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Abstract

Equations of motion of eleven dimensional supergravity compactified to d dimensions
on (11 — d)-torus have a hidden non-compact global symmetry group Eq;_g(11—4), being
examples of U-duality groups. U-duality groups are conjectured to be broken to their
discrete subgroups Ej;_g4(11—q4) (Z) in the non-perturbatve M-theory.

In this thesis we study algebraic structures and unitary realizations of U-duality groups,
in particular those arising from Maxwell-Einstein supergravity (MESGT) theories in d = 5,
4, 3 dimensions. These algebraic structures and their related symmetry groups arise also in
the study of generalized space-times defined by Jordan algebras and related algebraic con-
structs. After reviewing the previous work on the Lorentz groups and conformal groups of
spacetimes defined by Jordan algebras we study their quasi-conformal groups. In particular
we give the geometric realization of these quasi-conformal groups in a basis covariant with
respect to their generalized Lorentz groups.

Minimal realization of U-duality groups associated with d = 3 supergravities is con-
structed as an extension of conformal quantum mechanics using ideas and methods pio-
neered by Giinaydin, Koepsell and Nicolai. Minimal unitary representations of such U-
duality groups are presented ellucidating connection with alternative construction of mini-

mal representations by Kazhdan, Pioline and Waldron.
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Chapter 1

Introduction

In the 1970’s Veneziano [110] proposed the dual amplitude

a(s) =ap+a’s (1.1)

 T(—a(s)T(—a()
Al = T als) — alt)

in order to fit experimentally observed data from scattering of hadrons. Nambu and
Goto [81] realized that the Veneziano amplitude could be derived from the theory of one-
dimensional closed strings that propagate in R12° so as to minimise the area of 2 dimensional
surface swept out. The model, however, was soon abandoned since it predicted a massless
spin 2 particle but no massless hadrons of spin 2 were observed. Moreover, fixed angle large
energy limit of the scattering amplitude did not agree with refined experimental data.

This deficiency of the dual model has been turned into its virtue by Scherk and Schwarz
[97] and, independently by Yoneya [122] who proposed to identify the massless spin 2 particle
of closed string theory with the graviton and suggested that string theory be interpreted
as a quantum theory of gravity and that the scale o’ should be identified with the Planck
scale (see [96] for review).

Bosonic string theory, however, faced problems since its spectrum contained a tachyon, a
particle of negative mass squared rendering a theory unstable (see [102] for recent reinterpre-
tations of tachyon). To overcome this and to introduce fermions into play, a supersymmetric
extension of bosonic string theory has been put forward which is tachyon free [94, 84].

One way to study perturbative super-string theory is to define a 2-dimensional super-
conformal field theory “living” on a stringy world-sheet, i.e. the time-history of 1-dimensional
extended object, a string. Fields of 2D conformal field theory (CFT) are taken to be coor-
dinates of string, being a map from world-sheet into target space where the string is said
to propagate, i.e. X* (0,7) and v (0, 7). Strings interact “geometrically”, by splitting and
joining with each other. Dynamics of strings is governed by action functional that measures
the “super-area” of the stringy world-sheet [33]. To account for interactions one should
sum over world-sheets of different topology, which for two dimensional oriented surfaces is
characterised by genus and number of punctures. Vibrational modes of a string are then
interpreted as particles, and for each string coordinate there is a tower of vibrational modes,

carrying different energies and spins, with the natural mass scale being that of Plank mass
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myp < 1/a’. Modes with lowest energies are, after appropriate projection is applied, massless
and are easiest to excite. Thus in a low energy limit £ < mp02 of string theory only those
massless modes should be relevant.

Five consistent perturbative super-string theories were constructed during the 70-s and
the 80-s, referred to as type I with gauge group SO (32), type IIA, type IIB, and two het-
erotic string theories, with gauge groups SO (32) and Eg x Eg all living in critical space-time
dimension d = 10 ensuring that 2D CFT is invariant under the world-sheet reparameter-
isation [33, 91]. All the five string theories, among their low-energy modes, have target
space-time metric g,,,, anti-symmetric field B,,,,, dilaton ¢ and gravitino v, as well as pos-
sess target space-time supersymmetry. Thus all of them in the low-energy limit describe
some 10-dimensional supergravity theory. Superstring theories are perturbatively finite,
meaning that contribution of each term in genus expansion is ultra-violet divergencies free
and therefore are consistent candidates for quantum theory of gravity.

Our current experiments indicate only four observable dimensions around us, thus one
hopes that vacuum of string theory corresponds to space-time of geometry M3 x 7" where
7T is some manifold with its characteristic size sufficiently small not to be detectable at
energies within reach of current technology. Such ideas were put forward by Kaluza and,
independently by Klein at the beginning of 20-th century in their attempt to explain electro-
magnetism starting with pure general relativity in 5 dimensions. Having one of the dimen-
sions compact implies that string center of mass momentum in the compact direction is
quantised. Besides, being one dimensional object, the string can wind around compact

dimension arbitrary number w of times:
X% = QW%T + 2V a'wRo + oscillators (1.2)

where 7 parametrises time-like direction and o — space-like direction on the world sheet.
We observe that interchanging momentum and winding numbers n < w supplemented by
change of radius R — R = vo&/R~! leaves the string coordinate X? invariant. String
theory, compactified on a torus of radius R, indeed turns out to be invariant with respect
to this T-duality transformation. T-duality invariance is perturbative and holds for every
order of genus expansion. It means that string compactified on torus of large radius R
produces the same theory as if it was compactified on smaller radius R'.

Narain [82] showed that T-duality group of string theory compactified on torus 7" is
SO (n,n;Z) — a discrete subgroup of maximally non-compact real form of SO (2n).

It was known [33, 92] that two heterotic superstring theories toroidally compactified
down to d = 9 yield the same theory. Similarly type ITA and type IIB theories toroidally
compactified to d = 9 also result in the same theory, see figure 1.1.

Supersymmetry provides a powerful tool to gain glimpses into non-perturbative aspects
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of string theories. It is made possible by studying Bogomolnyi-Prasad-Sommerfield (BPS)

states, i.e. states that transform in non-generic (short) representations of supersymmetry
algebra, and by studying supersymmetry protected quantities (see [86, 53, 120, 100]). Per-
turbative corrections cannot change non-generic (short) representation into generic (long)
one, and thus the property of state being BPS will be preserved for all values of coupling
constant. The goal then is to identify physical quantities in the theory protected, thanks
to supersymmetry, by non-renormalisation theorems and to understand their behaviour in

the non-perturbative regime.

D=11 M-Theory
THZ, / \ 1
T
Heterotic Heterotic
D=10 | Type-l Type lIA Type IIB
0(32) Es X Eg
0(32)

T\l\\\ ///1/ \\\\ Tl ///-Iil
T N ¥
D=9 O 7! “ O
D=6
O

Figure 1.1: The web of dualities between string theories.
Broken lines correspond to perturbative duality connections. Type IIB in d = 10 is
self-dual under SL (2,Z). Figure adopted from [66].

A breakthrough in understanding of non-perturbative string dynamics, known in folklore
as second string revolution, came with discovery of non-perturbative dualities, first among
field theories [99] (see also [72] for review and references) and soon after also among string
theories (review and further references can be found for instance in [98, 109, 101]).

Web of perturbative and non-perturbative dualities (see Fig. 1.1) connect different
regimes of perturbative string theories. Moreover in strong-coupling regime of type IIA an
extra 11th dimension unfolds and theory becomes effectively described by eleven dimensional
supergravity [119]. An existence of some unique eleven dimensional quantum theory has
been conjectured [119, 108], dubbed M-theory while awaiting a better name. All the known
consistent superstring theories and 11D supergravity are believed to correspond to different

limits of M-theory. M-theory has received much of string theory community’s attention



Dimension Hidden sugra symmetry T-duality U-duality

10A SO (1, 1;R) /Zo 1 1

10B SL (2,R) 1 SL (2,7)
9 SL(2,R) x O(1,1;R) Zo SL(2,Z) x Zs
8 SL (3,R) x SL(2,R) 0(2,2,Z) SL(3,Z)xSL(2,Z)
7 SL (5,R) 0(3,3,Z) SL(5,7Z)
6 O (5,5,R) O (4,4,7) O (5,5,2Z)
5 E6(6) O (5,5,Z) E6(6) (Z)
4 Ezn 0 (6,6,Z) E77y (Z)
3 Eg(s) O(7,7,7Z) Egs) (Z)

Table 1.1: Duality symmetries of toroidally compactified type II string.

(see [85] for review and references) but despite the effort even its fundamental degrees of
freedom are not known as yet.

Both perturbative T-dualities and non-perturbative S-dualities' act on the moduli space
of M-theory. These two types of duality transformations commute and can be embedded
into larger discrete group as it has been demonstrated for type IIB theory [54]. This wider
group is termed U-duality group, where symbol U stands allegedly for unity. U-duality
group, conjectured to be exact symmetry of non-perturbative M-theory compactified down
to correspondent dimension, was shown to be a discrete subgroup of continuous non-compact
symmetries of maximal effective supergravity theories (see table 1.1).

With every additional dimension compactified, theory acquires more and more scalar
degrees of freedom, and its U-duality group which acts on those scalars non-linearly becomes
larger. Bosonic field content of eleven dimension supergravity on shell is beautifully simple,
and comprises a graviton gy and a rank 3 anti-symmetric field Ap;yg. After toroidal
compactification down to d = 3 the theory acquires 128 scalars degrees of freedom which
transform non-linearly under U-duality symmetry. Since some of those scalars appear as a
result of dualisation of higher rank gauge fields, we conclude that U-duality symmetry of
d = 3 theory should mix elementary excitations with solitonic collective modes.

M-theory and 11 dimensional supergravity allow for compactification on some more
elaborate backgrounds — Calabi-Yau manifolds, which are 6 real dimensional manifolds
with special properties ensuring that resulting theory in d = 5 is supersymmetric with 8
supercharges [11, 25, 6]. Resulting supergravity theories depend on moduli of Calabi-Yau
manifold and are known as N = 2 Maxwell-Einstein supergravity theories (MESGT) [39]
coupled to hypermultiplets [13, 7].

U-duality groups similar to the one compiled in table 1.1 starting with d = 5 for toroidal

compactifications also arise in five and lower dimensional supergravity theories coupled

1 S-duality is the identification of strong coupling regime of one theory with a weak coupling regime of
another (possibly the same) theory. It is also often referred to as strong/weak duality. See [72] for review.



Msc U-duality
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FrSU(®) Bs(—21)

Table 1.2: Duality symmetries of supergravities obtained by compactifications of N = 2
d =5 MESGTSs with scalar manifolds being symmetric spaces.

to matter [39]. They are summarised in table 1.2 for MESGTs with symmetric scalar
manifolds.

In the present thesis we discuss the algebraic structure of U-duality groups arising both
from MESGTSs and from maximal supergravities. Algebraic structures of U-duality groups
of maximal supergravity theories were previously studied in [45, 46]. We build a geo-
metric realization of U-duality Lie algebras relevant to supergravity. For real forms of
U-duality groups relevant to MESGTs it corresponds to Lorentz, conformal and quasi-
conformal actions on generalised space-times associated with formally real Jordan algebras
defining Maxwell Einstein supergravity theories [39, 43, 50]. This is achieved in the manner
emphasising the algebraic structure of underlying Jordan algebras.

We also construct minimal [59] realizations of MESGT U-duality groups [48] as an
extension of conformal quantum mechanics [1] in parallel to minimal realization of eg(s)
[46]. Minimal representation is constructed in simple case of s0(4,4), and a connection with
alternative studies [64] (see [88] for overview) of minimal representations is pointed out.

The structure of the thesis is as follows. We start with a brief review of relevant super-
gravity theories introducing the notion of scalar manifold, and that of hidden symmetries,
by considering toroidal compactifications of eleven dimensional supergravity. Appearance of

exceptional Lie groups is discussed for compactifications to five, four and three dimensions.
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In chapter 3 we focus on the the general structure of U-duality groups as well as their ge-
ometric interpretation as Lorentz, conformal and quasi-conformal groups of Jordan algebras
following [45] and [50]. The construction of geometric action of Lie algebras of U-duality
groups is built using Jordan algebras. The inter-relation and connection of U-duality groups
in different dimensions is discussed in details. Geometric realization of exceptional U-duality
Lie algebras is given as a spinorial extension of quasi-conformal algebra so (d + 2, 4) associ-
ated with d-dimensional Minkowski space-time R4,

Minimal realizations of U-duality Lie algebras is discussed in chapter 4. Minimal real-
izations of U-duality algebras related to N = 2 Maxwell-Einstein supergravity theories is
given following [48]. Minimal realization is viewed as extension of conformal quantum me-
chanics studied by de Alfaro, Fubini and Furlan [1]. Minimally realized U-duality algebras
is then viewed as spectrum generating symmetry of this quantum mechanics. Extension by
bosonic as well as fermionic fields are discussed.

Minimal unitary representation of U-duality algebras is analysed from the point of view

of spherical vectors in the last chapter which is based on unpublished work.



Chapter 2

A glimpse of supergravity theories

Supergravity theories [19, 28] (or SUGRAs) were constructed as a supersymmetric ex-
tensions of Einstein theory of gravity soon after the discovery of space-time supersymmetry
[115], in hope that extending symmetry group of Einstein gravity theory would render it
quantizable. This turned out to be a false hope and SUGRAs were later determined not
to be UV-finite [20]. They are understood, according to common wisdom, as a low-energy
effective field theories [114] of M-/string theory [91, 92] and remain a topic of active research
in this context.

If supersymmetric theory in d dimensions is to have no degrees of freedom with spin
greater than s = 2 upon dimensional reduction to 4 dimensions, then supersymmetry re-
stricts such theory to reside in space-time of dimension d no greater than 11 [79].

This 11 dimensional supergravity [14] can be dimensionally reduced to d = 4 by toroidal
compactification. Julia and Cremmer showed [15] that, surprisingly this theory possesses a
much richer global non compact hidden symmetry E;(7), local SU (8) symmetry and scalar

manifold isomorphic to Eq(7)/SU (8).

2.1 Short review of supersymmetry

Supersymmetry in four dimensional Minkowski space-time can be best illustrated by inves-

tigating symmetries of non-interacting Wess-Zumino [115] model:
Swz = / d'z (0,9* 0" — m?¢* ¢ + ihy" 00 — mapy)) (2.1)

where v is Majorana spinor. Besides the well-known space time symmetries, Lorentz rota-
tion and translation symmetries, this action is also invariant under the following supersym-

metry transformation [118]:

Ocp =€(1 —5) 1) De* = €(1 4 75) 1 )
Ot = — (17"0ud + mo) ! —Z%e — (V" 0ud" + me*) 1= _2756 '
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provided that fields ¢ and 1 satisfy equations of motion of (2.1). Transformation parameter
€ is Grassmann spinor. Transformations (2.2) intermix bosonic and fermionic degrees of

freedom. Commutator of two supersymmetry transformations

[567 577] ¢ = —2i(ey"'n) 8u¢ =2(er"n) P,¢

(2.3)
[557 577] Y = —2i(ey"'n) @ﬂﬁ =2(ey'n) Py

amounts to translation transformation provided that fields satisfy equation of motion. Re-
ferring to the fact that equations of motion are needed to show closure of supersymmetry al-
gebra, one says that supersymmetry closes “on-shell”. Thus Poincare algebra gets extended
by the supersymmetry transformations. Noether charges of supersymmetry transformation
Q*, translation P, and rotation M), form supersymmetry algebra. Generators M and P

form standard Poincare algebra

[M;Wa M)\p] = nuAMup - nuAMup + nupMu)\ - UupMuA

(2.4a)
[Myuw, Ppl = nvpBu — npp Py [Py, Pl =0

Supercharges () are Majorana spinors of Lorentz algebra, and commute with all translations:
(M, Q" = —(Juw)" Q" [P Q=0 (2.4b)
Supercharges () anti-commute into translations
{en @} =2 o pr (2.4c)
which, from a group theoretic viewpoint is made possible because
((0,2) 4 (2,0)) @5 ((0,2) + (2,0)) = 4vector-

In here (0,2) corresponds to chiral Weyl spinors I's1) = +¢ and (2,0) corresponds to
anti-chiral Weyl spinors I'si) = —1p.

Fields that irreducibly transform into each other under Poincare supersymmetry trans-
formation are called supersymmetry multiplet. All fields in the multiplet will have the
same mass since P, P#* commutes with (). Fields within a multiplet have spins which form
arithmetic progression with step 1/2, in virtue of @ being a spinor of s0(3).

Possible multiplets of supersymmetry are classified by observing that (2.4c¢) evaluated
on momentum eigenstates is isomorphic to a Clifford algebra, and thus its irreducible rep-
resentations are finite dimensional [79]. An important implication of this fact is that one
can not have more that 32 independent supercharges if we disallow fields with spin greater
than 2 [79], that of a graviton.
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Algebra (2.4) can be generalised by allowing independent supercharges Q¢, where i =
1..N. Then (2.4c) gets modified

[0 @)} = 26, (0, 07" P (2.4¢")

and (2.4b) modified trivially. This algebra admits a central extension [52] by a set of
generators Z;; and Yj; - central charges - which commute with every other generator in

supersymmetry algebra and between themselves. Then (2.4c) becomes
{Q1. @} =20 (07" Pt 2 (€)™ 4 vy (507 (2.4¢")

In case of extended supersymmetry, the algebra gets also supplemented by R-symmetry

algebra acting on ¢ indices of supercharges:
(R, Q4] = (m)",Q¢ (2.4d)

Note the above restriction on number of supercharges implies that N can be at most 8.
Supersymmetric theories with 32 supercharges are called mazimally supersymmetric [105].

Witten and Olive [121] showed that non-trivial central charges appear in theories that
possess topologically non-trivial solutions, solitons. Then central charges are related to
topological charges of these solutions.

Supersymmetry algebra can be introduced for any flat space time R%® with ¢ time-like
and s space-like coordinates [106, 79]. Possible reality conditions that can be imposed
on spinors are summarised in appendix A.l. Possible supersymmetry algebras are found
requiring that {Q,Q} closes into P, and some central charges. Classification of all such
algebras was given by W. Nahm [79]. He found in particular, that if a d-dimensional theory is
to contain fields of spin no greater than 2 upon toroidal compactification to four dimensions
then d < 11. Also if a d-dimensional theory, when compactified to four dimensions should
have particles of spin at most one, then d < 10.

Supersymmetry discussed so far was a global symmetry, in that super-symmetry trans-
formation acted the same at all points in space-time. By making supersymmetry trans-
formation local, i.e. depending on space-time coordinates x, we also make parameters of
translation transformation local (c.f. (2.3)). We thus promote translations to infinitesimal
general coordinate transformations. A theory invariant under the local supersymmetry is
thus necessarily invariant under general coordinate transformations, and must be a super-

symmetric extension of gravity theory.
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2.2 11-dimensional supergravity theory

Eleven-dimensional supergravity [14] theory stands out, because 11 is maximum possible
dimension for an admissible theory of supergravity [79]. Moreover, all other maximal super-
gravity theories in lower dimensions can be obtained from 11 dimensional one by dimensional
reduction.

In RY19 supercharges are 32 component Majorana-Weyl spinors of so (1, 10), thus N = 1.

Anti-commutator of supercharges hence takes on the following form
{@Q}=2moy"p @5)

where a,b = 1,...,32. When applied to momentum operator eigenstate with finite mo-
menta, the right-hand side of (2.5) is a constant symmetric matrix which can be diago-

nalised. It is easy to see that
det (I',C~'P*) = (P - P) Polynomial (P - P) (2.6)

It therefore follows that massless representations are special. Indeed, choosing a rest frame
with P* = (E, E,0,...,0), we see that r.h.s. of (2.5) is 2E(I'g —T'1)C~! and thus 16 super-

charges for which ((I'g —I'1)C~1)** = 0 would act trivially because for such supercharges
2
(ef@f e+ @f|a) = (2o~ @)|2) = @) 1o)| (2.7)

and therefore (QO‘)T |2) = 0. Size of the massless representation is therefore reduced, and
massless multiplets are shorter [105]!. Thus, total number of states in massless representa-
tion in 11D is 2(16/2) = 256. There will be 128 fermionic and 128 bosonic states, depending
whether odd or even number of supercharges were involved in exciting a particular state.
Because vacuum [Q2) is invariant w.r.t. to rotations SO (9) of transverse directions, these
states should fall into representations of this group. Indeed, a decomposition relevant for

supergravity is

128, = 44+ 84 = [g,] + [Aw)p]

(2.8)
128; =128 = [¢ [T"¢, = 0]

where g,,, correspond to a metric, 4,,, to a 3-form, and fermion " to gravitino.

A supergravity theory with the above content was constructed by Cremmer and Julia

! Phenomenon of shortening occurs whenever right hand-side of supercharges anti-commutator acquires
null space. This can also occur for massive states in the presence of central charges, whenever mass saturates
so called Bogomolnyi’s bound [105].
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and Scherk [14] in 1978. Its action reads as follows

1 1 1
Sy = 2/d11$./—g (R— §F/\ *F> 5 /A/\ F A F + fermionic terms (2.9)

where ' = dA is a 4-form field strength of 3-form field A. In order to write a supersymmetry
transformations it is necessary to introduce a elfbein [14, 21] which is square-root of metric
g:

E B =6%  EJSE =06  EYmaEbS = gu (2.10)

Index a is a local Lorentz index labelling coordinate of tangent space T'M, to space-time
M at a point . This tangent space has a flat metric 7y, with the same signature as that
of space-time metric g.

The supersymmetry transformations can be written as follows:

1
OB, = Sel™y, (2.11a)
2_
5AMVP = —?CP[NZ/l/Jp] (211b)
2 5
0, = Dy (O) € + 23\{;3 (nwEf”rabcdf — 8E“M1“b0d> Faped (2.11c)

where the following “supercovariant” combinations appear:

. 1-
(wu)ab - (w#)ab =+ éwuruuz\pr'(bTprE)\cnac
Fabcd = Fabed — SlﬁuE[aMFbcEd}un .

These particular combinations are called supercovariant because their supersymmetry trans-
formation does not involve derivatives of €. Here w denotes so called spin-connection [21, 80]
which determines parallel transport of “elfbein” and, for torsion-free manifolds becomes an

analog of Christoffel symbol:
1
(wu)ab = §Ecunad (dec - chb + chd) where Q(lbc = 2nch[aMEb]V8uEdu (212)

These supersymmetry transformations close on-shell [14]. Action (2.9) of 11D supegravity is
also invariant under general coordinate transformations and local SO (1, 10) transformations
that act on flat indices.

Furthermore, action (2.9) is invariant under Abelian tensor gauge transformation A —
A+5A = A+ dA. Indeed, the field strength is manifestly invariant F' = dA — dA + d*A =
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dA = F and we only have to investigate invariance of Chern-Simons term
/5(F/\F/\A):/F/\F/\dA:/d(F/\F/\A):0 (2.13)
where we used
d(FANFANAN)=dFNFANA+FNAFANA+FANFANAA=FANF ANdA (2.14)

as a consequence of Bianchi identity dFF = d?A = 0, as well as assumptions that fields
fall-off fast enough at infinity.

And in conclusion of this section let us note the following scaling transformation
0guw = N0 0Aup = XAy, (2.15)

which amounts to rescaling of action (2.9) S11 — A9S;; and thus is a symmetry of equations

of motion.

2.3 Extension of supersymmetry algebra in d = 11

As it was mentioned before, supersymmetry algebras allow for cental extensions [105], i.e.
we allow central charges to appear in the anti-commutator of supercharges {Q, @}. These
central charges were shown to arise when a theory allows for topologically non-trivial solu-
tions [121], like instantons, monopoles or black holes and are related to topological charges
of these solutions.

Gauge field A, can either carry “electric” or “magnetic” charge, coupling to 2- or 5-
dimensional extended objects respectively. One therefore would expect charges which are
2 and 5 forms in space-time coordinates. Indeed, anti-commutator of two supercharges be-
longs to a symmetrised tensor product of 32 representations of so (1, 10), which decomposes

into irreducible components as follows:
32®532=11¢ 55 ¢ 462. (2.16)

Representation 55 corresponds to anti-symmetric rank 2 tensors in 11D, and 462 corre-
sponds to rank 5 antisymmetric tensors. Thus such extension appears to be the most

general:
{QA7 QB} =2 (CFH)AB P + (CF,LLI/)AB zZH + (CF/JJ/)\,DT)AB Z/W)\m (2-17)

We note that the extension in question is different from central extensions discussed earlier

in that central charges are not singlets of Lorentz group, and are not strictly speaking central
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charges of supersymmetry algebras, rather they appear on the same footings as momentum

P and do commute with supercharges:

QaP1=0 Qa2 =0  [Qa,2"M7| =0 (2.18)

2.4 Dimensional reduction

Let us start by discussing ideas behind symmetry reduction, and then proceed to details
of dimensional reduction by toroidal compactification. Say Lagrangian of a field theory,
as well as its vacuum, possesses an invariance group G, and let H be its proper subgroup.
Excitations of the theory then fall into irreducible representations of group G, leading to

decomposition of Hilbert space:

H=EPH. (2.19)

In the same manner a ring of quantum operators becomes graded with respect to represen-

tations of G. Symmetry would impose super-selection rules

(o1 [Opy| Bps) = 0 (2.20)

unless representations p1, pe and ps are such that decomposition of tensor representation
P} ® p2 ® p3 into irreducible components contains a singlet.

In the case of toroidal compactification H is a translation symmetry along some di-
rection, which we denote z. Accordingly all our fields are independent on this coordinate.
Because translation acts trivially on the tensor structure of fields, the dimensional reduction
amounts to restricting excitations of supergravity to a co-dimension one hyperplane.

Dimensional reduction of bosonic part of 11D supergravity was worked out in [15]. We
shall briefly review their result necessary for explanation of ideas presented in this thesis,
following [74] closely. Let use hatted indices for coordinates of R, and un-hatted indices
for coordinates of RM"¥~!: x# = (x# z). Further in this section all fields are assumed
independent on z.

Using local Lorenz symmetry SO (1, d) we fix Eaz =0:

. a¢ pa (2-d)ad B
A ") (2.21)
0 ¢(2-das
Coefficient « is taken to be a2 = 2(d — 1) (d — 2) so as to simplify resulting Lagrangian

in d dimensions. Adopting ansétz (2.21) amounts to the following space-time metric

ds3, | = €**%dsy + e*2=D% (dz + B,dat)? (2.22)
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With a little algebra it follows that

BREH) _ pR@ _ % E(96)" - % Ee2D09 (43)? (2.23)

Appearance of dB is easy to understand as it is an invariant under “induced” gauge trans-

formation resulting from the following transformation:
z—z+€&(@") = B, — B,—0u (2.24)

Let us now discuss how to reduce n-form gauge potential:

A(n) — A(n) + A(n—l) ANdz (2.25)
Fin1) = dAg) = dAg) + dAgny Adz = Fiuga) + Foy A (d2 + B)

From which we deduce that field strength acquire so-called Kaluza-Klein correction
Finy = dAy,_1) — dAy—2) A B (2.26)
Analogously we define for a later use a twisted field strength associated with forms B,,:
Fny = dB(n—1) — dB_2) A B(y). (2.27)

A kinetic terms of d + 1 dimensional field strength F(n) reduces to kinetic term of d-

dimensional field strengths of F{,) and F(,,_y) [74]:

| n 1 2(1—n)a 1 2(d—n)ou
iEp(n) A *F(n) — §E€ (1-n) ¢F(n) A *F(n) — §E€ (d=n) ¢F(n—1) A *F(n—l)- (2.28)

The procedure outlined above can be successively applied to reduce 11D supergravity
to lower dimension d. Bosonic content of the compactified theory would be as follows [74]:
B = ' 6 By By

n

- (2.29)
Ay — Az, Aem AQmns A©)mnp

where indices are split as 1, v,a =0,...,d—1and m,n,p = d, ..., 10. Naturally forms A y),
A1y and A(g) are antisymmetric in their compactified indices. Kaluza-Klein potential Bzg)n
is only defined for n < m. Each reduction of dimension gave rise to one dilaton, resulting
in 11 — d dilatonic scalars organised in a vector ¢. Dilatons characterise the size or rather
volume, of compact manifold as seen from (2.22). All other scalar fields will be referred to

as axions [74]. The Lagrangian [74] of bosonic sector of d-dimensional supergravity resulting
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d |11 10 9 8 7 6 5 4 3

no. of scalars || - 1 3 7 14 25 41 63 92
no. of F(4) 1 1 1 1 1 1 1 1 -
no. of F(g) - 1 2 3 4 5 6 7 8
no. of Fy) - 1 3 6 10 15 21 28 36

Table 2.1: Number of scalars and k-form field strengths in theories obtained from 11D
supergravity by toroidal compactification

upon toroidal compactification of 11D supergravity has the following form:

£:ER—%E<8$> —ﬁE“¢F r S'Eze“f’( )
T2 2'EZ e (1 ) 2. 2'EZ 2 ¢(f(2>) _*E > et ( (1)> (2:30)
1<j i<j<k
T2 2'Ezea”ﬁ( {) +Lrra
i<j

where coeflicients a and b are as follows:

F..55 vielbein
B2V
4-form : a g
3-form : di=fi—q (2.31)
2-form : &’ij:ﬁ+ﬁ—§ gz‘:—fi
1—f0rm: 6ijk:fi+fj+fk_§ b :_f2+fj
where
g: 3 (517 52, ... 7511—d)
2
. , Sp = . (2.32)
fi: 0,0,...,0,(10—’i)8i,8i+1,...,811_d \/(10k)(9k)
N—_——
i—1

Notice that F(Ql) term is nothing but a Kinetic term for axions. Numbers of scalars, and
of rank 4 to 2 forms for compactified theories down to 3 dimensions are summarised in
table 2.1. Few observations, to be used later, are in order. Rank n field strength in a d
dimensional theory can be expressed via dual d — n rank field strength via Hodge duality.
This paves a way to define a “dual” effective theory where instead of n — 1 dimensional
gauge potential as a degree of freedom one has d — n — 1 dimensional gauge potential.

This duality is called electric-magnetic. Indeed, recalling expressions for electric and
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magnetic charges with respect to rank n — 1 gauge field

/*F(n) = (e /F(n) = 4m (233)

enclosed in d — n and n dimensional volumes of R%. Hodge duality thus would map elec-
trically charged degrees of freedom into magnetically charges and vice versa. But coming
back to matters of compactified theories we observe that gauge potentials of rank d — 2 can
be dualised to scalars.

As a concluding note, let us make few remarks about reduction of fermionic degrees of
freedom. Because translation acts trivially on spinorial indices, theories in d dimensions will
have 32 supercharges just as their parental supergravity, which is why toroidal compact-
ification of 11D proved such a handy tool to construct maximal supergravities in various
dimensions. Thus every resulting supergravity would have exactly 128 fermionic degrees of
freedom per point. Because upon dimensional reduction the rotation group of the resulting
theory is a subgroup of the rotation group of the original theory, Rarita-Schwinger field
1/3,; would give rise to Rarita-Schwinger field in lower dimensions 1, as well as additional

spinors.

2.5 Scalar manifold and hidden symmetry

It is natural to expect the dimensionally reduced theory (2.30) to have symmetries induced
by symmetries of the parental 11D supergravity.

General coordinate transformations group GL (11,R), ., in 11D theory induces the fol-
lowing symmetry on the compactified theory

GL (11’ IR)loca,l D> GL (d, IR)local ® SL (11 - d> IR)global

that preserves a volume of internal manifold. Combined with trombone symmetry (2.15)

this can be extended to GLglohat (11 — d,R).

Original local Abelian gauge symmetry reduces to global shift symmetry for axions:

11—-d
RY: 6 A0ymnk = Amnk where q= ( 5 ) . (2.34)

It is clear that these two symmetries do not commute, and result into
Gmanifest = GL (11 - d, R) x RY (235)

It was however shown that [15, 16] these symmetries can be extended to what is collectively

called E'11_g(11—q) - non-compact groups of rank 11 —d that have 11 — d more non-compact



17

dimensiond |10 9 | 8 7 ] 6
Eyi—a(11—a) R | GL(2,R) [ SL(3,R) x SL(2,R) | SL(5,R) | O (5,5)
dim Eyy_gai-a) || 1 4 11 24 45
dim Gianifest 1 4 10 20 35

Table 2.2: Hidden symmetries of dimensionally reduced supergravity theories d > 5

generators than compact, which are symmetry groups of dimensionally reduced to d dimen-
sions supergravities. These non-compact hidden symmetry groups are examples of U-duality
groups. The notation of E, () will be justified in few moments.

In dimensions d = 10,...,6 there is no need to dualise degrees of freedom to make
this symmetry enhancement manifest, that is extended symmetries act on supergravities’
local degrees of freedom only. They are listed in Table 2.2. From it one sees that Ganifest
coincides with full symmetry group for d = 10 and d = 9 where there are no axions coming
from 11D gauge field A.

When compactifying to d = 5 one notices that field strength F{4) has only 5 independent

degrees of freedom, as becomes manifest after applying the Hodge-* operation to it

1 vpT
(*F(4))'u = ﬂe‘u’ p )\Fl,pq—)\ (236)

and thus the underlying gauge potential is just a scalar. This scalar could not however
be expressed through A, locally. Similarly rank 2 gauge field A with field strength
F(3) would dualise to vector gauge potential flu. Consulting table 2.1 one concludes that
supergravity dimensionally reduced to d = 5 should have 42 scalars, and 27 gauge fields.
Supplemented with the graviton, this is exactly the bosonic content of d = 5, N = 8
supergravity [17].

These additional scalars appearing after dualisation allow for extension of supergravity’s

symmetry group. Resulting groups are collected in table 2.3

dimensiond | 5 | 4 | 3

Eri—ap1-a) Ee@) | E7() | Es(s)
dlm Ell*d(ll*d) 78 133 248
dim Granifest 56 84 120

Table 2.3: Hidden symmetries of dimensionally reduced supergravity theories d < 5

Scalars of maximal supergravity theories form a homogeneous manifold G/H where G
is the supergavity’s U-duality group, and H is its maximal compact subgroup. The number
of scalars in d-dimensional maximal supergravity naturally equals to the dimension of the
coset Eyj_g(11—qy/H. Maximal compact subgroups H of U-duality groups G are listed in
table 2.4. This manifold is referred to as scalar manifold. In fact supersymmetry and scalar

manifold determine supergravity theory uniquely [103, 117]. It is worth noting that scalar
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d |G | H d| G | H

10 [ R 0 610(5,5 | S(O((B)x0(5))
9 | GL(2,R) SO (2) 5| Ege) | USp(8)

8 | SL(3,R) x SL(2,R) | SO(3) x SO (2) 4| Eqz | SU)

7 | SL(5,R) SO (5) 3| Egs) | SO(16)

Table 2.4: Maximal compact subgroups of maximally split maximal supergravity symmetry
groups G = Ey(q)

manifold need not be homogeneous or symmetric (see for example [47]) in supergravities
with lower amount of supersymmetry.

In order to get a glimpse into a structure of U-duality group we observe that coefficients
a;j1, and l;ij associated with scalar kinetic terms of dimensionally reduced supergravity (2.31)

obey the following relations [74]
bij + gjk = gz‘k aijk + gkn = dijn (2.37)

and thus only dq03 and gk(k+1) for Kk =1,...,10 — d are independent, since any other gij
and d;j;, can be obtained as a linear combination of these. One thus can regard vectors Eij
and d;;, as an integer lattice with di23 and {5k(k+1)} being simple positive roots. Further

noticing that scalar products of generators between themselves is always an even integer:
(bi,iJrla bj,j+1) = 46;5 — 20; 41 — 20541 (123, d123) = 4 (5123, bi,iJrl) = —26;3 (2.38)

we conclude that the lattice must be a restriction of root lattice of a Lie algebra. Dynkin

2

diagram” corresponding to generators of the resulting root lattice for d = 3 is depicted

on Fig. 2.1. This is a Dynkin diagram of U-duality group Eg of d = 3 N = 16 maximal

23

al
N N N N N
b12 b23 b34 b45 b56 b67 b78

Figure 2.1: Dynkin diagram corresponding to the Lie algebra Eg. Labels denote generators
of the root lattice formed by @;;, and b;;.

supergravity. Notice the positive root lattice of Fg is bigger that that of @;;, and I;ij, because

positive roots of Fg allow for vectors which are sums of @. For instance d4s6 + @123 is a

2See appendix A.2 for a short review of Lie algebra terminology.
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positive root of Eg, but is not a root of a, b lattice.
Appearance of exceptional hidden symmetry groups in supergravity theories is an as-

tounding fact first discovered by Julia and Cremmer [15].

2.6 N =2 supergravity in d =5

Exceptional U-duality groups appear also in matter coupled supergravity theories [39, 41],
in particular in N = 2 supergravity in d = 5 coupled to certain number of Abelian vector
fields, so called Maxwell-Einstein supergravity theories, and in their dimensionally reduced
to d =4 and d = 3 theories.

We start by considering a pure supergravity in d = 5. It has been constructed in
[12, 17, 18]. The field content of pure supergravity theory is as follows — graviton e,",
gravitini 1/1/3 which form doublet of supersymmetry algebra’s R-group SU (2),, and the

Abelian gauge field A,. All spinors in d = 5 are assumed symplectic-Majorana, i.e.
_ 4
wu,i = €45 (¢l],l,) C

Five dimensions is remarkable because it is next odd dimension after d = 11 admitting
Chern-Simons F'A F'A A terms. Pure 5D supergravity, in fact, resembles 11D supergravity
in many ways and has been studied in the literature with 11D theory in mind [78, 93].
Bosonic part of pure 5D sugra Lagrangian reads (c.f. (2.9)):

1 1 y 1 e
L= —5E <R+ §FW,FM ) + 6\7@6M AP F;LVF)\,OAU (239)

In particular the toroidal compactification of (2.39) to three dimensions possesses scalar
manifold isomorphic to Gg(2)/SO(4), while toroidal compactification of (2.9) to three di-
mensions has scalar manifold isomorphic to Eg(g)/SO(16).

Vector multiplet in d = 5 contains one scalar ¢, one SU (2) , doublet symplectic Majo-
rana spinor A’ and a gauge field A,. Let us consider supergravity multiplet coupled to n
vector multiplets. There are n + 1 gauge fields organised into A{L, one coming from super-
gravity multiplet and others from vector multiplets; n scalars denoted as ¢,. The bosonic

part of the Lagrangian [39] reads

_ 1 1o 1
E 1[:bosonic = _iR - ia[JF;{VFJMV - 591?1/(8#()036)(8#()02’/)
Pt (2.40)
+ CIJKg,quU)\FI FJ AK,

pv+ po

6v/6

where F and R denote the fiinfbein determinant and the scalar curvature in d = 5, re-
spectively. F;{u are the field strengths of the Abelian vector fields Af;, (I =0,1,2...,n)
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with A2 denoting the “bare” graviphoton. The metric, g, of the scalar manifold M and
the “metric” a 1 of the kinetic energy term of the vector fields both depend on the scalar
fields ¢* (x,y,... = 1,2,...,n). For the Chern-Simons term in the Lagrangian (2.40) to
be invariant under the Abelian gauge transformations of the vector fields, the completely
symmetric tensor C7yx has to be constant. Moreover, the entire N = 2, d = 5 MESGT
is uniquely determined by the constant tensor Cryx [39]. In particular, the metrics of the
kinetic energy terms of the vector and scalar fields are determined by Cryx. More specifi-
cally, consider the cubic polynomial, V(h), in (n + 1) real variables h!, with I =0,1,...,n,
defined by the Cr g

V(h) = Cryh'h/hE . (2.41)

Using this polynomial as a real “K&hler potential” for a metric, ayy, in an n+1 dimensional

ambient space with the coordinates h':

L9 9y vm (2.42)

arr(h) = =350t g7

one finds that the n-dimensional target space, M, of the scalar fields ¢* can be identified
with the hypersurface [39]
V(h) = Cryxh!h/hE =1 (2.43)

in this space. The metric g,, of the scalar manifold is simply the pull-back of (2.42) to M

Gy = hlhar; (2.44)

r_ 30
hl— \[2 ] (2.45)

and one finds that the Riemann curvature of the scalar manifold has the simple form

where

4
nyzu = g (gm[ugz]y + Tm[inz]yw) (246)
where T, is the symmetric tensor

The “metric” az;(¢) of the kinetic energy term of the vector fields appearing in (2.40) is

given by the component-wise restriction of ay; to M:

ars(p) = arsly—1 - (2.48)

The physical requirement of positivity of kinetic energy requires that g,, and a 17 be positive
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definite metrics. This requirement induces constraints on the possible Crx, and in [39]
it was shown that any Cf i that satisfy these constraints can be brought to the following
form

Cooo =1, Coij = —%5@', Cooi = 0, (2.49)
with the remaining coefficients Cj;i, (7,7,k = 1,2,...,n) being completely arbitrary. This
basis is referred to as the canonical basis for Cj k.

Denoting the symmetry group of the tensor Ct i as G one finds that the full symmetry
group of N = 2 MESGT in d = 5 is of the form G x SU(2), where SU (2) denotes the
local R-symmetry group of N = 2 supersymmetry algebra.

From the form of the Riemann curvature tensor Kj,., it is clear that the covariant

constancy of T7,. implies the covariant constancy of Ky .q:
Toyzw =0 = Kpyzuzw =0 (2.50)

Therefore the scalar manifolds My with covariant constantly constant 1" tensor are locally
symmetric spaces.

If M5 is a homogeneous space the covariant constancy of T}, was shown to be equivalent
to the following identity [39]:

CEC 1 munCroix = 0" (mMCnpg) (2.51)

where the indices are raised by al’ 3

Remarkably the cubic forms defined by Crjx of the N = 2 MESGT’s with n > 2 and
with a symmetric target space My and a covariantly constant 7" tensor are in one-to-one
correspondence with the norm forms of Euclidean (formally real) Jordan algebras of degree
three.

The precise connection between Jordan algebras of degree 3 and the geometries of
MESGT’s with symmetric target spaces in d = 5 was established [39] through a novel
formulation of the corresponding Jordan algebras. This formulation is due to McCrimmon
[76], who generalised and unified previous constructions by Freudenthal, Springer and Tits
[30], which we outline here following [48].

Let V be a vector space over the field of reals R, and let V: V x V x V — R be a cubic

norm on V. Furthermore, assume that there exists a quadratic map # : # — z of V into

3 For proof of this equivalence an expression for constants Cryx in terms of scalar field dependent
quantities was used

5 3 o x z
Crix = ghIhKth = §fl(uhK> + Tuy=hTh i

as well as algebraic constraints hrh! =1 and hih; = 0 that follows from susy.
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itself and a “base point” ¢ € V such that

Vie)=1 and ¢ =c (1), (i)
T (:L‘ﬁ,y> = ylajV‘x (iii)
cxy=T(y,c)c—y (iv)

(azﬁ)jj =V(z)x (v)

The last equation is referred to as the adjoint identity. The map T : V x V — R is defined
as
T (z,y) = — &'y’ 90, V|, (2.52a)

and the Freudenthal product x of two elements x and y is defined as
exy=(x+y)f —af -y (2.52Db)

McCrimmon showed that a vector space with the above properties defines a unital Jordan

algebra with Jordan product o given by
1
:L‘oy:§(T(C,az)y+T(c,y)x—T(c,xXy)c—i—xXy) (2.53)
and a quadratic operator U, given by
Uy =T (z,y)x —aF xy (2.54)

In [39] it was shown that the properties (i) and (iv) are satisfied by the cubic norm form
defined by the tensor Cjyx of N = 2 MESGT’s in d = 5. The condition of adjoint identity is
equivalent to the requirement that the scalar manifold be symmetric space with a covariantly

constant T-tensor [39]. The corresponding symmetric spaces are of the form

Strg (J)
Aut (J)

M= (2.55)
where Strg (J) and Aut (J) are the reduced structure group and automorphism group of
the Jordan algebra J respectively.

From the foregoing we see that the classification of locally symmetric spaces M for which
the tensor 17, is covariantly constant reduces to the classification of Jordan algebras with

cubic norm forms. Following Schafers [95] the possibilities were listed in [39]:

1. J =R, V(x) = z3. The base point may be chosen as ¢ = 1. This case supplies n = 0,

i.e. pure d = 5 supergravity.
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2. J=R@T, where I is a simple algebra with identity e; and quadratic norm @ (x), for
x € I', such that @ (e2) = 1. The norm is given as V (z) = aQ (x), with z = (a, x).

The base point may be chosen as ¢ = (1,e2). This includes two special cases

(a) T'=R and Q = b?, with V = ab®. This is applicable to n = 1.
(b) T=R@®R and Q = be, and V = abe and is applicable to n = 2.

Notice that for these special cases the norm is completely factorised, so that the space
C and therefore M, is flat. For n > 2, V is still factorised into a linear and quadratic
parts, so that M is still reducible. The positive definiteness of the metric a;; of C,
which is required on the physical grounds, requires that () have Minkowski signature
(+,—,—,...,—). The point ez can be chosen as (1,0,...,0). It is then obvious that

the invariance group of the norm is
Stro (J) =SO (n—1,1) x SO (1,1) (2.56)

where the SO (1, 1) factor arises from the invariance of V under the dilatation (a,x) —
(e7*a,e*x) for A € R, and that SO (n — 1) is Aut (J). Hence

SO (n—1,1)
= ——>x50(1,1 2.57
M=ty XS0 (L) (2:57)
3. Simple Euclidean Jordan algebras J = JgA generated by 3 x 3 Hermitian matrices over
the four division algebras A = R, C, H, Q. In these four cases an element z € J can

be written as
a1 az  as

r=|aj a o (2.58)
ax aj o3
where ai € R and a; € A with * indicating the conjugation in the underlying division

algebra. The cubic norm V, following Freudenthal [30], is given by
V(2) = ajanos — o Jar | — oo Jag|? — aslas|? + arazas + (a1azas)* (2.59)

For A = R or C it coincides with the usual definition of determinant Det(x). The

corresponding spaces M are irreducible of dimension 3 (1 + dim A) — 1, which we list

below:
S ’ *
e e e
oS |
M= 5SS mup = e
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The magical supergravity theories described by simple Jordan algebras Jf} (A=R,C,
H or O) can be truncated to theories belonging to the generic families. This is achieved by

restricting the elements of J4 [40]

a1 a3 ap
as a9 aj (2.61)

az aip Qg

to lie in their subalgebra J =R @ Jé% be setting a; = ag = 0. Their symmetry groups are

as follows:
J=R®J¥:50(1,1) x SO(2,1) c SL(3,R)
J=Ra&JS:S0(1,1) x SO(3,1) c SL(3,C) (262
J=Ra& J¥:80(1,1) x SO (5,1) C SU* (6) '
J=R®Jy :SO(1,1) x SO (9,1) C Eg(_ap)

2.7 Dimensional reduction to d =4

Five dimensional MESGT theory with n vector multiplets toroidally compactified to d = 4
theory will have 2n + 2 scalars, n 4+ 5 vector fields and a graviton.

Under dimensional reduction to the four dimensions the kinetic energy of the scalar
fields of the five dimensional N = 2 MESGTSs can be written as [39]

_ —J
E 1'Cscalars = _gIJauZIaHZ (2.63)
where
. - 10 0 _

and Z! are complex scalar fields

zl = \2 <\/§AI +z‘iﬂ> (2.65)

where the real parts A’ are scalars coming from the vectors in 5 dimensions and h! are
bl = e (¢7) (2.66)

where o is the scalar coming from the graviton in the five dimensions. Since V (ﬁ) =3 >0
the scalar manifold in 4D theories corresponds to the “upper half-plane” with respect to

the cubic norm. For Euclidean Jordan algebras of degree three these are the Koecher upper
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half-spaces [69] of the corresponding Jordan algebras

My =D(J)=J+iC(J) (2.67)

where C (J) denotes elements of the Jordan algebra with positive cubic norm. The Koecher
half-spaces are bi-holomorphically equivalent to bounded symmetric domains (see [22])
whose Bergman kernel is simply V (Z — 7). As was first shown in [116] the scalar manifold
of the 4D MESGTs must be special Kahler. For the theories coming from 5D the Kahler

potential reads
F(2,2) = —%mv (Z2-2) (2.68)

and are called very special Kéhler geometries.
The bounded symmetric domains associated with the upper half-spaces of Jordan al-
gebras are isomorphic to certain hermitian symmetric spaces. For the Euclidean Jordan

algebras of degree 3 these spaces are as follows:

~S0(2,1) xS0 (n,2)
Ms(R+T(Q) = SO(2) x SO (n) x SO(2)

()-8

My (5) = S(US(I;)(? :[))J)(3)) (2.69)
My () = SOU*(S)Z)

My (Jy) - ESL(‘U%()D

These symmetric spaces are simply the quotients of the conformal groups of the correspond-

ing Jordan algebras by their maximal compact subgroups:

_ Conf (J)
TR ()

The correspondence between the vector fields and the elements of the underlying Jordan

algebras in five dimensions gets extended to a correspondence between the vector field

A

strengths F;,, plus their magnetic duals G4, with the elements of the Freudenthal triple

Qv
system defined by the Jordan algebra of degree three

A A
Fil, @G, & FTS(J) (2.70)

The automorphism group of this FTS is isomorphic to the four dimensional U-duality

group and it acts as the spectrum generating conformal group on the charge space of the
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BPS black hole solutions of five dimensional MESGT’s [45, 49].

2.8 Geometries of the three dimensional MESGTs defined
by Jordan algebras of degree 3
Upon further dimensional reduction to 3 space-time dimensions, the MESGTs defined by

Euclidean Jordan algebras of degree three have target spaces that are quaternionic sym-

metric spaces [41]. The corresponding symmetric spaces are:

- . SO(n+2.4)
Ms(J=R+T Q) = 55075 % s0@)
_ Faw) _ E7(-s)
M (75) = TSp(6) x SU) M () = SO(12) x SU(2) (2.71)

E E
oy __ Fem o) _ s
Ms <J3) ~ SU(6) x SU(2) Ms <J3 ) E; x SU(2)

The pure 5d, N = 2 supergravity under dimensional reduction to three dimensions leads to

the target space

Ga2)
—_ 2.72
SU(2) x SU(2) (2.72)
which can be embedded in the coset space
SO(3,4) (2.73)

SO(3) x SO(4)

We should note that the above target spaces are obtained after dualising all the bosonic
propagating fields to scalar fields which is special to three dimensions. The Lie algebras
of the three dimensional U-duality groups have a 5-graded decomposition with respect to
the four dimensional U-duality groups. They are isomorphic to the quasiconformal groups
constructed over the corresponding FTS’s, which act as spectrum generating symmetry
group on the charge-entropy space of BPS black hole solutions in four dimensional MESGT’s
[45, 49].

2.9 U-duality groups and entropy of BPS black holes in su-

pergravity theories

Both in maximally extended supergravity, and in supergravities coupled to matter the
entropy of BPS black hole solutions is invariant under the corresponding U-duality groups.
Indeed, according to Bekenstein’s formula (the leading order of) entropy is proportional to

area of event horizon. Since U-duality group acts trivially on the graviton, entropy must
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be a singlet of U-duality group. For instance in five-dimensional N = 8 supergravity the
entropy S of a BPS black hole can be cast into the form [26]:

S \/E =/drjkq q’q* (2.74)

where I3 is the cubic form invariant under Eg) with ¢! being 27 charges, coupling to 27
vector fields of the theory. The entropy of BPS black hole solutions of five dimensional
N =2 MESGT’s is given by cubic form defined by the constant tensor Cryx [26]:

S \/17 =\ C]JKqu‘]qK (2.75)

For N = 2 MESGT theories defined by Jordan algebras of degree 3 this cubic form is the
norm form and the global symmetry group G is the norm invariance group.

Because of supersymmetry and BPS property of black hole solutions in question, they
are in one-to-one correspondence with charges ¢/ [26]. This fact was used by authors of
[27] to classify orbits of the BPS black hole solutions of N = 2 five dimensional MESGTs
defined by FEuclidean Jordan algebras under the action of their U-duality groups. It was

instrumental to associate to each BPS solution with charges ¢’ an element
n
J = Zequ (2.76)
=0

of Jordan algebra of degree 3, where set {e;} stands for a basis of the Jordan algebra.
Similarly, classification of the orbits of BPS black hole solutions of N = 8 sugra in d =5 as
given in [27] associates a BPS solution an element of the split exceptional Jordan algebra
JS? *. The cubic invariant I3 (¢q) is then given by the norm form N of the split exceptional
Jordan algebra. Invariance of the norm (i.e. reduced structure group of the Jordan algebra)
is Eg(g) which coincides with U-duality group of the maximal N = 8 supergravity in d = 5.

In d = 4 magical N = 2 MESGTSs obtained by toroidal dimensional reduction from
d =5, as well as in maximal 4d supergravity the entropies of BPS black holes are given by

quartic invariants of their U-duality groups [60]

S o VI = Vdrsxra'a! ¢ g (2.77)

were djji 1, are the completely symmetric tensors defined by the Freudenthal-Kantor triple
systems associated with the corresponding simple Jordan algebras of degree three [27] and

q now denote both electric and magnetic charges.
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Chapter 3

Structure of U-duality algebras and Jordan

algebras

Appearance of non-compact exceptional groups as hidden symmetry groups of super-
gravity theories in d = 5, d = 4 and d = 3 dimensions is a fascinating fact. Classical groups
SU (n), SO (n) and Sp (2n) have been known through their geometric definitions as invari-
ance groups of Hermitian, Euclidean and symplectic scalar products. Exceptional groups
were discovered by Elie Cartan in his thesis on Lie algebra classification (see appendix A.2
for short review). Geometric interpretation of exceptional groups has been associated with
division algebras of quaternions and octonions [56] and Jordan algebras [29, 30] (see [3] for

recent account and references).

3.1 Jordan algebras

Jordan algebras have been introduced by P. Jordan [57] in an attempt to generalise quantum

mechanics. Jordan algebra J is equipped with commutative Jordan product operation
Ve,y e J roy=yox €J. (3.1a)

Jordan product should satisfy alternating associativity requirement:
(xox)o(zoy)=xo0((xox)oy) (3.1b)

which assures that subalgebra formed by any two elements x and y of Jordan algebra J is
associative. In general, however, Jordan algebra is not associative, and one introduces an
associator

{a,b,c} =ao(boc)—(aob)oc (3.2)

to measure the degree of non-associativity in the same way as commutator measures degree
of non-commutativity of the algebra.
An example of Jordan algebra to keep in mind is the algebra of n x n Hermitian matrices

over an associative division algebra A (i.e. A can be R, C or H) with Jordan product given
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by
1
Mo My = §(M1M2+M2M1> (33)

Such algebra will be denoted J2. In this case associator becomes

(M, My, M} = % (M, M), M) (3.4)

Finite dimensional Jordan algebras have been classified by Jordan, von Neumann and
Wigner [58]. They showed that all finite dimensional Jordan algebras, but one exceptional
case, have realizations in terms of associative matrices with Jordan product defined as in
(3.3). The exception is the algebra of 3 x 3 Hermitian matrices over octonions (which is not
associative), again with Jordan product defined by (3.3).

Another, so called quadratic formulation of Jordan algebras [55, 56] will be important
in what follows. The reader is referred to the book of McCrimmon [76] for a review and
references. We start by noticing that Jordan algebra is its own module, and introduce and
operator L, such that

VyeJ Lyy=zoy (3.5)

We then define, for all z € J, an operator U, as
Uy =2L;L; — L2 Uzy = (z,y,x) (3.6)

where

(x,y,2) =xzo(yoz)+ (xoy)oz—yo(xroz) (3.7)

is Jordan triple product. In this formulation the axioms of unital Jordan algebra, with U,

being denoting U, = id, can be rewritten as
Uv,y = U UyUy Uz (y,z,2) = (Upy, 2, ) (3.8)
In terms of the quadratic operator U the Jordan triple product reads

($7y7 Z) = [Ua:—I—z - U, — Uz] Yy (39)

One of the remarkable properties of this formulation, making it relevant for supergravity
[39], is that for every Jordan algebra J one can define a norm N : J — R satisfying the
composition property

N (Uzy) = WV (2))* N (y) (3.10)

Jordan algebras relevant to supergravity are those where such norm is cubic.
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3.2 Linear fractional group of Jordan algebras as generalised

conformal group

Following Kantor [62] consider an n-dimensional vector space V endowed with a non-
degenerate form N : V@V ®---®@V — R of degree p:

p times
N@ YN @z, .. ) N (Az) = NN ()

For every set of distinct four vectors x,y, z,u € V define a cross-ratio

N(x—=2)N(y—w)
N(y—2)N(x—w)

(3.11)

and let G, be its invariance group. For each set of distinct non-vanishing x; € V, ¢ =

1,...,p define
N(xl,...,xp)p
N (@) N (22) -+ N (p)

and let Gp_angle be its invariance group. Kantor [62] proved that if G},_angle is finite dimen-

(3.12)

sional then it is isomorphic to G¢,.. When N is usual scalar product bilinear form in R"
the invariance group of (3.11) and (3.12) is conformal group SO (1,n + 1).

If vector space V is taken to be semi-simple Jordan algebra J with a generic form A
invariance group of (3.11) and (3.12) defines generalised conformal transformation groups
[43], provided J is sufficiently nice. The action of group G on J can be written as a
“linear fractional transformation” J, and generated by inversions, translations and Lorentz
rotations [69, 22].

Further we describe a construction of the Lie algebra of the above “linear fractional
transformation group” due to Tits, Kantor and Koecher [61, 70, 107], closely following
[43, 50].

The reduced structure group H of a Jordan algebra J is defined as the invariance group
of its norm N. By adjoining to it the constant scale transformation we obtain the full
structure group of J. The Lie algebra g of the conformal group of J can be given a three-

graded structure with the respect to the Lie algebra g° of its structure group:
g=g 'og gt =g 'aohoA) og" (3.13)

with h denoting the Lie algebra of H and A being the generator of constant scale transfor-

mations. The negative grade generators correspond to translations, and can thus be labelled
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by elements of Jordan algebra:
VacJ U,cg?' U(x)=a (3.14)

Every such Lie algebra admits an involutive automorphism (conjugation) which maps 7 :

g1 — g™l Hence elements of g™ are also labelled by elements of Jordan algebra

Vo=1(U,) € g™ Vo () = —= (z,a,) (3.15)

The Lie algebra is then given as follows [43]:

[Uaa Vb] = Sab [Sab, Uc] = U(abc) [Um Ub] =0 (3 16)
[Sab7 Scd] = S(abc)d - Sc(bad) [Sabv Vc] = _‘/(bac) [Vaa Vb] =0
where (abc) is Jordan triple product, and
Sap € ¢° Sap () = (abx) . (3.17)

The Jacobi identities of (3.16) require Jordan triple product to satisfy the following identities
(abc) = (cba) (ab (cdx)) — (ed (abx)) = ((abe) dx) — (¢ (bad) x) (3.18)

which follow from defining identities (3.1) of Jordan algebra. However, because Lie algebra
is defined entirely in terms of Jordan triple product, and (3.18) are defining identities of
Jordan triple system (JTS) [43] this construction extends to JTS.

It is gratifying to examine relationship between JTS and Lie algebras in the opposite
direction [83]. Let g be a graded Lie algebra with a graded involution ¢ : g" + g~". Then
any Lie algebra admitting 3-graded decomposition is defining JTS via

<x7y7 Z) = Hx7 L (y)] 72] (319)

where z,y,z € g~ .

3.3 Generalised rotation, Lorentz and conformal groups

The first proposal to use Jordan algebras to define generalised space-times was made in the
early days of supersymmetry in attempts to find the super-analogs of the exceptional Lie

algebras [36]. This proposal is very natural, since, using twistor formalism [87], coordinates
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of Minkowski space-time can be organised into 2 x 2 Hermitian matrix over C:

0 3 1_ ;.2
T+ x° T —x
— M —
FEET (a:l+z'a:2 a:o—ac?’) (3.20)

which is an element of Jéc. Rotation group SO (3) is exactly an automorphism group of

Jordan algebra since its action

3
-1 ijk 1
xz— UxzU U =exp g w; €77 0, Ojk =~

117504 Ut =1 (3.21)
ij,k=1

preserves hermiticity of z as well as Jordan product. Lorentz group action

3 3
z — AzAT A =exp Zﬁjooaj + Z w; €9k Tjk (3.22)
j=1 ivj k=1

also preserves hermiticity of x. It also preserves the norm of the Jordan algebra

3
N (z) =detz = (m0)2 — Z (3:1)2 N(x)=N <AxAT> = |det AP N (). (3.23)
i=1
if det A = 1. Dilatation transformation which rescales the norm by a constant factor is
achieved with A = § -id. Thus the Lorentz group coincides with reduced structure group'
of Jéc. Conformal group of Minkowski space-time is then generated from structure group,
comprising Lorentz group and dilatation x +— elx, translations and inversion
pe @) = e s (3.24)
TAT
One can extend the notion of rotation, Lorentz and conformal group to any Jordan algebra,
thus establishing coordinatization of generalised space-times by Jordan algebras.

The rotation Rot(J), Lorentz Lor(J) and conformal Conf(.J) groups of these generalised
space-times are then identified with the automorphism Aut(.J), reduced structure Stro(J)
and M&bius M&(.J) groups of the corresponding Jordan algebras [36, 42, 37, 43]. Let JA
be the Jordan algebra of n x n Hermitian matrices over the division algebra A and let the
Jordan algebra of Dirac gamma matrices in R? be I'(d). The symmetry groups of generalised
space-times defined by simple Euclidean Jordan algebras are then collected in table 3.1 [43].
The symbols R, C, H, O represent the four division algebras. For the Jordan algebras J,‘L*

the norm form is the determinantal form (or its generalisation to the quaternionic and

!Structure group of a Jordan algebra with a norm, is defined as set of transformations that rescale the
norm by a constant positive factor.
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J Rot(J) Lor(J) | Conf(J)
JE SO(n) | SL(n,R) | Sp(2n,R)
JE SU(n) | SL(n,C) | SU(n,n)
JE L USp(2n) | SU*(2n) | SO*(4n)

T3 Fy Eg—26) | E7(-25)
rd) | S0 | Sod,1) | SO(d,2)

Table 3.1: Rotation, Lorentz and conformal groups for generalised space-times defined by
simple FEuclidean Jordan algebras

octonionic matrices). For the Jordan algebra I'(d) generated by Dirac gamma matrices
I (i=1,2,...d)
{Fi,I‘j}:éUl; Z,], = 1,2,...,d (325)

the norm of a general element x = x91 + z;I"; of I'(d) is quadratic and given by
N (z) = 27 = 2% — 224 (3.26)

where z = zgl — x;I';. Its automorphism, reduced structure and Mobius groups are simply
the rotation, Lorentz and conformal groups of (d + 1)-dimensional Minkowski spacetime.
One finds the following special isomorphisms between the Jordan algebras of 2 x 2 Hermitian

matrices over the four division algebras and the Jordan algebras of gamma matrices:

JRT2) 5 JE~TE) ;o JEeTG) 5 JP~T(9) (3.27)

The Minkowski space-times they correspond to are precisely the critical dimensions
for the existence of super Yang-Mills theories as well as of the classical Green-Schwarz
superstrings. These Jordan algebras are all quadratic and their norm forms are precisely
the quadratic invariants constructed using the Minkowski metric.

We should note two remarkable facts about the above table. First is the fact that the
maximal compact subgroups of the generalised conformal groups of formally real Jordan
algebras are simply the compact forms of their structure groups (which are the products of
their generalised Lorentz groups with dilatations). Second, the conformal groups of gener-
alised space-times defined by Euclidean (formally real) Jordan algebras all admit positive
energy unitary representations®. Hence they can be given a causal structure with a unitary

time evolution as in four dimensional Minkowski space-time [44].

2Similarly, the generalised conformal groups defined by Hermitian Jordan triple systems all admit positive
energy unitary representations [43]. In fact the conformal groups of simple Hermitian Jordan triple systems
exhaust the list of simple non-compact groups that admit positive energy unitary representations. They
include the conformal groups of simple Euclidean Jordan algebra since the latter form an Hermitian Jordan
triple system under the Jordan triple product [43].
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3.4 Positive energy unitary representations of generalised

conformal groups

A Lie algebra g of a non-compact group G that admits unitary lowest weight representation
(ULWR), also known as positive energy representations, admits a 3-graded decomposition
with respect to the Lie algebra h of its maximal compact subgroup H: g =g ' @ g’ @ g™!,
where g = b.

In [38] the general oscillator construction of unitary lowest weight representations of
non-compact groups was given. One starts realizing G in terms of bilinears of oscillators
transforming in certain (possibly reducible) representation of H. Then, in the corresponding
Fock space F of all oscillators one chooses a set of states |Q2), referred to as the “lowest weight
vector”, which transforms irreducibly under H and which are annihilated by generators of

g~ !. Then, ULWR is built by repeatedly applying g*'! to this set of lowest weight states:
Q). o), gTle™ ), ... (3.28)

The irreducibility of the representation of g follows from the irreducibility of LWV |Q2) under
H.
As an illustration consider ULWR for Sp (2n,R), conformal group of generalised space-

time defined by JX. In the compact basis, the 3-graded decomposition reads

1 1
sp (2n,R) = ”(”;) ® (su(n) u(l) ® ”(";)
o1 | o (329)
= {Uij = giaj} & {Szj =5 (a'a; + aja’)} o {U" =d'd'}
where we have chosen oscillators a’, a;
[ai,aj] =07 a; = (aj)Jr (3.30)

transforming in n @ n* of su(n). There are only two non-equivalent irreducible LWVs:

€4) = 10)

. 3.31
[€22) = ¢'10) 3

vacuum and a “one-particle state”. The representations above are known in the literature
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as singleton representations [38]. Commutation relation of sp (2n, R) read

_Si]‘, Skm- — 5]kSlm o 5mZSk]
(S5, Upm] = —6"Ujm — 6m'Ug;

- 1 . . (3.32)
Szj’ Ukm — 5ijzm + 5ijkz
_Uij, Ukm_ = 5jk5'mi + (5¢ksmj + 5ijki + 5Z‘mSkj
resulting in quadratic Casimir of sp (2n,R)
i o 1 ij ij
CQZSjSi—i(UZ‘jU +U Uij)
(3.33)

o . 3 1
= SljS]i — (n+ 1) S — UUUZ‘j = —1n (2n+ 1) .

We thus see that quadratic Casimir of sp (2n,R) takes on the same values on both lwv
Conformal group has a natural 3-graded decomposition with respect to non-compact
Lorentz algebra in g°, so called covariant picture, as opposed to compact picture considered
above. These two pictures can be connected [44] observing existence of intertwining operator

W such that
Va € J UW|Q)=0 (3.34)

where U, is negative grade generator of Conf(J) (c.f. (3.16)) in covariant picture.

The starting point is the observation that W |Q2) transforms under the structure group
just like |Q2) transforms under the maximal compact subgroup H: the conformal dimension
of the vector W |§2) equals the negative of the conformal energy of |2). Let e, be a basis for
the Jordan algebra J. Let V), be the generators of generalised translations in the positive
grade space of covariant picture that corresponds to e,,. The covariant basis of unitary lowest
weight representation of the generalised conformal group Conf(J) is given by non-compact
coherent states

1B (2,,)) = ™" VeI Q) (3.35)

Conformal fields, eigenstates of dilatation operator, and covariant under Lorentz group are
in one-to-one correspondence with coherent states |® (x,)). Irreducible ULWR’s are equiv-
alent to representations induced by finite dimensional irreps of the Lorentz group with a
definite conformal dimension and trivial special conformal transformation properties, be-
cause the state W |Q2) is annihilated by the generators of special conformal transformations
U, that belong to the negative grade in covariant picture.

The outlined above procedure generalises the construction of the positive energy rep-

resentations of the 4-dimensional conformal group SU(2,2) [75] to all generalised confor-
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mal groups of formally real Jordan algebras as well as Hermitian Jordan triple systems.
They are simply induced representations with respect to the maximal parabolic subgroup
Str(J) x Sy, where S is the Abelian subgroup generated by generalised special conformal
transformations [44].

The generalised Poincaré groups associated with the space-times defined by Jordan

algebras have the following form
PG(J) = Lor(J) x Ty (3.36)

where T is a group formed by generalised translations V),, which commute with each other.
For quadratic Jordan algebras, I'(d) , PG (I'(d)) equals the Poincaré group in d dimensional
Minkowski space. A quadratic Casimir M? = P,P* of the group PG (I'(d)) is the familiar
mass squared operator.

For Jordan algebras J of degree n the corresponding Casimir invariant will be con-
structed as m-norm of translation generators. For instance for the real exceptional Jordan

algebra J?) the corresponding Casimir invariant is cubic and equals [44]
M? = Cy,, ,VIVIVP (3.37)

where C),,, is the symmetric invariant tensor of the generalised Lorentz group Eg_o6) of
JS (v, py...=0,1,...,26).

3.5 Quasiconformal groups and Freudenthal triple systems

Not every Lie algebra admits a 3-graded decomposition, examples being exceptional Lie
algebras eg, f4 and go, which are among Lie algebras of U-duality groups. One can prove,
however, that every simple Lie algebra, except three dimensional sl (2), admits a five graded

decomposition (c.f. A.2):

g=g‘og 'agagagh (3.38)

1

with g*2 being one-dimensional spaces. In this case the grade —1 space g~! is naturally

endowed with (Gel'fand-Kirillov) symplectic structure

VELE g7 [EnE)=2(w.y)E (3.39)

!into Heisenberg-Weyl algebra. Subspace g~! also has a natural

where E € g~2, turning g~
triple system associated to it by means of (3.19) studied by Freudenthal [30]. Having
motivated an appearance of FT'S we now give more axiomatic definitions.

A Freudenthal triple system (FTS) is a vector space 9t with a trilinear product (X, Y, Z)
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and a skew symmetric bilinear form (X,Y’) such that®:

(X,Y,Z2) = (V,X,2)+2(X,Y)Z
(X,Y,2) = (Z,V,X)-2(X,2)Y
((X>Y>Z)7W> = <(X7VV7Z)>Y>_2 X>Z><KW>

(
(XY, (V,\W,Z)) = (V\W,(X,Y,2))+ ((X,Y,V),W, Z)
)

+ V.Y, X, W),Z (3.40)

A quartic invariant 74 can be constructed over the FT'S by means of the triple product and

the bilinear form as
Zi(X) = {(X, X, X), X) (3.41)

Every FTS defines a Lie algebra with 5-graded decomposition (3.38) and one-dimensional
g%2, establishing a one-to-one correspondence between simple Lie algebras (except sl (2))
and Freudenthal triple systems. Following [45] we shall label the Lie algebra generators
belonging to grade +1 and grade —1 subspaces as U4 and Uy, where A € 9. The generators
Sap belonging to grade zero subspace are labelled by a pair of elements A, B € 9. For
the grade +2 subspaces one would in general need another set of generators Kp and K AB
labelled by two elements, but since these subspaces are one-dimensional we can write them
as

Kap = <A7 B> K, KAB = <A7 B> f{a (342)

where a is a real parameter.
One can realize the Lie algebra g as a quasiconformal Lie algebra over a vector space

whose coordinates X" are labelled by a pair (X, z), where X € 9 and z is an extra single

3We should note that the triple product (3.40) could be modified by terms involving the symplectic
invariant, such as (X,Y’) Z. The choice given above was made in [45] in order to obtain agreement with the
formulas of [23].
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variable as follows [45]:

Ka(X):O UA(X):A SAB(X):(AvaX)

Ky(x)=2a Up(x)=(A,X) Sap(zr)=2(A,B)x
U (X):%(X,A,X)—Ax
0 (x)z—é((X,X,X),A>+<X,A>x (343)
K,(X)= —éa(X,X,X) +aXx

1
K, (z) = 6&<(X,X,X),X>+2a:z2

From these formulas it is straightforward to determine the commutation relations of the

transformations [45]:

- [Ua,UB] = —Kap [Sap,Uc| = =Ua,p,c)

UAJCQ4 = SaB . N - .

- [UAaUB] = —Kup [SABaUC} = —U,a0)

_KAB, UCj| = U(A,C’,B) - U(B,C,A) [SABa SCD] = _S(A,B,C)D - SC’(B,A,D) (3 44)
_f(AB, Uc} =Upc.a —Uncn) [Sas, Kcp) = Kac,B,0) — Kap,B,0) ‘
SaBs f(CD] = f((D,A,C)B - f((C,A,D)B

| Kag, K'CD} = S,c,4)p — S(a,c,B)D — S(B,D,A)C T S(A,D,B)C

where Kap = K4 p), and Kip =K (a,B)- The quasi-conformal groups leave invariant a

suitably defined light-cone
(X —Y)=-2(x—y+2(X,Y))? (3.45)

with respect to a quartic norm involving the quartic invariant of 9 [45].

Freudenthal introduced the triple systems associated with his name in his study of
the metasymplectic geometries associated with exceptional groups [29]. The geometries
associated with FTSs were further studied in [2, 23, 77, 63]. A classification of FTS’s may
be found in [63], where it is also shown that there is a one-to-one correspondence between
simple Lie algebras and simple FTS’s with a non-degenerate skew symmetric bilinear form.
Hence there is a quasiconformal realization of every Lie group acting on a generalised light-
cone.

The Freudenthal triple systems associated with exceptional groups can be represented
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by formal 2 x 2 “matrices” of the form

A= ( o ) : (3.46)
o Q9

where a1, ao are real numbers and x1, o are elements of a simple Jordan algebra J:,‘} of
degree three. One can define a triple product over the space of such formal matrices such
that they close under it. There are only four simple Euclidean Jordan algebras J of this
type, namely the 3 x 3 Hermitian matrices over the four division algebras A = R, C, H and
O. We shall denote the corresponding FTS’s as 9(J).

One may ask which Freudenthal triple systems can be realized in the above form in
terms of an underlying Jordan algebra. This question was investigated by Ferrar [24] who
proved that such a realization is possible only if the underlying Jordan algebra is of degree
three. Remarkably, if one further requires that the underlying Jordan algebra be formally
real then the list of Jordan algebras over which FTS’s can be defined as above coincides with
the list of Jordan algebras that occur in five dimensional N = 2 MESGT’s whose target
spaces are symmetric spaces of the form G/H such that G is a symmetry of the Lagrangian
[39].

Here we will focus only on the quasiconformal groups defined over formally real Jordan
algebras. The Freudenthal triple product of the elements of 9t(.J) is defined as [23]

vy o c . Qg Qg
X1,X0,X3) = with X; = 3.47
(X1, X2, X3) (d 5) <bi &) (3.47)
where
v = a1fraz + 20a003 — asT (ar, ba) — T (aq, bs)
—onT ((12, bg) + T (al, as X a3)
c=(ofs+ T (bz,a3)) a1 + (cfs + T (b1,a3)) ag + (a182 + T (b1, a2)) as

—Ozlngbg—agblxbg—agblxbg

- {a17 627a3} - {a17 b37 aQ} - {CLQ, bl) a3}
§=—97 d=—c where o=(a< p)(a<=D).

Here o denotes a permutation of a with 8 and a with b, and

{a,b,c¢} = Usycb— Uy — Uch (3.48)
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where U,b is defined as in (2.54). Quartic invariant of 9t (J) is given by [23]

Ty ((Z ;)) — (aff — T (a,b))2 +6 (aV (b)+ BV (a) - T (aﬁ, bﬁ))2 (3.49)

3.6 Space-times over J4 as dilatonic and spinorial extensions

of Minkowskian space-times

As stated above we will restrict our studies of generalised space-times to those defined by
formally real Jordan algebras of degree 3. A unified geometric realization of the conformal
and quasiconformal groups of generalised space-times defined by Jordan algebras of degree
three and the FTS’s defined over them was given in [50]. It is reproduced in sections 3.6,
3.7 and 3.8.

The Jordan algebras of degree three that arose in the study of MESGT’s were later
studied by Sierra who showed that there exists a correspondence between them and clas-
sical relativistic point particle actions [104]. In the same work Sierra showed that this
could be extended to a correspondence between classical relativistic bosonic strings and the
Freudenthal triple systems defined over them.

Consider now the space-times coordinatized by the generic Jordan family
J=RaTI(Q) (3.50)

we shall interpret the extra coordinate corresponding to R as a dilatonic coordinate p and
label the coordinates defined by J as (p, xy,, m = 0,1,2,...(d — 1)) . The automorphism
group SO(d — 1) will then be the rotation group of this space-time under which both the
time coordinate zo and the dilatonic coordinate p will be singlets. The Lorentz group of

this spacetime is the reduced structure group which is simply
SO(d —1,1) x SO(1,1) (3.51)
It leaves invariant the cubic norm which, following [104], we normalise as
V(p,2m) = V2p xmznn™ (3.52)
Under the action of SO(d — 1, 1), the dilaton p is a singlet and under SO(1,1) we have

2\
=e
soa,n: "7 (3.53)
T = €T



41
Freudenthal product of two elements of J = R @& I'(Q) is simply

(p,2) % (0,y) = (\/ﬁwmy’”, V2 (pym + Uxm)) (3.54)
The conformal group of the spacetime is the Mobius group of J which is
SO (d,2) x SO (2,1) (3.55)

The Freudenthal triple systems defined over the generic Jordan family can be represented
by 2 x 2 matrices

zb  Jt

MJ=Ral(@)=["92 " ]=X (3.56)

Jxy
where J!,J? € J and :L'(li and azfl are real coordinates. The automorphism group of 9 is
SO (d,2)®Sp (2, R) under which an element of 9% transforms in the representation (d + 2, 2).
We shall label the “coordinates” of 91 as

zy, = (v, vg, p*) where a=1,2

and interpret it as coordinates of a conformally covariant phase space (so that a = 1 labels
the coordinates and a = 2 labels the momenta).

Skew-symmetric invariant form over 91 is given by
(X,Y) = e XY, (3.57)

We should stress the important fact that the conformal group of the spacetime defined by
J is isomorphic to the automorphism group of the Freudenthal triple system 9t (J) !

To define the quasi-conformal group over the conformal phase space represented by
M (J) we need to extend it by an extra coordinate corresponding to the cocycle (symplectic
form) over M (J). We shall denote the elements of 9t (J) as X and the extra coordinate as
x. The quasi-conformal group of 9 (J) @ R is the group SO (d + 2,4).

The space-times defined by simple Jordan algebras of degree 3 JP‘} correspond to exten-
sions of Minkowski space-times in the critical dimensions d = 3,4, 6, 10 by a dilatonic (p)

and commuting spinorial coordinates (£%).

IR = (p, 2, &) m=01,2 a=1,2

JS = (p,xm, &) m=0,1,2,3 a=1,2,3,4 (358)
JH = (p,zm, %) m=0,....,5 a=1,...,8

JS = (p, 2, &) m=0,...,9 a=1,...,16
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The commuting spinors £ are represented by a 2 x 1 matrix over A = R, C,H, @. The cubic

norm of a “vector” with coordinates (p, z,,£%) is given by [104]
V (0, Zm, €2) = V2pmxn™ + £ Emé (3.59)
The Lorentz groups of the space-times over Jé* are
SL(3,R), SL(3,C), SU*(6), and Eg_os) (3.60)

respectively, corresponding to the invariance groups of their cubic norm. The Freudenthal

product of two vectors in the corresponding space-time is given by

(:07 Tm, ga) X (o" Ym, G

(\/5 Tmy™,

Ot) —
1 _ _ _ _

5 (EmC + Cym) + V2 (pYm + 0 Tm), 2™ (Y + Y™ 5%) (3.61)
The conformal groups of these space-times are

Sp(6,R), SU(3,3), SO*(12), and Eq_o5 (3.62)

respectively. The automorphism groups of the F'TS 9 (J?) are isomorphic to their confor-
mal groups.
The quasi-conformal groups acting on 9 (J;‘? @ ]R), where R represents the extra “co-
cyle” coordinate, are
Fyuy, Bew), Ercs), and Eg_gy) (3.63)

whose minimal unitary irreducible representations were constructed in [48].

3.7 Geometric realizations of SO (d + 2,4) as quasiconformal

groups
Lie algebra of SO (d + 2,4) admits the following 5-graded decomposition
s0(d+2,4)=10(d+2,2)D(ADsp(2,R)Dso(d,2)®(d+2,2)D1 (3.64)

Generators are realized as differential operators in 2d + 5 coordinates corresponding to
g2 @ g~ ' subspace which we shall denote as  and X*® where a = 1,2 is an index of
representation 2 of sp (2,R) and we shall let the indices p run from 1 to d + 2 with the
indices d+1 and d+ 2 labelling the two time-like coordinates, i.e z, transforms like a vector
of SO(d,?2).
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Let €45 be symplectic real-valued matrix, and 7, denote signature (d, 2) metric preserved

by SO(d,2). Then
Iy = 77,LL1/"7pTfacebdXMaXV’bXp’cXT’d (3.65)

is a 4th-order polynomial invariant under the semisimple part of g¥. Define

1, o 1 01 ) )

Ki==(22"-Ty) = — mgab Xxma
+=5 7 =T 50— Taxea " o X xia
9 b
U = g~ X5,
0
My = o X0 e = o i (3.66)
0
Jab = 6QCXM’CBXM,I? e X dX e
0 0 0 ~
K_ = 8755 A = Qx% + X’uﬂaX'u’a Uu7a = [U;L,(MK_A'_}
where €*® denotes an inverse symplectic metric: ey, = 5%, and Uu,a evaluates to
- 0 0
7b >\7 7d 7d
U,u,a = Nuv€ad <77)\p€chV XHXPT — XY ) o +x DX Ha
0
— Nuvean XX Tx5 — €adp XXM S (3.67)
,d yv,b 0y P,
+€ad7thp XV X —i—T]'u,/echV Xpe X
we have or
8Xlia = =410 XU XA XP e enq
These generators satisfy the following commutation relation:
[Mp,ljv M ] 'rh/pM,uT - np,le/T + nuTMI/p - nl/TMup
[Jaba ch] = €cbJad + €cadbd + €apJac + €daJbe
A Ki] =4+2K4 [K_,Ky| =
[A’ U)u‘7a] = _U,LL,(Z |: [~] :| wa (3‘68a)
[UM,G,K-F] = Uma [ K } —Upa
[U,u,aa Uu,b] = 27]#1/611be [Uu,m Uu,b:| = znw/eabKJr
(M, Upal = nvpUpa — MupUv,a [lev Up,a] = 771//)0#41 - nupﬁlaa
(3.68b)

[J(lbu Up,c] = Echu,a + 6caU,u,b |:J(lb7 U,u,c} = Ecbi]u,a + EcaU;L,b

[Uu,av ﬁu,b:| = Nuv€ab A -2 6abjw';u/ - nouab (368C)
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The distance invariant under SO (d 4 2,4) can be constructed following [45]. Let us first

introduce a difference between two vectors X and Y on g~ ! @ g—2:
5(X,Y) = (XW B nweabX“’“Y”’b) (3.69)
and define the “length” of a vector X as
0(X) =Ty (X) + 222 (3.70)

Then the cone defined by ¢ (6 (X,Y)) = 0 is invariant w.r.t. the full group SO(d + 2,4),

because of the following identities:

Aol (5(X,))=4L(5(X,)))
O 0 (8 (X,9)) = ~2near (X0 + Y7 ) (5 (X, ) (3.71)
Kiol(5(X,Y)=2(x+y)l(5(X,Y))
any other generator o £ (6 (X,Y)) =0

This result provides an example of the cone referred to in (3.45).

3.8 Geometric realizations of Eg_ay), E7_5), E¢2) and Fyy) as

quasiconformal groups

The minimal unitary representations of the quasiconformal groups of the space-times defined
by simple formally real Jordan algebras of degree three were given in [48]. In this section
we will give their geometric realizations as quasiconformal groups in an SO(d, 2) x Sp(2,R)
covariant basis where d is equal to one of the critical dimensions 3,4, 6, 10.

3.8.1 Geometric realization of the quasiconformal group Eg_a.)

For realizing the geometric action of the quasiconformal group Eg(_gyy in an SO(10,2) x

SO(2,1) covariant basis we shall use the following 5-graded decomposition of its Lie algebra

es(—24) = 1 B 56 @ [50(1,1) @ e7(_g5)] 56D 1 (3.72)

( (2,12) ) ( (2,32,) ) ( (2,12) )
28(_24) =19 A @ @1
(1,32.) sp (2,R) @ s0 (10,2) (1,32.)
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The generators of the simple subalgebra e7(_y5) in g? satisfy the following SO(10, 2) covariant

commutation relations.
[Mum Qac’x] - QaB (F,uy)ﬁd
[Jab7 ch] = €bQua + €calba (373)
[Qac’n ng} = €ab (Cr,uz/)dﬁ‘ MH 4 Cdgjab
where M), and J,;, are the generators of SO(10,2) and Sp(2,R), respectively and Qq4 are

the remaining generators transforming in the (325,2)) of SO(10,2) x Sp(2,R) . C is the

charge conjugation matrix in (10, 2) dimensions and is antisymmetric
Ct=-C (3.74)

The generators of E7(_y5) are realized in terms of the “coordinates” X** and 1 transform-
ing in the (12,2) and (32, 1) representation of SO(10,2) x Sp(2,R) as follows

0 g 0
M = nupo’am = Nup X7 oxXma (L) aaTZ)g
Jab = EaCX‘u’c aX'U’vb + echH’caX,u,a (375)
0 0
Qaa = EabXM’b(Fu)ﬁdW — (CTp) o ™ OXva

where I';, are the gamma matrices and Iy, = i (T, =TT, o, B, .. and d&, 8, ... are chiral
and anti-chiral spinor indices that run from 1 to 32, respectively. I' matrices are taken to
be in a chiral basis (with I'13 being diagonal) . The spinorial “coordinates” “ transform

as a Majorana-Weyl spinor of SO(10,2). One convenient choice for gamma matrices is

Fizal®01®1“§8) F9=U1®01®F§8) I'o=01®03® 15

(3.76)
Mi=01®ioca®@11g T2=1t02®130 C=1y®i02 ® 116

where i =1,...,8 and FéS) = Fgg) e Fég). Matrices T are those of Clifford algebra of R®.

i

The chiral realization (3.76) assumes mostly plus signature convention:
o 10 2 _
N = diag ((+) (-) ) v =1,...,12. (3.77)
The fourth order invariant of e7(_g5) in the above basis reads as

Ty = N préaceba X O X PP XPCX T 4 260, X1 X0 (CT ) o g ¥°

1 (3.78)
5 ¥ (CTh) g 077 (CTH) 50
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Given the above data, it is straightforward to realize the generators of eg(_o4) on a 56+1 = 57

dimensional space following [45, 46, 48]. We start with negative grade generators

0 0 0
o T (3.79)
0 b O '
Upa = oxma Nyu,w€abX Iz
where x is the singlet “cocycle” coordinate. Grade +2 generator is
1 g 1 01y 0
K :722_1‘ R N ;wabi
+ =5 2 =T 5o Loxua " g (3.80)
1 914 ( —1)0‘/3 9 + x XHe 9 + l,wa 9 '
4 Oy oYP oXma o™

Generators of grade 41 space are obtained by commuting K with corresponding generators
of g~

U)u‘7a = [UM,CL7 K+] Ua = [UOU K+] * (3'81)
The generator that determines the five grading is simply

0

0
A =2r— + X"
T + oo

ox oXHa

+ y* (3.82)

The commutation relations of these generators are those of (3.68) for d = 10 supplemented
with (3.73) and the following;:

U, Us) = 2 CagK— [Un, 4] = Ua
[ ffﬂ} = 204K, [ffa, K_} — U,
[Qac’w Uu,b] = _eab(ru)adUa [Qada Uﬁ] = (Cr,u)ﬂd nleu,a

S . . . (3.83)
Qe U] = (00500 [Quas Us| = (CTo) 40" Ui
_Ua, U,u,a} = _(Crucfl)aaQad [Ua, 05] _ CaﬁA B (CF/M/)QB MM

_Uom f]u,a:| = (Cruc_l)aand

with all the remaining commutators vanishing. The explicit expressions for the grade +1

generators are

9
o T v,o_—
Una = =1 gxna gy ~ "X 5 47 oxia

. 1 82:[4 v\ _be 8 _ } 82:[4 ( _1)015 i
4oxmagxvs © gxAe T 4oxXmagye P

0 0
. v,b A,c ¥
mweabX <X aX)\’C + ¢ 81/}7 )

(3.84)
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T — _1%2 B ﬁ _ B wa 9 v 9
*T 4o D x<am¢>ax as¥ CY axia Y gy (3.85)
1o prer 01 s (cH™ 9 4.9 |
4 DX OXVb 4 0yedys oy T e

The above geometric realization of the quasiconformal action of the Lie algebra of Eg(_g4)
can be consistently truncated to the quasiconformal realizations of Ey_s), Eg2) and Fyy,
which we discuss in the following subsections. We should stress that for all these groups
one can define a quartic norm such that they leave the generalised light-cone defined with
respect to this quartic norm invariant as was shown for the maximally split exceptional
groups in [45] and for SO(d + 2,4) above.

3.8.2 Geometric realization of the quasiconformal group E;_s

Truncation of the geometric realization of the quasiconformal group Eg(_s4) to E7_s) is
achieved by “dimensional reduction” from 10 to 6 dimensions. Reduction of 32-component

Majorana-Weyl spinor of so (10, 2) is done by using the projection operators:
P —1(1+rrrr)°‘ Pd-—1(1+rrrr)d- (3.86)
=35 1l2l3ly) 5 575 1lalzliy)™ s .

where we assumed we compactify first 4 compact directions. This projection will reduce
number of spinor components down to 16. It is clear that projected spinors will have the

same chirality as their ancestors:

PI's...T'12P =PI'13P (3.87)
This 16-component spinor would thus comprise 2 same chirality 8-components spinors of
50 (6,2) satisfying symplectic Majorana-Weyl reality condition. Their R-group is su(2) -
part of the so (4) of the transverse directions that leaves the projection operator invariant.

Thus the relevant 5-graded decomposition of e7(_s)

er(_5) = 1@ 320 [50"(12) D so(1,1)] © 3251

(2,1,8,)
87(,5)21@ (1.2.8,) 5>}

(2,2,8;) ” ((2, 1,8v>>
D D1
sp (2,R) @ su(2) @ so(6,2) (1,2,8.)

reads

(3.88)
A
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Let £5% be an su (2) doublet of s0(6,2) chiral spinors (symplectic Majorana-Weyl spinor)
with a,b,.. = 1,2 and o, 3, ... = 1,2,..,8. Then one can realize the Lie algebra of s0*(12) of
grade zero subspace as

0 0 » 0
_ , , , B
M = nupoaaXu,a o n”poaaX/w — & () O‘W

0
Jab = EaCXM’C b + Ech‘u’C
aX“’ aX“’a (3,89)

0
et ek
L@] = Ezkg 85]"0[ + ejk‘£ a§i7a
0
o TR B
Q'Laa - 6abAXV (F,u) é‘@fiﬁ

. y 0
_ GijW’B (Cru)ﬁa n* S

where C* = C' and p,v,.. = 1,2,..,8. Generators M, J, L, Q form so* (12) algebra:

[ 2 Qzaa] = Qiaﬂ- (F;w)ﬁo}
(Lij, Lim| = €xjLim + €kiLijm + €mjLi, + €miLji (3.90)

[Jab7 Qicd] = Gchiaa + 6coLQz'bo'z
[Qiada ij51| = €jj€ab (OF;W) s MM + Eljcaﬁ']ab + EadeBLij

corresponding to the decomposition

0% (12) D s0™ (8) ® 50" (4) = 50 (6,2) D su(2) ®sp (2, R) (3.91)

The fourth order invariant of so* (12) in the above basis is given by
Ty = nuunpreacena X O X P X P XY — 2560 X1 XV (CT ) 0 g 677
+ 16 (CTy) g 89647 (CT), €0 cijen .
We can now write generators of e7(—5), starting with negative grade generators

53[38

B0 + €ij Oéﬁ or (393)

K =_— Uia*
’ f

0

U = s~ Mwcar X5,

Positive grade +2 generator K is

6 1 814 b 0
(20° =T4) 5- — & e

; 8.2'4 _1\epB 0 wa
8£i,a (C ) agj,ﬁ +rX OX Hsa

K, =

+ 6

’Q‘HL\D\H
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1

Commutation relations of g~ and g*! specific to 6 + 2 = 8 dimensions are :

|:Ui,aa Uj,,@} = €5 (CTyw) .5 M* + CopLij — €i;CapA

[Ui,a, Uu,a} = _(Crﬂcil)ainad- (3.95)

Grade +1 generators have the following form:

0 1 0T,
- Y44 wp, be - 4
10xmagxvd" © gxec T 1axmagia

0 0
_ nuyeale/,b (X/\,c + gl,a >

0
9EiB

i (¢ (3.96)

aX)\,c agi,a
5 105 0 i 0
i, — 4 agi@ ay + Caﬁéwg yay + yaém
$1 O oyrge 01 0L O
198 DEIP oEFA 4 9ghexma oX ¥

; 0 o 0
58 Ae i,
+ Caﬁeljg (X aXA7C + 5 851'704 )

(3.97)

3.8.3 Geometric realization of the quasiconformal group Eg )

Truncation to eg(o) is done by further dimensional reduction from d = 6 to d = 4. Projecting
spinors is done in a similar way and results in breaking R-symmetry algebra to u(1). The

resulting 5-graded decomposition of eg(y) is:

eg2) = 1 ®20 @ [su(3,3) B so(1,1)] ®205 1 (3.98)

86(2) =1 (1,4C>+ @

(3.99)
(2,4,)" @ (2,4.)" (2,8,)
[A@ o e & | (1,4)" | @1
sp(2,R)du(l) dso(4,2) 4

where + and — refer to 41 charges of u(1). Let (® be a chiral spinor of s0(4,2) and (%
the corresponding anti-chiral spinor. We shall combine these two chiral spinors into one

Majorana spinor 1) of so (4,2). The decomposition of the The generators of su(3,3) in g°
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subspace read as follows

a 0 a A A 0
My = nup X" oxva Np X" oxXma P (Cw) BaqﬁiB
0 . 0 A g 0
H - o 0(7- = F J—
a 9 v 9
Qa,a = €ap X" (FM)BAW + P (CTuI'7) g xXva

while J,; is defined as before and the charge conjugation matrix is now symmetric C* = C.

These generators of su (3, 3) satisfy the commutation relations

3
[Qa,4,@Qv,8] = SeasCapH — eap (CTuw) yp MM = (CT'7) 4 Jab (3.100)

[H,Qa.a] = (T7)” ,Qu.p

The chiral components of the generators of @, 4 are given by

., O 0
_ b @ v B
Qa,a - eabX'u (FM) aaca + 77# C (Cru)ﬂa 8XV’a
0 : 0
— ,b a _ v 03 .
Qua = X" (0,) 505 =1 (CTWas gxvm

The 4-th order invariant of su (3, 3) written in terms of X and 1) reads as follows:

Ty = N preacera X O X O XPEX T — 2 X%, X0y B (CT ) 4

1 wv, o pt, A B E F (3101)
+ 577 n ¢ ¢ (CFMP)ABw ¢ (CFVT)EF
The spinorial generators of Eg() belonging to g~ ! subspace are realized as
0 0
Uy =——+ (CT B— 3.102
A 8wA + ( 7)AB (0 8y ( )
which commute into the grade —2 generator K_

[Ua,UB) =2(CT7) 45 K— (3.103)

The commutators of the generators (), 4 belonging to grade zero subspace with those in

grade -1 subspace read as

[QG,A’ UB] = - (CF/LF7)AB nﬂyUu,a

B (3.104)
[Qa,Ay Uu,b] = _eabUB(Fu) A
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Commutation relations of the form [gfl, g“] c g° are

N 3
[UA’ UB] = =5 (CT7)ap H = CapA + (CTy) yp MM

~ _ B
[UA,UW] — (€T ,"Qus (3.105)
~ _1\, B
[UAa Uu,a] = _(CF,LLC 1>A Qa,B
Explicit expressions for positive grade generators are as follows:
~ 1 07, 0O 0
me = Tqgxmagy Mt Wy Vg
1 9’ 5, 1 0°Iy AB 0
i pbe _ = -1 o
Toxcraxes < gxee ~ 1axmaga LCT) T Gum (8-106)

0 0
v,b A A
_nuueabX <X DX Me + 8¢A>

~ 1014 0 g 0 0
A 10040 (CT7) o ¥ yay‘i‘yw
2 2
1 0%Iy nBC 0 L 0°Zy o O (3.107)

(F7C— ) e - Z@X“vad}An € X Vb

43¢A¢B
G, G,
B A, C
— (CT7) 45 ¥ (X aX%cﬂ/z awc>
1 d B,
Ky=2 (20 ~T)) o pa A
+ 2( ) 4) 8y+y<X 8X“’a 77/} 8wA> (3 108)
1 81-4 6a’b my (9 _ 1 81-4 (F C_l)AB 8 ’
49X ma oXvb  4opA VT OB

3.8.4 Geometric realization of the quasiconformal group Fj
Further truncation to f4(4) is performed by reducing from d = 4 to d = 3. The 5-grading in

this case is
fay =1 R) ®so(1,1)]®14®1 (3.109)

faa) = ( )
(3.110)

(2,

Ad
(2,R)@50( 2)
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We use the same notations for spinors as above, assuming that now A =1,...,4.
0 A 4 O
M, = WPXMW o nVPXp’a oXHma (0 (Fuv) BaqﬁiB
0
B v
Qa,a = €p X" (T)) AgyB + Y (CTL) g a Ixva

where C* = —C'. The generators @, 4 close into sp (2,R) & s0 (3,2) as follows:

[Qa,Aa Qb,B] = €ab (CF/,LV)AB M + CABJab (3-111)

and transform under sp (2,R) @ so (3,2) in the (2,4) representation. The generators @, 4,

MM and Jg, form the sp(6,R) subalgebra.

1 1

Generators K_ € g~2 and Uua € g~ are as above and spinorial generators of g~ are

given by
0

:&74+

Spinorial generators form an Heisenberg subalgebra with charge conjugation matrix C' serv-

Us () g 1/1B88y (3.112)

ing as symplectic metric:
[Ua,Up] = —2CapK_ (3.113)

1

The generators Q act on g~ subspace as follows

[Qa,Aa UB] = (Cr,u)AB n#yUu,a

. (3.114)
[Qa,4, Uppl = —€ar(T')” 4Un
Quartic invariant Z, of sp(6,RR) in sp (2,R) @ so (3, 2) basis is given by
Ty = NuNpreacera X X P XPEXTE 2 X1y XA (OT ) 4 5 (3.115)

Notice that the quartic term involving purely spinorial coordinates ,present in previous
cases, now vanishes, since there is no symmetric rank 4 invariant tensor of so(3,2) ~

sp (4,R) over its spinorial representation space. Then the positive grade generators are

1 0 0 0
Ky = B (29® — Ia) M +vy (Xﬂ’aaXWl + wAW>
4 (3.116)
LT gy O 10T (yan O
doxma T gxvd T 4 ppA 9B
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Ta = —ifgﬁl% - n,weabX””’ya + Y oria
N iax?jaz §(u,bnyp€bca)?p,c + ia)?zﬁw‘ (H™ OZB 317
 ear X (XA,C 8)?A70 4 oA 8ZA)
Ty = _zllgiﬁ‘@ay + CAB¢Byaay + ?/82,4
i% (e aZc - ia)?iﬁpf‘ nweaba)?wb (3.118)
+(C) g5 9” (X/\’C a)?)\,c + 9 aZC)

1

Commutation relations of generators belonging to g~' and to g*! are

UasUp| = (CTpu) 4 M™ = Capdh
U, O] = =(CT0C ) P Qup (3.119)
[UA, UM] — (€T ,"Qus

3.9 Summary

In conclusion, we find that U-dualities of MESGT supergravity theories in d = 5 whose
scalar manifolds are symmetry spaces with covariantly constant T-tensor are Lorentz group
of generalised space-times, associated with Jordan algebras J? and generic Jordan family.
U-dualities of theories obtained by compactification of d = 5 theories to d = 4 are conformal
groups of these space-times. Further compactification to d = 3, where all degrees of freedom
are dualised to scalars, U-duality group is isomorphic to quasi-conformal group.

U-duality groups of MESGTSs, summarised in the table 3.2, form what is known as Magic
Square [41] obtained by Freudenthal [29] in his study of relation between division algebras

and exceptional groups.

d =5 compact d=5 d=14 d=3
JE SO (3) SL(3,R) | Sp(6,R) | Fyu
JS SU (3) SL(3,C) | SU(3,3) | Ego
JH Usp (6) SU* (6) | SO*(12) | Eq(_s)
JY Fy E¢(—26) | Er(—25) | Eg(-24)

Table 3.2: U-duality groups for exceptional MESGTSs in d = 3,4, 5.

It is important to stress that using Jordan algebras to define generalised space-times

with conformal groups admitting positive energy unitary irreducible representations requires
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that the underlying Jordan algebra be Euclidean. These algebras are relevant for N' = 2
MESGT geometries. The conformal groups of simple Jordan algebras of degree 3 over the
split composition algebras do not admit positive energy unitary irreducible representations.
Correspondingly, U-duality groups of maximal supergravities do not admit lowest weight
unitary representations. One can however carry out algebraic constructions of Lie algebras
based on Jordan triple systems and Freudenthal triple systems associated with these Jor-
dan algebras. Resulting Lie algebras will be U-duality algebras corresponding to maximal

supergravity theories in d = 5, d = 4 and d = 3 dimensions [46].
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Chapter 4

Minimal representations of U-duality groups

In 1974 Joseph solved [59] the following problem:

Determine the least number of degrees of freedom for which a quantum me-
chanical system admits a given semi-simple Lie algebra and construct the cor-

responding class of realizations.

The realizations he found are termed minimal realizations. Joseph gave minimal realiza-
tions for classical groups as well as for the exceptional Lie algebra go, and showed that
minimal realizations are determined by a unique completely prime two-sided ideal (known
in literature as Josephs ideal) Jy in enveloping algebra U (g) of Lie algebra g in question.
Minimal number of degrees of freedom necessary to realize simple Lie algebras are sum-

1

marised in table 4.1. It is computed as dim (g_l) /2 + 1, where g~ refers to -1 grade in

1

the five-graded decomposition (3.38). Indeed since g~ is endowed with Kirillov-Konstant

symplectic structure half of g—!

can be identified as coordinates and complementary half as
momentum. Extra coordinate comes from associating a coordinate to g—2.

Studying minimal realizations is very relevant in the context of spectrum generating
algebras [9]. Indeed, because the latter are required to possess an irreducible representation
which exhaust the spectrum of a given system, their construction involves the realization
of a Lie algebra within a minimal numbers of degrees of freedom.

Minimal unitary representations were proved to exist by Vogan [111] who identified
them within the framework of Langlands classification. Minimal representations for all
simply-laced algebras, were constructed by Kazhdan and Savin [65], and by Brylinski and
Konstant [10] using rather different methods. Gross and Wallach [35] gave yet another

construction of minimal unitary representation of exceptional Lie algebras of real rank 4

Cartan label: A, B, C, D, Gy Fy Eg¢ FE; Eg
# d.of. : n 2n—2 n  2n—3 3 8§ 11 17 29

Table 4.1: Minimal number of degrees of freedom necessary to realize given simple Lie
algebra as a symmetry of quantum mechanical system.
Number of degrees of freedom (d.o.f.) is also minimal “dimension” of representation.
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which includes eg(_o4). An explicit realization of Chevalley generators in terms of pseudo-
differential operators was recently given for all simply-laced algebras by Kazhdan, Pioline
and Waldron [64] who used minimal representation of continuous U-duality groups G to
construct automorphic forms of discrete subgroups G (Z) of U-duality groups G.
Construction of minimal realization using Freudenthal triple systems was done in [46] by
Giinaydin, Koepsell and Nicolai for maximally split U-duality groups and by Giinaydin and
Pavlyk in [48, 50] for U-duality groups of MESGTs. These constructions arise naturally from
geometric construction of quasi-conformal algebras [46] since there is a naturally defined

1

(3.39) symplectic structure on g~" and thus one can introduce a notion of coordinates and

momenta.

4.1 Conformal quantum mechanics

Consider a quantum mechanical model with one degree freedom, an associated canonical

coordinate y and momentum p'
ly.pl =i (4.1)

De Alfaro, Fubini and Furlan [1] considered a motion of such a particle in inverse square

potential and explored conformal symmetry sl (2,R) that it admits. Let

1 1 glg+1) 1
F— 242 F = —p2 g T A="_ 4.2
5Y LR 5 (yp + 1Y) (4.2)
with commutation relations
[A,E] = —2iF
[E, F] =iA (4.3)
[A,F] = +2iF

of sp (2,R). Since each generator is Hermitian and the Casimir of the above algebra reads
Copiaz) = A2 + (F — B’ — (F + B’ (4.4)

we conclude that FF — F and A are non-compact generators and F 4+ FE is compact. The
implication of this is that only F' + E has a spectrum bounded from below and hence is
suitable for the role of Hamiltonian of quantum mechanical model. Evaluating quadratic

Casimir on the realization given by (4.2) we find

3
Cop2r) = 7 — 9 (g+1) (4.5)

!Throughout the thesis we set 7i = 1 as well as m = 1 for convenience.
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it to reduce to c-number. In coordinate representation E + F reads as follows:

2
i@y (1) =g o), (46)

Seeking for solutions regular at the origin we find

fe(z) = e*%xQHLﬁ% (332) (4.7)
1(—2g+2£-3) )

where function L stands for Laguerre function which can be expressed in terms of confluent

z) (4.8)

Regularity at infinity requires L to be polynomial of some degree n. This determines the

hypergeometric function

Lf (2) = vt D 1< v

w+DT@+1) "'\ pt1

spectrum

3

The resemblance of the spectrum to that of harmonic oscillator is easily seen by noting that
(4.6) is in fact the radial part of Shrodinger equation for three-dimensional oscillator with
coupling constant g being angular momentum quantum number.

Because all U-duality algebras feature sl(2,R) ~ sp(2,R) ~ su(1,1) as subalgebra
generated by grade 4+2 subspaces, we shall encounter the above construction as a common
theme for minimal unitary realizations of U-duality algebras.

We now turn to construction of minimal realization of eg_o4) and construct minimal
realizations of supergravity pertaining subalgebras by truncation. Results of sections 4.2,
4.3 and 4.4 were published in [48].

4.2 Minimal realization of ey _y)

The Lie algebra eg(_gy) of Eg(_s4) admits a 5-grading with respect its subalgebra e7_o5) &
$0(1,1) determined by the generator A of a dilatation subgroup SO(1,1)

9—2 P g—l P go P g+1 P g+2

(4.10)
1 & 56 @ (133¢1) & 56 @ 1

€g(—24) =

such that g*2 generators together with A form an s[(2,R) subalgebra.
To construct the minimal unitary representation of eg(_o4) we find it convenient to work

in a basis covariant with respect to su*(8) subalgebra of e7(_25)2. In the su*(8) basis the

? The su*(8)-covariant basis of e7(_25) is the analog of s[(8,R) basis of e7(7) [45]
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generators of e7_p5) can be labelled as follows
133 =633 70 = J45 @ JABCD (4.11)

where JA 5 denote the generators of su* (8) and J ABCD g completely antisymmetric in its

indices A, B,...=1,2,...,8. They satisfy the commutation relations
(748, Jp] = 6%pJ4p = 6" pT%8
1

[ JABCD. JEFGH] 1 (ABCDK|EFG pH]

36

and the following reality conditions

(JAB)T — JAB — QACQBDJCD

; (4.13)
(JAPPY = —Tapep = —QupQrQceQpr TP
where 2 is a symplectic matrix such that Qap = —Qpa = (QBA)*, QupQPC =69 4. The
quadratic Casimir operator of E7_g5) in the basis (4.12) is given by
1 1
Co = EJABJBA - ﬂEABCDEFGHJABCDJEFGH
1 (4.14)
—_ 6JABJBA . JABCD(ﬁt])ABCD

where (6']>ABCD = %GABCDEFGHJEFGH.
The fundamental representation 56 of e7(_g5) decomposes as 28 & 28 under its su*(8)

subalgebra, where 28 (X48) and 28 (X,p) are anti-symmetric tensors satisfying the fol-

lowing reality condition
~ T ~ ~
(XAB)T = Xap = QucQppX°P, (XAB> = X148 = AY0BP X (p . (4.15)
Under the action of e7(_p5) they transform as

(SXAB — EACXCB + EBCXAC _ EABCDXCD

_ _ ) (4.16)
6Xop = - Xap — ¥4 pXca + Sepap XA

$ABCD _ _(

where Y4~ and P ABCD)Jr denote parameters of SU* (8) transformation and

those of the coset generators E7(_g5)/SU (8), respectively.
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4.2.1 Exceptional Lie Algebra eg_o)

Note that 56 is a real representation of e7(_s5) just as 28 and 28 are real representations of
su*(8). Thus in su*(8) covariant basis we can label generators belonging to grade -1 space

FAB

as EAB and Fap and grade +1 space as and Fup. The 5-graded decomposition of

eg(—24) in 5u™(8) basis takes the form
es(_on) = B @ {EAB ,ECD} o {JAg, JABCD AL @ {FAB , FCD} OF (4.10)

The grading is defined by the generator A of SO(1,1)

A E] = —2E, A, F] = +2F
[A,EAB] — —EAB, [A,FAB] _ +FAB (417)
[A7ECD] =—Ecp, [A,FCD} = +Fcp

Positive and negative generators form two separate maximal Heisenberg subalgebras with

commutation relations
(547, Bop| =264 (B, E*") =0 [E, Eas| =0 (4.18)

and
[FAB ,FCD} =264BF  [F, F4] =0 [F FAB} =0. (4.19)

However these two Heisenberg subalgebras do not commute with each other (see eqs. (4.22)

below). Generators of g*2 are invariant under €7(—25)
[JAg, F] =0 [J4B°P Fl=0 [J%, E]=0 [J*P E]=0 (4.20)

while generators of g*! transform under su*(8) as follows

(4.21)

I
|
>
S
Q
@z
o
|
>,
S
o
gjz
sy}
+
-
>
'
oy}
gjz
>l
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The remaining commutation relations read as follows

. 1 .
[ JABCD EEF} _ 5[&? ECD) [ JABCD EPF] = —o (ABCDEFGH
- 1 .
[ JABCD FEF] _ 5%4153 FCDI [JABCD pEF] - o (ABCDEFGH |
[B4% FOP] = —12 747 [Eap, FOP] = 461,77 gy + 658 )
[EAB 7F‘C’D} = —12(eJ) upcp > [EAB ,FCD} = 4608 ) — 68BA
(B, FAF] = —E*F, B, Fap| = ~Eas
~ _ [E,F]=A
[F, EAP] = +F47 [F, EAB} = +Fup
Reality properties for generators belonging to grade +1 and 42 are as follows
~ t ~
(FAB)T — —QucQppFCP <FAB> — _QACQBDE,
. t _
(EAB)T — *QACQBDECD 7 (EAB) _ *QACQBDECD ’ (423)
ET = —E’ FT - —F,
The quadratic Casimir operator of the above Lie algebra is given by
1
Ca (eg(—24)) = EJABJBA — JBCP () apep
1 1
+ EA2 — 5 (FE+EF) (4.24)
1

BT (EABFAB + FABEAB — FABEAB — EABFAB>

In order to make manifest the fact that the above Lie algebra is of the real form eg(_g4) with
the maximal compact subalgebra e; @su(2) let us write down the compact and non-compact
generators explicitly. Under the maximal compact subalgebra usp(8) of su*(8) we have the

following decompositions of the adjoint and fundamental representations of eg(_ay)

133 =63® 70 = (36 ©27) D (1D 27 & 42)
56 =283 28 =(1©27)® (13 27)

where 27 and 42 correspond to symplectic traceless antisymmetric 2-tensor and 4-tensor of
usp(8) respectively.® Note that the generators in the representations 1 ® 36 ® 42 of usp(8)
in the decomposition of the adjoint representation of e7(_gs) form the maximal compact

subalgebra eg @ u(1) of e7(_o5).

3 The group SU*(8) is defined as a subgroup of SL(8,C) generated by elements U € SL(8,C) such that
UtU =1 and UQ = U*Q. U* is obtained from U by component-wise complex conjugation.
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Denoting the generators (7') transforming covariantly under the usp(8) subalgebra of

su*(8) with a check (7') we find that the generators in 36 @ 27 are given by GSEB) =

QacJC B + QpcJC 4, while generators coming from the decomposition of 70 with respect
to usp(8) are given by

JAB _ JABCDG 4 %QABJ_
JABCD ._ JABCD g QUBQ . JODIEF | %Q[ABQCD] j
J = QppQap JEFCH
Thus we find that
JABOD (¢ o JABCDJ o g JAB s+ %j? (4.25)

The decomposition of 56 of e7(_s5) into usp(8) irreducible components leads to the following
generators that transform in the 27 of usp(8):

éj:B =Eap + Fap £ (FAB - EAB)

3 g ~ (4.26)
Nig=Fap+Eap+ (EAB - FAB)

1 - -
+ gQABQCD [ECD + Fep £ ( cD — ECD)}
1 - -
+ gQABQCD [FCD + Ecp £ ( cD — FC’D)}
and to the following singlets of usp(8):

C* = QCD[ECD + Fep £+ (FCD — Ecp]

N* =Q°PlFop + Ecp + (ECD - FCD)]
Then the following 133 operators
G\, JABCP . J42(E+F), Ci (4.27)

generate the compact E; subgroup and the operators C* and 20E+F) — 3J generate the

compact SU(2) subgroup. The remaining 112 generators are non-compact:

Gg_Bg ) jAB ) A 9 F - Ea NjB ) Ni' (428)
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4.2.2 The Minimal Unitary Realization of eg_s in su*(8) Basis

It was noted earlier that elements of the subspace g2 @ g~ ! C eg(—24) form an Heisenberg

2

algebra with 28 “coordinates” and 28 “momenta” with the generator of g—= acting as its

central charge. As it was done for eg(g) [45] we shall realize these Heisenberg algebra

generators using canonically conjugate position (X“4#) and momentum (P4p) operators:
(X4, Pop] =i665 . (4.29)
satisfying the following reality properties
(XAB)T = Xap = QucQppXP, (Pap)' = PP =02°0PPpp (4.30)

The commutation relations (4.29) can also be rewritten in more usp(8) covariant fashion

[(Xap,Pep) = = (Qac8p — QcQap) . (4.29")

N =

The generators of g=! @ g~2 subalgebra are then realized as

EAB — iy XAB  Fup = _—iyPip E= —%yQ (4.31)

where y is an extra coordinate related to central charge. In order to be able to realize

g+1 ® g+2 generators we need to introduce a momentum operator p conjugate to y:

ly,pl=i. (4.32)

The grade zero g° generators, realized linearly on operators X482 and P4p, take on the

form
JAg = —2iX4°Pap — iaABXCDPCD )
JABCD _ _ ' y[AB xCD] _ 4% (ABCDEFGHp b '
The dilatation generator A that defines the grading is simply
- (py +yp) - (4.34)

2

Since g~! generators are linear and g° generators are quadratic polynomials in X and P we
expect gt! generators to be cubic. Furthermore, gt! = [g+2,g_1] suggests that F' must be

a quartic polynomial in X and P. Since it is an e7(_gs) singlet, this quartic must be the
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quartic invariant of e7_g5). Indeed we find

1 2
F=_—p+ —-1,(X,P
il Tl P)

2

FAB = jpx 4B 4+ = [X4P I, (X, P)] (4.35)
y

~ . 2

Fap = ipPap + ; [Pag, 14 (X, P)].

The quartic invariant I, coincides with quadratic Casimir of e7(_gs5) modulo an additive

constant:

323 547
I (X, P) = Ca (e7(_25)) + 6 = 16
(XABPBCXCDPDA + PABXBCPCDXDA)

—+

O = DN =

(XABPasX“PPep + PapXAP PopX©P) (4.36)

ABCDMNKTI,
+ —e¢ PapPepPyunPikr

+ %GABCDMNKLXABXCDXMNXKL

The quadratic Casimir of eg(_s4) (4.24) evaluated in the above realization reduces to a
c-number as required by the irreducibility. In order to demonstrate that we decompose the

quadratic Casimir (4.24) into three e7(—25)-invariant pieces
Cs (€g> =y (87) + Cs (5[ (Q,R)) +C

according to the first, second and the third lines of (4.24) respectively. From (4.36) we find
that

323
C2(87)=I4—E.
Using definitions of A, E, F' we obtain
1 1
Co(sl(2,R)) = =1y — —
2 (s((2,R)) 317 16

Using definitions for g=! @ g*! generators we find

3¢ =7—281; —iXAP I, Pap + iPagl, X AP

2 2
:7—28I4+<3214—Z5) :414—%

and therefore
Cg (28) = —40 (4.37)
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Since Eg does not have any invariant tensors in 58 dimensions (corresponding to 29 position
and 29 momentum operators) all higher Casimir operators of eg(_g4) in the above realization
must also reduce to c-numbers as was argued for the case of egg) in [46]. By integrating
the above Lie algebra one obtains the minimal unitary representation of the group Fg_o4)

over the Hilbert space of square integrable complex functions in 29 variables.

4.2.3 The Minimal Unitary Realization of ¢g_o4) in su(6,2) Basis

Analysis above was done in su*(8) covariant basis (see footnote on the page 57). Since
covariant operators X5 and P4p are position and momenta we refer to this basis as the
Schrodinger picture. One can consider an oscillator basis where the natural operators are
28 creation and 28 annihilation operators constructed out of X and P’s. Being complex,
we expect them to transform as 28 & 28 of some non-compact version of su(8) within
e7(—25 C g%, This algebra turns out to be su(6,2) and the creation and annihilation

operators are given as follows

1
Zab _ Z FabCD (XCD _ ZPCD)
o (4.38)
Zab _ Z FabCD (XCD + ZPCD)

where transformation coefficient T'*®~p are related to gamma-matrices of
50(6,2) ~ 50"(8) ~ su™(8) N su(6, 2)
as spelled out in appendix A. Operators Z and Z satisfy

~a c 1 ca cl a
{Z",Zd}:§<n ndb—nbnd). (4.39)

with the following reality conditions
t - ~
(Z“b) — 79 — geepbdz (4.40)

where n = Diag (+, 4+, +,+,+,+, —, —) is used to raise and lower indexes. Generators of

e7(—25) in this basis take the following form

- 1 -
J% =22%7,. — ZéabZCchd
(4.41)

1 1 .-
Jabcd _ 5Z[abZCd] - EeabcdefthefZgh



with Hermiticity conditions

T 1
(Jab)T — nadnbcjcd (Jabcd> _ 7ﬂ€abcd€fgh(]efgh

Their commutation relations are
[Jab ’ ch] _ 6chad _ 5daJCb
[Jab , chef:| _ _45[chdef}a - %5abjcdef

1
[Jabcd 7 Jefgh:| _ %eabcdp[efgjh]p
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(4.42)

(4.43)

which have the same form as su* (8) covariant eqgs. (4.12). Quadratic Casimir in this basis

reads as

323

Pl T ) g = 1 (2.7) 2

CQ (27) =

_ 1t ( 7 Zb¢ 7 g 7% 4 700 7, 7ed Zda)

el

il \V)

_ = (Zabzabzcdzcd n Z“bZabZCchd) +14

Qo

1 1 -~ . -
+ %EabcdefghzabZCdzefZgh + %€abcdefghzabzcdzef Zgh

Negative grade generators of eg_y4) are then simply

E=gy’ BT =yZ Eab = yZay

Generators in g*! can be inferred commuting g*? generator

1
F= 5102 +2y7%Iy

with generators in g—!

Feb = [E F| = —pz + 2iy™" |2, 1]

Fab =1 |:Eab ) F} = _pZab + 27;y_1 |:Zab ’ I4]

(4.44)

(4.45)

(4.46)

(4.47)
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or more explicitly
Fab — _ pZab . éyqeabcdefghzcdzefzgh

i 4Z~y—1Zc[achZb}d n %y—l (ZabZCchd + chchZab) ( |
4.48

N i
Fop = —pZap + ﬁy 16z}tbcdefthCdZ@fZgh

s i A ln s 5 s
— iy 1Zc[aZCde]d - 5 Y ! (ZabZCchd + chZCdZab>

We see that commutation relations in this basis closely follow those in su*(8) basis, with
modified reality conditions (cf. (4.45) and (4.31) as well as (4.47) with (4.35)). The SU(6, 2)

covariant commutation relations follow closely those given in section 4.2.1

[E,F] = -A B, F®| = —iE®
[Aa F] =2F [Av E] =—2F [Eapab = _/L'Eab
A. Fob| — pab A. B = _gab [ ab: . ~ab (449)
) - ’ - F 5 FE =iF
|:A7 Fab:| = Fab [A, Eab} = _Eab -F , EN'ab- = iFab
[E, E“b} —0 [E Eab} —0 [Eab,ECd} =254 [
~ ~ (4.50)
[F, F“b} —0 [F Fab} —0 [Fab , ch} — 254
{E“b,ch} — 124 J0bd [Ea,,, ch} — —aisle g, — iseiA .
[Eab, ch} = 12i (e]) oy [Eab, ch} — sl g + i52A
1 .
|:Jab , Ecd] _ 5chad + 5dbEca _ ZdabECd [Jabcd 7 Eef:| _ 5([;}bECd]
- - - 1 - -1 ~
[Ecd , Jab] = 6%Epq + 60%4E — ZéabEcd [Jade ; Eef} = ﬂﬁabedefghEgh
The quadratic Casimir of eg(_g4) in this basis reads as follows
1 1 1
Co =~ J%J 0 + J(e]) g + = | EF + FE + - A?
6 6 2 (4.52)

_ é ( Fab Feb 4 pab Fab _ Eab Fab _ pab Eab)

and reduces to the same c-number as (4.37).
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4.3 Truncations of the minimal unitary realization of eg_y)

Since our realization of eg(_g4) is non-linear, not every subalgebra of eg(_o4) can be obtained
by a consistent truncation. We consider consistent truncations to subalgebras that are

quasi-conformal. Since quasi-conformal algebras admit a 5-grading
g=ologlogogt @gt?

with g2 being one-dimensional, they have an s((2, R) subalgebra generated by elements of
g*? and the generator A that determines 5-grading. However, the quartic invariant Z will
now be that of a subalgebra g° of the linearly realized e7(—25) within eg(_g4). Furthermore,
this subalgebra must act on the grade 41 subspaces via a symplectic representation.

Hence, the problem is reduced to enumeration of subalgebras of linearly realized e7(_g5)
admitting a non-degenerate quartic invariant on the symplectic representation. Before
giving the explicit truncations below we shall first indicate a partial web of consistent
truncations as quasiconformal subalgebras.

Firstly, we can truncate eg_o4) down to either er() or e7(_a5), by keeping singlets of
either su(2) or su(1,1) within su(6,2) C e7(_g5) correspondingly. Further truncations of
e7(—25) to rank 6 quasi-conformal algebras can lead to either $0(10,2) or eg(—14), while

truncations of e7(5) lead to either eg_14) or eg2):

50(10,2) — 50(6,2) — s0(4,2)

/
€7(—25)
/!
eg(—24) N eg(—14) — 50(8,2) — su(4,1) — su(2,1) (4.53)
/
€7(5) N

e6(2) = fa) — 50(4,4) — g2y — sl(3,R)

The minimal unitary realization of SU(2,1) was given in [46].

4.3.1 Truncation to the minimal unitary realization of e¢;_5 as a quasi-
conformal subalgebra

In order to truncate the above minimal unitary realization of eg(_4) down to its subalgebra

e7(—5) Whose maximal compact subalgebra is s0*(12) © su(2) we first observe that e;(_s) has
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the 5-grading

g—Q @ g—l @ gO fa g—i-l @ g+2

(4.54)
1 @& 32 & (s0°(12)®1) & 32 & 1

e7(—5) —
Furthermore, we note that e;(_o5) has a subalgebra so*(12) @ su(2). Hence e7_s) is cen-
tralised by an su(2) subalgebra, which can be identified with the one in su(6)®su(2)Gu(l) C
su(6,2) C e7(_g5). Under the subalgebra su(6) the adjoint 66 and the spinor representation
32 of s0%(12) decompose as follows:

32=1501¢15¢1 and 66=35015®015d1.

This truncation is thus implemented by setting

Zm =0 and Z™ = 0 where b # 8,
Zm =0 and Z8% =0 where b # 7,

i.e. by restricting to the su(2) singlet sector.
For the sake of notational convenience, we would retain symbols Z ab and Zab to denote
creation and annihilation operators transforming as 15 and 15 of su(6) C s0*(12), where a

2

and b now run from 1 to 6. Then, generators in g~ @ g2 of e7(—5) are given as follows

1 - ~ -
E=gy* B"=yZ" BEY=yZ" Eg=yZw B-=yin (4.55)

The grade zero generators are A and

~ 1 -
J% = 22% 7y, — §5achchd

1 1 L.
Jab — 6ZabZ78 _ 7€ab6fthefZgh
s ) (4.56)
Jabp = ~5 ab 278 + @Eabefghzefzg
1 ~ ~ 1 - -
H=— <Z7SZ78 n 278278) + 5 (Z“bZab " ZabZ“b>

which form the s0*(12) subalgebra. They satisfy the following commutation relations

(%, JC) = 6% J% — 6% J% [Jab , jcd] 1% (25[a[c=]b]d] - 5?3[{)
|:Jab 7 ch] — _9gle, gdla _ %&zbjcd [Hajab] _ _% i, (4.57)

[Jab , jcd] = 26a[cjd}b + %&lbjcd [H’Jab] _ é‘]ab
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In order to construct positive grade generator we need quadratic Casimir of so*(12):

99

J%Jb, + AH? 4 24 (J“bja,, i jabJab> — -2 =

Co (s50%(12)) = 6=

( abecZ dZda + ZabZ ZCdZda)

278 52" Zrs + Zes 2 Zns 270 +

+
,_.kaH—‘.JkH—‘OO\Hl\D\H[\DM—Am\}—t

( W27 70 4 Z“bZabZCchd) iy (4.58)
— 1 (22027 Zn + 27 2252 2
< I T L Z T Zab)

1 - o~ o~ o~
— €abedef Zabzcdzef Z78 T 6abcdef ZabZCdZefZ78

_l’_

12

where the quartic invariant is built out of the spinor representation 32 of s0*(12). Then

generators of g™! are defined via (4.47). Commutation relations of g with g=! read
a e dla 1 a ped a I a T 1 a T
[J y, E° ] = —23l%, B0 — 25%E [J b,Ecd} = 26 By + 50" Bua

1 ~ = 1 gz
|:Jab , Ecd] _ _7€abcdefEef [Jab ’ ECd} _ _EdégEﬁS

24
~ ~ 1 N 1
|:Jab 5 Ecd] — _ﬂﬁabcdefEef |:Jab , Ecd] = —6525E78
ab 1 ab 1 ~
B = B [H B = 5B
- 1 - 1
b 8| _ 780 787 78
0 B =0 [ B = - Be  [HE®)=—F
J 3 — ab 7 _ _i ab r- o 1~
Jab7E78 =0 J ’E78 - 12E H7E78 = +4E78

Commutators of s0*(12) generators and the generators belonging to g*! subspace are ob-
tained by substituting E® with F% and E,p, with Fyp in equations above. Spaces g*2
are 50*(12) singlets each. Elements of g2 together with A generate an sl(2,R) C e7(—5)

subalgebra
[E,F]=-A [AE] = —2F [AF] =+2F. (4.59)

Generators in g~! and g*! close into g° as follows
[ Fab ’ ch} — _gjeabedef jef
[Eab : ch} — —i0% (4H — A) — digle % (4.60)

Bt | = —12i0% B, Frs| =0
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B, F1] = —i0g (AH + A) — 4361, I

[Eab ) ch} = +6i€abcdef<]ef (461)

|:Eab7ﬁ‘78} = +12i g [Eab ; Fm} =0
: ~ 1
[E78  Fob| = _12479b [E78 : F78} — (2A n 6H)

[E78 7 Fab- =0 [E78 , F78] =0
[ - (4.62)

78>Fab_ =0 [E78,F78} =0

- 1 1 - - -
[E78,F78 =i<—2A+6H> [E78,Fab] = +12iJy,

The resulting realization of e7(_s) is that of the minimal unitary representation and the
quadratic Casimir of e7(_5) reduces to a c-number as required by irreducibility of the minimal

unitary representation

1

N 1
s (er1-) = C2 (0°(12)) + o A2 4 ¢ (FE + BF)
1 ~ ~ ~ ~
_ E (EabFab + FabEab _ FabEab _ EabFab)

o o i (4.63)
- (E78F78 4 F g — FgE™ — E78F78>

99 1 1 4 31
= (1-16)+ (35 16) + (gh-7) =4

4.3.2 Truncation to the minimal unitary realization of ¢s) as a quasicon-

formal subalgebra

Quasi-conformal algebra eg(o) with the maximal compact subalgebra su(6) © su(2) has the

following 5-graded decomposition
7T8=1020 (su(3,3) @A) @20d 1

and since su(3,3) C s0*(12) it can be obtained by the further truncation of e;_sy. The
maximal compact subalgebra su(3) @& su(3) @ u(1) of su(3,3) is also a subalgebra of su(6) C
$0%(12). This suggests that we split su(6) indices a = 1,...,6 into two subsets, a = (1,2, 3)
and a = (4,5,6), and keep only oscillators which have both types of indices in addition to

singlets 278 and Z7®, i.e. set

7ac — Zae =0 74 = Zse =10 (4'64)
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Indeed corresponding su(3) @ su(3) C su (3,3) branching reads

20=(1,1)®(3,3)® (3,3)® (1, 1)

This reduction is quite straightforward, and we shall not give here complete commutation
relations. All of the formulae of e7(_5) carry over to this case provided we set to zero appro-
priate operators. The quadratic Casimir of su(3,3) that is needed to construct generators

of gt! @ g2 reads as follows

R B L
Ca (su (3, 8)) = 2 J%J % + 2% + 4H” + 24 (J“Jéé + JaéJ“C)

acé T T ac\ __ 35 _ 1 ~ ab 7 cd ab 7 cd r7
+24 (J T + Jaed ) =L -2 =2 <ZabZ ZeaZ + 2% 707 ch)

1/~ ~ ~ ~ 1 ~ ~ ~ ~

+5 (Zabzbczcdzda n Zabzbczcdzda) +5 (278278278278 + 278278278278) (4.65)
1 ~ ~ ~ ~ 1/~ ~ ~ ~

_ Z (ZabZabz78Z78 + Z7SZ78ZabZab) _ Z (ZabZQbZ'?SZ?S + Z78 Z78ZabZab)

1 1 . . . . 5
+ Eeabcdefzabzcdzef Z78 + EeadeEfZabZCdZef Z78 + Z

where Z% and Z,, are as described above, and hence I, is the quadratic invariant of
su(3,3) in the representation 20. The resulting realization of eq,) is again that of the
minimal unitary representation. Because some of the oscillators were set equal to zero in
the truncation, they do not contribute to the value of the quadratic Casimir of the algebra,

the c-number to which it reduces is now different

35 1 1 4 15
Ca (e5(2)) = <I4 - 16) + <3I4 - 16) + (—314 - 4) =6 (4.66)

4.3.3 Truncation to the minimal unitary realization of ¢;_14) as a quasi-

conformal subalgebra

Quasiconformal realization of another real form of ¢s, namely eg_14) with the maximal
compact subalgebra so(10) @ s0(2), can also be obtained by truncation of e7_s). Its five-

graded decomposition reads as follows
eg(—14) = 1 D200 (su(5,1) ©A)©2001
In order to implement this truncation we observe the following chain of inclusions

su(5,1) C 50(10,2) C ep(_as)
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Subalgebra s0(10, 2) is centralised by su(1,1) while su(5,1) is centralised by su(2, 1) within
e7(—25), Suggesting that we only keep oscillators Z @b and Z,, with indexes now running from
1 to 5 as follows from u(5) C su(5, 1) branching of 20 = 106 10. Then generators of su(5,1)

are given as follows

T = 229 Zy, — gdabzcdzcd H= i (2% 2w + Zan2™)
1 o . 1 (4.67)
Jt = = g€ e Zae o =+ geabeac 2L
with commutation relations
% ] = 69T % — 0000y [T, T = 6% — % 59, J¢
AR é&“bjc [H,J) = —%J“ 1, J,| = +%ja (4.68)
o0 = ﬁjab = 2%5%}1 ESEA S PAF AR
resulting in the following Casimir
Cs (su(5,1)) = éjabﬂa + %HQ +24 (J“Ja + jaJ“) =1, i’%
- % (Zabzbczcdzda ¥ Z“beCZCdZda) (4.69)
_ é ( T2 7.7 4 b7, 7ed ch) + Z

Remaining generators of eg(_14) and their commutators straightforwardly follow from those
of e7(_5). We shall only present the c-number to which the quadratic Casimir of eg_14)

reduces upon evaluation on the resulting minimal unitary realization

35 1 1 4 15
CQ (36(,14)) == <I4 - 16) + (3[4 - 16) + <—3I4 — 4) - —6 (470)

4.3.4 Truncation to the minimal unitary realization of f,4 as a quasicon-

formal subalgebra

The realization of the Lie algebra ego) given above can be further truncated to obtain the
minimal unitary realization of the Lie algebra f44) with the maximal compact subalgebra
usp(6) @ usp(2). The five graded structure of f44) as a quasiconformal algebra reads as
follows

52=fyu)=1014D (sp(6,R)©A) D141 (4.71)

One way to obtain the truncation of eg() to f4(4) is suggested by u(3) C sp (6, R) branching
of 14 =1®6®6 @ 1. It amounts to identifying the two su(3) subalgebra of su(3,3) C eg2)
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and discarding the antisymmetric components Z[8 of Zab |
Let us define the symmetric tensor oscillators S = Z(@©) and S,, = Z(ac), a,b, ... =
1,2, 3, which correspond to independent oscillators left after the identification. They satisfy

the following commutation relations
~ 1
[Scd ; S“"} =1 (5%6% + 5”05%) (4.72)
With these oscillators we build generators of sp (6, R):
a ac g 2 a qcd g
J% =28 Sbc—§5 55 Sed

1 ~ ~ 1 ~ ~
H= 1 (278278 + Z78278) + 1 <Sab5ab + SabSab>

, , - (4.73)
gab — L Sab 778 4 - coedebed 5., 5
Jap = éS‘ v 218 — 112 €acdebe S SY
satisfying the following commutation relations
|:Jab , ch} _ g, jda _ ééabjcd %, T = 6% 0% — 6%0.%,
[Jab,J } — 5% o Tay + %ijcd [HvJ“b] = —éJ“b (4.74)
[0 G = & (30000 250 0 1) [H ] = G
The quadratic Casimir of sp(6,R) is then given by
Cs (sp(6,R)) = % JUJb, + 4 H? + 24 (J“bJab + T ) — L %2
= (805" 5caS™ + S50 S )
% (2720827 Zns + 2227 225 77 +
— 5 (85805 4 5755 80a) + 1 (4.75)
% (S8 2™ Zas + 27 Z25S™ S
_ % ( G0 SP T 7T 1 Fog 778G Sab)
2 abotae p SO1SP 5 778 _ ?) eobeedef 5 5 5 T
Negative grade generators are defined as
E=ly E®=ys® E*=yZ™ Bu=ySu E_ =yl (4.76)

2
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They satisfy commutation relations, different from those of negative grade generators of
€7(—5)

[Eab , ECd] = 5% o E (4.77)

reflecting that S® and S, are now symmetric tensor oscillators. Positive grade generators,

and their commutator, are given by the following equations

1
F= 5;02 + 2y 21y

F = 8§ 4 94y~ 1 [S“b , 14] [Fab ) FCd] = 5(C(b5b)d)F (4.78)
Fab = _pgab + 27:3/71 {Sab 3 I4]
Quadratic Casimir of the resulting minimal unitary realization of f44)

1
6
i (EabF“b L RR, — Fy B Eabﬁab) (4.79)

1
C2 (faw) = C2 (sp(6,R)) + 5 A + = (FE + EF)
B % (E78F78 + F78E78 - F78E78 - E78F78)

reduces to a c-number

15 1 1 4 9 13

in agreement with parental algebras and as required by irreducibility.

4.3.5 Truncation to the minimal unitary realization
of 50 (4,4) as a quasiconformal subalgebra

We further truncate fy(4) to obtain the minimal unitary realization of so (4,4) which has

the following 5-graded decomposition
28=13(2,2,2)d(sp (2, R)dsp(2, R)dsp(2, R)DA)D(2,2,2) D1 (4.81)

This truncation is achieved by restricting S and S, operators to their diagonal compo-

nents

~ ~ ~ 1
S = §abge G = 5.5, [Sa, sb} = 59 (4.82)
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where a,b,.. = 1,2,3, and discarding the off-diagonal oscillators. Three copies of sp (2, R)

are generated by

1. - 1
J? = _ESaZ'?B ﬁeabcsbsc . 3 ~
. . T =2% 2+ (25ab - 1) Sv5, (4.83)
J{ = aSaZ78 + Eeabcgbgc b=1

The quadratic Casimir of sp (2, R) @ sp (2, R) & sp (2, R) then reads

3
1
Ca(sp(2,R)@sp (2, R)@®sp (2 Z [3J5‘J8 +24 (J2JS + JiJ“)}

a=1

_ Z <(s 50) (S“Sa)2> + (278278>2 + (7n7)

(4.84)
1 1< ’
3 (Z S4S, + Z7SZ78> ) (Z e+ Z78278>
a=1 =1
3
—48'52 93 7™ 48,8583 Zrs =14 — 6
The commutation relations of the generators in g° are
1
[Jg, Jj;} = 4599 [Ji, Jb } = = 0" (4.85)
Negative grade generators are
1 . . . -
E=gy  E'=yS"  E,=yS. ET=yZ"  Ew=yin (4.86)
and positive grade generators are
F = —pS® 4 2iy~ ' [S%, I]
) F78 _ _pz78 + Qiy_l [Z78, I4:|
F=_p*+2iy %I - - - 4.87
2p Y ! F, = _pSa + 2@?]71 [Scu I4} ( )
Frg = —pZzg + 2iy~" [2787 14}
The quadratic Casimir of so (4,4)
0 Lo 1
Cy (s0(4,4)) :Cg( )+ —A + 6(FE+EF)
(E“F Y FEY — B, FO — F“Ea) (4.88)

cn\wcms

<E7 F78 + F78E78 F78E78 — E78F78>
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reduces to c-number as before
3 1 1 4 13 4
4.4 =1 — — — Iy — — - —— | =—= 4.
Cz(s0(4,4)) (4 16>+(3 4 16>+< 3 12> 3 (4.89)

4.4 Truncation to the minimal unitary realization of ¢;_s5) as

a quasiconformal subalgebra

The group E7(_g5) has the maximal compact subgroup Eg x U(1) and arises as the U-duality
group of exceptional N = 2 Maxwell-Einstein supergravity in d = 4 whose scalar manifold
is E7(_25)/ (Es x U(1)). Its action on the 27 complex scalar fields can be represented as a
generalised conformal group [40, 43, 45]. As a generalised conformal group its Lie algebra

has a natural 3-graded structure
67(,25) =27 ® (26(,26) S>) 50(1, 1)) b 27

The quasiconformal realization of Eg_g4) can be truncated to the conformal realization of
E7(_25) in essentially two different ways.

In this section we will however consider a different truncation of Eg(_g4) such that
the resulting realization of E7(_g5) is quasiconformal corresponding to its minimal unitary
representation.

Just as the subalgebra e;(_g) is normalised by su(2) C su(6,2) C g% = ez(_a5), the
subalgebra e7(_5) is normalised by su(1,1) C su(6,2) C goe7(_25) within eg(_g4). Similarly

to e7(_5) we obtain
e7(—25) = 133 =1©32® (50(10,2) ©A) @32® 1 (4.90)

We identify the su(1,1) in question with the one generated by J%;, J7¢ and J5 — J77
generators of su(6,2) C ey(_g5) C eg(—24). The truncation will then amount to setting
7% = 760 — () where a # 7, as well as Z%7 = Z7® = 0 for a # 6. Let us relabel coefficients
and introduce @ = 1,...,5,8. Then su(5, 1) is generated by

. o 1 .. ..
JU =22Z;, — gaabzdczdc. (4.91)
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The other generators of 0(10,2) are then given as follows

3 5 5 1 o B .
v=" (267267 n Z67ZG7> -4 (Z“bZab + ZdBZ“b>
1. -

_ 1 od e f
o = g 2%t + gaicis 272 (4.92)
b _ b 767 bed
A
satisfying the following Hermiticity condition
. . ~ N\t .
(7%) = ntngrte  Ut=U (Jd,~)> = Jacny (4.93)

where 7,; = diag (+1,+1,+1,+1,+1,—1); and the commutation relations read as follows

[T, J%4) = 8%0% — 8% %,

a.  ged ¢, 7ad i gea Lca qed
(75, 5| = 6%yt 4 87 58— 2o g

_— N (4.94)
[Ty | = =00y = 8 T+ 200

v =g ua =sd gt =0

The quadratic Casimir of the algebra reads

Voo b Lo b — | 7 7ab 99
Ca (50 (10,2)) = = J%J% + U +12 (S8, + T I ) = 1y~ = (4.95)
Definition of the grade +1 generators goes along the same lines as for e7(_5) so we omit
them here. Let us only note that the quadratic Casimir of the minimal unitary realization

of e7(_o5) takes on the same value as that of e7_5) and equals to —14.

4.5 Minimal unitary realizations of the quasiconformal groups
SO(d + 2,4)

The minimal unitary realization of the groups SO (d + 2,4), that were given in [50] corre-
sponding to the quantisation of their geometric realizations as quasiconformal groups given
in chapter 3 following methods of [46, 48]. Let X* and P, be canonical coordinates and
momenta in R(Z):

(X", P, = io" (4.96)

In the earlier notation we identify X*?=! to be coordinates X*, and P,= 77WX”7“:2 to be

conjugate momenta. Also let x be an additional “cocycle” coordinate and p be its conjugate
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momentum:

[z, p] =i (4.97)

The grade zero generators (M, J+, Jo), grade —1 generators (U,, V#*), grade —2 generator
K_ and the 4-th order invariant Z, of the semi-simple part of the grade zero subalgebra are

realized as follows:

) ) 1
My = iy X Py — iy p XP P, Jo = 3 (X*P, + P,X")
- B 2
U, = ale# VH =2X T = XFX

Iy = (X'MXVW;W) (PuPu??“”) + (PALPVWMV) (XMXVH;W)
— (X"P,) (P, XY) — (PuX") (XVP))

Using the quartic invariant we define the grade +2 generator as

1 1 d’>+3
K.=-p"+— T 4.
+= 5P +4y2<4+ 5 > (4.99)

It is easy to verify that the generators M, and Jy 4+ satisfy the commutation relations of

s0(d,2) @ sp(2,R)

[Mum Mp’T] = nupMuT - nupMuT + nMTMl/p - nI/’TMMp

(4.100)
[Jo, Ju) = £2iJy  [J_,J.] = 4iJy

under which coordinates X* and momenta P* transform as Lorentz vectors and form dou-

blets of the symplectic group Sp(2,R) :

[Jo, VH] = —iVF [J_,VF] =0 [Jy, VH] = =2in""U, (4.101)
[Jo, U] = +iU,  [J_, U] = 2in, V¥ [J4, U] =0 '
The generators in the subspace g=! @ g~2 form a Heisenberg algebra
[V#,U,] = 2io", K_. (4.102)

Define the grade +1 generators as

V=iV Ky U, =—i[U,, Ky (4.103)
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which explicitly read as follows

. 1
Vi = Xt 4+ Sat (RXOX? + XOXPR, ),

1
- Zafl (X*(XP,+ P, X") + (X"P, + P, X") X")

. (4.104)
U,=pP, - 53;*1 (XY P\P, + P\P,X") 1™

1
+ Zx_l (P,(X"P,+ P,X")+ (X"P, + P,X")P,).

Then one finds that the generators in g™ @ g*2 subspace form an isomorphic Heisenberg

algebra
[f/“, UV} — %M K, VFh=i [V“,K_] U, =i [UH,K_} . (4.105)
Commutators [g_l, g*l] close into g" as follows
[UH,U,,] = i [V“,f/l’] — i,
[V“, UV] = PPN, + 6%, (Jo + A) (4.106)

[U,“ f/”] = 2P M, + 06, (Jo — A)

where A is the generator that determines the 5-grading

1
A= B (zp + px) (4.107)
such that
(Ko, K. =iA  [AKi]= 42K, (4.108)
AU, = —iU, [A,VH] = —iVH [A,U#] = iU, [A,f/ﬂ e (4.109)

The quadratic Casimir operators of subalgebras so (d,2), sp (2,R) ; of grade zero subspace
and sp (2, R) - generated by Kt and A are

M, M" = —T; —2(d +2)
1
J_Jp 4 Jed_ —2(Jo)? :I4+§(d+2)2 (4.110)

1 1 1
K K, +K,K_ — §A2 = Tt g(d+ 2)?

Note that they all reduce to 74, modulo some additive constants. Noting also that

<UMV“ + VU, - VET, — Uuw> = 9Ty + (d+2) (d +6) (4.111)



80

we conclude that there exists a family of degree 2 polynomials in the enveloping algebra of
50 (d + 2,4) that degenerate to a c-number for the minimal unitary realization, in accordance

with Joseph’s theorem [59]:

1
My, M™ + 1y (J,J+ F Ty =2 (JO)2) + 4ry (ng + K K- — 2A2>

—_

= 5 (o1 iy = 1) (U VP 4 VU, = VIO, — T,V (4.112)

\)

:%(d+2)(d+2—4(/€1+"&2))

The quadratic Casimir of so(d+ 2,4) corresponds to the choice 2k; = 2k = —1 in
(4.112). Hence the eigenvalue of the quadratic Casimir for the minimal unitary representa-
tion is equal to § (d +2) (d + 6).

4.6 Minimal realizations as non-compact groups and confor-

mal quantum mechanics

In this and the next sections we outline the ongoing work on the unified construction of
minimal unitary realizations of non-compact groups and non-compact supergroups [51].

In this section we explore possibilities of extensions of conformal quantum mechanics in
the way inspired by minimal realizations of U-duality algebras, so that role of g (g + 1) in
(4.2) is played by a quartic polynomial built out of Weyl algebra elements (i.e. coordinates
and momentums or oscillators).

We shall restrict ourselves to such algebras where grade zero is a direct sum of a simple

algebra g and so (1, 1) generator A:
g=EoE*® ("®A)oF*aF (4.113)
Let J denote generators of g with commutation relations
[JG,J*’} — fab_je (4.114a)
and let p denote the symplectic representation by which g° acts on g*!
[J* B = (A\*)*4E° [J*, F°] = (A*)* 4P (4.114D)
1

where E% o, 3,.. = 1,..,N = dim(p) are generators that span g~

[E“ ,Eﬁ] = 20°°F (4.114c)
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and F® are generators that span g**
[Fa,Fﬁ] = 208 F (4.114d)

and Q% is the symplectic invariant ”metric” of the representation p. The negative grade

generators form a Heisenberg subalgebra since
[E*E]=0 (4.114e)

with the grade -2 generator E acting as its central charge. Similarly the positive grade
generators form a Heisenberg algebra with the grade 42 generator F' acting as its central

charge. The remaining non-vanishing commutation relations of g are

(A, E%] = —E°
F* =[E*,F]
a e [AvFa] =F"
E* =[E,F (4.114f)
A,E) = —2E
[Ea,Fﬁ} = —QPA 4+ X A, B
[A, F] =2F

where A is the generator that determines the five grading and € is a parameter to be
determined.
Let us now realize the generators using bosonic oscillators £% satisfying the canonical

commutation relations

[ﬁa ,5‘1 = (4.115)

The grade -1, -2 generators and those of g° can be realized easily as
Eolp  Ee—yer go—_Llye o 4.11
—9Y =y =73 ap€" € (4.116)

where y, at this point, is an extra ”coordinate” such that %yQ acts as the central charge of
the Heisenberg algebra formed by the negative grade generators. We should note that we
are following the conventions of [8]. The quadratic Casimir operator of the Lie algebra g°

is

C2 (g°) = napJJ° (4.117)
where 7, is the Killing metric of g°. We make an Ansiitz for the grade +2 generator F of
the form )

F = in +ry 2 (C2 + €) (4.118)

where p is the momentum conjugate to the coordinate y (c.f. (4.1)) and x and € are some
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constants to be determined later. This implies then

F = [E* F] = ip& + ky 1 [€¥,Ca]
F* =ip&® —ry ™" [2(A)* 460 Ja + Cp€° (4.119)

where C,, is the eigenvalue of the second order Casimir of g in the representation p.*
ALADT = —C,67 (4.120)

Next, we determine unknown constants requiring that generators close into the algebra

1

(4.114). We first consider commutators of elements of g! and g~!. To calculate the com-

mutators
(B, %) =i(yp) 0 — P ¢ 1k ¢, |67, (4.121)
we use the following almost trivial result

(€%, Co) = =2 (X)) 4€°J0 — Cp ™ (4.122)

which upon substitution into (4.121) yields

3kC 1
« Bl — _ af P = a¢f Bea) a\af
[, P7] = —a0 +{1+N 2}(55 +6967) — 61 () U, (4.123)
where A = —% (yp + py). Hence closure requires
3kC, 1
— == 4.124
1+N 2 0 ( )

Next, we require that [gl, gl] = g2. Computation of this commutator
[P P = —p000 4 5 (e [¢7,0] + €I cal s [l ol [0 o)) (a125)
is slightly more involved. Doing some algebra reveals

=& [65 ,Cz} + &0 [¢%,Co) = C,%7 + 2 (56*(»1)57 — gﬂ(v)aw) ', (4.126)

4 Note that the indices a, 3, .. are raised and lowered with the antisymmetric symplectic metric Q% =
—0P%* that satisfies Q*’Q.5 = 65 and V* = Q**V5, Vo, = VPQs. . In particular, we have VW, =
—VoWe.
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and

K [[ﬁo‘ ,Cal, [56 ’CQH = 1]\313-05

s (3 (ma)“ﬁ Jady —2 ()\bA“)ﬁa Jads + far’ (A%, (Ab)ﬁygugyjc> (4.127)

(ga()\a)ﬂ’y _ éﬁo\a)a’y) fwja _ HC%Q‘M

Hence combining the two expressions above we get for (4.125)

(i (2020
i j; (e, =0, ) €1, (4.128)
- (3.000) g2 (303 o+ oo, () e

We need to prove that the right hand side is equal to 2Q°°F with F = %p2 +ry =2 (Cy + €).
Therefore contracting the right hand side with g, we find

1 1
- N <p2 o (k*C2 — mcp)> vl (=16 + 20ki,0* — 4kCyq) Ca (4.129)

where i, is the Dynkin index of the representation p of g¥ and Cagj is the eigenvalue of the

second order Casimir in the adjoint of g°. To obtain this result we used the fact that
XA = i, 2P
where £ is the length of the longest root of g°.° Using the fact that
Cogj = —*hY (4.130)
the closure then requires®
(=8 + 10Ki 0> + 260V (%) = N (4.131)

Consistency of (4.124) and (4.131), combined with

gcp (4.132)

il = 5

®The length squared ¢2 of the longest root is normalised such that it is 2 for the simply-laced algebras,
and 4 for By, C, and Fy and 6 for G2. The i,,C, and ¢ are related by i, = %—fﬁ where D = dim(g°).
ShY is the dual Coxeter number of g° subalgebra of g .
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g D g P ip
sp2n) [ n(2n+1) [n+1|2n |1
sl(6) | 35 6 20 | 3
so(12) | 66 10 |32]4
Ey 133 18 56 | 6
sp(6) | 21 4 14 | 5
si2) |3 2 4 |5

Table 4.2: Quasi-conformal algebras based on simple (complex) g and irreducible p

implies

hY 3D

—=———(N+8)-5 4.133

i, ~ NN Y (4.133)
This can be checked explicitly to work by checking number against the table 1 of [8] relevant
part of which is collected in table 4.2 for convenience. In [8] it was shown that all the
groups and the corresponding symplectic representations listed in the above table satisfy

the equation

D 3D
V o —
=2 (N * N(1+N) 1> (4.134)

which was obtained as a consistency condition for the existence of certain class of infinite
dimensional nonlinear quasi-superconformal algebras. Comparing this equation with the

equation (4.133) we see that they agree if

_BN(N+1)

D= 4.1
N +16 (4.135)

This magically holds true for all the groups G listed in Table 4.2 except for the generic
family of non-compact symplectic groups Sp(2n, R) with dim p = 2n. The minimal unitary
realization of the generic Sp(2n,R) family is obtained as a degenerate limit of our Ansatz
[51].

Now, let us make sure that [F', F*] = 0. This is true provided

E(Co+ Q)+ (Co+ ) E* +K[Co,[€%,Ca)] =0 (4.136)
Using (4.122) and [Ca, J%] = 0 we arrive at

26 (C2+ @) +2(1 — KC)y) Cpt® +2(1 — kCy) M) 36" s

o (4.137)
a7 —
4/€<)\ /\> &I =0

In order to extract restrictions on g implied by the above equation we contract it with £7(,,
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g | dim(g) | g" Does (4.139) hold ?
a, | n?+2n | n+1 | for sl(3) only

b, | 2n2+n | 2n—1 | no

¢ | 2n%4+n | n+1 no

0n | 2n2 —n | 2n —2 | for s0(8) only

eg | 78 12 yes
e7 | 133 18 yes
es | 248 30 yes
fa | 52 9 yes
g2 | 14 4 yes

Table 4.3: Dimensions and dual Coxeter numbers of simple complex Lie algebras.

In order for the algebra to admit 5-graded decomposition its dimension must be
greater than 6. This rules out s((2) for which (4.139) also holds.

and obtain LV D
— =———(N -8 1. 4.138
i, TNV YT (4.138)

It agrees with (4.133) provided (4.135) holds true.
It is of interest to investigate implications of (4.135) for the 5-graded Lie algebra g. It
is well known [43, 113] that N = 2(g" — 2) where gV is the dual Coxeter element of algebra

g in question. Since

(9" +1) (59" —6)
gv +6

dim(g) =2+2N +1+dim(¢°) =1+2(N+1)+D =2 (4.139)
Algebras in this triangle enjoy some really exceptional properties. In addition The quadratic

Casimir of the algebra constructed above reads as follows

20,

C2(g):'] Ja+N+1

1 C
AL EF4+FE) - —£_Q (EaFﬁ FﬂE“) 4.14
<2 Rt ) N+1 8 + (4.140)

which upon using (4.124) and the following results
~A*+FEF+FE=k(JJ,+€)—
2 8
N (4.141)
Qg (B°F + FOE®) = 8 5J°J, + 5 +RCN

is seen to reduce to c-number

cg(g)=¢<8”0p —1>—3C”—N Cp _ HCN

N +1 4N+1 2 N+1 N+1 (4.142)
- C, (N+4) (5N +8)

~(using eq.(4.124)) _% N +1
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in agreement with irreducibility. We note that this result agrees with explicit calculations
for magic square algebras in ref. [48]. In the normalisation chosen there x = 2 and hence
12C, = N + 1. Then, using N = 2¢¥ — 4 we get

Ca (g) = —ﬁ (59" —6) g". (4.143)

Few remarks are in order. Construction presented in section 4.5 sheds some light on what
happens if requirement of simplicity of g¥ is relaxed. Assuming g° semi-simple, quadratic
Casimir of each simple component would be some linear combination of quartic invariant
of g¥. This, of course, assumes uniqueness of quartic invariant of symplectic representation

of gv.

4.7 Representations of non-compact supergroups and con-

formal quantum mechanics

The same steps undertaken in the previous chapter for bosonic oscillators €% can be repeated
to fermionic oscillators, leading to fermionic extension of conformal quantum mechanics.

We start with the same 5-graded decomposition, assuming g° to be simple. Subspace g—!
now can not be assumed symplectic. Indeed, assumptions of 5-graded decomposition imply
that g~—! is isomorphic to some Clifford algebra, by the same token as it was isomorphic to
Heisenberg-Weyl algebra in bosonic case.

We adopt structure of (4.114), with £ now denoting non-degenerate bilinear form asso-
ciated with aforementioned Clifford algebra.

Now we realize them using anti-commuting oscillators £% such that
{ga ,55} — o (4.144)

this way

_ 1y

1
E=y E* =yt Jo= _iAaaﬂgagﬁ (4.145)

We are following conventions of [8]. The quadratic Casimir of g° is taken to be
Co (g°) = napJ@J° (4.146)
The grade +2 generator F' is taken to be

1
F= 5p2 + Ky 2 (Co + €) (4.147)



for some constants x and € to be determined later. This makes
Fo=ip&® +ry '€, 0
The following will be useful later
(B P} = im0 + P e 4w {e, €, }

and

A e Gl SN N SRR GRA N SNy

and

[, ) = 25 (Co+ )€ + €% (Ca+ @) + K [Ca, 67, Call)

We find the following identities useful

[AB, C} = A[B, C} + (—)B°[A, C} B
[A, BC} = [A, BYC + (—)*P BIA, C}
[AB, CD} = A[B, C} D + (—)PTATBD 014 DYy B
+ (—)PY AC B, D} + (—)B°*BP (4, C} DB
By inspection
[€%,Co] = -2 ()\a>a5§/6c7a + Cp&”
and using the following ansatz

a (0% a [e% C « (6% «
(A7, ()5 + (A (Na)os = 727 <Q B0 + 6°,6% — 26 75%)

we find

B PP} = —0oPa — 6k (37 J, + (f\’f_cpl = ;) (€% — ¢2¢?).

Computing {FO‘, Fﬁ} we get

2
a _ af __ p k 1 2 1 «
{F , Fﬂ} — _2FQ8 — _9 <2 + <2ncp +5C ) )27

- % (—4 (ﬁaw)ﬂ7 + 55(%)“7) EVT% + 12k (Ao Np) P T T

85 (M) ™ 0T — 45 (A) 5 () €067 1 T
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(4.148)

(4.149)

(4.150)

(4.151)

(4.152)

(4.153)

(4.154)

(4.155)

(4.156)



Taking the €) trace we obtain
N =8 — 10ki,l* + 2kCpq; 2¢ = kC; + C,

Taking into account that
i0> N 5
o, =D =+l

we obtain our first restriction for fermionic super-conformal algebra data

vV

@ 3D

0 5422 _(N-8).
iy +N(N—1)( )

Now, we look at [F, F¢] = 0. This yields the following condition
2% (Cy + @) — Cp™ + (2+4kC)) (\a)* 5 — KCE* — 4k(Aads)* 57 P J* = 0

which, upon contraction with 7(2,, results into the following condition

Vv

90 D

= =—-14————(N+28).
i oy V)

These two conditions (4.159) and (4.161) agree provided

3N (N —1)
p=""0
16— N
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(4.157)

(4.158)

(4.159)

(4.160)

(4.161)

(4.162)

which is also the condition for them to agree with eq. (2-32) in [8]. Looking at the table 1 of

[8] and verifying these conditions we find the following fermionic super-conformal algebras:

g \ go D N
osp (10[2,R) | s0(10) 45 10
F(4) so(7) 21 8

G(3) g 14 7

(4.163)
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Chapter 5

Minimal unitary representations of U-duality Lie

algebras

Minimal unitary representation of a non-compact simple Lie algebra g is defined by
minimal realization described in previous chapter, realized on the Hilbert space of square
integrable functions.

Minimal unitary representations of non-compact reductive groups have been studied by

mathematicians (see [73] for review and further references).

5.1 K-types

Consider a linear connected reductive group' G and its representation 7 on a Hilbert space
V. Let K be the maximal compact subgroup of G and consider representation 7 such that
7| is unitary (i.e. if 7 is unitary or it is an induced representation ). Then 7|, decomposes

into orthogonal sum of irreducible representations of K:
| g @ T (5.1)
reK

where K denotes the space of unitary irreducible representations of group K, referred to in
mathematical literature as dual of K. Multiplicity n, is either a non-negative integer or it
is +00. Any unitary irreducible representation 7 € K is finite dimensional. An equivalence
class 7 that occur in 7|, with positive multiplicity are called K-types of w. For unitary
irreducible representation 7 multiplicities of K-types are integers and are bounded from
above n, < dimr for all T € K [68]. Among irreducible representations 7 € K occurring in

m there is a finite number of minimal K-types minimising

1A () + 26 |* (5:2)

' A complex analytic group is called reductive if its linear analytic representation is completely reducible.
Semi-simple groups are reductive. GL (n, C) is reductive though not semi-simple because it is direct sum of
simple and Abelian group.
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where A (7) is the highest weight of the representation 7 and 20 is sum of all positive roots
of Lie algebra £ of compact group K.

A representation 7 is called admissible if its restriction to the compact subgroup |,
acts unitarily on Hilbert space V' and if multiplicities of its K-types are all finite. For
instance lowest energy representations considered in Section 3.4 are admissible.

Consider the universal enveloping algebra U (g). The universal enveloping algebra has

a natural grading
U(g)=1Dg® (g09) & (a0aRe) @ =D Tk(o) (5.3
k=0

with respect to order of monomial in g. Consider action of U (g) on a vector space V' of rep-
resentation of g. It is clear that dimension of 7y, (g) V' will grow polynomially with k. Define
Gelfand-Kirillov dimension to be the rate of growth for large k. For generic representations
Gelfand-Kirillov dimension is equal to the number of positive roots in Lie algebra g, and is
lesser than this for special representations. Minimal representation corresponds to minimal
Gelfand-Kirillov dimension.

Gelfand-Kirillov dimension of a representation can be less than that of a generic rep-
resentation if some ideal Z of universal enveloping algebra U (g) vanishes on this represen-
tation, i.e. 7 (Z)V = 0. Joseph showed [59] that for minimal representations this ideal is
two-sided prime ideal Zy generated by its members in Zy N 73 (g) bearing Joseph’s name (cf.
(4.112)). Minimal representation can also be understood as quantisation of coadjoint orbit
going through maximal root of g and thus having the smallest possible functional dimension
59, 112].

Minimal representation of U-duality groups are studied in connection with automorphic
forms [64, 88] of discrete U-duality groups. Construction of automorphic forms of weight
zero, i.e. functions invariant under discrete U-duality groups, involves a spherical vector of
continuous version of U-duality group (see [88] for physicist’s oriented review). A spherical
vector is a vector of one-dimensional minimal K-type, and thus it is annihilated by all the

compact generators of g:
m (E) |¢spherical> =0 (5.4)

Clearly not every Lie algebra g would admit a spherical vector in the minimal representation,

in particular algebras of type go(9) and fy(4) do not admit spherical vector [89].
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5.2 Constructing spherical vector for split algebras

As it is explained in the Appendix A.2 every Lie algebras except su(2) admits 5-graded
decomposition (3.38) associated with highest root w of g:*

Boo®9-16 (Ho©50) 09410 B (5.5)

Coadjoint orbit passing through highest root vector E_, is generated by the action of f[w,
E, and g+1- The orbit is endowed with g-invariant Kirillov-Konstant symplectic form,
which decomposes into symplectic form on g_;, as it was explained at the beginning of
chapter 4 and in Appendix A.2, and symplectic form on H, and E,. In order to carry
out quantisation of this orbit one has to introduce polarisation, i.e. call some variables
coordinates and some momenta, and then represent generators of algebra g as differential
operators acting on function of the chosen coordinates as it was done in chapter 4.

The choice made by authors of [64] is based on distinguished root Ego € g4+1, unique
simple root which is not orthogonal to w (which is also the root to which affine root attached
on extended Dynkin diagram). Uniqueness fails for algebras of type A, which were not
considered in [64]. One declares parameters associated with g orbit of Eﬁo to be coordinates

in our phase space, with z( corresponding to Eg, (compare this to (3.46)):
E,=9  FEg =—igp B, =ii" (5.6)
with momenta realized as p = 19y and p, = i0;x. Let ho be subalgebra of go such that
[ Es0:0] =0 (5.7)

and let N (z,) be cubic invariant of hy. Then f[go, Eﬁk and E'_(;k (for some §) and hg form
conformal algebra to which one can associate Jordan triple system as explained earlier and
N (z,) coincides with cubic norm of underlying Jordan algebra. Giving the above data
one can reconstruct the whole algebra thanks to two Weyl reflection realized as integral

transforms on functions:

d i T
(Sof) (G205 Za-1) /H dik F (@0, pa_r) € ZhoTips (5.8)
and
_ 1 A
(A © f) (Qa ]A;()a cee 7fid71) =€ iogN@a)f (_jjoa Qa jjla cee 7:id*1) (59)

In particular reflection A allows to map between negative and positive grade subspaces.

*We shall denote all the generators in the construction of Kazhdan, Pioline and Waldron [64] with hat
to distinguish it from ours.
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Resulting structure of selected generators has the form

E*ﬁo = —xoa:g + *2./\[ (wa)

5 ]

Hg = —90; + 2003 N

I;“ ! oo By = 5% + panp” + 2N () (5.10)
2 g O0Tr  Opx

with generators hg being bilinears in 2z, pr and ¢, p. The spherical vector then has the
following form (for g not being of D series)
1 > —1S9

where K, (z) = 277K, (z) and K, is modified Bessel function of the second kind. Here
z =19+ 129 and

2
Si=4|> 22+ |9, L@Q Sy = M (5.12)
a ‘ \% y2 + Ty
where Z = (g, 2o, &,). For full details of this construction we refer the reader to the original

paper [64] which is also reviewed in [89, 88]. We shall try to understand this construction

for D4 and the resulting spherical vector in more details below.

5.3 Spherical vector of D,y

Maximal split real form of Lie algebra of type Dy corresponds to SO (4, 4) which corresponds
to 3-dimensional U-duality groups of compactification of 5-dimensional STU model [39], i.e.
pure 5-d supergravity coupled to two vector multiplets.

Let a1, as, as be three mutually orthogonal with respect to Killing form simple roots
on which triality acts by permutations (see Fig. 5.1). Let [y be the remaining simple root,

invariant under triality homomorphism. The five-graded decomposition looks as follows

- . Ey  Hy  E_ R
~ {Eﬁk} H, Aal Aal . o {E*/Bk} A
E,® @D EoyyHogy E—ay | © ;. e E_, (5.13)

{Fn * Bay Hag Boa, i

where £ =0,1,2,3 and (i + 7 = w. For every root the Hermiticity condition corresponds

to that of maximal split case (see Appendix A.2):

(ﬁQ)T — A, (EQ>T — B (5.14)
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O

Figure 5.1: Root system of 04.
The central root is denoted [y, and other roots which connect to it are denoted o, ao, as.
Triality is an outer automorphism that permutes ay, roots.

and thus compact generators are given by E,+FE_, for every positive root of so (4,4). Thus
there will be 12 compact generators that form so (4) @ so (4). Commutation relation of the

algebra is given in standard Chevalley basis:
[EQ,EA_Q} — A, [ﬁ[a,Eia] — T2H,, (5.15)
for all simple roots «. And for £k = 1,2,3 we have
By = BB By = [ B3] = [By 5] (5.16)
for 4, j, k being cyclic permutation of 1,2,3. Then
By, By = 010 E (5.17)

where I,J run over 0,1,2,3. The remaining commutation relation follow from given and
hermitian conjugation involution.

Below we give the realization of Kazhdan, Pioline and Waldron [64] explicitly

EﬁL = l@ﬁL EWL =142y, E, = lZ) (5.18)
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where L = 0,1,2,3. Grade zero generators are given as
Eioy, = —idopr — i~ @5dj &
. o H,, = —ipoZo + 2iTypr — ¢ Z ZiDj (5.19)
E—ak = +1Zkpo — 1TP;D; j=1

For each simple root oy and k = 1,2,3 there correspond sp (2, R) which is isomorphic to

s[(2,R) used in previous chapter in Section 4.3.5.
- D - U
E_g, = —iZop + ?Zﬁla?gl‘g Hg, = —igp + iZoPo (5.20)

from here we recognise the cubic form N = #12923 of generic Jordan algebra R & I'(2)

discussed earlier. The algebra hg is spanned by

~

ho = span {Hyg,ﬁ,yz} ~s0(1,1) @ so(1,1) (5.21)

and indeed coincides with the Lorentz group of corresponding generalised space-time. Re-

maining generators are given as follows:

E_ = —igp® = 3p+ i~ —idopop + i dr1&adapo — idop1paps

— iy~ (2122P1P2 + B123P1P3 + Bodspops) — Expr (D + 9 )
E_y, = —3po — iippo + i§p1p2is — i (opo + Lxpr) Po (5.22)
E_, = —i§ppr — i (Podo + Prde) Br — 19 450

E_g, = i&kp + i Tx, (2:pi + Dj&;) + idopib;

Here no summation over repeated indices is assumed and i, j, k is taken to be cyclic permu-

tation of 1,2,3. For convenience and further referencing we also give

3
H, = Hy, + Hoy + Hoy + 2Hg, = =i Y dppp — 2ii)p — 3 (5.23)
k=0

It is a tedious exercise to verify that the following function

b e AT (VR @ a ) (P i )| s
(5.24)

satisfies 12 differential equations:

(Bp+Bp) fx =0 (5.25)
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for p being either oy, or By and
(Ep . E_p) fie =0 (5.26)

for p being one of Bk, V&, Y0, Bo or w.
The spherical vector (5.24) is square integrable function, explictly invariant under triality

acting as permutation on Zy.

5.4 Recasting into conformal QM basis

Procedure outlined above constructs, in the language of Chevalley basis and root systems, a
Freudenthal triple system from Jordan triple system (3.46) associated with Jordan algebra
that has adjoint identity (2.52). Thus it could be recast into conformal quantum mechanics
basis used in this thesis in hope to learn something new from this exercise.

Five graded decomposition (5.13) helps us identify generators, and comparing (4.116)
with Ew, Eﬁa and EA'% we conclude that module generators rescaling we should make the

following change of variables

J= y2 T =y (5.27)

Such change of variables induces the following relation between vector fields:

o 10 O 10 1 < 8
S =—n— = — — 2
0%, yOoxy o) 2y0y 2y? kzzoxk Ozy, (5.28)

which recasts Hw into
0 1 0 0 5
H — _3_ N RPN R 5.29

Since H,, plays the role of grading operator defining 5-grading it is identified with our A

(4.107). Again modulo generators rescaling we conclude that

9 5i

5
—— 2
28y+2y

[\el[é38

= —’Ly

0
p= Y (5.30)

We hence adopt the following complement to (5.27):

1 1 5i 1<
o1 . -5y 5.31
Dk ypk D (P + 2y> 2 2 TkPk (5.31)



We are now set to write out the generators

1

2
i i 3
B, =—‘p2_ " 2
w = TyP 2y2<62+8>

where Cy stands for quadratic Casimir of each of the following sp (2, R):

Ew = in Hw = (py + yp)

3 .
. . . Eo, = —i(zopr + wiz;j)
Ho, = ipowo + 2ixkpr — i Y Tnpn L
et E_o, =i (wkpo — pipj)

1
Co = §H2k ~EoF_o, — E_0,Ea, Vk=1,2,3

Explicit expression for quadratic Casimir Co reads as follows

3 4
1 5 1 1
C2 =5 — imopo — 51 Z TkPk — 2T0p1p2p3 + 20122T3p0 + 5 Z TRDE+
k=1 k=0
3

Topo Z TPk — T1T2P1P2 — T1T3P1P3 — T2T3P2P3
k=1

Negative grade generators linear in zp and p; read as follows
Eg, = iypy E,, =yxy Vk=0,1,2,3
and remaining generators

. . .3
) 3t )
Hﬁo = 1 (yp =+ py) + EPOCUO + BY E TnPn

n=1

. . . 3
7 7 91
E_p, = _529550 + @ <—2$o + g Z TnPn + 2x1x2x3>

n=0

) . . 3
7 1 [ 51
By = —5PPo + % <2$0 - Z TnPnpPo + 2P1P2p3>

n=0

= §p$k + @ (ka + 2x0pipj — TRTOPO — TRTRPk + TpTiD; + ﬂﬁkxjpj)

i i
E_y, =—5ppk+ o (

2 2y \ 2

7
=Dk — 2T0PiPj — ToPOPk — TkPEPk + TiDiDk + ijij)
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(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

The spherical vector is modified traces down to (5.24) with appropriate change of variables
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applied and multiplied by y%/? so as to untwist (5.30);

 dmp . y\/(y2 + a3 + 23) (y? + 23 + 23) (v + 2% + 23) ,%
Y=+ Y 0
(5.38)
It is also annihilated by 12 differential equations:
(B, +E_p) fk=0 (5.39)
for p being either oy or [y and
(Ep—E_p) k=0 (5.40)

for p being one of Bk, V&, Y0, Bo or w.
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Appendix A

Reference material

A.1 Clifford algebras and spinors

This section in part follows [71]. In a d-dimensional spacetime R"® with ¢-timelike and s-
spacelike dimensions, Clifford algebra is generated by products of I', satisfying the following
relation

T,y =T,T, + T, =21, (A.1)

where indices p and v run p,v =0,...,d — 1, and 7, = diag ((+)t ,(=)%). Let £(v) be a
length of Clifford algebra element ~, i.e. a minimum number of generators product of which
forms 7.

Thanks to diagonality of metric 1 a space of algebra generators of length k is isomorphic
to space A¥ of rank k anti-symmetric tensor in space-time indices. There is a natural
identification between A* and A?~* provided by Hodge *-operation:

() =

meﬂk = F[m L M1 meﬂlmﬂkﬂkJrlmﬂdn

HEk+1VE+1 . n#d”dl"

Hie] Vk41--Vd

Let T'yy1 be an element of Clifford algebra of length d:
Ly =Tol'1...Ty (A.2)

then

Ty = (—1)@RER=D2 0 (4r) (A.3)

IRy

d
Since there are . independent elements of length k, we conclude that the total dimension
of Clifford algebra C (p, q) is equal to
d
d
> ( ) =24 (A.4)
izo \k

Let p be some faithful representation of C (t,s), and let V be a module of p, i.e. finite

dimensional vector space where elements of Clifford algebra are realized as matrices. Each
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€ n  (s—t) Spinor Reality Condition

+1 +1 0,1,2 mod 8 Majorana Y* = By

4+1 -1 0,6,7 mod 8 Pseudo-Majorana Y* = By

-1 +1 4,5,6 mod 8 Symplectic Majorana P = ()" = QY B,
—1 -1 2,3,4 mod8 Pseudo-symplectic Majorana ¢*" = (¢;)" = Q¥ By);

Table A.1: Admissible reality conditions in various space-times.
Here Q% is constant symplectic matrix satisfying Qijﬂjk = —6F;, and index i labels a
pseudo-real representation of a given Lie algebra which admits such representations.

representation of Clifford algebra forms a representation of rotation algebra so (t,s) with

algebra generators given as

i
Juw = 5 T To] = 7 (DL = TuT) (A.5)

|

Indeed, it is easy to verify that Js satisfy commutation relation of generators of so (¢, s):

[J,uua J)\p} =1 (77V)\J,up - nuAJVp + nupJV/\ - anJu)\) . (AG)

Vectors of module of this representations are called spinors, and the corresponding repre-
sentation of so (t, s) is called spinor representation. In even-dimensional space-time matrix

I'441 anti-commutes with all T';;:

s—t

TailDy + T =0 (Tg)* = (—1)2 (A7)

and as a consequence commutes with all J,,,. We thus find the representation defined by
Juw is reducible for even d, since eigenspaces of I'g41 are invariant under action of so (t, s).
Spinors that belong to these eigenspaces are called chiral spinors, or Weyl spinors.

Let us further study the reducibility of Clifford algebra representation. We note that

Hermitian conjugation maps Clifford algebra into an equivalent one:
(T = AT, A7, with A=T¢ly...Ty (A.8)

Matrix A is chosen in such way as to make compact generators J,,, Hermitian. Since £I',
also form an inequivalent representation of the algebra there exists an invertible matrix B
such that

I''"=-nBT,B™' n’=1 B'B=1 B'=eB €&=1 (A.9)

It follows that

t(t+1)
2

I, =-nCr,c™'  C'C=1 C=BA C'=e(-1) (A.10)
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Not any choice of € and 7 is admissible for given space-time R%*. The values of € and 7,
and the allowed type of spinors, together with reality condition they satisfy are listed in
Table A.1. The Weyl condition, i.e. I'g119% = + can be consistently imposed on any type

Majorana spinor provided s — ¢t is a multiple of 4.
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A.2 Lie algebras

Lie algebra is a vector space g equipped with a bilinear operation, called Lie bracket (also

called commutator)

[]:g®g—g (A.11)

that satisfies two additional requirements
Va,b e g [a,b] = —[b, ] (A.12a)
Vabeeg  la bl + [ feall + [efa,B] = 0 (A.12D)

known as anti-symmetry and Jacobi identity. For any element X € g one defines an adjoint
action adx : g — g as follows
adx (V) = [X,Y]

Lie algebra is said to have an ideal J, if
[J,9] C3J.

Lie algebra is said to be simple if it contains no ideals besides itself. Lie algebra is said to
be semi-simple if it is a direct sum of simple Lie algebras.

Simple finite dimensional Lie algebras have been classified by E. Cartan. Consider a
simple finite dimensional Lie algebra g. Let h be its maximal Abelian subalgebra, also

referred to as Cartan subalgebra. Because algebra g is assumed simple
VHelh and VEe€goh [H,E] €goh. (A.13)

Since § is Abelian there exists a basis in g which diagonalises adjoint action ady for all

H € b. Cartan proved that all such eigenspaces are one-dimensional:

s=hePoa (A.14)
acd
i.e.
0o =R®@Ey : [H Ey)="lo(H)E, (A.15)

for some linear form ¢, : h — R. He also proved that for every g, there exists g_, by

constructing a Cartan involution 7 such that

T:h—bh

(A.16)
T:ga — J-a Yo € h*.
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Linear forms « € h* are referred to as Lie algebra’s roots. It is easy to see that for every

two roots o and (3 Jacobi identity implies that

(80, 88] € Gats (A.17)

In particular [E,, Eg] = 0 whenever o + 3 is not a root. Since g, are one-dimensional we

conclude that a + « is never a root. Jacobi identity commands that
Vo € b [8a,8-a] C b. (A.18)

This establishes a map of h* onto h. Let H, = [F,, E_,]. Because ady, is a finite

dimensional matrix acting on g Cartan defines Cartan bilinear form

(a, B) = Trg (adp,adm,) (A.19)

and proves that it is non-degenerate, establishing isomorphism between h and h*. Then

(o, B)
by (Hg) =2 A .20
(H5) =200 (4.20)
Rank of Lie algebra r is defined as dimension of its Cartan subalgebra.
Cartan involution induces an (arbitrary) decomposition of root system ® into positive
®T and negative ®~ roots. Among positive roots, there exist a set simple roots, such that

any positive root is a sum of simple roots
T
o= Zciai ¢ €Tt (A.21)
i=1

with non negative coefficients ¢;. Cartan’s classification theorem states that for finite-

dimensional simple Lie algebra g
22 kij =Llo, (Hay) €Z  Kygrji =0,1,2,3,4 (A.22)

Thus finite-dimensional simple Lie algebras are exhausted by 4 families of classical Lie
algebras A, By, Cy,, D, and 5 exceptional algebras Go, Fy, Eg, Fr7, and Eg. The subscript
indicates the rank of the algebra. To each of these algebras one associates a Dynkin diagram
(see Table A.2), which is a graph with simple positive roots as nodes, connected with a single
line if x;; = Kj;, with a double line if x;; = 2xj; and an arrow from longer to shorter root,
and with a triple line if x;; = 3rK;;.

Among positive roots ¥ of a simple finite-dimensional Lie algebra, there is a highest

root w, such that for any other root o € ®* sum a+w &€ ®. Element H, of Cartan algebra
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Algebra Dynkin graph Dimension
. @O O @ .
. [O—@ =01,
. (@O O=0l...
D, m?—n
@ )
/ \
Go 14
Fy : : : : 52
Fe N N N 78
() () ()
o Q N N N> / Q 133
() (N (N ()
Es Q N / N N / O 248

Table A.2: Dynkin diagrams of finite dimensional simple Lie algebras.
Gray nodes denote the root to which extended root —w attaches.
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induces grading of Lie algebra g, since
[Hwa b] =0 [Hw> Ea] =4, (Oé) E, (A.23)

One can prove that
Va € ® —2< /4, () <2 (A.24)

The inequalities are saturated only if a = +w. Thus every Lie algebra admits a 5 grading.
The only exception to this rule is algebra slo ~ A; of dimension 3, where there does not
exist @« € ®* such that £, (a) = 1.

One can also prove that most of simple roots of a Lie algebra are orthogonal to w, i.e.
¢, (a;) = 0. For all Lie algebras there is unique simple root « such that ¢, (o) = 1, except
for algebras of type A, where there two such simple roots. Those simple roots that are not

orthogonal to w are drawn gray in table A.2.

A.3 Real forms of Lie algebras

Real form g, of complex Lie algebra g. is a subalgebra of g, invariant under some anti-linear
involution. That is starting from complex Lie algebra classified by Cartan we make possible

complex change of variables such that basis elements J¢ of with structure constants £,
[J“,Jb] — jab_je (A.25)
under involution 7 behave
VaeC 7(a) =a*T%J", [T (), 7 (J)b] — % (r.])° (A.26)

Existence of compact forms of Lie algebras follow from Cartan classification, since structure
constants can be chosen real. Compact real form then corresponds to involution 7 (J)* =
—J%, that is all generators are anti-hermitian.

From the above discussion it is clear that classification of real forms boils down to
classification of involutive automorphisms of Lie algebra. Without going into much detail,
for which we refer reader to excellent textbook of Gilmore [31], we quote the list of real
forms in table A.3 for further reference.

Real forms of complex Lie algebra are denoted by specifying character of real form y
equal to number of non-compact generators minus number of compact generators. For
the exception of some real forms of classical Lie algebras specifying character y suffices to
identify real form uniquely.

So-called split real forms, with maximal possible character y = r correspond to Cartan



Associated Maximal

non- compact X =

Compact compact subgroup no. non-comj

Root space Form form no. comp.

An—1 su(n) sl(n,R) so(n) n—1
su(2n) su*(2n) usp(2n) —2n—1
su(p + q) su(p, q) su(p) @ su(g) @u(l) 1—(p—q)°

By, so(p +q) so(p, q) so0(p) © so(q) pq

Dy, so(p+q) s0(p, q) s0(p) @ s0(q) pq
50(2n) 50%(2n) su(n) & u(l) -n

Ch, usp(2n) sp(2n,R)  su(n) du(l) +n
usp(2p +2q) usp(2p,2q) usp(2p) Busp(2g)  4pg

G2 g2(—14) 92(2) A& Ay 2

Fy fa(—52) fa(—20) By —20
fa(—52) fa(a) Cs @ Ay 4

Eg €6(—78) €6(—26) Fy —26
€6(—78) €6(—14) Ds & Dy —14
€6(—78) ¢6(2) As © Ay 2
€6(—78) €6(6) Cy 6

E7 €7(—133) e7(—25) Es & Dy —25
€7(—133) e7(—5) Dg ® Ay -5
€7(-133) e7(7) Az 7

Eg €8(—248) e8(—24) Er & Dy —-24
€8(—248) €s(s) Dsg 8

Table A.3: Real forms of simple Lie algebras.
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SL(n,R) | AT = A

SU*(2n) | ATA=1 A*J=JA
SU(p,q) | AlpA=n

SO*(2n) | A'A=1 A*J=JA
SO (p,q) | AnA=n

Sp(2p,2q) | AlJA=J A*n=nA
Sp(2p,R) | ALJA=J Al = At

Table A.4: Real forms of classical Lie algebras and reality conditions.
Here J is symplectic matrix, and 7 is a metric of RP4.

involution

VaedT E,— E_, E_,— E, H, — H,
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(A.27)

since for each positive root we have one compact E, — F_, and one non-compact E, + E_,

root generators, with all elements of Cartan subalgebra h being non-compact.

In conclusion we list explicitly reality conditions for real forms of classical Lie groups in

table A 4.
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A.4 Going from su*(8) to su(6,2) basis

XAB and Psp transform as 28 and 28

Recall that position and momentum operators
under su*(8). To build annihilation and creation operators we need to take complex linear
combinations of the form X4 +iP4p, which transform covariantly under so*(8) subalgebra
of su*(8). We expect resulting creation and annihilation operators to transform as 28 and
28 of some non-compact form of su(8) !. The isomorphism s0*(8) ~ s0(6,2) suggests that
this non-compact form should be su(6,2) as we shall establish.

In order to elucidate the role of triality of s0(8) we recall that adjoint representation of

compact e7 decomposes into four representations of so(8):
133 =284 35, ¢ 35, & 35,

where three 35 correspond to symmetric traceless tensor in 8, ® 8,, 8, ® 8 and 8. ® 8.

respectively, with 8,, 8; and 8. being three inequivalent eight dimensional representations

of s0(8). Triality of so(8) then maps 35 representations into one another. Observe also,

that 28 combined with any one of three 35 generate an su(8) subalgebra of ¢7. Compact

50(8) becomes s0* (8) if we consider e7(_os5) instead of compact e7 and su(8) becomes su*(8).
Consider the Clifford algebra of R?2

{r“,rb} = opb (A.28)
and choose a basis with the following Hermiticity property
(I =’ =w T ! (A.29)

where w = I'7 - T8 is a 16 x 16 symplectic matrix. One particular choice of basis, in which

chirality matrix I'? is diagonal, is given as follows

MNM=helel MP=mneoel®o
¥ =0y®00®02®09 M=0oooal (A.30)
P =0R0300® 0 =0 Roneo el .
F7:i02®ﬂ2®02®(73 F82i02®ﬂ2®02®0’1
Then,
ab _ 1 ab cp
VA :ZF CD(X —ZPCD)
I (A.31)
Zab — Z FabCD (XCD + ZPCD)

! Notice that compact su(8) is not a subalgebra of e7(—25)-



108

where transformation coefficient are given by matrix elements of chiral representation of

50(6,2) generators

o =2 (3]
4 ¢D

(A.32)

and P is the chiral projection operator in spinor space. Symplectic structure (4.29) of X

and P induces the symplectic structure

[anb 7 ch} _ éTr [Fab ch} _ % <ncandb _ ncbnda> _

on Z and Z. Gamma matrices defined above satisfy the following identities

FabAB — _FabBA — _FbaAB

1
bed bed h bed
g = 246“C efon D9 g = Ty

FabchBCD — F[ab[ABch] oD
1 1
FadeABCD — —ﬂﬁadeefghFefghABCD — _QEABCDEFGHFadeEFGH
Il %cp) = T%upT cp) = —€apcpereal ™ Erlcm

24

where
FadeAB P (F[arbr\crd}) )
AB

These identities allow us to rewrite generators of e7(_s5) in su(6, 2) basis:
anJac _ naCJ'bC — FabAB (JAB _ JBA)
n*J% + %Il =T s5cp (JABCD + (fJ)ABCD)

1
Jabcd + ﬂﬁadeefthefgh _ FabchB (JAB + JBA)

1
Jabcd _ ﬂﬁadeefthefgh _ FabchBCD (JABC’D o (6‘])ABCD)

or, more succinctly,

anJaC — FabABJAB + FabABCDJABC’D

Jabcd — FabchBJAB + FabchBCDJABCD

A.5 Minimal realization of e¢g5) in su”(8) basis

(A.33)

(A.34)

(A.35)

Non-compact exceptional Lie algebra eg(g) also admits realization in an su*(8) basis. It is

seen via the following chain of subalgebra inclusions su*(8) C e7(7) C eg(g)-
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Algebra e7(7y is generated as

JAp = —2iX*Pop — %(5ABXCDPCD (A.36)
' . A.36
JABCD _ _% XABxCD] | 4278 (ABCDEFGHp, P

where A, B, ... are su*(8) indices. Note different relative signs between X X and PP terms
in (A.36) and (4.33). It amounts to change of sign in the commutator on the third line

(748, Jp] = 6%pJ4p = 6" pT%

1

1
[JABCD’ JEFGH] _ _’_7€ABC’DK[EFGJH]K

- 36
as compared to that in (4.12) while does not change the Hermiticity properties (4.13)

resulting in the following quadratic Casimir

1 1
Co = EJABJBA + ﬂﬁABCDEFGHJABCDJEFGH

6 (A.38)
= EJABJBA + JABED () apen -
The decomposition of e7(7) with respect to the maximal compact subalgebra usp(8) of su*(8)

results now in
133 =63 © 70 = (36.. ® 27,c) D (42pc. D27 D 1,c)

and shows the the constructed e7 is indeed e7(7). The remaining generators of algebra egy)

are then given by

. ~ . )
EAB — _iyx4B  E,p=—iyPap E= —§y2

and
1 2 . 2
F= fp2+_7[4(X,P) FAP :ZpXAB_‘_* [XAB’LL(X’P)]
2i 12 Y
323 ~ . 2
I4(X,P)ZCQ+E FAB:ZpPAB+§[PAB7I4(X’P)]'
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They satisfy the same commutation relations as their counterparts of eg(_g4) except for

1 ~
[JABOD  pEF) _ o (ABCDEFGH
[JABOD pBEF| _ +i (ABCDEFGH ;. (A.39)

[EAB ; FCD} = +12(eJ) apcp
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