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Abstract

Equations of motion of eleven dimensional supergravity compactified to d dimensions
on (11 − d)-torus have a hidden non-compact global symmetry group E11−d(11−d), being
examples of U-duality groups. U-duality groups are conjectured to be broken to their
discrete subgroups E11−d(11−d) (Z) in the non-perturbatve M-theory.

In this thesis we study algebraic structures and unitary realizations of U-duality groups,
in particular those arising from Maxwell-Einstein supergravity (MESGT) theories in d = 5,
4, 3 dimensions. These algebraic structures and their related symmetry groups arise also in
the study of generalized space-times defined by Jordan algebras and related algebraic con-
structs. After reviewing the previous work on the Lorentz groups and conformal groups of
spacetimes defined by Jordan algebras we study their quasi-conformal groups. In particular
we give the geometric realization of these quasi-conformal groups in a basis covariant with
respect to their generalized Lorentz groups.

Minimal realization of U-duality groups associated with d = 3 supergravities is con-
structed as an extension of conformal quantum mechanics using ideas and methods pio-
neered by Günaydin, Koepsell and Nicolai. Minimal unitary representations of such U-
duality groups are presented ellucidating connection with alternative construction of mini-
mal representations by Kazhdan, Pioline and Waldron.
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Chapter 1

Introduction

In the 1970’s Veneziano [110] proposed the dual amplitude

A (s, t) =
Γ(−α(s))Γ(−α(t))
Γ(−α(s)− α(t))

α(s) = α0 + α′s (1.1)

in order to fit experimentally observed data from scattering of hadrons. Nambu and
Goto [81] realized that the Veneziano amplitude could be derived from the theory of one-
dimensional closed strings that propagate in R1,25 so as to minimise the area of 2 dimensional
surface swept out. The model, however, was soon abandoned since it predicted a massless
spin 2 particle but no massless hadrons of spin 2 were observed. Moreover, fixed angle large
energy limit of the scattering amplitude did not agree with refined experimental data.

This deficiency of the dual model has been turned into its virtue by Scherk and Schwarz
[97] and, independently by Yoneya [122] who proposed to identify the massless spin 2 particle
of closed string theory with the graviton and suggested that string theory be interpreted
as a quantum theory of gravity and that the scale α′ should be identified with the Planck
scale (see [96] for review).

Bosonic string theory, however, faced problems since its spectrum contained a tachyon, a
particle of negative mass squared rendering a theory unstable (see [102] for recent reinterpre-
tations of tachyon). To overcome this and to introduce fermions into play, a supersymmetric
extension of bosonic string theory has been put forward which is tachyon free [94, 84].

One way to study perturbative super-string theory is to define a 2-dimensional super-
conformal field theory “living” on a stringy world-sheet, i.e. the time-history of 1-dimensional
extended object, a string. Fields of 2D conformal field theory (CFT) are taken to be coor-
dinates of string, being a map from world-sheet into target space where the string is said
to propagate, i.e. Xµ (σ, τ) and ψ (σ, τ). Strings interact “geometrically”, by splitting and
joining with each other. Dynamics of strings is governed by action functional that measures
the “super-area” of the stringy world-sheet [33]. To account for interactions one should
sum over world-sheets of different topology, which for two dimensional oriented surfaces is
characterised by genus and number of punctures. Vibrational modes of a string are then
interpreted as particles, and for each string coordinate there is a tower of vibrational modes,
carrying different energies and spins, with the natural mass scale being that of Plank mass
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mp ∝ 1/α′. Modes with lowest energies are, after appropriate projection is applied, massless
and are easiest to excite. Thus in a low energy limit E ≪ mpc

2 of string theory only those
massless modes should be relevant.

Five consistent perturbative super-string theories were constructed during the 70-s and
the 80-s, referred to as type I with gauge group SO (32), type IIA, type IIB, and two het-
erotic string theories, with gauge groups SO (32) and E8×E8 all living in critical space-time
dimension d = 10 ensuring that 2D CFT is invariant under the world-sheet reparameter-
isation [33, 91]. All the five string theories, among their low-energy modes, have target
space-time metric gµν , anti-symmetric field Bµν , dilaton φ and gravitino ψµ as well as pos-
sess target space-time supersymmetry. Thus all of them in the low-energy limit describe
some 10-dimensional supergravity theory. Superstring theories are perturbatively finite,
meaning that contribution of each term in genus expansion is ultra-violet divergencies free
and therefore are consistent candidates for quantum theory of gravity.

Our current experiments indicate only four observable dimensions around us, thus one
hopes that vacuum of string theory corresponds to space-time of geometry M1,3×T where
T is some manifold with its characteristic size sufficiently small not to be detectable at
energies within reach of current technology. Such ideas were put forward by Kaluza and,
independently by Klein at the beginning of 20-th century in their attempt to explain electro-
magnetism starting with pure general relativity in 5 dimensions. Having one of the dimen-
sions compact implies that string center of mass momentum in the compact direction is
quantised. Besides, being one dimensional object, the string can wind around compact
dimension arbitrary number w of times:

X9 = 2
√
α′
n

R
τ + 2

√
α′wRσ + oscillators (1.2)

where τ parametrises time-like direction and σ – space-like direction on the world sheet.
We observe that interchanging momentum and winding numbers n ↔ w supplemented by
change of radius R → R′ =

√
α′R−1 leaves the string coordinate X9 invariant. String

theory, compactified on a torus of radius R, indeed turns out to be invariant with respect
to this T-duality transformation. T-duality invariance is perturbative and holds for every
order of genus expansion. It means that string compactified on torus of large radius R
produces the same theory as if it was compactified on smaller radius R′.

Narain [82] showed that T-duality group of string theory compactified on torus Tn is
SO (n, n; Z) – a discrete subgroup of maximally non-compact real form of SO (2n).

It was known [33, 92] that two heterotic superstring theories toroidally compactified
down to d = 9 yield the same theory. Similarly type IIA and type IIB theories toroidally
compactified to d = 9 also result in the same theory, see figure 1.1.

Supersymmetry provides a powerful tool to gain glimpses into non-perturbative aspects
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of string theories. It is made possible by studying Bogomolnyi-Prasad-Sommerfield (BPS)
states, i.e. states that transform in non-generic (short) representations of supersymmetry
algebra, and by studying supersymmetry protected quantities (see [86, 53, 120, 100]). Per-
turbative corrections cannot change non-generic (short) representation into generic (long)
one, and thus the property of state being BPS will be preserved for all values of coupling
constant. The goal then is to identify physical quantities in the theory protected, thanks
to supersymmetry, by non-renormalisation theorems and to understand their behaviour in
the non-perturbative regime.

D=10

D=11

D=9

D=6

Type-I

O(32)

Heterotic

O(32)

Heterotic

E8 x E8
Type IIBType IIA

M-Theory

K
T

T

T
T

T
1

4

1

1/ Z

T

T
1

3

1

2
1

Figure 1.1: The web of dualities between string theories.
Broken lines correspond to perturbative duality connections. Type IIB in d = 10 is

self-dual under SL (2,Z). Figure adopted from [66].

A breakthrough in understanding of non-perturbative string dynamics, known in folklore
as second string revolution, came with discovery of non-perturbative dualities, first among
field theories [99] (see also [72] for review and references) and soon after also among string
theories (review and further references can be found for instance in [98, 109, 101]).

Web of perturbative and non-perturbative dualities (see Fig. 1.1) connect different
regimes of perturbative string theories. Moreover in strong-coupling regime of type IIA an
extra 11th dimension unfolds and theory becomes effectively described by eleven dimensional
supergravity [119]. An existence of some unique eleven dimensional quantum theory has
been conjectured [119, 108], dubbed M-theory while awaiting a better name. All the known
consistent superstring theories and 11D supergravity are believed to correspond to different
limits of M-theory. M-theory has received much of string theory community’s attention
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Dimension Hidden sugra symmetry T-duality U-duality
10A SO (1, 1; R) /Z2 1 1
10B SL (2,R) 1 SL (2,Z)
9 SL (2,R)×O(1, 1; R) Z2 SL (2,Z)× Z2

8 SL (3,R)× SL (2,R) O (2, 2,Z) SL (3,Z)× SL (2,Z)
7 SL (5,R) O (3, 3,Z) SL (5,Z)
6 O (5, 5,R) O (4, 4,Z) O (5, 5,Z)
5 E6(6) O(5, 5,Z) E6(6) (Z)
4 E7(7) O(6, 6,Z) E7(7) (Z)
3 E8(8) O(7, 7,Z) E8(8) (Z)

Table 1.1: Duality symmetries of toroidally compactified type II string.

(see [85] for review and references) but despite the effort even its fundamental degrees of
freedom are not known as yet.

Both perturbative T-dualities and non-perturbative S-dualities1 act on the moduli space
of M-theory. These two types of duality transformations commute and can be embedded
into larger discrete group as it has been demonstrated for type IIB theory [54]. This wider
group is termed U-duality group, where symbol U stands allegedly for unity. U-duality
group, conjectured to be exact symmetry of non-perturbative M-theory compactified down
to correspondent dimension, was shown to be a discrete subgroup of continuous non-compact
symmetries of maximal effective supergravity theories (see table 1.1).

With every additional dimension compactified, theory acquires more and more scalar
degrees of freedom, and its U-duality group which acts on those scalars non-linearly becomes
larger. Bosonic field content of eleven dimension supergravity on shell is beautifully simple,
and comprises a graviton gMN and a rank 3 anti-symmetric field AMNK . After toroidal
compactification down to d = 3 the theory acquires 128 scalars degrees of freedom which
transform non-linearly under U-duality symmetry. Since some of those scalars appear as a
result of dualisation of higher rank gauge fields, we conclude that U-duality symmetry of
d = 3 theory should mix elementary excitations with solitonic collective modes.

M-theory and 11 dimensional supergravity allow for compactification on some more
elaborate backgrounds – Calabi-Yau manifolds, which are 6 real dimensional manifolds
with special properties ensuring that resulting theory in d = 5 is supersymmetric with 8
supercharges [11, 25, 6]. Resulting supergravity theories depend on moduli of Calabi-Yau
manifold and are known as N = 2 Maxwell-Einstein supergravity theories (MESGT) [39]
coupled to hypermultiplets [13, 7].

U-duality groups similar to the one compiled in table 1.1 starting with d = 5 for toroidal
compactifications also arise in five and lower dimensional supergravity theories coupled

1 S-duality is the identification of strong coupling regime of one theory with a weak coupling regime of
another (possibly the same) theory. It is also often referred to as strong/weak duality. See [72] for review.



5

d Msc U-duality
5 SO(n−1,1)

SO(n−1) × SO (1, 1) SO (n− 1, 1)× SO (1, 1)
SL(3,R)
SO(3) SL (3,R)

SL(3,C)
SU(3) SL (3,C)
SU∗(6)
Usp(6) SU∗ (6)
E6(−26)

F4
E6(−26)

4 SO(2,1)×SO(n,2)
SU(2)×SO(n)×SO(2) SO (2, 1)× SO (n, 2)

Sp(6,R)
U(3) Sp (6,R)

SU(3,3)
S(U(3)×U(3)) SU (3, 3)

SO∗(12)
U(6) SO∗ (12)

E7(−25)

E6×U(1)

3 SO(n+2,4)
SO(n+2)×SO(4) SO(n+ 2, 4)

F4(4)

USp(6)×SU(2) F4(4)
E6(2)

SU(6)×SU(2) E6(2)
E7(−5)

SO(12)×SU(2) E7(−5)
E8(−24)

E7×SU(2) E8(−24)

Table 1.2: Duality symmetries of supergravities obtained by compactifications of N = 2
d = 5 MESGTs with scalar manifolds being symmetric spaces.

to matter [39]. They are summarised in table 1.2 for MESGTs with symmetric scalar
manifolds.

In the present thesis we discuss the algebraic structure of U-duality groups arising both
from MESGTs and from maximal supergravities. Algebraic structures of U-duality groups
of maximal supergravity theories were previously studied in [45, 46]. We build a geo-
metric realization of U-duality Lie algebras relevant to supergravity. For real forms of
U-duality groups relevant to MESGTs it corresponds to Lorentz, conformal and quasi-
conformal actions on generalised space-times associated with formally real Jordan algebras
defining Maxwell Einstein supergravity theories [39, 43, 50]. This is achieved in the manner
emphasising the algebraic structure of underlying Jordan algebras.

We also construct minimal [59] realizations of MESGT U-duality groups [48] as an
extension of conformal quantum mechanics [1] in parallel to minimal realization of e8(8)

[46]. Minimal representation is constructed in simple case of so(4, 4), and a connection with
alternative studies [64] (see [88] for overview) of minimal representations is pointed out.

The structure of the thesis is as follows. We start with a brief review of relevant super-
gravity theories introducing the notion of scalar manifold, and that of hidden symmetries,
by considering toroidal compactifications of eleven dimensional supergravity. Appearance of
exceptional Lie groups is discussed for compactifications to five, four and three dimensions.



6

In chapter 3 we focus on the the general structure of U-duality groups as well as their ge-
ometric interpretation as Lorentz, conformal and quasi-conformal groups of Jordan algebras
following [45] and [50]. The construction of geometric action of Lie algebras of U-duality
groups is built using Jordan algebras. The inter-relation and connection of U-duality groups
in different dimensions is discussed in details. Geometric realization of exceptional U-duality
Lie algebras is given as a spinorial extension of quasi-conformal algebra so (d+ 2, 4) associ-
ated with d-dimensional Minkowski space-time R1,d−1.

Minimal realizations of U-duality Lie algebras is discussed in chapter 4. Minimal real-
izations of U-duality algebras related to N = 2 Maxwell-Einstein supergravity theories is
given following [48]. Minimal realization is viewed as extension of conformal quantum me-
chanics studied by de Alfaro, Fubini and Furlan [1]. Minimally realized U-duality algebras
is then viewed as spectrum generating symmetry of this quantum mechanics. Extension by
bosonic as well as fermionic fields are discussed.

Minimal unitary representation of U-duality algebras is analysed from the point of view
of spherical vectors in the last chapter which is based on unpublished work.
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Chapter 2

A glimpse of supergravity theories

Supergravity theories [19, 28] (or SUGRAs) were constructed as a supersymmetric ex-
tensions of Einstein theory of gravity soon after the discovery of space-time supersymmetry
[115], in hope that extending symmetry group of Einstein gravity theory would render it
quantizable. This turned out to be a false hope and SUGRAs were later determined not
to be UV-finite [20]. They are understood, according to common wisdom, as a low-energy
effective field theories [114] of M-/string theory [91, 92] and remain a topic of active research
in this context.

If supersymmetric theory in d dimensions is to have no degrees of freedom with spin
greater than s = 2 upon dimensional reduction to 4 dimensions, then supersymmetry re-
stricts such theory to reside in space-time of dimension d no greater than 11 [79].

This 11 dimensional supergravity [14] can be dimensionally reduced to d = 4 by toroidal
compactification. Julia and Cremmer showed [15] that, surprisingly this theory possesses a
much richer global non compact hidden symmetry E7(7), local SU (8) symmetry and scalar
manifold isomorphic to E7(7)/SU (8).

2.1 Short review of supersymmetry

Supersymmetry in four dimensional Minkowski space-time can be best illustrated by inves-
tigating symmetries of non-interacting Wess-Zumino [115] model:

SWZ =
∫
d4x

(
∂µφ

∗∂µφ−m2φ∗φ+ iψ̄γµ∂µψ −mψ̄ψ
)

(2.1)

where ψ is Majorana spinor. Besides the well-known space time symmetries, Lorentz rota-
tion and translation symmetries, this action is also invariant under the following supersym-
metry transformation [118]:

∂εφ = ε̄ (1− γ5)ψ ∂εφ
∗ = ε̄ (1 + γ5)ψ

∂εψ = − (iγµ∂µφ+mφ)
1 + γ5

2
ε− (iγµ∂µφ

∗ +mφ∗)
1− γ5

2
ε

(2.2)
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provided that fields φ and ψ satisfy equations of motion of (2.1). Transformation parameter
ε is Grassmann spinor. Transformations (2.2) intermix bosonic and fermionic degrees of
freedom. Commutator of two supersymmetry transformations

[δε, δη]φ = −2i (ε̄γµη) ∂µφ = 2 (ε̄γµη)Pµφ

[δε, δη]ψ = −2i (ε̄γµη) ∂µψ = 2 (ε̄γµη)Pµψ
(2.3)

amounts to translation transformation provided that fields satisfy equation of motion. Re-
ferring to the fact that equations of motion are needed to show closure of supersymmetry al-
gebra, one says that supersymmetry closes “on-shell”. Thus Pòincare algebra gets extended
by the supersymmetry transformations. Noether charges of supersymmetry transformation
Qa, translation Pµ and rotation Mµν form supersymmetry algebra. Generators M and P

form standard Pòincare algebra

[Mµν ,Mλρ] = ηνλMµρ − ηµλMνρ + ηµρMνλ − ηνρMµλ

[Mµν , Pρ] = ηνρPµ − ηµρPν [Pµ, Pν ] = 0
(2.4a)

Supercharges Q are Majorana spinors of Lorentz algebra, and commute with all translations:

[Mµν , Q
a] = −(Jµν)

a
bQ

b [Pµ, Q
a] = 0 (2.4b)

Supercharges Q anti-commute into translations{
Qa, Qb

}
= 2

(
ΓµC

−1
)ab

Pµ (2.4c)

which, from a group theoretic viewpoint is made possible because

((0,2) + (2,0))⊗S ((0,2) + (2,0)) = 4vector.

In here (0,2) corresponds to chiral Weyl spinors Γ5ψ = +ψ and (2,0) corresponds to
anti-chiral Weyl spinors Γ5ψ = −ψ.

Fields that irreducibly transform into each other under Poincarè supersymmetry trans-
formation are called supersymmetry multiplet. All fields in the multiplet will have the
same mass since PµP

µ commutes with Q. Fields within a multiplet have spins which form
arithmetic progression with step 1/2, in virtue of Q being a spinor of so(3).

Possible multiplets of supersymmetry are classified by observing that (2.4c) evaluated
on momentum eigenstates is isomorphic to a Clifford algebra, and thus its irreducible rep-
resentations are finite dimensional [79]. An important implication of this fact is that one
can not have more that 32 independent supercharges if we disallow fields with spin greater
than 2 [79], that of a graviton.
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Algebra (2.4) can be generalised by allowing independent supercharges Qa
i , where i =

1..N . Then (2.4c) gets modified{
Qa

i , Q
b
j

}
= 2δij

(
ΓµC

−1
)ab

Pµ (2.4c′)

and (2.4b) modified trivially. This algebra admits a central extension [52] by a set of
generators Zij and Yij - central charges - which commute with every other generator in
supersymmetry algebra and between themselves. Then (2.4c) becomes{

Qa
i , Q

b
j

}
= 2δij

(
ΓµC

−1
)ab

Pµ + Zij

(
C−1

)ab + Yij

(
Γ5C

−1
)ab (2.4c′′)

In case of extended supersymmetry, the algebra gets also supplemented by R-symmetry
algebra acting on i indices of supercharges:

[RI , Q
a
k] = (τI)

k
iQ

a
i (2.4d)

Note the above restriction on number of supercharges implies that N can be at most 8.
Supersymmetric theories with 32 supercharges are called maximally supersymmetric [105].

Witten and Olive [121] showed that non-trivial central charges appear in theories that
possess topologically non-trivial solutions, solitons. Then central charges are related to
topological charges of these solutions.

Supersymmetry algebra can be introduced for any flat space time Rt,s with t time-like
and s space-like coordinates [106, 79]. Possible reality conditions that can be imposed
on spinors are summarised in appendix A.1. Possible supersymmetry algebras are found
requiring that {Q,Q} closes into Pµ and some central charges. Classification of all such
algebras was given by W. Nahm [79]. He found in particular, that if a d-dimensional theory is
to contain fields of spin no greater than 2 upon toroidal compactification to four dimensions
then d 6 11. Also if a d-dimensional theory, when compactified to four dimensions should
have particles of spin at most one, then d 6 10.

Supersymmetry discussed so far was a global symmetry, in that super-symmetry trans-
formation acted the same at all points in space-time. By making supersymmetry trans-
formation local, i.e. depending on space-time coordinates x, we also make parameters of
translation transformation local (c.f. (2.3)). We thus promote translations to infinitesimal
general coordinate transformations. A theory invariant under the local supersymmetry is
thus necessarily invariant under general coordinate transformations, and must be a super-
symmetric extension of gravity theory.



10

2.2 11-dimensional supergravity theory

Eleven-dimensional supergravity [14] theory stands out, because 11 is maximum possible
dimension for an admissible theory of supergravity [79]. Moreover, all other maximal super-
gravity theories in lower dimensions can be obtained from 11 dimensional one by dimensional
reduction.

In R1,10 supercharges are 32 component Majorana-Weyl spinors of so (1, 10), thus N = 1.
Anti-commutator of supercharges hence takes on the following form{

Qa, Qb
}

= 2
(
ΓµC

−1
)ab

Pµ (2.5)

where a, b = 1, . . . , 32. When applied to momentum operator eigenstate with finite mo-
menta, the right-hand side of (2.5) is a constant symmetric matrix which can be diago-
nalised. It is easy to see that

det
(
ΓµC

−1Pµ
)

= (P · P ) Polynomial (P · P ) (2.6)

It therefore follows that massless representations are special. Indeed, choosing a rest frame
with Pµ = (E,E, 0, . . . , 0), we see that r.h.s. of (2.5) is 2E(Γ0−Γ1)C−1 and thus 16 super-
charges for which

(
(Γ0 − Γ1)C−1

)αα = 0 would act trivially because for such supercharges

〈
Ω
∣∣∣(Qα)†Qα +Qα (Qα)†

∣∣∣Ω〉 =
〈
Ω
∣∣∣Qα (Qα)†

∣∣∣Ω〉 =
∥∥∥(Qα)† |Ω〉

∥∥∥2
(2.7)

and therefore (Qα)† |Ω〉 = 0. Size of the massless representation is therefore reduced, and
massless multiplets are shorter [105]1. Thus, total number of states in massless representa-
tion in 11D is 2(16/2) = 256. There will be 128 fermionic and 128 bosonic states, depending
whether odd or even number of supercharges were involved in exciting a particular state.
Because vacuum |Ω〉 is invariant w.r.t. to rotations SO (9) of transverse directions, these
states should fall into representations of this group. Indeed, a decomposition relevant for
supergravity is

128b = 44 + 84 = [gµν ] + [Aµνρ]

128f = 128 =
[
ψα

µ |Γµψµ = 0
] (2.8)

where gµν correspond to a metric, Aµνρ to a 3-form, and fermion ψµ to gravitino.
A supergravity theory with the above content was constructed by Cremmer and Julia

1 Phenomenon of shortening occurs whenever right hand-side of supercharges anti-commutator acquires
null space. This can also occur for massive states in the presence of central charges, whenever mass saturates
so called Bogomolnyi’s bound [105].
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and Scherk [14] in 1978. Its action reads as follows

S11 =
1
2

∫
d11x

√
−g
(
R− 1

2
F ∧ ∗F

)
− 1

6

∫
A ∧ F ∧ F + fermionic terms (2.9)

where F = dA is a 4-form field strength of 3-form field A. In order to write a supersymmetry
transformations it is necessary to introduce a elfbein [14, 21] which is square-root of metric
g:

Ea
µEb

µ = δa
b Ea

νEa
µ = δν

µ Ea
µηabE

b
ν = gµν (2.10)

Index a is a local Lorentz index labelling coordinate of tangent space TMx to space-time
M at a point x. This tangent space has a flat metric ηab with the same signature as that
of space-time metric g.

The supersymmetry transformations can be written as follows:

δEa
µ =

1
2
ε̄Γaψµ (2.11a)

δAµνρ = −
√

2
8
ε̄Γ[µνψρ] (2.11b)

δψµ = Dµ (ω̂) ε+
√

2
288

(
ηµνEf

νΓabcdf − 8Ea
µΓbcd

)
εF̂abcd (2.11c)

where the following “supercovariant” combinations appear:

(ω̂µ)a
b = (ωµ)a

b +
1
8
ψ̄νΓνµλρτψ

τEρ
bE

λ
cη

ac

F̂abcd = Fabcd − 3ψ̄µE[a
µΓbcEd]

νψν .

These particular combinations are called supercovariant because their supersymmetry trans-
formation does not involve derivatives of ε. Here ω denotes so called spin-connection [21, 80]
which determines parallel transport of “elfbein” and, for torsion-free manifolds becomes an
analog of Christoffel symbol:

(ωµ)a
b =

1
2
Ec

µη
ad (Ωdbc − Ωcdb + Ωbcd) where Ωabc = 2ηcdE[a

µEb]
ν∂µE

d
ν (2.12)

These supersymmetry transformations close on-shell [14]. Action (2.9) of 11D supegravity is
also invariant under general coordinate transformations and local SO (1, 10) transformations
that act on flat indices.

Furthermore, action (2.9) is invariant under Abelian tensor gauge transformation A→
A+ δA = A+ dΛ. Indeed, the field strength is manifestly invariant F = dA→ dA+ d2Λ =
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dA = F and we only have to investigate invariance of Chern-Simons term∫
δ (F ∧ F ∧A) =

∫
F ∧ F ∧ dΛ =

∫
d (F ∧ F ∧ Λ) = 0 (2.13)

where we used

d (F ∧ F ∧ Λ) = dF ∧ F ∧ Λ + F ∧ dF ∧ Λ + F ∧ F ∧ dΛ = F ∧ F ∧ dΛ (2.14)

as a consequence of Bianchi identity dF = d2A = 0, as well as assumptions that fields
fall-off fast enough at infinity.

And in conclusion of this section let us note the following scaling transformation

δgµν = λ2gµν δAµνρ = λ3Aµνρ (2.15)

which amounts to rescaling of action (2.9) S11 → λ9S11 and thus is a symmetry of equations
of motion.

2.3 Extension of supersymmetry algebra in d = 11

As it was mentioned before, supersymmetry algebras allow for cental extensions [105], i.e.
we allow central charges to appear in the anti-commutator of supercharges {Q,Q}. These
central charges were shown to arise when a theory allows for topologically non-trivial solu-
tions [121], like instantons, monopoles or black holes and are related to topological charges
of these solutions.

Gauge field Aµνλ can either carry “electric” or “magnetic” charge, coupling to 2- or 5-
dimensional extended objects respectively. One therefore would expect charges which are
2 and 5 forms in space-time coordinates. Indeed, anti-commutator of two supercharges be-
longs to a symmetrised tensor product of 32 representations of so (1, 10), which decomposes
into irreducible components as follows:

32⊗S 32 = 11⊕ 55⊕ 462. (2.16)

Representation 55 corresponds to anti-symmetric rank 2 tensors in 11D, and 462 corre-
sponds to rank 5 antisymmetric tensors. Thus such extension appears to be the most
general:

{QA, QB} = 2 (CΓµ)AB P
µ + (CΓµν)AB Z

µν + (CΓµνλρτ )AB Z
µνλρτ (2.17)

We note that the extension in question is different from central extensions discussed earlier
in that central charges are not singlets of Lorentz group, and are not strictly speaking central
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charges of supersymmetry algebras, rather they appear on the same footings as momentum
P and do commute with supercharges:

[QA, P
µ] = 0 [QA, Z

µν ] = 0
[
QA, Z

µνλρτ
]

= 0 (2.18)

2.4 Dimensional reduction

Let us start by discussing ideas behind symmetry reduction, and then proceed to details
of dimensional reduction by toroidal compactification. Say Lagrangian of a field theory,
as well as its vacuum, possesses an invariance group G, and let H be its proper subgroup.
Excitations of the theory then fall into irreducible representations of group G, leading to
decomposition of Hilbert space:

H =
⊕

r

Hr (2.19)

In the same manner a ring of quantum operators becomes graded with respect to represen-
tations of G. Symmetry would impose super-selection rules

〈ψρ1 |Oρ2 |φρ3〉 = 0 (2.20)

unless representations ρ1, ρ2 and ρ3 are such that decomposition of tensor representation
ρ∗1 ⊗ ρ2 ⊗ ρ3 into irreducible components contains a singlet.

In the case of toroidal compactification H is a translation symmetry along some di-
rection, which we denote z. Accordingly all our fields are independent on this coordinate.
Because translation acts trivially on the tensor structure of fields, the dimensional reduction
amounts to restricting excitations of supergravity to a co-dimension one hyperplane.

Dimensional reduction of bosonic part of 11D supergravity was worked out in [15]. We
shall briefly review their result necessary for explanation of ideas presented in this thesis,
following [74] closely. Let use hatted indices for coordinates of R1,d, and un-hatted indices
for coordinates of R1,d−1: xµ̂ = (xµ, z). Further in this section all fields are assumed
independent on z.

Using local Lorenz symmetry SO (1, d) we fix Êa
z = 0:

Êâ
µ̂ =

(
eαφEa

µ e(2−d)αφBµ

0 e(2−d)αφ

)
. (2.21)

Coefficient α is taken to be α−2 = 2 (d− 1) (d− 2) so as to simplify resulting Lagrangian
in d dimensions. Adopting ansätz (2.21) amounts to the following space-time metric

ds2d+1 = e2αφds2d + e2(2−d)αφ (dz +Bµdx
µ)2 (2.22)
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With a little algebra it follows that

ÊR(d+1) = ER(d) − 1
2
E (∂φ)2 − 1

4
Ee(2−d)αφ (dB)2 (2.23)

Appearance of dB is easy to understand as it is an invariant under “induced” gauge trans-
formation resulting from the following transformation:

z → z + ξ (xµ) =⇒ Bµ → Bµ − ∂µξ (2.24)

Let us now discuss how to reduce n-form gauge potential:

Â(n) → A(n) +A(n−1) ∧ dz

F̂(n+1) = dÂ(n) → dA(n) + dA(n−1) ∧ dz = F(n+1) + F(n) ∧
(
dz +B(1)

) (2.25)

From which we deduce that field strength acquire so-called Kaluza-Klein correction

F(n) = dA(n−1) − dA(n−2) ∧B(1) (2.26)

Analogously we define for a later use a twisted field strength associated with forms Bn:

F(n) = dB(n−1) − dB(n−2) ∧B(1). (2.27)

A kinetic terms of d + 1 dimensional field strength F̂(n) reduces to kinetic term of d-
dimensional field strengths of F(n) and F(n−1) [74]:

1
2
ÊF̂(n) ∧ ∗F̂(n) →

1
2
Ee2(1−n)αφF(n) ∧ ∗F(n) −

1
2
Ee2(d−n)αφF(n−1) ∧ ∗F(n−1). (2.28)

The procedure outlined above can be successively applied to reduce 11D supergravity
to lower dimension d. Bosonic content of the compactified theory would be as follows [74]:

Eâ
µ̂ → Ea

µ, ~φ, Bm
(1), Bm

(0)n

Â(3) → A(3), A(2)m, A(1)mn, A(0)mnp

(2.29)

where indices are split as µ, ν, a = 0, . . . , d−1 and m,n, p = d, . . . , 10. Naturally forms A(2),
A(1) and A(0) are antisymmetric in their compactified indices. Kaluza-Klein potential Bm

(0)n

is only defined for n < m. Each reduction of dimension gave rise to one dilaton, resulting
in 11− d dilatonic scalars organised in a vector φ. Dilatons characterise the size or rather
volume, of compact manifold as seen from (2.22). All other scalar fields will be referred to
as axions [74]. The Lagrangian [74] of bosonic sector of d-dimensional supergravity resulting
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d 11 10 9 8 7 6 5 4 3
no. of scalars - 1 3 7 14 25 41 63 92
no. of F(4) 1 1 1 1 1 1 1 1 -
no. of F(3) - 1 2 3 4 5 6 7 8
no. of F(2) - 1 3 6 10 15 21 28 36

Table 2.1: Number of scalars and k-form field strengths in theories obtained from 11D
supergravity by toroidal compactification

upon toroidal compactification of 11D supergravity has the following form:

L = ER− 1
2
E
(
∂~φ
)2
− 1

2 · 4!
Ee~a·

~φF 2
(4) −

1
2 · 3!

E
∑

i

e~ai·~φ
(
F i

(3)

)2

− 1
2 · 2!

E
∑
i<j

e~aij ·~φ
(
F ij

(2)

)2
− 1

2 · 2!
E
∑

i

e
~bi·~φ

(
F i

(2)

)2
− 1

2
E
∑

i<j<k

e~aijk·~φ
(
F ijk

(1)

)2

− 1
2 · 2!

E
∑
i<j

e~aij ·~φ
(
F ij

(1)

)2
+ LFFA

(2.30)

where coefficients a and b are as follows:

Fµ̂ν̂λ̂ρ̂ vielbein

4-form : ~a = −~g
3-form : ~ai = ~fi − ~g
2-form : ~aij = ~fi + ~fj − ~g ~bi = −~fi

1-form : ~aijk = ~fi + ~fj + ~fk − ~g ~bij = −~fi + ~fj

(2.31)

where

~g = 3 (s1, s2, . . . , s11−d)

~fi =

0, 0, . . . , 0︸ ︷︷ ︸
i−1

, (10− i) si, si+1, . . . , s11−d

, sk =

√
2

(10− k)(9− k)
. (2.32)

Notice that F 2
(1) term is nothing but a Kinetic term for axions. Numbers of scalars, and

of rank 4 to 2 forms for compactified theories down to 3 dimensions are summarised in
table 2.1. Few observations, to be used later, are in order. Rank n field strength in a d

dimensional theory can be expressed via dual d − n rank field strength via Hodge duality.
This paves a way to define a “dual” effective theory where instead of n − 1 dimensional
gauge potential as a degree of freedom one has d− n− 1 dimensional gauge potential.

This duality is called electric-magnetic. Indeed, recalling expressions for electric and
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magnetic charges with respect to rank n− 1 gauge field∫
∗F(n) = qe

∫
F(n) = qm (2.33)

enclosed in d − n and n dimensional volumes of Rd. Hodge duality thus would map elec-
trically charged degrees of freedom into magnetically charges and vice versa. But coming
back to matters of compactified theories we observe that gauge potentials of rank d− 2 can
be dualised to scalars.

As a concluding note, let us make few remarks about reduction of fermionic degrees of
freedom. Because translation acts trivially on spinorial indices, theories in d dimensions will
have 32 supercharges just as their parental supergravity, which is why toroidal compact-
ification of 11D proved such a handy tool to construct maximal supergravities in various
dimensions. Thus every resulting supergravity would have exactly 128 fermionic degrees of
freedom per point. Because upon dimensional reduction the rotation group of the resulting
theory is a subgroup of the rotation group of the original theory, Rarita-Schwinger field
ψ̂µ̂ would give rise to Rarita-Schwinger field in lower dimensions ψµ as well as additional
spinors.

2.5 Scalar manifold and hidden symmetry

It is natural to expect the dimensionally reduced theory (2.30) to have symmetries induced
by symmetries of the parental 11D supergravity.

General coordinate transformations group GL (11,R)local in 11D theory induces the fol-
lowing symmetry on the compactified theory

GL (11,R)local ⊃ GL (d,R)local ⊗ SL (11− d,R)global

that preserves a volume of internal manifold. Combined with trombone symmetry (2.15)
this can be extended to GLglobal (11− d,R).

Original local Abelian gauge symmetry reduces to global shift symmetry for axions:

Rq : δA(0)mnk = λmnk where q =

(
11− d

3

)
. (2.34)

It is clear that these two symmetries do not commute, and result into

Gmanifest = GL (11− d,R) n Rq (2.35)

It was however shown that [15, 16] these symmetries can be extended to what is collectively
called E11−d(11−d) - non-compact groups of rank 11− d that have 11− d more non-compact
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dimension d 10 9 8 7 6
E11−d(11−d) R GL (2,R) SL (3,R)× SL (2,R) SL (5,R) O (5, 5)
dimE11−d(11−d) 1 4 11 24 45
dimGmanifest 1 4 10 20 35

Table 2.2: Hidden symmetries of dimensionally reduced supergravity theories d > 5

generators than compact, which are symmetry groups of dimensionally reduced to d dimen-
sions supergravities. These non-compact hidden symmetry groups are examples of U-duality
groups. The notation of Er(r) will be justified in few moments.

In dimensions d = 10, . . . , 6 there is no need to dualise degrees of freedom to make
this symmetry enhancement manifest, that is extended symmetries act on supergravities’
local degrees of freedom only. They are listed in Table 2.2. From it one sees that Gmanifest

coincides with full symmetry group for d = 10 and d = 9 where there are no axions coming
from 11D gauge field A.

When compactifying to d = 5 one notices that field strength F(4) has only 5 independent
degrees of freedom, as becomes manifest after applying the Hodge-∗ operation to it

(
∗F(4)

)µ =
1
24
εµνρτλFνρτλ (2.36)

and thus the underlying gauge potential is just a scalar. This scalar could not however
be expressed through Aµνλ locally. Similarly rank 2 gauge field A(2) with field strength
F(3) would dualise to vector gauge potential Ãµ. Consulting table 2.1 one concludes that
supergravity dimensionally reduced to d = 5 should have 42 scalars, and 27 gauge fields.
Supplemented with the graviton, this is exactly the bosonic content of d = 5, N = 8
supergravity [17].

These additional scalars appearing after dualisation allow for extension of supergravity’s
symmetry group. Resulting groups are collected in table 2.3

dimension d 5 4 3
E11−d(11−d) E6(6) E7(7) E8(8)

dimE11−d(11−d) 78 133 248
dimGmanifest 56 84 120

Table 2.3: Hidden symmetries of dimensionally reduced supergravity theories d 6 5

Scalars of maximal supergravity theories form a homogeneous manifold G/H where G
is the supergavity’s U-duality group, and H is its maximal compact subgroup. The number
of scalars in d-dimensional maximal supergravity naturally equals to the dimension of the
coset E11−d(11−d)/H. Maximal compact subgroups H of U-duality groups G are listed in
table 2.4. This manifold is referred to as scalar manifold. In fact supersymmetry and scalar
manifold determine supergravity theory uniquely [103, 117]. It is worth noting that scalar
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d G H

10 R ∅
9 GL (2,R) SO (2)
8 SL (3,R)× SL (2,R) SO (3)× SO (2)
7 SL (5,R) SO (5)

d G H

6 O (5, 5) S (O (5)×O(5))
5 E6(6) USp (8)
4 E7(7) SU (8)
3 E8(8) SO (16)

Table 2.4: Maximal compact subgroups of maximally split maximal supergravity symmetry
groups G = Ed(d)

manifold need not be homogeneous or symmetric (see for example [47]) in supergravities
with lower amount of supersymmetry.

In order to get a glimpse into a structure of U-duality group we observe that coefficients
~aijk and~bij associated with scalar kinetic terms of dimensionally reduced supergravity (2.31)
obey the following relations [74]

~bij +~bjk = ~bik ~aijk +~bkn = ~aijn (2.37)

and thus only ~a123 and ~bk(k+1) for k = 1, . . . , 10 − d are independent, since any other ~bij
and ~aijk can be obtained as a linear combination of these. One thus can regard vectors ~bij
and ~aijk as an integer lattice with ~a123 and

{
~bk(k+1)

}
being simple positive roots. Further

noticing that scalar products of generators between themselves is always an even integer:(
~bi,i+1,~bj,j+1

)
= 4δij − 2δi,j+1 − 2δj,i+1 (~a123,~a123) = 4

(
~a123,~bi,i+1

)
= −2δi,3 (2.38)

we conclude that the lattice must be a restriction of root lattice of a Lie algebra. Dynkin
diagram2 corresponding to generators of the resulting root lattice for d = 3 is depicted
on Fig. 2.1. This is a Dynkin diagram of U -duality group E8 of d = 3 N = 16 maximal

a123

b12 b23 b34 b45 b56 b67 b78

Figure 2.1: Dynkin diagram corresponding to the Lie algebra E8. Labels denote generators
of the root lattice formed by ~aijk and ~bij .

supergravity. Notice the positive root lattice of E8 is bigger that that of ~aijk and~bij , because
positive roots of E8 allow for vectors which are sums of ~a. For instance ~a456 + ~a123 is a

2See appendix A.2 for a short review of Lie algebra terminology.
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positive root of E8, but is not a root of ~a, ~b lattice.
Appearance of exceptional hidden symmetry groups in supergravity theories is an as-

tounding fact first discovered by Julia and Cremmer [15].

2.6 N = 2 supergravity in d = 5

Exceptional U-duality groups appear also in matter coupled supergravity theories [39, 41],
in particular in N = 2 supergravity in d = 5 coupled to certain number of Abelian vector
fields, so called Maxwell-Einstein supergravity theories, and in their dimensionally reduced
to d = 4 and d = 3 theories.

We start by considering a pure supergravity in d = 5. It has been constructed in
[12, 17, 18]. The field content of pure supergravity theory is as follows – graviton eµ

m,
gravitini ψi

µ which form doublet of supersymmetry algebra’s R-group SU (2)R, and the
Abelian gauge field Aµ. All spinors in d = 5 are assumed symplectic-Majorana, i.e.

ψ̄µ,i = εij
(
ψj

µ

)t
C

Five dimensions is remarkable because it is next odd dimension after d = 11 admitting
Chern-Simons F ∧F ∧A terms. Pure 5D supergravity, in fact, resembles 11D supergravity
in many ways and has been studied in the literature with 11D theory in mind [78, 93].
Bosonic part of pure 5D sugra Lagrangian reads (c.f. (2.9)):

L = −1
2
E

(
R+

1
2
FµνF

µν

)
+

1
6
√

6
εµνλρσFµνFλρAσ (2.39)

In particular the toroidal compactification of (2.39) to three dimensions possesses scalar
manifold isomorphic to G2(2)/SO(4), while toroidal compactification of (2.9) to three di-
mensions has scalar manifold isomorphic to E8(8)/SO(16).

Vector multiplet in d = 5 contains one scalar φ, one SU (2)R doublet symplectic Majo-
rana spinor λi and a gauge field Aµ. Let us consider supergravity multiplet coupled to n
vector multiplets. There are n+ 1 gauge fields organised into AI

µ, one coming from super-
gravity multiplet and others from vector multiplets; n scalars denoted as φx. The bosonic
part of the Lagrangian [39] reads

E−1Lbosonic = −1
2
R− 1

4
◦
aIJF

I
µνF

Jµν − 1
2
gxy(∂µϕ

x)(∂µϕy)

+
E−1

6
√

6
CIJKε

µνρσλF I
µνF

J
ρσA

K
λ ,

(2.40)

where E and R denote the fünfbein determinant and the scalar curvature in d = 5, re-
spectively. F I

µν are the field strengths of the Abelian vector fields AI
µ, (I = 0, 1, 2 . . . , n)
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with A0
µ denoting the “bare” graviphoton. The metric, gxy, of the scalar manifold M and

the “metric”
◦
aIJ of the kinetic energy term of the vector fields both depend on the scalar

fields ϕx (x, y, . . . = 1, 2, . . . , n). For the Chern-Simons term in the Lagrangian (2.40) to
be invariant under the Abelian gauge transformations of the vector fields, the completely
symmetric tensor CIJK has to be constant. Moreover, the entire N = 2, d = 5 MESGT
is uniquely determined by the constant tensor CIJK [39]. In particular, the metrics of the
kinetic energy terms of the vector and scalar fields are determined by CIJK . More specifi-
cally, consider the cubic polynomial, V(h), in (n+ 1) real variables hI , with I = 0, 1, . . . , n,
defined by the CIJK

V (h) = CIJKh
IhJhK . (2.41)

Using this polynomial as a real “Kähler potential” for a metric, aIJ , in an n+1 dimensional
ambient space with the coordinates hI :

aIJ(h) = −1
3
∂

∂hI

∂

∂hJ
lnV (h) (2.42)

one finds that the n-dimensional target space, M, of the scalar fields ϕx can be identified
with the hypersurface [39]

V(h) = CIJKh
IhJhK = 1 (2.43)

in this space. The metric gxy of the scalar manifold is simply the pull-back of (2.42) to M

gxy = hI
xh

J
y
◦
aIJ (2.44)

where

hI
x = −

√
3
2
∂

∂φx
hi (2.45)

and one finds that the Riemann curvature of the scalar manifold has the simple form

Kxyzu =
4
3
(
gx[ugz]y + Tx[i

wTz]yw

)
(2.46)

where Txyz is the symmetric tensor

Txyz = hI
xh

J
yh

K
z CIJK (2.47)

The “metric”
◦
aIJ(ϕ) of the kinetic energy term of the vector fields appearing in (2.40) is

given by the component-wise restriction of aIJ to M:

◦
aIJ(ϕ) = aIJ |V=1 . (2.48)

The physical requirement of positivity of kinetic energy requires that gxy and
◦
aIJ be positive
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definite metrics. This requirement induces constraints on the possible CIJK , and in [39]
it was shown that any CIJK that satisfy these constraints can be brought to the following
form

C000 = 1, C0ij = −1
2
δij , C00i = 0, (2.49)

with the remaining coefficients Cijk (i, j, k = 1, 2, . . . , n) being completely arbitrary. This
basis is referred to as the canonical basis for CIJK .

Denoting the symmetry group of the tensor CIJK as G one finds that the full symmetry
group of N = 2 MESGT in d = 5 is of the form G × SU (2)R where SU (2)R denotes the
local R-symmetry group of N = 2 supersymmetry algebra.

From the form of the Riemann curvature tensor Kxyzu it is clear that the covariant
constancy of Txyz implies the covariant constancy of Kxyzu:

Txyz;w = 0 =⇒ Kxyzu;w = 0 (2.50)

Therefore the scalar manifolds M5 with covariant constantly constant T tensor are locally
symmetric spaces.

IfM5 is a homogeneous space the covariant constancy of Txyz was shown to be equivalent
to the following identity [39]:

CIJKCJ(MNCPQ)K = δI
(MCNPQ) (2.51)

where the indices are raised by
◦
aIJ .3

Remarkably the cubic forms defined by CIJK of the N = 2 MESGT’s with n > 2 and
with a symmetric target space M5 and a covariantly constant T tensor are in one-to-one
correspondence with the norm forms of Euclidean (formally real) Jordan algebras of degree
three.

The precise connection between Jordan algebras of degree 3 and the geometries of
MESGT’s with symmetric target spaces in d = 5 was established [39] through a novel
formulation of the corresponding Jordan algebras. This formulation is due to McCrimmon
[76], who generalised and unified previous constructions by Freudenthal, Springer and Tits
[30], which we outline here following [48].

Let V be a vector space over the field of reals R, and let V : V × V × V → R be a cubic
norm on V . Furthermore, assume that there exists a quadratic map ] : x → x] of V into

3 For proof of this equivalence an expression for constants CIJK in terms of scalar field dependent
quantities was used

CIJK =
5

2
hIhKhK − 3

2

◦
a(IJhK) + Txyzhx

I hy
Jhz

K

as well as algebraic constraints hIhI = 1 and hI
xhI = 0 that follows from susy.
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itself and a “base point” c ∈ V such that

V (c) = 1 and c] = c (i), (ii)

T
(
x], y

)
= yI∂IV

∣∣
x

(iii)

c× y = T (y, c) c− y (iv)(
x]
)]

= V (x)x (v)

The last equation is referred to as the adjoint identity. The map T : V × V → R is defined
as

T (x, y) = − xIyJ∂I∂J lnV
∣∣
c

(2.52a)

and the Freudenthal product × of two elements x and y is defined as

x× y = (x+ y)] − x] − y] (2.52b)

McCrimmon showed that a vector space with the above properties defines a unital Jordan
algebra with Jordan product ◦ given by

x ◦ y =
1
2

(
T (c, x) y + T (c, y)x− T (c, x× y) c+ x× y

)
(2.53)

and a quadratic operator Ux given by

Uxy = T (x, y)x− x] × y (2.54)

In [39] it was shown that the properties (i) and (iv) are satisfied by the cubic norm form
defined by the tensor CIJK of N = 2 MESGT’s in d = 5. The condition of adjoint identity is
equivalent to the requirement that the scalar manifold be symmetric space with a covariantly
constant T -tensor [39]. The corresponding symmetric spaces are of the form

M =
Str0 (J)
Aut (J)

(2.55)

where Str0 (J) and Aut (J) are the reduced structure group and automorphism group of
the Jordan algebra J respectively.

From the foregoing we see that the classification of locally symmetric spacesM for which
the tensor Txyz is covariantly constant reduces to the classification of Jordan algebras with
cubic norm forms. Following Schafers [95] the possibilities were listed in [39]:

1. J = R, V (x) = x3. The base point may be chosen as c = 1. This case supplies n = 0,
i.e. pure d = 5 supergravity.
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2. J = R⊕Γ, where Γ is a simple algebra with identity e2 and quadratic norm Q (x), for
x ∈ Γ, such that Q (e2) = 1. The norm is given as V (x) = aQ (x), with x = (a,x).
The base point may be chosen as c = (1, e2). This includes two special cases

(a) Γ = R and Q = b2, with V = ab2. This is applicable to n = 1.

(b) Γ = R⊕ R and Q = bc, and V = abc and is applicable to n = 2.

Notice that for these special cases the norm is completely factorised, so that the space
C and therefore M, is flat. For n > 2, V is still factorised into a linear and quadratic
parts, so that M is still reducible. The positive definiteness of the metric aIJ of C,
which is required on the physical grounds, requires that Q have Minkowski signature
(+,−,−, . . . ,−). The point e2 can be chosen as (1, 0, . . . , 0). It is then obvious that
the invariance group of the norm is

Str0 (J) = SO (n− 1, 1)× SO (1, 1) (2.56)

where the SO (1, 1) factor arises from the invariance of V under the dilatation (a,x) →(
e−2λa, eλx

)
for λ ∈ R, and that SO (n− 1) is Aut (J). Hence

M =
SO(n− 1, 1)
SO (n− 1)

× SO (1, 1) (2.57)

3. Simple Euclidean Jordan algebras J = JA
3 generated by 3×3 Hermitian matrices over

the four division algebras A = R, C, H, O. In these four cases an element x ∈ J can
be written as

x =

α1 a3 a∗2
a∗3 α2 a1

a2 a∗1 α3

 (2.58)

where αk ∈ R and ak ∈ A with ∗ indicating the conjugation in the underlying division
algebra. The cubic norm V, following Freudenthal [30], is given by

V (x) = α1α2α3 − α1 |a1|2 − α2 |a2|2 − α3 |a3|2 + a1a2a3 + (a1a2a3)
∗ (2.59)

For A = R or C it coincides with the usual definition of determinant Det(x). The
corresponding spaces M are irreducible of dimension 3 (1 + dim A)− 1, which we list
below:

M(JR
3 ) =

SL (3,R)
SO (3)

M(JC
3 ) =

SL (3,C)
SU (3)

M(JH
3 ) =

SU∗ (6)
USp (6)

M(JO
3 ) =

E6(−26)

F4

(2.60)
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The magical supergravity theories described by simple Jordan algebras JA
A (A = R, C,

H or O) can be truncated to theories belonging to the generic families. This is achieved by
restricting the elements of JA

A [40] α1 a3 a2

a3 α2 a1

a2 a1 α3

 (2.61)

to lie in their subalgebra J = R ⊕ JA
2 be setting a1 = a2 = 0. Their symmetry groups are

as follows:

J = R⊕ JR
2 : SO(1, 1)× SO (2, 1) ⊂ SL (3,R)

J = R⊕ JC
2 : SO(1, 1)× SO (3, 1) ⊂ SL (3,C)

J = R⊕ JH
2 : SO(1, 1)× SO (5, 1) ⊂ SU∗ (6)

J = R⊕ JO
2 : SO(1, 1)× SO (9, 1) ⊂ E6(−26)

(2.62)

2.7 Dimensional reduction to d = 4

Five dimensional MESGT theory with n vector multiplets toroidally compactified to d = 4
theory will have 2n+ 2 scalars, n+ 5 vector fields and a graviton.

Under dimensional reduction to the four dimensions the kinetic energy of the scalar
fields of the five dimensional N = 2 MESGTs can be written as [39]

E−1Lscalars = −gIJ∂µZ
I∂µZ

J (2.63)

where
gIJ = âIJ

(
Z − Z

)
= −1

2
∂

∂ZI

∂

∂ZJ
lnV

(
Z − Z

)
(2.64)

and ZI are complex scalar fields

ZI =
1√
2

(√
2
3
AI + iĥI

)
(2.65)

where the real parts AI are scalars coming from the vectors in 5 dimensions and ĥI are

ĥI = eσhI (φx) (2.66)

where σ is the scalar coming from the graviton in the five dimensions. Since V
(
ĥ
)

= e3σ > 0
the scalar manifold in 4D theories corresponds to the “upper half-plane” with respect to
the cubic norm. For Euclidean Jordan algebras of degree three these are the Koecher upper
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half-spaces [69] of the corresponding Jordan algebras

M4 = D (J) = J + iC (J) (2.67)

where C (J) denotes elements of the Jordan algebra with positive cubic norm. The Koecher
half-spaces are bi-holomorphically equivalent to bounded symmetric domains (see [22])
whose Bergman kernel is simply V

(
Z − Z

)
. As was first shown in [116] the scalar manifold

of the 4D MESGTs must be special Kähler. For the theories coming from 5D the Kähler
potential reads

F
(
Z,Z

)
= −1

2
lnV

(
Z − Z

)
(2.68)

and are called very special Kähler geometries.
The bounded symmetric domains associated with the upper half-spaces of Jordan al-

gebras are isomorphic to certain hermitian symmetric spaces. For the Euclidean Jordan
algebras of degree 3 these spaces are as follows:

M4 (R + Γ (Q)) =
SO (2, 1)× SO (n, 2)

SO(2)× SO (n)× SO(2)

M4

(
JR

3

)
=

Sp (6,R)
U(3)

M4

(
JC

3

)
=

SU (3, 3)
S (U(3)×U(3))

M4

(
JH

3

)
=

SO∗ (12)
U(6)

M4

(
JO

3

)
=

E7(−25)

E6 ×U(1)

(2.69)

These symmetric spaces are simply the quotients of the conformal groups of the correspond-
ing Jordan algebras by their maximal compact subgroups:

M4 =
Conf (J)
K (J)

The correspondence between the vector fields and the elements of the underlying Jordan
algebras in five dimensions gets extended to a correspondence between the vector field
strengths FA

µν plus their magnetic duals GA
µν with the elements of the Freudenthal triple

system defined by the Jordan algebra of degree three

FA
µν ⊕GA

µν ⇔ FT S(J) (2.70)

The automorphism group of this FTS is isomorphic to the four dimensional U-duality
group and it acts as the spectrum generating conformal group on the charge space of the



26

BPS black hole solutions of five dimensional MESGT’s [45, 49].

2.8 Geometries of the three dimensional MESGTs defined

by Jordan algebras of degree 3

Upon further dimensional reduction to 3 space-time dimensions, the MESGTs defined by
Euclidean Jordan algebras of degree three have target spaces that are quaternionic sym-
metric spaces [41]. The corresponding symmetric spaces are:

M3 (J = R + Γ (Q)) =
SO(n+ 2, 4)

SO(n+ 2)× SO(4)

M3

(
JR

3

)
=

F4(4)

USp(6)× SU(2)

M3

(
JC

3

)
=

E6(2)

SU(6)× SU(2)

M3

(
JH

3

)
=

E7(−5)

SO(12)× SU(2)

M3

(
JO

3

)
=

E8(−24)

E7 × SU(2)

(2.71)

The pure 5d, N = 2 supergravity under dimensional reduction to three dimensions leads to
the target space

G2(2)

SU(2)× SU(2)
(2.72)

which can be embedded in the coset space

SO(3, 4)
SO(3)× SO(4)

(2.73)

We should note that the above target spaces are obtained after dualising all the bosonic
propagating fields to scalar fields which is special to three dimensions. The Lie algebras
of the three dimensional U-duality groups have a 5-graded decomposition with respect to
the four dimensional U-duality groups. They are isomorphic to the quasiconformal groups
constructed over the corresponding FTS’s, which act as spectrum generating symmetry
group on the charge-entropy space of BPS black hole solutions in four dimensional MESGT’s
[45, 49].

2.9 U-duality groups and entropy of BPS black holes in su-

pergravity theories

Both in maximally extended supergravity, and in supergravities coupled to matter the
entropy of BPS black hole solutions is invariant under the corresponding U-duality groups.
Indeed, according to Bekenstein’s formula (the leading order of) entropy is proportional to
area of event horizon. Since U-duality group acts trivially on the graviton, entropy must
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be a singlet of U-duality group. For instance in five-dimensional N = 8 supergravity the
entropy S of a BPS black hole can be cast into the form [26]:

S ∝
√
I3 =

√
dIJKqIqJqk (2.74)

where I3 is the cubic form invariant under E6(6) with qI being 27 charges, coupling to 27
vector fields of the theory. The entropy of BPS black hole solutions of five dimensional
N = 2 MESGT’s is given by cubic form defined by the constant tensor CIJK [26]:

S ∝
√
V =

√
CIJKqIqJqK (2.75)

For N = 2 MESGT theories defined by Jordan algebras of degree 3 this cubic form is the
norm form and the global symmetry group G is the norm invariance group.

Because of supersymmetry and BPS property of black hole solutions in question, they
are in one-to-one correspondence with charges qI [26]. This fact was used by authors of
[27] to classify orbits of the BPS black hole solutions of N = 2 five dimensional MESGTs
defined by Euclidean Jordan algebras under the action of their U-duality groups. It was
instrumental to associate to each BPS solution with charges qI an element

J =
n∑

I=0

eIq
I (2.76)

of Jordan algebra of degree 3, where set {eI} stands for a basis of the Jordan algebra.
Similarly, classification of the orbits of BPS black hole solutions of N = 8 sugra in d = 5 as
given in [27] associates a BPS solution an element of the split exceptional Jordan algebra
JOs

3 . The cubic invariant I3 (q) is then given by the norm form N of the split exceptional
Jordan algebra. Invariance of the norm (i.e. reduced structure group of the Jordan algebra)
is E6(6) which coincides with U-duality group of the maximal N = 8 supergravity in d = 5.

In d = 4 magical N = 2 MESGTs obtained by toroidal dimensional reduction from
d = 5, as well as in maximal 4d supergravity the entropies of BPS black holes are given by
quartic invariants of their U-duality groups [60]

S ∝
√
I4 =

√
dIJKLqIqJqKqL (2.77)

were dIJKL are the completely symmetric tensors defined by the Freudenthal-Kantor triple
systems associated with the corresponding simple Jordan algebras of degree three [27] and
q now denote both electric and magnetic charges.
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Chapter 3

Structure of U-duality algebras and Jordan

algebras

Appearance of non-compact exceptional groups as hidden symmetry groups of super-
gravity theories in d = 5, d = 4 and d = 3 dimensions is a fascinating fact. Classical groups
SU (n), SO (n) and Sp (2n) have been known through their geometric definitions as invari-
ance groups of Hermitian, Euclidean and symplectic scalar products. Exceptional groups
were discovered by Elie Cartan in his thesis on Lie algebra classification (see appendix A.2
for short review). Geometric interpretation of exceptional groups has been associated with
division algebras of quaternions and octonions [56] and Jordan algebras [29, 30] (see [3] for
recent account and references).

3.1 Jordan algebras

Jordan algebras have been introduced by P. Jordan [57] in an attempt to generalise quantum
mechanics. Jordan algebra J is equipped with commutative Jordan product operation

∀x, y ∈ J x ◦ y = y ◦ x ∈ J . (3.1a)

Jordan product should satisfy alternating associativity requirement:

(x ◦ x) ◦ (x ◦ y) = x ◦ ((x ◦ x) ◦ y) (3.1b)

which assures that subalgebra formed by any two elements x and y of Jordan algebra J is
associative. In general, however, Jordan algebra is not associative, and one introduces an
associator

{a, b, c} = a ◦ (b ◦ c)− (a ◦ b) ◦ c (3.2)

to measure the degree of non-associativity in the same way as commutator measures degree
of non-commutativity of the algebra.

An example of Jordan algebra to keep in mind is the algebra of n×n Hermitian matrices
over an associative division algebra A (i.e. A can be R, C or H) with Jordan product given
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by

M1 ◦M2 =
1
2

(M1M2 +M2M1) (3.3)

Such algebra will be denoted JA
n . In this case associator becomes

{M1,M2,M3} =
1
4

[[M1,M2] ,M3] (3.4)

Finite dimensional Jordan algebras have been classified by Jordan, von Neumann and
Wigner [58]. They showed that all finite dimensional Jordan algebras, but one exceptional
case, have realizations in terms of associative matrices with Jordan product defined as in
(3.3). The exception is the algebra of 3×3 Hermitian matrices over octonions (which is not
associative), again with Jordan product defined by (3.3).

Another, so called quadratic formulation of Jordan algebras [55, 56] will be important
in what follows. The reader is referred to the book of McCrimmon [76] for a review and
references. We start by noticing that Jordan algebra is its own module, and introduce and
operator Lx such that

∀y ∈ J Lxy = x ◦ y (3.5)

We then define, for all x ∈ J , an operator Ux as

Ux = 2LxLx − Lx2 Uxy = (x, y, x) (3.6)

where
(x, y, z) = x ◦ (y ◦ z) + (x ◦ y) ◦ z − y ◦ (x ◦ z) (3.7)

is Jordan triple product. In this formulation the axioms of unital Jordan algebra, with Ue

being denoting Ue = id, can be rewritten as

UUxy = UxUyUx Ux (y, x, z) = (Uxy, z, x) (3.8)

In terms of the quadratic operator U the Jordan triple product reads

(x, y, z) = [Ux+z − Ux − Uz] y (3.9)

One of the remarkable properties of this formulation, making it relevant for supergravity
[39], is that for every Jordan algebra J one can define a norm N : J → R satisfying the
composition property

N (Uxy) = (N (x))2N (y) (3.10)

Jordan algebras relevant to supergravity are those where such norm is cubic.



30

3.2 Linear fractional group of Jordan algebras as generalised

conformal group

Following Kantor [62] consider an n-dimensional vector space V endowed with a non-
degenerate form N : V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

p times

→ R of degree p:

N (x)
def
= N (x, x, . . . , x) N (λx) = λpN (x)

For every set of distinct four vectors x, y, z, u ∈ V define a cross-ratio

N (x− z)
N (y − z)

N (y − w)
N (x− w)

(3.11)

and let Gc.r. be its invariance group. For each set of distinct non-vanishing xi ∈ V , i =
1, . . . , p define

N (x1, . . . , xp)
p

N (x1)N (x2) · · · N (xp)
(3.12)

and let Gp−angle be its invariance group. Kantor [62] proved that if Gp−angle is finite dimen-
sional then it is isomorphic to Gc.r.. When N is usual scalar product bilinear form in Rn

the invariance group of (3.11) and (3.12) is conformal group SO (1, n+ 1).
If vector space V is taken to be semi-simple Jordan algebra J with a generic form N

invariance group of (3.11) and (3.12) defines generalised conformal transformation groups
[43], provided J is sufficiently nice. The action of group G on J can be written as a
“linear fractional transformation” J , and generated by inversions, translations and Lorentz
rotations [69, 22].

Further we describe a construction of the Lie algebra of the above “linear fractional
transformation group” due to Tits, Kantor and Koecher [61, 70, 107], closely following
[43, 50].

The reduced structure group H of a Jordan algebra J is defined as the invariance group
of its norm N . By adjoining to it the constant scale transformation we obtain the full
structure group of J . The Lie algebra g of the conformal group of J can be given a three-
graded structure with the respect to the Lie algebra g0 of its structure group:

g = g−1 ⊕ g0 ⊕ g+1 = g−1 ⊕ (h⊕∆)⊕ g+1 (3.13)

with h denoting the Lie algebra of H and ∆ being the generator of constant scale transfor-
mations. The negative grade generators correspond to translations, and can thus be labelled
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by elements of Jordan algebra:

∀a ∈ J Ua ∈ g−1 Ua (x) = a (3.14)

Every such Lie algebra admits an involutive automorphism (conjugation) which maps τ :
g−1 7→ g+1. Hence elements of g+1 are also labelled by elements of Jordan algebra

Va = τ (Ua) ∈ g+1 Va (x) = −1
2

(x, a, x) (3.15)

The Lie algebra is then given as follows [43]:

[Ua, Vb] = Sab

[Sab, Scd] = S(abc)d − Sc(bad)

[Sab, Uc] = U(abc)

[Sab, Vc] = −V(bac)

[Ua, Ub] = 0

[Va, Vb] = 0
(3.16)

where (abc) is Jordan triple product, and

Sab ∈ g0 Sab (x) = (abx) . (3.17)

The Jacobi identities of (3.16) require Jordan triple product to satisfy the following identities

(abc) = (cba) (ab (cdx))− (cd (abx)) = ((abc) dx)− (c (bad)x) (3.18)

which follow from defining identities (3.1) of Jordan algebra. However, because Lie algebra
is defined entirely in terms of Jordan triple product, and (3.18) are defining identities of
Jordan triple system (JTS) [43] this construction extends to JTS.

It is gratifying to examine relationship between JTS and Lie algebras in the opposite
direction [83]. Let g be a graded Lie algebra with a graded involution ι : gn 7→ g−n. Then
any Lie algebra admitting 3-graded decomposition is defining JTS via

(x, y, z) = [[x, ι (y)] , z] (3.19)

where x, y, z ∈ g−1.

3.3 Generalised rotation, Lorentz and conformal groups

The first proposal to use Jordan algebras to define generalised space-times was made in the
early days of supersymmetry in attempts to find the super-analogs of the exceptional Lie
algebras [36]. This proposal is very natural, since, using twistor formalism [87], coordinates
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of Minkowski space-time can be organised into 2× 2 Hermitian matrix over C:

x = xµσµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(3.20)

which is an element of JC
2 . Rotation group SO (3) is exactly an automorphism group of

Jordan algebra since its action

x 7→ UxU−1 U = exp

 3∑
i,j,k=1

ωi ε
ijk σjk

 σjk =
1
4

[σj , σk] U †U = 1 (3.21)

preserves hermiticity of x as well as Jordan product. Lorentz group action

x 7→ ΛxΛ† Λ = exp

 3∑
j=1

βjσ0σj +
3∑

i,j,k=1

ωi ε
ijk σjk

 (3.22)

also preserves hermiticity of x. It also preserves the norm of the Jordan algebra

N (x) = detx =
(
x0
)2 − 3∑

i=1

(
xi
)2 N (x) = N

(
ΛxΛ†

)
= |det Λ|2N (x) . (3.23)

if detΛ = 1. Dilatation transformation which rescales the norm by a constant factor is
achieved with Λ = δ · id. Thus the Lorentz group coincides with reduced structure group1

of JC
2 . Conformal group of Minkowski space-time is then generated from structure group,

comprising Lorentz group and dilatation x 7→ etx, translations and inversion

x 7→ (x)−1 =⇒ xµ 7→ ηµν
xν

xλxλ
(3.24)

One can extend the notion of rotation, Lorentz and conformal group to any Jordan algebra,
thus establishing coordinatization of generalised space-times by Jordan algebras.

The rotation Rot(J), Lorentz Lor(J) and conformal Conf(J) groups of these generalised
space-times are then identified with the automorphism Aut(J), reduced structure Str0(J)
and Möbius Mö(J) groups of the corresponding Jordan algebras [36, 42, 37, 43]. Let JA

n

be the Jordan algebra of n× n Hermitian matrices over the division algebra A and let the
Jordan algebra of Dirac gamma matrices in Rd be Γ(d). The symmetry groups of generalised
space-times defined by simple Euclidean Jordan algebras are then collected in table 3.1 [43].
The symbols R, C, H, O represent the four division algebras. For the Jordan algebras JA

n

the norm form is the determinantal form (or its generalisation to the quaternionic and
1Structure group of a Jordan algebra with a norm, is defined as set of transformations that rescale the

norm by a constant positive factor.
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J Rot(J) Lor(J) Conf(J)
JR

n SO(n) SL(n,R) Sp(2n,R)

JC
n SU(n) SL(n,C) SU(n, n)

JH
n USp(2n) SU∗(2n) SO∗(4n)

JO
3 F4 E6(−26) E7(−25)

Γ(d) SO(d) SO(d, 1) SO(d, 2)

Table 3.1: Rotation, Lorentz and conformal groups for generalised space-times defined by
simple Euclidean Jordan algebras

octonionic matrices). For the Jordan algebra Γ(d) generated by Dirac gamma matrices
Γi (i = 1, 2, ...d)

{Γi,Γj} = δij1; i, j, . . . = 1, 2, . . . , d (3.25)

the norm of a general element x = x01 + xiΓi of Γ(d) is quadratic and given by

N (x) = xx̄ = x2
0 − xixi (3.26)

where x̄ = x01− xiΓi. Its automorphism, reduced structure and Möbius groups are simply
the rotation, Lorentz and conformal groups of (d + 1)-dimensional Minkowski spacetime.
One finds the following special isomorphisms between the Jordan algebras of 2×2 Hermitian
matrices over the four division algebras and the Jordan algebras of gamma matrices:

JR
2 ' Γ(2) ; JC

2 ' Γ(3) ; JH
2 ' Γ(5) ; JO

2 ' Γ(9) (3.27)

The Minkowski space-times they correspond to are precisely the critical dimensions
for the existence of super Yang-Mills theories as well as of the classical Green-Schwarz
superstrings. These Jordan algebras are all quadratic and their norm forms are precisely
the quadratic invariants constructed using the Minkowski metric.

We should note two remarkable facts about the above table. First is the fact that the
maximal compact subgroups of the generalised conformal groups of formally real Jordan
algebras are simply the compact forms of their structure groups (which are the products of
their generalised Lorentz groups with dilatations). Second, the conformal groups of gener-
alised space-times defined by Euclidean (formally real) Jordan algebras all admit positive
energy unitary representations2. Hence they can be given a causal structure with a unitary
time evolution as in four dimensional Minkowski space-time [44].

2Similarly, the generalised conformal groups defined by Hermitian Jordan triple systems all admit positive
energy unitary representations [43]. In fact the conformal groups of simple Hermitian Jordan triple systems
exhaust the list of simple non-compact groups that admit positive energy unitary representations. They
include the conformal groups of simple Euclidean Jordan algebra since the latter form an Hermitian Jordan
triple system under the Jordan triple product [43].
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3.4 Positive energy unitary representations of generalised

conformal groups

A Lie algebra g of a non-compact group G that admits unitary lowest weight representation
(ULWR), also known as positive energy representations, admits a 3-graded decomposition
with respect to the Lie algebra h of its maximal compact subgroup H: g = g−1 ⊕ g0 ⊕ g+1,
where g0 = h.

In [38] the general oscillator construction of unitary lowest weight representations of
non-compact groups was given. One starts realizing G in terms of bilinears of oscillators
transforming in certain (possibly reducible) representation ofH. Then, in the corresponding
Fock space F of all oscillators one chooses a set of states |Ω〉, referred to as the “lowest weight
vector”, which transforms irreducibly under H and which are annihilated by generators of
g−1. Then, ULWR is built by repeatedly applying g+1 to this set of lowest weight states:

|Ω〉 , g+1 |Ω〉 , g+1g+1 |Ω〉 , . . . (3.28)

The irreducibility of the representation of g follows from the irreducibility of LWV |Ω〉 under
H.

As an illustration consider ULWR for Sp (2n,R), conformal group of generalised space-
time defined by JR

n . In the compact basis, the 3-graded decomposition reads

sp (2n,R) =
n (n+ 1)

2
⊕ (su (n)⊕ u (1))⊕ n (n+ 1)

2

= {Uij = aiaj} ⊕
{
Si

j =
1
2
(
aiaj + aja

i
)}
⊕
{
U ij = aiaj

} (3.29)

where we have chosen oscillators ai, aj[
ai, a

j
]

= δi
j aj =

(
aj
)† (3.30)

transforming in n⊕ n∗ of su (n). There are only two non-equivalent irreducible LWVs:

|Ω1〉 = |0〉

|Ω2〉 = ci |0〉
(3.31)

vacuum and a “one-particle state”. The representations above are known in the literature
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as singleton representations [38]. Commutation relation of sp (2n,R) read[
Si

j , S
k
m

]
= δj

kSi
m − δm

iSk
j[

Si
j , Ukm

]
= −δkiUjm − δm

iUkj[
Si

j , U
km
]

= δj
kU im + δj

mUki[
Uij , U

km
]

= δj
kSm

i + δi
kSm

j + δj
mSk

i + δi
mSk

j

(3.32)

resulting in quadratic Casimir of sp (2n,R)

C2 = Si
jS

j
i −

1
2
(
UijU

ij + U ijUij

)
= Si

jS
j
i − (n+ 1)Si

i − U ijUij = −1
4
n (2n+ 1) .

(3.33)

We thus see that quadratic Casimir of sp (2n,R) takes on the same values on both lwv
|Ω1,2〉.

Conformal group has a natural 3-graded decomposition with respect to non-compact
Lorentz algebra in g0, so called covariant picture, as opposed to compact picture considered
above. These two pictures can be connected [44] observing existence of intertwining operator
W such that

∀a ∈ J UaW |Ω〉 = 0 (3.34)

where Ua is negative grade generator of Conf(J) (c.f. (3.16)) in covariant picture.
The starting point is the observation that W |Ω〉 transforms under the structure group

just like |Ω〉 transforms under the maximal compact subgroup H: the conformal dimension
of the vector W |Ω〉 equals the negative of the conformal energy of |Ω〉. Let eµ be a basis for
the Jordan algebra J . Let Vµ be the generators of generalised translations in the positive
grade space of covariant picture that corresponds to eµ. The covariant basis of unitary lowest
weight representation of the generalised conformal group Conf(J) is given by non-compact
coherent states

|Φ (xµ)〉 := eix
µVµW |Ω〉 (3.35)

Conformal fields, eigenstates of dilatation operator, and covariant under Lorentz group are
in one-to-one correspondence with coherent states |Φ (xµ)〉. Irreducible ULWR’s are equiv-
alent to representations induced by finite dimensional irreps of the Lorentz group with a
definite conformal dimension and trivial special conformal transformation properties, be-
cause the state W |Ω〉 is annihilated by the generators of special conformal transformations
Uµ that belong to the negative grade in covariant picture.

The outlined above procedure generalises the construction of the positive energy rep-
resentations of the 4-dimensional conformal group SU(2, 2) [75] to all generalised confor-
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mal groups of formally real Jordan algebras as well as Hermitian Jordan triple systems.
They are simply induced representations with respect to the maximal parabolic subgroup
Str(J) n SJ , where SJ is the Abelian subgroup generated by generalised special conformal
transformations [44].

The generalised Poincaré groups associated with the space-times defined by Jordan
algebras have the following form

PG(J) = Lor(J) n TJ (3.36)

where TJ is a group formed by generalised translations Vµ, which commute with each other.
For quadratic Jordan algebras, Γ(d) , PG (Γ(d)) equals the Poincaré group in d dimensional
Minkowski space. A quadratic Casimir M2 = PµP

µ of the group PG (Γ(d)) is the familiar
mass squared operator.

For Jordan algebras J of degree n the corresponding Casimir invariant will be con-
structed as n-norm of translation generators. For instance for the real exceptional Jordan
algebra JO

3 the corresponding Casimir invariant is cubic and equals [44]

M3 = CµνρV
µV νV ρ (3.37)

where Cµνρ is the symmetric invariant tensor of the generalised Lorentz group E6(−26) of
JO

3 (µ, ν, ρ, . . . = 0, 1, . . . , 26).

3.5 Quasiconformal groups and Freudenthal triple systems

Not every Lie algebra admits a 3-graded decomposition, examples being exceptional Lie
algebras e8, f4 and g2, which are among Lie algebras of U-duality groups. One can prove,
however, that every simple Lie algebra, except three dimensional sl (2), admits a five graded
decomposition (c.f. A.2):

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2 (3.38)

with g±2 being one-dimensional spaces. In this case the grade −1 space g−1 is naturally
endowed with (Gel’fand-Kirillov) symplectic structure

∀Ex, Ey ∈ g−1 [Ex, Ey] = 2 〈x, y〉E (3.39)

where E ∈ g−2, turning g−1 into Heisenberg-Weyl algebra. Subspace g−1 also has a natural
triple system associated to it by means of (3.19) studied by Freudenthal [30]. Having
motivated an appearance of FTS we now give more axiomatic definitions.

A Freudenthal triple system (FTS) is a vector space M with a trilinear product (X,Y, Z)
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and a skew symmetric bilinear form 〈X,Y 〉 such that3:

(X,Y, Z) = (Y,X,Z) + 2 〈X,Y 〉Z

(X,Y, Z) = (Z, Y,X)− 2 〈X,Z〉Y

〈(X,Y, Z) ,W 〉 = 〈(X,W,Z) , Y 〉 − 2 〈X,Z〉 〈Y,W 〉

(X,Y, (V,W,Z)) = (V,W, (X,Y, Z)) + ((X,Y, V ) ,W,Z)

+ (V, (Y,X,W ) , Z) (3.40)

A quartic invariant I4 can be constructed over the FTS by means of the triple product and
the bilinear form as

I4(X) := 〈(X,X,X) , X〉 (3.41)

Every FTS defines a Lie algebra with 5-graded decomposition (3.38) and one-dimensional
g±2, establishing a one-to-one correspondence between simple Lie algebras (except sl (2))
and Freudenthal triple systems. Following [45] we shall label the Lie algebra generators
belonging to grade +1 and grade −1 subspaces as UA and ŨA, where A ∈ M. The generators
SAB belonging to grade zero subspace are labelled by a pair of elements A,B ∈ M. For
the grade ±2 subspaces one would in general need another set of generators KAB and K̃AB

labelled by two elements, but since these subspaces are one-dimensional we can write them
as

KAB = 〈A,B〉Ka K̃AB = 〈A,B〉 K̃a (3.42)

where a is a real parameter.
One can realize the Lie algebra g as a quasiconformal Lie algebra over a vector space

whose coordinates X are labelled by a pair (X,x), where X ∈ M and x is an extra single
3We should note that the triple product (3.40) could be modified by terms involving the symplectic

invariant, such as 〈X, Y 〉Z. The choice given above was made in [45] in order to obtain agreement with the
formulas of [23].



38

variable as follows [45]:

Ka (X) = 0

Ka (x) = 2 a

UA (X) = A

UA (x) = 〈A,X〉

SAB (X) = (A,B,X)

SAB (x) = 2 〈A,B〉x

ŨA (X) =
1
2

(X,A,X)−Ax

ŨA (x) = −1
6
〈(X,X,X) , A〉+ 〈X,A〉x

K̃a (X) = −1
6
a (X,X,X) + aXx

K̃a (x) =
1
6
a 〈(X,X,X) , X〉+ 2 a x2

(3.43)

From these formulas it is straightforward to determine the commutation relations of the
transformations [45]:

[
UA, ŨB

]
= SAB

[UA, UB] = −KAB[
ŨA, ŨB

]
= −K̃AB

[SAB, UC ] = −U(A,B,C)[
SAB, ŨC

]
= −Ũ(B,A,C)[

KAB, ŨC

]
= U(A,C,B) − U(B,C,A)[

K̃AB, UC

]
= Ũ(B,C,A) − Ũ(A,C,B)

[SAB, SCD] = −S(A,B,C)D − SC(B,A,D)

[SAB,KCD] = KA(C,B,D) −KA(D,B,C)[
SAB, K̃CD

]
= K̃(D,A,C)B − K̃(C,A,D)B[

KAB, K̃CD

]
= S(B,C,A)D − S(A,C,B)D − S(B,D,A)C + S(A,D,B)C

(3.44)

where KAB = K〈A,B〉, and K̃AB = K̃〈A,B〉. The quasi-conformal groups leave invariant a
suitably defined light-cone

I4 (X − Y ) = −2 (x− y + 2 〈X,Y 〉)2 (3.45)

with respect to a quartic norm involving the quartic invariant of M [45].
Freudenthal introduced the triple systems associated with his name in his study of

the metasymplectic geometries associated with exceptional groups [29]. The geometries
associated with FTSs were further studied in [2, 23, 77, 63]. A classification of FTS’s may
be found in [63], where it is also shown that there is a one-to-one correspondence between
simple Lie algebras and simple FTS’s with a non-degenerate skew symmetric bilinear form.
Hence there is a quasiconformal realization of every Lie group acting on a generalised light-
cone.

The Freudenthal triple systems associated with exceptional groups can be represented
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by formal 2× 2 “matrices” of the form

A =

(
α1 x1

x2 α2

)
, (3.46)

where α1, α2 are real numbers and x1, x2 are elements of a simple Jordan algebra JA
3 of

degree three. One can define a triple product over the space of such formal matrices such
that they close under it. There are only four simple Euclidean Jordan algebras J of this
type, namely the 3× 3 Hermitian matrices over the four division algebras A = R, C, H and
O. We shall denote the corresponding FTS’s as M(J).

One may ask which Freudenthal triple systems can be realized in the above form in
terms of an underlying Jordan algebra. This question was investigated by Ferrar [24] who
proved that such a realization is possible only if the underlying Jordan algebra is of degree
three. Remarkably, if one further requires that the underlying Jordan algebra be formally
real then the list of Jordan algebras over which FTS’s can be defined as above coincides with
the list of Jordan algebras that occur in five dimensional N = 2 MESGT’s whose target
spaces are symmetric spaces of the form G/H such that G is a symmetry of the Lagrangian
[39].

Here we will focus only on the quasiconformal groups defined over formally real Jordan
algebras. The Freudenthal triple product of the elements of M(J) is defined as [23]

〈X1, X2, X3〉 =

(
γ c

d δ

)
with Xi =

(
αi ai

bi βi

)
(3.47)

where

γ = α1β2α3 + 2α1α2β3 − α3T (a1, b2)− α2T (a1, b3)

− α1T (a2, b3) + T (a1, a2 × a3)

c = (α2β3 + T (b2, a3)) a1 + (α1β3 + T (b1, a3)) a2 + (α1β2 + T (b1, a2)) a3

− α1 b2 × b3 − α2 b1 × b3 − α3b1 × b2

− {a1, b2, a3} − {a1, b3, a2} − {a2, b1, a3}

δ = −γσ d = −cσ where σ = (α↔ β) (a↔ b) .

Here σ denotes a permutation of α with β and a with b, and

{a, b, c} = Ua+cb− Uab− Ucb (3.48)
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where Uab is defined as in (2.54). Quartic invariant of M (J) is given by [23]

I4

((
α a

b β

))
= (αβ − T (a, b))2 + 6

(
αV (b) + βV (a)− T

(
a], b]

))2
(3.49)

3.6 Space-times over JA
3 as dilatonic and spinorial extensions

of Minkowskian space-times

As stated above we will restrict our studies of generalised space-times to those defined by
formally real Jordan algebras of degree 3. A unified geometric realization of the conformal
and quasiconformal groups of generalised space-times defined by Jordan algebras of degree
three and the FTS’s defined over them was given in [50]. It is reproduced in sections 3.6,
3.7 and 3.8.

The Jordan algebras of degree three that arose in the study of MESGT’s were later
studied by Sierra who showed that there exists a correspondence between them and clas-
sical relativistic point particle actions [104]. In the same work Sierra showed that this
could be extended to a correspondence between classical relativistic bosonic strings and the
Freudenthal triple systems defined over them.

Consider now the space-times coordinatized by the generic Jordan family

J = R⊕ Γ(Q) (3.50)

we shall interpret the extra coordinate corresponding to R as a dilatonic coordinate ρ and
label the coordinates defined by J as (ρ, xm,m = 0, 1, 2, ...(d − 1)) . The automorphism
group SO(d − 1) will then be the rotation group of this space-time under which both the
time coordinate x0 and the dilatonic coordinate ρ will be singlets. The Lorentz group of
this spacetime is the reduced structure group which is simply

SO(d− 1, 1)× SO(1, 1) (3.51)

It leaves invariant the cubic norm which, following [104], we normalise as

V (ρ, xm) =
√

2ρ xmxnη
mn (3.52)

Under the action of SO(d− 1, 1), the dilaton ρ is a singlet and under SO(1, 1) we have

SO(1, 1) :
ρ⇒ e2λρ

xm ⇒ eλxm

(3.53)
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Freudenthal product of two elements of J = R⊕ Γ(Q) is simply

(ρ, x)× (σ, y) =
(√

2xmy
m,
√

2 (ρym + σxm)
)

(3.54)

The conformal group of the spacetime is the Möbius group of J which is

SO (d, 2)× SO (2, 1) (3.55)

The Freudenthal triple systems defined over the generic Jordan family can be represented
by 2× 2 matrices

M (J = R⊕ Γ (Q)) =

(
x1

d J1

J2 x2
d

)
= X (3.56)

where J1, J2 ∈ J and x1
d and x2

d are real coordinates. The automorphism group of M is
SO (d, 2)⊗Sp (2,R) under which an element of M transforms in the representation (d + 2,2).
We shall label the “coordinates” of M as

xa
µ = (xa

m, x
a
d, ρ

a) where a = 1, 2

and interpret it as coordinates of a conformally covariant phase space (so that a = 1 labels
the coordinates and a = 2 labels the momenta).

Skew-symmetric invariant form over M is given by

〈X,Y 〉 = εabη
µνXa

µY
b
ν (3.57)

We should stress the important fact that the conformal group of the spacetime defined by
J is isomorphic to the automorphism group of the Freudenthal triple system M (J) !

To define the quasi-conformal group over the conformal phase space represented by
M (J) we need to extend it by an extra coordinate corresponding to the cocycle (symplectic
form) over M (J). We shall denote the elements of M (J) as X and the extra coordinate as
x. The quasi-conformal group of M (J)⊕ R is the group SO (d+ 2, 4).

The space-times defined by simple Jordan algebras of degree 3 JA
3 correspond to exten-

sions of Minkowski space-times in the critical dimensions d = 3, 4, 6, 10 by a dilatonic (ρ)
and commuting spinorial coordinates (ξa).

JR
3 ⇐⇒ (ρ, xm, ξ

α) m = 0, 1, 2 α = 1, 2

JC
3 ⇐⇒ (ρ, xm, ξ

α) m = 0, 1, 2, 3 α = 1, 2, 3, 4

JH
3 ⇐⇒ (ρ, xm, ξ

α) m = 0, . . . , 5 α = 1, . . . , 8

JC
3 ⇐⇒ (ρ, xm, ξ

α) m = 0, . . . , 9 α = 1, . . . , 16

(3.58)
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The commuting spinors ξ are represented by a 2× 1 matrix over A = R,C,H,O. The cubic
norm of a “vector” with coordinates (ρ, xm, ξ

α) is given by [104]

V (ρ, xm, ξ
α) =

√
2ρxmxnη

mn + xmξ̄γmξ (3.59)

The Lorentz groups of the space-times over JA
3 are

SL (3,R) , SL (3,C) , SU∗ (6) , and E6(−26) (3.60)

respectively, corresponding to the invariance groups of their cubic norm. The Freudenthal
product of two vectors in the corresponding space-time is given by

(ρ, xm, ξ
α)× (σ, ym, ζ

α) =(√
2xmy

m,
1
2
(
ξ̄γmζ + ζ̄γmξ

)
+
√

2 (ρ ym + σ xm) , xm ζ̄γm + ym ξ̄γm

)
(3.61)

The conformal groups of these space-times are

Sp (6,R) , SU (3, 3) , SO∗ (12) , and E7(−25) (3.62)

respectively. The automorphism groups of the FTS M
(
JA

3

)
are isomorphic to their confor-

mal groups.
The quasi-conformal groups acting on M

(
JA

3 ⊕ R
)
, where R represents the extra “co-

cyle” coordinate, are
F4(4), E6(2), E7(−5), and E8(−24) (3.63)

whose minimal unitary irreducible representations were constructed in [48].

3.7 Geometric realizations of SO (d + 2, 4) as quasiconformal

groups

Lie algebra of SO (d+ 2, 4) admits the following 5-graded decomposition

so (d+ 2, 4) = 1⊕ (d + 2,2)⊕ (∆⊕ sp (2,R)⊕ so (d, 2))⊕ (d + 2,2)⊕ 1 (3.64)

Generators are realized as differential operators in 2d + 5 coordinates corresponding to
g−2 ⊕ g−1 subspace which we shall denote as x and Xµ,a where a = 1, 2 is an index of
representation 2 of sp (2,R) and we shall let the indices µ run from 1 to d + 2 with the
indices d+1 and d+2 labelling the two time-like coordinates, i.e xµ transforms like a vector
of SO(d, 2).
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Let εab be symplectic real-valued matrix, and ηµν denote signature (d, 2) metric preserved
by SO(d, 2). Then

I4 = ηµνηρτ εacεbdX
µ,aXν,bXρ,cXτ,d (3.65)

is a 4th-order polynomial invariant under the semisimple part of g0. Define

K+ =
1
2
(
2x2 − I4

) ∂

∂x
− 1

4
∂I4

∂Xµ,a
ηµνεab ∂

∂Xν,b
+ xXµ,a ∂

∂Xµ,a

Uµ,a =
∂

∂Xµ,a
− ηµ,νεabX

ν,b ∂

∂x

Mµν = ηµρX
ρ,a ∂

∂Xν,a
− ηνρX

ρ,a ∂

∂Xµ,a

Jab = εacX
µ,c ∂

∂Xµ,b
+ εbcX

µ,c ∂

∂Xµ,a

K− =
∂

∂x
∆ = 2x

∂

∂x
+Xµ,a ∂

∂Xµ,a
Ũµ,a = [Uµ,a,K+]

(3.66)

where εab denotes an inverse symplectic metric: εabεbc = δa
c and Ũµ,a evaluates to

Ũµ,a = ηµνεad

(
ηλρεbcX

ν,bXλ,cXρ,d − xXν,d
) ∂

∂x
+ x

∂

∂Xµ,a

− ηµνεabX
ν,bXρ,c ∂

∂Xρ,c
− εadηλρX

ρ,dXλ,c ∂

∂Xµ,c

+ εadηµνX
ρ,dXν,b ∂

∂Xρ,b
+ ηµνεbcX

ν,bXρ,c ∂

∂Xρ,a

(3.67)

we have
∂I4

∂Xµ,a
= −4 ηµν ηλρX

ν,bXλ,cXρ,d εbcεad

These generators satisfy the following commutation relation:

[Mµν ,Mρτ ] = ηνρMµτ − ηµρMντ + ηµτMνρ − ηντMµρ

[Jab, Jcd] = εcbJad + εcaJbd + εdbJac + εdaJbc

[∆,K±] = ±2K± [K−,K+] = ∆

[∆, Uµ,a] = −Uµ,a

[
∆, Ũµ,a

]
= Ũµ,a

[Uµ,a,K+] = Ũµ,a

[
Ũµ,a,K−

]
= −Uµ,a

[Uµ,a, Uν,b] = 2ηµνεabK−

[
Ũµ,a, Ũν,b

]
= 2ηµνεabK+

(3.68a)

[Mµν , Uρ,a] = ηνρUµ,a − ηµρUν,a

[
Mµν , Ũρ,a

]
= ηνρŨµ,a − ηµρŨν,a

[Jab, Uµ,c] = εcbUµ,a + εcaUµ,b

[
Jab, Ũµ,c

]
= εcbŨµ,a + εcaŨµ,b

(3.68b)

[
Uµ,a, Ũν,b

]
= ηµνεab ∆− 2 εabMµν − ηµνJab (3.68c)
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The distance invariant under SO (d+ 2, 4) can be constructed following [45]. Let us first
introduce a difference between two vectors X and Y on g−1 ⊕ g−2:

δ (X ,Y) =
(
Xµ,a − Y µ,a, x− y − ηµνεabX

µ,aY ν,b
)

(3.69)

and define the “length” of a vector X as

` (X ) = I4 (X) + 2x2 (3.70)

Then the cone defined by ` (δ (X ,Y)) = 0 is invariant w.r.t. the full group SO(d + 2, 4),
because of the following identities:

∆ ◦ ` (δ (X ,Y)) = 4 ` (δ (X ,Y))

Ũµ,a ◦ ` (δ (X ,Y)) = −2ηµνεab

(
Xν,b + Y ν,b

)
` (δ (X ,Y))

K+ ◦ ` (δ (X ,Y)) = 2 (x+ y) ` (δ (X ,Y))

any other generator ◦ ` (δ (X ,Y)) = 0

(3.71)

This result provides an example of the cone referred to in (3.45).

3.8 Geometric realizations of E8(−24), E7(−5), E6(2) and F4(4) as

quasiconformal groups

The minimal unitary representations of the quasiconformal groups of the space-times defined
by simple formally real Jordan algebras of degree three were given in [48]. In this section
we will give their geometric realizations as quasiconformal groups in an SO(d, 2)×Sp(2,R)
covariant basis where d is equal to one of the critical dimensions 3, 4, 6, 10.

3.8.1 Geometric realization of the quasiconformal group E8(−24)

For realizing the geometric action of the quasiconformal group E8(−24) in an SO(10, 2) ×
SO(2, 1) covariant basis we shall use the following 5-graded decomposition of its Lie algebra

e8(−24) = 1̃⊕ 5̃6⊕
[
so(1, 1)⊕ e7(−25)

]
⊕ 56⊕ 1 (3.72)

e8(−24) = 1⊕

(
(2,12)

(1,32c)

)
⊕

[
∆⊕

(
(2,32s)

sp (2,R)⊕ so (10, 2)

)]
⊕

(
(2,12)

(1,32c)

)
⊕ 1.
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The generators of the simple subalgebra e7(−25) in g0 satisfy the following SO(10, 2) covariant
commutation relations.

[Mµν , Qaα̇] = Qaβ̇ (Γµν)
β̇

α̇

[Jab, Qcα̇] = εcbQaα̇ + εcaQbα̇[
Qaα̇, Qbβ̇

]
= εab (CΓµν)α̇β̇ M

µν + Cα̇β̇Jab

(3.73)

where Mµν and Jab are the generators of SO(10, 2) and Sp(2,R), respectively and Qaα̇ are
the remaining generators transforming in the (32s,2)) of SO(10, 2) × Sp(2,R) . C is the
charge conjugation matrix in (10, 2) dimensions and is antisymmetric

Ct = −C (3.74)

The generators of E7(−25) are realized in terms of the “coordinates” Xµ,a and ψα transform-
ing in the (12,2) and (32c,1) representation of SO(10, 2)× Sp(2,R) as follows

Mµν = ηµρX
ρ,a ∂

∂Xν,a
− ηνρX

ρ,a ∂

∂Xµ,a
− ψα(Γµν)

β
α

∂

∂ψβ

Jab = εacX
µ,c ∂

∂Xµ,b
+ εbcX

µ,c ∂

∂Xµ,a

Qaα̇ = εabX
µ,b(Γµ)β

α̇

∂

∂ψβ
− ψβ (CΓµ)βα̇ η

µν ∂

∂Xν,a

(3.75)

where Γµ are the gamma matrices and Γµν = 1
4 (ΓµΓν − ΓνΓµ). α, β, .. and α̇, β̇, ... are chiral

and anti-chiral spinor indices that run from 1 to 32, respectively. Γ matrices are taken to
be in a chiral basis (with Γ13 being diagonal) . The spinorial “coordinates” ψα transform
as a Majorana-Weyl spinor of SO(10, 2). One convenient choice for gamma matrices is

Γi = σ1 ⊗ σ1 ⊗ Γ(8)
i Γ9 = σ1 ⊗ σ1 ⊗ Γ(8)

9 Γ10 = σ1 ⊗ σ3 ⊗ 116

Γ11 = σ1 ⊗ iσ2 ⊗ 116 Γ12 = iσ2 ⊗ 132 C = 12 ⊗ iσ2 ⊗ 116

(3.76)

where i = 1, . . . , 8 and Γ(8)
9 = Γ(8)

1 . . .Γ(8)
8 . Matrices Γ(8)

i are those of Clifford algebra of R8.
The chiral realization (3.76) assumes mostly plus signature convention:

ηµν = diag
(
(+)10 , (−)2

)
µ, ν = 1, . . . , 12. (3.77)

The fourth order invariant of e7(−25) in the above basis reads as

I4 = ηµνηρτ εacεbdX
µ,aXν,bXρ,cXτ,d + 2εabX

µ,aXν,bψα (CΓµν)αβ ψ
β

+
1
6
ψα (CΓµν)αβ ψ

βψγ (CΓµν)γδ ψ
δ

(3.78)



46

Given the above data, it is straightforward to realize the generators of e8(−24) on a 56+1 = 57
dimensional space following [45, 46, 48]. We start with negative grade generators

K− =
∂

∂x
Uα =

∂

∂ψα
− Cαβψ

β ∂

∂x

Uµ,a =
∂

∂Xµ,a
− ηµ,νεabX

ν,b ∂

∂x

(3.79)

where x is the singlet “cocycle” coordinate. Grade +2 generator is

K+ =
1
2
(
2x2 − I4

) ∂

∂x
− 1

4
∂I4

∂Xµ,a
ηµνεab ∂

∂Xν,b

+
1
4
∂I4

∂ψα

(
C−1

)αβ ∂

∂ψβ
+ xXµ,a ∂

∂Xµ,a
+ xψα ∂

∂ψα

(3.80)

Generators of grade +1 space are obtained by commutingK+ with corresponding generators
of g−1:

Ũµ,a = [Uµ,a,K+] Ũα = [Uα,K+] . (3.81)

The generator that determines the five grading is simply

∆ = 2x
∂

∂x
+Xµ,a ∂

∂Xµ,a
+ ψα ∂

∂ψα
(3.82)

The commutation relations of these generators are those of (3.68) for d = 10 supplemented
with (3.73) and the following:

[Uα, Uβ ] = 2CαβK−[
Ũα, Ũβ

]
= 2CαβK+

[Uα,K+] = Ũα[
Ũα,K−

]
= −Uα

[Qaα̇, Uµ,b] = −εab(Γµ)α
α̇Uα[

Qaα̇, Ũµ,b

]
= −εab(Γµ)α

α̇Ũα

[Qaα̇, Uβ ] = (CΓµ)βα̇ η
µνUν,a[

Qaα̇, Ũβ

]
= (CΓµ)βα̇ η

µνŨν,a[
Ũα, Uµ,a

]
= −

(
CΓµC

−1
)
α

α̇
Qaα̇[

Uα, Ũµ,a

]
=
(
CΓµC

−1
)
α

α̇
Qaα̇

[
Uα, Ũβ

]
= Cαβ∆− (CΓµν)αβ M

µν

(3.83)

with all the remaining commutators vanishing. The explicit expressions for the grade +1
generators are

Ũµ,a = −1
4
∂I4

∂Xµ,a

∂

∂x
− x ηµνεabX

ν,b ∂

∂x
+ x

∂

∂Xµ,a

− 1
4

∂2I4

∂Xµ,a∂Xν,b
ηνλεbc

∂

∂Xλ,c
− 1

4
∂2I4

∂Xµ,a∂ψα

(
C−1

)αβ ∂

∂ψβ

− ηµνεabX
ν,b

(
Xλ,c ∂

∂Xλ,c
+ ψγ ∂

∂ψγ

) (3.84)
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Ũα = −1
4
∂I4

∂ψα

∂

∂x
− x

(
Cαβψ

β
) ∂

∂x
− Cαβψ

β

(
Xµ,a ∂

∂Xµ,a
+ ψγ ∂

∂ψγ

)
− 1

4
∂2I4

∂Xµ,a∂ψα
ηµνεab ∂

∂Xν,b
− 1

4
∂2I4

∂ψα∂ψβ

(
C−1

)βγ ∂

∂ψγ
+ x

∂

∂ψα

(3.85)

The above geometric realization of the quasiconformal action of the Lie algebra of E8(−24)

can be consistently truncated to the quasiconformal realizations of E7(−5), E6(2) and F4(4),
which we discuss in the following subsections. We should stress that for all these groups
one can define a quartic norm such that they leave the generalised light-cone defined with
respect to this quartic norm invariant as was shown for the maximally split exceptional
groups in [45] and for SO(d+ 2, 4) above.

3.8.2 Geometric realization of the quasiconformal group E7(−5)

Truncation of the geometric realization of the quasiconformal group E8(−24) to E7(−5) is
achieved by “dimensional reduction” from 10 to 6 dimensions. Reduction of 32-component
Majorana-Weyl spinor of so (10, 2) is done by using the projection operators:

Pα
β =

1
2
(1 + Γ1Γ2Γ3Γ4)

α
β P α̇

β̇ =
1
2
(1 + Γ1Γ2Γ3Γ4)

α̇
β̇ (3.86)

where we assumed we compactify first 4 compact directions. This projection will reduce
number of spinor components down to 16. It is clear that projected spinors will have the
same chirality as their ancestors:

PΓ5 . . .Γ12P = PΓ13P (3.87)

This 16-component spinor would thus comprise 2 same chirality 8-components spinors of
so (6, 2) satisfying symplectic Majorana-Weyl reality condition. Their R-group is su (2) -
part of the so (4) of the transverse directions that leaves the projection operator invariant.
Thus the relevant 5-graded decomposition of e7(−5)

e7(−5) = 1̃⊕ 3̃2⊕ [so∗(12)⊕ so(1, 1)]⊕ 32⊕ 1

reads

e7(−5) = 1⊕

(
(2,1,8v)

(1,2,8c)

)
⊕

[
∆⊕

[
(2,2,8s)

sp (2,R)⊕ su (2)⊕ so (6, 2)

]]
⊕

(
(2,1,8v)

(1,2,8c)

)
⊕ 1

(3.88)
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Let ξi,α be an su (2) doublet of so (6, 2) chiral spinors (symplectic Majorana-Weyl spinor)
with a, b, .. = 1, 2 and α, β, ... = 1, 2, .., 8. Then one can realize the Lie algebra of so∗(12) of
grade zero subspace as

Mµν = ηµρX
ρ,a ∂

∂Xν,a
− ηνρX

ρ,a ∂

∂Xµ,a
− ξi,α(Γµν)

β
α

∂

∂ξi,β

Jab = εacX
µ,c ∂

∂Xµ,b
+ εbcX

µ,c ∂

∂Xµ,a

Lij = εikξ
k,α ∂

∂ξj,α
+ εjkξ

k,α ∂

∂ξi,α

Qiaα̇ = εabX
µ,b(Γµ)β

α̇

∂

∂ξi,β
− εijψ

j,β (CΓµ)βα̇ η
µν ∂

∂Xν,a

(3.89)

where Ct = C and µ, ν, .. = 1, 2, .., 8. Generators M,J,L,Q form so∗ (12) algebra:

[Mµν , Qiaα̇] = Qiaβ̇ (Γµν)
β̇

α̇

[Lij , Lkm] = εkjLim + εkiLjm + εmjLik + εmiLjk

[Jab, Qicα̇] = εcbQiaα̇ + εcaQibα̇[
Qiaα̇, Qjbβ̇

]
= εijεab (CΓµν)α̇β̇ M

µν + εijCα̇β̇Jab + εabCα̇β̇Lij

(3.90)

corresponding to the decomposition

so∗ (12) ⊃ so∗ (8)⊕ so∗ (4) ≡ so (6, 2)⊕ su (2)⊕ sp (2,R) (3.91)

The fourth order invariant of so∗ (12) in the above basis is given by

I4 = ηµνηρτ εacεbdX
µ,aXν,bXρ,cXτ,d − 2εijεabX

µ,aXν,bξi,α (CΓµν)αβ ξ
j,β

+
1
4
ξi,α (CΓµν)αβ ξ

j,βξk,γ (CΓµν)γδ ξ
l,δεijεkl

(3.92)

We can now write generators of e7(−5), starting with negative grade generators

K− =
∂

∂x
Ui,α =

∂

∂ξi,α
+ εijCαβξ

j,β ∂

∂x

Uµ,a =
∂

∂Xµ,a
− ηµ,νεabX

ν,b ∂

∂x

(3.93)

Positive grade +2 generator K+ is

K+ =
1
2
(
2x2 − I4

) ∂

∂x
− 1

4
∂I4

∂Xµ,a
ηµνεab ∂

∂Xν,b

+
1
4
εij

∂I4

∂ξi,α

(
C−1

)αβ ∂

∂ξj,β
+ xXµ,a ∂

∂Xµ,a
+ x ξi,α ∂

∂ξi,α

(3.94)
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Commutation relations of g−1 and g+1 specific to 6 + 2 = 8 dimensions are :[
Ui,α, Ũj,β

]
= εij (CΓµν)αβ M

µν + CαβLij − εijCαβ∆[
Ui,α, Ũµ,a

]
= −

(
CΓµC

−1
)
α

α̇
Qiaα̇.

(3.95)

Grade +1 generators have the following form:

Ũµ,a = −1
4
∂I4

∂Xµ,a

∂

∂y
− ηµνεabX

ν,b y
∂

∂y
+ y

∂

∂Xµ,a

− 1
4

∂2I4

∂Xµ,a∂Xν,b
ηνρεbc

∂

∂Xρ,c
+

1
4

∂2I4

∂Xµ,aξi,α
εij
(
C−1

)αβ ∂

∂ξj,β

− ηµνεabX
ν,b

(
Xλ,c ∂

∂Xλ,c
+ ξi,α ∂

∂ξi,α

) (3.96)

Ũi,α = −1
4
∂I4

∂ξi,α

∂

∂y
+ Cαβεijξ

j,β y
∂

∂y
+ y

∂

∂ξi,α

+
1
4

∂2I4

∂ξi,α∂ξj,β

(
C−1

)βγ
εjk

∂

∂ξk,γ
− 1

4
∂2I4

∂ξi,αXµ,a
ηµνεab ∂

∂Xν,b

+ Cαβεijξ
j,β

(
Xλ,c ∂

∂Xλ,c
+ ξi,α ∂

∂ξi,α

) (3.97)

3.8.3 Geometric realization of the quasiconformal group E6(2)

Truncation to e6(2) is done by further dimensional reduction from d = 6 to d = 4. Projecting
spinors is done in a similar way and results in breaking R-symmetry algebra to u (1). The
resulting 5-graded decomposition of e6(2) is:

e6(2) = 1̃⊕ 2̃0⊕ [su(3, 3)⊕ so(1, 1)]⊕ 20⊕ 1 (3.98)

e6(2) = 1⊕


(2,6v)

(1,4c)
+

(1,4s)
−

⊕
[
∆⊕

[
(2,4s)

+ ⊕ (2,4c)
−

sp (2,R)⊕ u (1)⊕ so (4, 2)

]]
⊕


(2,6v)

(1,4c)
+

(1,4s)
−

⊕ 1

(3.99)

where + and − refer to ±1 charges of u (1). Let ζα be a chiral spinor of so (4, 2) and ζα̇

the corresponding anti-chiral spinor. We shall combine these two chiral spinors into one
Majorana spinor ψA of so (4, 2). The decomposition of the The generators of su(3, 3) in g0
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subspace read as follows

Mµν = ηµρX
ρ,a ∂

∂Xν,a
− ηνρX

ρ,a ∂

∂Xµ,a
− ψA(Γµν)

A
B

∂

∂ψB

H = ζα ∂

∂ζα
− ζα̇ ∂

∂ζα̇
= ψA(Γ7)

B
A

∂

∂ψB

Qa,A = εabX
µ,a(Γµ)B

A

∂

∂ψB
+ ηµνψB (CΓµΓ7)BA

∂

∂Xν,a

while Jab is defined as before and the charge conjugation matrix is now symmetric Ct = C.
These generators of su (3, 3) satisfy the commutation relations

[Qa,A, Qb,B] =
3
2
εabCABH − εab (CΓµν)AB M

µν − (CΓ7)AB Jab

[H,Qa,A] = (Γ7)
B

AQa,B

(3.100)

The chiral components of the generators of Qa,A are given by

Qa,α = εabX
µ,b(Γµ)α̇

α

∂

∂ζα̇
+ ηµνζβ (CΓµ)βα

∂

∂Xν,a

Qa,α̇ = εabX
µ,b(Γµ)α

α̇

∂

∂ζα
− ηµνζ β̇ (CΓµ)β̇α̇

∂

∂Xν,a

The 4-th order invariant of su (3, 3) written in terms of X and ψ reads as follows:

I4 = ηµνηρτ εacεbdX
µ,aXν,bXρ,cXτ,d − 2Xµ,aεabX

ν,bψAψB (CΓµν)AB

+
1
3
ηµνηρτψAψB (CΓµρ)AB ψ

EψF (CΓντ )EF

(3.101)

The spinorial generators of E6(2) belonging to g−1 subspace are realized as

UA =
∂

∂ψA
+ (CΓ7)AB ψ

B ∂

∂y
(3.102)

which commute into the grade −2 generator K−

[UA, UB] = 2 (CΓ7)AB K− (3.103)

The commutators of the generators Qa,A belonging to grade zero subspace with those in
grade -1 subspace read as

[Qa,A, UB] = − (CΓµΓ7)AB η
µνUν,a

[Qa,A, Uµ,b] = −εabUB(Γµ)B
A

(3.104)
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Commutation relations of the form
[
g−1, g+1

]
⊂ g0 are

[
UA, ŨB

]
= −3

2
(CΓ7)AB H − CAB∆ + (CΓµν)AB M

µν[
UA, Ũµ,a

]
=
(
CΓµC

−1
)
A

B
Qa,B[

ŨA, Uµ,a

]
= −

(
CΓµC

−1
)
A

B
Qa,B

(3.105)

Explicit expressions for positive grade generators are as follows:

Ũµ,a = −1
4
∂I4

∂Xµ,a

∂

∂y
− ηµνεabX

ν,by
∂

∂y
+ y

∂

∂Xµ,a

− 1
4

∂2I4

∂Xµ,aXν,b
ηνρεbc

∂

∂Xρ,c
− 1

4
∂2I4

∂Xµ,aψA

(
Γ7C

−1
)AB ∂

∂ψB

− ηµνεabX
ν,b

(
Xλ,c ∂

∂Xλ,c
+ ψA ∂

∂ψA

) (3.106)

ŨA = −1
4
∂I4

∂ψA

∂

∂y
− (CΓ7)AB ψ

By
∂

∂y
+ y

∂

∂ψA

− 1
4

∂2I4

∂ψAψB

(
Γ7C

−1
)BC ∂

∂ψC
− 1

4
∂2I4

∂Xµ,aψA
ηµνεab ∂

∂Xν,b

− (CΓ7)AB ψ
B

(
Xλ,c ∂

∂Xλ,c
+ ψC ∂

∂ψC

) (3.107)

K+ =
1
2
(
2y2 − I4

) ∂
∂y

+ y

(
Xµ,a ∂

∂Xµ,a
+ ψA ∂

∂ψA

)
− 1

4
∂I4

∂Xµ,a
εabηµν ∂

∂Xν,b
− 1

4
∂I4

∂ψA

(
Γ7C

−1
)AB ∂

∂ψB

(3.108)

3.8.4 Geometric realization of the quasiconformal group F4(4)

Further truncation to f4(4) is performed by reducing from d = 4 to d = 3. The 5-grading in
this case is

f4(4) = 1̃⊕ 1̃4⊕ [sp(6,R)⊕ so(1, 1)]⊕ 14⊕ 1 (3.109)

f4(4) = 1⊕

(
(2,5)

(1,4)

)
⊕

[
∆⊕

[
(2,4)

sp (2,R)⊕ so (3, 2)

]]
⊕

(
(2,5)

(1,4)

)
⊕ 1

(3.110)
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We use the same notations for spinors as above, assuming that now A = 1, . . . , 4.

Mµν = ηµρX
ρ,a ∂

∂Xν,a
− ηνρX

ρ,a ∂

∂Xµ,a
− ψA(Γµν)

A
B

∂

∂ψB

Qa,A = εabX
µ,a(Γµ)B

A

∂

∂ψB
+ ηµνψB (CΓµ)BA

∂

∂Xν,a

where Ct = −C. The generators Qa,A close into sp (2,R)⊕ so (3, 2) as follows:

[Qa,A, Qb,B] = εab (CΓµν)AB M
µν + CABJab (3.111)

and transform under sp (2,R)⊕ so (3, 2) in the (2,4) representation. The generators Qa,A,
Mµν and Jab form the sp(6,R) subalgebra.

Generators K− ∈ g−2 and Uµ,a ∈ g−1 are as above and spinorial generators of g−1 are
given by

UA =
∂

∂ψA
+ (C)AB ψ

B ∂

∂y
(3.112)

Spinorial generators form an Heisenberg subalgebra with charge conjugation matrix C serv-
ing as symplectic metric:

[UA, UB] = −2CABK− (3.113)

The generators Q act on g−1 subspace as follows

[Qa,A, UB] = (CΓµ)AB η
µνUν,a

[Qa,A, Uµ,b] = −εab(Γµ)B
AUB

(3.114)

Quartic invariant I4 of sp(6,R) in sp (2,R)⊕ so (3, 2) basis is given by

I4 = ηµνηρτ εacεbdX
µ,aXν,bXρ,cXτ,d − 2Xµ,aεabX

ν,bψAψB (CΓµν)AB (3.115)

Notice that the quartic term involving purely spinorial coordinates ,present in previous
cases, now vanishes, since there is no symmetric rank 4 invariant tensor of so (3, 2) '
sp (4,R) over its spinorial representation space. Then the positive grade generators are

K+ =
1
2
(
2y2 − I4

) ∂
∂y

+ y

(
Xµ,a ∂

∂Xµ,a
+ ψA ∂

∂ψA

)
− 1

4
∂I4

∂Xµ,a
εabηµν ∂

∂Xν,b
+

1
4
∂I4

∂ψA

(
C−1

)AB ∂

∂ψB

(3.116)
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Ũµ,a = −1
4
∂I4

∂Xµ,a

∂

∂y
− ηµνεabX

ν,by
∂

∂y
+ y

∂

∂Xµ,a

− 1
4

∂2I4

∂Xµ,aXν,b
ηνρεbc

∂

∂Xρ,c
+

1
4

∂2I4

∂Xµ,aψA

(
C−1

)AB ∂

∂ψB

− ηµνεabX
ν,b

(
Xλ,c ∂

∂Xλ,c
+ ψA ∂

∂ψA

) (3.117)

ŨA = −1
4
∂I4

∂ψA

∂

∂y
+ CABψ

By
∂

∂y
+ y

∂

∂ψA

+
1
4

∂2I4

∂ψAψB

(
C−1

)BC ∂

∂ψC
− 1

4
∂2I4

∂Xµ,aψA
ηµνεab ∂

∂Xν,b

+ (C)AB ψ
B

(
Xλ,c ∂

∂Xλ,c
+ ψC ∂

∂ψC

) (3.118)

Commutation relations of generators belonging to g−1 and to g+1 are[
UA, ŨB

]
= (CΓµν)AB M

µν − CAB∆[
UA, Ũµ,a

]
= −

(
CΓµC

−1
)
A

B
Qa,B[

ŨA, Uµ,a

]
=
(
CΓµC

−1
)
A

B
Qa,B

(3.119)

3.9 Summary

In conclusion, we find that U-dualities of MESGT supergravity theories in d = 5 whose
scalar manifolds are symmetry spaces with covariantly constant T-tensor are Lorentz group
of generalised space-times, associated with Jordan algebras JA

3 and generic Jordan family.
U-dualities of theories obtained by compactification of d = 5 theories to d = 4 are conformal
groups of these space-times. Further compactification to d = 3, where all degrees of freedom
are dualised to scalars, U-duality group is isomorphic to quasi-conformal group.

U-duality groups of MESGTs, summarised in the table 3.2, form what is known as Magic
Square [41] obtained by Freudenthal [29] in his study of relation between division algebras
and exceptional groups.

d = 5 compact d = 5 d = 4 d = 3
JR

3 SO (3) SL (3,R) Sp (6,R) F4(4)

JC
3 SU (3) SL (3,C) SU (3, 3) E6(2)

JH
3 Usp (6) SU∗ (6) SO∗ (12) E7(−5)

JO
3 F4 E6(−26) E7(−25) E8(−24)

Table 3.2: U-duality groups for exceptional MESGTs in d = 3, 4, 5.

It is important to stress that using Jordan algebras to define generalised space-times
with conformal groups admitting positive energy unitary irreducible representations requires
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that the underlying Jordan algebra be Euclidean. These algebras are relevant for N = 2
MESGT geometries. The conformal groups of simple Jordan algebras of degree 3 over the
split composition algebras do not admit positive energy unitary irreducible representations.
Correspondingly, U-duality groups of maximal supergravities do not admit lowest weight
unitary representations. One can however carry out algebraic constructions of Lie algebras
based on Jordan triple systems and Freudenthal triple systems associated with these Jor-
dan algebras. Resulting Lie algebras will be U-duality algebras corresponding to maximal
supergravity theories in d = 5, d = 4 and d = 3 dimensions [46].
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Chapter 4

Minimal representations of U-duality groups

In 1974 Joseph solved [59] the following problem:

Determine the least number of degrees of freedom for which a quantum me-
chanical system admits a given semi-simple Lie algebra and construct the cor-
responding class of realizations.

The realizations he found are termed minimal realizations. Joseph gave minimal realiza-
tions for classical groups as well as for the exceptional Lie algebra g2, and showed that
minimal realizations are determined by a unique completely prime two-sided ideal (known
in literature as Josephs ideal) J0 in enveloping algebra U (g) of Lie algebra g in question.
Minimal number of degrees of freedom necessary to realize simple Lie algebras are sum-
marised in table 4.1. It is computed as dim

(
g−1
)
/2 + 1, where g−1 refers to -1 grade in

the five-graded decomposition (3.38). Indeed since g−1 is endowed with Kirillov-Konstant
symplectic structure half of g−1 can be identified as coordinates and complementary half as
momentum. Extra coordinate comes from associating a coordinate to g−2.

Studying minimal realizations is very relevant in the context of spectrum generating
algebras [9]. Indeed, because the latter are required to possess an irreducible representation
which exhaust the spectrum of a given system, their construction involves the realization
of a Lie algebra within a minimal numbers of degrees of freedom.

Minimal unitary representations were proved to exist by Vogan [111] who identified
them within the framework of Langlands classification. Minimal representations for all
simply-laced algebras, were constructed by Kazhdan and Savin [65], and by Brylinski and
Konstant [10] using rather different methods. Gross and Wallach [35] gave yet another
construction of minimal unitary representation of exceptional Lie algebras of real rank 4

Cartan label: An Bn Cn Dn G2 F4 E6 E7 E8

# d.o.f. : n 2n− 2 n 2n− 3 3 8 11 17 29

Table 4.1: Minimal number of degrees of freedom necessary to realize given simple Lie
algebra as a symmetry of quantum mechanical system.

Number of degrees of freedom (d.o.f.) is also minimal “dimension” of representation.
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which includes e8(−24). An explicit realization of Chevalley generators in terms of pseudo-
differential operators was recently given for all simply-laced algebras by Kazhdan, Pioline
and Waldron [64] who used minimal representation of continuous U-duality groups G to
construct automorphic forms of discrete subgroups G (Z) of U-duality groups G.

Construction of minimal realization using Freudenthal triple systems was done in [46] by
Günaydin, Koepsell and Nicolai for maximally split U-duality groups and by Günaydin and
Pavlyk in [48, 50] for U-duality groups of MESGTs. These constructions arise naturally from
geometric construction of quasi-conformal algebras [46] since there is a naturally defined
(3.39) symplectic structure on g−1 and thus one can introduce a notion of coordinates and
momenta.

4.1 Conformal quantum mechanics

Consider a quantum mechanical model with one degree freedom, an associated canonical
coordinate y and momentum p1

[y, p] = i (4.1)

De Alfaro, Fubini and Furlan [1] considered a motion of such a particle in inverse square
potential and explored conformal symmetry sl (2,R) that it admits. Let

E =
1
2
y2 F =

1
2
p2 +

g (g + 1)
2y2

∆ =
1
2

(yp+ py) (4.2)

with commutation relations

[∆, E] = −2iE

[∆, F ] = +2iF
[E,F ] = i∆ (4.3)

of sp (2,R). Since each generator is Hermitian and the Casimir of the above algebra reads

Csp(2,R) = ∆2 + (F − E)2 − (F + E)2 (4.4)

we conclude that F − E and ∆ are non-compact generators and F + E is compact. The
implication of this is that only F + E has a spectrum bounded from below and hence is
suitable for the role of Hamiltonian of quantum mechanical model. Evaluating quadratic
Casimir on the realization given by (4.2) we find

Csp(2,R) =
3
4
− g (g + 1) (4.5)

1Throughout the thesis we set ~ = 1 as well as m = 1 for convenience.
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it to reduce to c-number. In coordinate representation E + F reads as follows:

− 1
2
∂2

∂x2
f (x) +

1
2

(
x2 +

g (g + 1)
x2

)
f (x) = Ef (x) . (4.6)

Seeking for solutions regular at the origin we find

fE (x) = e−
x2

2 xg+1L
g+ 1

2
1
4
(−2g+2E−3)

(
x2
)

(4.7)

where function L stands for Laguerre function which can be expressed in terms of confluent
hypergeometric function

Lµ
ν (z) =

Γ (µ+ ν + 1)
Γ (µ+ 1) Γ (ν + 1) 1F1

(
−ν
µ+ 1

∣∣∣∣∣ z
)

(4.8)

Regularity at infinity requires L to be polynomial of some degree n. This determines the
spectrum

E = 2n+ g +
3
2

(4.9)

The resemblance of the spectrum to that of harmonic oscillator is easily seen by noting that
(4.6) is in fact the radial part of Shrödinger equation for three-dimensional oscillator with
coupling constant g being angular momentum quantum number.

Because all U-duality algebras feature sl (2,R) ' sp (2,R) ' su (1, 1) as subalgebra
generated by grade ±2 subspaces, we shall encounter the above construction as a common
theme for minimal unitary realizations of U -duality algebras.

We now turn to construction of minimal realization of e8(−24) and construct minimal
realizations of supergravity pertaining subalgebras by truncation. Results of sections 4.2,
4.3 and 4.4 were published in [48].

4.2 Minimal realization of e8(−24)

The Lie algebra e8(−24) of E8(−24) admits a 5-grading with respect its subalgebra e7(−25) ⊕
so(1, 1) determined by the generator ∆ of a dilatation subgroup SO(1, 1)

e8(−24) =
g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2

1 ⊕ 56 ⊕ (133⊕ 1) ⊕ 56 ⊕ 1
(4.10)

such that g±2 generators together with ∆ form an sl(2,R) subalgebra.
To construct the minimal unitary representation of e8(−24) we find it convenient to work

in a basis covariant with respect to su∗(8) subalgebra of e7(−25)
2. In the su∗(8) basis the

2 The su∗(8)-covariant basis of e7(−25) is the analog of sl(8, R) basis of e7(7) [45]
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generators of e7(−25) can be labelled as follows

133 = 63⊕ 70 = JA
B ⊕ JABCD (4.11)

where JA
B denote the generators of su∗(8) and JABCD is completely antisymmetric in its

indices A,B, . . . = 1, 2, . . . , 8. They satisfy the commutation relations[
JA

B, J
C

D

]
= δC

BJ
A

D − δA
DJ

C
B[

JA
B, J

CDEF
]

= −4δ[CBJ
DEF ]A − 1

2
δA

BJ
CDEF

[
JABCD, JEFGH

]
= − 1

36
εABCDK[EFGJH]

K

(4.12)

and the following reality conditions(
JA

B

)†
= JA

B = ΩACΩBDJC
D(

JABCD
)†

= −JABCD = −ΩAEΩBF ΩCGΩDHJ
EFGH

(4.13)

where Ω is a symplectic matrix such that ΩAB = −ΩBA =
(
ΩBA

)∗, ΩABΩBC = δC
A. The

quadratic Casimir operator of E7(−25) in the basis (4.12) is given by

C2 =
1
6
JA

BJ
B

A −
1
24
εABCDEFGHJ

ABCDJEFGH

=
1
6
JA

BJ
B

A − JABCD(εJ)ABCD

(4.14)

where (εJ)ABCD = 1
4!εABCDEFGHJ

EFGH .
The fundamental representation 56 of e7(−25) decomposes as 28 ⊕ 2̃8 under its su∗(8)

subalgebra, where 28 (XAB) and 2̃8 (X̃AB) are anti-symmetric tensors satisfying the fol-
lowing reality condition

(
XAB

)†
= XAB = ΩACΩBDX

CD ,
(
X̃AB

)†
= X̃AB = ΩACΩBDX̃CD . (4.15)

Under the action of e7(−25) they transform as

δXAB = ΣA
CX

CB + ΣB
CX

AC − ΣABCDX̃CD

δX̃CD = −ΣA
CX̃AD − ΣA

DX̃CA + ΣCDABX
AB

(4.16)

where ΣA
C and ΣABCD = − (ΣABCD)† denote parameters of SU∗ (8) transformation and

those of the coset generators E7(−25)/SU∗ (8), respectively.
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4.2.1 Exceptional Lie Algebra e8(−24)

Note that 56 is a real representation of e7(−25) just as 28 and 2̃8 are real representations of
su∗(8). Thus in su∗(8) covariant basis we can label generators belonging to grade -1 space
as EAB and ẼAB and grade +1 space as FAB and F̃AB. The 5-graded decomposition of
e8(−24) in su∗(8) basis takes the form

e8(−24) = E ⊕
{
EAB , ẼCD

}
⊕
{
JA

B , J
ABCD ;∆

}
⊕
{
FAB , F̃CD

}
⊕ F (4.10)

The grading is defined by the generator ∆ of SO(1, 1)

[∆, E] = −2E , [∆, F ] = +2F[
∆, EAB

]
= −EAB ,

[
∆, FAB

]
= +FAB[

∆, ẼCD

]
= −ẼCD ,

[
∆, F̃CD

]
= +F̃CD

(4.17)

Positive and negative generators form two separate maximal Heisenberg subalgebras with
commutation relations[

EAB, ẼCD

]
= 2 δAB

CD E
[
E, EAB

]
= 0

[
E, ẼAB

]
= 0 (4.18)

and [
FAB , F̃CD

]
= 2 δAB

CD F
[
F, FAB

]
= 0

[
F, F̃AB

]
= 0 . (4.19)

However these two Heisenberg subalgebras do not commute with each other (see eqs. (4.22)
below). Generators of g±2 are invariant under e7(−25)[

JA
B, F

]
= 0

[
JABCD, F

]
= 0

[
JA

B, E
]

= 0
[
JABCD, E

]
= 0 (4.20)

while generators of g±1 transform under su∗(8) as follows

[
JA

B , E
CD
]

= δC
BE

AD + δD
BE

CA − 1
4
δA

BE
CD

[
JA

B , F
CD
]

= δC
BF

AD + δD
BF

CA − 1
4
δA

BF
CD[

JA
B , ẼCD

]
= −δA

CẼBD − δA
DẼCB +

1
4
δA

BẼCD[
JA

B , F̃CD

]
= −δA

C F̃BD − δA
DF̃CB +

1
4
δA

BF̃CD

(4.21)
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The remaining commutation relations read as follows[
JABCD , ẼEF

]
= δ

[AB
EF ECD] ,

[
JABCD , EEF

]
= − 1

24
εABCDEFGHẼGH[

JABCD , F̃EF

]
= δ

[AB
EF FCD] ,

[
JABCD , FEF

]
= − 1

24
εABCDEFGH F̃GH

[
EAB , FCD

]
= −12 JABCD ,

[
ẼAB , F

CD
]

= 4 δ[C [AJ
D]

B] + δCD
AB ∆[

ẼAB , F̃CD

]
= −12 (εJ)ABCD ,

[
EAB , F̃CD

]
= 4 δ[A[CJ

B]
D] − δAB

CD∆
(4.22)

[
E,FAB

]
= −EAB ,

[
E, F̃AB

]
= −ẼAB[

F,EAB
]

= +FAB ,
[
F, ẼAB

]
= +F̃AB

[E,F ] = ∆

Reality properties for generators belonging to grade ±1 and ±2 are as follows

(
FAB

)†
= −ΩACΩBDF

CD ,
(
F̃AB

)†
= −ΩACΩBDF̃CD ,(

EAB
)†

= −ΩACΩBDE
CD ,

(
ẼAB

)†
= −ΩACΩBDẼCD ,

E† = −E , F † = −F ,

(4.23)

The quadratic Casimir operator of the above Lie algebra is given by

C2

(
e8(−24)

)
=

1
6
JA

BJ
B

A − JABCD(εJ)ABCD

+
1
12

∆2 − 1
6

(FE + EF )

− 1
12

(
ẼABF

AB + FABẼAB − F̃ABE
AB − EABF̃AB

) (4.24)

In order to make manifest the fact that the above Lie algebra is of the real form e8(−24) with
the maximal compact subalgebra e7⊕su(2) let us write down the compact and non-compact
generators explicitly. Under the maximal compact subalgebra usp(8) of su∗(8) we have the
following decompositions of the adjoint and fundamental representations of e8(−24)

133 = 63⊕ 70 = (36⊕ 27)⊕ (1⊕ 27⊕ 42)

56 = 28⊕ 2̃8 = (1⊕ 27)⊕ (1⊕ 27)

where 27 and 42 correspond to symplectic traceless antisymmetric 2-tensor and 4-tensor of
usp(8) respectively.3 Note that the generators in the representations 1⊕ 36⊕ 42 of usp(8)
in the decomposition of the adjoint representation of e7(−25) form the maximal compact
subalgebra e6 ⊕ u(1) of e7(−25).

3 The group SU∗(8) is defined as a subgroup of SL(8, C) generated by elements U ∈ SL(8, C) such that
U†U = 1 and UΩ = U∗Ω. U∗ is obtained from U by component-wise complex conjugation.
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Denoting the generators (T ) transforming covariantly under the usp(8) subalgebra of
su∗(8) with a check (Ť ) we find that the generators in 36 ⊕ 27 are given by Ǧ

(±)
AB =

ΩACJ
C

B ± ΩBCJ
C

A, while generators coming from the decomposition of 70 with respect
to usp(8) are given by

J̌AB = JABCDΩCD +
1
8
ΩABJ̌ .

J̌ABCD := JABCD +
3
2
Ω[ABΩEFJ

CD]EF +
1
8
Ω[ABΩCD]J̌

J̌ := ΩEF ΩGHJ
EFGH

Thus we find that

JABCD (εJ)ABCD = J̌ABCDJ̌ABCD −
3
2
J̌ABJ̌AB +

1
16
J̌2 (4.25)

The decomposition of 56 of e7(−25) into usp(8) irreducible components leads to the following
generators that transform in the 27 of usp(8):

Č±
AB = ẼAB + FAB ±

(
F̃AB − EAB

)
+

1
8
ΩABΩCD

[
ẼCD + FCD ±

(
F̃CD − ECD

)]
Ň±

AB = F̃AB + EAB ±
(
ẼAB − FAB

)
+

1
8
ΩABΩCD

[
F̃CD + ECD ±

(
ẼCD − FCD

)]
(4.26)

and to the following singlets of usp(8):

Č± = ΩCD[ẼCD + FCD ±
(
F̃CD − ECD

)
]

Ň± = ΩCD[F̃CD + ECD ±
(
ẼCD − FCD

)
]

Then the following 133 operators

Ǧ
(+)
AB , J̌ABCD , J̌ + 2 (E + F ) , Č±

AB (4.27)

generate the compact E7 subgroup and the operators Č± and 2(E + F )− 3J̌ generate the
compact SU(2) subgroup. The remaining 112 generators are non-compact:

G
(−)
AB , J̌AB , ∆ , F − E , Ň±

AB , Ň±. (4.28)
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4.2.2 The Minimal Unitary Realization of e8(−24) in su∗(8) Basis

It was noted earlier that elements of the subspace g−2 ⊕ g−1 ⊂ e8(−24) form an Heisenberg
algebra with 28 “coordinates” and 28 “momenta” with the generator of g−2 acting as its
central charge. As it was done for e8(8) [45] we shall realize these Heisenberg algebra
generators using canonically conjugate position (XAB) and momentum (PAB) operators:

[
XAB , PCD

]
= i δAB

CD . (4.29)

satisfying the following reality properties

(
XAB

)†
= XAB = ΩACΩBDX

CD , (PAB)† = PAB = ΩACΩBDPCD (4.30)

The commutation relations (4.29) can also be rewritten in more usp(8) covariant fashion

[XAB , PCD] =
i

2
(ΩACΩBD − ΩBCΩAD) . (4.29′)

The generators of g−1 ⊕ g−2 subalgebra are then realized as

EAB = −iy XAB ẼAB = −iy PAB E = − i
2
y2 (4.31)

where y is an extra coordinate related to central charge. In order to be able to realize
g+1 ⊕ g+2 generators we need to introduce a momentum operator p conjugate to y:

[y , p] = i . (4.32)

The grade zero g0 generators, realized linearly on operators XAB and PAB, take on the
form

JA
B = −2iXACPCB −

i

4
δA

BX
CDPCD

JABCD = − i
2
X [ABXCD] − i

48
εABCDEFGHPEFPGH

(4.33)

The dilatation generator ∆ that defines the grading is simply

∆ = − i
2

(py + yp) . (4.34)

Since g−1 generators are linear and g0 generators are quadratic polynomials in X and P we
expect g+1 generators to be cubic. Furthermore, g+1 =

[
g+2, g−1

]
suggests that F must be

a quartic polynomial in X and P . Since it is an e7(−25) singlet, this quartic must be the
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quartic invariant of e7(−25). Indeed we find

F =
1
2i
p2 +

2
iy2

I4 (X ,P )

FAB = ipXAB +
2
y

[
XAB , I4 (X,P )

]
F̃AB = ipPAB +

2
y

[PAB , I4 (X,P )] .

(4.35)

The quartic invariant I4 coincides with quadratic Casimir of e7(−25) modulo an additive
constant:

I4 (X ,P ) = C2

(
e7(−25)

)
+

323
16

=
547
16

+

− 1
2
(
XABPBCX

CDPDA + PABX
BCPCDX

DA
)

+
1
8
(
XABPABX

CDPCD + PABX
ABPCDX

CD
)

+
1
96
εABCDMNKLPABPCDPMNPKL

+
1
96
εABCDMNKLX

ABXCDXMNXKL

(4.36)

The quadratic Casimir of e8(−24) (4.24) evaluated in the above realization reduces to a
c-number as required by the irreducibility. In order to demonstrate that we decompose the
quadratic Casimir (4.24) into three e7(−25)-invariant pieces

C2 (e8) = C2 (e7) + C2 (sl (2,R)) + C′

according to the first, second and the third lines of (4.24) respectively. From (4.36) we find
that

C2 (e7) = I4 −
323
16

.

Using definitions of ∆, E, F we obtain

C2 (sl (2,R)) =
1
3
I4 −

1
16

Using definitions for g−1 ⊕ g+1 generators we find

3C′ = 7− 28I4 − iXABI4PAB + iPABI4X
AB

= 7− 28I4 +
(

32I4 −
265
4

)
= 4I4 −

237
4

and therefore
C2 (e8) = −40 (4.37)
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Since E8 does not have any invariant tensors in 58 dimensions (corresponding to 29 position
and 29 momentum operators) all higher Casimir operators of e8(−24) in the above realization
must also reduce to c-numbers as was argued for the case of e8(8) in [46]. By integrating
the above Lie algebra one obtains the minimal unitary representation of the group E8(−24)

over the Hilbert space of square integrable complex functions in 29 variables.

4.2.3 The Minimal Unitary Realization of e8(−24) in su(6, 2) Basis

Analysis above was done in su∗(8) covariant basis (see footnote on the page 57). Since
covariant operators XAB and PAB are position and momenta we refer to this basis as the
Schrödinger picture. One can consider an oscillator basis where the natural operators are
28 creation and 28 annihilation operators constructed out of X and P ’s. Being complex,
we expect them to transform as 28 ⊕ 28 of some non-compact version of su(8) within
e7(−25) ⊂ g0. This algebra turns out to be su(6, 2) and the creation and annihilation
operators are given as follows

Zab =
1
4

Γab
CD

(
XCD − iPCD

)
Z̃ab =

1
4

Γab
CD

(
XCD + iPCD

) (4.38)

where transformation coefficient Γab
CD are related to gamma-matrices of

so(6, 2) ' so∗(8) ' su∗(8) ∩ su(6, 2)

as spelled out in appendix A. Operators Z and Z̃ satisfy[
Z̃ab , Zcd

]
=

1
2

(
ηcaηdb − ηcbηda

)
. (4.39)

with the following reality conditions(
Zab
)†

= Z̃ab = ηacηbdZ̃cd (4.40)

where η = Diag (+,+,+,+,+,+,−,−) is used to raise and lower indexes. Generators of
e7(−25) in this basis take the following form

Ja
b = 2ZacZ̃bc −

1
4
δa

bZ
cdZ̃cd

Jabcd =
1
2
Z [abZcd] − 1

48
εabcdefghZ̃ef Z̃gh

(4.41)
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with Hermiticity conditions

(Ja
b)
† = ηadηbcJ

c
d

(
Jabcd

)†
= − 1

24
εabcd

efghJ
efgh (4.42)

Their commutation relations are

[Ja
b , J

c
d] = δc

bJ
a
d − δd

aJ
c
b[

Ja
b , J

cdef
]

= −4δ[cbJ
def ]a − 1

2
δa

bJ
cdef[

Jabcd , Jefgh
]

=
1
36
εabcdp[efgJh]

p

(4.43)

which have the same form as su∗ (8) covariant eqs. (4.12). Quadratic Casimir in this basis
reads as

C2 (e7) =
1
6
Ja

bJ
b
a + Jabcd (εJ)abcd = I4

(
Z , Z̃

)
− 323

16
=

=
1
2

(
Z̃abZ

bcZ̃cdZ
da + ZabZ̃bcZ

cdZ̃da

)
− 1

8

(
Z̃abZ

abZ̃cdZ
cd + ZabZ̃abZ

cdZ̃cd

)
+ 14

+
1
96
εabcdefghZ

abZcdZefZgh +
1
96
εabcdefghZ̃abZ̃cdZ̃ef Z̃gh

(4.44)

Negative grade generators of e8(−24) are then simply

E =
1
2
y2 Eab = yZab Ẽab = yZ̃ab (4.45)

Generators in g+1 can be inferred commuting g+2 generator

F =
1
2
p2 + 2y−2I4 (4.46)

with generators in g−1

F ab = i
[
Eab , F

]
= −pZab + 2iy−1

[
Zab , I4

]
F̃ab = i

[
Ẽab , F

]
= −pZ̃ab + 2iy−1

[
Z̃ab , I4

] (4.47)
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or more explicitly

F ab =− pZab − i

12
y−1εabcdefghZ̃cdZ̃ef Z̃gh

+ 4iy−1Zc[aZ̃cdZ
b]d +

i

2
y−1

(
ZabZ̃cdZ

cd + ZcdZ̃cdZ
ab
)

Fab =− pZ̃ab +
i

12
y−1εabcdefghZ

cdZefZgh

− 4iy−1Z̃c[aZ
cdZb]d −

i

2
y−1

(
Z̃abZ

cdZ̃cd + Z̃cdZ
cdZ̃ab

)
(4.48)

We see that commutation relations in this basis closely follow those in su∗(8) basis, with
modified reality conditions (cf. (4.45) and (4.31) as well as (4.47) with (4.35)). The SU(6, 2)
covariant commutation relations follow closely those given in section 4.2.1

[E,F ] = −∆

[∆, F ] = 2F[
∆, F ab

]
= F ab[

∆, F̃ab

]
= F̃ab

[∆, E] = −2E[
∆, Eab

]
= −Eab[

∆, Ẽab

]
= −Ẽab

[
E ,F ab

]
= −iEab[

E , F̃ab

]
= −iẼab[

F ,Eab
]

= iF ab[
F , Ẽab

]
= iF̃ab

(4.49)

[
E, Eab

]
= 0[

F, F ab
]

= 0

[
E, Ẽab

]
= 0[

F, F̃ab

]
= 0

[
Ẽab , E

cd
]

= 2 δcd
ab E[

F̃ab , F
cd
]

= 2 δcd
ab F

(4.50)

[
Eab , F cd

]
= −12iJabcd[

Ẽab, F̃cd

]
= 12i (εJ)abcd

[
Ẽab, F

cd
]

= −4iδ[c[aJ
d]

b] − iδcd
ab∆[

Eab, F̃cd

]
= −4iδ[a[cJ

b]
d] + iδab

cd∆
(4.51)

[
Ja

b , E
cd
]

= δc
bE

ad + δd
bE

ca − 1
4
δa

bE
cd[

Ẽcd , J
a
b

]
= δa

cẼbd + δa
dẼcb −

1
4
δa

bẼcd

[
Jabcd , Ẽef

]
= δ

[ab
ef E

cd][
Jabcd , Eef

]
=
−1
24
εabcdefghẼgh

The quadratic Casimir of e8(−24) in this basis reads as follows

C2 =
1
6
Ja

bJ
b
a + Jabcd (εJ)abcd +

1
6

(
EF + FE +

1
2

∆2

)
− i

12

(
F̃abE

ab + EabF̃ab − ẼabF
ab − F abẼab

) (4.52)

and reduces to the same c-number as (4.37).
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4.3 Truncations of the minimal unitary realization of e8(−24)

Since our realization of e8(−24) is non-linear, not every subalgebra of e8(−24) can be obtained
by a consistent truncation. We consider consistent truncations to subalgebras that are
quasi-conformal. Since quasi-conformal algebras admit a 5-grading

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2

with g±2 being one-dimensional, they have an sl(2,R) subalgebra generated by elements of
g±2 and the generator ∆ that determines 5-grading. However, the quartic invariant I4 will
now be that of a subalgebra g0 of the linearly realized e7(−25) within e8(−24). Furthermore,
this subalgebra must act on the grade ±1 subspaces via a symplectic representation.

Hence, the problem is reduced to enumeration of subalgebras of linearly realized e7(−25)

admitting a non-degenerate quartic invariant on the symplectic representation. Before
giving the explicit truncations below we shall first indicate a partial web of consistent
truncations as quasiconformal subalgebras.

Firstly, we can truncate e8(−24) down to either e7(5) or e7(−25), by keeping singlets of
either su(2) or su(1, 1) within su(6, 2) ⊂ e7(−25) correspondingly. Further truncations of
e7(−25) to rank 6 quasi-conformal algebras can lead to either so(10, 2) or e6(−14), while
truncations of e7(5) lead to either e6(−14) or e6(2):

e8(−24)

↗

↘

so(10, 2) →

e7(−25)

↗

↘

e6(−14) →

e7(5)

↗

↘

e6(2) →

so(6, 2) → so(4, 2)

so(8, 2) → su(4, 1) → su(2, 1)

f4(4) → so(4, 4) → g2(2) → sl(3,R)

(4.53)

The minimal unitary realization of SU(2, 1) was given in [46].

4.3.1 Truncation to the minimal unitary realization of e7(−5) as a quasi-

conformal subalgebra

In order to truncate the above minimal unitary realization of e8(−24) down to its subalgebra
e7(−5) whose maximal compact subalgebra is so∗(12)⊕ su(2) we first observe that e7(−5) has
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the 5-grading

e7(−5) =
g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2

1 ⊕ 32 ⊕ (so∗(12)⊕ 1) ⊕ 32 ⊕ 1
(4.54)

Furthermore, we note that e7(−25) has a subalgebra so∗(12) ⊕ su(2). Hence e7(−5) is cen-
tralised by an su(2) subalgebra, which can be identified with the one in su(6)⊕su(2)⊕u(1) ⊂
su(6, 2) ⊂ e7(−25). Under the subalgebra su(6) the adjoint 66 and the spinor representation
32 of so∗(12) decompose as follows:

32 = 15⊕ 1⊕ 15⊕ 1 and 66 = 35⊕ 15⊕ 15⊕ 1 .

This truncation is thus implemented by setting

Z̃7b = 0 and Z7b = 0 where b 6= 8 ,

Z̃7b = 0 and Z8b = 0 where b 6= 7 ,

i.e. by restricting to the su(2) singlet sector.
For the sake of notational convenience, we would retain symbols Zab and Z̃ab to denote

creation and annihilation operators transforming as 15 and 15 of su(6) ⊂ so∗(12), where a
and b now run from 1 to 6. Then, generators in g−1 ⊕ g−2 of e7(−5) are given as follows

E =
1
2
y2 Eab = yZab E+ = yZ78 Ẽab = yZ̃ab E− = yZ̃78 (4.55)

The grade zero generators are ∆ and

Ja
b = 2ZacZ̃bc −

1
3
δa

bZ
cdZ̃cd

Jab =
1
6
ZabZ78 − 1

48
εabefghZ̃ef Z̃gh

J̃ab = −1
6
Z̃abZ̃78 +

1
48
εabefghZ

efZgh

H = −1
4

(
Z78Z̃78 + Z̃78Z

78
)

+
1
24

(
ZabZ̃ab + Z̃abZ

ab
)

(4.56)

which form the so∗(12) subalgebra. They satisfy the following commutation relations

[Ja
b , J

c
d] = δc

bJ
a
d − δd

aJ
c
b[

Ja
b , J

cd
]

= −2δ[cbJ
d]a − 1

3
δa

bJ
cd[

Ja
b , J̃cd

]
= 2δa

[cJ̃d]b +
1
3
δa

bJ̃cd

[
Jab , J̃cd

]
=

1
18

(
2δ[a[cJ

b]
d] − δab

cdH
)

[
H , J̃ab

]
= −1

6
J̃ab[

H , Jab
]

=
1
6
Jab

(4.57)
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In order to construct positive grade generator we need quadratic Casimir of so∗(12):

C2 (so∗(12)) =
1
6
Ja

bJ
b
a + 4H2 + 24

(
JabJ̃ab + J̃abJ

ab
)

= I4 −
99
16

=

=
1
2

(
Z̃abZ

bcZ̃cdZ
da + ZabZ̃bcZ

cdZ̃da

)
+

1
2

(
Z78Z̃78Z

78Z̃78 + Z̃78Z
78Z̃78Z

78
)

+

− 1
8

(
Z̃abZ

abZ̃cdZ
cd + ZabZ̃abZ

cdZ̃cd

)
+ 4

− 1
4

(
ZabZ̃abZ

78Z̃78 + Z78Z̃78Z
abZ̃ab

)
− 1

4

(
Z̃abZ

abZ̃78Z
78 + Z̃78Z

78Z̃abZ
ab
)

+
1
12
εabcdefZ

abZcdZefZ78 +
1
12
εabcdef Z̃abZ̃cdZ̃ef Z̃78

(4.58)

where the quartic invariant is built out of the spinor representation 32 of so∗(12). Then
generators of g+1 are defined via (4.47). Commutation relations of g0 with g−1 read[

Ja
b , E

cd
]

= −2δ[cbE
d]a − 1

3
δa

bE
cd

[
Ja

b , Ẽcd

]
= 2δa

[cẼd]a +
1
3
δa

bẼcd[
Jab , Ecd

]
= − 1

24
εabcdef Ẽef

[
J̃ab , E

cd
]

= −1
6
δcd
abẼ78[

J̃ab , Ẽcd

]
= − 1

24
εabcdefE

ef
[
Jab , Ẽcd

]
= −1

6
δab
cdE

78

[
H ,Eab

]
=

1
12
Eab

[
H , Ẽab

]
= − 1

12
Ẽab[

Jab , E78
]

= 0
[
J̃ab , E

78
]

= − 1
12
Ẽab

[
H ,E78

]
= −1

4
E78[

J̃ab , Ẽ78

]
= 0

[
Jab , Ẽ78

]
= − 1

12
Eab

[
H , Ẽ78

]
= +

1
4
Ẽ78

Commutators of so∗(12) generators and the generators belonging to g+1 subspace are ob-
tained by substituting Eab with F ab and Ẽab with F̃ab in equations above. Spaces g±2

are so∗(12) singlets each. Elements of g±2 together with ∆ generate an sl(2,R) ⊂ e7(−5)

subalgebra
[E,F ] = −∆ [∆ , E] = −2E [∆ , F ] = +2F . (4.59)

Generators in g−1 and g+1 close into g0 as follows[
Eab , F cd

]
= −6iεabcdef J̃ef[

Eab , F̃cd

]
= −iδab

cd (4H −∆)− 4iδ[a[cJ
b]

d][
Eab , F 78

]
= −12iJab

[
Eab , F̃78

]
= 0

(4.60)



70[
Ẽab , F

cd
]

= −iδcd
ab (4H + ∆)− 4iδ[c[aJ

d]
b][

Ẽab , F̃cd

]
= +6iεabcdefJ

ef[
Ẽab , F̃78

]
= +12iJ̃ab

[
Ẽab , F

78
]

= 0

(4.61)

[
E78 , F ab

]
= −12iJab

[
E78 , F̃78

]
= i

(
1
2
∆ + 6H

)
[
E78 , F̃ab

]
= 0

[
E78 , F 78

]
= 0[

Ẽ78 , F
ab
]

= 0
[
Ẽ78 , F̃78

]
= 0[

Ẽ78 , F
78
]

= i

(
−1

2
∆ + 6H

) [
Ẽ78 , F̃ab

]
= +12iJ̃ab

(4.62)

The resulting realization of e7(−5) is that of the minimal unitary representation and the
quadratic Casimir of e7(−5) reduces to a c-number as required by irreducibility of the minimal
unitary representation

C2

(
e7(−5)

)
= C2 (so∗(12)) +

1
12

∆2 +
1
6

(FE + EF )

− 1
12

(
ẼabF

ab + F abẼab − F̃abE
ab − EabF̃ab

)
− 1

6

(
Ẽ78F

78 + F 78Ẽ78 − F̃78E
78 − E78F̃78

)
=
(
I4 −

99
16

)
+
(

1
3
I4 −

1
16

)
+
(
−4

3
I4 −

31
4

)
= −14

(4.63)

4.3.2 Truncation to the minimal unitary realization of e6(2) as a quasicon-

formal subalgebra

Quasi-conformal algebra e6(2) with the maximal compact subalgebra su(6)⊕ su(2) has the
following 5-graded decomposition

78 = 1⊕ 20⊕ (su(3, 3)⊕∆)⊕ 20⊕ 1

and since su(3, 3) ⊂ so∗(12) it can be obtained by the further truncation of e7(−5). The
maximal compact subalgebra su(3)⊕ su(3)⊕ u(1) of su(3, 3) is also a subalgebra of su(6) ⊂
so∗(12). This suggests that we split su(6) indices a = 1, . . . , 6 into two subsets, ǎ = (1, 2, 3)
and â = (4, 5, 6), and keep only oscillators which have both types of indices in addition to
singlets Z̃78 and Z78, i.e. set

Z ǎč = 0 Z̃ǎč = 0 Z âĉ = 0 Z̃âĉ = 0 (4.64)
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Indeed corresponding su(3)⊕ su(3) ⊂ su (3, 3) branching reads

20 = (1, 1)⊕ (3, 3)⊕
(
3, 3

)
⊕ (1, 1)

This reduction is quite straightforward, and we shall not give here complete commutation
relations. All of the formulae of e7(−5) carry over to this case provided we set to zero appro-
priate operators. The quadratic Casimir of su(3, 3) that is needed to construct generators
of g+1 ⊕ g+2 reads as follows

C2 (su (3, 3)) =
1
6
J ǎ

čJ
č
ǎ +

1
6
J â

ĉJ
ĉ
â + 4H2 + 24

(
J ǎčJ̃ǎč + J̃ǎčJ

ǎč
)

+ 24
(
J âĉJ̃âĉ + J̃âĉJ

âĉ
)

= I4 −
35
16

= −1
8

(
Z̃abZ

abZ̃cdZ
cd + ZabZ̃abZ

cdZ̃cd

)
+

1
2

(
Z̃abZ

bcZ̃cdZ
da + ZabZ̃bcZ

cdZ̃da

)
+

1
2

(
Z78Z̃78Z

78Z̃78 + Z̃78Z
78Z̃78Z

78
)

− 1
4

(
ZabZ̃abZ

78Z̃78 + Z78Z̃78Z
abZ̃ab

)
− 1

4

(
Z̃abZ

abZ̃78Z
78 + Z̃78Z

78Z̃abZ
ab
)

+
1
12
εabcdefZ

abZcdZefZ78 +
1
12
εabcdef Z̃abZ̃cdZ̃ef Z̃78 +

5
4

(4.65)

where Zab and Z̃ab are as described above, and hence I4 is the quadratic invariant of
su(3, 3) in the representation 20. The resulting realization of e6(2) is again that of the
minimal unitary representation. Because some of the oscillators were set equal to zero in
the truncation, they do not contribute to the value of the quadratic Casimir of the algebra,
the c-number to which it reduces is now different

C2

(
e6(2)

)
=
(
I4 −

35
16

)
+
(

1
3
I4 −

1
16

)
+
(
−4

3
I4 −

15
4

)
= −6 (4.66)

4.3.3 Truncation to the minimal unitary realization of e6(−14) as a quasi-

conformal subalgebra

Quasiconformal realization of another real form of e6, namely e6(−14) with the maximal
compact subalgebra so(10) ⊕ so(2), can also be obtained by truncation of e7(−5). Its five-
graded decomposition reads as follows

e6(−14) = 1⊕ 20⊕ (su(5, 1)⊕∆)⊕ 20⊕ 1

In order to implement this truncation we observe the following chain of inclusions

su(5, 1) ⊂ so(10, 2) ⊂ e7(−25)
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Subalgebra so(10, 2) is centralised by su(1, 1) while su(5, 1) is centralised by su(2, 1) within
e7(−25), suggesting that we only keep oscillators Zab and Z̃ab with indexes now running from
1 to 5 as follows from u(5) ⊂ su(5, 1) branching of 20 = 10⊕10. Then generators of su(5, 1)
are given as follows

Ja
b = 2ZacZ̃bc −

2
5
δa

bZ
cdZ̃cd H =

1
24

(
ZabZ̃ab + Z̃abZ

ab
)

Ja = − 1
48
εabcdeZ̃bcZ̃de J̃a = +

1
48
εabcdeZ

bcZde
(4.67)

with commutation relations

[Ja
b , J

c
d] = δc

bJ
a
d − δd

aJ
c
b [Ja

b , J
c] = δc

bJ
a − 1

5
δa

bJ
c[

Ja
b , J̃c

]
= −δa

cJ̃b +
1
5
δa

bJ̃c [H,Ja] = −1
6
Ja

[
H, J̃a

]
= +

1
6
J̃a[

Ja , J̃b

]
=

1
144

Ja
b −

1
20
δa

bH
[
Ja , Jb

]
= 0

[
J̃a , J̃b

]
= 0

(4.68)

resulting in the following Casimir

C2 (su(5, 1)) =
1
6
Ja

bJ
b
a +

36
5
H2 + 24

(
JaJ̃a + J̃aJ

a
)

= I4 −
35
16

=
1
2

(
Z̃abZ

bcZ̃cdZ
da + ZabZ̃bcZ

cdZ̃da

)
− 1

8

(
Z̃abZ

abZ̃cdZ
cd + ZabZ̃abZ

cdZ̃cd

)
+

5
4

(4.69)

Remaining generators of e6(−14) and their commutators straightforwardly follow from those
of e7(−5). We shall only present the c-number to which the quadratic Casimir of e6(−14)

reduces upon evaluation on the resulting minimal unitary realization

C2

(
e6(−14)

)
=
(
I4 −

35
16

)
+
(

1
3
I4 −

1
16

)
+
(
−4

3
I4 −

15
4

)
= −6 (4.70)

4.3.4 Truncation to the minimal unitary realization of f4(4) as a quasicon-

formal subalgebra

The realization of the Lie algebra e6(2) given above can be further truncated to obtain the
minimal unitary realization of the Lie algebra f4(4) with the maximal compact subalgebra
usp(6) ⊕ usp(2). The five graded structure of f4(4) as a quasiconformal algebra reads as
follows

52 = f4(4) = 1⊕ 14⊕ (sp (6 ,R)⊕∆)⊕ 14⊕ 1 (4.71)

One way to obtain the truncation of e6(2) to f4(4) is suggested by u(3) ⊂ sp (6, R) branching
of 14 = 1⊕6⊕6⊕1. It amounts to identifying the two su(3) subalgebra of su(3, 3) ⊂ e6(2)
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and discarding the antisymmetric components Z [ab] of Zab .
Let us define the symmetric tensor oscillators Sac = Z(ac) and S̃ac = Z̃(ac), a, b, ... =

1, 2, 3, which correspond to independent oscillators left after the identification. They satisfy
the following commutation relations[

S̃cd , S
ab
]

=
1
4

(
δa

cδ
b
d + δb

cδ
a
d

)
(4.72)

With these oscillators we build generators of sp (6 ,R):

Ja
b = 2SacS̃bc −

2
3
δa

bS
cdS̃cd

H = −1
4

(
Z78Z̃78 + Z̃78Z

78
)

+
1
12

(
SabS̃ab + S̃abS

ab
)

Jab =
1
6
SabZ78 +

1
12
εacdεbef S̃ceS̃df

J̃ab = −1
6
S̃abZ̃78 −

1
12
εacdεbefS

ceSdf

(4.73)

satisfying the following commutation relations[
Ja

b , J
cd
]

= δ(cbJ
d)a − 1

3
δa

bJ
cd[

Ja
b , J̃cd

]
= −δa

(cJ̃d)b +
1
3
δa

bJ̃cd[
Jab , J̃cd

]
=

1
72

(
δ(a(cJ

b)
d) − 2δ(a(cδ

b)
d)H

)
[Ja

b , J
c
d] = δc

bJ
a
d − δd

aJ
c
b[

H , Jab
]

= −1
6
Jab[

H , J̃ab

]
=

1
6
J̃ab

(4.74)

The quadratic Casimir of sp(6,R) is then given by

C2 (sp(6,R)) =
1
3
Ja

bJ
b
a + 4H2 + 24

(
JabJ̃ab + J̃abJ

ab
)

= I4 −
15
16

=
(
S̃abS

bcS̃cdS
da + SabS̃bcS

cdS̃da

)
+

1
2

(
Z78Z̃78Z

78Z̃78 + Z̃78Z
78Z̃78Z

78
)

+

− 1
2

(
S̃abS

abS̃cdS
cd + SabS̃abS

cdS̃cd

)
+

7
16

− 1
2

(
SabS̃abZ

78Z̃78 + Z78Z̃78S
abS̃ab

)
− 1

2

(
S̃abS

abZ̃78Z
78 + Z̃78Z

78S̃abS
ab
)

− 2
3
εabcεdefS

adSbeScfZ78 − 2
3
εabcεdef S̃adS̃beS̃cf Z̃78

(4.75)

Negative grade generators are defined as

E =
1
2
y Eab = ySab E+ = yZ78 Ẽab = yS̃ab E− = yZ̃78 (4.76)
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They satisfy commutation relations, different from those of negative grade generators of
e7(−5) [

Ẽab , E
cd
]

= δ(c(bδ
b)

d)E (4.77)

reflecting that Sab and S̃ab are now symmetric tensor oscillators. Positive grade generators,
and their commutator, are given by the following equations

F =
1
2
p2 + 2iy−2I4

F ab = −pSab + 2iy−1
[
Sab , I4

]
F̃ab = −pS̃ab + 2iy−1

[
S̃ab , I4

]
[
F̃ab , F

cd
]

= δ(c(bδ
b)

d)F (4.78)

Quadratic Casimir of the resulting minimal unitary realization of f4(4)

C2

(
f4(4)

)
= C2 (sp(6,R)) +

1
12

∆2 +
1
6

(FE + EF )

+ i
(
ẼabF

ab + F abẼab − F̃abE
ab − EabF̃ab

)
− i

6

(
Ẽ78F

78 + F 78Ẽ78 − F̃78E
78 − E78F̃78

) (4.79)

reduces to a c-number

C2

(
f4(4)

)
=
(
I4 −

15
16

)
+
(

1
3
I4 −

1
16

)
+
(
−4

3
I4 −

9
4

)
= −13

4
(4.80)

in agreement with parental algebras and as required by irreducibility.

4.3.5 Truncation to the minimal unitary realization

of so (4, 4) as a quasiconformal subalgebra

We further truncate f4(4) to obtain the minimal unitary realization of so (4, 4) which has
the following 5-graded decomposition

28 = 1⊕ (2,2,2)⊕ (sp (2, R)⊕ sp (2, R)⊕ sp (2, R)⊕∆)⊕ (2,2,2)⊕ 1 (4.81)

This truncation is achieved by restricting Sab and S̃ab operators to their diagonal compo-
nents

Sab = δabSa S̃ab = δabS̃a

[
S̃a, S

b
]

=
1
2
δb

a (4.82)
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where a, b, .. = 1, 2, 3, and discarding the off-diagonal oscillators. Three copies of sp (2, R)
are generated by

Ja
− = −1

6
S̃aZ̃78 −

1
12
εabcS

bSc

Ja
+ =

1
6
SaZ78 +

1
12
εabcS̃bS̃c

Ja
0 = Z78Z̃78 +

3∑
b=1

(
2δab − 1

)
SbS̃b (4.83)

The quadratic Casimir of sp (2, R)⊕ sp (2, R)⊕ sp (2, R) then reads

C2 (sp (2, R)⊕ sp (2, R)⊕ sp (2, R)) =
3∑

a=1

[
1
3
Ja

0J
a
0 + 24

(
Ja
−J

a
+ + Ja

+J
a
−
)]

=
3∑

a=1

((
S̃aS

a
)2

+
(
SaS̃a

)2
)

+
(
Z78Z̃78

)2
+
(
Z̃78Z

78
)2

− 1
2

(
3∑

a=1

SaS̃a + Z78Z̃78

)2

− 1
2

(
3∑

a=1

S̃aS
a + Z̃78Z

78

)2

− 4S1 S2 S3 Z78 − 4 S̃1 S̃2 S̃3 Z̃78 = I4 −
3
16

(4.84)

The commutation relations of the generators in g0 are[
Ja

0 , J
b
±

]
= ±δabJa

±

[
Ja

+, J
b
−

]
=

1
72
δabJa

0 (4.85)

Negative grade generators are

E =
1
2
y2 Ea = ySa Ẽa = yS̃a E78 = yZ78 Ẽ78 = yZ̃78 (4.86)

and positive grade generators are

F =
1
2
p2 + 2iy−2I4

F a = −pSa + 2iy−1 [Sa, I4]

F 78 = −pZ78 + 2iy−1
[
Z78, I4

]
F̃a = −pS̃a + 2iy−1

[
S̃a, I4

]
F̃78 = −pZ̃78 + 2iy−1

[
Z̃78, I4

] (4.87)

The quadratic Casimir of so (4, 4)

C2 (so (4, 4)) = C2

(
g0
)

+
1
12

∆2 +
1
6

(FE + EF )

+
i

6

(
EaF̃a + F̃aE

a − ẼaF
a − F aẼa

)
+
i

6

(
E78F̃78 + F̃78E

78 − F 78Ẽ78 − Ẽ78F
78
) (4.88)



76

reduces to c-number as before

C2 (so (4, 4)) =
(
I4 −

3
16

)
+
(

1
3
I4 −

1
16

)
+
(
−4

3
I4 −

13
12

)
= −4

3
(4.89)

4.4 Truncation to the minimal unitary realization of e7(−25) as

a quasiconformal subalgebra

The group E7(−25) has the maximal compact subgroup E6×U(1) and arises as the U -duality
group of exceptional N = 2 Maxwell-Einstein supergravity in d = 4 whose scalar manifold
is E7(−25)/ (E6 × U(1)). Its action on the 27 complex scalar fields can be represented as a
generalised conformal group [40, 43, 45]. As a generalised conformal group its Lie algebra
has a natural 3-graded structure

e7(−25) = 27⊕ (e6(−26) ⊕ so(1, 1))⊕ 27

The quasiconformal realization of E8(−24) can be truncated to the conformal realization of
E7(−25) in essentially two different ways.

In this section we will however consider a different truncation of E8(−24) such that
the resulting realization of E7(−25) is quasiconformal corresponding to its minimal unitary
representation.

Just as the subalgebra e7(−5) is normalised by su(2) ⊂ su(6, 2) ⊂ g0 = e7(−25), the
subalgebra e7(−25) is normalised by su(1, 1) ⊂ su(6, 2) ⊂ g0e7(−25) within e8(−24). Similarly
to e7(−5) we obtain

e7(−25) = 133 = 1⊕ 32⊕ (so(10, 2)⊕∆)⊕ 32⊕ 1 (4.90)

We identify the su(1, 1) in question with the one generated by J6
7, J7

6 and J6
6 − J7

7

generators of su(6, 2) ⊂ e7(−25) ⊂ e8(−24). The truncation will then amount to setting
Za6 = Z6a = 0 where a 6= 7, as well as Za7 = Z7a = 0 for a 6= 6. Let us relabel coefficients
and introduce ȧ = 1, . . . , 5, 8. Then su(5, 1) is generated by

J ȧ
ḃ = 2Z ȧċZ̃ḃċ −

1
3
δȧ

ḃZ
ḋċZ̃ḋċ (4.91)
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The other generators of so(10, 2) are then given as follows

U =
3
2

(
Z67Z̃67 + Z̃67Z

67
)
− 1

4

(
Z ȧḃZ̃ȧḃ + Z̃ȧḃZ

ȧḃ
)

J−
ȧḃ

= −1
6
Z̃ȧḃZ̃67 +

1
48
εȧḃċḋėḟZ

ċḋZ ėḟ

J ȧḃ
+ =

1
6
Z ȧḃZ67 − 1

48
εȧḃċḋėḟ Z̃ċḋZ̃ėḟ

(4.92)

satisfying the following Hermiticity condition

(
J ȧ

ḃ

)†
= ηȧċηḃḋJ

ḋ
ċ U † = U

(
J−

ȧḃ

)†
= J ċḋ

+ ηȧċηḃḋ (4.93)

where ηȧḃ = diag (+1,+1,+1,+1,+1,−1); and the commutation relations read as follows

[
J ȧ

ḃ, J
ċ
ḋ

]
= δċ

ḃJ
ȧ
ḋ − δȧ

ḋJ
ċ
ḃ[

J ȧ
ḃ, J

ċḋ
+

]
= δċ

ḃJ
ȧḋ
+ + δḋ

ḃJ
ċȧ
+ − 1

3
δȧ

ḃJ
ċḋ
+[

J ȧ
ḃ, J

−
ċḋ

]
= −δȧ

ċJ
−
ḃḋ
− δȧ

ḋJ
−
ċḃ

+
1
3
δȧ

ḃJ
−
ċḋ[

U, J−
ċḋ

]
= −J−

ċḋ

[
U, J ċḋ

+

]
= +J ċḋ

+

[
U, J ċ

ḋ

]
= 0

(4.94)

The quadratic Casimir of the algebra reads

C2 (so (10, 2)) =
1
6
J ȧ

ḃJ
ḃ
ȧ +

1
9
U2 + 12

(
J ȧḃ

+ J−
ȧḃ

+ J−
ȧḃ
J ȧḃ

+

)
= I4 −

99
16

(4.95)

Definition of the grade ±1 generators goes along the same lines as for e7(−5) so we omit
them here. Let us only note that the quadratic Casimir of the minimal unitary realization
of e7(−25) takes on the same value as that of e7(−5) and equals to −14.

4.5 Minimal unitary realizations of the quasiconformal groups

SO(d + 2, 4)

The minimal unitary realization of the groups SO (d+ 2, 4), that were given in [50] corre-
sponding to the quantisation of their geometric realizations as quasiconformal groups given
in chapter 3 following methods of [46, 48]. Let Xµ and Pµ be canonical coordinates and
momenta in R(2,d):

[Xµ, Pν ] = iδµ
ν (4.96)

In the earlier notation we identify Xµ,a=1 to be coordinates Xµ, and Pµ = ηµνX
ν,a=2 to be

conjugate momenta. Also let x be an additional “cocycle” coordinate and p be its conjugate
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momentum:
[x, p] = i (4.97)

The grade zero generators (Mµν , J±, J0), grade −1 generators (Uµ, V
µ), grade −2 generator

K− and the 4-th order invariant I4 of the semi-simple part of the grade zero subalgebra are
realized as follows:

Mµν = iηµρX
ρPν − iηνρX

ρPµ

Uµ = xPµ V µ = xXµ

K− =
1
2
x2

J0 =
1
2

(XµPµ + PµX
µ)

J− = XµXνηµν

J+ = PµPνη
µν

I4 = (XµXνηµν) (PµPνη
µν) + (PµPνη

µν) (XµXνηµν)

− (XµPµ) (PνX
ν)− (PµX

µ) (XνPν)

(4.98)

Using the quartic invariant we define the grade +2 generator as

K+ =
1
2
p2 +

1
4 y2

(
I4 +

d2 + 3
2

)
(4.99)

It is easy to verify that the generators Mµν and J0,± satisfy the commutation relations of
so (d, 2)⊕ sp (2,R)

[Mµν ,Mρτ ] = ηνρMµτ − ηµρMντ + ηµτMνρ − ηντMµρ

[J0, J±] = ±2iJ± [J−, J+] = 4iJ0

(4.100)

under which coordinates Xµ and momenta Pµ transform as Lorentz vectors and form dou-
blets of the symplectic group Sp(2,R) :

[J0, V
µ] = −iV µ

[J0, Uµ] = +iUµ

[J−, V µ] = 0

[J−, Uµ] = 2iηµνV
ν

[J+, V
µ] = −2iηµνUν

[J+, Uµ] = 0
(4.101)

The generators in the subspace g−1 ⊕ g−2 form a Heisenberg algebra

[V µ, Uν ] = 2iδµ
ν K− . (4.102)

Define the grade +1 generators as

Ṽ µ = −i [V µ,K+] Ũµ = −i [Uµ,K+] (4.103)
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which explicitly read as follows

Ṽ µ = pXµ +
1
2
x−1

(
PνX

λXρ +XλXρPν

)
ηµνηλρ

− 1
4
x−1 (Xµ (XνPν + PνX

ν) + (XνPν + PνX
ν)Xµ)

Ũµ = pPµ −
1
2
x−1 (XνPλPρ + PλPρX

ν) ηµνη
λρ

+
1
4
x−1 (Pµ (XνPν + PνX

ν) + (XνPν + PνX
ν)Pµ) .

(4.104)

Then one finds that the generators in g+1 ⊕ g+2 subspace form an isomorphic Heisenberg
algebra [

Ṽ µ, Ũν

]
= 2iδµ

νK+ V µ = i
[
Ṽ µ,K−

]
Uµ = i

[
Ũµ,K−

]
. (4.105)

Commutators
[
g−1, g+1

]
close into g0 as follows[
Uµ, Ũν

]
= iηµνJ−

[
V µ, Ṽ ν

]
= iηµνJ+[

V µ, Ũν

]
= 2ηµρMρν + iδµ

ν (J0 + ∆)[
Uµ, Ṽ

ν
]

= −2ηνρMµρ + iδν
µ (J0 −∆)

(4.106)

where ∆ is the generator that determines the 5-grading

∆ =
1
2

(xp+ px) (4.107)

such that
[K−,K+] = i∆ [∆,K±] = ±2iK± (4.108)

[∆, Uµ] = −iUµ [∆, V µ] = −iV µ
[
∆, Ũµ

]
= iŨµ

[
∆, Ṽ µ

]
= iṼ µ (4.109)

The quadratic Casimir operators of subalgebras so (d, 2), sp (2,R)J of grade zero subspace
and sp (2,R)K generated by K± and ∆ are

MµνM
µν = −I4 − 2 (d+ 2)

J−J+ + J+J− − 2 (J0)
2 = I4 +

1
2

(d+ 2)2

K−K+ +K+K− −
1
2
∆2 =

1
4
I4 +

1
8

(d+ 2)2

(4.110)

Note that they all reduce to I4 modulo some additive constants. Noting also that(
UµṼ

µ + Ṽ µUµ − V µŨµ − ŨµV
µ
)

= 2I4 + (d+ 2) (d+ 6) (4.111)
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we conclude that there exists a family of degree 2 polynomials in the enveloping algebra of
so (d+ 2, 4) that degenerate to a c-number for the minimal unitary realization, in accordance
with Joseph’s theorem [59]:

MµνM
µν + κ1

(
J−J+ + J+J− − 2 (J0)

2
)

+ 4κ2

(
K−K+ +K+K− −

1
2
∆2

)
− 1

2
(κ1 + κ2 − 1)

(
UµṼ

µ + Ṽ µUµ − V µŨµ − ŨµV
µ
)

=
1
2

(d+ 2) (d+ 2− 4 (κ1 + κ2))

(4.112)

The quadratic Casimir of so (d+ 2, 4) corresponds to the choice 2κ1 = 2κ2 = −1 in
(4.112). Hence the eigenvalue of the quadratic Casimir for the minimal unitary representa-
tion is equal to 1

2 (d+ 2) (d+ 6).

4.6 Minimal realizations as non-compact groups and confor-

mal quantum mechanics

In this and the next sections we outline the ongoing work on the unified construction of
minimal unitary realizations of non-compact groups and non-compact supergroups [51].

In this section we explore possibilities of extensions of conformal quantum mechanics in
the way inspired by minimal realizations of U-duality algebras, so that role of g (g + 1) in
(4.2) is played by a quartic polynomial built out of Weyl algebra elements (i.e. coordinates
and momentums or oscillators).

We shall restrict ourselves to such algebras where grade zero is a direct sum of a simple
algebra g0 and so (1, 1) generator ∆:

g = E ⊕ Eα ⊕
(
g0 ⊕∆

)
⊕ Fα ⊕ F (4.113)

Let Ja denote generators of g0 with commutation relations[
Ja , Jb

]
= fab

cJ
c (4.114a)

and let ρ denote the symplectic representation by which g0 acts on g±1

[Ja , Eα] = (λa)α
βE

β [Ja , Fα] = (λa)α
βF

β (4.114b)

where Eα, α, β, .. = 1, .., N = dim(ρ) are generators that span g−1

[
Eα , Eβ

]
= 2ΩαβE (4.114c)
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and Fα are generators that span g+1

[
Fα , F β

]
= 2ΩαβF (4.114d)

and Ωαβ is the symplectic invariant ”metric” of the representation ρ. The negative grade
generators form a Heisenberg subalgebra since

[Eα, E] = 0 (4.114e)

with the grade -2 generator E acting as its central charge. Similarly the positive grade
generators form a Heisenberg algebra with the grade +2 generator F acting as its central
charge. The remaining non-vanishing commutation relations of g are

Fα = [Eα , F ]

Eα = [E ,Fα][
Eα, F β

]
= −Ωαβ∆ + ελαβ

a Ja

[∆, Eα] = −Eα

[∆, Fα] = Fα

[∆, E] = −2E

[∆, F ] = 2F

(4.114f)

where ∆ is the generator that determines the five grading and ε is a parameter to be
determined.

Let us now realize the generators using bosonic oscillators ξα satisfying the canonical
commutation relations [

ξα , ξβ
]

= Ωαβ (4.115)

The grade -1, -2 generators and those of g0 can be realized easily as

E =
1
2
y2 Eα = y ξα Ja = −1

2
λa

αβξ
αξβ (4.116)

where y, at this point, is an extra ”coordinate” such that 1
2y

2 acts as the central charge of
the Heisenberg algebra formed by the negative grade generators. We should note that we
are following the conventions of [8]. The quadratic Casimir operator of the Lie algebra g0

is
C2

(
g0
)

= ηabJ
aJb (4.117)

where ηab is the Killing metric of g0. We make an Ansätz for the grade +2 generator F of
the form

F =
1
2
p2 + κy−2 (C2 + C) (4.118)

where p is the momentum conjugate to the coordinate y (c.f. (4.1)) and κ and C are some
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constants to be determined later. This implies then

Fα = [Eα, F ] = ip ξα + κy−1 [ξα , C2]

Fα = ip ξα − κy−1
[
2 (λa)α

βξ
βJa + Cρ ξ

α
]

(4.119)

where Cρ is the eigenvalue of the second order Casimir of g0 in the representation ρ.4

λa
αβλ

βγ
a = −Cρδ

γ
α (4.120)

Next, we determine unknown constants requiring that generators close into the algebra
(4.114). We first consider commutators of elements of g1 and g−1. To calculate the com-
mutators [

Eα , F β
]

= i (y p) Ωαβ − ξβ ξα + κ
[
ξα ,

[
ξβ , C2

]]
(4.121)

we use the following almost trivial result

[ξα , C2] = −2 (λa)α
βξ

βJa − Cρ ξ
α (4.122)

which upon substitution into (4.121) yields

[
Eα , F β

]
= −∆Ωαβ +

{
3κCρ

1 +N
− 1

2

}(
ξαξβ + ξβξα

)
− 6κ (λa)αβ Ja (4.123)

where ∆ = − i
2 (yp+ py). Hence closure requires

3κCρ

1 +N
− 1

2
= 0 (4.124)

Next, we require that
[
g1, g1

]
= g2. Computation of this commutator[

Fα , F β
]

= −p2Ωαβ +
κ

y2

(
−ξα

[
ξβ , C2

]
+ ξβ [ξα , C2] + κ

[
[ξα , C2] ,

[
ξβ , C2

]])
(4.125)

is slightly more involved. Doing some algebra reveals

− ξα
[
ξβ , C2

]
+ ξβ [ξα , C2] = CρΩαβ + 2

(
ξα(λa)β

γ − ξβ(λa)α
γ

)
ξγJa (4.126)

4 Note that the indices α, β, .. are raised and lowered with the antisymmetric symplectic metric Ωαβ =
−Ωβα that satisfies ΩαβΩγβ = δα

β and V α = ΩαβVβ , Vα = V βΩβα . In particular, we have V αWα =
−VαW α.
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and

κ
[
[ξα , C2] ,

[
ξβ , C2

]]
=

12κCρ

N + 1

(
ξα(λa)β

γ − ξβ(λa)α
γ

)
ξγJa − κC2

ρΩαβ

+4κ
(

3
(
λbλa

)αβ
JaJb − 2

(
λbλa

)βα
JaJb + fab

c(λa)α
µ

(
λb
)β

ν
ξµξνJc

)
(4.127)

Hence combining the two expressions above we get for (4.125)

[
Fα , F β

]
= −2

(
1
2
p2 +

1
y2

(
κ2

2
C2

ρ −
κ

2
Cρ

))
Ωαβ

+
4κ
y2

(
ξα(λa)β

γ − ξβ(λa)α
γ

)
ξγJa

+
4κ2

y2

(
3
(
λbλa

)αβ
JaJb − 2

(
λbλa

)βα
JaJb + fab

c(λa)α
µ

(
λb
)β

ν
ξµξνJc

) (4.128)

We need to prove that the right hand side is equal to 2ΩαβF with F = 1
2p

2 +κy−2 (C2 + C).
Therefore contracting the right hand side with Ωβα we find

−N

(
p2 +

1
y2

(
κ2C2

ρ − κCρ

))
− 1
y2
κ
(
−16 + 20κiρ`2 − 4κCadj

)
C2 (4.129)

where iρ is the Dynkin index of the representation ρ of g0 and Cadj is the eigenvalue of the
second order Casimir in the adjoint of g0. To obtain this result we used the fact that

λa
αβλ

b,αβ = −iρ`2ηαβ

where ` is the length of the longest root of g0.5 Using the fact that

Cadj = −`2h∨ (4.130)

the closure then requires6

(
−8 + 10κiρ`2 + 2κh∨`2

)
= N (4.131)

Consistency of (4.124) and (4.131), combined with

iρ`
2 =

N

D
Cρ (4.132)

5The length squared `2 of the longest root is normalised such that it is 2 for the simply-laced algebras,
and 4 for Bn, Cn and F4 and 6 for G2. The iρ, Cρ and ` are related by iρ =

NCρ

D`2
where D = dim(g0).

6h∨ is the dual Coxeter number of g0 subalgebra of g .
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g D ǧ ρ iρ
sp(2n) n(2n+ 1) n+ 1 2n 1

2
sl(6) 35 6 20 3
so(12) 66 10 32 4
E7 133 18 56 6
sp(6) 21 4 14 5

2
sl(2) 3 2 4 5

Table 4.2: Quasi-conformal algebras based on simple (complex) g and irreducible ρ

implies
h∨

iρ
=

3D
N(N + 1)

(N + 8)− 5 (4.133)

This can be checked explicitly to work by checking number against the table 1 of [8] relevant
part of which is collected in table 4.2 for convenience. In [8] it was shown that all the
groups and the corresponding symplectic representations listed in the above table satisfy
the equation

h∨ = 2iρ

(
D

N
+

3D
N(1 +N)

− 1
)

(4.134)

which was obtained as a consistency condition for the existence of certain class of infinite
dimensional nonlinear quasi-superconformal algebras. Comparing this equation with the
equation (4.133) we see that they agree if

D =
3N (N + 1)
N + 16

(4.135)

This magically holds true for all the groups G listed in Table 4.2 except for the generic
family of non-compact symplectic groups Sp(2n,R) with dim ρ = 2n. The minimal unitary
realization of the generic Sp(2n,R) family is obtained as a degenerate limit of our Ansatz
[51].

Now, let us make sure that [F , Fα] = 0. This is true provided

ξα (C2 + C) + (C2 + C) ξα + κ [C2 , [ξα , C2]] = 0 (4.136)

Using (4.122) and [C2 , J
a] = 0 we arrive at

2 ξα (C2 + C) + 2 (1− κCρ)Cρξ
α + 2 (1− κCρ) (λa)α

β ξ
βJa

−4κ
(
λaλb

)α

β
ξβJbJa = 0

(4.137)

In order to extract restrictions on g implied by the above equation we contract it with ξγΩγα
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g dim(g) g∨ Does (4.139) hold ?
an n2 + 2n n+ 1 for sl(3) only
bn 2n2 + n 2n− 1 no
cn 2n2 + n n+ 1 no
dn 2n2 − n 2n− 2 for so(8) only
e6 78 12 yes
e7 133 18 yes
e8 248 30 yes
f4 52 9 yes
g2 14 4 yes

Table 4.3: Dimensions and dual Coxeter numbers of simple complex Lie algebras.
In order for the algebra to admit 5-graded decomposition its dimension must be
greater than 6. This rules out sl(2) for which (4.139) also holds.

and obtain
h∨

iρ
=

D

N(N + 1)
(N − 8) + 1 . (4.138)

It agrees with (4.133) provided (4.135) holds true.
It is of interest to investigate implications of (4.135) for the 5-graded Lie algebra g. It

is well known [43, 113] that N = 2(g∨− 2) where g∨ is the dual Coxeter element of algebra
g in question. Since

dim (g) = 2 + 2N + 1 + dim
(
g0
)

= 1 + 2 (N + 1) +D = 2
(g∨ + 1) (5g∨ − 6)

g∨ + 6
(4.139)

Algebras in this triangle enjoy some really exceptional properties. In addition The quadratic
Casimir of the algebra constructed above reads as follows

C2 (g) = JaJa +
2Cρ

N + 1

(
1
2

∆2 + EF + FE

)
− Cρ

N + 1
Ωαβ

(
EαF β + F βEα

)
(4.140)

which upon using (4.124) and the following results

1
2

∆2 + EF + FE = κ (JaJa + C)− 3
8

Ωαβ

(
EαF β + F βEα

)
= 8κJaJa +

N

2
+ κCρN

(4.141)

is seen to reduce to c-number

C2 (g) = C

(
8κCρ

N + 1
− 1
)
− 3

4
Cρ

N + 1
− N

2
Cρ

N + 1
−
κC2

ρN

N + 1

=(using eq.(4.124)) −
Cρ

36
(N + 4) (5N + 8)

N + 1

(4.142)
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in agreement with irreducibility. We note that this result agrees with explicit calculations
for magic square algebras in ref. [48]. In the normalisation chosen there κ = 2 and hence
12Cρ = N + 1. Then, using N = 2g∨ − 4 we get

C2 (g) = − 1
108

(
5g∨ − 6

)
g∨. (4.143)

Few remarks are in order. Construction presented in section 4.5 sheds some light on what
happens if requirement of simplicity of g0 is relaxed. Assuming g0 semi-simple, quadratic
Casimir of each simple component would be some linear combination of quartic invariant
of g0. This, of course, assumes uniqueness of quartic invariant of symplectic representation
of g0.

4.7 Representations of non-compact supergroups and con-

formal quantum mechanics

The same steps undertaken in the previous chapter for bosonic oscillators ξα can be repeated
to fermionic oscillators, leading to fermionic extension of conformal quantum mechanics.

We start with the same 5-graded decomposition, assuming g0 to be simple. Subspace g−1

now can not be assumed symplectic. Indeed, assumptions of 5-graded decomposition imply
that g−1 is isomorphic to some Clifford algebra, by the same token as it was isomorphic to
Heisenberg-Weyl algebra in bosonic case.

We adopt structure of (4.114), with Ω now denoting non-degenerate bilinear form asso-
ciated with aforementioned Clifford algebra.
Now we realize them using anti-commuting oscillators ξα such that{

ξα , ξβ
}

= Ωαβ (4.144)

this way

E =
1
2
y2 Eα = yξα Ja = −1

2
λa

αβξ
αξβ (4.145)

We are following conventions of [8]. The quadratic Casimir of g0 is taken to be

C2

(
g0
)

= ηabJ
aJb (4.146)

The grade +2 generator F is taken to be

F =
1
2
p2 + κy−2 (C2 + C) (4.147)
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for some constants κ and C to be determined later. This makes

Fα = ip ξα + κy−1 [ξα , C2] (4.148)

The following will be useful later{
Eα , F β

}
= i (y p) Ωαβ + ξβ ξα + κ

{
ξα ,

[
ξβ , C2

]}
(4.149)

and{
Fα , F β

}
= −p2Ωαβ − κ

y2

(
ξα
[
ξβ , C2

]
+ ξβ [ξα , C2]− κ

{
[ξα , C2] ,

[
ξβ , C2

]})
(4.150)

and
[F, Fα] =

κ

x3
((C2 + C) ξα + ξα (C2 + C) + κ [C2, [ξα, C2]]) (4.151)

We find the following identities useful

[AB, C} = A [B, C}+ (−)BC [A, C}B

[A, BC} = [A, B}C + (−)AB B [A, C}

[AB, CD} = A [B, C}D + (−)BC+AC+BD C [A, D}B

+ (−)BC AC [B, D}+ (−)BC+BD [A, C}DB

(4.152)

By inspection
[ξα , C2] = −2 (λa)α

βξ
βJa + Cρ ξ

α (4.153)

and using the following ansatz

(λa)β
γ(λa)

α
δ + (λa)βα (λa)γδ =

Cρ

N − 1

(
ΩαβΩγδ + δβ

γδ
α

δ − 2δα
γδ

β
δ

)
(4.154)

we find{
Eα, F β

}
= −Ωαβ∆− 6κ (λa)βα Ja +

(
3κCρ

N − 1
− 1

2

)(
ξβξα − ξαξβ

)
. (4.155)

Computing
{
Fα, F β

}
we get

{
Fα, F β

}
= −2FΩαβ = −2

(
p2

2
+

k

x2

(
1
2
κC2

ρ +
1
2
Cρ

))
Ωαβ

− κ

x2

(
−4
(
ξα(λa)

β
γ + ξβ(λa)

α
γ

)
ξγJa + 12κ (λaλb)

αβ JbJa

+8κ (λaλb)
βα JbJa − 4κ(λa)

α
δ(λb)

β
γξ

δξγfab
cJ

c
) (4.156)
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Taking the Ω trace we obtain

N = 8− 10κiρ`2 + 2κCadj 2C = κC2
ρ + Cρ (4.157)

Taking into account that
iρ`

2

Cρ
=
N

D
Cadj = +`2g∨0 (4.158)

we obtain our first restriction for fermionic super-conformal algebra data

g∨0
iρ

= 5 +
3D

N(N − 1)
(N − 8) . (4.159)

Now, we look at [F, Fα] = 0. This yields the following condition

2ξα (C2 + C)− Cρξ
α + (2 + 4κCρ) (λa)

α
β − κC2

ρξ
α − 4κ(λaλb)

α
βξ

βJbJa = 0 (4.160)

which, upon contraction with ξγΩγα results into the following condition

g∨0
iρ

= −1 +
D

N (N − 1)
(N + 8) . (4.161)

These two conditions (4.159) and (4.161) agree provided

D =
3N (N − 1)

16−N
(4.162)

which is also the condition for them to agree with eq. (2-32) in [8]. Looking at the table 1 of
[8] and verifying these conditions we find the following fermionic super-conformal algebras:

g g0 D N

osp (10|2,R) so(10) 45 10
F (4) so(7) 21 8s

G(3) g2 14 7

(4.163)
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Chapter 5

Minimal unitary representations of U-duality Lie

algebras

Minimal unitary representation of a non-compact simple Lie algebra g is defined by
minimal realization described in previous chapter, realized on the Hilbert space of square
integrable functions.

Minimal unitary representations of non-compact reductive groups have been studied by
mathematicians (see [73] for review and further references).

5.1 K-types

Consider a linear connected reductive group1 G and its representation π on a Hilbert space
V . Let K be the maximal compact subgroup of G and consider representation π such that
π|K is unitary (i.e. if π is unitary or it is an induced representation ). Then π|K decomposes
into orthogonal sum of irreducible representations of K:

π|K '
⊕
τ∈K̂

nττ (5.1)

where K̂ denotes the space of unitary irreducible representations of group K, referred to in
mathematical literature as dual of K. Multiplicity nτ is either a non-negative integer or it
is +∞. Any unitary irreducible representation τ ∈ K̂ is finite dimensional. An equivalence
class τ that occur in π|K with positive multiplicity are called K-types of π. For unitary
irreducible representation π multiplicities of K-types are integers and are bounded from
above nτ 6 dim τ for all τ ∈ K̂ [68]. Among irreducible representations τ ∈ K̂ occurring in
π there is a finite number of minimal K-types minimising

‖Λ (τ) + 2δK‖2 (5.2)
1A complex analytic group is called reductive if its linear analytic representation is completely reducible.

Semi-simple groups are reductive. GL (n, C) is reductive though not semi-simple because it is direct sum of
simple and Abelian group.
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where Λ (τ) is the highest weight of the representation τ and 2δK is sum of all positive roots
of Lie algebra k of compact group K.

A representation π is called admissible if its restriction to the compact subgroup π|K
acts unitarily on Hilbert space V and if multiplicities of its K-types are all finite. For
instance lowest energy representations considered in Section 3.4 are admissible.

Consider the universal enveloping algebra U (g). The universal enveloping algebra has
a natural grading

U (g) = 1⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ · · · =
∞⊕

k=0

Tk (g) (5.3)

with respect to order of monomial in g. Consider action of U (g) on a vector space V of rep-
resentation of g. It is clear that dimension of Tk (g)V will grow polynomially with k. Define
Gelfand-Kirillov dimension to be the rate of growth for large k. For generic representations
Gelfand-Kirillov dimension is equal to the number of positive roots in Lie algebra g, and is
lesser than this for special representations. Minimal representation corresponds to minimal
Gelfand-Kirillov dimension.

Gelfand-Kirillov dimension of a representation can be less than that of a generic rep-
resentation if some ideal I of universal enveloping algebra U (g) vanishes on this represen-
tation, i.e. π (I)V = 0. Joseph showed [59] that for minimal representations this ideal is
two-sided prime ideal I0 generated by its members in I0∩T2 (g) bearing Joseph’s name (cf.
(4.112)). Minimal representation can also be understood as quantisation of coadjoint orbit
going through maximal root of g and thus having the smallest possible functional dimension
[59, 112].

Minimal representation of U-duality groups are studied in connection with automorphic
forms [64, 88] of discrete U-duality groups. Construction of automorphic forms of weight
zero, i.e. functions invariant under discrete U-duality groups, involves a spherical vector of
continuous version of U-duality group (see [88] for physicist’s oriented review). A spherical
vector is a vector of one-dimensional minimal K-type, and thus it is annihilated by all the
compact generators of g:

π (k) |φspherical〉 = 0 (5.4)

Clearly not every Lie algebra g would admit a spherical vector in the minimal representation,
in particular algebras of type g2(2) and f4(4) do not admit spherical vector [89].
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5.2 Constructing spherical vector for split algebras

As it is explained in the Appendix A.2 every Lie algebras except su(2) admits 5-graded
decomposition (3.38) associated with highest root ω of g:2

Ê−ω ⊕ g−1 ⊕
(
Ĥω ⊕ g0

)
⊕ g+1 ⊕ Êω (5.5)

Coadjoint orbit passing through highest root vector Ê−ω is generated by the action of Ĥω,
Êω and g+1. The orbit is endowed with g-invariant Kirillov-Konstant symplectic form,
which decomposes into symplectic form on g−1, as it was explained at the beginning of
chapter 4 and in Appendix A.2, and symplectic form on Ĥω and Eω. In order to carry
out quantisation of this orbit one has to introduce polarisation, i.e. call some variables
coordinates and some momenta, and then represent generators of algebra g as differential
operators acting on function of the chosen coordinates as it was done in chapter 4.

The choice made by authors of [64] is based on distinguished root Êβ0 ∈ g+1, unique
simple root which is not orthogonal to ω (which is also the root to which affine root attached
on extended Dynkin diagram). Uniqueness fails for algebras of type An which were not
considered in [64]. One declares parameters associated with g0 orbit of Êβ0 to be coordinates
in our phase space, with x0 corresponding to Eβ0 (compare this to (3.46)):

Êω = ŷ Êβk
= −iŷp̂k Êγk

= ix̂k (5.6)

with momenta realized as p̂ = i∂ŷ and p̂k = i∂x̂k . Let h0 be subalgebra of g0 such that[
Êβ0 , h0

]
= 0 (5.7)

and let N (xa) be cubic invariant of h0. Then Ĥβ0 , Êβk
and Ê−δk

(for some δ) and h0 form
conformal algebra to which one can associate Jordan triple system as explained earlier and
N (xa) coincides with cubic norm of underlying Jordan algebra. Giving the above data
one can reconstruct the whole algebra thanks to two Weyl reflection realized as integral
transforms on functions:

(S ◦ f) (ŷ, x̂0, . . . , x̂d−1) =
∫ ∏d−1

k=0 dpk

(2πŷ)d/2
f (ŷ, p0, . . . , pd−1) e

i
ŷ

Pd−1
k=0 x̂kpk (5.8)

and
(A ◦ f) (ŷ, x̂0, . . . , x̂d−1) = e

− 1
x̂0ŷ

N (x̂a)
f (−x̂0, ŷ, x̂1, . . . , x̂d−1) (5.9)

In particular reflection A allows to map between negative and positive grade subspaces.
2We shall denote all the generators in the construction of Kazhdan, Pioline and Waldron [64] with hat

to distinguish it from ours.
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Resulting structure of selected generators has the form

Ĥβ0 = −ŷ∂ŷ + x̂0∂x̂0

Ĥω = −µ− 2ŷ∂ŷ − x̂k∂x̂k

Ê−β0 = −x̂0∂ŷ +
i

ŷ2
N (x̂a)

Ê−ω = ŷp̂2 + p̂x̂kp̂
k + x̂0N (p̂)

− p̂0

ŷ2
N (x̂) +

1
ŷ

∂N (x̂)
∂x̂k

∂N (p̂)
∂p̂k

(5.10)

with generators h0 being bilinears in x̂k, p̂k and ŷ, p̂. The spherical vector then has the
following form (for g not being of D series)

fK =
1

|z|2ν+1 K̂ν (S1) e−iS2 (5.11)

where K̂ν (z) = z−νKν (z) and Kν is modified Bessel function of the second kind. Here
z = ŷ + ix̂0 and

S1 =

√√√√∑
a

Ẑ2
a +

(
∂Ẑa

N (x̂)√
ŷ2 + x̂2

0

)2

S2 =
x̂0N (x̂)

ŷ
(
ŷ2 + x̂2

0

) (5.12)

where Z = (ŷ, x̂0, x̂a). For full details of this construction we refer the reader to the original
paper [64] which is also reviewed in [89, 88]. We shall try to understand this construction
for D4 and the resulting spherical vector in more details below.

5.3 Spherical vector of D4(4)

Maximal split real form of Lie algebra of type D4 corresponds to SO (4, 4) which corresponds
to 3-dimensional U-duality groups of compactification of 5-dimensional STU model [39], i.e.
pure 5-d supergravity coupled to two vector multiplets.

Let α1, α2, α3 be three mutually orthogonal with respect to Killing form simple roots
on which triality acts by permutations (see Fig. 5.1). Let β0 be the remaining simple root,
invariant under triality homomorphism. The five-graded decomposition looks as follows

Êω ⊕

{
Êβk

}
{
Êγk

}⊕
 Ĥω

Ĥβ0

⊕

Êα1 , Ĥα1 , Ê−α1

Êα2 , Ĥα2 , Ê−α2

Êα3 , Ĥα3 , Ê−α3

⊕

{
Ê−βk

}
{
Ê−γk

}⊕ Ê−ω (5.13)

where k = 0, 1, 2, 3 and βk + γk = ω. For every root the Hermiticity condition corresponds
to that of maximal split case (see Appendix A.2):(

Ĥα

)†
= −Ĥα

(
Êα

)†
= Ê−α (5.14)
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Figure 5.1: Root system of d4.
The central root is denoted β0, and other roots which connect to it are denoted α1, α2, α3.

Triality is an outer automorphism that permutes αk roots.

and thus compact generators are given by Êα+Ê−α for every positive root of so (4, 4). Thus
there will be 12 compact generators that form so (4)⊕ so (4). Commutation relation of the
algebra is given in standard Chevalley basis:[

Êα, Ê−α

]
= Ĥα

[
Ĥα, Ê±α

]
= ∓2Ĥ±α (5.15)

for all simple roots α. And for k = 1, 2, 3 we have

Êβk
=
[
Êαk

, Êβ0

]
Êγk

=
[
Êαi , Êβj

]
=
[
Êαj , Êβi

]
(5.16)

for i, j, k being cyclic permutation of 1, 2, 3. Then[
ÊβI

, ÊγJ

]
= δIJ Êω (5.17)

where I, J run over 0, 1, 2, 3. The remaining commutation relation follow from given and
hermitian conjugation involution.

Below we give the realization of Kazhdan, Pioline and Waldron [64] explicitly

ÊβL
= iŷp̂L ÊγL = ix̂L Êω = iŷ (5.18)
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where L = 0, 1, 2, 3. Grade zero generators are given as

Ê+αk
= −ix̂0p̂k − iŷ−1x̂ix̂j

Ê−αk
= +ix̂kp̂0 − ix̂p̂ip̂j

Ĥαk
= −ip̂0x̂0 + 2ix̂kp̂k − i

3∑
j=1

x̂j p̂j (5.19)

For each simple root αk and k = 1, 2, 3 there correspond sp (2,R) which is isomorphic to
sl (2,R) used in previous chapter in Section 4.3.5.

Ê−β0 = −ix̂0p̂+
i

ŷ2
x̂1x̂2x̂3 Ĥβ0 = −iŷp̂+ ix̂0p̂0 (5.20)

from here we recognise the cubic form N = x̂1x̂2x̂3 of generic Jordan algebra R ⊕ Γ (2)
discussed earlier. The algebra h0 is spanned by

h0 = span
{
Ĥγ3 , Ĥγ2

}
' so (1, 1)⊕ so (1, 1) (5.21)

and indeed coincides with the Lorentz group of corresponding generalised space-time. Re-
maining generators are given as follows:

Ê−ω = −iŷp̂2 − 3p̂+ iŷ−1 − ix̂0p̂0p̂+ iŷ−2x̂1x̂2x̂3p̂0 − ix̂0p̂1p̂2p̂3

− iŷ−1 (x̂1x̂2p̂1p̂2 + x̂1x̂3p̂1p̂3 + x̂2x̂3p̂2p̂3)− x̂kp̂k

(
ip̂+ ŷ−1

)
Ê−γ0 = −3p̂0 − iŷp̂p̂0 + iŷp̂1p̂2p̂3 − i (x̂0p̂0 + x̂kp̂k) p̂0

Ê−γk
= −iŷp̂p̂k − i (p̂0x̂0 + p̂kx̂k) p̂k − iŷ−1x̂ix̂j p̂0

Ê−βk
= ix̂kp̂+ iŷ−1x̂k (x̂ip̂i + p̂j x̂j) + ix̂0p̂ip̂j

(5.22)

Here no summation over repeated indices is assumed and i, j, k is taken to be cyclic permu-
tation of 1, 2, 3. For convenience and further referencing we also give

Ĥω = Ĥα1 + Ĥα2 + Ĥα3 + 2Ĥβ0 = −i
3∑

k=0

x̂kp̂k − 2iŷp̂− 3 (5.23)

It is a tedious exercise to verify that the following function

f̂K (ŷ, x̂I) =
4π√
ŷ2 + x̂2

0

K0


√(

ŷ2 + x̂2
0 + x̂2

1

) (
ŷ2 + x̂2

0 + x̂2
2

) (
ŷ2 + x̂2

0 + x̂2
3

)
ŷ2 + x̂2

0

 e
− ix̂0x̂1x̂2x̂3

ŷ(ŷ2+x̂2
0)

(5.24)
satisfies 12 differential equations: (

Êρ + Ê−ρ

)
fK = 0 (5.25)
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for ρ being either αk or β0 and (
Êρ − Ê−ρ

)
fK = 0 (5.26)

for ρ being one of βk, γk, γ0, β0 or ω.
The spherical vector (5.24) is square integrable function, explictly invariant under triality

acting as permutation on x̂k.

5.4 Recasting into conformal QM basis

Procedure outlined above constructs, in the language of Chevalley basis and root systems, a
Freudenthal triple system from Jordan triple system (3.46) associated with Jordan algebra
that has adjoint identity (2.52). Thus it could be recast into conformal quantum mechanics
basis used in this thesis in hope to learn something new from this exercise.

Five graded decomposition (5.13) helps us identify generators, and comparing (4.116)
with Êω, Êβa and Êγa we conclude that module generators rescaling we should make the
following change of variables

ŷ = y2 x̂k = y xk (5.27)

Such change of variables induces the following relation between vector fields:

∂

∂x̂k
=

1
y

∂

∂xk

∂

∂ŷ
=

1
2y

∂

∂y
− 1

2y2

4∑
k=0

xk
∂

∂xk
(5.28)

which recasts Ĥω into

Hω = −3− y
∂

∂y
= −1

2

(
y
∂

∂y
+

∂

∂y
y

)
− 5

2
(5.29)

Since Ĥω plays the role of grading operator defining 5-grading it is identified with our ∆
(4.107). Again modulo generators rescaling we conclude that

p = −i ∂
∂y

+
5i
2y

= −iy
5
2
∂

∂y
y−

5
2 (5.30)

We hence adopt the following complement to (5.27):

p̂k =
1
y
pk p̂ =

1
2y

(
p+

5i
2y

)
− 1

2y2

3∑
k=0

xkpk (5.31)
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We are now set to write out the generators

Eω = iy2 Hω = − i
2

(py + yp)

E−ω = − i
4
p2 − i

2y2

(
C2 +

3
8

) (5.32)

where C2 stands for quadratic Casimir of each of the following sp (2,R):

Hαk
= ip0x0 + 2ixkpk − i

3∑
n=1

xnpn

Eαk
= −i (x0pk + xixj)

E−αk
= i (xkp0 − pipj)

(5.33)

C2 =
1
2
H2

αk
− Eαk

E−αk
− E−αk

Eαk
∀k = 1, 2, 3 (5.34)

Explicit expression for quadratic Casimir C2 reads as follows

C2 =
1
2
− 5

2
ix0p0 −

1
2
i

3∑
k=1

xkpk − 2x0p1p2p3 + 2x1x2x3p0 +
1
2

4∑
k=0

x2
kp

2
k+

x0p0

3∑
k=1

xkpk − x1x2p1p2 − x1x3p1p3 − x2x3p2p3

(5.35)

Negative grade generators linear in xk and pk read as follows

Eβk
= iypk Eγk

= iyxk ∀k = 0, 1, 2, 3 (5.36)

and remaining generators

Hβ0 = − i
4

(yp+ py) +
3i
2
p0x0 +

i

2

3∑
n=1

xnpn

E−β0 = − i
2
px0 +

i

2y

(
−5i

2
x0 + x0

3∑
n=0

xnpn + 2x1x2x3

)

E−γ0 = − i
2
pp0 +

i

2y

(
5i
2
x0 −

3∑
n=0

xnpnp0 + 2p1p2p3

)

E−βk
=
i

2
pxk +

i

2y

(
i

2
xk + 2x0pipj − xkx0p0 − xkxkpk + xkxipi + xkxjpj

)
E−γk

= − i
2
ppk +

i

2y

(
i

2
pk − 2x0pipj − x0p0pk − xkpkpk + xipipk + xjpjpk

)

(5.37)

The spherical vector is modified traces down to (5.24) with appropriate change of variables
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applied and multiplied by y5/2 so as to untwist (5.30);

fK =
4πy3/2√
y2 + x2

0

K0

y
√(

y2 + x2
0 + x2

1

) (
y2 + x2

0 + x2
2

) (
y2 + x2

0 + x2
3

)
y2 + x2

0

 e
− ix0x1x2x3

y2+x2
0

(5.38)
It is also annihilated by 12 differential equations:

(Eρ + E−ρ) fK = 0 (5.39)

for ρ being either αk or β0 and
(Eρ − E−ρ) fK = 0 (5.40)

for ρ being one of βk, γk, γ0, β0 or ω.
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Appendix A

Reference material

A.1 Clifford algebras and spinors

This section in part follows [71]. In a d-dimensional spacetime Rt,s with t-timelike and s-
spacelike dimensions, Clifford algebra is generated by products of Γµ satisfying the following
relation

{Γµ,Γν} = ΓµΓν + ΓνΓµ = 2ηµν (A.1)

where indices µ and ν run µ, ν = 0, . . . , d − 1, and ηµν = diag
(
(+)t , (−)s). Let ` (γ) be a

length of Clifford algebra element γ, i.e. a minimum number of generators product of which
forms γ.

Thanks to diagonality of metric η a space of algebra generators of length k is isomorphic
to space Λk of rank k anti-symmetric tensor in space-time indices. There is a natural
identification between Λk and Λd−k provided by Hodge ∗-operation:

Γµ1...µk
≡ Γ[µ1

. . .Γµk] (∗Γ)µ1...µk
=

1
(d− k)!

εµ1...µkµk+1...µd
ηµk+1νk+1 . . . ηµdνdΓνk+1...νd

Let Γd+1 be an element of Clifford algebra of length d:

Γd+1 = Γ0Γ1 . . .Γd (A.2)

then
Γµ1...µk

= (−1)(d−k)(d−k−1)/2 Γd+1 (∗Γ)µ1...µk
(A.3)

Since there are

(
d

k

)
independent elements of length k, we conclude that the total dimension

of Clifford algebra C (p, q) is equal to

d∑
k=0

(
d

k

)
= 2d (A.4)

Let ρ be some faithful representation of C (t, s), and let V be a module of ρ, i.e. finite
dimensional vector space where elements of Clifford algebra are realized as matrices. Each
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ε η (s− t) Spinor Reality Condition
+1 +1 0, 1, 2 mod 8 Majorana ψ∗ = Bψ
+1 −1 0, 6, 7 mod 8 Pseudo-Majorana ψ∗ = Bψ
−1 +1 4, 5, 6 mod 8 Symplectic Majorana ψ∗i = (ψi)

∗ = ΩijBψj

−1 −1 2, 3, 4 mod 8 Pseudo-symplectic Majorana ψ∗i = (ψi)
∗ = ΩijBψj

Table A.1: Admissible reality conditions in various space-times.
Here Ωij is constant symplectic matrix satisfying ΩijΩjk = −δk

i, and index i labels a
pseudo-real representation of a given Lie algebra which admits such representations.

representation of Clifford algebra forms a representation of rotation algebra so (t, s) with
algebra generators given as

Jµν =
i

4
[Γµ,Γν ] =

i

4
(ΓµΓν − ΓνΓµ) (A.5)

Indeed, it is easy to verify that Js satisfy commutation relation of generators of so (t, s):

[Jµν , Jλρ] = i (ηνλJµρ − ηµλJνρ + ηµρJνλ − ηνρJµλ) . (A.6)

Vectors of module of this representations are called spinors, and the corresponding repre-
sentation of so (t, s) is called spinor representation. In even-dimensional space-time matrix
Γd+1 anti-commutes with all Γµ:

Γd+1Γµ + ΓµΓd+1 = 0 (Γd+1)
2 = (−1)

s−t
2 (A.7)

and as a consequence commutes with all Jµν . We thus find the representation defined by
Jµν is reducible for even d, since eigenspaces of Γd+1 are invariant under action of so (t, s).
Spinors that belong to these eigenspaces are called chiral spinors, or Weyl spinors.

Let us further study the reducibility of Clifford algebra representation. We note that
Hermitian conjugation maps Clifford algebra into an equivalent one:

(Γµ)† = AΓµA
−1, with A = Γ0Γ1 . . .Γt−1 (A.8)

Matrix A is chosen in such way as to make compact generators Jµν Hermitian. Since ±Γ∗µ
also form an inequivalent representation of the algebra there exists an invertible matrix B
such that

Γ∗µ = −ηBΓµB
−1 η2 = 1 B†B = 1 Bt = εB ε2 = 1. (A.9)

It follows that

Γt
µ = −ηCΓµC

−1 C†C = 1 C = BA Ct = εηt (−1)
t(t+1)

2 C (A.10)
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Not any choice of ε and η is admissible for given space-time Rt,s. The values of ε and η,
and the allowed type of spinors, together with reality condition they satisfy are listed in
Table A.1. The Weyl condition, i.e. Γd+1ψ = ±ψ can be consistently imposed on any type
Majorana spinor provided s− t is a multiple of 4.
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A.2 Lie algebras

Lie algebra is a vector space g equipped with a bilinear operation, called Lie bracket (also
called commutator)

[·, ·] : g⊗ g → g (A.11)

that satisfies two additional requirements

∀a, b ∈ g [a, b] = − [b, a] (A.12a)

∀a, b, c ∈ g [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (A.12b)

known as anti-symmetry and Jacobi identity. For any element X ∈ g one defines an adjoint
action adX : g → g as follows

adX (Y ) = [X,Y ]

Lie algebra is said to have an ideal I, if

[I, g] ⊂ I.

Lie algebra is said to be simple if it contains no ideals besides itself. Lie algebra is said to
be semi-simple if it is a direct sum of simple Lie algebras.

Simple finite dimensional Lie algebras have been classified by E. Cartan. Consider a
simple finite dimensional Lie algebra g. Let h be its maximal Abelian subalgebra, also
referred to as Cartan subalgebra. Because algebra g is assumed simple

∀H ∈ h and ∀E ∈ g	 h [H,E] ∈ g	 h. (A.13)

Since h is Abelian there exists a basis in g which diagonalises adjoint action adH for all
H ∈ h. Cartan proved that all such eigenspaces are one-dimensional:

g = h⊕
⊕
α∈Φ

gα (A.14)

i.e.
gα = R⊗ Eα : [H,Eα] = `α (H)Eα (A.15)

for some linear form `α : h → R. He also proved that for every gα there exists g−α by
constructing a Cartan involution τ such that

τ : h → h

τ : gα → g−α ∀α ∈ h∗.
(A.16)
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Linear forms α ∈ h∗ are referred to as Lie algebra’s roots. It is easy to see that for every
two roots α and β Jacobi identity implies that

[gα, gβ ] ⊆ gα+β (A.17)

In particular [Eα, Eβ] = 0 whenever α + β is not a root. Since gα are one-dimensional we
conclude that α+ α is never a root. Jacobi identity commands that

∀α ∈ h∗ [gα, g−α] ⊂ h. (A.18)

This establishes a map of h∗ onto h. Let Hα = [Eα, E−α]. Because adHα is a finite
dimensional matrix acting on g Cartan defines Cartan bilinear form

(α, β) = Trg

(
adHαadHβ

)
(A.19)

and proves that it is non-degenerate, establishing isomorphism between h and h∗. Then

`α (Hβ) = 2
(α, β)
(α, α)

(A.20)

Rank of Lie algebra r is defined as dimension of its Cartan subalgebra.
Cartan involution induces an (arbitrary) decomposition of root system Φ into positive

Φ+ and negative Φ− roots. Among positive roots, there exist a set simple roots, such that
any positive root is a sum of simple roots

α =
r∑

i=1

ciαi ci ∈ Z+ (A.21)

with non negative coefficients ci. Cartan’s classification theorem states that for finite-
dimensional simple Lie algebra g

2 > κij = `αi

(
Hαj

)
∈ Z κijκji = 0, 1, 2, 3, 4 (A.22)

Thus finite-dimensional simple Lie algebras are exhausted by 4 families of classical Lie
algebras An, Bn, Cn, Dn and 5 exceptional algebras G2, F4, E6, E7, and E8. The subscript
indicates the rank of the algebra. To each of these algebras one associates a Dynkin diagram
(see Table A.2), which is a graph with simple positive roots as nodes, connected with a single
line if κij = κji, with a double line if κij = 2κji and an arrow from longer to shorter root,
and with a triple line if κij = 3κji.

Among positive roots Ψ+ of a simple finite-dimensional Lie algebra, there is a highest
root ω, such that for any other root α ∈ Φ+ sum α+ω 6∈ Φ. Element Hω of Cartan algebra
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Algebra Dynkin graph Dimension

An n2 + 2n

Bn 2n2 − n

Cn 2n2 − n

Dn 2n2 − n

G2 14

F4 52

E6 78

E7 133

E8 248

Table A.2: Dynkin diagrams of finite dimensional simple Lie algebras.
Gray nodes denote the root to which extended root −ω attaches.
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induces grading of Lie algebra g, since

[Hω, h] = 0 [Hω, Eα] = `ω (α)Eα (A.23)

One can prove that
∀α ∈ Φ − 2 6 `ω (α) 6 2 (A.24)

The inequalities are saturated only if α = ±ω. Thus every Lie algebra admits a 5 grading.
The only exception to this rule is algebra sl2 ' A1 of dimension 3, where there does not
exist α ∈ Φ+ such that `ω (α) = 1.

One can also prove that most of simple roots of a Lie algebra are orthogonal to ω, i.e.
`ω (αi) = 0. For all Lie algebras there is unique simple root α such that `ω (α) = 1, except
for algebras of type An where there two such simple roots. Those simple roots that are not
orthogonal to ω are drawn gray in table A.2.

A.3 Real forms of Lie algebras

Real form gr of complex Lie algebra gc is a subalgebra of gc invariant under some anti-linear
involution. That is starting from complex Lie algebra classified by Cartan we make possible
complex change of variables such that basis elements Ja of with structure constants fab

c[
Ja, Jb

]
= fab

cJ
c (A.25)

under involution τ behave

∀α ∈ C τ (αJ)a = α∗T a
bJ

b ,
[
τ (J)a , τ (J)b

]
= −fab

c (τJ)c . (A.26)

Existence of compact forms of Lie algebras follow from Cartan classification, since structure
constants can be chosen real. Compact real form then corresponds to involution τ (J)a =
−Ja, that is all generators are anti-hermitian.

From the above discussion it is clear that classification of real forms boils down to
classification of involutive automorphisms of Lie algebra. Without going into much detail,
for which we refer reader to excellent textbook of Gilmore [31], we quote the list of real
forms in table A.3 for further reference.

Real forms of complex Lie algebra are denoted by specifying character of real form χ

equal to number of non-compact generators minus number of compact generators. For
the exception of some real forms of classical Lie algebras specifying character χ suffices to
identify real form uniquely.

So-called split real forms, with maximal possible character χ = r correspond to Cartan
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Root space
Compact
Form

Associated
non-
compact
form

Maximal
compact
subgroup

χ =
no. non-comp.−
no. comp.

An−1 su(n) sl(n,R) so(n) n− 1
su(2n) su∗(2n) usp(2n) −2n− 1
su(p+ q) su(p, q) su(p)⊕ su(q)⊕ u(1) 1− (p− q)2

Bn so(p+ q) so(p, q) so(p)⊕ so(q) pq
Dn so(p+ q) so(p, q) so(p)⊕ so(q) pq

so(2n) so∗(2n) su(n)⊕ u(1) −n
Cn usp(2n) sp(2n,R) su(n)⊕ u(1) +n

usp(2p+ 2q) usp(2p, 2q) usp(2p)⊕ usp(2q) 4pq
G2 g2(−14) g2(2) A1 ⊕A1 2
F4 f4(−52) f4(−20) B4 −20

f4(−52) f4(4) C3 ⊕A1 4
E6 e6(−78) e6(−26) F4 −26

e6(−78) e6(−14) D5 ⊕D1 −14
e6(−78) e6(2) A5 ⊕A1 2
e6(−78) e6(6) C4 6

E7 e7(−133) e7(−25) E6 ⊕D1 −25
e7(−133) e7(−5) D6 ⊕A1 −5
e7(−133) e7(7) A7 7

E8 e8(−248) e8(−24) E7 ⊕D1 −24
e8(−248) e8(8) D8 8

Table A.3: Real forms of simple Lie algebras.
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SL(n,R) A† = At

SU∗(2n) A†A = 1 A∗J = JA
SU (p, q) A†ηA = η
SO∗ (2n) AtA = 1 A∗J = JA
SO (p, q) AtηA = η
Sp (2p, 2q) AtJA = J A∗η = ηA
Sp (2p,R) AtJA = J A† = At

Table A.4: Real forms of classical Lie algebras and reality conditions.
Here J is symplectic matrix, and η is a metric of Rp,q.

involution
∀α ∈ Φ+ Eα → E−α E−α → Eα Hα → Hα (A.27)

since for each positive root we have one compact Eα−E−α and one non-compact Eα +E−α

root generators, with all elements of Cartan subalgebra h being non-compact.
In conclusion we list explicitly reality conditions for real forms of classical Lie groups in

table A.4.
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A.4 Going from su∗(8) to su(6, 2) basis

Recall that position and momentum operators XAB and PAB transform as 28 and 2̃8

under su∗(8). To build annihilation and creation operators we need to take complex linear
combinations of the form XAB±iPAB, which transform covariantly under so∗(8) subalgebra
of su∗(8). We expect resulting creation and annihilation operators to transform as 28 and
28 of some non-compact form of su(8) 1. The isomorphism so∗(8) ' so(6, 2) suggests that
this non-compact form should be su(6, 2) as we shall establish.

In order to elucidate the role of triality of so(8) we recall that adjoint representation of
compact e7 decomposes into four representations of so(8):

133 = 28⊕ 35v ⊕ 35s ⊕ 35c

where three 35 correspond to symmetric traceless tensor in 8v ⊗ 8v, 8s ⊗ 8s and 8c ⊗ 8c

respectively, with 8v, 8s and 8c being three inequivalent eight dimensional representations
of so(8). Triality of so(8) then maps 35 representations into one another. Observe also,
that 28 combined with any one of three 35 generate an su(8) subalgebra of e7. Compact
so(8) becomes so∗ (8) if we consider e7(−25) instead of compact e7 and su(8) becomes su∗(8).

Consider the Clifford algebra of R6,2

{
Γa ,Γb

}
= 2ηab (A.28)

and choose a basis with the following Hermiticity property

(Γa)† = ηabΓb = ω · Γa · ω−1 (A.29)

where ω = Γ7 · Γ8 is a 16× 16 symplectic matrix. One particular choice of basis, in which
chirality matrix Γ9 is diagonal, is given as follows

Γ1 = σ1 ⊗ I2 ⊗ I2 ⊗ I2 Γ2 = σ2 ⊗ σ1 ⊗ I2 ⊗ σ2

Γ3 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 Γ4 = σ2 ⊗ σ2 ⊗ σ3 ⊗ I2
Γ5 = σ2 ⊗ σ3 ⊗ I2 ⊗ σ2 Γ6 = σ2 ⊗ σ2 ⊗ σ1 ⊗ I2
Γ7 = iσ2 ⊗ I2 ⊗ σ2 ⊗ σ3 Γ8 = iσ2 ⊗ I2 ⊗ σ2 ⊗ σ1

(A.30)

Then,

Zab =
1
4

Γab
CD

(
XCD − iPCD

)
Z̃ab =

1
4

Γab
CD

(
XCD + iPCD

) (A.31)

1 Notice that compact su(8) is not a subalgebra of e7(−25).
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where transformation coefficient are given by matrix elements of chiral representation of
so(6, 2) generators

Γab
CD = P

(
i

4

[
Γa ,Γb

])
CD

(A.32)

and P is the chiral projection operator in spinor space. Symplectic structure (4.29) of X
and P induces the symplectic structure[

Z̃ab , Zcd
]

=
1
8

Tr
[
Γab Γcd

]
=

1
2

(
ηcaηdb − ηcbηda

)
. (A.33)

on Z and Z̃. Gamma matrices defined above satisfy the following identities

Γab
AB = −Γab

BA = −Γba
AB

Γabcd
AB =

1
24
εabcd

efghΓefgh
AB = Γabcd

BA

Γabcd
ABCD := Γ[ab

[ABΓcd]
CD]

Γabcd
ABCD = − 1

24
εabcd

efghΓefgh
ABCD = − 1

24
εABCDEFGHΓabcd

EFGH

Γac
[ABΓcb

CD] = Γbc
[ABΓca

CD] =
1
24
εABCDEFGHΓac

[EF Γcb
GH]

where
Γabcd

AB = P
(
Γ[aΓbΓcΓd]

)
AB

.

These identities allow us to rewrite generators of e7(−25) in su(6, 2) basis:

ηbcJa
c − ηacJb

c = Γab
AB

(
JA

B − JB
A

)
ηbcJa

c + ηacJb
c = Γab

ABCD

(
JABCD + (εJ)ABCD

)
Jabcd +

1
24
εabcd

efghJ
efgh = Γabcd

AB

(
JA

B + JB
A

)
Jabcd − 1

24
εabcd

efghJ
efgh = Γabcd

ABCD

(
JABCD − (εJ)ABCD

)
(A.34)

or, more succinctly,

ηbcJa
c = Γab

ABJ
A

B + Γab
ABCDJ

ABCD

Jabcd = Γabcd
ABJ

A
B + Γabcd

ABCDJ
ABCD

(A.35)

A.5 Minimal realization of e8(8) in su∗(8) basis

Non-compact exceptional Lie algebra e8(8) also admits realization in an su∗(8) basis. It is
seen via the following chain of subalgebra inclusions su∗(8) ⊂ e7(7) ⊂ e8(8).
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Algebra e7(7) is generated as

JA
B = −2iXACPCB −

i

4
δA

BX
CDPCD

JABCD = − i
2
X [ABXCD] +

i

48
εABCDEFGHPEFPGH .

(A.36)

where A,B, . . . are su∗(8) indices. Note different relative signs between XX and PP terms
in (A.36) and (4.33). It amounts to change of sign in the commutator on the third line[

JA
B, J

C
D

]
= δC

BJ
A

D − δA
DJ

C
B[

JA
B, J

CDEF
]

= −4δ[CBJ
DEF ]A − 1

2
δA

BJ
CDEF

[
JABCD, JEFGH

]
= +

1
36
εABCDK[EFGJH]

K

(A.37)

as compared to that in (4.12) while does not change the Hermiticity properties (4.13)
resulting in the following quadratic Casimir

C2 =
1
6
JA

BJ
B

A +
1
24
εABCDEFGHJ

ABCDJEFGH

=
1
6
JA

BJ
B

A + JABCD(εJ)ABCD .

(A.38)

The decomposition of e7(7) with respect to the maximal compact subalgebra usp(8) of su∗(8)
results now in

133 = 63⊕ 70 = (36c. ⊕ 27n.c.)⊕ (42n.c. ⊕ 27c. ⊕ 1n.c.)

and shows the the constructed e7 is indeed e7(7). The remaining generators of algebra e8(8)

are then given by

EAB = −iyXAB ẼAB = −iyPAB E = − i
2
y2

and
F =

1
2i
p2 +

2
iy2

I4 (X ,P )

I4 (X ,P ) = C2 +
323
16

FAB = ipXAB +
2
y

[
XAB , I4 (X,P )

]
F̃AB = ipPAB +

2
y

[PAB , I4 (X,P )] .
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They satisfy the same commutation relations as their counterparts of e8(−24) except for

[
JABCD , EEF

]
= +

1
24
εABCDEFGHẼGH[

JABCD , FEF
]

= +
1
24
εABCDEFGH F̃GH[

ẼAB , F̃CD

]
= +12 (εJ)ABCD

(A.39)
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