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Abstract. This lecture reviews recent research on closed timelike curves
(CTCs), including these questions: Do the laws of physics prevent CTCs
from ever forming in classical spacetime? If so, by what physical mechanism
are CTCs prevented? Can the laws of physics be adapted in any reasonable
way to a spacetime that contains CTCs, or do they necessarily give nonsense?
What insights into quantum gravity can one gain by asking questions such
as these?

1. Introduction

Much of the forefront of theoretical physics deals with situations so extreme that there
is no hope to probe them experimentally. Such, largely, was the case nearly a century
ago for Einstein’s formulation of general relativity, and such is the case today for the
attempt to quantize gravity. In these situations, thought experiments can be helpful. Of
all thought experiments, perhaps the most helpful are those that push the laws of physics
in the most extreme ways. A class of such thought experiments, which I and others have
found useful in the last few years, asks [1] What constraints do the laws of physics place
on the activities of an arbitrarily advanced civilization? In asking this question, we have
in mind all the laws of physics that govern our universe, taken together—including those,
such as quantum gravity, that are not yet well understood, and others, such as classical
general relativity, that are, and with each set of laws holding sway only in its own domain
of validity.

An especially fruitful question of this type is [1] Do the laws of physics prevent
arbitrarily advanced civilizations from constructing “time machines” (machines for back-
ward time travel), and if so, by what physical mechanism are they prevented? Hawking
[2] has given the name chronology protection to the conjecture that there is such a mech-
anism, and that therefore closed timelike curves (CTCs) can never be created in the real
Universe, no matter how hard advanced civilizations might try. In this lecture I shall
review recent research on the chronology protection conjecture and related issues.

The laws of general relativity by themselves do not enforce chronology protection:
it is easy to find solutions of the Einstein field equation that have closed timelike curves
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Figure 1. Van Stockum’s spacetime.

(Section 2). However, the combination of general relativity’s laws and the laws of quan-
tum fields in curved spacetime may well provide a chronology protection mechanism—
though we might not be sure of this until we understand the laws of quantum gravity
much more deeply than today (Section 3).

Independently of whether chronology protection is correct, much insight into the
laws of physics might be gained by studying how they behave in the presence of closed
timelike curves (Section 4).

2. Spacetimes with closed timelike curves

A number of spacetimes with closed timelike curves have been exhibited in the literature,
and much is now understood about the generic chronological structure of such spacetimes.

2.1. Spacetimes with eternal CTCs

The earliest example of a spacetime with CTCs is Van Stockum’s 1937 solution of the
Einstein field equation [4, 5], which represents an infinitely long cylinder made of rigidly
and rapidly rotating dust. The dust particles are held out against their own gravity by
centrifugal forces, and their rotation drags inertial frames so strongly that the light cones
tilt over in the circumferential direction in the manner shown in Figure 1, causing the
dashed circle in the figure to be a CTC. CTCs pass through every event in the spacetime,
even an event on the rotation axis where the light cone is not tilted at all: one can begin
there, travel out to the vicinity of the dashed circle (necessarily moving forward in ¢
as one travels), then go around the cylinder a number of times traveling backward in
t as one goes, and then return to the rotation axis, arriving at the same moment one
departed. For the mathematical details of Van Stockum'’s solution see, e.g. Bonnor [5].

Physicists (but not science fiction writers) have generally dismissed Van Stockum’s
solution as “unphysical” because its source is infinitely long. Whether a finite-length,
rotating body can also produce CTCs is not known; I shall return to this in Sec. 2.2.

A second old, famous example of a spacetime with CTCs is Gédel’s solution of
the Einstein equation [6], which describes a stationary, homogeneous cosmological model



Closed timelike curves 297

with nonzero cosmological constant, filled with rotating dust. Again, the rotation tilts
the light cones, creating CTCs. Because the spacetime is homogeneous and stationary,
CTCs pass through every event. For the mathematical details of Godel’s spacetime, see,
e.g. Hawking and Ellis [3], especially Figure 31.

Physicists have generally dismissed Godel’s solution as unphysical because it re-
quires a nonzero cosmological constant and/or it doesn’t resemble our own universe
(whose rotation is small or zero).

2.2. Spacetimes with compactly generated chronology horizons

A spacetime whose CTCs are not eternal can be divided into chronal regions that are
free of CTCs, and nonchronal regions that contain CTCs everywhere. The boundaries
between the chronal and nonchronal regions are called chronology horizons; chronal re-
gions end and CTCs are created at future chronology horizons; CTCs are destroyed and
chronal regions begin at past chronology horizons.

A future chronology horizon is a special type of future Cauchy horizon, and as such
it is subject to all the laws that govern any such horizon [3]; most importantly, it is
generated by null geodesics that have no past endpoints but can leave the horizon when
followed into the future. If the generators, when followed into the past, enter one or more
compact regions K of spacetime and never thereafter leave them, the future chronology
horizon is said to be compactly generated [2]; otherwise it is non-compactly generated. (If
an arbitrarily advanced civilization were to create a time machine in a compact region
of spacetime, then its chronology horizon obviously would be compactly generated.) A
past chronology horizon is, in essence, the time reversal of a future one; and it therefore
is generated by null geodesics that have no future endpoints but can leave the horizon
when followed into the past.

When a future chronology horizon, at which CTCs arise, is compactly generated,
its generators, followed into the past, can become confined into their compact region K in
either of two ways: They can wander ergodically around K or some portion of it; or they
can asymptote to one or more smoothly closed null geodesics in K. Such smoothly closed
null geodesics are called fountains because, when the generators are followed forward in
time, they are seen to originate in the fountains and spew out of them, like streams of
water, into the surrounding spacetime.

Hawking [2] has proved that in the generic case, K will contain such fountains, and
it seems likely to me that generically all or almost all the horizon generators will emerge
from them. Thus, fountains are generic, while ergodic wandering in X probably is not.

It is tempting to conjecture that, if a finite-sized, rapidly rotating body were to
contract in some carefully designed, axially symmetric manner, it might create CTCs
around itself in the manner of the Van Stockum solution without forming an event
horizon. Figure 2 shows the chronological structure in the body’s equatorial plane for
such an evolution. At early times, when the body is large, there are no CTCs, so
spacetime is chronal. At late times, when the body has settled down into its final,
smaller state, the light-cone and chronology structures are similar to Van Stockum’s
solution, so spacetime is nonchronal. A future chronology horizon separates the chronal
and nonchronal regions; it is shaped like a bowl with a small mountain in the center, i.e.
like a “Mexican hat”. The horizon’s generators all originate on a single fountain. Two
generators are shown. One, labeled A, spirals outward from the fountain and remains
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Figure 2. The chronological structure of a spacetime that might result from
an axially symmetric contraction of finite sized, rotating body. This diagram
is confined to the body’s equatorial plane.

always on the horizon, eventually reaching future null infinity. The other, B, spirals
inward, and then leaves the horizon at the tip of the Mexican hat. Hawking [2] has given
mathematical details of a spacetime with this chronological structure.

In order for horizon generators to emerge from the fountain, there must be a net
defocusing of any bundle of null geodesics that travels around the fountain. By the
equations of geometric optics together with the Einstein field equation, this requires
that

}é Topl*1d( < 0, (1)

where the integral is around the fountain F, T,y is the total stress-energy tensor for all
matter and fields on F, ¢ is an affine parameter along 7, and I* = dz*/d( is the tangent
to F. Equation (1) says, in words, that the averaged null energy condition (ANEC)
must be violated around the fountain; i.e., the integral in (1) must be negative. All
ordinary, familiar forms of matter satisfy ANEC; therefore, no imploding body made of
such matter can create CTCs in the manner of Figure 2. In Section 3 we shall return to
the issue of whether ANEC can ever be violated, and shall learn that the answer is yes.

Lorentzian wormholes constitute a class of simple, explicit spacetimes that have
generic-type, compactly generated chronology horizons [1, 7, 8]; as such, they have be-
come a useful testbed for studies of chronology issues.

The simplest such wormholes are obtained by removing two balls from Euclidean
space and identifying their surfaces in the manner of Figure 3a; the surfaces then become
the wormhole’s mouths. Such a wormhole necessarily violates ANEC: Any bundle of
radially traveling null geodesics that passes through the wormhole is converging as it
enters and diverging as it leaves, and therefore gets defocused by the wormhole, which
means that §To50%1Pd¢ < 0 along the bundle, with the negative contribution coming
from a delta function T,z at the junction between the two mouths. One can show more
generally that every traversable wormhole, regardless of its shape or motion, violates

ANEC [1].
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Figure 3. (a) A wormhole formed by removing two balls from Euclidean
space and identifying their surfaces (the wormhole “mouths”); the identified
points are reflections of each other in the midplane between the balls. (b)
Chronology structure for a wormhole, one of whose mouths makes a “twins
paradox trip.” (c) Chronology structure for a wormhole whose mouths move
past each other at uniform speed.

One can construct wormhole spacetimes, whose wormhole mouths travel along arbi-
trarily chosen world lines in Minkowski spacetime, by removing world tubes along those
lines in a manner analogous to Figure 3a, and identifying their surfaces with each other
[7]. Of course, the identification must be done in such a way that the intrinsic geome-
tries of the two mouths’ world tubes are the same. This may require a distortion of the
spacetime geometry near the mouths if they are accelerated, but the distortion becomes
vanishingly small in the limit that (acceleration)x(mouth radius)— 0 [1, 7]. Since the
mouths’ intrinsic geometries are the same, the proper time interval A7 between two
identified neighboring events on the mouths must be same as seen through either mouth;
it is this that dictates the form of the time markings in Figures 3b,c.

Figures 3b,c show the chronological structures of two wormhole spacetimes con-
structed in this way. In Figure 3b, one mouth remains at rest in a chosen Lorentz frame,
while the other makes a “twins-paradox-type trip” into the external universe and returns
[1]. As seen in the external universe there is a dilation of proper time on the moving
mouth relative to the static one, but as seen through the wormhole there is no such time
dilation. As a result, the relative motion of the mouths changes the manner in which
time hooks up to itself through the wormhole. Initially the hookup is such that there are
no CTCs; spacetime is chronal. After the trip, the hookup entails CTCs; spacetime is
nonchronal. The future chronology horizon (denoted H.. in the figure) is the future light
cone of the event 7 = 4 at the center of the right face of the left (static) mouth. The
generators of this horizon (long-dashed lines) all originate in a single fountain (labeled
F): the smoothly closed null geodesic that travels from 7 = 4 on the left mouth to 7 = 4
on the right mouth, then through the infinitesimally short wormhole and back to where
it started; cf. Figure 10 of Ref. [7].

In Figure 3¢, one mouth moves past the other, creating CTCs that are confined to a
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bounded nonchronal region of spacetime: the region that begins at the future chronology
horizon H, and ends at the past horizon H_. The generators of H, (the future light
cone of 7 = 0 on the static mouth) emerge from the fountain F, and leave the horizon
when they pass through H_. The generators of H_ (the past light cone of 7 = 1 on the
moving mouth) enter the horizon at its intersection with H, and ultimately asymptote
to the fountain F_.

Figures 3b,c are prototypes for the consequences of generic relative motions of a
wormhole’s mouth: such motions will always produce CTCs [1], as will the gravitational
redshifts that result from placing a wormhole in a generic external gravitational field
[8]. Most physicists react to this by asserting that the laws of physics must prevent
the existence of classical, traversable wormholes—perhaps by forbidding the existence of
material that violates ANEC (“exotic material”).

Not all compactly generated chronoclogy horizons have the generic “generators-
emerge-from-fountains” structure of Figures 2 and 3. An example that is different is
Taub-NUT space [9]—a vacuum solution of the Einstein equation with a spatially com-
pact chronal region, followed by a compact future chronology horizon, followed in turn
by a non-compact nonchronal region with CTCs. Being a vacuum solution, Taub-NUT
space satisfies ANEC and also satisfies the local null energy condition (NEC), T,5*1° > 0
everywhere. This means that the generators of the chronology horizon cannot peel off of
fountains in the manner of Figures 2 and 3. Instead, every generator is itself a fountain
(a smoothly closed null geodesic).

A simpler spacetime with this special type of chronology horizon is Misner space
[10]. The relevant variant of Misner space can be obtained as follows: go into your
bedroom in Minkowski spacetime, identify the back wall with the front wall (so when
you walk into the back you find yourself emerging from the front), similarly identify the
floor with the ceiling and the left wall with the right, and set the right wall moving
toward the left. In other words, Misner space is Minkowski spacetime with identification
under translations along y and z, and under a boost along z. Figure 4a shows the z-t
portion of this spacetime. It initially is chronal, and then becomes nonchronal at a future
chronology horizon whose generators are the closed null geodesics (fountains) y =const,
z =const, x =1 — 2.

Hawking [2] shows that every fountain F on a compactly generated chronology
horizon must have a non-positive ANEC integral, [ T3/°l® < 0. The generic case where
generators peel off the fountain (Figs. 2 and 3) corresponds to “< 0” for this integral
and thus to a violation of ANEC; the special Taub-NUT and Misner cases correspond to
“=0". Hawking points out that as soon as one allows energy of any sort to flow through
the Taub-NUT or Misner horizon, or through any other horizon whose fountains have
T.s1%1P = 0 everywhere, that energy flow will carry a nonzero local value of T,5l*1?, and
therefore in order to keep the ANEC integral nonpositive, the local null energy condition
(NEC) must be violated somewhere along each perturbed fountain. This means that on
any physically realistic, compactly generated chronology horizon, NEC must be violated,
even if ANEC is not. (This conclusion strengthens an earlier result due to Tipler [11].)

2.3. Spacetimes with non-compactly generated chronology horizons

The simplest example of a spacetime with a non-compactly generated chronology horizon
is Grant space [12], which is a slight generalization of Misner space. Go into your bedroom
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Figure 4. (a) The t-z portion of Misner space. (b) The covering space for
Misner space (with the points P identified and Q identified) and for Grant
space (with each successive P or @ identified only after a displacement by
distance a into the paper).

in Minskowski spacetime, translate the left wall relative to the right by a distance a, and
then identify them and set the right wall moving toward the left with speed §; the result
is Grant space. In other words Grant space is Minkowski spacetime identified along the
z direction then boosted in z and translated in y. Misner space (without identification
in y and 2) is the same as Grant, but with vanishing y translation (a=0).

Figure 4b is the t-z portion of the covering space for Grant space. In this covering
space, a sequence of copies of Grant space (labeled “copy 17, “copy 2", etc.) are lined
up side by side, each one boosted by B with respect to the previous one. The (fictitious)
wall at which the boosts occur is shown dotted. The events P and @ lie on the wall,
with each successive copy of P or @ displaced into the paper by a distance a relative to
the preceding one.

With the aid of Figure 4b, one can show that the translation along y does not
change the location of the chronology horizon; it is the dark line labeled H, for a = 0
(Misner space) and also for a finite (Grant space). To show this for finite a, we need
only demonstrate that through any event Q which is in the claimed nonchronal region
but arbitrarily close to the claimed H., there passes a CTC. One can connect Q to itself
by many geodesics C,, with each one circling around Grant space a different number of
times, n. The figure depicts projections of the geodesics Cyo and C14 on the t-z plane;
they also extend distances 10a and 14a down the y axis (into the paper). Since Ci4 has
twice as long a temporal duration Af in the covering space as Cig, but only makes 40%
more trips around Grant space and thus has only a 40% longer extent in the y direction,
dy/df is 1.4/2.0 = 0.7 as large on C14 as on Cjg. As one goes to an ever larger number n
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Figure 5. (a) Spatial diagram of Gott space. (b) Spacetime diagram show-
ing the chronological structure of Gott space. For ease of visualization, the
wedges are not removed around the strings, and to compensate for this, the
chronology horizons and generators are shown as curved rather than flat.

of traversals, dy/df gets ever smaller (as one can readily show by a detailed calculation),
so that eventually, for a sufficiently large number n of traversals, dy/df is small enough
for the geodesic C, to be timelike.

Although the translation @ # 0 leaves the location of the horizon unchanged, it
alters radically the character of the horizon generators. For a = 0 (Misner space), the
generators are all smoothly closed null geodesics (fountains) and the horizon is compactly
generated. For a # 0, the generators originate at past null infinity in the covering space
and, never intersecting themselves or each other, they travel to the covering space’s
spacetime origin O. Correspondingly, after the identification that produces Grant space,
the generators travel around and around Grant space an infinite number of times without
ever intersecting themselves or each other. When followed to the past, through an infinite
affine parameter, they never leave the future chronology horizon Hy. When followed to
the future, after a finite affine parameter and an infinite number of circuits, they reach
the end of M, and leave it.

A famous example of a spacetime with a noncompactly generated chronology hori-
zon is Gott space [13], which is a solution of the Einstein field equation representing two
infinitely long, parallel, straight cosmic strings that move past each other at high speed.
Figure 5a depicts the strings in a spatial diagram; they are at the vertices of the wedges
and extend into and out of the paper (z direction) infinitely far. The figure is drawn in
the strings’ mean rest frame; the upper string moves rightward at speed § and the lower,
leftward at speed 8. Each string is surrounded by a flat but conical spatial geometry,
which can be obtained by removing the indicated wedge from Euclidean space and iden-
tifying its edges. The identification is synchronous in the rest frame of the string, which
means that for the upper, rightward moving string the event labeled ¢ = 1, at Lorentz
time ¢ = 1, is identified with that labeled ¢ = —1, at Lorentz time ¢ = —1, and similarly
for the lower string.

For a suitable choice of parameters, the dark vertical line in the diagram is a CTC.
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It begins at the “starting point” labeled S, at time ¢ = 0 in the mean rest frame, when
the two strings are just passing each other. It moves upward to meet the right edge of
the upper string’s wedge at ¢ = 1. It passes through the wedge, emerging at t = —1
when the right string was near the left edge of the diagram. It then travels downward to
meet the lower, left-moving string’s wedge at ¢ = 1, passes through the wedge emerging
at t = —1 when the wedge was near the right edge of the diagram, and then travels
upward to its starting event S.

Cutler [14] has deduced the chronological structure of Gott space. It is shown
in Figure 5b, topologically correctly but not geometrically correctly. (The geometrically
correct depiction, shown in Fig. 3 of Cutler’s paper, takes some work to decipher because
of the string wedges that are removed; their removal permits the chronology horizons and
their generators to be flat planes and straight null lines instead of curved surfaces and
curved lines as here.) The future chronology horizon H. has null geodesic generators H,
that originate at spatial infinity and, spiraling around and around the moving strings,
work their way in to the closed spacelike geodesic C = H4 N H_, where they leave H,.
The past chronology horizon H_ is generated by null geodesics G_ that enter H_ at C,
and then spiral their way around and around the moving strings until they reach spatial
infinity. The CTCs are confined to the nonchronal region outside H,+ UC U H_, which
means that they are bounded away from the strings. In the mean rest frame—indeed, in
any Lorentz frame—the horizons extend to temporal infinity; thus, at all times there are
CTCs, but at arbitrarily early or late times they are confined to arbitrarily large radii.

If one parallel transports a set of vectors around the strings and back to their
starting event, the local Lorentz transformation that relates the returning vectors to the
starting vectors is called the holonomy of Gott space. One can similarly transport vectors
around the closed z-dimension of Grant space and compute the resulting holonomy.
Grant [12] has shown that for suitable choices of parameters, the two holonomies, that of
Gott space and that of Grant space, are identical; and he has argued that this, plus the
fact that both spaces are flat (except at the string locations) implies that Grant space
must actually be the same as a portion of Gott space.

Because of its translation and boost invariance in the z direction, Gott’s two-string
space can be regarded as a solution of the 2 +1 dimensional vacuum Einstein equation
for two point masses moving past each other at high speed. This has enabled Deser
et. al. [15] and Carroll et. al. [16] to infer, using ideas from the 2+1 dimensional theory,
that, despite the fact that each of the strings moves at less than the speed of light, taken
together they have a tachyonic total momentum. Stated more precisely, the strings’
holonomy (in a suitable Lorentz frame) is a pure boost and not a rotation, and this
implies in the 2+1 theory that their total momentum is spacelike. Deser et. al. and
Carroll et. al. argue that this means Gott space is unphysical within the framework of
2+1 dimensional theory, and it suggests to them that Gott space might also be unphysical
(not creatable by realizable initial conditions) in our real 3+1 dimensional universe. (For
further interesting results on CTCs in 2+1 dimensional, point-particle spacetimes, both
spatially closed and spatially open, see the references in Carroll et. al. [16].)

Two other arguments have been used to cast doubt on cosmic strings as genera-
tors of CTCs: Gott [13], by order-of-magnitude estimates, suggests that, if one tries to
make CTCs by the relative motion of two curved strings, the strings’ energies in their
center of mass frame will become so great that they might form a black hole around
themselves before the CTCs can arise. More firmly and convincingly, Hawking [2] points
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out that finite loops of cosmic string, by themselves, cannot create CTCs because their
stress-energy tensor satisfies NEC, and any physically realizable, compactly generated
chronology horizon must violate NEC (see the end of Sec. 2.2 above).

Another famous vacuum solution of the Einstein equation that has a non-compactly
generated chronology horizon is Kerr spacetime. The exterior of Kerr’s outer horizon
(r > r4 in the usual notation) and the region between the outer and inner horizons
(r4 > 7 > r_) are chronal; the inner horizon (r =r_) is a chronology horizon; and the
region inside there (r < r_) is nonchronal. It is conventionally argued that, although
the chronal region is likely to occur in our real universe as the exterior and interior of
an old rotating black hole, the spacetime near and inside the chronology horizon will be
altered by an instability due to infalling, blueshifted perturbations; and this alteration
(hopefully) will prevent CTCs from arising [17].

3. Is there a Chronology Protection Mechanism?

The examples in Section 2 show that, according to classical general relativity, a wide
variety of circumstances can give rise to CTCs. What attitude should a physicist take to
this? The most common attitude is to assert that all such circumstances are unphysical:
Infinitely long, rotating cylinders are unphysical and (presumably) finite ones will not
produce CTCs; our universe does not rotate as fast as the Gédel universe, so Godel is
unphysical; traversable wormholes are unphysical; infinitely long, straight cosmic strings
are unphysical; . ...

I do not find such assertions at all satisfying. Physicists’ past records in labeling
various things as unphysical are not good. For example, Oppenheimer, Wheeler, and
others in the 1930s through the 1950s clairied on physical grounds that the trace of the
stress-energy tensor cannot be negative, and therefore superdense matter cannot have a
pressure that exceeds 1/3 its energy density. They were wrong, as Zel'dovich showed in
the early 1960s by a simple quantum-field-theory model, and nowadays several plausible
equations of state for nuclear matter entail 7,* < 0. As another example, it was widely
asserted several decades ago that negative energy densities are unphysical, but we now
know they are not: quantum field theory predicts negative renormalized energy densities
under a variety of circumstances—e.g. in the Casimir vacuum between two electrically
conducting plates and in squeezed vacuum states of light, both of which are realized in
the laboratory.

This poor record cautions us to keep an open mind aboul CTCs until we have found
a concrete chronology protection mechanism (or mechanisms): a mechanism that will
prevent CTCs from arising under all conceivable circumstances—e.g. when a hypothetical
arbitrarily advanced civilization is using all means at its disposal to produce CTCs. It
seems likely to me that the search for such a firm chronology protection mechanism may
teach us much about the laws of physics.

It would be rather surprising to me if Nature uses one protection mechanism in one
situation (e.g., collapsing, spinning bodies), a different one in another situation (e.g.,
moving cosmic strings), and a third mechanism in a third situation (e.g., the interior
of a spinning black hole). More likely there is one universal mechanism, that always
does the job if other mechanisms fail. (Visser [18] has argued for a number of universal
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mechanisms, i.e. a “defense in depth” against CTCs. On this I am agnostic; I would be
happy to find just one firm, universal mechanism).

In the following subsections I shall discuss the three mechanisms that have seemed
most promising in recent years: An enforcement of NEC or ANEC by quantum field the-
ory, a classical instability of future chronology horizons, and a quantum-field instability.

3.1. Enforcement of NEC or ANEC

Because compactly generated chronology horizons across which energy flows must always
violate NEC, if we knew that NEC is always enforced by the laws of physics, then we
could rule out CTCs ever being generated in compact regions of spacetime. This might
not be a fully universal chronology protection mechanism, but it would come close.

Unfortunately, quantum field theory—the ultimate arbiter of obedience to energy
conditions—insists that NEC can be violated; for example, it is violated in the Casimir
vacuum and in squeezed states of light.

It may well be that in the real universe, for reasons that we do not yet understand
firmly, compactly generated chronology horizons must be of the generic sort illustrated
in Figure 2 (contracting, rotating cylinder) and Figure 3 (wormholes): the horizon gen-
erators emerge from fountains that necessarily violate ANEC. This makes enforcement
of ANEC an attractive possible chronology protection mechanism.

With this motivation, there has been considerable effort in the last several years to
determine quantum field theory’s attitude toward ANEC. It has been shown that ANEC
is enforced for noninteracting quantized scalar and electromagnetic fields in Minkowski
spacetime [19, 20], and in generic, curved 1+1 dimensional spacetimes [21]. On the other
hand, in 3+1 dimensions (the real universe), both nontrivial topology {19] and spacetime
curvature [21] can induce ANEC violations. Indeed, as Wald and Yurtsever have shown,
there are generic classes of curved spacetimes in which quantum fields violate ANEC.

It could still turn out that ANEC is enforced under all circumstances where CTCs
try to form, thereby protecting chronology; for example, it might be impossible for
quantum fields ever to produce the specific ANEC-violating stress-energy tensors that
are required to hold a wormhole open, and therefore wormhole-based CTCs might be
forbidden. However, the fact that ANEC can be violated under a wide class of generic
situations suggests to me that ANEC enforcement is not a very promising, universal
chronology protection mechanism.

§.2. Classical instability of future chronology horizons

The future chronology horizons in the Kerr, Taub-NUT, and Misner spaces are infa-
mously classically unstable. Particles or fields falling into a Kerr black hole, or traveling
around the spatially closed Taub or Misner space, become infinitely blue shifted as they
near the horizon; and it seems reasonable to hope that the resulting divergent energy
density will always act back on the spacetime, via the Einstein equation, to prevent the
CTCs from forming.

The example of Misner space is depicted in Figure 6a: A high-frequency electro-
magnetic wave packet moving along the solid world line gets blue shifted by a factor
€ = /(1 + B)/(1 — B) with each passage around the “universe”, and it traverses the uni-

verse an infinite number of times as it nears the chronology horizon’s fountain, thereby
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Figure 6. (a) The motion of a high-frequency electromagnetic wave packet
in Misner space. (b) The same wave packet in a wormhole spacetime where
CTCs are forming.

piling up on itself in spacetime and producing a divergent energy density just before the
chronology horizon forms.

Until a few years ago, it was widely thought that such instabilities always occur at
future chronology horizons, thereby protecting chronology. However, wormhole space-
times provide a counterexample [1], and generalizing this result, Hawking [2] has shown
that a generic subset of all compactly generated chronology horizons are counterexam-
ples: they are all classically stable.

A wormhole counterexample is depicted in Figure 6b. This wormhole spacetime is
identical to Misner space (Fig. 6a), except that Misner’s identified flat walls are converted
into spherical “walls” (the wormhole’s mouths). The high-frequency wave packet still gets
blue shifted by a factor ¢ = /(1 + 8)/(1 — B) with each circuit through the wormbhole,
and still tries to pile up on itself at the fountain. However, the wormhole’s ANEC-induced
diverging-lens action causes the wave packet to spread laterally, driving its amplitude
down by a factor b/2D with each circuit (where b is the wormhole radius and D the
distance between the mouths, as seen in the left mouth’s reference frame, when the
horizon forms). If (b/2D)¢ < 1, i.e. if the distance between the mouths is large enough,
then the packet’s energy density decreases with each circuit, and the total energy density
at the horizon remains finite, despite the pileup. Chronology is not protected—at least
not by this mechanism.

3.3. Quantum-field instability of future chronology horizons

Our greatest hope—indeed, it seems, a very realistic hope—for universal chronology
protection lies in a quantum field instability of all future chronology horizons. This
instability was first discovered in 1982, in the context of Misner space, by Hiscock and
Konkowski [22]. After Morris, Yurtsever, and I discovered that Misner space’s classical
instability is removed by curving its walls (i.e. by going to a wormhole spacetime) [1],
we presumed the same would be true of the quantum instability. We were wrong, as
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Figure 7. (a) Heuristic explanation of the quantum-field instability of the
chronology horizon. (b) Geometric construction for point-splitting computa-
tion of the renormalized stress-energy tensor, which induces the instability.

Kim and I [23], Frolov [24], and Gnedin and Kompaneets [26] all independently realized
in 1989. The quantum instability is universal; it must arise at every location on every
future chronology horizon in any spacetime.

This instability can be described heuristically as due to a piling up of the vacuum
fluctuations of any quantum field in the vicinity of any chronology horizon. This pile up
causes the fluctuations to have a nonzero renormalized energy density (nonzero vacuum
polarization) that diverges as one approaches the horizon. The diverging energy density
in turn, via the semiclassical Einstein equation, might distort the spacetime geometry in
such a way as to protect chronology. I shall return to the “might” in the next subsection.

To understand this heuristic explanation in greater detail, consider an arbitrary
location on any future chronology horizon H4. Since the horizon is the dividing line
between a region with CTCs and one with none, arbitrarily close to .., on its nonchronal
side, there is an event @ through which passes a CTC. As one pushes @ closer to H,
the CTC through Q becomes more nearly null, then null, and then a null geodesic that
I shall call Gy; see Figure 7a. This Gg travels from Q around a closed loop and back to
Q, but in general does not return pointing in the same direction as it started; for this
reason it is sometimes called a self-intersecting null geodesic.

Now, let P be an event very close to Q, but on the chronal side of H,. There will
be an almost closed null geodesic Gp that starts out at P, travels along nearly the same
route as Gg, and returns very near P, but cannot quite close itself up at P because P is
in the chronal region. High-frequency wave-packet modes of any massless quantum field
can travel along this Gp; the world tube of such a mode is shown as a dark strip in Figure
7a. The closer P is to the chronology horizon M, the closer will Gp come to closing up
on itself, and if it comes close enough, then the wave packet, with its finite size, will pile
up on itself in spacetime near P, and its piled-up vacuum fluctuations will interfere with
themselves in such a way as to produce a nonzero energy density after renormalization.

As P is pushed closer and closer to Hy (and thence to Q), Gp comes closer and
closer to closing up on itself, and correspondingly modes of higher and higher frequency
manage to pile up on themselves, with each contributing a nonzero amount to the vacuum
polarization. With more and more modes of higher and higher frequency contributing,
the renormalized energy density grows larger and larger in magnitude, as P is pushed
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up to H,.

This heuristic picture has been justified by a point-splitting calculation of the renor-
malized stress-energy tensor 7*# for a quantized, noninteracting, massless scalar field qg
[23, 24]. The single point P is split into two points P and P’ (Fig. 7b), and the field’s
regularized Hadamard function G’g%(P, P') = (¢(P)(P')+ ¢(P')p(P)) is evaluated. The
dominant contribution—one due to vacuum fluctuations and therefore independent of the
state of the field—comes from scalar-wave propagation of ¢A$(P) and thence G() around
routes close to the null geodesic Gp (see Refs. [23] and [24] for careful justifications); it
has the usual Hadamard normal form

AV /o] 1
=7 (=) @)

"8 4n? \opp  opp

Here A is the Van Vleck-Morette determinant, which measures the amount of focusing
(A > 1) or defocusing (A < 1) that occurs around Gp or equally well around Go; opp
is the geodetic interval along the spacelike (but nearly null) geodesic Gpp: (Fig. 7b) that
leads from P to P’ by a route that is very close to the null geodesic Gp; and opip is
the interval along the similar route that begins at P’ and ends at P. More specifically,
opp = Jg_., Jap(dz®/d()(dzP [d()dC, with ¢ an affine parameter that goes from 0 at P
to 1 at P’, and similarly for opp.. The closer is P (and thus also P') to Q (which was
arbitrarily close to the horizon), the closer will the o’s be to zero, and thus the larger
will be the Hadamard function.

The renormalized stress-energy tensor is computed from the Hadamard function
by the standard point-splitting relation

2 1 1 »

T,, = Jim, (59,90 - 39,9, - G0mVaV") G, 3)

where £p) is the Planck length and G = ¢ = 1 so #p; = v/A. The dominant contribution to

T, comes from differentiating twice the nearly-zero and sharply varying o’s; the result
is

A1/2 Z}%] o
Ty = — o ;(Zkul, + 20k, + kb, 4 L+ g lk) . (4)
Here k, = —limpi_p V,opp is the outgoing tangent to Gpp or equally well to the

self-intersecting null geodesic Gg, and I, = +limpi_p V,opp: is the returning tangent;
see Figure 7b. For @) arbitrarily close to the horizon (as we have assumed), o becomes
arbitrarily small as P approaches the horizon, while A, l,, and k, remain finite; and
therefore the renormalized stress-encrgy tensor becomes arbitrarily large.

The divergence is actually a little more complicated than this, because there is an
infinite sequence of events Qy, @3, @3, ... in the nonchronal region that asymptote to
any chosen event on M., and each of which is connected to itself by a self-intersecting
null geodesic Gg,,. Each of these events Q,, with its own Go., gives rise to a term of the
form (4) in the renormalized stress-energy tensor, and the total stress-energy tensor is a
sum over all these contributions

2z — A11L/2 le:’l v Y nv 1w iy @
T :—26?(—75(2knln+2lnkn+knkn+lnln+g luak?) . (5)

One can see that there is such an infinite sequence of Q’s by the following argument
[23]: Take the original @, and construct a new causal curve that connects this Q to itself
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mouth 1

Figure 8. The future chronology horizon H; and polarized hypersurfaces
H,, for the simple wormhole spacetime of Figure 6b. The kink in the left edge
of H. is due to a caustic there.

by traveling around the original Gg twice. That curve (call it Gg,) has a kink in its
middle (a discontinuous jump from the null direction I, to k). By moving @ nearer the
horizon (and giving it the new name @Q,), while keeping Gg, null, one forces the kink to
smooth out and converts Gg, into a null geodesic. Repeating the process indefinitely,
one obtains a subsequence of the infinite sequence of @’s alluded to above.

Each Q, lies on a distinct hypersurface H,, made of events that are connected to
themselves by self-intersecting null geodesics; and these H,, which are called polarized
hypersurfaces, asymptote to the future chronology horizon H, in the limit n — oo.
We can regard the order-n term in the vacuum-polarization stress-energy tensor (5) as
produced by the presence nearby of the n’th polarized hypersurface H,, with its specific
event (), and associated self-intersecting null geodesic Gg,,.

The wormhole spacetime of Figure 8 provides an example [23]. The polarized
hypersurfaces Hy, Ha, Hs, Ha, ... are nested, one inside the next, within the chronology
horizon. The event Q, on H, is connected to itself by a null geodesic Gg, that traverses
the wormhole n times, and that gives rise to the order-n term in the stress-energy tensor
(5) at the event P.

Explicit evaluations of the vacuum fluctuational stress-energy tensor (5) have beern
carried out near the fountain of the wormhole spacetime of Figure 8 by Kim and Thorne
[23] (and for arbitrarily slow wormhole motions, 8 — 0, by Visser [18]), near the fountain
of other wormhole spacetimes by Frolov [24], near the fountain of a generic, compactly
generated horizon by Klinkhammer [25], and near the non-compactly-generated horizon
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Figure 9. The vacuum-polarization-induced stress-energy tensor, and the
metric perturbations it produces as one passes through H, or H,,.

of the Grant/Gott spacetime by Grant [12]. A central issue in these and all other cases
is this:

3.4. Does the back-action of the vacuum-polarization energy protect chronology?

By inserting the T}, of Eq. (3) into the semiclassical Einstein equation and performing a
rough order-of-magnitude integration, one obtains an estimate for the metric perturba-
tions created by the vacuum-polarization energy of the quantized scalar field (and also
of any other nongravitational field):

2
oo ~ G~ TR ©)
n n

Although these metric perturbations diverge at the chronology horizon and at each
subsequent polarized hypersurface, the divergences can be remarkably slow—so slow
that it is conceivable, under some circumstances, that quantum gravity will invalidate
the above analysis before the spacetime has been altered substantially [23]. Note that, as
one passes through the n'th polarized hypersurface, o, passes through zero and reverses
sign. Correspondingly, if quantum gravity were simply to smooth out the divergences in
Egs. (5) and (6), one would see the vacuum polarization produce, on the nonchronal side
of Hy and My, a T}, equal in magnitude but opposite in sign to that on the chronal side.
Therefore, as observers approach and then pass through H, or H,, they might see this
T, first distort the spacetime geometry, and then undo the distortions it had produced,
as illustrated in Figure 9.

Such a scenario is highly speculative, but seems to me plausible if the divergence
is sufficiently weak.

Just how strong is the divergence? The most important place to ask this question
is at the chronology horizon H, rather than at a polarized hypersurface H,, because
that is where CTCs first arise. For a compactly generated H,, the divergence is much
stronger at the horizon's fountains than away from the fountains. This is because the
polarized hypersurfaces H, (at which the o, = 0) are all tangent to M, at any fountain
F, but each H,, is finitely separated from M, away from the fountains [23]; see Figure 8
for an example. If, as I have conjectured in Section 2.2, almost all the horizon generators
originate on fountains, then a divergence that is strong enough at the fountains to distort
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the spacetime geometry significantly there will have its influence propagate over the
entire horizon and perhaps thereby protect chronology everywhere. Conversely, if the
divergence is too weak to protect chronology at the fountains, it probably is too weak to
protect chronology elsewhere.

As an example, consider the wormhole spacetime of Figure 8, as examined by an
observer who sits on the left mouth and on the z-axis, where the fountain F arises.
Assuming the mouth speed 8 is not too close to zero or one, at a time At before crossing
the horizon this observer sees a value o, ~ DAt for the geodetic interval along the closed,
spacelike geodesic that traverses the wormhole n times, and he sees AL/2 ~ (b/2D)"~1
for the amount of defocusing around that geodesic [23]. (There is no net defocusing
on the geodesic’s first trip because it first passes through the wormhole—the “diverging
lens”—only at the end of that trip; however, the first wormhole passage produces a
net defocusing of b/2D during the second trip, the second wormhole passage produces
another defocusing b/2D during the third trip, etc.) Correspondingly, the spacetime
distortion measured on the wormhole throat is

5925 ~ sztE(zD)"_l ' ™

When Kim and I first computed this back-action of the vacuum polarization, it
seemed to me to be extremely weak. “Surely,” I said to myself, “the analysis will break
down during a time interval At ~ £p; around the passage through the horizon (the ‘Planck
region’ of Fig. 9), since ‘time’ does not make classical sense on such short scales.” If this
were true, and quantum gravity were to smooth out the divergence, then the metric
distortion just before smooth-out would be much too small, 6gYF ~ €pi/D ~ 10~% for
D ~ 1 meter, to protect chronology.

Hawking [2] has convinced me that this assessment is wrong [23, 27]. The distance
D between the mouths and the time At until the Chronology horizon depend on the
observer’s reference frame, he points out, but the product DAt does not (as one can see
from the fact that o, ~ DAt is an invariant). Therefore, he conjectures, it may well be
that the spacetime remains classical, near the chronology horizon, and the computed 6g
of Eq. (7) remains correct, until the product DAt gets as small as £, and correspondmgly
69""5 reaches unity. The resulting distortion of the classical spacetime geometry might
then be sufficient to protect chronology, Hawking speculates.

If Hawking were right, and the relevant Planck region were DAt ~ £}, then there
is & strategy that an arbitrarily advanced civilization could use to circumvent chronology
protection. The civilization need only make sure that the fountain encounters two or more
widely separated regions of defocusing, instead of only one as in Figure 8. This could
be done, for example, by using two wormholes to make CTCs, with time through each
wormhole synchronously identified in the wormhole’s rest frame, and the two wormholes
moving in the manner of Figure 10. (Such a spacetime was suggested to Mike Morris and
me several years ago by Tom Roman.) The fountain would have the indicated form, the
defocusing as measured on a wormhole mouth would be AL/? ~ (b/2D)?"~! rather than
the (b/2D)"~! of Figure 8, and thus for a large wormhole separation, D >> b, the resultlng
metric perturbation on the mouth (which is dominated by n = 1) would be 6g
(b/2D)(€3,/ DAt) [28]. By making b/2D arbitrarily small, the advanced civilization could
force 6gVP to be arbitrarily small at the beginning of Hawking’s conjectured Planck
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Figure 10. Spatial diagram of Roman’s wormhole spacetime.

region, DAt ~ £3,. If quantum gravity were then to provide a cutoff and smooth-out,
chronology would not be protected.

Even weaker is the vacuum-polarization divergence in Gott/Grant spacetime, as
computed by Grant [12]. Since the chronology horizon is non-compactly generated, it
has no fountains, and every polarized hypersurface is everywhere separated from the
horizon by a finite distance. (More specifically, in the covering space of Figure 4b,
the n’th polarized hypersurface H, consists of events connected to themselves by self-
intersecting null geodesics such as Cjg of the figure, that circle around the Z-direction
of the universe n times; this M, is the hyperbola & — 2 = a?n26~"(1 — £7")~2, where
&€ =+/(1+ B)/(1 — B) is the blue shift produced by each propagation around the universe
and a is the y-translation that makes the horizon non-compactly generated.) When Grant
sums over the vacuum polarization contributions from all the polarized hypersurfaces,
each one finitely displaced from the horizon but approaching the horizon in the limit
n — oo, and when he then computes the resulting back action on the spacetime metric,

he obtains
G, (R
8935 ~ 3 In ( = ) : (8)

Although this metric perturbation diverges as one approaches the horizon, { — &, the
divergence, being logarithmic in time with a coefficient ¢2,/a? that can be made arbi-
trarily small, is extremely weak. It is even harder here than in the Roman spacetime to
see how such a divergence can protect chronology.

Nevertheless, I suspect that it may do so. It may well be that quantum gravity
invalidates the semiclassical analysis only when metric fluctuations, treated as a spin-two
field on the classical background, develop mean-square fluctuations of order unity as a
result of the same pileup process as induces the vacuum polarization of nongravitational
fields. If so, then the semiclassical analysis, just before every chronology horizon, might
remain valid up to the location where 6g)F ~ 1, and only then fail.

To determine whether this is so, and to determine the nature of the subsequent
evolution of spacetime, will require an understanding of quantum gravity. Indeed, it
may be that efforts to decipher these issues will teach us useful things about quantum
gravity.

4. Physics in the presence of closed timelike curves

It may turn out that on macroscopic lengthscales chronology is not always protected,
and even if chronology is protected macroscopically, quantum gravity may well give
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finite probability amplitudes for microscopic spacetime histories with CTCs [29]. For
these reasons, some effort has been devoted recently to exploring whether and how the
laws of physics might adapt themselves to CTCs [7]. In this concluding section, I shall
summarize very sketchily what has been learned.

The cleanest of such explorations are carried out in spacetimes, such as Figure 3c,
that have a chronal “IN” region, followed by a compact nonchronal region, followed by a
chronal “OUT” region. Initial data are posed in the IN region for some physical system,
and the system is then evolved from the IN region through the nonchronal region and into
the OUT region. The evolutionary laws are generally chosen to be the most conservative
possible—the same laws, at least locally, in the nonchronal region as one is accustomed
to in everyday, chronal physics—and one asks whether the evolution problem is well
posed, i.e. whether standard initial data in the IN region produce a unique evolution
through the chronal region and into the OUT region.

For noninteracting, classical systems (particles [7] and fields [30]) the answer ap-
pears to be yes; there does exist a unique evolution. However, just as interactions
produce evolutionary problems in science fiction (e.g., one can go back in time and kill
one’s younger self), so also interactions produce trouble for classical particles [31] and
presumably also for classical fields: One finds that a large number of classical evolutions
can follow from a single, standard set of initial data. It was thought, at first, that for
some initial data there might be no self-consistent evolutions; but thus far no clean ex-
amples of such a thing have been exhibited in classical, continuum physics [31, 32]. (On
the other hand, there are examples in simple, highly idealized, discrete models [33].)

Of course, physics is quantum mechanical at heart, not classical, and it is in the
quantum domain that these studies become especially fruitful. Just as in quantum
cosmology, where there is no a priori notion of “time”, so also in nonchronal spacetimes,
where CTCs alter the nature of time, the only viable approach to quantum mechanics
seems to be Feynman’s sum over histories. Indeed, spacetimes with CTCs have become a
useful testbed for the sum-over-histories formulations of quantum theory that are being
developed for use in quantum cosmology [34].

It turns out that for nonrelativistic particles [35] and also for relativistic fields
[37], the sum-over-histories formalism enables one to compute unique probabilities for
the outcomes of all measurements that one might reasonably try to make, even in the
nonchronal region of spacetime. However, when the particles or fields are self-interacting,
their interactions produce peculiar phenomena: (i) the propagators from the IN region
to the OUT region are not unitary—but nevertheless, there is no loss of probability
[35, 36, 37]; and (ii) although one recovers standard Hamiltonian quantum mechanics in
the chronal OUT region, one does not recover it in the chronal IN region, and the fact
that C'TCs exist to the future of the IN region influences probabilities in the IN region
itself [37). The strength of this influence, and how it grows as one approaches the future
chronology horizon, are not as yet understood.

In summary, these studies are giving us glimpses of how CTCs influence physics;
but whether those glimpses are teaching us something deep and important, or we are
just playing fun mental games, is far from clear.
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