(P → γγ) = i
αNC

3πfπ
CPεµναβε∗µ(q1)ε∗ν(q1)q1,αq2,β , (1.148)

where Cπ0 = 1, Cη8 = 1/
√

3 and Cη1 = 2
√

2/3. Calculating the partial decay width

for the neutral pion π0 → γγ

Γ(π0 → γγ) =
N2
Cα

2M3
π0

576π3f 2
π

= 7.6 ·
(
NC

3

)2

eV , (1.149)

and comparing with the measured experimental value (7.7 ± 0.6) eV yields NC = 3,

a remarkable QCD measurement of the number of colors .
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Chapter 2

Form Factors from dispersion
relations

In this chapter we give an introduction to the mathematical aspects of the technique of

dispersion relations applied, in particular, to two-meson form factors. The method is

based on two powerful theoretical arguments such the use of the analytical properties

of the form factor and the unitarity of the S−matrix. We will derive in detail the

well-known Omnès equation, which will play a central role in the analysis of τ− →
K−ηντ and τ− → K−η′ντ decays of section 3, in the combined analysis of the decays

τ− → KSπ
−ντ and τ− → K−ηντ of section 4 and in the study of τ− → π−ηντ and

τ− → π−η′ντ decays of section 5.

2.1 Analyticity and implications of unitarity

A two-meson form factor is an analytic function f(s) in the whole complex plane ex-

cept for a branch cut along the real axis originated at the threshold, sth, for producing

the first two-particle intermediate state. The case in which the intermediate states

are the same as the final one is known as elastic and the corresponding branch cut is

called unitary or elastic cut. We will mainly concentrate to the elastic approximation

though in section 2.3 we will also illustrate a method to implement inelastic cuts into

the description. We have then that for s > sth the form factor develops an imaginary

part while for s < sth is real. This implies the Schwartz reflection principle

f(s∗) = f ∗(s) , (2.1)

which allows to apply the Cauchy integral formula

f(s) =
1

2πi

∮
γ

f(s′)

s′ − sds
′ , (2.2)
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where the integration path of the closed contour γ shown in Fig. (2.1) is chosen as an

anti-clockwise circle of infinite radius Λ2 but circumventing the branch cut [sth,∞).

sth

Figure 2.1: The integration contour γ used in Eq. (2.2) for the representation of f(s).

By the use of the definition of the discontinuity across the cut

disc f(s) ≡ f(s+ iε)− f(s− iε)
2i

, (2.3)

we may re-express Eq. (2.2) as

f(s± iε) = lim
ε→0±

1

π

∫ r

sth

disc f(s′)

s′ − s∓ iεds
′ +

1

2πi

∮
|s′|=Λ2

f(s′)

s′ − sds
′ , (2.4)

where the ∓ prescription in the denominator corresponds, respectively, to evaluate

f on the upper (negative sign) or on the lower (positive sign) rim of the cut. From

hereafter we will consider the function to be evaluated on the real axis from above

the cut with f(s) ≡ lim
ε→0+

f(s + iε) and we will omit the symbol lim
ε→0+

to shorten the

notation. For the contribution of the infinite circle, second term of Eq. (2.4), we have∣∣∣∣∣∣∣
∮

|s′|=Λ2

f(s′)

s′ − sds
′

∣∣∣∣∣∣∣ ≤ max
|s′|=Λ2

|f(s′)|
∮

1

||s′| − |s|| |ds
′| = (2.5)

= max
|s′|=Λ2

|f(s′)| 2πΛ2

Λ2 − |s|
r→∞−→ lim

r→∞
2π max
|s′|=Λ2

|f(s′)| , (2.6)

where we have made use of the estimation lemma. Eq. (2.6) vanishes if f(s) falls off

fast enough when |s| → ∞ and, as a consequence, the first term in Eq. (2.4), the inte-

gral along the branch cut, converges since the integrand vanishes asymptotically faster
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than 1/s′. Invoking the Schwartz reflection principle, Eq. (2.1), the discontinuity on

the upper rim of the cut can written as

discf(s) =
f(s+ iε)− f ∗(s+ iε)

2i
= Imf(s+ iε) = Imf(s) , (2.7)

which allow us to write the dispersion relation in the r →∞ limit as

f(s) =
1

π

∫ ∞
sth

Imf(s′)

s′ − s− iεds
′ , (2.8)

like commonly appears in the literature.

However, if the function f(s) does not vanish quickly enough for |s| → ∞ we can

still write dispersion relations by means of subtractions. Let us consider, for instance,

that the form factor tends to a constant and s0 is the subtraction point chosen to be

a real number such that s0 < sth. By means of the use of the identity

1

s′ − s =
1

s′ − s0

+
s− s0

(s′ − s0)(s′ − s) (2.9)

in Eq. (2.2), we arrive at

f(s) =
1

2πi

∮
γ

f(s′)

s′ − s0

ds′ +
s− s0

2πi

∮
γ

f(s′)ds′

(s′ − s0)(s′ − s)ds
′ , (2.10)

where the first term is nothing but f(s0) and named a subtraction constant. Following

the same reasoning as for the unsubtracted case we get the once subtracted dispersion

relation

f(s) = f(s0) +
s− s0

π

∫ ∞
sth

Imf(s′)

(s′ − s0)(s′ − s− iε)ds
′ , (2.11)

where now the integrand in the second term has one more power of s in the de-

nominator, hence reducing the dependence on Imf(s′) at large s′ and improving its

convergence. The generalization to an n-times subtracted dispersion relation at s0

reads [52, 74]

f(s) =
n−1∑
k=0

(s− s0)k

k!

dkf(s)

dsk

∣∣∣∣∣
s=s0

+
(s− s0)n

π

∫ ∞
sth

Imf(s′)

(s′ − s0)n(s′ − s− iε)ds
′ . (2.12)

So far, we have seen from the analytical properties of the form factor f(s) that if

the discontinuity of the function is known up to infinity we can completely determine

f(s). We have also shown that subtractions may be required if f(s) does not fulfill

the desired asymptotic behavior, that is f(s) 6= 0 as |s| → ∞. However, even in

the case that subtractions are not strictly necessary, it may be recommended to per-

form them since in real physical situations the discontinuity is usually not known up
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Chapter 2. Form Factors from dispersion relations

to arbitrarily large energies as demanded by the dispersive integral. By performing

subtractions, we hence diminish the importance of the contribution from the high

energy region in the integral. The introduced subtraction constants compensate our

lack of knowledge on the discontinuity at high energies by absorbing the information

anteriorly encoded in this region. In some sense, they resemble low-energy constants

appearing in effective field theories [75, 76]. In all, subtracted dispersion relations as

given in Eq. (2.12) show a nice synergy between high-and low-energy regimes.

Implications of unitarity

In quantum field theory, the probability transition amplitude for an initial state

|p1p2 . . .〉in, where pi denotes the momentum of the incoming i particle, evolving into

a final state out〈k1k2 . . . |, with kj denoting the momentum of the outgoing j particle,

is given by [77]

out〈k1k2 . . . |p1p2 . . .〉in ≡ in〈k1k2 . . . |S|p1p2 . . .〉in , (2.13)

with the definition of the operator S

out〈k1k2 . . . | = in〈k1k2 . . . |S , (2.14)

that evolves the initial state asymptotically in time. The S−matrix is commonly

arranged as

S = 1 + iT , (2.15)

where the first term accounts for the case in which the particles in the initial state do

not interact while the second stands for the interactions. We know that in physical

decay or scattering processes the four-momentum is a conserved quantity and so the

invariant matrix element M is usually defined by

in〈k1k2 . . . |iT |p1p2 . . .〉in = i(2π)4δ4
(∑

j

kj −
∑
i

pi

)
M(pi → kj) . (2.16)

Let us define Pi→f as the probability to encounter a final state 〈f | starting out

from an initial definite state |i〉. Then, probability conservation means
∑

f Pi→f = 1,

which implies

S†S = SS† = 1 , (2.17)
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2.1. Analyticity and implications of unitarity

that is, the S−matrix is unitary. In other words, probability conservation is generally

named unitarity. This fact has interesting and profound consequences on the two-

particle form factor’s analytical properties as we will show in the following. By

inserting Eq. (2.15) into Eq. (2.17) we get

T − T † = iTT † , (2.18)

which plugged into Eq. (2.16) for the transition of the vacuum state, |0〉, to the

states 〈PQ| (where P and Q stand for particles), we obtain for the left hand side of

Eq. (2.18)

〈PQ|T |0〉 − 〈PQ|T †|0〉 = (2π)4δ4(pP + pQ − s)
(
fPQ(s)− f ∗PQ(s)

)
, (2.19)

while the right hand side can be rewritten as

〈PQ|iTT †|0〉 = i
1

2

∑
n

∫ ∏
n

dp3
n

(2π)3En
〈PQ|T |n〉〈n|T †|0〉 =

i(2π)8

2

∑
n

∫ ∏
n

dp3
n

(2π)3En
δ4(pP + pQ − pn)δ4(pn − s)Tn→PQ(s, cos θ)f ∗n(s) , (2.20)

where we have inserted a complete set of intermediate states. Combining Eqs. (2.19)

and (2.20) together we arrive at the unitarity condition

fPQ(s)− f ∗PQ(s) =
i(2π)4

2

∑
n

∫ ∏
n

dp3
n

(2π)3En
δ4(pn − s)Tn→PQ(s, cos θ)f ∗n(s) , (2.21)

where fPQ(s) ≡ 〈PQ|T |0〉 and Tn→PQ(s, cos θ) ≡ 〈PQ|T |n〉. For the sake of simplic-

ity, we restrict the set of intermediate states to two-particle states1 n = P ′Q′ which

by using d3pn = dΩdEnEnpn we obtain

fPQ(s)− f ∗PQ(s) = i
∑
n

θ(s− sth)qP ′Q′(s)
8π
√
s

f ∗P ′Q′(s)

∫
TP ′Q′→PQ(s, cos θ)d cos θ ,

(2.22)

where sth is the P ′Q′-state production threshold, qP ′Q′(s) ≡ λP ′Q′/(2
√
s) with

λP ′Q′ =
√

[s− (mP ′ +mQ′)2][s− (mP ′ −mQ′)2] , (2.23)

is a kinematical factor accounting for the three-momentum of the P ′Q′ state and θ

is the scattering angle. The partial wave projection of the integrand is carried out

through

T (s, z) = 16π
∞∑
l=0

(2l + 1)tl(s)Pl(z) , (2.24)

1In principle, one should also take into account intermediate multiparticle states though the
difficulty of the problem is such that it becomes almost unsolvable.
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Chapter 2. Form Factors from dispersion relations

where Pl(z) are the Legendre polynomials of degree l with l being the orbital angular

momentum and tl(s) are the partial wave amplitudes.

The left hand part of Eq. (2.22) is nothing else than the imaginary part of the

form factor. Finally, the most general unitarity relation for form factors reads

ImfPQ(s) =
∑
n

σP ′Q′(s)fP ′Q′(s)t
∗
P ′Q′→PQ(s) , (2.25)

where we have defined

σP ′Q′(s) ≡
2qP ′Q′(s)√

s
θ(s− sth) . (2.26)

2.2 The Omnès equation

The case in which the intermediate states are the same as the final one is known as

elastic and the corresponding branch cut is called unitary or elastic cut accordingly.

This implies P ′Q′ = PQ in Eq. (2.25) which in turn reduces to

Imf(s) = σ(s)f(s)t∗(s) , (2.27)

where we have suppressed the two-particle states PQ subscript here and hereafter.

On one hand, the elastic partial wave amplitude can be written in terms of the elastic

scattering phase shift δ(s) as

t(s) =
1

σ(s)
sin δ(s)eiδ(s) , (2.28)

which inserted into Eq. (2.27) leads

Imf(s) = f(s) sin δ(s)e−iδ(s) . (2.29)

On the other hand, as for any complex function, the form factor f(s) can be expressed

as

f(s) = |f(s)|eiφ(s) , (2.30)

that introduced into Eq. (2.29) gives

Imf(s) = |f(s)| sin δ(s)eiφ(s)e−iδ(s) , (2.31)

which fixes the phase φ(s) = δ(s) since the left hand side is real. This result is

the well-known Watson’s final sate theorem [78] which states that, within the elas-

tic approximation, the phase of the elastic scattering amplitude equals that of the

corresponding form factor.
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2.2. The Omnès equation

By means of the use of the Schwartz reflection principle one has

f(s+ iε) = e2iδ(s)f(s− iε) , (2.32)

which by taking the logarithm we obtain

Im log f(s) =
log f(s+ iε)− log f(s− iε)

2i
= δ(s) . (2.33)

Using the once subtracted dispersion relation as given in Eq. (2.11) for Eq. (2.33) we

have

log f(s) = log f(s0) +
s− s0

π

∫ ∞
sth

Im log f(s′)

(s′ − s0)(s′ − s− iε)ds
′ (2.34)

= log f(s0) +
s− s0

π

∫ ∞
sth

δ(s′)

(s′ − s0)(s′ − s− iε)ds
′ . (2.35)

In this case, one subtraction is suitable since δ(s) tends to a constant at large s. The

solution of Eq. (2.35) for f(s) reads

f(s) = f(s0) exp

[
s− s0

π

∫ ∞
sth

δ(s′)

(s′ − s0)(s′ − s− iε)ds
′
]

= f(s0)Ω(s) , (2.36)

where Ω(s) is the well-known Omnès function [79]

Ω(s) = exp

[
s− s0

π

∫ ∞
sth

δ(s′)

(s′ − s0)(s′ − s− iε)ds
′
]
. (2.37)

It is also interesting to provide both the real and imaginary parts of f(s) which can

be obtained after using the Skhotski-Plemelj theorem

lim
ε→0+

1

x′ − x− iε = P 1

x′ − x + iπδ(x′ − x) (2.38)

where P represents the principal value. Inserting the previous equation in Eq. (2.36)

we get

Ref(s) = f(s0) exp

[
P s− s0

π

∫ ∞
sth

δ(s′)

(s′ − s0)(s′ − s)ds
′
]

cos δ(s) , (2.39)

and

Imf(s) = f(s0) exp

[
P s− s0

π

∫ ∞
sth

δ(s′)

(s′ − s0)(s′ − s)ds
′
]

sin δ(s) = tan δ(s)Ref(s) ,

(2.40)

for the real and imaginary parts, respectively. These results are useful to determine

the absolute value of the form factor that enters Eq. (2.30) as of

|f(s)| = f(s0) exp

[
P s− s0

π

∫ ∞
sth

δ(s′)

(s′ − s0)(s′ − s)ds
′
]
. (2.41)
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Chapter 2. Form Factors from dispersion relations

We would like to notice that multiplying Eq. (2.36) by an arbitrary polynomial P (s)

it is also a solution since all the requisites demanded for f(s) still hold. Thus, the

most general solution becomes

f(s) = P (s)Ω(s) . (2.42)

In order to fix the polynomial ambiguity one should analyze the asymptotic behavior

of the form factor. Studying f(s) in this limit, where usually the phase shift tends to

a constant δ∞ ≡ lims→∞ δ(s), from Eq. (2.30) one has [56]

lim
s→∞

f(s) = lim
s→∞

P (s) exp

[
s− s0

π

δ∞(s)

s− s0

log

(
sth − s
sth − s0

)]
eiδ∞

= lim
s→∞

P (s)

(
sth − s0

s

)δ∞/π
eiδ∞ . (2.43)

Assuming f(s) to vanish for s → ∞ implies P (s) to be a constant. This constant

can be set to f(s) evaluated at s = 0 whose numerical value should be inferred by

invoking external information with the help of theoretical arguments.

The solution for n subtractions (cf. Eq. (2.12)) can be cast as [52, 74]

f(s) = Qn(s) exp

[
(s− s0)n

π

∫ ∞
sth

δ(s′)

(s′ − s0)n(s′ − s− iε)ds
′
]
, (2.44)

where

Qn(s) = exp

[
n−1∑
k=0

αk(s− s0)k

]
, (2.45)

with the n− 1 subtraction constants being

αk =
1

k!

dk

dsk
log f(s)

∣∣∣∣
s=s0

. (2.46)

2.3 Form factors in coupled-channels

In the preceding section we have studied in detail the elastic approximation, by setting

P ′Q′ = PQ in Eq. (2.25), that has led the famous Omnès solution as outcome. This

equation has success and extensively been employed in phenomenology for describing

unitarity corrections due to elastic final state interactions. However, it does not

account for the effect of inelastic intermediate states which, in principle, should also

be considered. This can be achieved by inserting the central unitarity relation for

form factors, Eq. (2.25), into a dispersion relation as of

f i(s) =
1

π

3∑
j=1

∫ ∞
si

ds′
σj(s

′)f j(s′)ti→j(s′)∗

(s′ − s− iε) , (2.47)
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2.3. Form factors in coupled-channels

where si is the threshold for channel i and ti→j are partial wave T -matrix elements

for the i → j scattering. The unitarized form factors are then obtained by solving

the coupled dispersion relations arising from the previous expression fulfilling the

analytical requirements and incorporating the information contained in the scattering

T -matrix. To solve the coupled channels problem, one typically rely on numerical

iterative methods though algebraic closed expressions have also been illustrated as

we discuss in appendix D for the later use in section 5. Of course, in the elastic

approximation, eq. (2.47) reduces to the usual single-channel Omnès equation.

45



Part I

Hadronic tau decays

46



The tau lepton is the only lepton heavy enough (mτ ∼ 1.8 GeV) to decay into

hadrons. Actually the 65% of the branching ratio contains hadrons in the final state.

Such decays proceed through the exchange of W± gauge bosons which couple the

leptonic particles i.e. the tau and the generated neutrino, together with a quark-

antiquark pair that subsequently hadronizes. For the sake of clarity, in Fig. (2.2)

we provide a graphical account of a tau lepton decaying into a pair hadrons, P−P ′0,

ha
dr

on
iz
at
io
n

τ− ντ

W−

ū

d′ = Vudd + Vuss

P−

P ′0

Figure 2.2: Schematic picture of a two mesons decay of the τ .

whose amplitude can be expressed as an electroweak part times an hadronic matrix

element as

M
(
τ− → P−P ′0ντ

)
=
GF√

2
VCKMū(pντ )γ

µ(1− γ5)u(pτ )〈P−P ′0|d′γµu|0〉 , (2.48)

where d′ = V ∗udd̄+V ∗uss̄. Since the energy we are exploring (
√
s < mτ ) is much lighter

than the W± boson mass (mτ ∼ 80 GeV), in the previous equation we have not

considered the gauge boson propagator but rather its expansion.

That explains why semileptonic tau decays represent a clean laboratory to study

the hadronization properties of QCD since half of the process is purely electroweak

and can be computed straightforwardly. Therefore, the unknown QCD dynamics is

encoded within the hadronic matrix element whose general parameterization in terms

of form factors read [80]

〈P−P ′0|d′γµu|0〉 = CP−P ′0
{(

p− − p0 −
∆P−P ′0

s
q

)µ
F P−P ′0

+ (s)+
∆P−P ′0

s
qµF P−P ′0

0 (s)

}
,

(2.49)
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Hadronic τ decays

where CP−P ′0 is a Clebsch-Gordon coefficient, pµ− and pµ0 are the momenta of the

charged and neutral pseudoscalars, respectively, qµ = (p− + p0)µ is the momentum

transfer and s = q2. In Eq. (2.49), the vector and scalar form factors functions,

F P−P ′0
+ (s) and F P−P ′0

0 (s), respectively, carry all the information. Notice that the

scalar contribution is suppressed by the mass-squared difference ∆P−P ′0 = m2
P−−m2

P ′0

since the vector current is conserved in the limit of equal quark masses (cf. Eq. (1.22)).

In all, to have a proper parameterization of the form factors is of capital importance

for the understanding two meson hadronic tau decays.

At the inclusive level, hadronic tau decays allows to extract fundamental param-

eters of the SM, most importantly the strong coupling αS [81, 82, 83, 84], but also

the matrix element |Vus| [85, 86] and the mass of the strange quark at high precision

[87, 88, 89, 90, 91, 92, 93, 94, 95].

At exclusive level, the tau hadronic partial width (∼ 65%) is the sum of the tau

partial width to strange (∼ 3%) and to non-strange (∼ 62%) hadronic final states.

On one hand, the non-strange decays are vastly dominated by the π−π0 mode which,

actually, is the main decay channel of the τ with an absolute branching ratio of

∼ 25%. This channel has been extensively studied in literature [52, 96, 97] since it

becomes a privileged laboratory to prove the vector form factor because the scalar ones

is weighted by the SU(2) breaking term, ∆π−π0 , and hence negligible. On the other

hand, the strange hadronic final states are suppressed respect to the non-strange ones

mainly because of the following two reasons: i) the mass of the strange quark is much

larger than the mass of the up and down quarks leading a phase-space suppression;

ii) strange decays are Cabibbo suppressed since the |Vus| element of the CKM matrix

enters the description rather than |Vud| as occurs in the non-strange one.

The dominant strangeness-changing τ decays are into Kπ meson systems which

adds up to ∼ 42% of the strange spectral function. The corresponding differential

decay width was measured at LEP by the ALEPH [98] and OPAL [99] collaborations,

and recently the B-factories BaBar [17] and Belle [100] have published increased ac-

curacy measurements. We would like to note that the BaBar collaboration published

their analysis for the K−π0 mode, while Belle studied the KSπ
− decay mode. Belle’s

spectrum became publicly available but the published BaBar analysis only concerned

the branching ratio while the corresponding spectrum has not been released yet2. As

a result, all dedicated studies of the τ− → (Kπ)−ντ decays focused on the KSπ
−

2BaBar reported preliminary results for the K̄0π− mode at the TAU’08 Conference [101], whereas
Belle also plans to study the K−π0 mode and has just published updated values of the branching
fractions of decay modes including KS mesons analysing a larger data sample [102]. We thank
Swagato Banerjee, Simon Eidelman, Denis Epifanov and Ian Nugent for conversations on this point.
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system [14, 15, 103, 104, 105, 106]. Consequently, even using data from semileptonic

Kaon decays (K → π`ν, so called K`3 decays) [15, 106], important information on

isospin breaking effects in the low-energy expansion of the hadronic form factors could

no be extracted. The quoted references succeeded in improving the determination of

the K?(892) and K?(1410) resonance properties: their pole positions and relative

weight, although the errors on the radial excitation were noticeably larger than in the

K?(892) case.

In order to increase the knowledge of the strange spectral function, the τ− →
(Kππ(π))− ντ decays have to be better understood (they add up to one third of

the strange decay width), the τ− → K−ηντ and τ− → (Kπ)−ηντ decays being also

important for that purpose. Actually, the threshold for the K−η mode is above

the region of K?(892)-dominance which enhances its sensitivity to the properties of

the heavier copy K?(1410). This observation leads the τ− → K−ηντ decay to be

competitive with the τ− → (Kπ)−ντ decays in the extraction of the K?(1410) meson

parameters. This is one of the motivations for the study of the τ− → K−ηντ decay in

chapter 3 of this thesis. This has been possible thanks to BaBar [107] and Belle [12]

data of the K−η spectrum. In this chapter we will also predict τ− → K−η′ντ decay

channel for which we advocate its measurement in future B-factories.

Then, in chapter 4 we will illustrate the potential of a combined analysis of both

τ− → KSπ
−ντ and τ− → K−ηντ decays in the determination of the K?(1410) reso-

nance properties.

Finally, in chapter 5 we will analyze the rare decays τ− → π−η(′)ντ which belong

to the so-called second-class current processes i.e. parity conservation implies that

these transitions must proceed through the vector currents, which has opposed G-

parity to the π−η(′) system (see appendix B for a detailed explanation). In the limit

of exact isospin symmetry, these processes are forbidden in the SM. However, isospin

is an SU(2) approximate symmetry, slightly broken both by mu 6= md (in QCD) and

qu 6= qd (in QED) leading a sizable suppression of the considered decays which have

not been measured so far.
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Chapter 3

τ−→ K−η(′)ντ decays

The τ− → K−ηντ decays were first measured by CLEO [108] and ALEPH [109] in

the ’90s. Only very recently Belle [12] and BaBar [107] managed to improve these

measurements reducing the branching fraction to essentially half of the CLEO and

ALEPH results and achieving a decrease of the error at the level of one order of

magnitude. Belle [12] measured a branching ratio of (1.58 ± 0.05 ± 0.09) · 10−4 and

BaBar [107] (1.42 ± 0.11 ± 0.07) · 10−4, which combined to give the PDG average

(1.52± 0.08) · 10−4 [37]. The related decay τ− → K−η′ντ has not been detected yet,

although an upper limit at the 90% confidence level was placed by BaBar [110] but

has not been incorporated to the PDG [37].

Belle’s paper [12] cites the few existing calculations of the τ− → K−ηντ decays

based on Chiral Lagrangians [111, 112, 113, 114] and concludes that ‘further detailed

studies of the physical dynamics in τ decays with η mesons are required’ (see also,

e.g. Ref. [115])1. Our aim is to provide a more elaborated analysis which takes into

account the advances in this field since the publication of the quoted references more

than fifteen years ago. The considered τ− → K−η(′)ντ decays are currently modeled

in TAUOLA [117, 118], the standard Monte Carlo generator for tau lepton decays,

relying on phase space. We would like to provide the library with Resonance Chiral

Lagrangian-based currents [119, 120] that can describe well these decays for their

analyses and for the characterization of the backgrounds they constitute to searches

of rarer tau decays and new physics processes.

This chapter is organized as follows: the hadronic matrix element and the partici-

pating vector and scalar form factors are defined in section 3.1, where the differential

decay distribution in terms of the latter is also given. These form factors are de-

rived within Chiral Perturbation Theory (χPT ) [5, 6, 7] including resonances (RχT )

1Very recently, the τ− → Kπ/ηντ decays have been studied [116]. However, no satisfactory
description of the data can be achieved in both decay channels simultaneously.
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3.1. Matrix elements and decay width

[48, 53] in section 3.2. Three different options according to treatment of final-state

interactions in these form factors are discussed in section 3.3 and will be used in

the remainder of the paper. In section 3.4, the τ− → K−ηντ decay observables are

predicted based on the knowledge of the τ− → (Kπ)−ντ decays. These results are

then improved in section 3.5 by fitting the BaBar and Belle τ− → K−ηντ data. We

provide our predictions on the τ− → K−η′ντ decays in section 3.6 and present our

conclusions in section 4.3.

3.1 Matrix elements and decay width

We fix our conventions from the general parametrization of the scalar and vector

K+η(′) matrix elements [121]:〈
η(′)
∣∣∣s̄γµu∣∣∣K+

〉
= cVKη(′)

[(
pη(′) + pK

)µ
fK

+η(′)

+ (t) + (pK − pη(′))µf
K+η(′)

− (t)
]
, (3.1)

where t = (pK − pη(′))2. From Eq. (3.1) one has〈
K−η(′)

∣∣∣s̄γµu∣∣∣0〉 = cVKη(′)

[(
pη(′) − pK

)µ
fK

−η(′)

+ (s)− qµfK−η(′)

− (s)
]
, (3.2)

with qµ =
(
pη(′) + pK

)µ
, s = q2 and cV

Kη(′) = −
√

3
2
. Instead of fK

−η(′)

− (s) one can use

fK
−η(′)

0 (s) defined through〈
0
∣∣∣∂µ(s̄γµu)

∣∣∣K−η(′)
〉

= i(ms −mu)
〈

0
∣∣∣s̄u∣∣∣K−η(′)

〉
≡ i∆Kπc

S
K−η(′)f

K−η(′)

0 (s) , (3.3)

with

cSK−η = − 1√
6
, cSK−η′ =

2√
3
, ∆PQ = m2

P −m2
Q . (3.4)

The mass renormalization ms−m̄ in χPT (or RχT ) needs to be taken into account to

define fK
−η(′)

0 (s) and m̄ = (md+mu)/2 has been introduced. We will take ∆Kπ

∣∣∣QCD =

∆Kπ, which is an excellent approximation. From eqs. (3.2) and (3.3) one gets〈
K−η(′)

∣∣∣s̄γµu∣∣∣0〉 =

[(
pη(′) − pK

)µ
+

∆Kη(′)

s
qµ
]
cVK−η(′)f

K−η(′)

+ (s)+
∆Kπ

s
qµcSK−η(′)f

K−η(′)

0 (s) ,

(3.5)

and the normalization condition

fK
−η(′)

+ (0) = −
cS
K−η(′)

cV
K−η(′)

∆Kπ

∆Kη(′)
fK

−η(′)

0 (0) , (3.6)

which is obtained from

fK
−η(′)

− (s) = −∆Kη(′)

s

[
cS
K−η(′)

cV
K−η(′)

∆Kπ

∆Kη(′)
fK

−η(′)

0 (s) + fK
−η(′)

+ (s)

]
. (3.7)
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In terms of these form factors, the differential decay width reads

dΓ
(
τ− → K−η(′)ντ

)
d
√
s

=
G2
FM

3
τ

32π3s
SEW

∣∣∣VusfK−η(′)

+ (0)
∣∣∣2(1− s

M2
τ

)2

(3.8){(
1 +

2s

M2
τ

)
q3
Kη(′)(s)

∣∣∣f̃K−η(′)

+ (s)
∣∣∣2 +

3∆2
Kη(′)

4s
qKη(′)(s)

∣∣∣f̃K−η(′)

0 (s)
∣∣∣2} ,

where

qPQ(s) =

√
s2 − 2sΣPQ + ∆2

PQ

2
√
s

, σPQ(s) =
2qPQ(s)√

s
θ
(
s− (mP +mQ)2

)
,

ΣPQ = m2
P +m2

Q , f̃K
−η(′)

+,0 (s) =
fK

−η(′)

+,0 (s)

fK
−η(′)

+,0 (0)
, (3.9)

and SEW = 1.0201 [122] represents an electro-weak correction factor.

We have considered the η−η′ mixing up to next-to-leading order in the combined

expansion in p2, mq and 1/NC [8] (see the next section for the introduction of the

large-NC limit of QCD [62] applied to the light-flavoured mesons). In this way it is

found that
∣∣∣VusfK−η+ (0)

∣∣∣ =
∣∣∣VusfK−π0

+ (0)cosθP

∣∣∣, ∣∣∣VusfK−η′+ (0)
∣∣∣ =

∣∣∣VusfK−π0

+ (0)sinθP

∣∣∣,
where θP = (−13.3± 1.0)◦ [123].

The best access to
∣∣∣VusfK−π0

+ (0)
∣∣∣ is through semi-leptonic Kaon decay data. We

will use the value 0.21664±0.00048 [124, 125]. Equation (3.8) makes manifest that the

unknown strong-interaction dynamics is encoded in the tilded form factors, f̃K
−η(′)

+,0 (s)

which will be subject of our analysis in the following section. We will see in particular

that the use of f̃K
−η(′)

+,0 (s) instead of the untilded form factors yields more compact

expressions that are symmetric under the exchange η ↔ η′, see eqs. (3.19) and (3.24).

3.2 Scalar and vector form factors in RχT

Although there is no analytic method to derive the f̃K
−η(′)

+,0 (s) form factors directly

from the QCD Lagrangian, its symmetries are nevertheless useful to reduce the model

dependence to a minimum and keep as many properties of the fundamental theory

as possible.

χPT [5, 6, 7], the effective field theory of QCD at low energies, is built as an

expansion in even powers of the ratio between the momenta or masses of the lightest

pseudoscalar mesons over the chiral symmetry breaking scale, which is of the order

of one GeV. As one approaches the energy region where new degrees of freedom -the

lightest meson resonances- become active, χPT ceases to provide a good description
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3.2. Scalar and vector form factors in RχT

of the Physics (even including higher-order corrections [126, 127, 128]) and these res-

onances must be incorporated to the action of the theory. This is done without any

ad-hoc dynamical assumption by RχT in the convenient antisymmetric tensor formal-

ism that avoids the introduction of local χPT terms at next-to-leading order in the

chiral expansion since their contribution is recovered upon integrating the resonances

out [48, 53]. The building of the Resonance Chiral Lagrangians is driven by the

spontaneous symmetry breakdown of QCD realized in the meson sector, the discrete

symmetries of the strong interaction and unitary symmetry for the resonance multi-

plets. The expansion parameter of the theory is the inverse of the number of colours

of the gauge group, 1/NC . Despite NC not being small in the real world, the fact that

phenomenology supports this approach to QCD [51, 129] hints that the associated

coefficients of the expansion are small enough to warrant a meaningful perturbative

approach based on it. At leading order in this expansion there is an infinite number

of radial excitations for each resonance with otherwise the same quantum numbers

that are strictly stable and interact through local effective vertices only at tree level.

We have provided the relevant effective Lagrangian for the lightest resonance nonets

in Eq. (1.76).

Figure 3.1: Diagrams contributing for calculating the K−η(′) vector form factors.
From left to right we have: a) χPT at lowest order, O(p2); b) Octet, S, and singlet,
S1, scalar resonance exchange coupled to the vacuum; c) O(p4) contributions from
the O(p2) Lagrangian due to wave function and mass renormalizations; d) Explicit
exchange of vector resonances, K∗ and excitations. The image has been borrowed
from Ref. [130].

For the computation of the vector form factors we have to evaluate the diagrams

depicted in Fig. 3.1 [130]. Diagram a) results from calculating the vector current in

ChPT at O(p2) by means of Eq. (1.49)

〈K−η|(JµV )31|0〉 = i

√
3

2
cos θP

[
K+ (∂µη)−

(
∂µK+

)
η
]
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= −
√

3

2
cos θP (pη − pK)µ , (3.10)

and

〈K−η′|(JµV )31|0〉 = i

√
3

2
sin θP

[
K+ (∂µη′)−

(
∂µK+

)
η′
]

(3.11)

= −
√

3

2
sin θP (pη′ − pK)µ , (3.12)

which lead

fK
−η

+ (s) = −
√

3

2
cos θP (1 + . . .) ,

fK
−η′

+ (s) = −
√

3

2
sin θP (1 + . . .) , (3.13)

for the η and η′ respectively. The contributions from the vacuum insertion, diagram

b), and the ones from the wave function renormalization, diagram c), cancel each

other due to charge conservation. For the calculation of the contribution of diagram

d) we need the following pieces

= 〈K∗−| − FV√
2
∂ν
(
u†V νµu+ uV νµu†

)
|0〉

= 〈K∗−| −
√

2FV ∂νV
νµ|0〉 = −i

√
2FV (pK + pη)µ , (3.14)

for the boson-vector interaction,

=
i

M2
K∗ − s

(gµρgνσ − gµσgνρ) , (3.15)

for the vector resonance propagator in the antisymmetric tensor formalism [48]

and

= 〈K−η|iGV√
2
〈Vµνuµuν〉|0〉

=
iGV√
3f 2

cos θPK
∗−
µν

[
2∂µK+∂νη − ∂µη∂νK+

]
=

iGV√
3f 2

i2
(
2pρKp

σ
η − pρηpσK

)
, (3.16)

for the interaction between the vector resonance and the K−η system.
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= i(−i)
√

2FV (pK + pη)
µ cos θP

i

M2
K∗ − s

(gµρgνσ − gµσgνρ)

× iGV√
3f 2

i2
(
2pρKp

σ
η − pρηpσK

)
, (3.17)

Finally, the explicit expression for the diagram d) arise by multiplying Eqs. (3.14),

(3.15) and (3.16) altogether as

which leads

−
√

3

2
cos θP

FVGV

f 2

1

M2
K∗ − s

{(pη + pK)ν
(
m2
K −m2

η

)
+ (pη − pK)ν s} (3.18)

after contracting indices. For the η′ we just need to replace cos θP → sin θP in the

previous equations.

The resultingK−η(′) vector form factors emerge by summing up together Eqs. (3.13)

and (3.18) as of

f̃K
−η(′)

+ (s) =
fK

−η(′)

+ (s)

fK
−η(′)

+ (0)
= 1 +

FVGV

F 2

s

M2
K? − s , (3.19)

where fK
−η

+ (0) = cos θP and fK
−η′

+ (0) = sin θP . We recall that the normalization of

the Kπ vector form factor, fK
−π

+ (0), was pre-factored in Eq. (3.8) together with |Vus|.
The strangeness changing scalar form factors and associated S-wave scattering

within RχT have been investigated in a series of papers by Jamin, Oller and Pich

[56, 68, 103, 131] (see also Ref. [132]). For the scalar form factors we also have

to evaluate the diagrams in Fig. 3.1, of course with an scalar current in this case,

and replacing the exchange of vector resonances in diagram d) by scalar one. The

calculation gives:

f̃K
−η

0 (s) =
fK

−η
0 (s)

fK
−η

0 (0)
=

1

fK
−η

0 (0)

[
cos θPf

K−η8

0 (s)
∣∣∣
η8→η

+ 2
√

2sinθPf
K−η1

0 (s)
∣∣∣
η1→η

]
,(3.20)

f̃K
−η′

0 (s) =
fK

−η′

0 (s)

fK
−η′

0 (0)
=

1

fK
−η′

0 (0)

[
cosθPf

K−η1

0 (s)
∣∣∣
η1→η′

− 1

2
√

2
sinθPf

K−η8

0 (s)
∣∣∣
η8→η′

]
,

and can be written in terms of the fK
−η8

0 (s), fK
−η1

0 (s) form factors computed in

Ref. [56]:

fK
−η8

0 (s) = 1 +
4cm

F 2(M2
S − s)

[
cd(s−m2

K − p2
η8

) + cm(5m2
K − 3m2

π)
]

+
4cm(cm − cd)

F 2M2
S

(3m2
K − 5m2

π) , (3.21)
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fK
−η1

0 (s) = 1 +
4cm

F 2(M2
S − s)

[
cd(s−m2

K − p2
η1

) + cm2m2
K

]
−4cm(cm − cd)

F 2M2
S

2m2
π , (3.22)

where, for the considered flavour indices, S should correspond to the K?
0(1430) res-

onance. Besides fK
−π

0 (0) = fK
−π

+ (0) (see the comment below equation (3.19)) it has

also been used that

fK
−η

0 (0) = cos θP

(
1 +

∆Kη + 3∆Kπ

M2
S

)
+ 2
√

2 sin θP

(
1 +

∆Kη

M2
S

)
,

fK
−η′

0 (0) = cos θP

(
1 +

∆Kη

M2
S

)
+ sin θP

(
1 +

∆Kη + 3∆Kπ

M2
S

)
. (3.23)

Indeed, using our conventions, the tilded scalar form factors become simply

f̃K
−η(′)

0 (s) =
fK

−η(′)

0 (s)

fK
−η(′)

0 (0)
= 1 +

cdcm
4F 2

s

M2
S − s

, (3.24)

that is more compact than eqs. (3.20), (3.21) and displays the same symmetry η ↔ η′

than the vector form factors in Eq. (3.19).

The computation of the leading order amplitudes in the large-NC limit within

RχT demands, however, the inclusion of an infinite tower of resonances per set of

quantum numbers 2. Although the masses of the large-NC states depart slightly from

the actually measured particles [133] only the second vector state, i.e. the K?(1410)

resonance, will have some impact on the considered decays. Accordingly, we will

replace the vector form factor in Eq. (3.19) by

f̃K
−η(′)

+ (s) = 1 +
FVGV

F 2

s

M2
K? − s +

F ′VG
′
V

F 2

s

M2
K?′ − s

, (3.25)

where the operators with couplings F ′V and G′V are defined in analogy with the cor-

responding unprimed couplings in Eq. (1.76).

If we require that the fK
−η(′)

+ (s) and fK
−η(′)

0 (s) form factors vanish for s→∞ at

least as 1/s [214], we obtain the short-distance constraints

FVGV + F ′VG
′
V = F 2 , 4cdcm = F 2 , cd − cm = 0 , (3.26)

which yield the form factors

f̃K
−η

+ (s) =
M2

K? + γs

M2
K? − s −

γs

M2
K?′ − s

= f̃K
−η′

+ (s) , (3.27)

f̃K
−η

0 (s) =
M2

S

M2
S − s

= f̃K
−η′

0 (s) ,

2We point out that there is no limitation in the RχT Lagrangians in this respect. In particular, a
second multiplet of resonances has been introduced in the literature [134, 135] and bi- and tri-linear
operators in resonance fields have been used [54, 136, 137, 138, 139, 140].
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where γ = −F ′V G
′
V

F 2 = FV GV
F 2 − 1 [14, 15, 103, 105]. We note that we are disregarding

the modifications introduced by the heavier resonance states to the relation (3.26)

and to the definition of γ.

3.3 Treatment of final-state interactions

The form factors in eqs. (3.27) diverge when the exchanged resonance is on-mass

shell and, consequently, cannot represent the underlying dynamics that may peak

in the resonance region but does not certainly show a singular behaviour. This is

solved by considering a next-to-leading order effect in the large-NC counting, as it is

a non-vanishing resonance width 3. Moreover, since the participating resonances are

not narrow, an energy-dependent width needs to be considered. A precise formalism-

independent definition of the off-shell vector resonance width within RχT has been

given in Ref. [141] and employed successfully in a variety of phenomenological studies.

Its application to the K∗(892) resonance gives

ΓK∗(s) =
G2
VMK∗s

64πF 4

[
σ3
Kπ(s) + cos2θPσ

3
Kη(s) + sin2θPσ

3
Kη′(s)

]
, (3.28)

where σPQ(s) was defined in Eq. (4.2). Several analyses of the ππ [96, 97, 134] and

Kπ [14, 15, 105] form factors where the ρ(770) and K?(892) prevail respectively, have

probed the energy-dependent width of these resonances with precision. Although the

predicted width [52] turns to be quite accurate, it is not optimal to achieve a very

precise description of the data and, instead, it is better to allow the on-shell width to

be a free parameter and write

ΓK∗(s) = ΓK∗
s

M2
K∗

σ3
Kπ(s) + cos2θPσ

3
Kη(s) + sin2θPσ

3
Kη′(s)

σ3
Kπ(M2

K∗)
, (3.29)

where it has been taken into account that at the MK∗-scale the only absorptive cut

is given by the elastic contribution.

In the case of the K?(1410) resonance there is no warranty that the KP (P = π, η,

η′) cuts contribute in the proportion given in Eqs. (3.28) and (3.29). We will assume

that the lightest Kπ cut dominates and use throughout that

ΓK?′(s) = ΓK?′
s

M2
K?′

σ3
Kπ(s)

σ3
Kπ(M2

K?′)
. (3.30)

3Other corrections at this order are neglected. Phenomenology seems to support that this is the
predominant contribution.
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The scalar resonance width can also be computed in RχT similarly [48, 141]. In the

case of the K?
0(1430) it reads

ΓS(s) = ΓS0

(
M2

S

)( s

M2
S

)3/2
g(s)

g (M2
S)
, (3.31)

with

g(s) =
3

2
σKπ(s) +

1

6
σKη(s)

[
cosθP

(
1 +

3∆Kπ + ∆Kη

s

)
+ 2
√

2sinθP

(
1 +

∆Kη

s

)]2

+
4

3
σKη′(s)

[
cosθP

(
1 +

∆Kη′

s

)
− sinθP

2
√

2

(
1 +

3∆Kπ + ∆Kη′

s

)]2

. (3.32)

At this point, different options for the inclusion of the resonances width arise. The

most simple prescription is to replace M2
R − s by M2

R − s− iMRΓR(s) in eqs. (3.27).

We shall call this option ‘dipole model’, or simply ‘Breit-Wigner (BW) model’. One

should pay attention to the fact that analyticity of a quantum field theory imposes

certain relations between the real and imaginary parts of the amplitudes. In par-

ticular, there is one between the real and imaginary part of the relevant two-point

function. At the one-loop level its imaginary part is proportional to the meson width

but the real part (which is neglected in this model) is non-vanishing. As a result, the

Breit-Wigner treatment breaks analyticity at the leading non-trivial order.

Instead, one can try to devise a mechanism that keeps the complete complex two-

point function. Ref. [52] used an Omnès resummation of final-state interactions in

the vector form factor that was consistent with analyticity at next-to-leading order.

The associated violations were small and consequently neglected in their study of

the ππ observables. This strategy was also exported to the Kπ decays of the τ

in Refs. [103, 105] where it yielded remarkable agreement with the data. We will

call this approach to the vector form factor ‘the exponential parametrization’ (since

it exponentiates the real part of the relevant loop function) and refer to it by the

initials of the authors who studied the Kπ system along these lines, ‘JPP’.

A decade after, a construction that ensures analyticity of the vector form factor

exactly was put forward in Ref. [14] and applied successfully to the study of the

Kπ tau decays. It is a dispersive representation of the form factor where the input

phaseshift, which resums the whole loop function in the denominator of Eq. (3.27),

is proportional to the ratio of the imaginary and real parts of this form factor. This

method also succeeded in its application to the di-pion system [97], where it was

rephrased in a way which makes chiral symmetry manifest at next-to-leading order.
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3.3. Treatment of final-state interactions

We will name this method ‘dispersive representation’ or ‘BEJ’, by the authors who

pioneered it in the Kπ system.

We would like to stress that the Breit-Wigner model is consistent with χPT only

at leading order, while the exponential parametrization (JPP) and the dispersive

representation (BEJ) reproduce the chiral limit results up to next-to-leading order

and including the dominant contributions at the next order [142].

In the dispersive approach to the study of the di-pion and Kaon-pion systems it was

possible to achieve a unitary description in the elastic region that could be extended

up to sinel = 4m2
K (the 4π cut, which is phase-space and large-NC suppressed is

safely neglected) and sinel = (mK +mη)
2, respectively. Most devoted studies of these

form factors neglect -in one way or another- inelasticities and coupled-channel effects

beyond sinel in them 4, an approximation that seems to be supported by the impressive

agreement with the data sought. However, this overlook of the problem seems to be

questionable in the case of the τ− → K−η(′)ντ decays where we are concerned with

the first (second) inelastic cuts.

An advisable solution may come from the technology developed for the scalar form

factors that were analyzed in a coupled channel approach in Refs. [56, 131, 143] (for

the strangeness-changing form factors) 5 and [58, 144] (for the strangeness-conserving

ones) unitarizing SU(3) and U(3) (respectively) χPT with explicit exchange of res-

onances [57]. However, given the large errors of the τ− → K−ηντ decay spectra

measured by the BaBar [107] and Belle [12] Collaborations and the absence of data

on the K−η′ channel we consider that it is not timely to perform such a cumbersome

numerical analysis in the absence of enough experimental guidance 6. For this reason

we have attempted to obviate the inherent inelasticity of the Kη(′) channels and tried

an elastic description, where the form factor that defines the input phaseshift is given

by Eq. (3.27) with ΓK?(s) defined analogously to ΓK?′(s), i.e., neglecting the inelastic

cuts. We anticipate that the accord with data supports this procedure until more

precise measurements demand a better approximation.

Regarding the scalar form factor accompanying the exponential and dispersive

descriptions of the vector form factor, we will employ the form factors in three coupled

4See, however, Ref. [104], which includes coupled channels for the Kπ vector form factor.
5We will use these unitarized scalar form factors instead of the one in Eq. (3.27) in the JPP and

BEJ treatments (see above).
6One could complement this poorly known sector with the information from meson-meson scat-

tering on the relevant channels [67]. Our research at next-to-leading order in the 1/NC expansion
treating consistently the η − η′ mixing [8, 69] is in progress.
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channels (Kπ, Kη, Kη′ for i = 1, 2, 3 in Eq. (2.47)) solved in Ref. [56] and kindly

provided by one of the authors7.

Let us recapitulate the different alternatives for the treatment of final-state inter-

actions that will be employed in sections 3.4-3.6 to study the τ− → K−η(′)ντ decays.

The relevant form factors will be obtained from Eqs. (3.27) in each case by:

• Dipole model (Breit-Wigner): M2
R − s will be replaced by M2

R − s− iMRΓR(s)

with ΓK?(s) and ΓS(s) given by Eqs. (3.29) and (3.31). The from factors written

in this way are not analytic, in the sense that the real part of the unitarity

corrections is obviated, and only considers the absorptive (imaginary) part of

these corrections.

• Exponential parametrization (JPP): The Breit-Wigner vector form factor de-

scribed above is multiplied by the exponential of the real part of the loop func-

tion as illustrated in Ref. [52] devoted to the pion vector form factor. We will

adopt here the discussion to the Kπ case which determines the Kη(′) processes.

The key point in obtaining the Omnès solution is that in the elastic region Wat-

son final-state theorem (cf. Eq. 2.31) relates the imaginary part of the vector

form factor to the partial wave amplitude for Kπ scattering with spin one and

isospin one-half, T
1/2
1 (s). In fact, in this region both phases are equal, which

allows to write an n-subtracted dispersion relation which has the well-known

Omnès solution (cf. Eq. (2.44))

fKπ+ (s) = Pn(s) exp

{
sn

π

∞∫
sthr

ds′
δ1

1(s′)

(s′)n(s′ − s− iε)

}
, (3.33)

where

logPn(s) =
n−1∑
k=0

αk
sk

k!
(3.34)

is the corresponding subtraction polynomial. The subtraction constants αk are

given by 8

αk =
dk

dsk
log fKπ+ (s)

∣∣∣
s=0

. (3.35)

Using the leading-order χPT result in the integral (3.33) generates the χPT

one-loop function at the next order. In this way, the Omnès formula provides

an exponentiation of the chiral logarithmic corrections. The ambiguity in the

7We thank Matthias Jamin on this point.
8More general formulae with subtractions at an arbitrary point s = s0 can for example be found

in Ref. [74].
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non-logarithmic part of the Omnès relation can be resolved to a large extent by

matching it to the RχT result yielding

fKπ+ (s) =
M2

K?

M2
K? − sexp

{
3

2

[
H̃Kπ(s) + H̃Kη(s)

]}
, (3.36)

where H̃PQ(s) subtracts the contribution of the local term at next-to-leading

order in χPT from the untilded function 9 to avoid double counting, since

this term is recovered upon integration of the vector resonances in the chosen

formalism.

The problem, however, comes when the resonance width is included (as it should

to avoid the divergent behaviour of the denominator at the resonance mass). In

Ref. [52] the imaginary part of the loop function (giving the resonance width)

was shifted to the denominator by hand, which resulted in an expression anal-

ogous to

fKπ+ (s) =
M2

K?

M2
K? − s− iMK?ΓK?(s)

exp

{
3

2
Re
[
H̃Kπ(s) + H̃Kη(s)

]}
. (3.37)

which strictly speaking is no yet analytic, in the sense that the real and imagi-

nary parts of the unitarity corrections are resummed in two different functions,

but both the absorptive (imaginary) and dispersive (real) part of the corrections

are considered. If inelasticities were not important, the exponential resumma-

tion should be a suitable representation of the vector form factor. Although

in our case we consider the Kπ and Kη channels and, strictu sensu, elastic

unitarity cannot be employed i.e. the vector form factor is neither totally uni-

tary, Eq. (3.37) still could be a good representation. The unitarized scalar form

factor [56] will be employed.

• Dispersive representation (BEJ): both the real and imaginary parts of the loop-

function HKπ(s) are resummed and accomodated in the resonance propagator

as of

f̃+(s) =
m2
K? − κK?H̃Kπ(0) + γs

D(mK? , γK?)
− γs

D(mK?′ , γK?′ )
, (3.38)

where the denominators read

D(mn, γn) ≡ m2
n − s− κnRe [HKπ(s)]− imnγn(s) , (3.39)

9HPQ(s) is the standard Gasser and Leutwyler’s two-particle loop function [6].
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with

κn =
192πFKFπ
σ3(m2

n)

γn
mn

, γn(s) = γn
s

m2
n

σ3
Kπ(s)

σ3
Kπ(m2

n)
, (3.40)

and σ(m2
P ) = σPP (s) =

√
1− 4m2

P

s
is the two-body phase-space factor.

The input phaseshift is obtained using the vector form factor in Eq. (3.38)

including only the Kπ cut as

δ(s) = tan−1

[
Imf̃+(s)

Ref̃+(s)

]
, (3.41)

which inserted into a three-times subtracted dispersion relation of the form

factor leads 10 (cf. Eq. (2.44))

f̃+(s) = exp

[
α1

s

m2
π

+
1

2
α2

s2

m4
π

+
s3

π

∫ scut

sKπ

ds′
δ(s′)

(s′)3(s′ − s− i0)

]
, (3.42)

where sKπ = (mK + mπ)2 11 and the two subtraction constants are related to

the low-energy expansion of the f̃+(s) form factor:

f̃+(s) = 1 + λ′+
s

m2
π

+
1

2
λ′′+

s2

m4
π

+ ... , (3.43)

while the value of the cut-off, scut, should in principle be varied to estimate

the associated systematic error. The form factor representation as written as in

Eq. (3.42) suppresses the weight of the high-energy contribution to the phase in-

tegral where possible inelastic effects, starting at the K∗π threshold, are already

present. This results in a transfer of the information into the two subtraction

constants α1 and α2. Again, the unitarized scalar form factor [56] will be em-

ployed.

3.4 Predictions for the τ− → K−ηντ decay

We note that Eqs. (3.27) also hold for the f̃K
−π

+,0 (s) form factors (see Eq. (3.8) and

comments below, as well). Therefore, in principle the knowledge of these form factors

in the Kπ system can be transferred to the Kη(′) systems immediately, taking thus

advantage of the larger statistics accumulated in the former and their sensitivity to

the K?(892) properties. This is certainly true in the case of the vector form factor

10The analyses of the ππ [96, 97] and Kπ [14, 15] vector form factors within this framework shows
an optimal description of the data with three subtractions.

11The values of the masses that are actually used in this relation are discussed in section 3.4.
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3.4. Predictions for the τ− → K−ηντ decay

in its assorted versions and in the scalar Breit-Wigner form factor. However, in

the BEJ and JPP scalar form factor one has to bear in mind that the KP (P =

π0, η, η′) scalar form factors are obtained solving the coupled channel problem which

breaks the universality of the f̃K
−P

0 (s) form factors as a result of the unitarization

procedure. As a consequence, our application of the f̃K
−η(′)

0 (s) form factors to the

τ− → K−η(′)ντ decays will provide a test of the unitarized results. Taking into

account the explanations in Ref. [56] about the difficult convergence of the three-

channel problem (mainly because of the smallness of the Kη contribution and its

correlation with the Kη′ channel) this verification is by no means trivial, specially

regarding the Kη′ channel, where the scalar contribution is expected to dominate the

decay width.

In this way, we have predicted the τ− → K−ηντ branching ratio and differential

decay width using the knowledge acquired in the τ− → (Kπ)−ντ decays. Explicitly:

• In the dipole model, we have taken the K?(892), K?(1410) and K?
0(1430) mass

and width from the PDG [124] -since this compilation employs Breit-Wigner

parametrizations to determine these parameters- and estimated the relative

weight of them using γ = FV GV
F 2 − 1 (see discussion at the end of section 3.2)

[48]. In this way, we have found γ = −0.021± 0.031.

• In the JPP parametrization, we have used the best fit results of Ref. [105] for the

vector form factor. The scalar form factor has been obtained from the solutions

(6.10) and (6.11) of Ref. [56]. The scalar form factors have also been treated

alike in the BEJ approach.

• In the BEJ representation, one would use the best fit results of Ref. [15] to obtain

our vector form factor. However, we have noticed the strong dependence on the

actual particle masses of the slope form factor parameters, λ′+ and λ′′+. Ref. [15]

used the physical masses in their study of τ− → KSπ
−ντ data. On the other

hand we focus on the τ− → K−Pντ decays. Consequently, the masses should

correspond now to K−π0 instead of to KSπ
−. Noteworthy, both the K− and π0

are lighter than the KS and π− and the corresponding small mass differences,

given by isospin breaking, are big enough to demand for a corresponding change

in the λ
′(′)
+ parameters. Accepting this, the ideal way to proceed would be to

fit the BaBar data on τ− → K−π0ντ decays [17]. Unfortunately, these data are

not publicly available yet. For this reason, we have decided to fit Belle data on

the τ− → KSπ
−ντ decay using the K− and π0 masses throughout. The results
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Chapter 3. τ− → K−η(′)ντ decays

can be found in table 3.1, where they are confronted to the best fit results of

Ref. [14] 12, both of them yield χ2/dof = 1.0 and are given for scut = 4 GeV2,

although the systematic error due to the choice of this energy scale is included

in the error estimation. We will use the results in the central column of table

3.1 to give our predictions of the τ− → K−ηντ decays based on the Kπ results.

Parameter Best fit with fake masses Best fit [14]
λ′+ × 103 22.2± 0.9 24.7± 0.8
λ′′+ × 104 10.3± 0.2 12.0± 0.2

MK? (MeV) 892.1± 0.6 892.0± 0.9
ΓK? (MeV) 46.2± 0.5 46.2± 0.4
MK?′ (GeV) 1.28± 0.07 1.28± 0.07
ΓK?′ (GeV) 0.16+0.10

−0.07 0.20+0.06
−0.09

γ −0.03± 0.02 −0.04± 0.02

Table 3.1: Results for the fit to Belle τ− → KSπ
−ντ data [100] with a three-times

subtracted dispersion relation including two vector resonances in f̃Kπ+ (s), according to
Eq. (3.27) and resumming the loop function in the denominator, as well as the scalar
form factor [56]. The middle column is obtained using the masses of the K− and π0 mesons
and the last column using the KS and π− masses actually corresponding to the data.

Proceeding this way we find the differential decay distributions for the three dif-

ferent approaches considered using Eq. (3.8). This one is, in turn, related to the

experimental data by using

dNevents

dE
=

dΓ

dE

Nevents

ΓτBR(τ− → K−ηντ )
∆Ebin . (3.44)

We thank the Belle Collaboration for providing us with their data [12]. This was not

possible in the case of the BaBar Collaboration [107] because the person in charge

of the analysis left the field and the data file was lost. We have, however, read

the data points from the paper’s figures and included this effect in the errors. The

number of events after background subtraction in each data set are 611 (BaBar) and

1365 (Belle) and the corresponding bin widths are 80 and 25 MeV, respectively. In

Fig. 3.2 we show our predictions based on the Kπ system according to BW, JPP and

BEJ. In this figure we have normalized the BaBar data to Belle’s using Eq. (3.44).

A look at the data shows some tension between both measurements and we notice

12We display the results of this reference instead of those in Ref. [15] because we are not using
information from K`3 decays in this exercise. Differences are, nonetheless, tiny.
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3.4. Predictions for the τ− → K−ηντ decay

a couple of strong oscillations of isolated Belle data points which do not seem to

correspond to any dynamics but rather to an experimental issue or to underestimation

of the systematic errors 13. In this plot there are also shown the corresponding

one-sigma bands obtained neglecting correlations between the resonance parameters

and also with respect to other sources of uncertainty, namely |VusfK−π0

+ (0)| and θP ,

whose errors are also accounted for. The corresponding branching ratios are displayed

in table 3.2, where the χ2/dof is also shown. We note that the error correlations

corresponding to the fit results shown in table 3.1 have been taken into account in

BEJ’s branching ratio of table 3.2.

It can be seen that the BW model gives a too low decay width and that the

function shape is not followed by this prediction, as indicated by the high value of the

χ2/dof that is obtained. On the contrary, the JPP and BEJ predictions yield curves

that compare quite well with the data already. Moreover, the corresponding branching

fractions are in accord with the PDG value within errors. Altogether, this explains the

goodness of the χ2/dof , which is 1.5↔ 1.9. Besides, we notice that the error bands

are wider in the dispersive representation than in the exponential parametrization,

which may be explained by the larger number of parameters entering the former and

the more complicated correlations between them that were neglected in obtaining

Fig. 3.2 and the JPP result in table 3.2.

From these results we conclude that quite likely the BW model is a too rough

approach to the problem unless our reference values for γ and the K?(1410) resonance

parameters were a bad approximation. We will check this in the next section. On the

contrary, the predictions discussed above hint that JPP and BEJ are appropriate for

the analysis of τ− → K−ηντ data that we will pursue next.

Source Branching ratio χ2/dof
Dipole Model (BW)

(
0.78+0.17

−0.10

)
· 10−4 8.3

JPP
(
1.47+0.14

−0.08

)
· 10−4 1.9

BEJ (1.49± 0.05) · 10−4 1.5
Experimental value (1.52± 0.08) · 10−4 -

Table 3.2: Predicted branching ratio of the τ− → K−ηντ decays according to the different
approaches used (see the items above Eq. (4.12) for details). The corresponding χ2/dof
values are also given and the PDG branching fraction is given for reference.

13We have also realized that the first two Belle data points, with non-vanishing entries, are below
threshold, a fact which may indicate some problem in the calibration of the hadronic system energy
or point to underestimation of the background.
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Figure 3.2: BaBar (blue) [107] and Belle (red) [12] data for the τ− → K−ηντ decays are
confronted to the predictions obtained in the BW (dotted), JPP (solid) and BEJ (dashed)
approaches (see the main text for details) which are shown together with the corresponding
one-sigma error bands in yellow, light blue and light green, respectively.

3.5 Fits to the τ− → K−ηντ BaBar and Belle data

We have considered different fits to the τ− → K−ηντ data. In full generality we have

assessed that the data is not sensitive either to the low-energy region or to the K?(892)

peak region. This is not surprising, since the threshold for K−η production opens

around 1041 MeV which is some 100 MeV larger than MK? + ΓK? , a characteristic

energy scale for the K?(892) region of dominance. This implies first that the fits are

unstable under floating MK? and ΓK? (which affects all three approaches) and second

that the slopes of the vector form factor, which encode the physics immediately above

threshold, can not be fitted with τ− → K−ηντ data (this only concerns BEJ). We

have considered consequently fits varying only the K?(1410) mass and width and γ

and sticking to the reference values discussed in the previous section for the remaining

parameters in every approach.

Our best fit results for the branching ratios are written in table 3.3, where the

corresponding χ2/dof can also be read. These are obtained with the best fit parameter

values shown in table 3.4, which can be compared to the reference values, which were
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3.5. Fits to the τ− → K−ηντ BaBar and Belle data

used to obtain the predictions in the previous section, that are recalled in table

3.5. The corresponding decay distributions with one-sigma error bands attached are

plotted in Fig. 3.3.

These results show that the BW model does not really provide a good approxima-

tion to the underlying physics for any value of its parameters and should be discarded.

Oppositely, JPP and BEJ are able to yield quite good fits to the data with values

of the χ2/dof around one. This suggests that the simplified treatment of final state

interactions in BW, which misses the real part of the two-meson rescatterings and

violates analyticity by construction, is responsible for the failure.

A closer look to the fit results using JPP and BEJ in tables 3.3 and 3.4 shows

that:

• Fitting γ alone is able to improve the quality of both approaches by 15↔ 20%.

The fitted values are consistent with the reference ones (see table 3.5): in the

case of BEJ at one sigma, being the differences in JPP slightly larger than that

only. This is satisfactory because both the τ− → (Kπ)−ντ and the τ− → K−ηντ

decays are sensitive to the interplay between the first two vector resonances and

contradictory results would have casted some doubts on autoconsistency.

• When the K?(1410) parameters are also fitted the results improve by ∼ 13% in

JPP and by ∼ 33% in BEJ. This represents a reduction of the χ2/dof by ∼ 26%

in JPP and by ∼ 50% in BEJ. It should be noted that the three-parameter fits

do not yield to physical results in BW. Specifically, K?(1410) mass and width

tend to the K?(892) values and |γ| happens to be one order of magnitude larger

than the determinations in the literature. Therefore we discard this result. We

also notice that although the branching ratios of both JPP and BEJ (which

have been obtained taking into account the parameter fit correlations) are in

agreement with the PDG value, the JPP branching ratios tend to be closer to

its lower limit while BEJ is closer to the upper one. It can be observed that

the deviations of the three-parameter best fit values with respect to the default

ones lie within errors in BEJ, as it so happens with ΓK?′ in JPP. However, there

are small tensions between the reference and best fit values of MK?′ and γ in

JPP.

These results are plotted in Fig. 3.3. Although the BW curve has improved with

respect to Fig. 3.2 and seems to agree well with the data in the higher-energy half

of the spectrum, it fails completely at lower energies. On the contrary, JPP and

BEJ provide good quality fits to data which are satisfactory along the whole phase
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space. We note that JPP goes slightly below BEJ and its error band is again narrower

possibly due to having less parameters. BEJ errors include the systematics associated

to changes in scut which is slightly enhanced with respect to the Kπ case.

Despite the vector form factor giving the dominant contribution to the decay

width, the scalar form factor is not negligible and gives ∼ (3↔ 4)% of the branching

fraction in the JPP and BEJ cases. In the BW model this contribution is ∼ 7%.

Source Branching ratio χ2/dof
Dipole Model (BW) (Fit γ)

(
0.96+0.21

−0.15

)
· 10−4 5.0

Dipole Model (BW) (Fit γ, MK?′ , ΓK?′) Unphysical result -
JPP (Fit γ)

(
1.50+0.19

−0.11

)
· 10−4 1.6

JPP (Fit γ, MK?′ , ΓK?′) (1.42± 0.04) · 10−4 1.4
BEJ (Fit γ)

(
1.59+0.22

−0.16

)
· 10−4 1.2

BEJ (Fit γ, MK?′ , ΓK?′) (1.55± 0.08) · 10−4 0.8
Experimental value (1.52± 0.08) · 10−4 -

Table 3.3: The branching ratios and χ2/dof obtained in BW, JPP and BEJ fitting γ
only and also the K?(1410) parameters are displayed. Other parameters were fixed to the
reference values used in section 3.4. The PDG branching fraction is also given for reference.

The JPP model values appearing in tables 3.4 and 3.5 can be translated to pole val-

ues along the lines discussed in Ref. [145]. This yields MK?′ = 1332+16
−18 , ΓK?′ = 220+26

−24

for the best fit values and MK?′ = 1286+26
−28 , ΓK?′ = 197+41

−45 for the reference val-

ues, where all quantities are given in MeV. Remarkable agreement is found be-

tween our best fit values in the JPP and BEJ cases, since the latter yields MK?′ =

1327+30
−38 , ΓK?′ = 213+72

−118. From the detailed study of the ππ, Kπ (in the quoted

literature) and Kη systems (in this paper) within JPP and BEJ, one can conclude

generally that the dispersive form factors allow a better description of the data while

``````````````̀Fitted value
Approach

Dipole Model (BW) JPP BEJ

γ −0.174± 0.007 −0.063± 0.007 −0.041± 0.021
γ Unphysical −0.078+0.012

−0.014 −0.051+0.012
−0.036

MK?′ (MeV) best fit 1356± 11 1327+30
−38

ΓK?′ (MeV) parameters 232+30
−28 213+72

−118

Table 3.4: The best fit parameter values corresponding to the different alternatives con-
sidered in table 3.3 are given. These can be compared to the reference values, which are
given in table 3.5. BEJ results for the mass and width of the K?(1410) correspond to pole
values, while JPP figures are given for the model parameter as in the original literature.
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hhhhhhhhhhhhhhhhhhReference value
Approach

Dipole Model (BW) JPP BEJ

γ −0.021± 0.031 −0.043± 0.010 −0.029± 0.017
MK?′ (MeV) 1414± 15 1307± 17 1283± 65
ΓK?′ (MeV) 232± 21 206± 49 163± 68

Table 3.5: Reference values (used in section 3.4) corresponding to the best fit param-
eters appearing in table 3.4. Again BEJ results are pole values and JPP ones are model
parameters. The latter are converted to resonance pole values in section 4.3, where the
determination of the K?(1410) pole parameters is given.

the exponential parametrizations lead to the determination of the resonance pole val-

ues with smaller errors. Both things seem to be due to the inclusion of the subtraction

constants as extra parameters in the fits within the dispersive representations.
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Figure 3.3: BaBar (blue) [107] and Belle (red) [12] data for the τ− → K−ηντ decays
are confronted to the best fit results obtained in the BW (dotted), JPP (solid) and BEJ
(dashed) approaches (see the main text for details) which are shown together with the
corresponding one-sigma error bands in light green, pink and orange, respectively. The
BW curve corresponds to the one-parameter fit while the JPP and BEJ ones correspond to
three-parameter fits.
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3.6 Predictions for the τ− → K−η′ντ decay

We can finally profit from our satisfactory description of the τ− → K−ηντ decays and

predict the τ− → K−η′ντ decay observables, where there is only the upper limit fixed

at ninety percent confidence level by the BaBar Collaboration [110], BR < 4.2 · 10−6.

We have done this for our best fit results in the BW (one-parameter fit) JPP and

BEJ (three-parameter fits) cases. The corresponding results are plotted in Fig. 3.4

and the branching ratios can be read from table 3.6. In the figure we can see that the

decay width is indeed dominated by the scalar contribution 14 15. In fact, the vector

form factor contributes in the range (9↔ 15)% to the corresponding branching ratio.

Although we keep the BW prediction for reference, we do not draw the associated

(large) error band for the sake of clarity in the figure taking into account its wrong

description of the Kη system shown in the previous section. As the scalar form factor

dominates the decay width and we are using the same one in JPP and BEJ, the

differences between them are tiny (and the errors, of order one third, are the same

in table 3.6). As expected from the results in the τ− → K−ηντ decays, BEJ gives

the upper part of the error band while JPP provides the lower one. We are looking

forward to the discovery of this decay mode to verify our predictions. A priori one

may forecast some departure from it because of the effect of the poorly known elastic

and Kη channels in meson-meson scattering, which affects the solution of the coupled

system of integral equations and specially the value of the K−η′ scalar form factor,

that is anyway suppressed to some extent.

Source Branching ratio
Dipole Model (BW) (Fit) (1.45+3.80

−0.87) · 10−6

JPP (Fit) (1.00+0.37
−0.29) · 10−6

BEJ (Fit) (1.03+0.37
−0.29) · 10−6

Experimental bound < 4.2 · 10−6 at 90% C.L.

Table 3.6: Predicted branching ratios for the τ− → K−η′ντ decays. The BaBar upper
limit is also shown [110].

In Fig. 3.5 we also plot the correlation between the τ− → K−ηντ and τ− → K−η′ντ

branching ratios according to the best fit JPP result at one sigma. The correlations

14In principle, both the scalar and vector Kη′ form factors are suppressed since they are propor-
tional to sin θP . However, the unitarization procedure of the scalar form factor enhances it sizeably
[56] due to the effect of the coupled inelastic channels.

15The suppression of the vector contribution makes that the predicted values using information
from the Kπ system and the one-parameter fits with JPP and BEJ are very similar to the results
in table 3.6. For this reason we do not show them.
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Figure 3.4: The predicted τ− → K−η′ντ decay width according to BW (green, its big
uncertainty is not shown for clarity of the figure), JPP (blue with lower band in red) and BEJ
(blue with upper part in pink) is shown. In these last two the scalar form factor corresponds
to Ref. [131], which is represented by the author’s initials, JOP, in the figure’s legend. The
corresponding vector form factor contributions, which are subleading are plotted in orange
(solid), blue (dashed) and purple (dotted).

between the parameters are neglected. Since the vector (scalar) form factor dominates

the former (latter) decays and their parameters are independent the plot does not

show any sizeable correlation between both measurements, as expected. As a result,

if new data on the τ− → K−η′ντ decays demand a more careful determination of the

fK
−η′

0 (s) unitarized form factor this will leave almost unaffected the results obtained

for the τ− → K−ηντ channel.

3.7 Conclusions

Hadronic tau decays are an ideal scenario to learn about the non-perturbative charac-

ter of the strong interactions in rather clean conditions. In this work, we have studied

the τ− → K−η(′)ντ decays motivated by the recent measurements performed by the

BaBar [107, 110] and Belle Collaborations [12]. These decays allow the application

of the knowledge acquired in the study of τ− → (Kπ)−ντ decays. In particular, the
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Figure 3.5: The correlation between the τ− → K−ηντ and τ− → K−η′ντ branching
ratios is plotted according to the best fit JPP result at one sigma. Correlations between the
parameters are neglected. According to expectations, no sizable correlation between both
decay modes is observed.

Kη decay is sensitive to the parameters of the K?(1410) resonance and to its inter-

play with the K?(892) meson, while the Kη′ decay is an appropriate place to test the

unitarization of the strangeness-changing scalar form factors in three coupled-channel

case.

We have defined with detail the (tilded) scalar and vector form factors and we

have gone through the steps of their calculation within Chiral Perturbation Theory

including the lightest resonances as explicit degrees of freedom and showed that the

results are written in a more compact way using the tilded form factors. Then we

have discussed different options according to the treatment of final-state interactions.

Specifically, there is the dipole Breit-Wigner (BW) model, which neglects the real

part of the two-meson loop function violating analyticity at next-to-leading order;

there is the exponential parametrization (JPP) where this real part of the loop is

resummed through an Omnès exponentiation, which violates analyticity at the next

order; and there is the dispersive representation (BEJ), which resums the whole loop
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3.7. Conclusions

function in the denominators, where analyticity holds exactly.

In our case, an additional difficulty is that the elastic approach is not valid in any

region of the phasespace, since the Kπ channel is open well below the Kη(′) channels.

In JPP this is not an issue, since one simply adds the corresponding contribution

of these channels to the width and real part of the loop function. However, in BEJ

it prevents an approach which does not include inelasticities and the effect of cou-

pled channels. Being conscious of this, we have nevertheless attempted a dispersive

representation of the Kη(′) vector form factors were the input phaseshift is obtained

using the elastic approximation and, to our surprise, it has done an excellent job in

its confrontation to the Kη data. In the light of more accurate measurements it may

become necessary to improve this treatment in the future. Very good agreement has

also been found using JPP but BW has failed in this comparison. In the JPP and

BEJ fits to the Kη channel the scalar form factor was obtained solving dispersion

relations for the three-body problem.

We have checked that the Kη(′) channels are not sensitive either to the K?(892)

parameters or to the slopes of the form factor, λ
′(′)
+ (BEJ). We have borrowed this

information from the Kπ system. This task was straightforward in BW and JPP

although in BEJ we noticed that the λ
′(′)
+ parameters were sensitive to isospin breaking

effects that we had to account for. Once this was done we could fit the K?(1410)

resonance pole parameters and its relative weight with respect to the K?(892) meson,

γ. Our results for these, with masses and widths in MeV, are

MK?′ = 1327+30
−38, ΓK?′ = 213+72

−118, γ = −0.051+0.012
−0.036 , (3.45)

in the dispersive representation (BEJ) and

MK?′ = 1332+16
−18, ΓK?′ = 220+26

−24, γ = −0.078+0.012
−0.014 , (3.46)

for the exponential parametrization (JPP). Our determination of these parameters

has shown to be competitive with its extraction from the τ− → (Kπ)−ντ decays.

To illustrate this point, we average the JPP and BEJ determinations from the Kπ

[15, 105] and Kη systems, respectively, to find

MK?′ = 1277+35
−41, ΓK?′ = 218+95

−66, γ = −0.049+0.019
−0.016 , (3.47)

from Kπ and

MK?′ = 1330+27
−41, ΓK?′ = 217+68

−122, γ = −0.065+0.025
−0.050 , (3.48)
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Chapter 3. τ− → K−η(′)ντ decays

from Kη. We have thus open an alternative way of determining these parameters.

New, more precise data on the τ− → (Kπ)−ντ and τ− → K−ηντ decays will make

possible a more accurate determination of these parameters.

Finally we have benefited from this study of the τ− → K−ηντ decays and applied

it to the τ− → K−η′ντ decays, were our predictions respect the upper limit found by

BaBar and hint to the possible discovery of this decay mode in the near future.

In this way we consider that we are in position of providing TAUOLA with

theory-based currents that can describe well the τ− → K−η(′)ντ decays, based on

the exponential parametrization developed by JPP and the dispersive representation

constructed by BEJ.

To conclude, differential distributions of hadronic tau decays provide important

information for testing diverse form factors and extracting the corresponding param-

eters increasing our knowledge of hadronization in the low-energy non-perturbative

regime of QCD. It will be interesting to see if our predictions for the τ− → K−η′ντ

decays are corroborated and if more precise data on the τ− → K−ηντ decays demand

a more refined treatment. Finally, we emphasize the need of giving pole resonance

parameters irrespective of the approach employed, either in a theorists’ article or in

a publication by an experimental collaboration.
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Chapter 4

Combined analysis of the decays
τ−→ KSπ

−ντ and τ−→ K−ηντ

In this chapter, we re-analyze the experimental measurement of the invariant mass

distribution of the decay τ− → KSπ
−ντ together with the most recent available spec-

trum of the K−η decay mode both released by the Belle Collaboration [12, 100]. The

former has been studied in detail in Refs. [14, 15, 105], improving the determination of

the resonance parameters of both the K∗(892) and its first radial excitation K∗(1410),

while the later, with a threshold above the K∗(892) dominance, has been tackled in

chapter 3 obtaining the K∗(1410) properties which appeared to be in accordance with

those of the KSπ
− decay channel. The main purpose of this chapter is to deepen our

knowledge of the K?(1410) resonance parameters by performing a combined analy-

sis of both decays [16]. This study is presently limited by three facts: unfolding of

detector effects has not been performed for the latter data, the associated errors of

these are still relatively large and no measurement of the K−π0 spectrum has been

published by the B-factories. We intend to demonstrate that an updated analysis of

the KSπ
− and/or K−η Belle spectrum including the whole Belle-I data sample could

improve notably the knowledge of the K∗(1410) pole position. Therefore, we hope

that our work strengths the case for a (re)analysis of the (Kπ)− and K−η spectra

at the first generation B-factories including a larger data sample and also for de-

voted analyses in the forthcoming Belle-II experiment. Turning to the low-energy

parameters, we emphasise the importance of (independent) measurements of the two

τ− → (Kπ)−ντ charge channels with the target of disentangling isospin violations in

forthcoming studies.

We have organised this chapter as follows: in section 4.1, the differential decay

width of the τ− → KSπ
−ντ process is written as a function of the contributing Kπ

vector and scalar form factors. The vector form factors will be described according
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to a dispersive representation along the lines of Refs. [14, 15] (cf. Eq. (3.42)), while

the scalar form factors are taken from Refs. [56, 68], thereby resumming FSI which is

crucial to describe the considered decay spectra. In the previous chapter, we showed

that a simple Breit-Wigner parametrisation of the dominating vector form factor

lead to a rather poor description of the data and we will not consider it anymore.

In section 4.2, we describe our fits in detail and present the corresponding results

for all parameters. It will be seen that we are able to improve the determination

of the K∗(1410) pole position. Furthermore, we discuss isospin violations on the

slope parameters of the vector form factors and the prospects for improving them

by analysing the full Belle-I data set or future measurements at Belle-II. Finally,

we summarise our conclusions in section 4.3. A brief discussion of the so-called

“exponential” parametrisation of the Kπ vector form factor which was put forward

in Refs. [103, 105] (cf. Eq. (3.37)) is relegated to Appendix C.

4.1 Form factor representations

The differential decay width of the transition τ− → KSπ
−ντ as a function of the

invariant mass of the two-meson system can be written as

dΓ(τ− → KSπ
−ντ )

d
√
s

=
G2
FM

3
τ

96π3s
SEW

∣∣∣VusfKSπ−+ (0)
∣∣∣2(1− s

M2
τ

)2

qKSπ−(s) (4.1)

×
{(

1 +
2s

M2
τ

)
q2
KSπ−

(s)
∣∣∣f̃KSπ−+ (s)

∣∣∣2 +
3∆2

KSπ−

4s

∣∣∣f̃KSπ−0 (s)
∣∣∣2} ,

where

qPQ(s) =

√
s2 − 2sΣPQ + ∆2

PQ

2
√
s

, ΣPQ = m2
P +m2

Q , ∆PQ = m2
P −m2

Q , (4.2)

and

f̃PQ+,0 (s) ≡ fPQ+,0 (s)

fPQ+,0 (0)
(4.3)

are form factors normalised to unity at the origin. In this way, besides the global

normalisation, all remaining uncertainties on the hadronization of the considered

currents are encoded in the reduced form factors f̃PQ+,0 (s). SEW = 1.0201 [122] resums

the short-distance electroweak corrections.1 Eq. (4.1) corresponds to the definitions

1We have not included additional non-factorisable electromagnetic corrections. They have been
estimated in Ref. [86] where it was found that at the current level of precision they can be safely
neglected.
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4.1. Form factor representations

of the vector, fPQ+ (s), and scalar, fPQ0 (s), form factors that separate the P - and

S-wave contributions according to the conventions of Ref. [121]. The corresponding

formula for the τ− → K−ηντ decay was been given in Eq. (3.8). Regarding the

global normalisation, in the following we will employ |VusfKSπ
−

+ (0)| = 0.2163(5) [125],

from a global fit to K`3 data, and |VusfK
−η

+ (0)| = |VusfKSπ
−

+ (0)| cos θP , with θP =

−(13.3± 1.0)◦ [123].

The required form factors cannot be computed analytically from first principles.

Still, the symmetries of the underlying QCD Lagrangian are useful to determine

their behaviour in specific limits, the chiral or low-energy limit and the high-energy

behaviour, so that the model dependence is reduced to the interpolation between

these known regimes. For our central fits, to be presented in the next section, we

follow the dispersive representation of the vector form factors outlined in Ref. [14]

(cf. Eq. (3.42)), and briefly summarised below for the convenience of the reader. For

the case of the KSπ
− system, including two resonances, the K∗ = K∗(892) and the

K∗′ = K∗(1410), the reduced vector form factor is taken to be of the form [14]

f̃Kπ+ (s) =
m2
K∗ − κK∗ H̃Kπ(0) + γs

D(mK∗ , γK∗)
− γs

D(mK∗′ , γK∗′)
, (4.4)

where

D(mn, γn) = m2
n − s− κnH̃Kπ(s) , (4.5)

and

κn =
192π

σKπ(m2
n)3

γn
mn

. (4.6)

The fit function for the vector form factor is expressed in terms of the unphysical

“mass” and “width” parameters mn and γn. They are denoted by small letters, to

distinguish them from the physical mass and width parameters Mn and Γn, which will

later be determined from the pole positions in the complex plane and are denoted by

capital letters. The scalar one-loop integral function H̃Kπ(s) is defined below Eq. (3)

of Ref. [103], however removing the factor 1/f 2
π which cancels if κn is expressed in

terms of the unphysical width γn. Finally, in Eq. (4.6), the phase space function

σKπ(s) is given by σKπ(s) = 2qKπ(s)/
√
s. Since the K∗ resonances that are produced

through the τ decay are charged, and can decay or rescatter into both K0π− as well

as K−π0 channels, in the resonance propagators described by Eqs. (4.4) to (4.6) we

have chosen to employ the corresponding isospin average, that is

H̃Kπ(s) =
2

3
H̃K0π−(s) +

1

3
H̃K−π0(s) , (4.7)
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and analogously for σKπ(s), such that the resonance width contains both contribu-

tions. Little is known about a proper description of the width of the second vector

resonance K∗′. The complicated K∗π ∼ Kππ cuts may yield relevant effects which

however necessitates a coupled-channel analysis like in refs. [104, 106]. This is beyond

the scope of the present paper, in which for simplicity also for the second resonance

only the two-meson cut is included. Similar remarks apply to a proper inclusion of

the Kη and Kη′ channels into Eq. (4.7) which would also require a coupled-channel

analysis as was done for the corresponding scalar form factors in refs. [56, 68].

Next, we further follow Ref. [14] in writing a three-times subtracted dispersive

representation for the vector form factor (cf. Eq. (2.44))

f̃Kπ+ (s) = exp

[
α1

s

M2
π−

+
1

2
α2

s2

M4
π−

+
s3

π

scut∫
sKπ

ds′
δKπ1 (s′)

(s′)3(s′ − s− i0)

]
, (4.8)

where sKπ = (MK +Mπ)2 is the Kπ threshold2 and the two subtraction constants α1

and α2 are related to the slope parameters appearing in the low-energy expansion of

the form factor:

f̃Kπ+ (s) = 1 + λ
′

+

s

M2
π−

+
1

2
λ
′′

+

s2

M4
π−

+
1

6
λ
′′′

+

s3

M6
π−

+ . . . . (4.9)

Explicitly, the relations for the linear and quadratic slope parameters λ
′
+ and λ

′′
+ take

the form:

λ
′

+ = α1 , λ
′′

+ = α2 + α2
1 . (4.10)

The incentive for employing a dispersive representation for the form factor is that in

this way the influence of the less-well known higher energy region is suppressed. The

associated error can be estimated by varying the cut-off scut in the dispersive integral.

In order to obtain the required input phase δKπ1 (s), like in [14] we use the resonance

propagator representation Eq. (4.4) of the vector form factor. The phase can then be

calculated from the relation

tan δKπ1 (s) =
Imf̃Kπ+ (s)

Ref̃Kπ+ (s)
, (4.11)

which completes our representation of the vector form factor f̃Kπ+ (s).

The scalar form factors that are required for a complete description of the decay

spectra according to Eq. (4.1) will be taken from the coupled-channel dispersive rep-

resentation of refs. [56, 68]. In particular, for the scalar Kπ form factor, we employ

2Isospin breaking on the low-energy parameters, like the threshold of the dispersive integral or
the slope parameters of the vector form factor, is discussed later on.
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the update presented in Ref. [131]. For the scalar Kη form factor, the result of the

three-channel analysis described in section 4.3 of [56] is used, choosing specifically the

solution corresponding to fit (6.10) of Ref. [68]. As a matter of principle, this is not

fully consistent, since the employed Kπ form factor was extracted from a two-channel

analysis, only including the dominant Kπ and Kη′ channels. But as our numerical

analysis shows, anyway the influence of the scalar Kη form factor is insignificant so

that this inconsistency can be tolerated.

4.2 Joint fits to τ− → KSπ
−ντ and τ− → K−ηντ Belle

data

The differential decay rate of Eq. (4.1) is related to the distribution of the measured

number of events by means of

dNevents

d
√
s

=
dΓ(τ− → (PQ)−ντ )

d
√
s

Nevents

Γτ B̄(τ− → (PQ)−ντ )
∆
√
sbin , (4.12)

where Nevents is the total number of events measured for the considered process, Γτ

is the inverse τ lifetime and ∆
√
sbin is the bin width. B̄(τ− → (PQ)−ντ ) ≡ B̄PQ is

a normalisation constant that, for a perfect description of the spectrum, would equal

the corresponding branching fraction.

For the τ− → KSπ
−ντ decays, an unfolded distribution measured by Belle is

available [100]. The corresponding number of events is 53113.21 (54157.59 before

unfolding) and the bin width 11.5 MeV. As discussed in the earlier analyses, the data

points corresponding to bins 5, 6 and 7 are difficult to bring into accord with the

theoretical descriptions and have thus been excluded from the minimisation.3 The

first point has not been included either, since the centre of the bin lies below the

KSπ
− production threshold. Following a suggestion from the experimentalists, as

in the previous analyses we have furthermore excluded data corresponding to bin

numbers larger than 90.

On the other hand, the published τ− → K−ηντ Belle data [12] are only available

still folded with detector effects.4 Lacking for a better alternative, we have assumed

that the K−η unfolding function is reasonably estimated by the KSπ
− one and we

have extracted in this way pseudo-unfolded data that we employed in our analysis.

3Still, including them in the fits would just increase the χ2 with only irrelevant changes in the fit
parameters.

4Contrary to our previous analysis performed in chapter 3, here we have not included the BaBar
data [107]. They only consist in ten data points, with rather large errors, which furthermore had to
be digitised from the published plots.
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The corresponding number of events turns out 1271.51 for a bin width of 25 MeV. In

this case, we excluded the first three data points, which lie below the K−η production

threshold, and discarded data above the τ mass.

The χ2 function minimised in our fits was chosen to be

χ2 =
∑

i, PQ=KSπ−,K−η

′

(
N th
i −N exp

i

σN expi

)2

+
∑

PQ=KSπ−,K−η

(
B̄th
PQ −Bexp

PQ

σexpBPQ

)2

, (4.13)

where N exp
i and σN expi

are, respectively, the experimental number of events and the

corresponding uncertainties in the i-th bin.5 The prime in the summation indicates

that the points specified above have been excluded. Therefore, the number of fitted

data points is 86 (28) for the KSπ
− (K−η) spectrum, together with the respective

branching fractions: hence 116 data points in total. While it is possible to obtain

stable fits without using the KSπ
− branching fraction as a data point, this is not the

case for the K−η channel. This is due to the fact that there are strong correlations

between the branching ratio and the slope parameters of the vector form factor.

While in the KSπ
− case sufficiently many data points with small enough errors are

available to determine all fit quantities from the spectrum, for the K−η decay mode

this was not possible. As a consistency check, we will be comparing the fitted values

of the respective branching ratios to the corresponding results obtained by directly

integrating the spectrum in all our fits.

The fitted parameters within the dispersive representation of the form factors of

Eq. (4.8) then include:

• the respective branching fractions B̄Kπ and B̄Kη. For consistency, as our inputs

in Eq. (4.13) we employ the results obtained by Belle in correspondence with

the employed decay distribution data: (0.404± 0.013)% [100] as well as (1.58±
0.10) × 10−4 [12], respectively. This may be compared to the averages by the

Particle Data Group, (0.420±0.020)% and (1.52±0.08)×10−4 [124] and Heavy

Flavour Averaging Group values [146], (0.410±0.009)% and (1.53±0.08)×10−4.

The recent update by Belle [102] including a 669 fb−1 data sample was found

to be (0.416± 0.008)% for the former decay mode.

• The slope parameters: λ
′(′)
Kπ and λ

′(′)
Kη. As was noted in Ref. [13], while the

former ones correspond to the KSπ
− channel, the latter ones are related to the

K−π0 system. Therefore, small differences in these parameters due to isospin

5While it is expected that bin-to-bin correlations due to unfolding should arise, a full covariance
matrix for the spectral data is not available, whence we have to limit ourselves to the diagonal errors.
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violations are expected, and in the most general fit we allow for independent

parameters in the two channels. As consistency checks of our procedure, we

have also considered some fits assuming λ′Kη = λ′Kπ. The findings of Ref. [14],

λ′Kπ = (24.66± 0.77)× 10−3 and λ′′Kπ = (11.99± 0.20)× 10−4, should serve as

a reference point for our present study, where however B̄Kπ was fixed to the

average (0.418± 0.011)% at that time.

• The pole parameters of the K∗(892) and K∗(1410) resonances. The masses

and widths of these resonances are extracted from the complex pole position sR

according to
√
sR = MR− i

2
ΓR [145]. For the lowest-lying resonance our results

for the pole mass and width should be compatible with (892.0± 0.2) MeV and

(46.2 ± 0.4) MeV [15], respectively, where the quoted uncertainties are only

statistical. We expect that the extraction of the K∗(1410) pole position should

benefit from our present combined fit for which (1273 ± 75) MeV and (185 ±
74) MeV were obtained in Ref. [14] when the uncertainties are symmetrised.

• The relative weight γ of the two resonances. In our isospin-symmetric way

(4.4) of parametrising the resonance propagators in the form factor description,

γ should be the same for the KSπ
− and K−η channels, which we shall assume for

our central fit. Still, we have also tried to fit them independently, as differences

might indicate inelastic or coupled-channel effects. As is seen below, our various

fit results do not show a sizeable preference for this possibility which supports

our choice γKη = γKπ. Our findings may be compared to the value γ = −0.039±
0.020 of [14] indicating the influence of including the τ− → K−ηντ mode into

our analysis.

In the fits we have furthermore employed the following numerical inputs: Mτ =

1776.82 MeV, Γτ = 2.265×10−12 GeV and GF = 1.16637(1)×10−5 GeV−2 [124]. Pseu-

doscalar meson masses were also taken according to their PDG values [124]. Finally,

the next-to-leading order χPT low-energy constants and the chiral logarithms de-

pend on an arbitrary renormalisation scale µ (these dependencies cancel one another),

which we have fixed to the physical mass scale of the problem, MK∗ = 892 MeV.

In Table 4.1, we display our results using slightly different settings, though in

all of them Eq. (4.11) is employed to obtain the input phaseshift for the dispersion

relation (4.8) and scut is fixed to 4 GeV2 (the uncertainty associated to its variation is

discussed later on): our reference fit (second column) corresponds to fixing γKπ = γKη,

fit A (third column) assumes λ′Kπ = λ′Kη, fit B (fourth column) is the result of letting
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Fitted value Reference Fit Fit A Fit B Fit C
B̄Kπ(%) 0.404± 0.012 0.400± 0.012 0.404± 0.012 0.397± 0.012

(Bth
Kπ)(%) (0.402) (0.394) (0.400) (0.394)
MK∗ 892.03± 0.19 892.04± 0.19 892.03± 0.19 892.07± 0.19
ΓK∗ 46.18± 0.42 46.11± 0.42 46.15± 0.42 46.13± 0.42
MK∗′ 1305+15

−18 1308+16
−19 1305+15

−18 1310+14
−17

ΓK∗′ 168+52
−44 212+66

−54 174+58
−47 184+56

−46

γKπ × 102 = γKη −3.6+1.1
−1.5 −3.3+1.0

−1.3 = γKη
λ′Kπ × 103 23.9± 0.7 23.6± 0.7 23.8± 0.7 23.6± 0.7
λ′′Kπ × 104 11.8± 0.2 11.7± 0.2 11.7± 0.2 11.6± 0.2
B̄Kη × 104 1.58± 0.10 1.62± 0.10 1.57± 0.10 1.66± 0.09

(Bth
Kη)× 104 (1.45) (1.51) (1.44) (1.58)
γKη × 102 −3.4+1.0

−1.3 −5.4+1.8
−2.6 −3.9+1.4

−2.1 −3.7+1.0
−1.4

λ′Kη × 103 20.9± 1.5 = λ′Kπ 21.2± 1.7 = λ′Kπ
λ′′Kη × 104 11.1± 0.4 11.7± 0.2 11.1± 0.4 11.8± 0.2
χ2/n.d.f. 108.1/105 ∼ 1.03 109.9/105 ∼ 1.05 107.8/104 ∼ 1.04 111.9/106 ∼ 1.06

Table 4.1: Fit results for different choices regarding linear slopes and resonance mixing
parameters at scut = 4 GeV2. See the main text for further details. Dimensionful parameters
are given in MeV. As a consistency check, for each of the fits we provide (in brackets) the
value of the respective branching fractions obtained by integrating Eq. (4.1).

all parameters float independently and finally, fit C (fifth column) enforces both

restrictions γKπ = γKη and λ′Kπ = λ′Kη. It is seen that our approach is rather stable

against these variations, as the χ2/n.d.f. remains basically the same for the different

scenarios. Also the values of the fitted parameters are always compatible across all

fits. The largest modification is observed in fit A, where we fix λ′Kπ = λ′Kη, but allow

for independent resonance mixing parameters γ. This is partly expected since in the

reference fit the former equality on the slope parameters is only fulfilled at the 2σ level.

Letting all parameters float in fit B yields results which are nicely compatible with

the reference fit, though for some parameters resulting in slightly larger uncertainties.

Finally, enforcing both, the linear slopes as well as the mixing parameters to be equal

also results in a compatible fit where now the largest shift by about 2σ is found in

λ
′′
Kη.

The theoretical uncertainty associated to the choice of scut is probed through the

fits presented in Table 4.2 where, for the setting of our reference fit discussed previ-

ously, the values 3.24 GeV2 (second column), 4 GeV2 (third column), 9 GeV2 (fourth

column) and the scut → ∞ limit (last column) are used (scut = 4 GeV2 corresponds

to our reference fit in the second column of Table 4.1 and is repeated here for ease

of comparison). The dependence of the fitted parameters on the integral cut-off is
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similar to what was found in previous works (see, for instance refs. [14, 15]) and allows

to estimate the corresponding systematic error. In order to corroborate our fits, we

performed additional tests. We have also run fits considering two and four subtrac-

tion constants in order to test the stability of our results with respect to this choice.

As in the previous analyses [14, 15] of the τ− → KSπ
−ντ spectrum, the changes in

the results are well within our uncertainties. It is furthermore confirmed that re-

garding final uncertainties three subtractions appears to be an optimal choice. This

may, however, change if the representation of the higher-energy region is improved,

for example through a coupled-channel analysis, such that this region requires less

suppression. As a second test, we have employed a variant of the form factor Ansatz

(4.4) in which the real part of the loop function H̃Kπ(s) is not resummed into the

propagator denominator, but into an exponential, as was for example suggested in

refs. [103, 105] for the description of τ → Kπντ decays. This type of Ansatz is fur-

ther discussed in Appendix C where also direct fits of the corresponding form factors

are described. Our test here, however, consists in extracting the corresponding phase

from this type of form factor according to Eq. (4.11) and plugging the respective phase

into the dispersion relation (4.8). It is found that the corresponding fits are almost

identical to the ones described before, providing additional faith on the robustness of

the extracted parameters.

For presenting our final results, we have added to the statistical fit error a sys-

tematic uncertainty due to the variation of scut. To this end, we have taken the

largest variation of central values while varying scut (which is always found at scut =

3.24 GeV2) and have added this variation in quadrature to the statistical uncertainty.

We then obtain

B̄Kπ = (0.404± 0.012) % , MK∗ = 892.03± 0.19 , ΓK∗ = 46.18± 0.44 ,

MK∗′ = 1305+16
−18 , ΓK∗′ = 168+65

−59 , γKπ = γKη =
(
−3.4+1.2

−1.4

)
· 10−2 ,

λ′Kπ = (23.9± 0.9) · 10−3 , λ′′Kπ = (11.8± 0.2) · 10−4 , B̄Kη = (1.58± 0.10) · 10−4 ,

λ′Kη = (20.9± 2.7) · 10−3 , λ′′Kη = (11.1± 0.5) · 10−4 , (4.14)

were like before all dimensionful quantities are given in MeV. Our final fit results

are compared to the measured Belle τ− → KSπ
−ντ and τ− → K−ηντ distributions

[12, 100] in Figure 4.1. Satisfactory agreement with the experimental data, in accord

with the observed χ2/n.d.f. of order one, is seen for all data points. The Kπ spectrum

is dominated by the contribution of the K∗(892) resonance, whose peak is neatly
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``````````````̀Fitted value
scut(GeV2)

3.24 4 9 ∞
B̄Kπ(%) 0.402± 0.013 0.404± 0.012 0.405± 0.012 0.405± 0.012

(Bth
Kπ)(%) (0.399) (0.402) (0.403) (0.403)
MK∗ 892.01± 0.19 892.03± 0.19 892.05± 0.19 892.05± 0.19
ΓK∗ 46.04± 0.43 46.18± 0.42 46.27± 0.42 46.27± 0.41
MK∗′ 1301+17

−22 1305+15
−18 1306+14

−17 1306+14
−17

ΓK∗′ 207+73
−58 168+52

−44 155+48
−41 155+47

−40

γKπ = γKη = γKη = γKη = γKη
λ′Kπ × 103 23.3± 0.8 23.9± 0.7 24.3± 0.7 24.3± 0.7
λ′′Kπ × 104 11.8± 0.2 11.8± 0.2 11.7± 0.2 11.7± 0.2
B̄Kη × 104 1.57± 0.10 1.58± 0.10 1.58± 0.10 1.58± 0.10

(Bth
Kη)× 104 (1.43) (1.45) (1.46) (1.46)
γKη × 102 −4.0+1.3

−1.9 −3.4+1.0
−1.3 −3.2+0.9

−1.1 −3.2+0.9
−1.1

λ′Kη × 103 18.6± 1.7 20.9± 1.5 22.1± 1.4 22.1± 1.4
λ′′Kη × 104 10.8± 0.3 11.1± 0.4 11.2± 0.4 11.2± 0.4
χ2/n.d.f. 105.8/105 108.1/105 111.0/105 111.1/105

Table 4.2: Reference fit results obtained for different values of scut in the dispersive
integral are displayed. Dimensionful parameters are given in MeV. As a consistency check,
for each of the fits we give (in brackets) the value of the respective branching ratios obtained
integrating Eq. (4.1).
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Figure 4.1: Belle τ− → KSπ
−ντ (red solid circles) [100] and τ− → K−ηντ (green solid

squares) [12] measurements as compared to our best fit results (solid black and blue lines,
respectively) obtained in combined fits to both data sets, as presented in Eq. (4.14). Empty
circles (squares) correspond to data points which have not been included in the analysis. The
small scalar contributions have been represented by black and blue dashed lines showing
that while the former plays a role for the Kπ spectrum close to threshold, the latter is
irrelevant for the Kη distribution.

visible. The scalar form factor contribution, although small in most of the phase

space, is important to describe the data immediately above threshold. There is no

such clear peak structure for the Kη channel as a consequence of the interplay between

both K∗ resonances. The corresponding scalar form factor in this case is numerically

insignificant.

The correlation coefficients corresponding to our reference fit with scut = 4 GeV2

can be read from Table 4.3. As anticipated, there is a large correlation between the

set {B̄Kπ, λ
′
Kπ, λ

′′
Kπ} which enables stable fits removing one of these parameters (the

fit then becomes somewhat less restrictive, though). Despite the correlation between

λ′Kη and λ
′′
Kη also being nearly maximal, these parameters are less correlated with

B̄Kη, implying that all three are needed to reach convergence in the minimisation.
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Chapter 4. Combined analysis of the decays τ− → KSπ
−ντ and τ− → K−ηντ

B̄Kπ MK∗ ΓK∗ MK∗′ ΓK∗′ λ′Kπ λ′′Kπ B̄Kη γKη = γKπ λ′Kη λ′′Kη

MK∗ −0.163 1

ΓK∗ 0.028 −0.060 1

MK∗′ −0.063 −0.104 −0.142 1

ΓK∗′ 0.126 0.130 0.292 −0.556 1

λ′Kπ 0.800 −0.100 0.457 −0.244 0.432 1

λ′′Kπ 0.928 −0.215 0.328 −0.166 0.304 0.942 1

B̄Kη −0.003 −0.005 −0.010 0.003 −0.001 −0.015 −0.009 1

γKη = γKπ −0.155 −0.173 −0.378 0.498 −0.878 −0.565 −0.373 0.019 1

λ′Kη 0.058 0.028 0.117 0.050 0.337 0.182 0.128 0.434 −0.340 1

λ′′Kη 0.035 −0.017 0.037 0.106 0.218 0.080 0.064 0.561 −0.174 0.971 1

Table 4.3: Correlation coefficients corresponding to our reference fit with scut = 4 GeV2,
second column of Table 4.1. In the fits where γKπ = γKη is not enforced, their correlation
coefficient turns out to be ≈ 0.67.

For this reason we prefer to keep B̄Kη as a data point in the joint analysis. Finally,

we note a large correlation between the parameters γKπ = γKη and ΓK∗′ which seems

to be enhancing the corresponding errors (this effect may in part be due to the three

subtractions employed, which decrease the sensitivity to the higher-energy region).

In the fits where γKπ = γKη is not enforced, their correlation coefficient is ≈ 0.67.

This suggests that with more precise data in the future it might be possible to resolve

the current degeneracy between both.

Several comments regarding our final results of Eq. (4.14) and the reference fit of

Table 4.1 are in order:

• Concerning the branching fractions, we observe that in the KSπ
− channel our

fit value B̄Kπ, which is mainly driven by the explicit input, and the result when

integrating the fitted spectrum Bth
Kπ, are in very good agreement, pointing to

a satisfactory description of the experimental data. On the other hand, for

the Kη case, one notes a trend that the integrated branching fraction Bth
Kη

turns out about 10% smaller than the fit result B̄Kη, which points to slight

deficiencies in the theoretical representation of this spectrum. This issue should

be investigated further in the future with more precise data.

• The KSπ
− slope parameters are well compatible with previous analogous anal-

ysis [14, 15]. For the corresponding K−η slopes, we obtain somewhat smaller

values, which are, however, compatible with the crude estimates in Ref. [13].

The fact that the K−η slopes are about 2σ lower than the KSπ
− slopes could

be an indication of isospin violations, or could be a purely statistical effect. (Or
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4.2. Joint fits to τ− → KSπ
−ντ and τ− → K−ηντ Belle data

a mixture of both.) To tackle this question and make further progress to dis-

entangle isospin violations in the Kπ form factor slopes, it is indispensable to

study the related distribution for the τ− → K−π0ντ decay, and the experimen-

tal groups should make every effort to also publish the corresponding spectrum

for this process.

• The pole parameters of the K∗(892) resonance are in nice accord with previous

values [14, 15] and have similar statistical fit uncertainties which is to be ex-

pected as these parameters are driven by the data of the τ− → KSπ
−ντ decay,

which was the process analysed previously. Regarding the parameters of the

K∗(1410) resonance, adding the τ− → K−ηντ spectral data into the fit results

in a substantial improvement in the determination of the mass, while only a

slight improvement in the width is observed. Part of the large uncertainty in

the width of the second K∗ resonance can be traced back to the strong fit cor-

relation with the mixing parameter γ, which is also not very well determined.

Future data of either τ− → (Kπ)−ντ or τ− → K−ηντ hadronic invariant mass

distributions should enable a more precise evaluation. Prospects updating the

Belle-I analyses with the complete data sample or studying Belle-II data are

discussed next.

In Table 4.4, we have simulated the impact of future data on our fitted parameters.

For this purpose we have kept the same central values of the data points and reduced

the errors according to the expected increase in luminosity. Specifically, we have

used that the KSπ
− (K−η) Belle analysis employed 351 (490) fb−1 for a complete

data sample of 1000 fb−1 accumulated at Belle-I for general purpose studies (we have

assumed the same resolution and efficiencies as in the published analyses following

a suggestion from the Collaboration). Similarly, we have also compared our current

results, Eq. (4.14), to the prospects for Belle-II at the end of its data taking, with

50 ab−1 neglecting again possible improvements in the detector response and data

analysis. In the different columns of Table 4.4, we recall our results, Eq. (4.14), and

compare them, in turn, to the cases where both decay modes are reanalysed using

the whole Belle-I data sample, the same when only one of the analysis is updated and

analogously for Belle-II.

The majority of the expected errors for Belle-II will make completely negligible

the statistical error with respect to the theoretical uncertainties, which then will

most likely demand more elaborated approaches than those considered here. This

would also happen in the case of the K∗(1410) parameters with any updated Belle-I
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−ντ and τ− → K−ηντ

HH
HHHHError

Data
Current Belle-I Belle-I Kπ Belle-I Kη Belle-II Belle-II Kπ Belle-II Kη

B̄Kπ(%) 0.404± 0.012 ±0.005 ±0.005 ±0.012 †(0.001) †(0.001) ±0.012

MK∗ 892.03± 0.19 ±0.09 ±0.09 ±0.19 †(0.02) †(0.02) ±0.19

ΓK∗ 46.18± 0.44 ±0.20 ±0.20 ±0.44 †(0.02) †(0.03) ±0.42

MK∗′ 1304± 17 †(7) †(9) †(8) †(1) †(1) †(1)

ΓK∗′ 168± 62 †(19) †(24) †(25) †(3) †(4) †(11)

λ′Kπ × 103 23.9± 0.9 †(0.3) †(0.3) ±0.8 †(0.04) †(0.04) ±0.8

λ′′Kπ × 104 11.8± 0.2 ±0.07 ±0.07 ±0.2 †(0.01) †(0.01) ±0.2

B̄Kη × 104 1.58± 0.10 ±0.05 ±0.10 ±0.05 †(0.01) ±0.10 †(0.01)

γKη(= γKπ)× 102 −3.3± 1.3 †(0.3) †(0.3) †(0.4) †(0.04) †(0.04) ◦(0.3)

λ′Kη × 103 20.9± 2.7 †(0.7) ±2.7 †(0.8) †(0.10) ±2.7 ◦(0.4)

λ′′Kη × 104 11.1± 0.5 †(0.2) ±0.5 †(0.2) †(0.02) ±0.5 †(0.06)

Table 4.4: The errors of our final results (4.14) are compared, in turn, to those achievable
by analysing the complete Belle-I data sample, and updating only the KSπ

− or K−η anal-
yses. The last three columns show the potential of fitting all data collected by Belle-II and
the same only for KSπ

− or for K−η (assuming the other mode has not been updated to
include the complete Belle-I data sample). Current Belle KSπ

− (K−η) data correspond to
351 (490) fb−1 for a complete data set of ∼ 1000 fb−1 = 1 ab−1. Expectations for Belle-II
correspond to 50 ab−1. All errors include both statistical and systematic uncertainties. †

means that statistical errors (in brackets) will become negligible, while ◦ signals a tension
with the current reference best fit values. We thank Denis Epifanov for conversations on
these figures and on expected performance of Belle-II at the detector and analysis levels.
All errors have been symmetrised for simplicity.
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study. The impact of τ− → K−π0ντ on the K∗(892) and K∗(1410) meson parameters

can be estimated by means of the τ− → KSπ
−ντ simulation. Such a measurement

will be more significant in the determination of the K−η slope parameters than an

updated study of this latter decay mode. In passing, we also mention that Belle-II

statistics could be able to pinpoint possible inconsistencies between τ− → (Kπ)−ντ

and τ− → K−ηντ data.

4.3 Conclusions

Hadronic decays of the τ lepton remain to be an advantageous tool for the investi-

gation of the hadronization of QCD currents in the non-perturbative regime of the

strong interaction. In this work we have explored the benefits of a combined analysis

of the τ− → KSπ
−ντ and τ− → K−ηντ decays. This study was motivated by (our)

separate earlier works on the two decay modes considering them as independent data

sets. In particular, it was noticed in [13] that the Kη decay channel was rather sen-

sitive to the properties of the K∗(1410) resonance as the higher-energy region is less

suppressed by phase space.

Our description of the dominant vector form factor follows the work of Ref. [14],

and proceeds in two stages. First, we write a Breit-Wigner type representation (4.4)

which also fulfils constraints from χPT at low-energies. In Eq. (4.4), we have re-

summed the real part of the loop function in the resonance denominators, but as was

discussed above, employing the following dispersive treatment, this is not really es-

sential. It mainly entails a shift in the unphysical mass and width parameters mn and

γn. Second, we extract the phase of the vector form factor according to Eq. (4.11) and

plug it into the three-times subtracted dispersive representation of Eq. (4.8). This

way, the higher-energy region of the form factor, which is less well know, is suppressed,

and the form factor slopes emerge as subtraction constants of the dispersion relation.

A drawback of this description is that the form factor does not automatically satisfy

the expected 1/s fall-off at very large energies. Still, in the region of the τ mass

(and beyond), our form-factor representation is a decreasing function such that the

deficit should be admissible, thereby leaving more freedom for the slope parameters

to assume their physical values.

In our combined dispersive analysis of the (Kπ)− and K−η decays we are currently

limited by three facts: there are only published measurements of the KSπ
− spectrum

(and not of the corresponding K−π0 channel), the available K−η spectrum is not

very precise and the corresponding data are still convoluted with detector effects.
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Chapter 4. Combined analysis of the decays τ− → KSπ
−ντ and τ− → K−ηντ

The first restriction prevents us from cleanly accessing isospin violations in the slope

parameters of the vector form factor. From our joint fits, we have however managed

to get an indication of this effect. The second one constitutes the present limitation

in determining the K∗(1410) resonance parameters but one should be aware that our

approach to avoid the last one (assuming that the KSπ
− unfolding function gives

a good approximation to the one for the K−η case) adds a small (uncontrolled)

uncertainty to our results that can only be fixed by a dedicated study of detector

resolution and efficiency. In this respect it would be most beneficial, if unfolded

measured spectra would be made available by the experimental groups, together with

the corresponding bin-to-bin correlation matrices.

In Table 4.1, we have compared slightly different options to implement constraints

from isospin into the fits, and in Table 4.2, we studied the dependence of our fits on the

cut-off scut in the dispersion integral. Our reference fit is given by the second column

of Table 4.1 and adding together the statistical fit uncertainties with systematic errors

from the variation of scut, our final results are summarised in Eq. (4.14). The pole

position we find for the K∗(892) resonance is in perfect agreement with previous

studies. The main motivation of this work was, however, to exploit the synergy of the

Kπ and Kη decay modes in characterising the K∗(1410) meson. According to our

results, the relative weight γ of both vector resonances is compatible in the Kπ and

Kη vector form factors, which supports our assumption of their universality. With

current data we succeed in improving the determination of the K∗(1410) pole mass,

but regarding the width, substantial uncertainties remain. Our central result for these

two quantities is

MK∗′ = (1304± 17) MeV , ΓK∗′ = (171± 62) MeV , (4.15)

where we have symmetrised the uncertainties listed in Eq. (4.14). We provide a

graphical account of this outcome in Fig. (4.2) compared with previous determinations

from both channels separated.

We have then estimated the impact of future re-analyses including the complete

Belle-I data sample and all expected data from Belle-II on these decay modes. This

projection reveals (in both cases) that the increased statistics will most probably

require a refined theoretical framework to match the experimental precision in the

determination of the K∗(1410) resonance parameters. While our description so far is

purely elastic, this may include incorporation of coupled channels to take into account

inelastic effects along the lines of refs. [104, 106], which would allow for a proper

inclusion of higher channels in the resonance widths. Belle-II data would also lead to
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Figure 4.2: Our value for the pole parameters (black square) as given in Eq. (4.15),
mass (left) and width (right), of the K∗(1410) resonance obtained from a joint to both
experimental Belle τ− → KSπ

−ντ and τ− → K−ηντ decays spectra compared with previous
determinations from both channels separated [13, 14, 15] (blue circles).

much improved tests of our low-energy description and the K∗(892) dominance region.

Knowledge of isospin breaking effects on the slope parameters could be drastically

improved by measuring the hadronic invariant mass distribution in τ− → K−π0ντ

decays, which would by the way increase the accuracy in the extraction of the K∗(892)

pole position. We hope that this study will give additional motivation to the B-factory

collaborations for performing the respective analyses.
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Chapter 5

Study of the second-class current
decays τ−→ π−ηντ and τ−→ π−η′ντ

According to Weinberg [147], non-strange weak (V − A) hadronic currents can be

divided into two types depending on their G-parity: i) first class currents, with the

quantum numbers JPG = 0++, 0−−, 1+−, 1−+; ii) second class currents (SCC), which

have JPG = 0+−, 0−+, 1++, 1−−. The former completely dominate weak interactions

since there has been no evidence of the later in Nature so far.

In the Standard Model (SM) SCC come up with an isospin violating term which

heavily suppresses the interaction and the eventual sensitivity to new physics (i.e. by

a charged Higgs contribution to the πη(′) scalar form factors) may be enhanced.

One tentative scenario to look for such kind of currents is through the rare hadronic

decays of the τ lepton τ− → π−ηντ and τ− → π−η′ντ [148] for which some experimen-

tal upper bounds already exist. For the π−η decay mode, BaBar, Belle and CLEO

collaborations have reported the branching ratio upper limits of 9.9 · 10−5 at 95%

CL [107], 7.3 · 10−5 at 90% CL [149] and of 1.4 · 10−4 at 95% CL [108], respectively.

Actually, τ− → π−ηντ belongs to the discovery modes list of the near future super-B

factory Belle II [150] for which we advocate the measurement. Regarding the π−η′

channel, BaBar obtained a new upper bound, 4.0 ·10−6 at 90% CL [110], that slightly

improved its previous value 7.2 · 10−6 at 90% CL [151]. Also CLEO quoted the upper

limit 7.4 · 10−5 at 90% CL [152] in the nineties. Historically, τ− → π−ηντ decays

attracted a lot of attention at the end of the eighties when existing measurements

hinted at abnormally large branching fractions into final states containing η mesons,

and a preliminary announcement by the HRS Coll. advocated for an O(%) decay rate

into the π−η decay mode, which was against theoretical expectations [111]. Later on,

the situation settled [80] and these decays remained undiscovered even at the first

generation B-factories BaBar and Belle, where the background from other competing
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modes such as τ− → π−π0ηντ [12, 153] veiled the SCC signal. According to our re-

sults, their discovery (through either of the τ− → π−η(′)ντ decay channels) should be

finally possible at Belle-II, thanks to the fifty times increased luminosity of Belle-II

[154] with respect to its predecessor. The implementation of theory predictions for

these modes in the TAUOLA version used by the Belle [119] Collaboration will help

to accomplish this task.

From the theoretical perspective, the spin-parity of the π−η(′) system, JP , is 0+

or 1− depending whether the system is in S- or P -wave, respectively. However, the

G-parity of the system is−1, which is opposed to the vector current that drives the de-

cay in the SM. Therefore, the S(P )-wave of the π−η(′) system gives JPG = 0+−(1−−),

which can only be realized through a SCC independently of possible intermediate res-

onant states. Previous theoretical analysis estimated the branching ratio to be of the

order of 10−5 and within the range 10−8 to 10−6 for the π−η and π−η′ modes, respec-

tively. In this work, we revisit these processes benefited from our previous experiences

in describing dimeson τ decays data [13, 14, 15, 16, 97, 155, 156]. Here, the main sub-

ject of our study is the theoretical construction of the participant vector and scalar

form factors. Our initial approach is carried out within the framework of the Chiral

Perturbation Theory (χPT) [5, 6, 7] including resonances (RχT) [48]. On a second

stage, we take advantage of the global analysis of the U(3) ⊗ U(3) one-loop meson-

meson scattering in the frame of RχT performed in Ref. [57] to calculate the scalar

form factors from dispersion relations based on arguments of unitarity and analyticity.

In particular, we will first take into account elastic final state interactions through

the Omnès solution [79] for describing the π−η and π−η′ scalar form factors (SFF),

respectively. Then, we consider the effect of coupled channels in the former system for

studying inelasticities. Afterwards, we will also consider the K−K0 threshold, whose

coupling to the intermediate scalar resonance is presumably large [57], and couple

it to both π−η and π−η′ SFFs independently. Finally, the three coupled-channels

case will we addressed. Several ways of solving coupled channels form factors have

been considered in literature; some use iterative methods [56, 157, 158, 159], while

others employ closed algebraic expressions [130, 160, 161, 162, 163, 164, 165, 166].

The second alternative will be followed in this work. See also Ref. [167] for a recent

description based on dispersive techniques.

This chapter is organized as follows. In Section 5.1, we define the hadronic matrix

element in terms of the vector and scalar form factors and give the expression for

the differential decay width. In Section 5.2, we derive the π−η(′) vector form factor
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Chapter 5. Study of the second-class current decays τ− → π−ηντ and τ− → π−η′ντ

(VFF) within RχT by considering mixing within the π0 − η − η′ system. In our ap-

proach, the VFFs appear to be an isospin violating factor times the π−π0 form factor

for which we will employ its experimental determination arising from the well-known

first-class current τ− → π−π0ντ decay. We devote Section 5.3 to the computation

of the corresponding scalar form factors. We start with a simple Breit-Wigner pa-

rameterization and then consider a dispersion relation obeying unitarity, first in the

elastic single channel case through the Omnès solution and then taking into account

coupled-channel effects. The spectra and predictions for the branching ratios (BR)

are given in Section 5.4. Also in this section, we will briefly discuss the crossing sym-

metric η
(′)
`3 decays, η(′) → π+`−ν̄` (` = e, µ), for which BR predictions will be given as

well. Finally, we present our conclusions in Section 9.

5.1 Hadronic matrix element and decay width

The amplitude of the decay τ− → π−η(′)ντ in terms of the hadronic matrix element

reads

M =
GF√

2
Vudū(pντ )γµ(1− γ5)u(pτ )〈π−η(′)|d̄γµu|0〉 , (5.1)

where the π−η(′) matrix element of the vector current follows the convention of

Ref. [121],

〈π−η(′)|d̄γµu|0〉 = cVπ−η(′)

[
(pη(′) − pπ−)µF π−η(′)

+ (s)− (pη(′) + pπ−)µF π−η(′)

− (s)
]
, (5.2)

with cV
π−η(′) =

√
2, s = q2 = (pη(′) + pπ−)2 and F π−η(′)

+(−) (s) the two Lorentz-invariant

vector form factors. However, instead of F π−η(′)

− (s), the scalar form factor F π−η(′)

0 (s) is

usually employed, which arises as a consequence of the non-conservation of the vector

current. That is, taking the divergence on the left-hand side of Eq. (5.2) we get

〈π−η(′)|∂µ(d̄γµu)|0〉 = i(md −mu)〈π−η(′)|d̄u|0〉 ≡ i∆QCD
K0K+c

S
π−η(′)F

π−η(′)

0 (s) , (5.3)

with cSπ−η =
√

2/3, cSπ−η′ = 2/
√

3 and ∆PQ = m2
P −m2

Q, while on the right-hand side

we have

iqµ〈π−η(′)|d̄γµu|0〉 = icVπ−η(′)

[
(m2

η(′) −m2
π−)F π−η(′)

+ (s)− sF π−η(′)

− (s)
]
. (5.4)

Then, by equating Eqs. (5.3) and (5.4), we link F π−η(′)

− (s) with F π−η(′)

0 (s) through

F πη(′)

− (s) = −∆π−η(′)

s

[
cS
πη(′)

cV
πη(′)

∆QCD
K0K+

∆π−η(′)
F πη(′)

0 (s) + F π−η(′)

+ (s)

]
, (5.5)
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5.1. Hadronic matrix element and decay width

and the hadronic matrix element finally reads

〈π−η(′)|d̄γµu|0〉 = cVπη(′)

[
(pη(′) − pπ)µ +

∆π−η(′)

s
qµ
]
F πη(′)

+ (s)

+ cSπ−η(′)
∆QCD
K0K+

s
qµF π−η(′)

0 (s) .

(5.6)

The advantage of the parameterization as given in Eq. (5.6) is that the vector(scalar)

form factor F π−η(′)

+(0) (s) is in direct correspondence with the final P (S)-wave state,

respectively. Moreover, the finiteness of the matrix element at the origin imposes1

F π−η(′)

+ (0) = −
cS
π−η(′)

cV
π−η(′)

∆QCD
K0K+

∆π−η(′)
F π−η(′)

0 (0) . (5.7)

Therefore, the differential decay width of the τ− → π−η(′)ντ decay as a function

of the invariant mass of the π−η(′) system can be written as

dΓ
(
τ− → π−η(′)ντ

)
d
√
s

=
G2
FM

3
τ

24π3s
SEW|VudF π−η(′)

+ (0)|2
(

1− s

M2
τ

)2

×
[(

1 +
2s

M2
τ

)
q3
π−η(′)(s)|F̃ π−η(′)

+ (s)|2 +
3∆2

π−η(′)

4s
qπ−η(′)(s)|F̃ π−η(′)

0 (s)|2
]
,

(5.8)

where qPQ(s) =
√
s2 − 2sΣPQ + ∆2

PQ/2
√
s, ΣPQ = m2

P +m2
Q and

F̃ π−η(′)

+,0 (s) =
F π−η(′)

+,0 (s)

F π−η(′)

+,0 (0)
, (5.9)

are the two form factors normalised to unity at the origin. They encode the un-

known strong dynamics occurring in the transition. Their descriptions will be given

in Secs. 5.2 and 5.3, respectively. Regarding the global pre-factors, we employ

SEW = 1.0201 [122], accounting for short-distance electroweak corrections, and Vud =

0.97425(8)(10)(18) [37], while the normalisation F π−η(′)

+ (0) is an isospin-violating

quantity of O(md − mu), whose value will be deduced in the next section, which

brings an overall suppression explaining the smallness of the corresponding decay

widths. In fact, in the limit of exact isospin, mu = md and e = 0, F π−η(′)

+ (0) = 0 and

these processes would be forbidden in the SM.

1We will come back to Eq. (5.7) in Sect. 5.2 in order to derive our isospin violating input values.
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Chapter 5. Study of the second-class current decays τ− → π−ηντ and τ− → π−η′ντ

5.2 π−η(′) Vector Form Factor

We derive the π−η(′) vector form factor within the context of resonance chiral theory

(RChT) [48], which extends chiral perturbation theory [5, 6, 7] by adding resonances

as explicit degrees of freedom. A short introduction to the topic can be found in

Ref. [168], where references concerning its varied phenomenological applications are

given. In Refs. [13, 155] we have also provided a short review of the theory as applied

to the computation of the vector and scalar K−η(′) form factors describing the decays

τ− → K−η(′)ντ . In the present analysis, we would occasionally refer the interested

reader to the former references though some comments will be given in the following

for consistency.

It is not straightforward to incorporate the dynamics of the η and η′ mesons in

a chiral framework [169]. The pseudoscalar singlet η0 is absent in SU(3) ChPT and

their effects are encoded in the next-to-leading order low-energy constant L7. To take

into account consistently the effects of the singlet in an explicit way one must perform

a simultaneous expansion not only in terms of momenta (p2) and quark masses (mq)

but also in the number of colors (1/Nc). In this framework, known as Large-Nc

ChPT [8], the singlet becomes a ninth pseudo-Goldstone boson and the η-η′ mixing

can be understood in a perturbative manner2. At lowest order, the physical states

(η, η′) are related to the mathematical states (η8, η0) in the so-called octet-singlet basis

by a simple two-dimensional rotation matrix involving one single mixing angle (cf.

Eq. 1.116). At the same order, the four different decay constants related to the η-η′

system are all equal to the pion decay constant in the chiral limit. At next-to-leading

order, however, besides mass-matrix diagonalisation one requires to perform first a

wave-function renormalisation of the fields due to the non-diagonal form of the kinetic

term of the Lagrangian (cf. Eq. 1.128). This two-step procedure makes the single

mixing angle at lowest order to be split in two mixing angles at next-to-leading order3.

The magnitude of this splitting is given in the octet-singlet basis by the difference

of the FK and Fπ decay constants, that is, a SU(3)-breaking correction [170]. At

this order, now, the decay constants are all different due to these wave-function–

renormalisation corrections. Being this two-mixing angle scheme unavoidable at next-

to-leading order in the large-Nc chiral expansion, one can express their associated

2In this simultaneous expansion the chiral loops are counted as next-to-next-to-leading order
corrections and thus considered negligible [8]. This fact is in part corroborated numerically.

3For a detailed explanation of the two-mixing angle scheme in the large-Nc ChPT at next-
to-leading order in the octet-singlet basis, see, for instance, the appendix B in Ref. [69]. Other
comprehensive reviews using this basis or the so-called quark-flavour basis can be found in Refs. [169].
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5.2. π−η(′) Vector Form Factor

parameters either in the form of two mixing angles (θ8, θ0) and two decay constants

(f8, f0) or one mixing angle, the one appearing at lowest order, and three wave-

function–renormalisation corrections, appearing only at next-to-leading order. In this

work, we will follow the second option (cf. Eq. 1.138). Needless to say, the mixing so

far involves only the η and η′ mesons in the isospin limit, but if isospin symmetry is

broken, as it is our case, the π0 is also involved, and instead of using one mixing angle

and three wave-function–renormalisation corrections we will need to use three lowest

order mixing angles, θηη′ for the η-η′, θπη for the π-η and θπη′ for the π-η′ systems,

respectively, and the corresponding six wave-function–renormalisation corrections.

Since we are in the context of RChT, these wave-function–renormalisation corrections

are assumed to be saturated by the exchange of a nonet of scalar resonances and

therefore expressed in terms of the associated cd and cm coupling constants (see

below).

Because the size of isospin-breaking corrections due to the light-quark mass dif-

ference are given in terms of the ratio (md −mu)/ms and hence very small, the two

former mixing angles involving the π0 can be well approximated by their Taylor ex-

pansion at first order. Then, the orthogonal matrix connecting the mathematical and

physical states at lowest order can be written as π0

η
η′

 =

 1 επηcθηη′ + επη′sθηη′ επη′cθηη′ − επηsθηη′
−επη cθηη′ −sθηη′
−επη′ sθηη′ cθηη′

 ·
 π3

η8

η0

 , (5.10)

where επη(′) are the approximated π0-η(′) mixing angles and (c, s) ≡ (cos, sin). Using

this parametrization for the rotation matrix, we preserve the common η-η′ mixing

description, when both επη(′) are fixed to 0, and the one for π-η(′) mixing, when both

θηη′ and επη′() are set to 0. A detailed illustration of this π0-η-η′ mixing can be found

in Ref. [171], from where we borrow the numerical values ε̂πη ≡ επη(z = 0) = 0.017(2)

and ε̂πη′ ≡ επη′(z = 0) = 0.004(1) as a check of our results. For the η-η′ mixing angle

we take θηη′ = (−13.3± 0.5)◦ [172]4.

As stated before, the π−η(′) VFFs will be calculated in the framework of RChT.

There are four different types of contributions in total. At leading order, there is the

contribution from the lowest order of large-Nc ChPT. At next-to-leading order, there

are, in addition, the contribution from the exchange of explicit vector resonances,

the so-called vacuum insertions and the wave-function–renormalisation contributions

4In Ref. [172], the value φηη′ = (41.4 ± 0.5)◦ is obtained in the quark-flavour basis. However,
at lowest order, this value is equivalent in the octet-singlet basis to θηη′ = φηη′ − arctan

√
2 =

(−13.3± 0.5)◦.
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Chapter 5. Study of the second-class current decays τ− → π−ηντ and τ− → π−η′ντ

(cf. Fig. 3.1). The latter two are written in terms of the explicit exchange of scalar

resonances and seen to cancel each other [130]. As a result, we obtain

F π−η(′)

+ (s) = επη(′)

(
1 +

∑
V

FVGV

F 2

s

M2
V − s

)
, (5.11)

where the prefactor denotes it occurs via π0-η-η′ mixing and the parenthesis includes

the direct contact term plus the exchange of an infinite number of vector resonances

organized in nonets5 (FV and GV are the two coupling constants of the Lagrangian of

one nonet of vectors coupled to pseudoscalars, MV the common nonet vector mass,

and F the pion decay constant in the chiral limit).

Interestingly, the term in parenthesis appearing in Eq. (5.11) is nothing but what

one would have obtained if the π−π0 VFF had been computed instead. Hence, written

in this way, the π−η(′) VFFs are given in terms of the well-known π−π0 VFF (see, for

instance, Refs. [52, 97] for a review). Their value at the origin are F π−η(′)

+ (0) = επη(′) ,

and as a consequence the normalised form factors are both the same and equal to the

normalised π−π0 one, that is

F̃ π−η
+ (s) = F̃ π−η′

+ (s) = F̃ π−π0

+ (s) . (5.12)

The above relation allows us to implement the well-known experimental data on the

π−π0 VFF to describe the π−η(′) decay modes we are interested in. In particular, we

employ the latest experimental determination obtained by the Belle Collaboration

from the measurement of the decay τ− → π−π0ντ
6, which is shown in Fig. 5.1 (the

set of data is borrowed from the Table VI of Ref. [19]). In this manner, we are not only

taking into account the dominant vector resonant contribution given by the ρ(770),

whose effect is clearly seen from the neat peak around 0.6 GeV2, but also the effects

of higher radial excitations such as the ρ′(1450) and ρ′′(1700) (see their manifestation

in the form of a negative interference with the ρ in the energy region between 2 and

3 GeV2). An interesting check would be then to compare these data with theoretical

descriptions of this form factor, such as the ones given by dispersion relations, where

the contributions of the different states can be switched on and off, to discern the

number of participating resonances [97, 159].

5At leading order in 1/Nc at this stage, i.e., with an infinite number of zero-width resonances
[49].

6The contribution of the scalar form factor entering into the π−π0 decay mode is weighted by
∆2
π−π0 , thus heavily suppressed by isospin [173] and usually neglected.
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Figure 5.1: π−π0 vector form factor as obtained by the Belle Collaboration [19]
(black circles). The red solid curve is an interpolation of these data.

5.3 π−η(′) Scalar Form Factor

Any description of a physical observable involving light scalar mesons has been always

controversial7, and simple model parameterizations do not typically succeed. In this

work, in order to construct a reasonable description of the participant scalar form

factors we will basically exploit two powerful theoretical arguments: the required

analytical structure of the form factor and the unitarity of the scattering matrix. In

what follows, we will tackle three different parameterizations in increasing degree of

completeness.

5.3.1 Breit-Wigner

Our initial approach for describing the required π−η(′) scalar form factor (SFF) is, as

in the case of the VFF, the RChT framework. In the large-Nc limit, the octet of scalar

resonances and the singlet become degenerate in the chiral limit (with common mass

MS), and all them are collected in a nonet. The calculation of these SFFs is performed

again at next-to-leading order in the simultaneous expansion in terms of momenta

and the number of colors, and the different contributions to them are the lowest order

one from large-Nc ChPT and the three next-to-leading order ones from RChT, which

7See e.g. the “Note on scalar mesons” in Ref. [37] for a review.
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Chapter 5. Study of the second-class current decays τ− → π−ηντ and τ− → π−η′ντ

are, in order, the vacuum insertions, the explicit exchange of scalar resonances, and

the wave-function–renormalisation contributions as shown in Fig. 5.2.

Figure 5.2: Diagrams contributing for calculating the π−η(′) scalar form factors.
From left to right we have: contact term in χPT at lowest order; scalar resonance
(S) exchange coupled to the vacuum; explicit exchange of scalar resonances, a0 and
excitations; O(p4) contributions from the O(p2) Lagrangian due to wave function and
mass renormalizations.

The resulting SFFs are8

F π−η(′)

0 (s) = cπ
−η(′)

0

[
1− 8cm(cm − cd)

F 2

2m2
K −m2

π

M2
S

+
4cm
F 2

(cm − cd)2m2
π + cd

(
s+m2

π −m2
η(′)

)
M2

S − s

 , (5.13)

where cπ
−η

0 = cos θηη′−
√

2 sin θηη′ and cπ
−η′

0 = cos θηη′+sin θηη′/
√

2 for the πη and πη′

channels, respectively, and cd(m) are the couplings appearing in the derivative(mass)

terms of the Lagrangian involving the nonets of scalar and pseudoscalar mesons. A

similar analysis was done in Ref. [56] for the Kπ, Kη and Kη′ SFFs. Once the QCD

asymptotic behaviour of the form factors is imposed, that is, they are O(1/s) for

large s, which implies cd − cm = 0 and 4cdcm = F 2, and hence cd = cm = F/2 [56],

these can be finally written as [174]

F π−η(′)

0 (s) = cπ
−η(′)

0

(
1 +

∆π−η(′)

M2
S

)
M2

S

M2
S − s

, (5.14)

and their value at the origin are

F π−η(′)

0 (0) = cπ
−η(′)

0

(
1 +

∆π−η(′)

M2
S

)
. (5.15)

8As a starting point, we assume there is only a nonet of scalar resonances. Later on, we will
include a second one. Moreover, we use in the calculation of the form factors isospin-averaged π(K)
masses mπ(K) which will be in the following identified as their corresponding charged masses, being
the differences higher-order isospin corrections.
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5.3. π−η(′) Scalar Form Factor

These normalisations can now be incorporated into Eq. (5.7) to give a prediction of

the normalisations of the related VFFs:

F π−η
+ (0) = −cos θηη′ −

√
2 sin θηη′√

3

∆QCD
K0K+

∆π−η

(
1 +

∆π−η

M2
S

)

= cosφηη′
m2
K0 −m2

K+ −m2
π0 +m2

π+

m2
η −m2

π−

(
1− m2

η −m2
π−

M2
S

)
,

(5.16)

and

F π−η′

+ (0) = −sin θηη′ +
√

2 cos θηη′√
3

∆QCD
K0K+

∆π−η′

(
1 +

∆π−η′

M2
S

)

= sinφηη′
m2
K0 −m2

K+ −m2
π0 +m2

π+

m2
η′ −m2

π−

(
1−

m2
η′ −m2

π−

M2
S

)
,

(5.17)

where the η-η′ mixing has been expressed for simplicity in the quark-flavour basis,

cosφηη′ = (cos θηη′ −
√

2 sin θηη′)/
√

3 and sinφηη′ = (sin θηη′ +
√

2 cos θηη′)/
√

3, and

∆QCD
K0K+ = m2

K0−m2
K+−∆m2

Kelm = m2
K0−m2

K+−m2
π0 +m2

π+ has been estimated from

the K0-K+ mass difference corrected for mass contributions of electromagnetic origin

according to Dashen’s theorem [175, 176]. Comparing these VFFs normalitzations

with those obtained after Eq. (5.11), one finally gets

επη(′) = cosφηη′(sinφηη′)
m2
K0 −m2

K+ −m2
π0 +m2

π+

m2
η(′) −m2

π−

(
1−

m2
η(′) −m2

π−

M2
S

)
, (5.18)

for the πη and πη′ cases, respectively. It is worth noticing that the former equation

is equivalent up to higher-order isospin corrections to Eq. (31) in Ref. [171] after the

identification z ≡ (fu−fd)/(fu+fd) = −(m2
K0−m2

K+−m2
π0 +m2

π+)/M2
S. The former

equality allows for an estimate of this parameter, z ' −5× 10−3 for MS = 980 MeV,

in agreement with the conclusion in Ref. [171] that z < 0.015. From Eq. (5.18), we can

also provide the numerical determination of the πη(′) mixing angles we are employ in

this work, επη = (9.8±0.3)×10−3 and επη′ = (2.5±1.5)×10−4, which are far, specially

in the latter case, from their infinite scalar mass limit, ε̂πη ≡ επη(MS →∞) = 0.014

and ε̂πη′ ≡ επη′(MS →∞) = 0.0038, in accordance with Ref. [177]. These values were

calculated using φηη′ = (41.4 ± 0.5)◦ [172]. As seen, επη′ is one order of magnitude

smaller than ε̂πη′ caused by the strong suppression due to mη′ 'MS.

The description of the SFFs in the form of Eq. (5.14) begins to fail in the vicinity

of the resonance region. It breaks down for s = M2
S which corresponds to an on-shell

intermediate scalar resonance. A common and simple way to cure this limitation is
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Chapter 5. Study of the second-class current decays τ− → π−ηντ and τ− → π−η′ντ

by promoting the scalar propagator 1/(M2
S− s) to 1/(M2

S− s− iMSΓS(s)), where the

corresponding energy-dependent width computed within RChT in this case reads

ΓS(s) = ΓS(M2
S)

(
s

M2
S

)3/2
h(s)

h(M2
S)

, (5.19)

with (σPQ(s) = 2qPQ(s)/
√
s×Θ(s− (mP +mQ)2) is a kinematical factor)

h(s) = σK−K0(s) + 2 cos2 φηη′

(
1 +

∆π−η

s

)2

σπ−η(s)

+2 sin2 φηη′

(
1 +

∆π−η′

s

)2

σπ−η′(s) ,

(5.20)

for the a0(980) resonance case coupling dominantly to the πη system9. In this way, we

have incorporated into our description some elastic and inelastic unitarity corrections

through resumming the imaginary part of the π−η(′) and K−K0 self-energy loop

insertions into the propagator, accounting for rescattering effects of the final state

hadrons. Nonetheless, this description is not strictly unitary neither in its elastic form

(since we have accommodated inelasticities into the description) nor in an inelastic

fashion which would require to couple the channels in a more elaborated way. In

addition, this description is neither fully analytic in the sense that the real part of the

loop functions has been neglected. Usually, this option, known as the Breit-Wigner

(BW) representation, is widely used in the literature even though it might not be

an appropriate choice for describing data (as we have pointed out in Refs. [13, 179]).

Notwithstanding, we have considered interesting to discuss it as a starting point.

Using the values MS = (980 ± 20) MeV and ΓS = (75 ± 25) MeV [37] for the BW-

mass and -width of the a0(980) resonance, the SFFs at the origin, see Eq. (5.15),

are predicted to be F πη
0 (0) = 0.92 ± 0.02 and F πη′

0 (0) = 0.05 ± 0.03, respectively.

Once these normalisations are taken into account, the resulting normalised SFFs are

identical in the RChT framework, that is, F̃ π−η
0 (s) = F̃ π−η′

0 (s). In Fig. 5.3, we provide

their graphical account by considering a0(980) as the mediated scalar resonance.

The above description can be generalised to take into consideration further res-

onances with the same quantum numbers of the a0(980). In particular, we will also

include the a0(1450) resonance whose effects, in spite of its mass, could be noticeable

within the available phase space. For the same reason, however, no more resonances

9Current understanding favours that the meson multiplet including this resonance does not sur-
vive in the large-Nc limit (see e.g. Ref. [178]). However, since this Breit-Wigner–like model is only
considered for illustrative purposes this fact will be ignored as it is usually done in this approach.
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Figure 5.3: Normalised π−η(′) scalar form factors as obtained from the Breit-Wigner
approach described in Sec. 5.3.1. The gray error band accounts for the (uncorrelated)
uncertainty on the mass and width of the a0(980) resonance.

will be considered henceforth. The SFFs in the framework of RChT including two

resonances then read as

F π−η(′)

0 (s) = cπ
−η(′)

0

×

1− 8cm(cm − cd)
F 2

2m2
K −m2

π

M2
S

+
4cm
F 2

(cm − cd)2m2
π + cd

(
s+m2

π −m2
η(′)

)
M2

S − s

−8c′m(c′m − c′d)
F 2

2m2
K −m2

π

M2
S′

+
4c′m
F 2

(c′m − c′d)2m2
π + c′d

(
s+m2

π −m2
η(′)

)
M2

S′ − s

 ,
(5.21)

where S and S ′ correspond to the a0(980) and a0(1450) resonances, respectively. The

short-distance requirement that the form factors go to zero for s → ∞ then implies

the constraints [56]:

4cdcm + 4c′mc
′
d = F 2 ,

cm
M2

S

(cm − cd) +
c′m
M2

S′
(c′m − c′d) = 0 . (5.22)

Not so much is known on the exact values of the couplings c′d,m (and, to some extent,

on cd,m). The estimate with only one scalar resonance led to cd = cm and thus it

seems plausible to keep this constraint in the case of two resonances. One immediate

consequence of the constraint and the second relation in Eq. (5.22) is c′d = c′m. Then,
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Figure 5.4: Normalised π−η(′) (left plot) and π−η′ (right plot) scalar form factors
as obtained from the Breit-Wigner approach described in Sec. 5.3.1 including two
resonances (red dashed curves) or a single resonance (solid black curves). The red
error bands account for the (uncorrelated) uncertainty on the mass and width of the
a0(980) and a0(1450) resonances.

the SFFs can be expressed, with cm and c′m fulfilling c2
m + c′2m = F 2/4, as

F π−η(′)

0 (s) = cπ
−η(′)

0

[
1 +

4

F 2

(
c2
m

M2
S − s

+
c′2m

M2
S′ − s

)(
s+m2

π −m2
η(′)

)]

−→ cπ
−η(′)

0

(M2
S − s− iMSΓS(s)) (M2

S′ − s− iMS′ΓS′(s))

{(
M2

S − s
) (
M2

S′ − s
)

+
4

F 2

[
c2
m

(
M2

S′ − s
)

+ c′2m
(
M2

S − s
)] (

s+m2
π −m2

η(′)

)}
,

(5.23)

once the energy-dependent widths have been incorporated into the scalar propagators.

Regarding the numerical values, we employ cm = 41.9 MeV [58] for the scalar coupling,

and MS′ = (1474±19) MeV and ΓS′ = (265±13) MeV [37] for the a0(1450) mass and

width, respectively. In Fig. 5.4, the normalised πη(′) SFFs obtained from Eq. (5.23)

in the approximation of considering two resonances are shown and compared with

the single-resonance case. Notice now that the normalised expressions depend on the

mode. While in the πη case, one clearly sees a dominant peak corresponding to the

a0(980) followed by a second smaller one in association with the a0(1450), in the πη(′)

case, two similar peaks located around both resonances are found.

5.3.2 Elastic dispersion relation: Omnès integral

A two-meson form factor is an analytic function in the whole complex plane except for

the branch cut originated as soon as the energy reaches the threshold for producing

the first intermediate state where an imaginary part is then developed. The case in
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5.3. π−η(′) Scalar Form Factor

which the intermediate states are exactly the same as the final one is known as elastic

and the corresponding cut is called unitary or elastic cut. For the case that concerns

us the associated cut starts at s = (mπ− + mη(′))2 and the corresponding (elastic)

unitarity relation for the scalar form factor reads (cf. Eq. (2.27))

ImF π−η(′)

0 (s) = σπ−η(′)(s)F
π−η(′)

0 (s)tπ
−η(′)∗

1,0 (s) , (5.24)

where tπ
−η(′)

1,0 (s) is the unitarized elastic π−η(′) partial wave of the scattering ampli-

tude of I = 1 and J = 0 to be discussed later. Analyticity, which relates the real and

the imaginary part of the form factor in Eq. (5.24), is ensured through the use of a

dispersion relation which after some algebra leads to the well-known Omnès represen-

tation [79]. In the case where one subtraction is allowed, it reads (up to a polynomial

ambiguity given by P (s) Eq. (2.36))

F π−η(′)

0 (s) = P (s) exp

s− s0

π

∫ ∞
sth

ds′
δ
π−η(′)

1,0 (s′)

(s′ − s0)(s′ − s− iε)

 , (5.25)

where s0 is the subtraction point chosen at 0 in our analysis. The dispersive represen-

tation has been wide and successfully employed for describing lots of phenomena and

in particular data on exclusive hadronic tau decays [13, 14, 15, 16, 97, 106, 159, 180].

Unfortunately, the π−η(′) decay modes lack of any kind of experimental data either on

the phase shifts or the decays spectra. However, in the elastic region Watson’s final

state theorem [78] states that the phase of the elastic scattering amplitude equals

that of the corresponding form factor. Thus, we can access the form factor phase

shift δπ
−η(′)

1,0 (s) through the identification

φπ−η(′)(s) ≡ δπ
−η(′)

1,0 (s) = arctan
Imtπ

−η(′)

1,0 (s)

Retπ
−η(′)

1,0 (s)
. (5.26)

Regarding the scattering amplitudes π−η → π−η and π−η′ → π−η′, we have consid-

ered convenient for our analysis to employ the expressions obtained within the global

analysis of the U(3)⊗ U(3) one-loop meson-meson scattering amplitudes in χPT in-

cluding resonances, carried out in Ref. [57], to have better control on the input values

of the theory (couplings, masses etc.). In that work, the partial wave amplitudes have

been properly deduced and unitarized through the N/D method [181, 182], whose

general simplified perturbative solution reads

tPQI,J (s) =
σPQ(s)NPQ

I,J (s)(
1 + gPQ(s)NPQ

I,J (s)
) , (5.27)
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and finally employed to fit the available scattering amplitudes’ phaseshifts. In Eq. (5.27),

PQ refers to the interacting meson-meson system in question, gPQ(s) are the dime-

son one-loop scalar functions defined in Eq. (33) of Ref. [57] and NPQ
I,J (s) contains the

expressions of the partial wave amplitudes up to O(p4).

The polynomial ambiguity P (s) in Eq. (5.25) needs to be fixed from theory. In

principle, it could depend on s, but if the form factor is “well-behaved” at high-

energies, that is lims→∞ F0(s) = 0, it can be set to a constant. Our analysis confirms,

a posteriori, that this is a good assumption. We have chosen it to be F π−η
0 (0) = 0.92

and F π−η′

0 (0) = 0.05 from Eq. (5.14) 10. In Fig. 5.5 we represent the elastic SFFs

obtained by employing Eq. (5.25) using the results from the updated analysis of

Ref. [58] as input values here and hereafter by neglecting error correlations since we

ignore them (specifically we are using the values in Eq. (45) of this reference). From

the figure, we see a resonant region at around 1.4 GeV which may be attributed to

the effect of the a0(1450). This presence and the absence of a corresponding peak for

the a0(980) is explained because the former resonance appears in the s-channel of the

scattering amplitude while the latter only in the crossed t and u channels.

It can be verified that the form factor can also be written in a closed expression as

[56, 161, 183]

F π−η(′)

0 (s) =
∏ 1(

1− s/szj
) F π−η(′)

0 (0)(
1 + gπ−η(′)(s)Nπ−η(′)

1,0 (s)
) . (5.28)

The szj are the locations of the zeros of the inverse of the denominator function

D(s) = (1 + gπ
−η(′)

(s)Nπ−η(′)

1,0 (s)) which have to be removed in the form factor. In

our specific case, the zero is placed at sz1 = 1.9516 GeV2 corresponding to the bare

(squared) mass of the scalar octet, S8 [58]. As a consistency check, we have verified

that the results obtained with Eq. (5.25) are reproduced using the closed expression

from Eq. (5.28). Inspired by the works of Refs. [160, 161, 162, 163, 164, 165, 166, 130,

184, 185, 186, 187, 188], we propose to mimic the analogous expression of Eq. (5.28)

for describing the coupled-channels case. In this respect, our closed form solution for

the coupled-channels problem giving the participant scalar form factors (instead of the

more common iterative solution of the coupled integro-differential set of equations)

appears numerically advantageous for the Monte Carlo event generator performance

[115] specially if our expressions are to be used for fitting the resonance parameters

appearing in the SFFs. The method is detailed in the appendix D.

10These inputs could be checked with lattice QCD simulations incorporating isosping breaking.
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Figure 5.5: Scalar π−η (up) and π−η′ (down) form factors considering elastic final-
state interactions of the di-meson system as obtained from Eq. (5.25). The gray error
bands account for the (uncorrelated) uncertainty on the input values from Ref. [58].

5.3.3 Two coupled channels

We first consider the two coupled channels case involving the π−η and π−η′ cuts.

The two-meson loop function and the required partial-wave scattering amplitudes are

organized in symmetric matrices given, in this specific case, by

g(s) =

(
gπ−η 0

0 gπ−η′

)
, N1,0(s) =

(
Nπ−η→π−η Nπ−η→π−η′

Nπ−η′→π−η Nπ−η′→π−η′

)
, (5.29)
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where each entry of the matrix N(s) (omitting the I, J quantum numbers) reads

Nij(s) = T
O(p4)
ij (s) − gi(s)

(
T
O(p2)
ij (s)

)2

(i, j = 1, 2) with T
O(p4)
ij (s) referring to the

corresponding partial wave amplitude at O(p4) which includes the O(p2) term, O(p4)

contributions arising from wave-function renormalization of the fields and, finally,

the explicit O(p4) resonance exchange and one-loop diagrams in the s as well as

in the crossed t and u channels. Written in this way, we avoid double counting of

loop contributions in the s-channel. For sake of clarity, Eq. (D.18) applied to this

particular case would read(
F π−η

0 (s)

F π−η′

0 (s)

)
=

1

Det[DIJ(s)]
× (5.30)(

1 + gπ−η′(s)Nπ−η′→π−η′(s) −gπ−η(s)Nπ−η→π−η′(s)
−gπ−η′(s)Nπ−η′→π−η(s) 1 + gπ−η(s)Nπ−η→π−η(s)

)(
1 0
0 1

)(
F π−η

0 (0)

F π−η′

0 (0)

)
,

where we have considered the subtraction point to be s0 = 0 for simplicity and in

analogy with Refs. [14, 13, 16] where it appeared to be a good choice. The matrix

DIJ(s) entering Eq. (5.30) is defined in Eq. (D.19) of appendix D whose determinant,

Det[DIJ(s)], may vanish for some values of s. We get rid of these possible zeros by

factorizing them in the matrix DIJ(s) as has already been done in Eq. (5.28) for

the single-channel elastic case. In this manner, these singularities can be seen as

dynamically generated resonances from the matrix DIJ(s) after the rescattering of

the pseudoscalars. In our particular case, Det[DIJ(s)] vanishes, again, at sz1 = 1.9516

GeV2 for the same reason given for the single elastic case.

Regarding the input values at the origin of energies, their values are not precisely

known and for our study we have employed F πη
0 (0) = 0.92 and F πη′

0 (0) = 0.05 as

obtained from Eq. (5.14). These values, since need to be fixed from external theoret-

ical arguments, enter as a source of model-dependency (see 10). In Fig. 5.6 we show

the results of solving Eq. (5.30) for the π−η SFF coupled to π−η′ and viceversa (red

dashed curves), compared to the respective elastic cases (black lines). On the upper

plot of Fig. 5.6 it is seen that the π−η scalar form factor coupled to πη′ develops a

thin peak at around 1.4 GeV followed by a hard drop. We can also observe that, in

general terms, the neat effect of coupling the π−η′ channel on the π−η SFF is small.

On the contrary, the impact of the π−η cut onto the description of the π−η′ SFF is

large as one can see from the down panel of Fig. 5.6 where, in this case, the resonance

region is highly enhanced. One interesting thing to notice is that the coupled-channels

effects start, respectively, at the π−η and π−η′ thresholds and if these inelasticities

are switched off, one would recover the elastic description.
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Figure 5.6: π−η SFF coupled to π−η′ (up) and π−η′ SFF coupled to π−η (down) as
calculated from Eq. (5.30) (red dashed curves) compared to the corresponding elastic
case (black solid curve). All the expressions are normalized to unity at the origin.

Analogously, we play the same game by considering the K−K0 cut which is located

between π−η and π−η′. A priori one may expect the intermediate ūd-like scalar

to strongly couple to the K−K0 system [189]. One important thing we would like

to emphasize is that the value at the origin of the energies of the K−K0 SFF, as
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computed from RχT in analogy with Eq. (5.14) for π−η(′), is FK−K0

0 (0) = 1 (this can

be easily understood observing that the kaon mass difference is very small compared

to the chiral symmetry breaking scale), and therefore its weight may be relevant. This

is corroborated in Fig. 5.7, where we show the π−η(′) SFF coupled to K−K0 (blue

dotted curves in the up and down panels respectively). Notice that this time the

effect on the π−η SFF is sizable. After a small dip at the πη threshold, we see a small

peak at the K−K0 threshold and a significant enhancement between 1.3− 1.45 GeV

respect to the elastic case. This is one interesting result which may help to unveil

the somehow ”exotic” nature of scalar resonances which couple to the ūd operator.

Suggestions like tetraquark interpretation as well as molecular KK̄ threshold states

exist in literature 11.

5.3.4 Three coupled channels

Let us now turn to the case in which the π−η,K−K0 and π−η′ cuts are considered at

the same time 12. This requires to perform an evaluation where the three channels are

coupled to each other. In this case, the matrices encoding the corresponding scalar

loop function and partial-wave amplitudes read

g(s) =

 gπ−η 0 0
0 gKK 0
0 0 gπ−η′

 , (5.31)

N1,0(s) =

 Nπ−η→π−η Nπ−η→π−η′ Nπ−η→K−K0

Nπ−η′→π−η Nπ−η′→π−η′ Nπ−η′→K−K0

NK−K0→π−η NK−K0→π−η′ NK−K0→K−K0

 . (5.32)

From the corresponding analogous expression of Eq. (5.30) for three coupled channels

(which now we do not explicitely quote), we obtain the π−η SFF coupled to K−K0

and π−η′ as well as π−η′ SFF coupled to K−K0 and π−η. In Fig. 5.8 we provide

a graphical account of these results (green dot-dashed curves) compared with all

previous cases. In addition, we get the K−K0 SFF coupled to the π−η(′) system as

shown in Fig. 5.9. In the case of the πη SFF, the three coupled channels solution

follows closely the one obtained coupling πη and KK cuts, except for the region

between 1.2 and 1.3 GeV where a dip first appears. For the KK SFF, the three

coupled channels solution resembles very much the KK coupling to πη apart from

11See e.g. the note on scalar mesons at the PDG [37].
12The π−π0 cut is safely neglected, because no resonance contributions to this channel are allowed

at first order in isospin breaking. However, its low-energy limit has been derived in Ref. [190] in a
model-independent way because of its importance in producing a sizable CP-violating asymmetry
in the di-pion tau decays, albeit only very close to the ππ-threshold.
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Figure 5.7: π−η (up) and π−η′ (down) SFF coupled to K−K0 as calculated from
Eq. (D.18) (blue dotted curves) compared to the corresponding elastic case (black
solid curve). All the expressions are normalized to unity at the origin.

the 1.3 to 1.4 GeV region, where the peak in the two-channels case almost disappears

in the three-channel solution. Finally, in the πη′ case, the three coupled channels

solution does not appear to be significantly dominated by any of the two-channels

results in the inelastic region.
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Figure 5.8: π−η SFF coupled to K−K0 and π−η′ (up) and π−η′ SFF coupled to π−η
and K−K0 (right) as calculated from Eq. (D.18) (green dot-dashed curve) compared
to both the elastic case (black solid curve) and to the two coupled-channels cases (red
dashed and blue dotted curves). All the expressions are normalized to unity at the
origin.

A last explanation is in order: the effect of the πη(′) → π(π)γ channels should,

in principle, be considered as well. The devoted discussion of these contributions in
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Figure 5.9: KK SFF coupled to π−η(′) normalized to unity at the origin. The green
dot-dashed curve refers to the three coupled-channels case while the red-dashed and
blue-dotted curves refer to KK coupled to π−η and π−η′, respectively.

Ref. [190] shows that either the subleading isospin breaking of the ρ contribution to the

one-pion final state, or phase space considerations in the two-pion channel suppress

enough these channels so as to neglect them given the current level of uncertainty.

5.4 Spectra and branching ratio predictions

5.4.1 τ− → π−ηντ

The vector and scalar form factors as described in Sections 5.2 and 5.3 finally enter

Eq. (5.8) in order to predict the partial width of the decay τ− → π−ηντ . The

corresponding distributions are plotted in Fig. 5.10 and the predicted branching ratios

are given and compared with other authors results in Table 5.1. In the figure, we

display the vector contribution alone (red dashed curve) as well as the full decay width

distribution. The latter is shown in three different ways depending on the employment

of the Breit-Wigner formula (blue dotted curve), the elastic Omnès formula (solid

black curve), or the three coupled channels description (green dot-dashed curve) for

the parameterization of the scalar form factor as presented in the main text.

On one hand, we can see that the low-energy region of the spectrum, which ranges
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from the π−η threshold to 1 GeV, is mainly dominated by the vector contribution

with a neatly visibly effect associated to the ρ(770) resonance. Only in the case of the

Breit-Wigner description of the SFF the low-energy region is instead dominated by

the a0(980) scalar resonance whose manifestation is clearly seen at around 0.90 GeV,

and then suppressed. On the other hand, the scalar contribution as obtained from a

dispersion relation through the single channel Omnès integral, or from coupling three

channels, dominates the energy region of the distribution above 1.2 GeV. For the

elastic single channel case the distribution falls off smoothly, while a sizable peak at

around 1.4 GeV appears if the three coupled channels description is employed. This

peak appears due to considering the K−K0 intermediate state, and it is associated

with the octet of the scalar multiplet, S8, appearing in the resonance chiral lagrangian

our work is based on, and may be attributed to the effect of the a0(1450) resonance.

Also, in the upper part of the distribution, although suppressed, we can see the trace

of other vector contributions, such as ρ′ and ρ′′, and the corresponding interferences

among them.

We would like to note that our predictions respect the current experimental upper

bounds as can be seen from the results presented in Table 5.1. From the table, we can

also observe that our prediction for the vector contribution is quite in accordance with

previous results while the scalar contributions show some scatter. The latter may be

one interesting consequence of the effect of coupling channels for the parameterization

of the scalar form factor. Our description is pretty sensitive to the isospin violating

π0 − η mixing angle επη = 9.8(3) · 10−3 whose error becomes an important source

of uncertainty for our predictions together with the intrinsic error associated to the

scalar form factor. The latter arise from the (uncorrelated) errors on the resonance

parameters for the Breit-Wigner description and from the (uncorrelated) errors on the

input values of Ref. [58] for the Omnès solution as explained in Section 5.3.2. On the

contrary, it is very important to emphasize that for the coupled-channels description

we do not provide an uncertainty associated to the SFF since our forced guess of

uncorrelated parameters gives large uncertainties resulting in predictions compatible

with zero 13. This happens because our parameterization is rather sensitive to the

value of the mass of the scalar resonance entering in s-channel, which appears moved

away from the central value enhancing their contribution when trying to cover the

13In Ref. [190], it is pointed out that an uncertainty smaller than 20% in the fπη0 at 1 GeV would
allow to improve the bounds on a charged Higgs obtained from B → τντ . The previous remark in
the main text makes clear that this is not currently possible.
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band within the uncertainty. Regarding the effect of the error from the measured

π−π0 VFF on the π−η VFF, this is very tiny and hence neglected in our predictions.

Accurate predictions would demand precise values for επη and as soon as τ− →
π−ηντ becomes measured we will be in a position to infer the input values we have

employed in our analysis (επη, couplings, masses, F π−η(′)

0 (0), etc.) from fitting data,

check their consistency with the corresponding fit results of the global analysis of

meson-meson scattering [57] and with [58], and present more accurate results.
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Figure 5.10: Decay distribution for τ− → π−ηντ as obtained from Eq. (5.8). Red-
dashed curve describes the contribution corresponding to the vector form factor while
the other three curves represent the full distribution by employing the scalar form
factor in its elastic version (black solid curve), in the three coupled-channels analysis
(green dot-dashed curve) and using the Breit-Wigner formula with two resonances
(blue dotted curve).

5.4.2 τ− → π−η′ντ

Regarding τ− → π−η′ντ , we show the decay width distribution in Fig. 5.11 and our

branching ratio estimates in Table 5.2. In this case, the large mass of the η′ con-

siderably reduces the available phase space with respect to the π−η mode. As a

consequence of that, the vector contribution (red dashed curve in the plot) is sup-

pressed since the effect of the ρ(770) appears before the π−η′ production threshold.
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BRV · 105 BRS · 105 BR·105 Reference
0.25 1.60 1.85 Tisserant, Truong [191]
0.12 1.38 1.50 Bramón, Narison, Pich [192]
0.15 1.06 1.21 Neufeld, Rupertsberger [193]
0.36 1.00 1.36 Nussinov, Soffer [194]
[0.2, 0.6] [0.2, 2.3] [0.4, 2.9] Paver, Riazuddin [195]
0.44 0.04 0.48 Volkov, Kostunin [196]
0.13 0.20 0.33 Descotes-Genon, Moussallam [190]

BRV · 105 BRS · 105 BR·105 Our analysis
0.26± 0.02 0.72+0.46

−0.22 0.98± 0.51 Breit-Wigner [a0(980)]
0.26± 0.02 0.48+0.29

−0.14 0.74± 0.32 Breit-Wigner [a0(980) + a0(1450)]
0.26± 0.02 0.10+0.02

−0.03 0.36± 0.04 Elastic Omnès solution
0.26± 0.02 0.15± 0.09 0.41± 0.09 2 coupled channels (π−η to π−η′)
0.26± 0.02 1.86± 0.11 2.12± 0.11 2 coupled channels (π−η to K−K0)
0.26± 0.02 1.41± 0.09 1.67± 0.09 3 coupled channels

BR·105 Experimental collaboration
< 14 (95% CL) CLEO [108]
< 7.3 (90% CL) Belle [149]
< 9.9 (95% CL) BaBar [107]

Table 5.1: Branching ratio predictions for τ− → π−ηντ as obtained as from Eq. (5.8)
with the vector and scalar form factors described in the text. We name our predictions
depending on the scalar form factor description we have employed. A comparison with
current experimental status and with other authors’ estimates is also provided. The
source of the uncertainty arises from the errors on επη (only source on the vector form
factor) and from the (uncorrelated) errors on the scalar form factor input values. For
the coupled channels cases, the uncertainty arises from επη only. The total branching
ratio is obtained after symmetrizing and adding in quadrature all uncertainties.

Therefore, the decay is mainly driven by the scalar form factor. Again, we show

three different curves for the full distribution named depending on the scalar form

factor we have employed. The Breit-Wigner contribution (blue dotted curve) is, in

this case, small since the effect of the a0(980) appears before the π−η′ threshold and

only the peak of the a0(1450) is relevant. The coupled channels description (green

dot-dashed curve) shows a clear peak at around 1.4 GeV which vastly dominates the

decay. This effect may be attributed to the a0(1450) resonance as we argued in the

π−η mode. The same argument is valid for the elastic Omnès description (solid black

curve) though the peak, in this case, is not as pronounced.

While our estimate for the vector contribution, of the order of 10−10, is smaller

than previous predictions, our values for the scalar contribution lie within the window

10−7−10−6, respecting the current upper bounds in any case. Regarding the numerical
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calculations, we have found this process much more sensitive to the isospin violating

input value επη′ than the π−η mode. This is so because they are combined is such a

way that the value at the origin of the energies, F π−η′

0 (0) given in Eq. (5.7), becomes

a small quantity, whose square enters Eq. (5.8) for the description of the width. The

upper and lower values of the windows given in the predictions of Table 5.2 are due

to the associated errors to επη′ = 2.5(1.5) · 10−4. We find that this decay could be

of the order of the current experimental bound 10−6. It is really interesting to see

whether future experimental information can soon shed light on this mode. Taking

into account the current upper bounds as well as our predictions either of the decay

modes τ− → π−η(′)ντ is likely to allow the discovery of SCC at Belle-II.
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Figure 5.11: Decay distribution for τ− → π−η′ντ as obtained as from Eq. (5.8).
Red-dashed curve describes the contribution corresponding to the vector form factor
while the other three curves represent the full distribution by employing the scalar
form factor in its elastic version (black solid curve), in the three coupled-channels
analysis (green dot-dashed curve) and finally using the Breit-Wigner formula with
two resonances (blue dotted curve).

5.4.3 η(′) → π+`−ντ (` = e, µ)

The form factors required for describing τ− → π−η(′)ντ and the semileptonic decays

η(′) → π+`−ντ are the same since the hadronic matrix element 〈η(′)|d̄γµu|π+〉 is related
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BRV BRS BR Reference
< 10−7 [0.2, 1.3] · 10−6 [0.2, 1.4] · 10−6 Nussinov, Soffer [197]
[0.14, 3.4] · 10−8 [0.6, 1.8] · 10−7 [0.61, 2.1] · 10−7 Paver, Riazuddin [198]
1.11 · 10−8 2.63 · 10−8 3.74 · 10−8 Volkov, Kostunin [196]

BRV BRS BR Our analysis
[0.3, 5.7] · 10−10 [2 · 10−11, 7 · 10−10] [0.5 · 10−10, 1.3 · 10−9] Breit-Wigner (1 res)
[0.3, 5.7] · 10−10 [5 · 10−11, 2 · 10−9] [0.8 · 10−10, 2.6 · 10−9] Breit-Wigner (2 res)
[0.3, 5.7] · 10−10 [2 · 10−9, 4 · 10−8] [2.6 · 10−9, 4 · 10−8] Elastic Omnès solution
[0.3, 5.7] · 10−10 [2 · 10−7, 2 · 10−6] [2 · 10−7, 2 · 10−6] 2 cc (π−η′ to π−η)
[0.3, 5.7] · 10−10 [3 · 10−7, 3 · 10−6] [3 · 10−7, 3 · 10−6] 2 cc (π−η′ to K−K0)
[0.3, 5.7] · 10−10 [1 · 10−7, 1 · 10−6] [1 · 10−7, 1 · 10−6] 3 coupled channels

BR Experimental collaboration
< 4 · 10−6 (90% CL) BaBar [110]
< 7.2 · 10−6 (90% CL) BaBar [151]

Table 5.2: Branching ratio predictions for τ− → πη′ντ as obtained as from Eq. (5.8)
with the vector and scalar form factors described in the text. We name our predictions
depending on the scalar form factor description we have employed. A comparison with
current experimental status and with other author estimates is also provided. Our
best theoretical estimate, corresponding to the three-coupled channel SFF analysis,
is highlighted in boldface.

by crossing with Eq. (5.6). In η
(′)
`3 decays the available kinematical energy range is,

however, m2
` < s < (mη(′) − mπ)2 instead of (mη(′) + mπ)2 < s < m2

τ for the τ

decays. Consequently, the form factors entering η`3 decays are real functions of s.

The differential decay width is given in this case by

dΓ

d
√
s

=
G2
F |VudF+(0)|2(cπη

(′)

V )2(s−m2
l )

2

24π3M3
η s{

(2s+m2
`)q

3
πη(′)F̃+(s)2 +

3

4s
∆2
πη(′)m

2
`qπη(′)F̃0(s)2

}
. (5.33)

Notice that the width is mainly given by the contribution of the vector form factor

since the scalar form factor is weighted by the squared mass of the final state lepton,

hence suppressing its contribution.

In Fig. 5.12, we show the decay distributions while in Table 5.3 we present our

branching ratios estimates. The rareness of these modes may enhance the sensitivity

to new types of interactions and any clear deviation from the branching ratio of order

O(10−13−10−12) may probe physics beyond the SM. At present, BESIII has reported

B(η → π+e−ν̄e + c.c.) < 1.7 · 10−4 and B(η′ → π+e−ν̄e + c.c.) < 2.2 · 10−4, both at the
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5.4. Spectra and branching ratio predictions

90% C.L., which means the firsts upper bounds ever for η and η′ semileptonic weak

decays [199], but still extremely far from our values. These are in agreement with

those in Ref. [190]. This can be understood from the fact that, although the analysis

of the VFF dominating η
(′)
`3 decays is quite different in our analysis and theirs 14 both

are consistent with the chiral limit of QCD and incorporate information on the off-

shell ρ(770) meson contribution, which is of paramount important in the available

phase space. However, we note that our predictions are slightly lower than theirs.

Predictions in [193] are in turn a factor two smaller than in Ref. [190] because their

pure χPT result at NLO lacking the explicit ρ(770) exchange effect.

Decay Descotes-Genon, Moussallam [190] Our estimate
η → π+e−ν̄e + c.c. ∼ 1.40 · 10−13 0.6 · 10−13

η → π+µ−ν̄µ + c.c. ∼ 1.02 · 10−13 0.4 · 10−13

η′ → π+e−ν̄µ + c.c. 1.7 · 10−17

η′ → π+µ−ν̄µ + c.c. 1.7 · 10−17

Table 5.3: Branching ratio estimates for η(′) → π+`−ν` (` = e, µ) obtained after
employing επη = 9.8(3) · 10−3, επη′ = 2.5(1.5) · 10−4 for the η`3 and η′`3 respectively.

14We recall that in our case is given by the corresponding η(
′) − π0 mixing factor times the π−π0

VFF taken from data, while in Ref. [190] it is basically built upon the unitarized ηπ → ππ χPT
amplitudes taking into account η → 3π information.
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Figure 5.12: Decay distribution for η → π+`−ντ (up panel) and η′ → π+`−ντ (black
solid and red dashed curves for the electronic, ` = e, and muonic, ` = µ, cases
respectively) as obtained as from Eq. (5.33).

5.5 Conclusions

Hadronic decays of the τ lepton constitute an ideal scenario for studying the hadroniza-

tion of QCD currents in its non-perturbative regime. In this work, we examine the
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5.5. Conclusions

τ− → π−ηντ and τ− → π−η′ντ decays which –while being allowed, though isospin-

suppressed, SM processes– belong to the so-called SCC processes unseen in Nature

so far.

We focus on the Standard Model prediction of these decays by describing the

participant vector and scalar form factors. These have been calculated within Chiral

Perturbation Theory including resonances as explicit degrees of freedom as an initial

setup approach. In this framework, we have encoded the π0−η−η′ mixing by means

of three Euler angles (επη, επη′ , and θηη′), where επη(′) is an isospin violating quantity

entering the expression for decay width which explains the smallness of these decays.

We have determined επη and επη′ to be 9.8(3) · 10−3 and 2.5(1.5) · 10−4, respectively,

calculated at next-to-leading order in the RChT framework (cf. Eq. (5.18)). One nice

and interesting consequence which emerges neatly in this parameterization is that the

corresponding π−η and π−η′ vector from factors in its normalized version are found

to be proportional to the well-known π−π0 vector form factor. For our study, we have

implemented the experimental determination of the latter, obtained from the Belle

collaboration [19] in the analysis of τ− → π−π0ντ decays, for describing the former

in a model-independent way.

Regarding the scalar form factor description, we have discussed different param-

eterizations according to their increasing fulfilment of unitarity and analyticity. We

started considering a Breit-Wigner representation by resumming inelastic width ef-

fects into the resonance propagator(s) but neglecting the real part of the correspond-

ing loop function, hence inducing a violation of unitarity and analyticity. This case

has been tackled by considering, first, the contribution of the a0(980) as the only

resonant state and, second, by including the nearest radial excitation a0(1450) into

the representation. Then, we moved to a completely analytic description, respecting

elastic unitarity, by the use of a dispersion relation through the well-known Omnès in-

tegral. This solution requires as an input the elastic phase of the form factor which has

been obtained from Ref. [57], after invoking Watson’s theorem. Finally, we have illus-

trated a method for solving coupled-channels form factors (see appendix D) by using

closed algebraic expressions after exemplifying the equivalence with the Omnès solu-

tion for the single channel elastic case. In this way, the lowest-lying scalar resonances

are generated dynamically after considering final-state interactions of meson-meson

systems.

Several comments are in order concerning our branching ratios predictions:

i) We have found the π−η decay branching ratio to be of order 10−5, in agreement

with previous estimates and respecting the current experimental upper bound [107];
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Chapter 5. Study of the second-class current decays τ− → π−ηντ and τ− → π−η′ντ

ii) both vector and scalar contributions are comparable;

iii) the Breit-Wigner descriptions are both in agreement at one sigma level inde-

pendently of considering one or two scalar resonances;

iv) the effect of coupling the π−η′ channel to the π−η description of the scalar form

factor is small since it does not differ so much from the elastic dispersive representation

(obtained after Omnès);

v) the effect of including the KK threshold is, however, sizable. This may be due

to the exotic nature of the scalars coupled to the ūd operator;

vi) accurate predictions demand precise value for the isospin violating parameter

επη which factor out in the decay width;

vii) the π−η′ is basically driven by the scalar contribution because of phase space

considerations;

viii) the latter mode is much more sensitive to the isospin violating parameters,

επη′ , as well as to the SFF description;

ix) inelastic channels may increase the branching ratio of the π−η′ mode by one

or two orders of magnitude up to order of 10−6;

x) the errors of our scalar form factors contributions are underestimated since

correlations between the participating parameters are unknown. This important lim-

itation shall be improved once these decay modes are first measured. Ideally, through

a joint analysis of meson-meson scattering and τ− → π−η(′)ντ decays data.

Therefore, considering the tighter bounds on the π−η′ channels, both τ− → π−η′ντ

decay modes have good prospects for discovering SCC soon at Belle-II. While the

ρ(770) meson shoulder should be an unambiguous signature of this discovery in the

π−η mode, the thin peak of the a0(1450) resonance would be very much helpful in both

cases. Finally, we have given estimates for the semileptonic crossing symmetric decays

η(′) → π+`−ν` (` = e, µ) for which we do not foresee detection in the near future. We

hope our work to serve as a motivation for the experimental collaborations to measure

these decays in the near future at Belle-II, BESIII and forthcoming facilities.
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Part II

Phenomenological applications of
Padé approximants
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Chapter 6

Introduction to Padé approximants

When perturbation methods are considered to solve a problem, the answer usually

emerges as an infinite series given in terms of the perturbation parameter ε. If the

perturbation series converge rapidly, summing up the few calculated terms provides

a realistic approximation to the exact solution. As a matter of example in physics,

perturbative tools have been applied to QED leading a successful description of the

interactions among fermions and photons. However, it is more common for the series

to converge slowly, if it converges at all. Fortunately, there are powerful methods for

recovering an accurate approach to the exact answer from a few terms of a slowly

convergent or divergent series. In this chapter we will briefly discuss the Padé method

which, in some instances, has been proven to be a successful summation method. We

will not provide a formal and rigorous mathematical discussion on the method1, which

is out of the scope of this thesis, but rather a general overview with explanatory and

easy going examples.

Let us consider the power series expansion of a function f(z) around the origin

on the complex plane (z → 0) as of

f(z) =
∞∑
n=0

cnz
n , (6.1)

with a certain radius of convergence r. The idea of Padé approximants is to replace

the power series as given in Eq. (6.1) by a sequence of rational functions. Strictly

speaking a PA to f(z) is a polynomial of order N over a polynomial of order M

PN
M (z) =

∑N
j=0 aj(z)j∑M
k=0 bk(z)k

=
a0 + a1z + · · ·+ aN(z)N

1 + b1z + · · ·+ bM(z)M
, (6.2)

1The interested reader is referred to Refs. [200, 201] to deepen on the subject.
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constructed such that2 the Taylor series expansion of PN
M (z) matches the power series

f(z) up to the highest possible order

f(z)− PN
M (z) = O(z)M+N+1 . (6.3)

For example, to determine the P 0
1 (z) Padé we expand this approximant in a Taylor

series

P 0
1 (z) =

a0

1 + b1z
= a0 − a0b1z +O(z2) , (6.4)

and compare with the first two terms in the power series representation of Eq. (6.1)

f(z) = c0 + c1z +O(z). This leads two equations

c0 = a0 , (6.5)

c1 = −a0b1 , (6.6)

thus

P 0
1 (z) =

c0

1− c1
c0
z
. (6.7)

As we will see in the following, the main advantage of the use Padé approximants

respect to Taylor series expansion is that they often enlarge their proven range of

applicability and accelerate the rate of convergence though, sometimes, the improve-

ment is not astounding. Actually, the convergence of Padé approximants is not a

simple extension of the convergence theory of Taylor series and one can find situa-

tions where Taylor series converge while Padé approximants do not [201]. However,

the real power of Padé approximants arises when applying the method to divergent

series as we will illustrate with the next example. Let us consider the function

f(z) =
1

z
ln(1 + z) , (6.8)

whose Taylor expansion

f(z) =
∑
n=0

(−z)n

n+ 1
= 1− z

2
+
z2

3
− z3

4
+
z4

5
+O(z5) , (6.9)

converges for |z| < 1 and diverges elsewhere.

As a matter of example, in Fig. 6.1 we provide a graphical account of the PAs

P 0
1 (z) (short-dashed blue curve), P 1

1 (z) (dot-dashed red curve), P 1
2 (z) (long-dashed

2With any loos of generality, we take b0 = 1 for definitiness.
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orange curve) and P 2
2 (z) (dotted green curve) Padé approximants to the function

Eq. (6.8) (black solid curve),

P 0
1 (z) =

1

1 + z
2

, P 1
1 (z) =

1 + z
6

1 + 2z
3

, P 1
2 (z) =

1 + z
2

1 + z + z2

6

, P 2
2 (z) =

1 + 7z
10

+ z2

30

1 + 6z
5

+ 3z2

10

. (6.10)

We see that the sequence converge rapidly and even beyond the radius of convergence

of the Taylor series |z| < 1.
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Padé Approximant

Figure 6.1: P 0
1 (z) (blue curve), P 1

1 (z) (red curve), P 1
2 (z) (orange curve) and P 2

2 (z)
(green curve) Padé approximants to the function to 1

z
ln(1 + z) (black curve).

Convergence properties of PA to a given function are far from trivial and is an

active field of research in applied mathematics. The convergence of the sequence of PA

to the function we want to approximate is only ensured for special kind of functions

such as Stieltjes or meromorphic functions. A function f(z) is called Stieltjes if obeys

a dispersion relation given in terms of a positive definite spectral function. In this

case, the Padé sequence is convergent everywhere on the complex plane, except on

the branch cut. The function Eq. (6.8) that concerns us is of Stieltjes-type and can

be proved that Padé approximants converge to 1
z
ln(1 + z) for all z in the cut plane

|arg| < π (See Ref. [201] for a detailed demonstration).

The reason why PA are able to provide a better description of Eq. (6.8) than the

Taylor series Eq. (6.9) lies on the inability of a polynomial to reproduce singularities
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such as branch-cuts or poles. The PA PN
M (z), however, place all the poles and zeros

on the negative real axis which, in turn, tend to reproduce the effect of the branch-cut

singularity of the function, (−∞,−1]. This feature can be seen in Fig. 6.2, where we

observe that effectively the poles and zeros all lie on the negative real axis and as

N →∞ the poles become dense mimicking, in some sense, the branch cut.
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-7 -6 -5 -4 -3 -2 -1 0
-1.0
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Figure 6.2: Poles (circles) and zeroes (squares) of the PA shown in Fig. 6.1.

The Padé sequence of a Stieltjes series has some interesting convergence prop-

erties such that: i) the diagonal Padé sequence PN
N (z) decreases monotonically as

N increases; ii) the Padé sequence PN−1
N (z) increases monotonically as N increases;

iii) The sequence PN
N (z) has a lower bound, while the sequence PN−1

N (z) has an up-

per bound. It is proven that all Stieltjes functions F (z) with the same finite series

representation used in the Padé summation satisfy [201]

lim
N→∞

PN−1
N (z) ≤ F (z) ≤ lim

N→∞
PN
N (z) . (6.11)

Canterbury approximants

Let us briefly introduce the so-called Canterbury approximants [200, 202, 203], a

bivariate generalization of PAs defined as CN
N (x, y) = RN (x,y)

QN (x,y)
. The coefficients of

RN(x, y) =
∑N

i,j ai,jx
iyj, (i, j) ∈ N , and QN(x, y) =

∑N
i,j bi,jx

iyj, (i, j) ∈ D are deter-

mined by the accuracy-through-order conditions up to O(x2Ny2N), and O(x2N+1−αyα)

with α = 0, 1, . . . 2N . The Canterbury group [202] demonstrated that for Stieltjes

and meromorphic bivariate functions, the convergence of CN+J
N (Q2

1, Q
2
2) is guaranteed
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for J = −1, 0 and resemble those of the PAs. This convergence properties will be

exploited in section 7.1.4.

Quadratic approximants

Thus far we have seen the powerfulness of PA to approximate our test function,

Eq. (6.8), away from the branch cut and the failure for describing the branch cut

region. Nonetheless, we would also like to illustrate a method which might be able

to approximate the branch cut region as well.

In the same spirit than Padé approximants, Quadratic approximants [204] (QA)

arise by squaring Eq. (6.3), the contact term of PA with the function f(z) we want

to approximate. This yields the quadratic equation

Q(z)f 2(z) + 2R(z)f(z) + S(z) = O(zq+r+s+2) , (6.12)

where Q(z), R(z) and S(z) are polynomials of order q, r, s, respectively. The solution

of Eq. (6.12) leads to

QAr,sq (z) =
−R(z)±

√
R2(z)−Q(z)S(z)

Q(z)
, (6.13)

with the special feature of generating a branch cut thanks to the square root. Notice

that the are two solutions, being the ones that picks up the phase of the function to

approximate the correct ones. With QA at hand, we reassess the logarithm function

evaluated in the previous section. Convergence of QA to Stieltjes functions is well

proven and documented and in most cases, the rate of convergence is faster than

for PAs [200]. Even better is their ability to reproduce order by order the analytic

structure of the branch cut and incorporate, at once, the correct behavior for z →
∞ [200, 204]. To illustrate their performance, we start with single pole QAs of the

type QAr,s1 (z) allowing r and s to run from 0 to 1. The sequence with two poles

converge much faster and is less illustrative for our pedagogical discussion. The

QA0,0
1 (z) requires 3 coefficients, while the QA1,1

1 (z) requires up to five. As examples,

QA0,0
1 (z) =

−1±
√

9− 6z

4− 3z
, QA1,1

1 (z) =
(21

2
− 5z)± 3

2

√
225− 240z + 14z2

12− 13z
.

(6.14)

The result is shown in Fig. 6.3 from where we realize that we are not only able

to approximate the region away from the cut, for which PA already worked well (cf.

Fig. 6.1), but also the branch-cut region. The higher the order r and s, the better

128



-2.0 -1.5 -1.0 -0.5 0.0
0

2

4

6

8

10

Q1
1,1

Q1
1,0

Q1
0,1

Q1
0,0

È
1

x
Log@1+zDÈ

Quadratic Approximant

Figure 6.3: QA0,0
1 (z) (short dashed blue), QA0,1

1 (z) (dot-dashed red), QA1,0
1 (z) (long

dashed orange) and QA1,1
1 (z) (dotted green) QAs to the function 1

z
ln(1 + z) (black).

the approximation of both branch cut and the region out of the cut. The QA1,1
1 (z)

requires the same amount of information than the P 2
2 (z) but performs better not only

along the cut but also below.

Phenomenological applications

With all the insights from the Padé method and convergence theorems at hand,

we can venture a trip towards phenomenological studies. In some cases, the direct

application of the convergence theorem might guarantee in advance our success. In

other cases, specially when the analytical properties of the function to approximate

are unknown and the local information scarce, we will pursue a convergence pattern

to satisfy our criterium of systematic study.

In the forthcoming sections 7 and 8, we will apply Padé approximants to describe

meson transition form factors. It is worth to say once more, that there is no a priori

probe assuring the convergence of the Padé sequence to them since we do not know

the explicit analytical structure behind the form factor i.e we can not probe that

these form factor are not Stieltjes or pure meromorphic functions, but we can neither

probe the contrary. Therefore, one can always try the approximation and learn from

what happens.
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Chapter 7

Single and double Dalitz decays of
π0, η and η′ mesons

Anomalous decays of the neutral pseudoscalar mesons P (P = π0, η, η′) are driven

through the chiral anomaly of QCD (cf. Eq. (1.147)). Of historical importance is the

process P → γγ, which apart from being the main decay channel of the π0 and the

η, its experimental discovery confirmed, for the first time, the existence of anomalies.

In this case, the two final state photons are real and the transition form factor (TFF)

encoding the effects of the strong interactions of the decaying meson is predicted to

be a mere constant, the value of the axial anomaly in the chiral and large-Nc limits

of QCD, Fπ0γγ(0) = 1/(4π2Fπ) in the case of neutral pion, where Fπ ' 92 MeV

is the pion decay constant. On the contrary, if one of the two photons is virtual,

the corresponding TFF is no longer a constant but a function of the transferred

momentum to the virtual photon FPγγ∗(q
2), whereas when both photons are virtual

the TFF depends on both photon virtualities and it is represented by FPγ∗γ∗(q
2
1, q

2
2).

A single Dalitz decay occurs through the single-virtual TFF after the conversion of the

virtual photon into a lepton pair, while double Dalitz decays proceed with the TFF

of double virtuality involving two dilepton pairs in the final state. Dalitz decays are

attractive processes to improve our knowledge of the not yet exactly known TFFs of

the Pγ(∗)γ∗ vertices. This is the main motivation of this work together with predicting

the invariant mass spectra and the branching ratios (BR) of the decays P → `+`−γ

and P → `+`−`+`− with P = π0, η, η′ and ` = e or µ.

From the experimental side, the current status is the following. The PDG reported

value for the branching ratio of the decay π0 → e+e−γ is (1.174±0.035)% [37], which

is obtained from the PDG fits of the ratio Γ(π0 → e+e−γ)/Γ(π0 → γγ) = (1.188 ±
0.035)% (the latest measurement of this ratio, (1.140 ± 0.041)%, was performed by

ALEPH in 2008 [205]) and B(π0 → γγ) = (98.823±0.034)%. It is worth commenting
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that this is the second most important decay mode of the π0. The branching ratio

for the decay η → e+e−γ has been recently measured by the A2 Collaboration at

MAMI [206], (6.6 ± 0.4 ± 0.4) × 10−3 (see also the most recent Ref. [207]), and

the CELSIUS/WASA Collaboration [208], (7.8 ± 0.5 ± 0.8) × 10−3, whilst the PDG

quoted value is (6.9 ± 0.4) × 10−3 [37], in accordance with the preliminary result,

(6.72± 0.07± 0.31)× 10−3, from the WASA@COSY Collaboration [209]. The decay

η → µ+µ−γ has been studied by the NA60 Collaboration at CERN SPS [210], though

they do not provide a value for the branching ratio. The PDG fit reports the value

(3.1 ± 0.4) × 10−4 [37]. The branching fraction for the decay η′ → e+e−γ has been

recently measured for the first time by the BESIII Collaboration [25] obtaining a value

of (4.69 ± 0.20 ± 0.23) × 10−4. To end, the decay η′ → µ+µ−γ was measured long

ago at the SERPUKHOV-134 experiment with a value of (1.08± 0.27)× 10−4 [211].

Regarding the double Dalitz decays, the KTeV Collaboration measured the branching

ratio of the decay π0 → e+e−e+e−, (3.46 ± 0.19) × 10−5 [212], thus averaging the

PDG result to (3.38 ± 0.16) · 10−5 [37]. The KLOE Collaboration reported the first

experimental measurement of η → e+e−e+e− [213], (2.4± 0.2± 0.1)× 10−5, which is

in agreement with the preliminary result, (3.2 ± 0.9 ± 0.5) × 10−5, provided by the

WASA@COSY Collaboration [209]. In Ref. [208], upper bounds for the branching

ratios of η → µ+µ−µ+µ−, < 3.6 × 10−4, and η → e+e−µ+µ−, < 1.6 × 10−4, both

at 90% CL, are reported. Finally, no experimental evidence for η′ → e+e−e+e−,

η′ → µ+µ−µ+µ− and η′ → e+e−µ+µ− exists.

On the theory side, the effort is focused on encoding the QCD dynamical effects in

the anomalous Pγ(∗)γ∗ vertices through the corresponding TFF functions. The exact

momentum dependence of these TFFs over the whole energy region is not known, we

only possess theoretical predictions from chiral perturbation theory (ChPT) and per-

turbative QCD (pQCD), thus constraining the low- and space-like large-momentum

transfer regions, respectively. The TFF at zero-momentum transfer can be inferred

either from the measured two-photon partial width,

|FPγγ(0)|2 =
64π

(4πα)2

Γ(P → γγ)

M3
P

, (7.1)

or the prediction from the axial anomaly in the chiral and large-Nc limits of QCD,

as mentioned before, while the asymptotic behavior of the TFF at Q2 ≡ −q2 → ∞
should exhibit the right falloff as 1/Q2 [214]1. Furthermore, the operator product

1Perturbative QCD predicts limQ2→∞Q2Fπ0γγ∗(Q
2) = 2Fπ. Alternative values to this result

exist, see for instance refs. [215, 216], though they seem to be disfavored, as pointed out in refs. [217,
218]. For the η and η′, see the asymptotic values obtained in refs. [22, 23].
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Chapter 7. Single and double Dalitz decays of π0, η and η′ mesons

expansion (OPE) predicts the behaviour of the double-virtual TFF in the limit Q2
1 =

Q2
2 ≡ Q2 → ∞ to be the same as for the single one, that is, 1/Q2 [219]2. For

the intermediate-momentum transfer region, the most common parameterization of

the TFF, widely used by experimental analyses, is provided by the Vector Meson

Dominance model (VMD). The dispersive representation of the TFF in terms of q2,

where q2 is the photon virtuality in the time-like momentum region, can be written

as

FPγγ∗(q
2) =

∫ ∞
s0

ds
ρ(s)

s− q2 − iε , (7.2)

where s0 is the threshold for the physical intermediate states imposed by unitarity

and ρ(s) = ImFPγγ∗(s)/π is the associated spectral function. To approximate this

intermediate-energy part of the spectral function one usually employs one or more

single-particle states. As an illustration, the contribution to the spectral function of

a narrow-width resonance of mass Meff reduces to ρ(s) ∝ δ(s−M2
eff), which yields

FPγγ∗(q
2) =

FPγγ(0)

1− q2/Λ2
, (7.3)

where FPγγ(0) serves as a normalization constant and Λ(= Meff) is a real parameter

which fixes the position of the resonance pole on the real axis. However, this simple

and successful single-pole approximation given in Eq. (7.3) breaks down for q2 = Λ2.

One may cure this limitation by taking into account resonant finite-width effects as

proposed by Landsberg in Ref. [220] when considering the transitions P → `+`−γ

in a VMD framework. According to this model, these transitions occur through the

exchange of the lowest-lying ρ, ω and φ vector resonances and their contributions to

the TFF are written as

F̃Pγγ∗(q
2) =

( ∑
V=ρ,ω,φ

gV Pγ
2gV γ

)−1 ∑
V=ρ,ω,φ

gV Pγ
2gV γ

M2
V

M2
V − q2 − iMV ΓV (q2)

, (7.4)

where F̃Pγγ∗(q
2) = FPγγ∗(q

2)/FPγγ(0) is defined as the normalized TFF, gV Pγ and

gV γ are the V Pγ and V γ couplings, respectively, MV the vector masses, and ΓV (q2)

the energy-dependent widths.

Despite the notorious success of VMD in describing lots of phenomena at low

and intermediate q2, particularly useful for the decays we consider in this work, this

model can be seen as a first step in a systematic approximation. Padé approximants

are used to go beyond VMD in a simple and model-independent manner also incor-

porating information from higher energies, allowing an improved determination of

2The OPE predicts for the case of the pion limQ2→∞Q2Fπ0γ∗γ∗(Q
2, Q2) = 2Fπ/3.
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7.1. Transition Form Factors

the low-energy constants relative to other methods [20]. For this reason, we make

use in our study of the works in refs. [22, 21], where all current measurements of

the space-like TFFs γ∗γ → P [24], produced in the reactions e+e− → e+e−P , have

been accommodated in nice agreement with experimental data using these rational

approximants. We benefit from these parameterizations valid in the space-like re-

gion to predict the transitions Pγ(∗)γ∗ used in the time-like region for the Dalitz

decays we are interested in, with the primary aim of achieving accurate results for

these decays. Different parameterizations existing in the literature are based on res-

onance chiral theory [221, 222] and dispersive techniques [223, 224], among others

[225, 226, 227, 233, 228, 229, 230, 232, 231, 234].

This chapter is structured as follows. In section 7.1, we introduce our description

for the π0, η and η′ transition form factors using the mathematical method of Padé

approximants. Sections 7.2 and 7.3 are devoted to the analysis of single and double

Dalitz decays, respectively, and predictions for the several invariant mass spectra and

branching ratios are given. Finally, in section 7.4, we present our conclusions.

7.1 Transition Form Factors

The usefulness of Padé approximants (PAs) as fitting functions for different form

factors have been extensively illustrated [20, 21, 22, 23, 235]. The reader is referred

to these references for details on the method though here we cover some important

aspects for consistency. The PAs to a given function are ratios of two polynomials

(with degree L and M , respectively),3

PL
M(q2) =

∑L
j=0 aj(q

2)j∑M
k=0 bk(q

2)k
=
a0 + a1q

2 + · · ·+ aL(q2)L

1 + b1q2 + · · ·+ bM(q2)M
, (7.5)

constructed such that the Taylor expansion around the origin exactly coincides with

that of f(q2) up to the highest possible order, i.e., f(q2) − PL
M(q2) = O(q2)L+M+1.

We would like to point out that the previous VMD ansatz for the form factor (7.3)

can be viewed as the first element in a sequence of PAs which can be constructed in a

systematic way. By considering higher-order terms in the sequence, one may be able

to describe the experimental space-like data with an increasing level of accuracy. The

important difference with respect to the traditional VMD approach is that, as a Padé

sequence, the approximation is well-defined and can be systematically improved upon.

Although polynomial fitting is more common, in general, rational approximants are

3With any loss of generality, we take b0 = 1 for definitiness.
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Chapter 7. Single and double Dalitz decays of π0, η and η′ mesons

able to approximate the original function in a much broader range in momentum than

a polynomial [200].

Yet the success of PAs as fitting functions for space-like TFFs, some important

remarks are in order. First, there is no a priori mathematical proof ensuring the

convergence of a Padé sequence to the unknown TFF function, though a pattern

of convergence may be inferred from the data analysis a posteriori4. For instance,

the excellent performance of PAs in Ref. [23] (see figures 2 and 7 there) seems to

indicate that the convergence of the η TFF normalization and low-energy constants

is assured (see also Ref. [236] for the η′ case). Second, unlike the space-like TFF data

analyses [22, 21], one should not expect to reproduce the time-like TFF data since a

Padé approximant contains only isolated poles and cannot reproduce a time-like cut5.

However, if this right-hand cut is approximated by one or more single-particle states

in the form of one or several narrow-width resonances, as stated before, then the Padé

method may be still used up to the first resonance pole, indeed, up to neighbourhoods

of the pole. The size of the region which is affected by the presence of the pole, a disk

of radius ε, is not known but, as we will see later, may be deduced, thus fixing the

range of application of the PAs for the time-like data. Third and last, the poles found

in the PAs fitting the TFFs can not be directly associated to physical resonance poles

in the second Riemann sheet of the complex plane. These, in turn, may be obtained

following the prescriptions of Ref. [237], which is beyond the scope of the present

work.

We would like to emphasize that the use of PAs as fitting functions for some

set of experimental data can be viewed as an effective mathematical method which

intrinsically contains relevant physical information of the function represented by the

data set. In this work, we benefit from the findings of refs. [22, 21], where the π0, η

and η′ TFFs were fixed in the space-like region from the analysis of the intermediate

process γγ∗ → P by several experimental collaborations, to predict the time-like

region of the same TFFs needed for the description of the reaction P → γγ∗ and

therefore for the single and double Dalitz decays studied here. The extrapolated

version of the TFFs, from the space-like region to the time-like one, used in this

analysis are discussed case by case in the following.

4For a detailed discussion of Padé convergence applied to form factors, see for instance Ref. [20].
5The TFF function is unknown but expected to be analytical in the entire q2-complex plane

except for a branch cut along the real axis for q2 ≥ 4M2
π .
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7.1. Transition Form Factors

7.1.1 π0 → γγ∗

Given the small phase-space available in this transition, 4m2
` ≤ q2 ≤M2

π , the π0 TFF

can be expressed in terms of its Taylor expansion,

Fπ0γγ∗(q
2) = Fπ0γγ(0)

(
1 + bπ

q2

M2
π

+ cπ
q4

M4
π

+ · · ·
)
, (7.6)

where Fπ0γγ(0) is fixed from Eq. (7.1) and the values of the low-energy constants

(LECs), slope and curvature, bπ and cπ, respectively, are borrowed from eqs. (12,13)

in Ref. [21]6,

bπ = −3.24(12)stat(19)sys × 10−2 , cπ = 1.06(9)stat(25)sys × 10−3 , (7.7)

where the statistical error is the result of a weighted average of several fits using dif-

ferent types of PAs to the same joint set of π0 TFF space-like data and the systematic

error is attributed to the model dependence of the PA’s method. In this way, the

values obtained for the LECs can be considered as model-independent. It is worth

mentioning that the systematic errors ascribed to the LECs are quite conservative,

in the sense that they are obtained from a comparison of the constants predicted by

several well-established phenomenological models for the TFF and their counterparts

extracted using various types of PAs from fits to pseudo-data sets generated by the

different models. For each LEC, the systematic error is chosen to be the largest dif-

ference among these comparisons, making the whole approach reliable and with a

stamp of model independence [21].

The Taylor expansion in Eq. (7.6) can be safely used for the description of the π0

TFF in the time-like region within the range of available phase-space since the first

pole seems to appear, for all types of PAs considered, inside the region of ρ-dominance

[21], thus well beyond the phase-space end point. Finally, we would like to remark

that this expansion of the single-virtual π0 TFF will be used for predicting both

π0 → e+e−γ and π0 → e+e−e+e− decays, the latter by means of a factorisation of the

double-virtual π0 TFF in terms of a product of the single-virtual one (see subsection

7.1.4 for details).

7.1.2 η → γγ∗

In order to describe the time-like region of the η TFF from the space-like data analysis

in Ref. [22], we will employ two PAs, the P 5
1 (q2) and the P 2

2 (q2). These are the

6In Ref. [21], the value of the slope parameter appears with a positive sign due to the different
definition used for the Taylor expansion of the π0 TFF.
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Figure 7.1: Modulus square of the normalized time-like η TFF, F̃ηγγ∗(q
2), as a function

of the invariant dilepton mass,
√
s ≡ m``. The predictions coming from the P 5

1 (q2)
(red solid line) and P 2

2 (q2) (black long-dashed line) PAs, and the Taylor expansion
(blue dot-dashed line) are compared to the experimental data from η → e+e−γ [207]
(black circles) and η → µ+µ−γ [210] (green squares). The one-sigma error bands
associated to P 5

1 (q2) (light-red) and P 2
2 (q2) (light-gray) PAs, and the QED prediction

(gray short-dashed line) are also displayed.

highest-order PAs one can achieve when confronted with the joint sets of space-

like experimental data. The sequence PL
1 (q2) is used when the TFF is believed to

be dominated by a single resonance, while the PN
N (q2) one is appropriate for the

case the TFF fulfils the asymptotic behaviour7. A Taylor expansion equivalent to

Eq. (7.6), with bη = 0.60(6)stat(3)sys and cη = 0.37(10)stat(7)sys for the slope and

curvature parameters, respectively, is better not to be used in this case because of

the larger phase-space available, 4m2
` ≤ q2 ≤ M2

η . From the analysis in Ref. [22],

we also obtained that the fitted poles for the PL
1 (q2) sequence are seen in the range

(0.71, 0.77) GeV, beyond the phase-space end point, thus making again our approach

applicable and the predictions reliable.

Our predictions for the modulus square of the normalized time-like η TFF, F̃ηγγ∗(q
2),

as a function of the invariant dilepton mass,
√
s ≡ m``, are shown in figure 7.1, to-

7In Ref. [22], the fit to space-like data is done for Q2|F (Q2)| and not for the TFF itself. As a
consequence, PAs satisfying the correct asymptotic limit, that is, limQ2→∞Q2F (Q2) = const., are
represented by the sequence PNN (q2).
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7.1. Transition Form Factors

gether with the experimental data points from the A2 Collaboration on the decay

η → e+e−γ [207] (black circles) and the NA60 experiment on η → µ+µ−γ [210]8

(green squares). The predictions from the P 5
1 (q2) (red solid line) and P 2

2 (q2) (black

long-dashed line) are almost identical and in nice agreement with the experimental

data, whereas the Taylor expansion (blue dot-dashed line) is not so precise in the

upper part of the spectrum. For this reason, we will use in our analysis both PAs

indistinctly. The one-sigma error bands associated to P 5
1 (q2) and P 2

2 (q2) PAs are dis-

played in light-red and light-gray, respectively. These error bands are built from the

uncertainty in the coefficients of the PAs9 and the normalization factor extracted from

the two-photon decay width. To these bands, we have also ascribed a conservative

systematic error coming from the propagation of the systematic errors associated to

bη and cη. Therefore, the η TFF has also a stamp of model independence as explained

for the case of the π0 TFF.

7.1.3 η′ → γγ∗

The description of the whole time-like η′ TFF by means of PAs is cumbersome. The

available phase space, 4m2
` ≤ q2 ≤ M2

η′ , includes now an energy region where poles

associated to these PAs can emerge. The analysis of the η′ TFF space-like data per-

formed in Ref. [22] revealed the appearance of a pole in the range (0.83, 0.86) GeV for

the cases of a PL
1 (q2) sequence. Consequently, we cannot employ the method of PAs

for describing the time-like TFF in the entire phase-space region and a complemen-

tary approach must be used. Then, we propose to match the description based on

PAs to that given by Eq. (7.4) at a certain energy point10. Given the mass and the

width of the ρ meson, the first of the resonances included in the VMD description,

the region of influence due to its presence may be defined using the half-width rule

as Mρ ± Γρ/2 [238], thus deducing the value of the radius ε mentioned earlier. The

particular energy point located at
√
s ' 0.70 GeV, the lowest value of the former

8We thank S. Damjanovic from the NA60 experiment for providing us with the time-like TFF
data points obtained from η → µ+µ−γ.

9The coefficients of the PAs along with their errors and the correlation matrix can be obtained
from the authors upon request.

10To proceed with the matching, we have considered an energy-dependent width for the ρ reso-
nance,

Γρ(q
2) = Γρ

q2

M2
ρ

σ3(q2)

σ3(M2
ρ )

,

with σ(q2) =
√

1− 4M2
π/q

2, and a constant width for the ω and φ narrow resonances. Input values
for the masses and widths as well as for the rest of the couplings entering Eq. (7.4) are taken from
Ref. [37].
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Figure 7.2: Modulus square of the normalized time-like η′ TFF, F̃η′γγ∗(q
2), as a

function of the invariant dilepton mass,
√
s ≡ m``. The predictions up to the matching

point located at
√
s = 0.70 GeV coming from the P 6

1 (q2) (red solid line) and P 1
1 (q2)

(black long-dashed line) PAs, and the Taylor expansion (blue dot-dashed line) are
compared to the experimental data from η′ → e+e−γ [25] (black circles). From the
matching point on, rescaled versions of the VMD description in Eq. (7.4) are used.
The one-sigma error bands associated to P 6

1 (q2) (light-red) and P 1
1 (q2) (light-gray)

PAs, and the QED prediction (gray short-dashed line) are also displayed.

region for Mρ ' 775 MeV and Γρ ' 150 MeV, fixes the optimal matching point11.

Fixed this value, a representation valid in the whole phase-space domain is that given

by the PA below the matching point an Eq. (7.4) above it. In order to match both

descriptions of the form factor at the matching point we have to rescale the VMD

result accordingly. In this manner, we keep track of the resonant behaviour in the

upper part of the spectrum where PAs cannot be applied, while the low-energy re-

gion is predicted in a more systematic way as compared to VMD by PAs established

uniquely from space-like data. This will allow us to integrate the whole spectrum and

predict the branching ratio of the several η′ Dalitz decays considered here.

Our predictions for the time-like η′ TFF together with the experimental data

points from the BESIII Collaboration on the decay η′ → e+e−γ [25] (black circles)

are displayed in figure 7.2. The results from the P 6
1 (q2) (red solid line) and P 1

1 (q2)

11The region of influence attributed to the ω and φ poles is negligible since these are narrow
resonances and are placed far from the matching point.
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(black long-dashed line) are shown up to the matching point. The corresponding error

bands are in light-red and light-gray, respectively. These bands include, as for the

case of the η TFF, the uncertainty in the coefficients of the PAs, the normalization

factor extracted from the two-photon decay width and a systematic error arising from

bη′ and cη′ . From the matching point on our predictions are replaced by a rescaled

VMD representation based on the three lowest-lying vector resonances. Our PAs-

based predictions are again in fine agreement with experiment. A Taylor expansion

with bη′ = 1.30(15)stat(7)sys and cη′ = 1.72(47)stat(34)sys [22] is also included for

comparison. It is worth mentioning that an extrapolation of the P 6
1 (q2) PA beyond

the matching point nicely passes through the last experimental point. This can be

understood in the following terms. The VMD description includes three resonances

whose poles are located at different places, while the PL
1 (q2) PAs include only one.

Making use of the single pole approximation in Eq. (7.3) and the Taylor expansion

in Eq. (7.6) for the case of the η′, the slope parameter is identified as bη′ = m2
η′/Λ

2.

Using the bη′ value deduced from Eq. (7.4) one gets Λ = Meff = 0.822(58) GeV, where

the error is due to the half-width rule and can be utilized as a measure of the region

of influence of the pole. The former value is very similar to the one obtained from

the pole position of the P 6
1 (q2) PA, located at

√
s = 0.833 GeV. Therefore, the region

of influence of this pole can be estimated to be in the interval (0.77, 0.89) GeV. It

is for this reason that the last experimental point would be also in agreement with

the P 6
1 (q2) prediction [236]. This is not so for the P 1

1 (q2) PA, thus showing that

increasing the Padé order allows for a better description of the data. In any case, for

the numerical analysis of the different decays involving the η′ we also keep both PAs

for the sake of comparison.

7.1.4 P → γ∗γ∗

The double-virtual TFF, FPγ∗γ∗(q
2
1, q

2
2), depends on both photon virtualities, q1 and

q2. Due to Bose symmetry, it must satisfy FPγ∗γ∗(q
2
1, q

2
2) = FPγ∗γ∗(q

2
2, q

2
1). Its nor-

malization is obviously the same as the single virtual TFF, FPγ∗γ∗(0, 0) = FPγγ∗(0),

and can be extracted either from the two-photon partial width by means of Eq. (7.1)

or from the axial anomaly. It must also satisfy that when one of the photons is put on-

shell the double-virtual TFF becomes the single-virtual one, i.e. limq2
i→0 FPγ∗γ∗(q

2
1, q

2
2) =

FPγγ∗(q
2) for i = 1, 2. In addition, the double-virtual TFF can fulfil the following

asymptotic space-like constraints, limQ2→∞ FPγ∗γ∗(−Q2, 0) ∝ 1/Q2 [?] and

limQ2→∞ FPγ∗γ∗(−Q2,−Q2) ∝ 1/Q2 [219].
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Due to the lack of experimental information in the case of double-virtual TFFs,

our initial ansatz will be to use the standard factorisation approach, which in terms

of normalized form factors reads F̃Pγ∗γ∗(q
2
1, q

2
2) = F̃Pγγ∗(q

2
1, 0)F̃Pγγ∗(0, q

2
2) [239, 240,

241]. This double-virtual TFF description may or may not satisfy the high-energy

constraints above. For instance, the PA P 0
1 (q2) = a0/(1 − a1q

2), corresponding to

the single pole approximation in Eq. (7.3) motivated by VMD, would induce a 1/q4

term in the double-virtual TFF, which violates the last of the asymptotic constraints

mentioned before (OPE prediction) [219, 242, 243, 244]. For this reason, we also use

for our study the lowest order bivariate approximant

P 0
1 (q2

1, q
2
2) =

a0,0

1− b1,0
M2
P

(q2
1 + q2

2) + b1,1
M4
P
q2

1q
2
2

, (7.8)

which consists in a generalization of the univariate PAs named Chisholm approxi-

mants (CAs) [200]. The analysis of the π0 → e+e− decay is a recent example that

illustrates the application of these CAs [203]. In Eq. (7.8), a0,0 is identified as the

normalization FPγ∗γ∗(0, 0) and then fixed from Eq. (7.1), b1,0 is the slope of the single-

virtual TFF obtained in refs. [21, 22], that is, bπ from Eq. (7.7) for the pion and bη(′)

from Eq. (5) in Ref. [22] for the η and η′, respectively, and b1,1 would correspond to

the double-virtual slope which may be extracted in the future as soon as experimental

data for the double-virtual TFFs become available. For the numerical analysis, we

consider, as a conservative estimate, to vary b1,1 from the value respecting the OPE

prediction, b1,1 = 0, to b1,1 = 2b2
1,0, far from the factorisation result b1,1 = b2

1,0. In this

manner, we can test the sensitivity of our predictions to the double-virtual slope. We

also encourage experimental groups to perform double-virtual TFF measurements in

order to fix this parameter. In this work, we employ both descriptions indistinctly, the

factorisation ansatz and the bivariate approximant in Eq. (7.8). See also Ref. [245]

for a recent approach to the double-virtual TFF of the η meson based on the standard

factorisation approach.

7.2 Single Dalitz Decays

Single Dalitz decays involve the single virtual TFF as described in section 7.1. The

amplitude of the decays reads

A(P(p)→ `+`−γ) = −ie2FPγγ∗(s)ε
αβµνpαqβε

∗
µ(k)
−igνρ
s

ū(p`−)(−ie)γρv(p`+) , (7.9)
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Source BR(π0 → e+e−γ) · 102

this work 1.169(2)
QED 1.172

Experimental 1.174(35) [37]
measurements 1.140(41) [205]

Table 7.1: Comparison betwen our BR prediction for π0 → e+e−γ and experimental
measurements.

while the corresponding differential decay rate is given by

dΓP→`+`−γ
d
√
sΓexp
P→γγ

=
4α

3π
√
s
|F̃Pγγ∗(s)|2

(
1− s

M3
P

)3
√

1− 4m2
`

s

(
1 +

2m2
`

s

)
, (7.10)

where the TFF appears in its helpful normalized version in order to avoid misunder-

standings due to different conventions on the definition of FPγγ∗(0) existing in the

literature. Notice that the experimental measurement of the partial width to two pho-

tons appears as a normalization in any case. For our numerical calculations we employ

the PrimEx Collaboration result Γπ0→γγ = 7.82(14)(17) · 10−6 MeV [246] and the val-

ues collected in the PDG Γη→γγ = 5.16(18) · 10−4 MeV and Γη′→γγ = 4.35(14) · 10−3

MeV [37].

7.2.1 π0 → e+e−γ

The decay π0 → e+e−γ was suggested for the first time by Dalitz in 1951 [247]. The

first BR prediction arose from a pure QED radiative correction calculation neglecting

the momentum dependence of the TFF [248] (radiative corrections have recently been

revisited in Ref. [249]). By looking at figure 7.3 where we compare, as a function of the

invariant mass of the dielectron pair, our description of the decay rate distribution

(green solid curve) with the QED result (gray dashed curve), this seems to be a

reasonable approximation since the main contribution to the decay rate comes from

the very low-energy part of the spectrum where the effect of the TFF is almost

negligible. In fact, there is an almost perfect overlap between the two curves and only

really tiny differences appear on the second half of the spectrum. Numerical results

for the BR are presented in table 7.1. Our prediction is in very good agreement with

the experimental measurements. The main source of the error we have quoted arise

from the uncertainty associated to the low energy constants, Eq. (7.7), which include

also the error associated to the measured decay width to two photons [246]. Our

results are also in agreement with other theoretical predictions existing in literature,
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Figure 7.3: Differential decay rate distribution for π0 → e+e−γ as a function of the
invariant mass of the dielectron pair. Green solid curve corresponds to our description
while the gray dashed curve accounts for the QED prediction.

refs. [220, 226, 233, 224], as well as with the QED estimates of refs. [224, 250, 251].

The dimuon mode in the final state is not kinematically allowed in this case.

7.2.2 η → `+`−γ (` = e, µ)

Qualitatively, this is the same process as the π0 Dalitz decay, with the novelty that a

dimuon pair in the final state is also allowed since the larger mass of the η increases

the upper kinematic limit. A priori, these decays are expected to be more challenging

for testing the momentum dependence of the TFF because the energy released in the

process is now larger, expecting higher deviations from the QED estimates. This is

precisely what our predictions reflect in figure 7.4 where the decay rate distribution

of η → e+e−γ (blue solid curve) and η → µ+µ−γ (black solid curve) are compared

to the QED estimates (gray dotted and dashed curves, respectively). As a matter of

example we have employed the PL
1 (q2) Padé type in the figure, here and hereafter.

Diagonal PAs, PN
N (q2), would produce very similar description in accordance with

the transition form factors descriptions given in sections 7.1.2 and 8. One interesting

feature of both decays modes is that, in absolute terms, the effect of the TFF is much

more sizable in the muonic case than in the electronic one. The reason is because the

shape of the distribution of the latter shows, as occurred in π0 → e+e−γ, a strong

peak in the low-momentum transferred region of the spectrum, where the effect of the

TFF is small, which provides the main contribution to the BR. Noticeably, the high
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Figure 7.4: Decay rate distribution for η → e→+e−γ (blue solid curve) and η → µ+µ−γ
(black solid curve). The corresponding QED estimates are also displayed (gray dotted
and long-dashed curves, respectively).

Source BR(η → e+e−γ) · 103 BR(η → µ+µ−γ) · 104

this work [P 5
1 ] 6.60+0.50

−0.47 3.25+0.40
−0.36

this work [P 2
2 ] 6.61+0.53

−0.49 3.30+0.65
−0.56

QED 6.38 2.17
Experimental 6.9(4)[37]
measurements 6.6(4)stat(4)syst [206] 3.1(4) [37]

6.72(7)stat(31)syst [209]

Table 7.2: Comparison between our BR predictions for η → `+`−γ and experimental
measurements.

energy part of the spectrum of both modes is overlapped as it may be since the only

difference between them is the dilepton threshold production. Numerically, we see

from table 7.2 that the BR involving muons in the final state has increased by 50%

with respect to the QED prediction while the effect is much less considerable when

dealing with electrons (∼ 3.5%) where, predictions with and without considering TFF

effects are compatible within errors at the current level of accuracy. The source of the

associated errors arise from the error bands shown in figure 7.1. In all, our predictions

are in good agreement with present experimental measurements. Comparing with

other authors results, we agree with: the QED estimates of Ref. [251], the predictions

of Ref. [233] and the values of Ref. [225], while tiny differences with Ref. [226] are

noticed.
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Figure 7.5: Decay distributions for η′ → e+e−γ (blue solid curve) and η′ → µ+µ−γ
(black solid curve). The QED estimates are also shown (gray dotted and long-dashed
curves, respectively).

7.2.3 η′ → `+`−γ (` = e, µ)

The large mass of the η′ increases the upper kinematical limit by ∼ 410 MeV with

respect to the case of the η. The TFF description is given in section 8, where the

effect of the intermediate vector resonances ρ, ω and φ is included. As shown in

figure 7.5, the distribution of the decay η′ → e+e−γ (blue solid curve) evidences

again a marked peak at low-energies which, despite the contribution coming from

the resonance region, dominates the decay as occurred in π0(η) → e+e−γ. On the

contrary, the effect of the TFF on the decay η′ → µ+µ−γ (black solid curve) is larger

than in η → µ+µ−γ, increasing the BR by a factor of about 2. This is so because

both phase space considerations and the effect of passing through a q2 region where

resonances may be produced on-shell. Interestingly, the contribution due to the ρ

resonance bends the distribution while the inclusion of the ω resonance accounts for

the sharp peak at around 0.8 GeV. Numerical results are presented in table 7.3, where

the source of the error comes from the error bands associated to the TFF. From the

theory side, our predictions are in accordance with those of Ref. [233], while they are

slighlty below respect to both the recent experimental measurement of η′ → e+e−γ

[25] and the old measurement of η′ → µ+µ−γ [211], though in agreement within errors

in both cases. To sum up, the pattern of both η and η′ single Dalitz decays is notably

similar: the impact of the TFF on the muonic channel is much larger than in the

electronic ones as discussed in section 7.2.2.
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Source BR(η′ → e+e−γ) · 104 BR(η′ → µ+µ−γ) · 104

this work [P 6
1 ] 4.42+0.39

−0.35 0.81+0.16
−0.13

this work [P 1
1 ] 4.35+0.29

−0.27 0.74(6)
QED 3.94 0.38

Experimental measurements 4.69(20)stat(23)sys [25] 1.08(27) [211]

Table 7.3: Comparison between our BR predictions for η′ → `+`−γ and experimental
measurements.

7.3 Double Dalitz Decays

Double Dalitz decays involve the TFF of double virtuality as described in section 7.1.

They implicate four particles in the final state which makes the phase space integra-

tion much more tedious. In case of having two pairs of non-identical particles, that

is η(′) → e+e−µ+µ−, the required diagram is shown in figure 7.6 (left diagram) and

the amplitude of the decay reads

A(η(′) → e+e−µ+µ−) = −i2!
e4

q2k2
FPγ∗γ∗(q

2, k2)εµναβqµkν ū(qe−)γαv(qe+)ū(qµ−)γβv(qµ+) .

(7.11)

The corresponding decay rate distribution can be reduced to12

d2Γ

dM2
e+e−M

2
µ+µ−Γexp

η(′)→γγ
= S 8α2

9π2m6
η(′)

|F̃ (q2, k2)|2
√

1− 4m2
e

k2

√
1− 4m2

µ

q2

(
1 + 2m2

e

k2

)(
1 +

2m2
µ

q2

)
k2q2[

1

4
(m2

η(′) − (k2 + q2))2 − k2q2

]3/2

, (7.12)

where, in this case, S = 2 in agreement with the expression given in Ref. [234]. The

TFF appears again normalized to unity at the origin.

On the contrary, in case of having two pairs of identical particles in the final

state, that is P → e+e−e+e− or η(′) → µ+µ−µ+µ−, one should consider both the

direct and exchange diagrams of figure 7.6 (left and right diagrams). Therefore, the

total amplitude of the process reads

A = Adir −Aexch , (7.13)

where the appearance of the minus sign is due to the exchange of two indistinguishable

fermions in the final state. Then, squaring the amplitude of Eq. (7.13) we arrive at

|A|2 = |Adir|2 + |Aexch|2 − 2(<AdirA∗exch) , (7.14)

12See, for instance, Ref. [252] for reducing distributions of four body-final-state decays into two
invariant masses.
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Figure 7.6: Double Dalitz direct (left) and exchange (right) diagrams.

where not only appear the contributions from both the direct and exchange diagrams

but an interference term. We notice that the contribution to the partial decay width

coming from the first and the second term of Eq. (7.14) is obviously the same, that

is Γdir = Γexch, because the integration variables are nothing more than dummy

indices. In this way, the contribution coming from the sum of the direct and exchange

diagrams, Γdir+ex, is obtained through the use of Eq. (7.12), of course after permuting

µ→ e (or equivalently e→ µ), now with S = 1 once the factor of 1
2!2!

, accounting for

the two pairs of two identical particles in the final state, has been taken into account.

Regarding the interference term, its computation is much more cumbersome. We

have relegated to appendix E the detailed expression due to its length but it is worth

to comment that we have obtained an expression in terms of five invariant masses

which has required a Monte Carlo (MC) simulation to be integrated.

7.3.1 π0 → e+e−e+e−

The only possible double Dalitz decay of the neutral pion is π0 → e+e−e+e−, other

possibilities are not kinematically allowed. In view of the results from π0 →→ e+e−γ,

one may expect that the overall effect of the TFF will be again small. In figure 7.7,

we show our results for the different contributions to the decay rate distribution

as a function of the invariant mass of one dielectron pair of the direct diagram.

Concretely, we display the curve corresponding to the direct diagram (green solid

line), the curve of the contribution of the exchange diagram expressed in terms of

the former dielectron invariant mass of the direct diagram13 (red dotted line), the

interference term (blue dotted line) and finally the total distribution (black dotted

line). We want to note that the contribution from both direct and exchange diagrams

13The curve of the exchange diagram expressed in its own variables would look equal as the green
solid line of figure 7.7. In this work, we have opted to show, in just one figure, all the contributions
as a function of one dielectron invariant mass of the direct diagram. In this convention, the exchange
diagram as expressed in figure 7.7 has also required a MC integration.
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Figure 7.7: Different contributions to the π0 → e+e−e+e− decay distribution. Direct
diagram (green solid curve), exchange diagram (red dotted curve), interference term
(blue dotted curve) and total distribution (black dotted curve) are shown as a function
of one dielectron invariant mass of the direct diagram.

integrates obviously the same and that the interference is small and destructive. Our

BR predictions are shown in table 7.4 from which we corroborate that the effect of the

TFF is small because the main contribution to the BR proceeds from the very low-

momentum transferred region where we a peak emerges, as already occurred in π0 →
e+e−γ. Our results are well in accordance with current experimental measurements.

The source of the associated error comes from the uncertainty on the low-energy

parameters Eq. (7.7). Notice that the sensitivity of this decay to the variations of

the double virtual slope parameter, b1,1, is at the fifth decimal number. In this sense,

Source Double virtual TFF
BR(π0 → e+e−e+e−) · 105

direct+exchange interference

This work
Chisholm approximants

b1,1 = 0 3.40287(9) -0.03602
b1,1 = b1,0 3.40286(9) -0.03602
b1,1 = 2b1,0 3.40286(9) -0.03602

factorisation approach Eq.(7.6) 3.40295(9) -0.03602
QED 3.41607 -0.03484

Experimental measurements
3.38(16) [37]
3.46(19) [212]

Table 7.4: Branching ratio predictions for π0 → e+e−e+e− compared with experimen-
tal measurements.
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Figure 7.8: Decay distribution for η → e+e−µ+µ− with respect to the dielectron (blue
curve) and to the dimuon (red curve) invariant mass.

the high level of accuracy demanded to infer its value is unthinkable at the current

precision level. It is also interesting to compare with other authors results. We

are in good agreement with the results given in refs. [239, 233, 234] for the direct

and exchange contributions while the result of Ref. [226] is about 5% lower than

our predictions. Regarding the interference term we have, a perfect agreement with

refs. [239, 233] and a value about 30% higher than Ref. [234] while Ref. [226] did

not consider this term. Comparing with previous QED estimates we agree with

refs. [250, 251] for the direct and exchange contributions. For the interference term

the former did not consider it and the later gave a result 5 times larger than us.

7.3.2 η → `+`−`+`− (` = e, µ)

The double Dalitz decays of the η meson, η → e+e−e+e−, η → µ+µ−µ+µ−, and

η → e+e−µ+µ−, are now kinematically allowed. Let us first analyze the latter for

simplicity. In this case, the two dilepton pairs are different and consequently there is

no interference phenomenon. Hence, the distribution rate is just given by Eq. (7.12)

and shown in figure 7.8 in two different manners, one expressed in terms of the

dielectron invariant mass and the other in the dimuon variable (blue and red solid

lines respectively), where, of course, both curves integrate the same. Our predictions

are shown in table 7.5, where the source of the associated errors comes from the error

bands associated to the TFF for the case of the factorisation approach, and from the

uncertainty on the single virtual slope for the description employing CAs.
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Source Double virtual TFF BR(η → e+e−µ+µ−) · 106

This work
Chisholm approximants

b1,1 = 0 2.39(12)
b1,1 = b1,0 2.39(12)
b1,1 = 2b1,0 2.38(12)

factorisation approach
P 5

1 2.35+0.47
−0.40

P 2
2 2.39+0.66

−0.53

QED 1.57
Experimental measurement < 1.6 · 10−4 (90% CL) [208]

Table 7.5: Branching ratio predictions for η → µ+µ−e+e− compared to the current
experimental upper bound.

From the experimental side, we respect the current upper limit, while from the

theory side, because of the appearance of a dimuon pair in the final state, the effect

of the TFF increases the BR about 50% for the same arguments as explained in

η → `+`−γ. This decay, though much more sensitive than π0 → e+e−e+e− to the

double virtual slope, b1,1, would require accurate measurements as well as demanding

a very precise description of the TFF, in order to diminish its associated error, for

deducing b1,1, far from the present situation. Comparing with other authors, we agree

with the predictions of Ref. [233], while we have found discrepancies with the value

5.83 ·10−7 of Ref. [226], with the prediction 2 ·10−7 of Ref. [225] and with the estimate

7.84 · 10−7 of Ref. [251]. In the later case, the reason seems to be a typographical

fault of a factor of 2 missing as pointed out in both refs. [239, 233]. In such case, it

would reproduce the QED result of table 7.5 as it should be, because they did not

consider the momentum dependence of the TFF.

The decays involving two identical dilepton pairs in the final state, η → e+e−e+e−

and η → µ+µ−µ+µ−, require to consider Eq. (7.14). Their distributions are given in

figure 7.9 (left and right panels respectively) as a function of one dilepton invariant

mass of the direct diagram. We explicitly show the contribution from the direct

diagram (green solid curve), the curve of the exchange diagram expressed in terms

of the former dielectron (dimuon) invariant mass of the direct diagram (red dotted

curve), the interference term (blue dotted curve) and the total decay rate distribution

(black dotted line). The integrated BR results are shown in table 7.6 where the error

comes again from the error bands of the TFF description as given in figure 7.1, for

the factorisation approach, and from the uncertainty associated to the slope, bη, for

the description using CAs.

Comparing with present experimental status, our prediction for η → e+e−e+e−

is compatible at less than 1σ with the KLOE measurement [213] as well as with
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Figure 7.9: Different contributions to the decay distributions of η → e+e−e+e− (left)
and η → µ+µ−µ+µ− (right), respectively. Direct diagram (green solid curve), ex-
change diagram (red dotted curve), interference term (blue dotted curve) and the
total distribution (black dotted curve) are displayed with respect to one dilepton
invariant mass of the direct diagram.

Source TFF
BR(η → e+e−e+e−) · 105 BR(η → µ+µ−µ+µ−) · 109

dir+exch inter dir+exch inter

T
h
is

w
or

k

CAs

b1,1 = 0 2.74(3) -0.02 4.47(33) -0.32
b1,1 = b1,0 2.73(3) -0.03 4.31(31) -0.32
b1,1 = 2b1,0 2.73(3) -0.03 4.15(30) -0.32

fact.
P 5
1 2.72+0.43

−0.37 -0.03 4.23+0.83
−0.70 -0.43

P 2
2 2.73+0.45

−0.39 -0.03 4.30+1.12
−0.91 -0.47

QED 2.56 -0.02 2.59 -0.19

Exp. measurements
3.2(9)stat(5)sys [209] < 3.6 · 10−4 (90% CL) [208]
2.4(2)stat(1)sys [213]

Table 7.6: Branching ratio predictions for η → e+e−e+e− and η → µ+µ−µ+µ− con-
fronted to current experimental status.
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the recent measurement value of the WASA@COSY collaboration [209], while our

estimate for η → µ+µ−µ+µ− respects the current upper bound of Ref. [208]. We

have found the same trend as in η → `+`−γ that is, while the overall effect of the

TFF on the electronic mode is small, increasing the BR of η → e+e−e+e− by 6%

respect to the QED estimate, the impact on the muonic channel, η → µ+µ−µ+µ−,

becomes important increasing the BR by a factor ranging (1.6 − 1.7) respect to the

QED calculation. As a consequence of that, the sizable sensitivity of η → µ+µ−µ+µ−

to the TFF of double virtuality makes it a good candidate to improve our knowledge

on it. Interestingly, a precise experimental measurement of this mode at the per

cent level of precision leaves us in position to estimate the value of b1,1. For that

purpose, it is also required to diminish the associated uncertainty to the TFF. Here

enters the ability of the Padé method we use for accommodating new experimental

data as soon as released by experimental groups. On the contrary, this same exercise

for η → e+e−e+e− would demand accurate measurements at the per mil level to

unveil this quantity, far from the present situation. Our predictions are in good

agreement with the results of Ref. [233] for the electronic mode, while a (10 − 15)%

over the muonic prediction. Comparing with Ref. [226] (who did not considered

the interference term) we are a 10% over for the electronic case while his result for

η → µ+µ−µ+µ− is 60% smaller. We are also in accordance with the estimate of

Ref. [225] for η → e+e−e+e−. Regarding the pure QED calculation of Ref. [251], we

are in perfect agreement for the electronic channel while tiny differences are found in

the muonic decay, probably caused by the updated values of our inputs values.

7.3.3 η′ → `+`−`+`− (` = e, µ)

Regarding the double Dalitz decays of the η′, we have the same three possible final

states as for the η. However, in this case we have only adopted the factorisation ap-

proach ansatz for describing the double virtual TFF of the η′. The reason is because

the use of Chisholm approximants, which may respect the appropriate asymptotic

behavior q−2, would only apply at low energies, concretely up to the matching point

where PAs are applicable, while beyond, we are somehow forced to employ the fac-

torisation approximation, through a VMD description, which induces a q−4 term. So,

there is no gain respecting the high-energy behavior in the low-energy region if we vi-

olate it at high energies. We compute first η′ → e+e−µ+µ− again through Eq. (7.12).

Noticeably, it follows the same trend as η → e+e−µ+µ−, with the difference that this

case is sensitive to the resonance region as can be read off from figure 7.10. Once

more, the low-momentum region basically dominates the distribution when working
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Figure 7.10: Decay distribution for η′ → µ+µ−e+e− shown as a function of the
dielectron and of the dimuon invariant masses (blue and red solid curves respectively).

Source BR(η′ → µ+µ−e+e−) · 107

this work [P 6
1 ] 6.80+1.39

−1.17

this work [P 1
1 ] 6.25+0.83

−0.72

QED 3.21
Experimental measurements not seen

Table 7.7: Branching ratio predictions for η′ → µ+µ−e+e−.

with the electronic variable (blue solid curve) while it is a smooth falling function

of the dimuonic momentum with a small bump and a sharp peak accounting for the

effect of the ρ and the ω, respectively (red solid curve). Indistinguishable, both curves

integrate the same BR. Our predictions are presented in table 7.7 without, in this

case, any experimental reference to compare with. The effect of the TFF increases

by a factor of about 2 the BR respect to the QED estimate, which is much notorious

than in η → e+e−µ+µ−.

The decay spectra for η′ → e+e−e+e− and η′ → µ+µ−µ+µ− shown in figure 7.11

(left and right panels respectively) have been computed by taking Eq. (7.14) into

account. We have represented the contributions of the direct diagram (green solid

curve), the exchange diagram expressed in terms of the variable of the direct dia-

gram (red dotted curve), the interference term (blue dotted curve) and lastly the

total distribution (black dotted line). One interesting feature concerning phase space

is that the electronic mode (left panel) is clearly sensitive to the intermediate vec-

tor resonances while the muonic (right panel) is basically not. Our predictions are
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Figure 7.11: Different contributions to the dielectron and the dimuon invariant masses
distribution for η′ → e+e−e+e− (left) and η′ → µ+µ−µ+µ− (right), respectively.
Direct diagram (green solid curve), exchange diagram (red dotted curve), interference
term (blue dotted curve) and the total distribution (black dotted curve) are displayed
with respect to one invariant mass of the direct diagram.

Source TFF
BR(η′ → e+e−e+e−) · 106 BR(η′ → µ+µ−µ+µ−) · 108

direct+exch inter direct+exch inter

This work
factorisation

P 6
1 2.15+0.35

−0.29 −0.03 2.19+0.23
−0.19 −0.44

P 1
1 2.09+0.28

−0.24 −0.01 2.06+0.17
−0.15 −0.41

QED 1.75 −0.01 0.98 −0.11
Exp. measurements not seen not seen

Table 7.8: Branching ratio predictions for η′ → e+e−e+e− and η′ → µ+µ−µ+µ−.

presented in table 7.8 which also reflect the tendency that the effect of the TFF is

sizable and larger than for the case of the η. In particular, the BR of η′ → e+e−e+e−

and η′ → µ+µ−µ+µ− have increased by 20% and by a factor of 2, respectively. On

the experimental side, we neither have an observation to compare with, while on the

theory side we have only found the predictions given in Ref. [233] with which we are

in good agreement for the cases of having two identical dilepton pairs in the final

state, while we are slightly below for η′ → µ+µ−e+e−.

7.4 Conclusions

The single and double Dalitz decays P → `+`−γ and P → `+`−`+`− (P = π0, η, η′;

` = e or µ) have been analysed by means of a data-driven model-independent descrip-

tion of the transition P → γ(∗)γ∗. We have benefited from (our) previous findings on

the space-like single-virtual TFF γγ∗ → P obtained through the use of Padé approx-

imants to represent these transitions in the time-like energy region where they are

applicable. We have shown that this extrapolation from the space-like to the time-like
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Decay This work Experimental value [37] nσ
π0 → e+e−γ 1.169(1)% 1.174(35)% 0.15
η → e+e−γ 6.61(50) · 10−3 6.90(40) · 10−3 0.45
η → µ+µ−γ 3.26(46) · 10−4 3.1(4) · 10−4 0.26
η′ → e+e−γ 4.38(32) · 10−4 4.69(20)(23) · 10−4 0.70
η′ → µ+µ−γ 0.75(6) · 10−4 1.08(27) · 10−4 1.19
π0 → e+e−e+e− 3.36689(5) · 10−5 3.34(16) · 10−5 0.17
η → e+e−e+e− 2.71(2) · 10−5 2.4(2)(1) · 10−5 1.38
η → µ+µ−µ+µ− 3.98(15) · 10−9 < 3.6 · 10−4

η → e+e−µ+µ− 2.39(7) · 10−6 < 1.6 · 10−4

η′ → e+e−e+e− 2.10(45) · 10−6 not seen
η′ → µ+µ−µ+µ− 1.69(36) · 10−8 not seen
η′ → e+e−µ+µ− 6.39(91) · 10−7 not seen

Table 7.9: Central final branching ratio predictions as a combined weighted average of
the results presented. Errors are symmetrised. nσ stands for the number of standard
deviations the measured results are from our predictions.

is supported by current experimental data η and η′ TFFs obtained from η(′) → e+e−γ

and η → µ+µ−γ decays. This nice behaviour proves that these TFFs are well approx-

imated by meromorphic functions. Regarding the TFF of double virtuality, besides

the standard factorisation approach, we have motivated the use of bivariate approx-

imants, which would satisfy the high-energy constraints and whose coefficients may

be determined as soon as experimental data become available. From the phenomeno-

logical point of view, we have found that the invariant mass distributions involving

electrons in the final state show strong peaks at the very low-momentum transfer

region, which mainly dominate the contribution to the branching ratios, hence sup-

pressing the effect of the TFFs. On the contrary, distributions implicating muons

in the final state are much more homogeneously distributed and clearly manifest the

neat effect of the TFF, which, in particular, is enhanced for the η′ decays due to phase

space considerations. Our central final branching ratio predictions are summarised

in table 7.9, where a combined weighted average of the results shown in the different

tables have been considered and the uncertainties symmetrised. The values of nσ in

the table account for the number of standard deviations the experimental measure-

ments are from our predictions. All these predictions are seen to be in accordance

with present experimental measurements, only η′ → µ+µ−γ and η → e+e−e+e− ap-

pear slightly in tension. To end, we would like to encourage once more experimental

groups to measure these TFFs.
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Chapter 8

The η′ transition form factor from
space-and time-like data

Padé approximants (PAs) have been shown recently to be very useful for the descrip-

tion of meson transition form factors from the analysis of space-like (SL) experimental

data [21, 22, 255, 256, 257]1. Such parameterisations based on the measurement of

SL data have been used to extrapolate our knowledge of the form factors down to

the low-energy limit (Q2 → 0), thus extracting the low-energy parameters (LEPs),

and up to the high-energy limit (Q2 →∞), then predicting the asymptotic behavior.

Moreover, they have been employed to reconstruct the double-virtual transition form

factor [203, 258]. PAs are now regarded as a valuable tool for incorporating available

data into problems requiring a precise error estimation. They conform a data-driven

approach that can be considered as simple, systematic and model independent, the

latter because one can provide a systematic error which can be reduced as soon as

more experimental data is included. These PAs applied to the pseudoscalar transition

form factors (TFFs) are utilised in the evaluation of the lightest pseudoscalar mesons

contributions to the hadronic light-by-light piece of the anomalous magnetic moment

of the muon [21, 22, 203, 256, 257], the calculation of the π0 → e+e− rare decay [203],

the extraction of the η-η′ mixing parameters [22, 23], the analysis of π0, η and η′

single and double Dalitz decays [258], and in the quest for dark photons [?]. In all

cases, they provide an excellent laboratory for synergic studies between theory and

experiment.

The PAs PL
M(Q2) to a given function f(Q2) are ratios of two polynomials (with

degree L and M , respectively), constructed such that the Taylor expansion around

the origin exactly coincides with that of the function up to the highest possible order,

1See also the seminal work in [20] for the application of PAs to the case of the pion vector form
factor.
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Chapter 8. The η′ transition form factor from space-and time-like data

i.e., f(Q2) − PL
M(Q2) = O(Q2)L+M+1 [200, 235]. They often provide a means of

obtaining information about the function outside its circle of convergence, and of

more rapidly evaluating the function within its circle of convergence. However, in

spite of being flexible and user friendly, PAs reconstructed from their power series

at the origin are rational functions with a simple analytical structure given by a set

of poles. Therefore, they do not possess branch cuts and cannot be used to predict

the position of resonance poles, which are hidden in the second Riemann sheet of the

complex plane. Similarly, PAs reconstructed using information on the branch cut,

which allow for a precise determination of the resonance pole parameters [237, 259],

are not suitable for the extraction of the LEPs, i.e., PAs cannot access different

Riemann sheets. Nonetheless, for special kind of functions, such as Stieltjes [260, 261]

or non-Stieltjes but meromorphic functions [133], convergence theorems for PAs are

known. To apply these theorems, an understanding of the analytical properties of the

functions is required in advance. When this knowledge is missing, the practitioner

would explore a sequence of PAs and expect a pattern of convergence. The question

is whether observing this behaviour one could infer, within some uncertainties, the

approximate analytical structure of the function under consideration.

In this work, we will explore this last insight taking the η′ TFF as a proof of

concept. We will try to learn and extract from the sequence of PAs employed details

on the analytical properties of this TFF in the energy regime covered by experimental

data. In our previous analyses of the TFFs from SL data, we have always carefully

expressed the limits on the range of applicability of PAs [21, 22]. Initially, PAs could

be analytically continued from the SL region to the time-like (TL) one but only up

to the first singularity, usually a branch cut in the form of a production threshold.

For instance, in the case of the single Dalitz decay π0 → e+e−γ PAs can be safely

extended into the TL region up to the pion mass since no branch cuts are present.

On the contrary, for the η → `+`−γ decays, with ` = e, µ, the presence of the ππ

branch cut could in principle limit the application of PAs in the TL region. However,

the η → e+e−γ decay and its associated TFF in the TL region was recently measured

with great accuracy by the A2 Collaboration [207]. The authors compared their

measurement with several theoretical predictions, among them ours, based on SL

parameterisations of the TFF in terms of PAs [22], and found that these PAs show

the best agreement with data for the full range of e+e− invariant masses reached in

the experiment. This nice result challenged our understanding of the PAs method

and triggered, for the first time, a combined analysis of the η TFF from both SL

and TL experimental data [23]. The reason for that agreement can be understood
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by the fact that the branch cut in this decay (ππ unitary cut) is not resonant inside

the available phase-space region since the ρ resonance is well beyond the η mass.

The PAs will fail for sure at the first pole encountered on the real axis, or, to be

more precise, will start failing at some point near the pole2. In any case, for the η

TFF, this pole on the real axis is found to be at
√
s ' 720 MeV for the single-pole

parameterisation used frequently by the experimental collaborations [23]. Therefore,

for the η → `+`−γ decays the PAs can also be extended into the TL region up to

the η mass. The case of the η′ → `+`−γ Dalitz decays is more cumbersome since the

available phase-space this time includes the resonant region. However, the analysis

performed in [22] on the η′ TFF using only SL data revealed that the pole on the

real axis for the single-pole parameterisation is located at
√
s ' 830 MeV. In order

to estimate the region of influence of this pole one can make use of the half-width

rule [238]. In this case, the ρ and ω resonances are within the phase-space region

and the φ is not far from its end point. Taking the values of their masses and widths

from the PDG [37], the application of this rule gives Meff ± Γeff/2 = 822 ± 58 MeV

[22]. This value of the effective pole is compatible with the result obtained before

from the single-pole parameterisation, thus showing that the pole found at 830 MeV is

somewhat a kind of weighted average of the three existing resonance poles. The range

given by the half-width rule above implies that the region of influence of the former

pole is from 770 MeV to 900 MeV. Consequently, for the η′ TFF the PAs can also be

used in a safe manner up to around 770 MeV in the TL region3. Recently, the BESIII

Collaboration reported the first measurement of the e+e− invariant-mass distribution

for the η′ → e+e−γ decay up to 750 MeV [25]. As discussed, our prediction for the

TL region of the η′ TFF based solely on SL data should be able to describe this

new measurement. In Figure 8.1, the BESIII experimental extraction of the modulus

square of the η′ TFF as a function of the e+e− invariant-mass is compared with our

theoretical prediction. It is worth remarking that this is not a fit but a prediction

and the agreement is seen to be excellent.

The main purpose of the present work is to further improve our determination of

the η′ TFF taking into consideration not only the existing SL experimental data but

also the new set of TL data from the recent BESIII measurement. This combined anal-

ysis will allow us to better determine the LEPs of the TFF, its normalization and the

2The question is how close the PAs can approach the pole without failing. A detailed discussion
on this issue for the case of η′ Dalitz decays can be obtained from [258].

3In [258], we were more conservative and the half-width rule was applied taking only into account
the ρ resonance. As a result, we obtained that the lowest value of the region of influence in that
case was around 700 MeV.
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Figure 8.1: Our prediction for the η′ transition form factor in the time-like region
obtained from the P 6

1 (
√
s) fit to space-like data performed in [22]. Experimental

points are from the BESIII measurement in [25].

asymptotic limit. Such an enhancement permits to reconsider the η-η′ mixing scheme,

with special emphasis on the OZI-rule–violating parameters and the J/ψ(Z)→ η(′)γ

decays. In Section 8.1, we provide a detailed discussion on the reasons for the success

of PAs when applied to the TL region. In Section 8.2, we include the TL data in the

analysis, present the new results and comment the improvements achieved. Section

8.3 is devoted to the reassessment of the η-η′ mixing parameters and their conse-

quences for the J/ψ and Z radiative decays. Finally, in Section 8.4, we conclude and

mention the future prospects.

8.1 Padé approximants in the time-like region

When the original function to be approximated is Stieltjes with a finite radius of

convergence about the origin, R, it is a well-known result in the theory of Padé

approximants that the sequence PN+J
N (z) (with J ≥ −1) converges to the original

function, as N → ∞, on any compact set in the complex plane, excluding the cut

at R ≤ z < ∞ [200]. In other words, even though the ππ unitary cut driving the

decay is of Stieltjes nature, there is no a priori reason why the PA should work
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Chapter 8. The η′ transition form factor from space-and time-like data

above the branch cut. The cumbersome situation is, however, that at least the PL
1 (s)

sequence does work well above the cut (cf. Figure 8.1). And the unanswered question

is, then, whether one could have anticipated this success and how general is for any

arbitrary situation. A fair statement would be to say that, approximately, the TFF

is a meromorphic function which has nothing but a set of single and isolated poles

within the data range. In this scenario, PA are an excellent approximation tool [133].

Moreover, they tell us about the underlying physical phenomena driving the decay

without the need to assume any model.

To better understand this situation from a qualitative point of view, let us discuss

the following. As we have said, in the zero-width approximation, the TFF becomes

a meromorphic function. If the TFF contains a single and isolated pole, the PL
1 (s)

sequence reproduces the pole of the TFF with infinite precision. As soon as the

width is again switched on, the ππ threshold opens a branch cut responsible for that

width. Then, at first, no mathematical theorem will guarantee convergence on this

scenario. On the contrary, if the convergence theorem is to be satisfied, one would

expect the single pole of the PL
1 (s) to be located closer and closer to the threshold

point as soon as L → ∞, since this is the first singular point the PA is going to

find. However, the behavior of this ππ branch cut at threshold is well known. This

knowledge comes from the P-wave ππ scattering amplitude (the opened cut yields

vector states) together with the Fermi-Watson theorem that relates the phase of

the scattering amplitude with the phase of the form factor below the first inelastic

threshold. The ππ P-wave scattering amplitude t11(s) at threshold behaves like [262]:

Im[t11(s)] = q4
√
q2

(
a2

mπ

+
4a bm2

π − a2

2m3
π

q2 +O((q2)3)

)
,

Re[t11(s)] = q2
(
a+ b q2 +O(q2)2

)
, (8.1)

with q2 the center-of-mass momentum 4q2 = s − 4m2
π and where for the imaginary

part we used the unitary relation Im[t11(s)−1] = −σ(s), where σ(s) =
√

1− 4m2
π/s.

The absolute value of the threshold expansion of the amplitude t11(s) is basically a

polynomial in (s − 4m2
π) with the influence of the imaginary part starting only at

(s − 4m2
π)4. Following the previous equation, if the threshold parameters a and b

are of order 1 (with the appropriate units) [262], then the real part dominates near

threshold and the absolute value is given basically by the real part. By virtue of

the unitary relation for the TFF, ImF (s) = σ(s)F (s)t11(s)∗, and the expansion in

Eq. (8.1), one concludes that while the real part of the threshold expansion of the

TFF starts at order (s− 4m2
π)0, its imaginary part, coming from σ(s)Re[t11(s)], only
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8.1. Padé approximants in the time-like region

starts showing up at order (s − 4m2
π)3/2. If this is the case and the offset of the

threshold is that smooth, the PL
1 (s) sequence will be an excellent tool to reproduce

the TFF near and above the threshold and its pole will not be located at the starting

point of the threshold since it is not singular. Actually, taking the definition of a

PL
1 (s) given by

PL
1 (s) =

L−1∑
k=0

aks
k +

aLs
L

1− aL+1

aL
s
, (8.2)

the polynomial part will reproduce the threshold and the PA pole part will account

in an effective manner for the pole of the TFF far away from the threshold. This

simple consideration already shows the ability of PAs to go above the threshold for

functions with smooth threshold offset. In our current case, the discrepancies can be

further reduced if the object to be approximated is the absolute value squared of the

TFF, |F |2. Then, the PL
1 (s) will reproduce |F |2 in an even larger energy range, going

further above the opening of the branch cut.

The present discussion already anticipates that for the η-TFF our PAs will yield

an excellent result, since the ππ invariant mass can only reach the η mass where the

threshold expansion reproduces the absolute value of the TFF with great precision.

Consequently, a PL
1 (s) with large enough L will reproduce the TFF accurately. The

last question is, then, up to what energy one can go above the threshold before

failing. The threshold expansion itself must fail at some point because it breaks

unitarity by powers of (s − 4m2
π). A quantitative answer to this question would

demand to study this problem using a particular model. To make a general statement,

model independent, and qualitative, we notice that the threshold expansion should

break down when the presence of the resonance pole is large enough and cannot be

approximated by a polynomial in (s − 4m2
π). This happens basically at a distance

of the pole given by the half-width rule [238] which, as argued in the Introduction,

provides a simple estimate of the PA range.

In a realistic situation with multiple cuts, the picture will develop new features

but the final result would be similar. The PA pole becomes an effective pole resulting

from the combination of the absolute values of the different resonances entering the

process, closer to the one with larger coupling in the particular reaction, with shifts

produced by the different widths of the resonances. The role of the ππ branch cut is

intertwined with the particular particle for which the cut is opened. For example, if

one expects the ρ, ω and φ vectors to play a role, since the ρ width is the largest, the

TFF line shape will basically be dominated by that meson and its ππ opening. The

fact that a single-pole PA works so well in the η′ TFF is a clear indication that the 3π
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Constraining Fη′γγ(0) Predicting Fη′γγ(0)

P 7
1 P 1

1 P 6
1 P 1

1

bη′ 1.31(4) 1.25(3) 1.30(4) 1.27(4)

cη′ 1.74(9) 1.56(6) 1.73(9) 1.62(11)

dη′ 2.30(19) 1.94(12) 2.29(19) 2.06(22)

Fη′γγ(0) 0.344(5) 0.345(5) 0.342(13) 0.351(10)

Q2F asym
η′γ∗γ(Q

2) 0.254(3) 0.253(3)

χ2
dof 0.65 0.67 0.66 0.68

Table 8.1: Low-energy parameters as obtained after a joint fit to both space- and
time-like data with and without including the measured two-photon partial width as
a restriction in the χ2 function of (8.4), second and third multicolumn, respectively.
The leading coefficient of the TFF asymptotic limit and the χ2

dof are also shown.

cut is very small and its presence is already captured by the approximant. PAs cannot

differentiate among the different weights of the different contributions appearing in

the TFF, though. However, being fitted to experimental data, all the possible pieces

are included —as they are in the data. An interesting exercise would be, then, to

compare with other parameterizations existent in literature [222, 223, 227, 228, 229,

230, 231, 263, 264] and, eventually, to help to understand model dependencies. This

statement already excludes the generalization of our results for any arbitrary Stieltjes

function since one can immediately conclude that the clue feature of the function that

would allow the PA to access the branch cut is its behavior around the threshold point.

That is, for a form factor with an abrupt threshold offset, the range of applicability

within the time-like region will be more limited.

8.2 Incorporation of the low-energy time-like data

Since our goal is to provide a parameterization of the TFF as accurate as possible

and we have shown in the previous section that the TL experimental data up to 0.75

GeV can be well described with our old parameterization based on SL data, in this

section we will include the TL data as a new data set to be fitted, following [23]. At

low-momentum transfer, the TFF can be described by the expansion

Fη′γ∗γ(Q
2) = Fη′γγ(0)×

×
(

1− bη′
Q2

m2
η′

+ cη′
Q4

m4
η′
− dη′

Q6

m6
η′

+ · · ·
)
, (8.3)
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8.2. Incorporation of the low-energy time-like data

where Fη′γγ(0) is the normalization (the TFF at zero momentum transfer) while the

LEPs parameters bη′ , cη′ and dη′ are, respectively, the slope, the curvature and the

third derivative of the TFF. By reassessing our SL fits [22] through including TL data,

we will update the results for the LEPs of the η′ TFF. The χ2 function minimized in

our fit is given by (F̃ (
√
s) = F (

√
s)/F (0))

χ2 =
∑50

i=1

(
Q2|PLM (Q2)|

i
−Q2

∣∣∣F exp

η′γ∗γ(Q2)
∣∣∣
i

σ
Q2
∣∣∣∣Fexp
η′γ∗γ

(Q2)

∣∣∣∣
i

)2

+

∑8
i=1

 |P̃LM (
√
s)|2

i
−
∣∣∣F̃ exp

η′γ∗γ(
√
s)
∣∣∣2
i

σ∣∣∣∣F̃exp
η′γ∗γ

(
√
s)

∣∣∣∣2
i

2

+

(
PLM (0)−

∣∣∣F exp

η′γγ(0)
∣∣∣

σ∣∣∣∣Fexp
η′γγ

(0)

∣∣∣∣

)2

,

(8.4)

where the first and second terms correspond to SL [24] and TL [25] data, respec-

tively, while the last term encodes information from the TFF at zero momentum

transfer and introduces an additional restriction. For the experimental value we

use F exp
η′γγ(0) = 0.3437(55) GeV−1, inferred from the partial width to two photons,

Γη′→γγ = 4.35(14) keV [37], through the relation

|Fη′γγ(0)|2 =
64π

(4πα)2

Γ(η′ → γγ)

m3
η′

. (8.5)

The value Γη′→γγ = 4.35(14) keV cited in [37] is not a measured quantity, rather a fit

inferred from the branching ratio and using the current η′ total width. The average

experimental determination for such decay reads 4.28(19) keV. It will be interesting

to see whether this 0.3σ difference would affect our results at the precision we are

working.

We start fitting with a Padé approximants’ sequence of the type PL
1 (Q2), and

current data allow us to reach L = 7. The coefficients of our best PL
1 (Q2) fit for the

Q2Fη′γ∗γ(Q
2) defined as

PL
1 (Q2) =

TN(Q2)

R1(Q2)
=
t1Q

2 + t2Q
4 + · · ·+ tN(Q2)N

1 + r1Q2
, (8.6)

are gathered in table 8.2.

With these coefficients one can extract the slope of the TFF by expanding (8.6)

and normalizing the result as

bη′ = m2
η′(t1 · r1 − t2)/t1 = 1.312 , (8.7)

with mη′ = 0.95778 GeV. We provide a graphical account of our fits as compared

to both SL and TL in Figure 8.2, from where one can see that the one sigma error
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Table 8.2: Fitted coefficients for the best Padé approximant, P 7
1 (Q2), associated to

Q2Fη′γ∗γ(Q
2).

Coefficient Value
t1 0.3437
t2 3.847 · 10−3

t3 0.550 · 10−3

t4 −1.621 · 10−4

t5 1.338 · 10−5

t6 −4.495 · 10−7

t7 5.261 · 10−9

r1 1.4413

band associated to the time-like η′ TFF has considerably decreased as compared to

Figure 8.1. The LEPs obtained from the fit are collected in Table 8.1 and their

corresponding convergence pattern in Figures 8.3 and 8.4 (red circles) reflect the

impact of the inclusion of TL compared with the old results.

Comments on these results are in order.

1. The precision gained on the LEPs determination is remarkable as compared to

our previous results (blue triangles) when only SL were fitted [22];

2. We enlarge our PA sequence by one element (reducing then the systematic

uncertainty);

3. The new LEPs sequence reaches faster the stability value manifesting the ex-

cellent performance of the method as new experimental data is included;

4. Including F exp
η′γγ(0) as an additional datum in the fit reduces significantly the un-

certainty associated to this quantity. Regarding to this constraint, it is noticed

that while LEPs obtained from the PL
1 (Q2) sequence are basically insensitive

to this effect, the LEPs obtained from the P 1
1 (Q2) element are not and suffer

small distortions.

After the first combined analysis of both SL and TL data, our central value results

for Fη′γγ(0) and LEPs are

Fη′γγ(0) = 0.344(5)(0) GeV−1 , bη′ = 1.31(4)(1) ,

cη′ = 1.74(9)(3) , dη′ = 2.30(19)(21) ,
(8.8)

where the first error is statistic and the second systematic, the latter being 0% for the

value at the origin, and 1%, 2%, and 9% for the slope, curvature, and third derivative,
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Figure 8.3: Convergence pattern of the PL
1 sequence for Fη′γγ(0), bη′ , cη′ , and dη′ as

obtained from fitting experimental SL and TL data together with Fη′γγ(0) from the
PDG [37].
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Γη′→γγ.
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respectively [22]. The results above can be compared with the ones obtained by the

PN
N (Q2) sequence in Table 8.1. Since this second sequence stops at its first element

(which is actually the first element on the PL
1 (Q2) sequence), we do not consider its

results for a combined weighted average. The systematic error is at the level of the

statistical one. To reduce it, we would need more precise high-energy data on the

one hand, and enlarge, on the other hand, the PN
N (Q2) sequence which is limited

in this analysis to its first element. Notice that the PN
N (Q2) has systematic errors

dramatically smaller than the ones considered here (see the Appendix in [23] for

details). It turns out that the η′ TFF is very much dominated by a single hadronic

scale that gives to the TFF its characteristic vector meson dominance-like shape

(VMD). A P 2
2 (Q2) fit cannot be accommodated at the current level, and we hope that

more data from BESIII, MAMI, and Belle-II will help to improve the present values.

These results can be compared with Fη′γγ(0) = 0.344(4)(0) GeV−1, bη′ = 1.30(15)(7)

and cη′ = 1.72(47)(34), obtained using SL data only [22]. Clearly, the statistical

uncertainty of the LEPs has considerably diminished as a consequence of including

TL data to the analysis, being that one of the main results of this work. Our slope,

bη′ = 1.31(4), can be compared with the values 1.46(23), 1.24(8) and 1.6(4), quoted by

the CELLO and CLEO in Ref. [24] and Lepton-G (cited in [220]), respectively. One

should notice that all the previous collaborations used a single-pole model, VMD,

to extract the slope, which is nothing but the simplest P 1
1 (Q2) element from our

approach (which we neglected). Other theoretical predictions existent in the literature

are bη′ = 1.47 predicted by chiral perturbation theory for sin θP = −1/3, being θP

the η-η′ mixing angle, bη′ = 1.30 from constituent-quark loops, both values taken

from [265], bη′ = 1.33 from VMD [266], and bη′ = 2.11 from the Brodsky-Lepage

interpolation formula [267]. More recently, one can find bη′ = 1.323(4) from resonance

chiral theory [221], bη′ = 1.45+0.17
−0.12 using dispersive techniques [223], and bη′ = 1.06 or

1.16 from anomaly sum rules [230].

The main difference between Figure 8.1 and Figure 8.2 is the width of the uncer-

tainty band, specially at large
√
s, which is the region where we expect the PA to

eventually fail. To control on the quality of the fits at this large
√
s, we have repeated

the fits by first enlarging artificially the errors of the last energy points and secondly

eliminating subsequently the last data points. We have observed a completely stable

fit even under these manipulations which only slightly enlarge the slope error but

always keeping the same χ2
dof (degrees of freedom). We conclude, then, that our final

results in (8.8) are robust enough and independent of an eventual failure of the PA

method at the highest TL energy point.
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We benefit from our results Fη′γγ(0) = 0.344(5) GeV−1 and Fη′γγ(0) = 0.342(13)

GeV−1 (constrained and unconstrained cases, respectively) to predict the η′ partial

decay width to two photons. For the constrained fit, i.e. including the value at the

origin in our data set, the fit returns Γη′→γγ = 4.35(13) keV, slightly better than

the PDG fitted value and at 0.3 standard deviations off its averaged result. For the

unconstrained case, we find Γη′→γγ = 4.30(33) keV, which lies 0.1 standard deviations

off the experimental value. Regarding the asymptotic behavior of the TFF, we have

considered the PN
N (Q2) sequence since they have the right asymptotic fall-off 1/Q2

built-in. We reached N = 1 and then predicted the leading coefficient

lim
Q2→∞

Q2Fη′γ∗γ(Q
2) = 0.254(3) GeV , (8.9)

which is in very good agreement with the value 0.254(21) GeV4 measured at Q2 = 112

GeV2 by the BABAR collaboration [268]. This prediction is basically the same one

obtained in [22] when only the SL data were considered. Therefore, the effect of

including the TL data is negligible in this respect. Ideally, it would be desirable to

extract such value from the N = 2 element, which allows for diminishing the intrinsic

systematic error as well as for checking convergence. This should be possible in the

future if new precise Belle-II data becomes available.

8.3 A reassessment of the η-η′ mixing

In this section we reanalyze the η-η′ mixing as we did in [22, 23]. In these works, we

took advantage of the flavor basis, where the η and η′ pseudoscalar decay constants,

defined in terms of the axial currents Ja5µ = qγµγ5
λa√

2
q, with λq = diag(1, 1, 0) and

λs = diag(0, 0,
√

2), as 〈0|Ja5µ|P 〉 = i
√

2F a
Ppµ, where a = (q, s) refers to light and

strange quarks, respectively, can be expressed as

(F qs
P ) ≡

(
F q
η F s

η

F q
η′ F s

η′

)
=

(
Fq cosφq −Fs sinφs

Fq sinφq Fs cosφs

)
. (8.10)

This basis has become popular since large-Nc chiral perturbation theory (ChPT)

next-to-leading order (NLO) predictions yield [269, 270]

FqFs sin(φq − φs) =

√
2

3
F 2
πΛ1 , (8.11)

4Such value is obtained from the BABAR result 0.251(19)(8) GeV after taking into account
kinematical corrections [22].
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where Fπ ' 92.2 MeV is the pion decay constant and Λ1 an OZI-rule–violating

parameter expected to be small. Assuming Λ1 to be negligible, (8.11) implies φq =

φs ≡ φ, an approximation which has been shown to be successful in phenomenological

applications [269, 270]. Large-Nc ChPT also predicts

F 2
q = F 2

π +
2

3
F 2
πΛ1 . (8.12)

Here, phenomenological studies [22, 23, 269, 270] do not support Λ1 = 0 since they

clearly find Fq > Fπ. Therefore, to be consistent, we will consider the most general

case φq 6= φs and work in the so-called octet-singlet basis, where the decay constants

are defined as

(F 80
P ) ≡

(
F 8
η F 0

η

F 8
η′ F 0

η′

)
=

(
F8 cos θ8 −F0 sin θ0

F8 sin θ8 F0 cos θ0

)
. (8.13)

In this basis, large-Nc ChPT at NLO predicts [269, 270]

F 2
8 =

4F 2
K − F 2

π

3
, F 2

0 =
2F 2

K + F 2
π

3
+ F 2

πΛ1 , (8.14)

F8F0 sin(θ8 − θ0) = −2
√

2

3
(F 2

K − F 2
π ) , (8.15)

where FK ' 1.20Fπ is the kaon decay constant.

At this point we call the attention that F0 is renormalization group (RG) depen-

dent. This is connected to the J0
5µ anomalous dimension implying [231, 271]

µ
dF0

dµ
= −NF

(
αs(µ)

π

)2

F0 +O(α3
s) , (8.16)

where NF is the number of active flavors at scale µ. Solving this equation up to order

αs, the singlet decay constant at a different scale can be expressed as

F0(µ) = F0(µ0)
[
1 + 2NF

β0

(
αs(µ)
π
− αs(µ0)

π

)]
≡ F0(1 + δ) ,

(8.17)

with β0 = 11 − 2NF/3. In the octet-singlet basis, the different limiting behaviors of

the TFF, FPγγ ≡ FPγ∗γ(0) and P∞ ≡ limQ2→∞Q
2FPγ∗γ(Q

2), take the simple form

Fηγγ =
1

4π2

ĉ8F
0
η′ − ĉ0(1 + Λ3)F 8

η′

F 0
η′F

8
η − F 8

η′F
0
η

, (8.18)

Fη′γγ =
1

4π2

ĉ8F
0
η − ĉ0(1 + Λ3)F 8

η

F 0
ηF

8
η′ − F 8

ηF
0
η′

, (8.19)

η∞ = 2(ĉ8F
8
η + ĉ0(1 + δ∞)F 0

η ) , (8.20)

η′∞ = 2(ĉ8F
8
η′ + ĉ0(1 + δ∞)F 0

η′) , (8.21)
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Table 8.3: Predictions for the mixing parameters. θ8,0 are expressed in degrees.
F8/Fπ F0/Fπ θ8 θ0 Λ3 χ2

dof

1.32(7) 1.25(3) −22.8(1.1) −7.6(2.2) 0.05(3) 1.0

where ĉ8 = 1/
√

3 and ĉ0 =
√

8/3 are charge factors and δ∞ = −0.17 [23] accounts for

the F0 running from µ0 = 1 GeV up to µ →∞ [231]. In addition, we have included

the OZI-rule–violating parameter Λ3, which has been neglected in our previous studies

since it enters at the same level as Λ1.

The set (8.18-8.21) form a system of 4 equations with 5 unknowns (F
(8,0)

η(′) ,Λ3).

Then it could seem that, at least taking Λ3 = 0, we may solve the system. However,

as explained in [22], such a system is underdetermined as there is the relation

η∞Fηγγ + η′∞Fη′γγ =
3

2π2

(
1 +

8

9
(δ∞ + Λ3 + δ∞Λ3)

)
, (8.22)

which is free of mixing parameters. Indeed, (8.22) fixes Λ3 once its left-hand side is

(experimentally) known. However, we still have to face the fact that our system is

underdetermined. In order to overcome this problem, we notice that at NLO in large-

Nc ChPT (8.14,8.15) provide a clean prediction for both F8 and (θ8− θ0) in terms of

the well-known value for FK/Fπ [37]. Taking either F8 or (θ8 − θ0) as a constraint,

one would add an additional equation to the previous system, which would provide

a unique solution. Taking both, would lead to an overdetermined system, which in

general has no solution. For this reason, we adopt a democratic procedure in which we

perform a fit including both, F8 and (θ8 − θ0) constraints, together with (8.18-8.21).

In addition, we include the theoretical uncertainties from large-Nc ChPT predictions,

(8.14,8.15), by noticing that FK/Fπ typically receives 5% corrections from the NNLO.

Consequently, we add this error in quadrature on top of the one from [37] for our fitting

procedure.

The solution is collected in Table 8.3 and is the main result of this section. The

value for χ2
dof is excellent, which indicates a good agreement with large-Nc ChPT but

with non-negligible NNLO corrections accounted here as a 5%. Without this 5%,

the χ2
dof would grow up to 1.5. In addition, we can use (8.14) to predict the value

Λ1 = 0.21(5). In Figure 8.5 we collect our results (orange crosses) and compare them

to different predictions in the literature [269, 270, 271, 272] (red dots), as well with

our previous results [23] in blue-empty squares. We see that the main difference with

respect to our previous work [23], where we did not use the η′ TFF asymptotic value

and assumed φq = φs, appears in F0. This is to be expected as the inclusion of Λ1

and Λ3 affects the singlet part exclusively. In addition, we have reduced our errors
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Figure 8.5: η-η′ mixing parameters in the octet-singlet basis from L [271], FKS [270],
BDO [272], EF [269], EMS(14) [22], and EMS(15) [23].

thanks to the constraints from large-Nc ChPT with respect to our previous work.

Our prediction for Λ3 may be compared with the one in [272], Λ3 = −0.03(2). Both

of them point towards a small value for this parameter, though they differ in sign.

We find that Λ3 actually plays an important role not only in fulfilling the degeneracy

condition (8.22), but in the η(η′) → γγ decays as well. In addition, the Λ1 term is

rather important and affects specially the η′ results, where deviations of order 10%

appear if this is omitted. Finally, we stress that the use of the RG equation for F0

is fundamental, whereas most of the theoretical and experimental analysis do not

account for this effect, which —to our best knowledge— was included for the first

time in [231]. This effect increases η∞ and diminishes η′∞, bringing in agreement

experiment and theory.

Our results may be translated to the quark-flavor basis through the use of the

rotation matrix [270] (see appendix A)

U(θideal) =
1√
3

(
1 −

√
2√

2 1

)
, (8.23)

relating the pseudoscalar decay constants

(F qs
P ) = (F 80

P )U(θideal) . (8.24)
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From the above equation, together with the values from the first row of Table 8.3, we

obtain
Fq = 1.10(3)Fπ , Fs = 1.45(8)Fπ ,

φq = 40.6(1.8)◦ , φs = 38.4(1.2)◦ .
(8.25)

In addition, we can predict the ratio RJ/ψ ≡ ΓJ/ψ→η′γ/ΓJ/ψ→ηγ, which is given in

terms of φq alone [269] as

RJ/ψ = tan2 φq

(
mη′

mη

)4
(
M2

J/ψ −m2
η′

M2
J/ψ −m2

η

)3

. (8.26)

With (8.25), RJ/ψ = 5.6(7), just at 1.2σ from the experimental valueRJ/ψ = 4.7(2) [37].

It may be that, as precision improves, the deviation grows, which would be a hint of

novel phenomena in the η-η′ system, as gluonium component, which has long been de-

bated, but not found so far [273]. We recall in this sense that large-Nc ChPT implicitly

assumes that such component is not present in the η′. Moreover, the 3-gluon annihi-

lation amplitude, not included in our framework, may need to be included to account

for this 10% discrepancy [274]. Alternatively, we could include RJ/ψ in our fitting

procedure. The results would then be F8 = 1.37(6), F0 = 1.26(2), θ8 = −23.5(0.9),

θ0 = −8.8(2.0), and Λ3 = 0.07(3), with χ2
dof = 1.3, being very similar to those in

Table 8.3. With respect to the V Pγ couplings calculated in our previous work [23],

the new results yield more precise errors and very similar central values, with the

exception of the φ cases, which get slightly closer to the experimental results. With

the set of parameters in Table 8.3, together with (8.13), we can also predict the ratio

RZ ≡ ΓZ→η′γ/ΓZ→ηγ, which is given by [177]

RZ =

∣∣∣∣Fη′γZFηγZ

∣∣∣∣2(M2
Z −m2

η′

M2
Z −m2

η

)3

, (8.27)

whereM2
ZFPγZ(M2

Z) = 6
√

2(C8γZF
8
P+C1γZF

0
P (1+δ∞)) with C8γZ = (1−4 sin2 θW )/6

√
6,

C1γZ = (2 − 4 sin2 θW )/3
√

3 and θW the Weinberg angle at M2
Z [37]. Since C8γZ �

C1γZ , one may expect RZ ' cot2 θ0 [177], an observable quite sensitive, then, to

the singlet angle. However, since F 8
η � F 0

η , the denominator of (8.27) should not

be approximated and all the terms should be retained. In this respect, we find

RZ = 8.4(2.1), indicating a large singlet component in RZ .

Finally, we comment on possible venues to improve our errors. On the one hand, it

would be desirable to improve not only on η∞, which now is the input with the largest

error, but also to obtain η′∞ from a P 2
2 , which would reassess both the central value

and the error of this parameter. This would be possible from future Belle-II data.
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On the other hand, it would be interesting to have a more precise O(αs)
2 calculation

for δ as well as NNLO predictions for the mixing parameters and η(η′)→ γγ decays,

which would allow to check the stability and accuracy of the results. In addition,

future lattice analysis may play an important role in this field [275] and a combined

analysis using the PA method will be highly desirable.

8.4 Conclusions

In this work we have shown the excellent performance of the Padé approximants

method developed in [21, 22, 255, 23] for the description of the recently reported first

observation of the Dalitz decay η′ → γe+e− by the BESIII collaboration [25]. This

experimental analysis studies the time-like region of the η′ transition form factor up

to the resonance region.

Unlike our previous works, we have explored in the present one the limits of

application of PAs in the TL region finding that, beyond expectations, PAs can be

extended to energies very close to the location of poles. We have nicely described the

behaviour of the modulus square of the η′ TFF thus showing that this form factor

has a simple analytical structure in the complex plane made of an isolated branch cut

due to the ππ production threshold, the unitary cut, which disappears as soon as the

TFF is modulus squared, and a set of single poles.

The careful analysis of the PA sequence PL
1 (Q2) reveals, however, more effects

than those of the ρ resonance emerging here from ππ rescattering. Subleading effects

caused by additional branch cuts or the influence of higher resonances’ tails are also

captured by PAs and are indeed responsible for the shift of the PA-pole location with

respect to the naive projection of the ρ resonant pole onto the real axis. Since this

shift is not known with precision it is difficult to extract from the PA pole the exact

position of the resonance pole. This limitation of the method, already mentioned

at the beginning of this work, does not prevent the PAs from guiding us about the

underlying analytical structure of the TFF. One can take advantage of this highly

non-trivial knowledge to further use the PAs method in other approaches such as

B → π semileptonic form factors or the extraction of the proton charge radius from

electron scattering. A last remark concerns the role of VMD in experimental analyses,

now that the meaning of the PA pole on the real axis is understood. As pointed out in

[20], VMD should be interpreted as a first step in a systematic approximation, that is,

the P 0
1 element belonging to a more general and exhaustive PN

1 sequence. Although
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it is common to report on such fit for ease of comparison, the range of application of

VMD in the TL region is much shorter than the P 7
1 we used here.

In summary, PAs are not only useful for fitting and extrapolating data within the

SL region but also give us information about the analytical structure of the TFF. On

the one hand, they justify the use of elaborated dispersion relations with a single ππ

elastic branch cut for the isovector part of the TFF and a more simple Breit-Wigner

model for the isoscalar one [223, 263]. On the other hand, since no information on

the analytical structure of the TFF must be given in advance, PAs are an excellent

tool for testing other approaches decomposing the TFF into cuts and resonance poles.

PAs are also capable of accommodating the SL region high-energy QCD constraints

while still providing accurate predictions of the Γη(η′)→γγ decay widths. Moreover,

they allowed us to update the η-η′ mixing parameters within the context of the most

general large-Nc ChPT scenario, thus superseding the values obtained in our previous

works. Yet another issue is the lack of an imaginary part in the TFF when analysed

by means of PAs. Nevertheless, due to the indication of a simple analytical structure

of the TFF and its almost meromorphic nature as soon as it is modulus squared, a

PA constructed from a complex-conjugated Taylor expansion would locate the poles

of this TFF in a convergence sequence. This idea opens the door to such extensions

which are postponed for future work.
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Conclusions

In this thesis we have studied several processes involving η and η′ mesons. In partic-

ular, we have first investigated the hadronic decays of the tau lepton τ− → K−η(′)ντ

and τ− → KSπ
−ντ in sections 3, 4 and then τ− → π−η(′)ντ in section 5. Our anal-

yses have been focused in the description of the participant hadronic form factors

encoding the effects of the strong interactions. The corresponding parameteriza-

tions have been carried out by means of Chiral Perturbation Theory including res-

onances supplemented by arguments of analyticity and unitarity through dispersion

relations. Benefited from the experimental measurement of the τ− → K−ηντ decay

spectrum released by the BaBar and Belle collaborations [107, 12], we have deter-

mined the pole parameters in the complex plane of the K∗−(1410) vector resonance

to be MK∗(1410) = 1330+27
−41 MeV and ΓK∗(1410) = 217+68

−122 MeV for the mass and width

(cf. Eq. (3.48)), respectively. Subsequently, we predicted the branching ratio of the

decay τ− → K−η′ντ to be ∼ 1 · 10−6 (cf. table 3.4), respecting the upper limit,

4.2 · 10−6 at 90% CL, found by BaBar [110], and advocated its measurement in near

future B-factories.

On a second stage, we have performed a simultaneous fit to both Belle data

[12, 100] on the decays τ− → K−ηντ and τ− → KSπ
−ντ , that has led the deter-

mination of the K∗(1410) resonance with improved precision. We find MK∗(1410) =

1304 ± 17 MeV and ΓK∗ = 171 ± 62 MeV, Eq. (4.15), that supersede previous de-

terminations from both channels separated (cf. Fig. 4.2). We have also discussed

prospects of improvement for Belle-II and motivated experimental groups to measure

the distribution for the τ− → K−π0ντ decay in order to disentangle possible isospin

violations in the Kπ low-energy parameters.

We closed the first part of the thesis by studying the second-class current decays

τ → π−η(′)ντ . These processes occur via isospin violation and have not been evi-

denced in Nature so far. We discussed different parameterizations of the scalar form
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factor ordered according to their increasing fulfillment of analyticity and unitarity

constraints while the vector form factor has been extracted using existing data on the

well known π−π0 one. We conclude that, according to our predictions (cf. tables 5.1

and 5.2), both decays have good prospects for discovering at Belle-II. The crossing

symmetric semileptonic η(′) → π−`+ν` (` = e, µ) decays have been also been tackled.

In the second part of the thesis, we have examined several processes driven by the

anomalous vertex Pγ∗γ(∗) (P = π0, η, η′). The transition form factor in the space-

like region has been accessed via the two-photon fusion reaction e+e− → e+e−P by

different experimental groups which have reported the corresponding data. These

data have been suitably parameterized, in a model-independent way, by means of

Padé approximants [22]. This allowed us to predict the time-like region as shown in

Figs. 7.1 and 7.2 proving the remarkable ability of PA in describing also this regime.

Since data is nicely supported by our description, we then proceeded to describe the

single and double Dalitz decays P → `+`−γ and P → `+`−`+`− (` = e, µ). We find

that the effect of the TFF is much notorious when muons are involved and enhanced

for η′ decays. Regarding our predictions on the different branching ratios given in

table 7.9, they are not only in accordance with the measured decays but rather we

also hope them to serve as a guide to the experimental collaborations to measure the

unseen one.

Finally, we have benefited from the recent experimental measurement of the single

Dalitz decay η′ → e+e−γ released by the BESIII collaboration [25], to perform, for the

first time, a combined analysis of both space-and time-like data of the TFF through

the method of PA. In the study, we have addressed the issue of why Padé approximants

work so well in reproducing time-like data concluding that the clue feature is the small

effect of the ππ cut at threshold. From our combined fit, we succeeded in extracting

both the low-energy form factor parameters as well as the η − η′ mixing parameters,

Eq. (8.8) and table. (8.3), respectively, with improved degree of accuracy than our

previous determinations.
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Appendix A

Bases of the η − η′ mixing

In section 1.5, we have seen that the mixing phenomenon among the eigenstates η8

and η1 occurs due to an explicit SU(3) flavor symmetry breaking. However, these

states are not the physical η and η′ mesons we observe in nature (see table 1.2) but

rather linear combinations of them. This admixture is parameterized by the so-called

mixing angle and can be described in two different bases:

• the octet-singlet basis, which uses |η8〉 = 1√
6
|uū+ dd̄− 2ss̄〉 and |η1〉 = 1√

3
|uū+

dd̄+ ss̄〉 as the basis states(
η
η

)
=

(
cos θP − sin θP
sin θP cos θP

)(
η8

η1

)
, (A.1)

• the quark-flavor basis, with |ηq〉 = 1√
2

and |ηs〉 = |ss̄〉 as the relevant basis states(
η
η

)
=

(
cosφP − sinφP
sinφP cosφP

)(
ηq
ηs

)
. (A.2)

In order to find a relation between the mixing angle θP and φP we compare the mixing

pattern of the η and η′ states for both mixing schemes as

|η〉 = cos θP |η8〉 − sin θP |η1〉 = cosφP |ηq〉 − sinφP |ηs〉 ,
|η′〉 = sin θP |η8〉+ cos θP |η1〉 = sinφP |ηq〉+ cosφP |ηs〉 . (A.3)

Then, using the change of basis(
η8

η1

)
=

(
1/
√

3 −
√

2/3√
2/3 1/

√
3

)(
ηq
ηs

)
. (A.4)

and equating both sides of Eq. (A.3) we arrive at

cos θP =
1√
3

(
cosφP +

√
2 sinφP

)
, sin θP =

1√
3

(
sinφP −

√
2 cosφP

)
. (A.5)
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Appendix A. Bases of the η − η′ mixing

In the SU(3) flavor symmetry limit i.e. no mixing in the octet-singlet basis (θP = 0),

from Eq. (A.5) one can define an ideal mixing angle φideal in the quark-flavor basis

cosφideal =
1√
3
, sinφideal =

√
2

3
, (A.6)

which leads

φideal = arctan
√

2 . (A.7)

Thus, the first term in Eq. (A.5) can be written as

cos θP = cosφideal cosφP + sinφideal sinφP = cos(φP − φideal) , (A.8)

which allow us to get the well-known relation between the octet-singlet mixing angle

θP and the quark-flavor ones φP

θP = φP − φideal = φP − arctan
√

2 ' φP − 54.7◦ . (A.9)
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Appendix B

G-parity and second class currents:
the case of τ−→ π−η(′)ντ

The concept of G-parity is defined as a rotation of the wave function by 180◦ around

the y-axis in the isospin space followed by the application of the charge conjugation

operator C. The general G-parity operator applied over a state |X〉 reads

G|X〉 = exp[iθIy]C|X〉 , (B.1)

though, in short, is equivalent to

G|X〉 = (−1)IC|X〉 , (B.2)

as we will demonstrate in the following (cf. Eq. (B.14)).

B.1 Isospin rotation

A general isospin rotation of a field φ is given by Uφ(x)U−1 = S(θ)φ(x) where U is

a unitary operator U = exp[iθI] and S(θ) = exp[−iθT ] its representation in a three-

dimensional isospin space with T = (Tx, Ty, Tz) being the rotation matrix generators

given by

Tx =

 0 0 0
0 0 −i
0 i 0

 , Ty =

 0 0 i
0 0 0
−i 0 0

 , Tz =

 0 −i 0
i 0 0
0 0 0

 . (B.3)

These matrices, the generators of isospin rotations, are obtained from the standard

rotation matrices around x, y and z axes
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Rx =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , Ry =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 , Rz =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ,

(B.4)

by considering an infinitesimal rotation as of

Rx,y,z = 13×3 + iTx,y,zθ . (B.5)

For our purpose, we are interested in isospin rotations of an angle θ around the

y-axis whose general form reads

S(θ) = exp[−iθTy] = 13×3 +
∞∑

n=1,3..

1

n!
(−iθTy)n +

∞∑
n=2,4..

1

n!
(−iθTy)n

= 13×3 − iTy
∞∑
n=1

(−1)n−1 θ2n−1

(2n− 1)!
+ (Ty)

2

∞∑
n=1

(−1)n
θ2n

(2n)!

= 13×3 − iTy sin θ − (1− cos θ)(Ty)
2 , (B.6)

where we have used T 3
y = Ty.

In particular, the matrix for an isospin rotation of an angle θ = π is given by

S(θ) = 13×3 − 2

 1 0 0
0 0 0
0 0 1

 =

−1 0 0
0 1 0
0 0 −1

 , (B.7)

whose application on the cartesian pion triplet,

π1 =
1√
2

(π+ + π−) , π2 =
i√
2

(π+ − π−) , π3 = π0, (B.8)

flips the sign of π1 and π3 leaving π2 unchanged

S(θ = π)

 π1

π2

π3

 =

−1 0 0
0 1 0
0 0 −1

 π1

π2

π3

 =

−π1

π2

−π3

 . (B.9)

In other words, because of this rotation the following replacements are in order

π± → −π∓ and π0 → −π0.

B.2 Charge conjugation

The charge conjugation operator applied to the cartesian pion triplet Eq. (B.8) flips

the sign of π2
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B.3. G-parity

C

 π1

π2

π3

 =

 1 0 0
0 −1 0
0 0 1

 π1

π2

π3

 =

 π1

−π2

π3

 , (B.10)

where we have taken into account that C|π±〉 = |π∓〉 and C|π0〉 = |π0〉.

B.3 G-parity

Regarding G-parity transformations, let us consider the cartesian pions Eq. (B.8)

and apply first an isospin rotation of an angle θ = π around the y-axis followed by a

charge conjugation operation as of

G

 π1

π2

π3

 = S(θ = π)C

 π1

π2

π3


=

−1 0 0
0 1 0
0 0 −1

 1 0 0
0 −1 0
0 0 1

 π1

π2

π3

 = −

 π1

π2

π3

 , (B.11)

which lead the mass eigenstates of the isospin pion triplet suffer the following trans-

formation

G|π±0〉 = −|π±0〉. (B.12)

Regarding G-parity applied to the η and η′ mesons we have

G|η(′)〉 = |η(′)〉 , (B.13)

since they are neutral isospin singlets i.e. they do no rotate under isospin transfor-

mation and are invariant under charge conjugation.

Finally, the G-parity of the final state hadronic system, πη(′), is given by

G|π±,0η(′)〉 = G|π±,0〉|η(′)〉 = −|π±,0η(′)〉. (B.14)

Notice that we would have arrived at this same result by applying Eq. (B.2) with

I = 1, the isospin of the π−η(′) system.

For the case that concerns us, the G-parity of the vector current entering the

description of τ− → π−η(′)ντ is

G|ūγd〉 = +|ūγd〉 , (B.15)
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Appendix B. G-parity and second class currents: the case of τ− → π−η(′)ντ

which is opposite to what we have derived in Eq. (B.14) for the final state hadronic

system. Therefore, the decay τ− → π−η(′)ντ occurs via G-parity violation leading

JPG = 0+− or 1−− for the spin-parity-G-parity quantum numbers of the πη(′) system

which, in the SM, can only proceed through the unseen second class currents.
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Appendix C

Exponential parametrisation of the
vector form factor

The exponential parametrisation of fKπ+ (s) is a variant of the form factor Ansatz

(4.4) in which the real part of H̃Kπ(s) is resummed into an exponential function

[103, 105, 52],

fKπ+ (s) =

[
m2
K∗ + γs

D(mK∗ , γK∗)
− γs

D(mK∗′ , γK∗′)

]
e

3
2

ReH̃Kπ(s) , (C.1)

where now D(mn, γn) = m2
n − s − imnγn(s) and the energy-dependent resonance

widths, defined as

γn(s) = γn
s

m2
n

σ3
Kπ(s)

σ3
Kπ(m2

n)
, (C.2)

are equal to the imaginary part of the propagator in eq. (4.5) through the identification

κn ImH̃Kπ(s) = mnγn(s). This representation of fKπ+ (s) in the elastic limit was used

beyond this approximation in refs. [103, 105] including the Kη channel and ref. [13]

also incorporating the Kη′ effects. However, in order to perform a fair comparison

of the results obtained from this parametrisation and the dispersive representation

in eq. (4.8) we work in the elastic limit and use for H̃Kπ(s) the isospin average of

eq. (4.7). Needless to say, the unphysical “mass” and “width” parameters mn and

γn in this parametrisation will be different from their analogues in the dispersive

treatment but the corresponding pole parameters should not differ significantly. It

is worth mentioning, however, that when the normalised version of the form factor

in eq. (C.1) is directly confronted with experimental data the slope parameters are

not fitted but deduced from the Taylor expansion of the form factor (unlike the test

proposed in the main text where the phase of the form factor is calculated first and

then plugged into the dispersive relation).
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Appendix C. Exponential parametrisation of the vector form factor

In Table C.1, we display the results of the direct application of the exponential

vector form factor in eq. (C.1) using three different settings: a combined fit of the

two sets of data with γKπ = γKη (Fit I, which implies λ
′(′)
Kπ = λ

′(′)
Kη); the same but

γKπ 6= γKη (Fit II); and fitting the data sets separately (Fit III). In the last case,

the pole position of the K∗(892) resonance is obtained from the fit to Kπ data and

then plugged into the Kη fit. On the contrary, the K∗(1410) pole position is kept

free in both fits (in brackets the results from the fit to Kη data alone). Looking at

the various χ2/n.d.f. of Table C.1, one immediately realises the meagre performance

exhibited by the exponential parametrisation as compared to the dispersive represen-

tation achievements shown in Table 4.1. In the Kη part of Fit III (fourth column)

the χ2/n.d.f.∼ 2. Particularly inept are the values obtained for the Kη branching

ratio which are in all cases far from the experimental measurement. Therefore, a

combined analysis of the τ− → KSπ
−ντ and K−ηντ decays clearly disfavours the

direct exponential treatment as compared to the dispersive approach, a conclusion

which was already hinted at by the independent analysis of Kη data in ref. [13]. Now

comparing, for instance, Fit II in Table C.1 with its analogue Fit B in Table 4.1,

it is seen that the pole positions of both resonances are quite in agreement in the

two approximations as also happens with their relative weights. However, somewhat

larger values with smaller errors are obtained for all the different slope parameters,

in accord this time with the previous analyses in refs. [103, 105].
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Fitted value Fit I Fit II Fit III
B̄Kπ(%) 0.394± 0.008 0.398± 0.009 0.401± 0.009

(Bth
Kπ)(%) (0.391) (0.394) (0.398)
MK∗ 892.35± 0.25 892.31± 0.25 892.39± 0.23
ΓK∗ 47.19± 0.51 47.21± 0.49 47.15± 0.46
MK∗′ 1318± 10 1318± 11 1265± 16 (1340± 19)
ΓK∗′ 146± 31 165± 36 145± 42 (218± 65)

γKπ × 102 = γKη −4.1± 0.9 −3.8± 1.0
λ′Kπ × 103 25.02± 0.13 25.08± 0.14 25.16± 0.14
λ′′Kπ × 104 12.56± 0.10 12.61± 0.10 12.66± 0.11
B̄Kη × 104 1.34± 0.07 1.35± 0.08 1.25± 0.11

(Bth
Kη)× 104 (1.15) (1.16) (1.06)
γKη × 102 −4.6± 0.8 −6.2± 1.6 −8.4± 2.7
λ′Kη × 103 = λ′Kπ 24.80± 0.23 24.47± 0.40
λ′′Kη × 104 = λ′′Kπ 12.40± 0.17 12.18± 0.29
χ2/n.d.f. 188.4/109 ∼ 1.72 184.0/108 ∼ 1.70 (117.9 + 49.5)/(81 + 25) ∼ 1.58

Table C.1: Fit results obtained using the exponential parametrisation for different settings:
a combined fit of Kπ and Kη data with γKπ = γKη (Fit I), the same but γKπ 6= γKη (Fit II);
and fitting the data separately (Fit III). See the main text for further details. Dimensionful
parameters are given in MeV. As a consistency check, for each of the fits we provide (in
brackets) the value of the respective branching ratios obtained by integrating eq. (4.1)
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Appendix D

Form factors in coupled-channels

Let us write the scalar form factor on general grounds through the once-subtracted

dispersion relation

F (s) = F (s0) +
s− s0

π

∫ ∞
sth

ds′
ImF (s′)

(s− s0)(s′ − s− iε) , (D.1)

where F (s) is now a n-entries column vector. Eq. (D.1) comes together with the uni-

tarity relation ImF (s) = Σ(s)t∗IJ(s)F (s), with Σ(s) a diagonal matrix of kinematical

factors given by

Σ(s) =


σ1(s) 0 ... 0

0 σ2(s) ... 0
... ... ... 0
0 0 0 σn(s)

 , (D.2)

and tIJ(s) a n× n matrix defined as

tIJ(s) =


t11(s) t12(s) ... t1n(s)
t21(s) t22(s) ... t2n(s)
... ... ... ...

tn1(s) tn2(s) .. tnn(s)

 (D.3)

encoding the required unitarized partial-wave amplitudes. Then, Eq. (D.1) can be

rewritten as

F (s+ iε) = F (s0) +
s− s0

π

∫ ∞
sth

ds′
Σ(s′)t∗IJ(s′)F (s′)

(s′ − s0)(s′ − s− iε) = F (s0) + F̃ (s+ iε), (D.4)

where F (s0) is a real term and the discontinuity of F̃ (s+ iε) is given by

F̃ (s+ iε)− F̃ (s− iε) = 2i lim
ε→0

ImF (s+ iε) = 2iImF (s) = 2iΣ(s)t∗IJ(s)F (s). (D.5)

We introduce the N/D method for unitarizing the partial wave scattering amplitude

by

tI,J(s) =
NI,J(s)

DI,J(s)
, (D.6)
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where the matrix functions (we omit the I and J indices hereafter) N and D contain

the left- and right-hand cuts of the partial-wave amplitude respectively, and satisfy

the dispersion relations

N(s) =
s− s0

π

∫ sL

−∞
ds′

ImN(s′)

(s′ − s0)(s′ − s− iε) (D.7)

and

D(s) = D(s0) +
s− s0

π

∫ ∞
sth

ds′
ImD(s′)

(s′ − s0)(s′ − s− iε) . (D.8)

One nice consequence of unitarity is the that the inverse of the (unitarized) partial

wave amplitude fulfills

Imt−1(s) = −Σ(s) , (D.9)

or, equivalently,

ImD(s) = −NΣ(s) . (D.10)

By inserting Eq. (D.10) into Eq. (D.6) we deduce

t∗(s) =
N∗(s)

D∗(s)
=
−(ImD(s)/Σ(s))∗

D∗(s)
=
−ImD(s)/Σ(s)

D(s− iε) . (D.11)

Then, using Eq. (D.11) we can rewrite Eq. (D.5) as

F̃ (s+ iε)− F̃ (s− iε) = 2iImF (s) = 2iΣ(s)

[−ImD(s)/Σ(s)

D(s− iε)

] [
F (s0) + F̃ (s+ iε)

]
(D.12)

which further reduces to

F̃ (s+ iε) [D(s− iε) + 2iImD(s)]− F̃ (s− iε)D(s− iε) = −2iImD(s)F (s0) . (D.13)

The term in square brackets in Eq. (D.13) can be rewritten as D(s+ iε) because its

discontinuity across the cut. Then, we arrive at the following expression

F̃ (s+ iε)D(s+ iε)− F̃ (s− iε)D(s− iε) = −2iImD(s)F (s0) , (D.14)

whose once subtraced solution, by virtue of the Cauchy integral, reads

F̃ (s+ iε)D(s+ iε) =
s− s0

2πi

∫ ∞
sth

ds′
F (s′ + iε)D(s′ + iε)− F (s′ − iε)D(s′ − iε)

(s′ − s0)(s′ − s) ,

(D.15)

and the desired solution is

F̃ (s+ iε) =
1

D(s+ iε)

−(s− s0)

π

∫ ∞
sth

ds′
ImD(s′)F (s0)

(s′ − s0)(s′ − s) , (D.16)
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which, by employing Eq. (D.8), reduces to

F̃ (s+ iε) = −D(s+ iε)−1 (D(s+ iε)−D(s0))F (s0) . (D.17)

Finally, Eq. (D.4) reads up to a polynomial indetermination 1

F (s) =
[
1 +D(s)−1 (− [D(s)−D(s0)])

]
F (s0) = D(s)−1D(s0)F (s0) . (D.18)

As written in Eq. (D.18), the coupled-channels form factors problem reduces to finding

a suitable parameterization for the D(s) matrix in analogy with Eq. (5.28) for the

single channel case. In the N/D method our work is based on, the D(s) matrix is

associated to

DIJ(s) = (1 + g(s)NIJ(s)) , (D.19)

where the matrices NI,J(s) and g(s) encode, respectively, the scattering amplitudes

and the meson-meson one-loop scalar function defined in Eq. (33) of Ref. [57].

1As for the single channel case, the solution is not unique since the appearance of a polynomial
may encode information on the solution. This ambiguity, known as the polynomial ambiguity, can
not be fixed without invoking external information such as experimental data and/or with the help
of theoretical arguments. We argue that if the form factor has a proper high-energy fall-off behavior,
this term may be ignored, without loss of generality, as a first approximation. Although, as soon
as data becomes available in the future this term shall be accounted for and its weight would be
inferred from fitting data.
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Appendix E

Interference term in double Dalitz
decays

E.1 Four-body decay width in invariant variables

The partial decay width of a particle P of mass MP decaying into four particles

p1p2p3p4 reads [37]

Γ(P → p1p2p3p4) =

∫
dΦ(pP ; qp1 , qp2 , qp3 , qp4)

(2π)4

2MP

|M(P → p1p2p3p4)|2 , (E.1)

where dΦ(pP ; qp1 , qp2 , qp3 , qp4) is the four-body phase-space element given by

dΦ(pP ; qp1 , qp2 , qp3 , qp4) = δ4

(
pP −

4∑
i=1

qi

)
4∏
i=1

d3qi
(2π)32Ei

. (E.2)

Following refs. [253, 254], the phase space is expressed in terms of independent in-

variant masses (instead of using three-momenta and angles) as

dΦ(pP ; qp1 , qp2 , qp3 , qp4) =
1

8π10M2
P

(−B)−1/2 dM2
12dM

2
34dM

2
14dM

2
124dM

2
134 , (E.3)

where Mij = (qi + qj)
2 and Mijk = (qi + qj + qk)

2. In the case that concerns us, B

reads

B = m8
` +

[
M2

124M
2
134 −M2

PM
2
14 +M2

12 (−M2
134 +M2

14)

]2

+ 2

[
(M2

12 −M2
124)M2

124M
2
134 +

+

(
M2

12M
2
124 +M2

P (−2M2
12 +M2

124) + (M2
12 +M2

124)M2
134

)
M2

14 −

− (M2
P +M2

12)M4
14

]
M2

34 + (M2
124 −M2

14)
2
M4

34m
4
`

[
M4

12 +M4
124 + 4M2

124M
2
134 +M4

134 −

−2M2
P

(
2 (M2

124 +M2
134) +M2

14

)
+ 2 (4M2

124 +M2
134 +M2

14)M2
34 +M4

34 +
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+2M2
12 (M2

124 + 4M2
134 +M2

14 +M2
34)

]
+m6

`

[
4M2

P − 2 (3M2
12 +M2

124 +M2
134 + 3M2

34)

]
−

−2m2
`

[
M4

12 (M2
134 +M2

14) + (2M2
P −M2

124 −M2
134) (−M2

124M
2
134 +M2

PM
2
14) +

+

(
M4

124 + (−3M2
P +M2

124 +M2
134)M2

14

)
M2

134 + (M2
124 +M2

14)M2
34 +

+M2
12

(
M2

134 − 3M2
PM

2
14 +M2

124M
2
14 +M2

134M
2
14 + (M2

124 +M2
134 − 2M2

14)M2
34

)]
(E.4)

where m` is the lepton mass and the boundary of the physical allowed region is such

that fulfilsB = 0. ref. [253] points out that the choice of variablesM2
12,M

2
34,M

2
14,M

2
124,

and M2
134 is convenient because it facilitates the finding of the limits of integration of

B since it only depends quadratically on each of the variables; other choices can lead

to quartics.

E.2 Integration limits

In order to find the physical region of one variable, for instance M2
14, one must solve

B = 0 obtaining

M2±
14 =

−b± 2
√
G(M2

124,M
2
34,M

2
12,m

2
` ,M

2
P ,m

2
`)G(M2

134,M
2
34,M

2
12,m

2
` ,M

2
P ,m

2
`)

λ(M2
12,M

2
34,M

2
P )

,

(E.5)

where λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc is the basic two-particle kinematical

function, the Kállen function, b is given by

b = (M2
12)2(M2

134 +m2
`)+

+(M2
34 −M2)[M2

34(M2
124 +m2

`) + (M2
124 −m2

`)(−M2
134 +m2

`)− 2m2
`M

2
` ]−

−M2
12[(M2

124 −m2
`)(M

2
134 −m2

`)+

+M2
34(M2

124 +M2
134 + 2m2

` − 2M2
P ) + (M2

134 + 3m2
`)M

2
P ] ,

(E.6)

and

G(x, y, z, u, v, w) = u2z − uvw + uvx− uvz + uwy − uwz − uxy − uxz − uyz+

+uz2 + v2w + vw2 − vwx− vwy − vwz − vxy+

+vyz − wxy + wxz + x2y + xy2 − xyz ,
(E.7)

is the basic four-particle kinematic function. As argued in ref. [253], the limits of

integration of the remaining variables, M2
12,M

2
34,M

2
124, and M2

134 are obtained after

190
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solving

G(M2
124,M

2
34,M

2
12,m

2
` ,M

2
P ,m

2
`) = 0 , G(M2

134,M
2
34,M

2
12,m

2
` ,M

2
P ,m

2
`) = 0 , (E.8)

while the dilepton invariant masses M2
12 and M2

34 range from threshold 4m2
` to (MP −

m`)
2 and 4m2

` to (MP −M12)2, respectively.

E.3 Matrix element of the interference term

The last term in eq. (7.14) reads

A1A2 =
e8|F (q2, k2)||F (q′2, k′2)|

q2k2q′2k′2
×

×εµναβεµ′ν′α′β′(q1 + q2)µ(q3 + q4)ν(q1 + q4)µ′(q2 + q3)ν′×

×Tr[( /q1 +m`)γα( /q2 −m`)γβ′( /q3 +m`)γβ( /q4 −m`)γα′ ] .

(E.9)

The trace and the corresponding contractions with both the product of Levi-Civita

tensors and the different diphoton four momenta in eq. (E.9) have been computed

with FormCalc. To give a result in the desired variables, some replacements in the

former equation are mandatory. In this order are: i) M2
23 = 2(q2 · q3 + 2m2

`); ii)

q2
i = m2

` ; iii) q2 · q3 = 1
2
(M2 − 4m2

`) − q1 · q2 − q1 · q3 − q1 · q4 − q2 · q4 − q3 · q4; iv)

q2 · q4 = 1
2
(M2

124 − 3m2
`)− q1 · q2 − q1 · q4; v) q1 · q3 = 1

2
(M2

134 − 3m2
`)− q1 · q4 − q3 · q4;

vi) q1 · q4 = 1
2
M2

14−m2
` , q1 · q2 = 1

2
M2

12−m2
` , q3 · q4 = 1

2
M2

34−m2
` . Finally, the desired

expression for the interference term in eq. (E.9) reads

e8|F (M2
12,M

2
34)||F (M2

14,M
2
23)|

M2
12M

2
34M

2
14(2m2

`+M
2
P−M

2
124−M2

134+M2
14)2 ×

×
{
− 2m8

` +M6
12 (M2

134 −M2
14) + 4m6 (−M2

12 +M2
124 +M2

134 −M2
34) +

+m4

[
M2

12 − 3 (M2
124 +M2

134)
2

+ 4M2
PM

2
14 + 2M2

12 (M2
124 + 5M2

134 − 2M2
14 − 5M2

34) +

+2 (5M2
124 +M2

134 − 2M2
14)M2

34 +M4
34

]
−

−
[
M4

124 +M4
134 − 2M2

PM
2
14 − 2M2

134M
2
34 + 2M2

14M
2
34 +M4

34

]
×

×
[
M2

124 (M2
134 −M2

134) +M2
14 (−M2

P +M2
34)

]
+

+M4
12

[
(M2

P + 2M2
134 − 2M2

14)M2
14 + (−2M2

134 +M2
14)M2

34 +

+M2
124 (−3M2

134 + 2M2
14 +M2

34)

]
+m2

[
−M6

12 + (M2
124 +M2

134)
3 −

191



Appendix E. Interference term in double Dalitz decays

− (M2
124 +M2

134) (5M2
124 +M2

134 − 4M2
14)M2

34 + (M2
124 +M2

134 − 4M2
14)M4

34 −
−M6

34 +M4
12 (M2

124 +M2
134 − 4M2

14 +M2
34) +

+M2
12

(
− (M2

124 +M2
134) (M2

124 + 5M2
134 − 4M2

14) +

+2M2
P (M2

124 −M2
134 + 2M2

14) + 2
(

3 (M2
124 +M2

134) + 4M2
14

)
M2

34 +M4
34

)
−

−2M2
P

(
M4

124 + (M2
134 + 2M2

14) (M2
134 −M2

34) +M2
124 (−2M2

134 + 2M2
14 +M2

34)

)]
+

+M2
12

[
M6

134 +M4
124 (3M2

134 −M2
14 − 2M2

34)−M2
134 (M2

14 + 2M2
34)−

−2M2
124 (M2

PM
2
14 +M2

134M
2
14 −M2

134M
2
34 + 2M2

14M
2
34 +M4

34) +

+M2
134

(
− 2M2

PM
2
14 +M2

34 (−4M2
14 +M2

34)

)
+

+M2
14

(
M2

34 (4M2
14 +M2

34) +M2
P (4M2

14 + 6M2
34)

)]}
(E.10)
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